WO2018180606A1 - 車載電源装置およびその車載電源装置が搭載される車両 - Google Patents

車載電源装置およびその車載電源装置が搭載される車両 Download PDF

Info

Publication number
WO2018180606A1
WO2018180606A1 PCT/JP2018/010497 JP2018010497W WO2018180606A1 WO 2018180606 A1 WO2018180606 A1 WO 2018180606A1 JP 2018010497 W JP2018010497 W JP 2018010497W WO 2018180606 A1 WO2018180606 A1 WO 2018180606A1
Authority
WO
WIPO (PCT)
Prior art keywords
output
voltage
power
vehicle
control unit
Prior art date
Application number
PCT/JP2018/010497
Other languages
English (en)
French (fr)
Inventor
洋一 影山
克則 愛宕
一雄 竹中
久雄 平城
侑吾 薛
貴司 東出
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to EP18777151.4A priority Critical patent/EP3604046B1/en
Priority to JP2019509289A priority patent/JP7016061B2/ja
Priority to US16/491,481 priority patent/US11059371B2/en
Priority to CN201880018791.7A priority patent/CN110431047B/zh
Publication of WO2018180606A1 publication Critical patent/WO2018180606A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • B60R16/03Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for supply of electrical power to vehicle subsystems or for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0046Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electric energy storage systems, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/62Monitoring or controlling charging stations in response to charging parameters, e.g. current, voltage or electrical charge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/01Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents
    • B60R21/013Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents including means for detecting collisions, impending collisions or roll-over
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations

Definitions

  • the present disclosure relates to a vehicle-mounted power supply device and a vehicle-mounted power supply vehicle.
  • FIG. 9 is a circuit block diagram showing the configuration of a conventional in-vehicle power supply device.
  • the output unit 30 of the in-vehicle power supply device 1 is connected to the load 2.
  • the in-vehicle power supply device 1 includes a power storage element 3, an auxiliary power storage element 4, and a switching unit 5.
  • the storage element 3 is connected to the output unit 30 via the switching unit 5, and the auxiliary storage element 4 is connected to the output of the switching unit 5. That is, the auxiliary power storage element 4 is connected to the output unit 30.
  • switching unit 5 supplies power from power storage element 3 to load 2. At the same time, switching unit 5 operates so that power storage element 3 charges auxiliary power storage element 4.
  • the switching unit 5 discharges the power of the auxiliary power storage element 4 and superimposes the voltage of the auxiliary power storage element 4 on the voltage of the power storage element 3. Electric power is supplied to the load 2 from both the power storage element 3 and the auxiliary power storage element 4.
  • the in-vehicle power supply device 1 can supply power to the load 2 with a stable voltage even when the voltage of the power storage element 3 is lowered.
  • Patent Document 1 is known as prior art document information related to this application.
  • An in-vehicle power supply device includes a power storage unit, a charging circuit that is provided in a charging path of the power storage unit, charges power to the power storage unit, an output path of the power storage unit, and the power storage unit
  • a discharge circuit for discharging the power of the input circuit an input unit connected to the charging circuit, an output unit connected to the discharge circuit, an input voltage of the input unit, an output current of the output unit, and the output unit
  • a control unit that controls the charging circuit and the discharging circuit, and when the control unit determines that an emergency operation condition is satisfied, After stopping charging from the charging circuit to the power storage unit, an output instruction voltage, which is a target voltage value of the output of the discharging circuit, is set to a first voltage value, and the control unit is configured so that the discharging circuit Control to discharge the power charged in the battery. And, when the power output from the discharge circuit is higher than the power threshold, the controller reduces the said output command voltage from the first voltage value to a second voltage value.
  • the vehicle according to the present disclosure includes the above-described vehicle-mounted power supply device, a vehicle body on which the vehicle-mounted power supply device is mounted, and a vehicle battery that is mounted on the vehicle body and supplies power to the vehicle-mounted power supply device. .
  • the circuit block diagram which shows the structure of the vehicle-mounted power supply device in Embodiment 1 of this indication 1 is a block diagram illustrating a configuration of a vehicle on which an in-vehicle power supply device according to Embodiment 1 of the present disclosure is mounted.
  • flowchart for explaining the operation of the in-vehicle power supply device according to the second embodiment of the present disclosure The flowchart explaining operation
  • FIG. 3 is a block diagram illustrating a configuration of a vehicle on which an in-vehicle power supply device according to Embodiment 2 of the present disclosure is mounted. Timing chart explaining operation of in-vehicle power supply device in Embodiment 2 of the present disclosure Timing chart showing operation of in-vehicle power supply device in Embodiment 3 of the present disclosure
  • FIG. 3 is a block diagram showing a configuration of a vehicle equipped with an in-vehicle power supply device according to a fourth embodiment of the present disclosure. Circuit block diagram showing the configuration of a conventional in-vehicle power supply device
  • the in-vehicle power supply device 1 when the voltage of the power storage element 3 decreases, it is necessary to configure the auxiliary power storage element 4 to compensate for the decrease. For this reason, the number of elements constituting the in-vehicle power supply device 1 increases. As a result, the in-vehicle power supply device 1 is increased in size.
  • the in-vehicle power supply device 6 of the present disclosure described below can operate stably and can be downsized.
  • FIG. 1 is a circuit block diagram illustrating a configuration of the in-vehicle power supply device 6 according to the first embodiment of the present disclosure.
  • the in-vehicle power supply device 6 includes a power storage unit 7, a charging circuit 8, a discharging circuit 9, an input unit 10, an output unit 11, and a control unit 12.
  • the charging circuit 8 is provided in the charging path of the power storage unit 7 and can charge the power storage unit 7 with electric power.
  • the discharge circuit 9 is provided in the output path of the power storage unit 7 and discharges the power of the power storage unit 7.
  • the input unit 10 is connected to the charging circuit 8, and the output unit 11 is connected to the discharging circuit 9.
  • the control unit 12 detects the input voltage at the input unit 10, the output current at the output unit 11, and the output voltage at the output unit 11, and controls the operation of the charging circuit 8 and the discharging circuit 9.
  • the power supply path is indicated by a thick line
  • the signal transmission path is indicated by a thin line
  • a power supply path that connects the input unit 10 and the charging circuit 8 is indicated by a thick line
  • a signal transmission path that connects the input unit 10 and the control unit 12 is indicated by a thin line.
  • the magnitude of the power transmitted through the power supply path and the signal transmission path is only a guideline, and the same is true in that both the thick line and the thin line are electrically connected.
  • control unit 12 When the control unit 12 detects that the input voltage at the input unit 10 is equal to or higher than the input lower limit voltage, the control unit 12 determines that the normal operation condition is satisfied. Further, the control unit 12 controls the charging circuit 8 so as to charge the power storage unit 7 continuously or intermittently from the charging circuit 8 until the output unit 11 reaches a predetermined storage voltage.
  • normal mode a state where the input voltage is equal to or higher than the input lower limit voltage is referred to as “normal mode”.
  • the control unit 12 determines that the emergency operation condition is satisfied. Further, the control unit 12 performs control to discharge from the power storage unit 7 to the discharge circuit 9 after stopping the charging from the charging circuit 8 to the power storage unit 7. At this time, the control unit 12 instructs the discharge circuit 9 to output an instruction voltage, which is a target voltage value of the output of the discharge circuit 9, and electric power starts to be discharged from the power storage unit 7 to the discharge circuit 9.
  • the output instruction voltage at this time is the “first voltage value”.
  • the state where the input voltage is lower than the input lower limit voltage is represented as “emergency power supply mode”.
  • the control unit 12 decreases the output instruction voltage from the first voltage value to the second voltage value for the discharge circuit 9. Instruct them to do so. Details of the voltage change will be described later with reference to FIG.
  • the in-vehicle power supply device 6 reduces the output instruction voltage from the first voltage value to the second voltage value when large output power is required in the emergency power supply mode.
  • temporary voltage pulsation caused by the output power approaching the supply limit in other words, temporary voltage pulsation caused by the influence from the load 13 connected to the output unit 11 is suppressed. . Therefore, large output voltage fluctuations are alleviated.
  • the in-vehicle power supply device 6 can output a stable voltage without adding an auxiliary power storage element (for example, the power storage element 3 shown in FIG. 9). As a result, the in-vehicle power supply device 6 can operate stably and can be downsized at the same time.
  • FIG. 2 is a block diagram illustrating a configuration of the vehicle 14 on which the in-vehicle power supply device 6 according to the first embodiment of the present disclosure is mounted.
  • 3A is a flowchart for explaining the operation of the in-vehicle power supply device 6 according to Embodiment 1 of the present disclosure
  • FIG. 4 is a timing chart for explaining the operation of the in-vehicle power supply device 6 according to Embodiment 1 of the present disclosure.
  • the in-vehicle power supply device 6 is disposed on a vehicle body 15 constituting the vehicle 14.
  • the input unit 10 is connected to the vehicle battery 17 via the switch 16.
  • the output unit 11 is connected to a load 13. Further, the vehicle battery 17 is connected to the load 13 via the power transmission path 18.
  • the in-vehicle power supply device 6 has already been described with reference to FIG.
  • the switch 16 is turned on or off in conjunction with turning on or off a start switch (not shown) for the passenger to get on the vehicle 14 and start the vehicle 14.
  • a start switch (not shown) for the passenger to get on the vehicle 14 and start the vehicle 14.
  • the switch 16 is switched from off to on by the passenger, the vehicle 14 is activated and the switch 16 is connected. And the control part 12 of the vehicle-mounted power supply device 6 is also started. The above corresponds to step A in the flowchart of FIG. 3A.
  • the control unit 12 is connected to the input unit 10 and detects the input voltage of the input unit 10 at all times.
  • the input voltage of the input unit 10 may be detected by connecting the control unit 12 to the charging circuit 8 and detecting the input voltage of the charging circuit 8. That the control unit 12 detects the input voltage of the input unit 10 means that the control unit 12 detects the voltage of the vehicle battery 17. Further, when the control unit 12 detects the voltage of the vehicle battery 17, the control unit 12 activates the charging circuit 8.
  • the charging circuit 8 charges the power storage unit 7 to a predetermined stored voltage continuously or intermittently. The above corresponds to Step B and Step C in the flowchart of FIG. 3A.
  • the charging circuit 8 and the input unit 10 are described as separate elements, but the charging circuit 8 may include the input unit 10.
  • the charging circuit 8 charges the power storage unit 7 after the control unit 12 detects the voltage of the vehicle battery 17, but the order of these operations may be reversed. .
  • the vehicle-mounted power supply device 6 also does not start.
  • the operation of the in-vehicle power supply device 6 described below is an operation performed when the vehicle battery 17 is in a normal state when the vehicle 14 is activated. Further, the operation of the in-vehicle power supply device 6 described below is performed when the vehicle 14 is normally running or in a state where the vehicle 14 can run after the vehicle 14 is normally started.
  • the control unit 12 uses the input voltage detected in step B and compares the input lower limit voltage with the input voltage.
  • the input lower limit voltage is set to a value that cannot occur when the vehicle 14 is operating normally.
  • the input lower limit voltage may be set assuming that the vehicle 14 has caused a collision accident and the vehicle battery 17 has been lost.
  • the input lower limit voltage can be set to a value close to a low value such as 0 V to several V at which the control unit 19 responsible for the overall control of the vehicle 14 and the load 13 cannot operate.
  • Step B If the input voltage is larger than the input lower limit voltage, the control unit 12 determines that the vehicle 14 or the vehicle battery 17 is in a normal state where no accident has occurred, and the process returns to Step B.
  • the control unit 12 performs detection of the input voltage and comparison determination between the input voltage and the input lower limit voltage at all times while the vehicle 14 is activated. The above corresponds to “No” in Step D in the flowchart of FIG. 3A.
  • the discharge circuit 9 basically does not operate the load 13.
  • the discharge circuit 9 is connected to the control unit 12, and the control unit 12 controls the operation of the discharge circuit 9.
  • the discharge circuit 9 may operate to temporarily adjust the amount of power stored in the power storage unit 7, but at that time, the discharge is performed.
  • the circuit 9 only outputs weak power compared to the capacity that can be stored in the power storage unit 7, and this weak power does not affect the operation of the load 13. Further, when the control unit 12 determines that the vehicle 14 and the vehicle battery 17 are normal, electric power is supplied from the vehicle battery 17 to the control unit 19 and the load 13 through the power transmission path 18.
  • the load 13 is connected so that electric power can be supplied from the vehicle battery 17 at all times, but the load 13 is actually composed of a plurality of various loads. Therefore, a load switch (not shown) linked to the switch 16 may be provided between the vehicle battery 17 and the load 13.
  • Step B, Step C, and Step D in FIG. 3A described so far is the normal mode, and as described above, this is an operation when the vehicle 14 and the vehicle battery 17 are normal.
  • Step E the case where the operation proceeds to Step E is represented as “emergency power supply mode”.
  • the control unit 12 compares the input lower limit voltage with the input voltage using the input voltage detected in step B. If the input voltage is a value equal to or lower than the input lower limit voltage, the control unit 12 determines that the vehicle 14 or the vehicle battery 17 encounters an accident or the like and is in an abnormal state (“emergency power mode”). This corresponds to “Yes” in step D in the flowchart of FIG. 3A.
  • control unit 12 determines that the input voltage is equal to or lower than the input lower limit voltage even though the switch 16 is in the connected state (even though the vehicle 14 is in the activated state), the control unit 12 The following control is performed as a mode.
  • step D when the control unit 12 determines that the input voltage is a value equal to or lower than the input lower limit voltage, the control unit 12 stops charging from the charging circuit 8 to the power storage unit 7.
  • the control unit 12 controls the discharge circuit 9 to be in a dischargeable state, so that the discharge circuit 9 performs a discharge operation in order to drive the load 13.
  • the discharge operation of the discharge circuit 9 is immediately performed.
  • the discharge operation of the discharge circuit 9 is started when it is determined that the input voltage is equal to or lower than the input lower limit voltage.
  • Step D of FIG. May be performed in response to receiving a signal for operating the device from the outside.
  • a collision signal is used as an example of an externally received signal.
  • the target voltage value of the voltage output for the discharge circuit 9 to drive the load 13 is expressed as “output instruction voltage”.
  • the control unit 12 sets the output instruction voltage to the first voltage value.
  • Discharge circuit 9 discharges the electric power stored in power storage unit 7 such that the output instruction voltage becomes the first voltage value.
  • power for operating the control unit 12 is supplied from the power storage unit 7 or the discharge circuit 9.
  • the discharge circuit 9 When the control unit 12 determines that the input voltage is equal to or lower than the input lower limit voltage in order to maintain the functions of the control unit 12 and the control unit 19, the discharge circuit 9 immediately compares the power supplied to the load 13. A predetermined voltage with small electric power is supplied to the control unit 12 and the control unit 19. The above corresponds to step E in the flowchart of FIG. 3A.
  • the control unit 12 detects the output voltage and output current of the discharge circuit 9.
  • the output voltage and output current at the output unit 11 may be detected.
  • the control unit 12 detects power supplied to the load 13 (hereinafter referred to as “output power”).
  • the power supplied to the load 13 may be obtained by the control unit 12 by the product of the output voltage and the output current of the discharge circuit 9 (or the product of the output voltage and the output current in the output unit 11).
  • the discharge circuit 9 and the output unit 11 are described as separate components, the discharge circuit 9 may include the output unit 11.
  • the control unit 12 compares the power threshold value with the output power.
  • the power threshold is determined based on the maximum power storage capacity of the power storage unit 7 and the discharge time spent for supplying power from the discharge circuit 9 to the load 13. Note that the method for determining the power threshold is not limited to this. The above corresponds to Step F in the flowchart of FIG. 3A.
  • step G when the output power is less than or equal to the power threshold value, the controller 12 instructs the discharge circuit 9 to continue to operate using the output instruction voltage as the first voltage value (“No” in step G).
  • control unit 12 reduces the output instruction voltage from the first voltage value to the second voltage value for the discharge circuit 9. This corresponds to G and Step H in the flowchart of FIG. 3A.
  • control unit 12 instructs the discharge circuit 9 to maintain the output instruction voltage V1 at the first voltage value, and the output instruction voltage V3 from the first voltage value to the output voltage V2. Compare with the case of changing to.
  • FIG. 4 shows changes in the output voltage V2 when the control unit 12 maintains the output instruction voltage V1 at the first voltage value for the discharge circuit 9.
  • a change in the output voltage V4 when the control unit 12 instructs the discharge circuit 9 to decrease the output instruction voltage V3 from the first voltage value to the second voltage value is shown.
  • the change of the output electric power W1 from the output part 11 is also shown.
  • the discharge circuit 9 starts to supply power to the load 13 at the timing t0 in order to start the load 13 (motor). From the time t0 to the timing t2, the operation of the load 13 is not in a steady state. That is, a large current temporarily flows to the load 13 from t0 to t2, that is, from when electric power is supplied to the electric motor until rotation at a constant speed is started. At this time, there is a limit to the power that can be supplied to the load 13 by the power storage unit 7 and the discharge circuit 9.
  • the output voltage V2 of the discharge circuit 9 may be significantly reduced temporarily. That is, the output voltage V2 output from the discharge circuit 9 and detected by the output unit 11 is different from the output instruction voltage V1 that the control unit 12 instructs the discharge circuit 9, and the output voltage V2 is an output instruction. It becomes lower than the voltage V1.
  • the discharge circuit 9 may need to supply a stable voltage to the control unit 19 and the control unit 12 in some cases. Therefore, the output voltage of the discharge circuit 9 in the emergency power supply mode needs to be maintained at a voltage higher than the control unit drive limit voltage VLo (hereinafter referred to as limit voltage VLo) at all times.
  • VLo control unit drive limit voltage
  • the control unit 12 controls the discharge circuit 9 to maintain the output instruction voltage V1 at the first voltage value
  • the discharge power is temporarily maintained.
  • the output voltage V2 of the discharge circuit 9 is significantly reduced, and the output voltage V2 may be lowered to a value lower than the limit voltage VLo.
  • the control unit 12 controls the discharge circuit 9 to lower the output instruction voltage V3 from the first voltage value to the second voltage value at t1 when the output power becomes larger than the power threshold value Wt. The case where it does is demonstrated. Also at this time, a large current flows from the output unit 11 in order to supply a large amount of power to the load 13. And even if the value of the output current of the discharge circuit 9 becomes too large, the discharge circuit 9 continues to operate while maintaining the discharge power. Therefore, since the discharge power is maintained here, the output voltage V4 of the discharge circuit 9 may temporarily decrease. However, since the output instruction voltage V3 is lowered to the second voltage value, the allowable amount of output current in the discharge circuit 9 is increased.
  • the discharge circuit 9 can supply a stable voltage to the control unit 19 and the control unit 12 even in the emergency power supply mode in which the in-vehicle power supply device 6 is activated.
  • the second voltage value is higher than the limit voltage VLo.
  • the value obtained by integrating the undervoltage and the value obtained by integrating the value obtained by lowering the level of the output instruction voltage are substantially matched.
  • the second voltage value is illustrated as a constant value, but may be affected by the load 13 and may pulsate.
  • the in-vehicle power supply device 6 can operate stably. That is, a stable output voltage V4 is output by the power storage unit 7 and the discharge circuit 9 without providing an auxiliary power storage element (for example, the auxiliary power storage element 4 of FIG. 9) in the power storage unit 7. Therefore, the in-vehicle power supply device 6 can be downsized.
  • control unit 12 has been described from the aspect of the operation related to the instruction from the control unit 12 to the discharge circuit 9 in order to reduce the output instruction voltage V3 from the first voltage value to the second voltage value.
  • movement is the same.
  • the control unit 12 decreases the output instruction voltage V3 from the first voltage value to the second voltage value.
  • these controls and operations may not be necessary.
  • the output voltage V4 of the discharge circuit 9 decreases from the first voltage to the second voltage by the control from the control unit 12”.
  • the replacement of the description related to the control and operation described here can be applied to the same operation and similar control.
  • control unit 12 sets the output instruction voltage to the first voltage value” has been described, but “the control unit 12 controls the discharge circuit 9 to output the first voltage value” may be replaced. I do not care.
  • control unit 12 uses the output instruction voltage V3 as the second voltage value” has been described. However, “the control unit 12 causes the discharge circuit 9 to output the second voltage value” may be replaced. Absent.
  • FIG. 4 shows the output voltage V4 as a waveform similar to the output instruction voltage when the output instruction voltage V3 decreases to the second voltage value in the emergency power supply mode.
  • the output voltage V4 may vary slightly during the period from t1 to t3.
  • the output voltage V4 maintains a voltage higher than the limit voltage VLo during the period from t1 to t3.
  • Step I and Step J shown in the flowchart of FIG. 3A may be further performed.
  • the load 13 is an electric motor as mentioned above as an example
  • the locus of fluctuation of the output power W1 generally corresponds to the locus of torque fluctuation of the electric motor that is the load 13.
  • the locus of the output power W1 starts to decrease after the local maximum value with the passage of time, and becomes lower than the power threshold Wt at the timing t2.
  • the torque further decreases because the load 13 is close to the steady operation state, and the output power W1 is lower than the power threshold Wt at the timing t3.
  • the load 13 is an electric motor as mentioned above as an example
  • the locus of fluctuation of the output power W1 generally corresponds to the locus of torque fluctuation of the electric motor that is the load 13.
  • the locus of the output power W1 starts to decrease after the local maximum value with the passage of time, and becomes lower than the power threshold Wt at the timing t2.
  • the torque further decreases because the load 13 is close to the steady
  • the decrease in the output power W1 is due to the operation (mainly rotation) of the motor as the load 13 being in a steady state or approaching the steady state, and after the operation of the load 13 is in a steady state. Then, a large output power is not required. Therefore, the output instruction voltage V3 to the discharge circuit 9 is preferably returned from the second voltage value to the first voltage value at a timing at which the load 13 can be regarded as being in a steady state. As a result, the output voltage V4 from the discharge circuit 9 always increases with a margin with respect to the limit voltage VLo. Therefore, the discharge circuit 9 can stably supply the drive voltage to the control unit 19 and the control unit 12.
  • the timing at which the output instruction voltage V3 to the discharge circuit 9 is returned from the second voltage value to the first voltage value is t2 when the output power W1 becomes smaller than the previously used power threshold value Wt. Good.
  • the timing at which the output instruction voltage V3 to the discharge circuit 9 is returned from the second voltage value to the first voltage value may be t3 after a desired period has elapsed from the timing t2.
  • the output instruction voltage V3 to the discharge circuit 9 is returned from the second voltage value to the first voltage value at the timing t3.
  • the control unit 12 returns the output instruction voltage V3 from the second voltage value to the first voltage value. That is, the operation is described from the aspect regarding the instruction by the control unit 12. On the other hand, you may demonstrate operation
  • FIG. The control and operation described as “the control unit 12 returns the output instruction voltage from the second voltage value to the first voltage value” is “the output voltage of the discharge circuit 9 is controlled by the control unit 12 to the second voltage. To return to the first voltage ”.
  • the operation in the steady state of the load 13 continues until the timing t4.
  • the operation of the electric motor as the load 13 reaches the limit of the operation range. In other words, by reaching the rotation limit from the state where the electric motor is rotating, a large current flows again to the load 13 and a large amount of electric power is supplied.
  • the main operation of the in-vehicle power supply device 6 is completed. Therefore, it is not necessary to change the output instruction voltage V3 to another level after the timing t4.
  • the in-vehicle power supply device 6 can make a more accurate determination as to whether or not an abnormal state has occurred in the vehicle 14. As a result, the in-vehicle power supply device 6 can operate in the emergency power supply mode at a necessary timing.
  • FIG. 5 is a block diagram showing a configuration of the vehicle 14 equipped with the on-vehicle power supply device 6 according to the second embodiment. 2 and the configuration of the vehicle 14 illustrated in FIG. 5 may be given the same reference numerals and description thereof may be omitted.
  • FIG. 3B is a flowchart for explaining the operation of the in-vehicle power supply device according to the second embodiment. The only difference between the flowchart shown in FIG. 3A and the flowchart shown in FIG. 3B is step D.
  • the in-vehicle power supply device 6 is provided with a collision signal receiving unit 20 connected to the control unit 12.
  • the control unit 12 detects the input voltage of the input unit 10 at all times. Note that the control unit 12 may detect the input voltage from the charging circuit 8. Then, the control unit 12 (1) detects that the input voltage is lower than the input lower limit voltage, (2) receives and detects a collision signal via the collision signal receiving unit 20, (1), (2) When at least one of them is detected, the process proceeds to “YES” in step D, and the in-vehicle power supply device 6 operates in the emergency power supply mode as in the first embodiment (step E to step H). Further, similarly to the first embodiment, step I and step J may be performed in the second embodiment.
  • control unit 12 sets the output instruction voltage for discharge circuit 9 to the first voltage value (step E), and discharges power of power storage unit 7 to discharge circuit 9. Let me begin. When the output power W1 becomes larger than the power threshold value Wt, the control unit 12 decreases the output instruction voltage to the discharge circuit 9 from the first voltage value to the second voltage value (step H).
  • the in-vehicle power supply device 6 can make a more accurate determination as to whether or not an abnormal state has occurred in the vehicle 14. As a result, the in-vehicle power supply device 6 can operate in the emergency power supply mode at a necessary timing.
  • the collision signal receiving unit 20 is connected to a collision detecting unit 21 disposed on the vehicle body 15, so that when the vehicle 14 encounters an accident, the collision signal receiving unit 20 is connected to the collision detecting unit 21.
  • a collision signal is transmitted to the control unit 12 via the control unit 12.
  • the collision signal receiving unit 20 and the control unit 12 are shown as separate components for convenience of explanation, but the collision signal receiving unit 20 may be included in the control unit 12.
  • the normal mode of the in-vehicle power supply device 6 is not particularly described.
  • the control unit 12 detects that the input voltage is higher than the input lower limit voltage, and the control unit 12 detects the collision signal receiving unit 20.
  • the in-vehicle power supply device 6 operates in the normal mode.
  • the control unit 12 when operating the in-vehicle power supply device 6 in the emergency power supply mode, the control unit 12 causes the output power W1 to be greater than the power threshold Wt. When it becomes higher (step G), the output instruction voltage V3 is lowered from the first voltage value to the second voltage value for the discharge circuit 9.
  • the timing at which the output instruction voltage to the discharge circuit 9 is lowered from the first voltage value to the second voltage value is the step G of FIG. 3A and FIG. 3B.
  • the output power and the power threshold value are compared and determined. However, the determination may be made by comparing the output current I1 and the current threshold It as shown in Step G of FIGS. 3C and 3D.
  • an output current may be used as the output power and a current threshold may be used as the power threshold.
  • the load 13 shown in FIG. 6 is an electric motor.
  • the discharge circuit 9 starts to supply power to the load 13 at the timing t0 in order to activate the load 13.
  • Current starts to flow to the load 13 from the timing t0. From t0 to t2, until the operation of the load 13 reaches a steady state (from when electric power is supplied to the motor until rotation at a constant speed is started), a large current is temporarily supplied to the load 13 (FIG. 6).
  • Output current I1) flows, but the decrease in the output voltage does not start at the timing t0.
  • the decrease in the output voltage V4 starts when the power storage unit 7 and the discharge circuit 9 approach the limit of power that can be supplied to the load 13. That is, the decrease of the output voltage V4 does not start immediately when the output current I1 flows, but starts at the timing t1 when the output current I1 becomes equal to or greater than the current threshold It. Therefore, the control unit 12 determines whether or not to decrease the output instruction voltage V3 from the first voltage value to the second voltage value to the discharge circuit 9 based on the output current I1 and the current threshold It. , Accurate judgment is possible.
  • the control unit 12 decreased the output instruction voltage V3 for the discharge circuit 9 from the first voltage value to the second voltage value (Step H).
  • the control unit 12 when the output current I1 becomes larger than the current threshold It in the emergency power supply mode, the control unit 12 sends the output instruction voltage to the discharge circuit 9 as the first voltage value.
  • the control is performed to decrease the voltage from the current value to the second voltage value continuously or stepwise according to the value of the output current.
  • the output current I1 and the current threshold It have been described.
  • the output power W1 and the power threshold Wt are set as in FIG. 3A. It may be used.
  • the control unit 12 controls the discharge circuit 9 to gradually decrease the output instruction voltage so as to become the second voltage value at the timing t11 when the output current I1 becomes the maximum. Yes.
  • the actually detected output voltage V4 gradually decreases substantially in synchronization with the output instruction voltage V3, the period during which the detected output voltage is close to the limit voltage VLo can be shortened.
  • the output voltage V4 from the discharge circuit 9 becomes higher than the limit voltage VLo. Therefore, the discharge circuit 9 can stably supply the drive voltage to the control unit 19 and the control unit 12.
  • the in-vehicle power supply device 6 illustrated in FIG. 8 further includes a residual detection unit 23 that detects the residual power storage amount of the power storage unit 7. is there. Since other configurations are the same, the same reference numerals are given and description thereof is omitted.
  • the residual detection unit 23 can detect the residual power storage amount of the power storage unit 7, and the detection result is input to the control unit 12. Then, in the control unit 12, the value of the power threshold value Wt is determined based on the remaining power storage amount input from the remaining detection unit 23.
  • the in-vehicle power supply device 6 can stably supply power.
  • control unit 12 when the control unit 12 operates the in-vehicle power supply device 6 in the emergency power supply mode, when the output power W1 due to the output current I1 and the output voltage V4 becomes larger than the power threshold value Wt, the control unit 12 Controls the discharge circuit 9 to lower the output instruction voltage V3 from the first voltage value to the second voltage value. Note that when the output current I1 becomes larger than the current threshold It, the control unit 12 may perform control to cause the discharge circuit 9 to reduce the output instruction voltage V3 from the first voltage value to the second voltage value.
  • the timing at which the control unit 12 decreases the output instruction voltage V3 is determined in relation to the power threshold value Wt and the current threshold value It, such as t1 shown in FIG.
  • the control unit 12 may operate the in-vehicle power supply device 6 in the emergency power supply mode after lowering the output instruction voltage V3 and providing an upper limit value for the output current I1.
  • the upper limit value set for the output current I1 is a value at which the motor can start rotating at the output instruction voltage V3 when the load 13 is an electric motor, that is, a value at which the load 13 can operate. Larger value.
  • the control unit 12 When the control unit 12 operates the in-vehicle power supply device 6 in the emergency power supply mode, it is assumed that the in-vehicle power supply device 6 has a capability of outputting 200 W of power with a current of 20 A and a voltage of 10 V when the power storage unit 7 is fully charged. To do.
  • the output power W1 becomes equal to or greater than the power threshold Wt, the output power of the in-vehicle power supply device 6 is reduced to 80W. That is, the charging circuit 8 may be controlled by the control unit 12 so as to output with a current of 10 A and a voltage of 8V.
  • the output voltage of 8V may be an output instruction voltage from the control unit 12. That is, at the timing t1 when the output power W1 shown in FIG. 4 becomes equal to or greater than the power threshold value Wt, the control unit 12 decreases the output instruction voltage V3, and the control unit 12 further suppresses the output current I1 to the upper limit value or less. .
  • the power supplied from the power storage unit 7 to the discharge circuit 9 is also suppressed.
  • an internal resistance R exists inside the power storage unit 7. Therefore, as the power supplied from the power storage unit 7 to the discharge circuit 9 decreases, the current flowing through the power storage unit 7 also decreases, and the voltage drop caused by the internal resistance R inevitably decreases.
  • the output power W1 from the in-vehicle power supply device 6 is reduced, the internal loss in the power storage unit 7 is also reduced. For this reason, although the voltage of the power storage unit 7 is likely to fluctuate from the timing t1 to the timing t3 shown in FIG. 4, the internal loss is suppressed, so that the voltage is supplied from the power storage unit 7 to the discharge circuit 9. The voltage and current are stable.
  • the control unit 12 sets the output power W1 according to the remaining power storage amount of the power storage unit 7, and sets the power set according to the remaining power storage amount.
  • the discharge circuit 9 may be controlled by the control unit 12 so as to output.
  • a motor or the like that temporarily needs a large current at the time of startup can be cited.
  • a motor that operates to release the door lock and a motor that operates to release the door latch can be cited.
  • control unit 12 is illustrated as an independent element.
  • the functions of the control unit 12 are the power storage unit 7, the discharge circuit 9, the charging circuit 8, the input unit 10, and the output unit. 11 or the like may be distributed.
  • the in-vehicle power supply device 6 of the present disclosure is provided in the power storage unit 7, the charging path of the power storage unit 7, the charging circuit 8 that charges power to the power storage unit 7, and the output path of the power storage unit 7.
  • a discharge circuit 9 that discharges the electric power, an input unit 10 connected to the charging circuit 8, an output unit 11 connected to the discharge circuit 9, an input voltage of the input unit 10, an output current of the output unit 11,
  • a control unit 12 that detects the output voltage of the output unit 11 and controls the charging circuit 8 and the discharging circuit 9.
  • the control unit 12 determines that the emergency operation condition is satisfied, After stopping charging from the charging circuit 8 to the power storage unit 7, the unit 12 sets the output instruction voltage V3, which is a target voltage value of the output of the discharging circuit 9, to the first voltage value. Further, the control unit 12 The discharge circuit 9 is controlled to discharge the electric power charged in the power storage unit 7, and the discharge circuit 9 When power is output from the 9 becomes higher than the power threshold Wt, the control unit reduces the output command voltage V3 from first voltage value to a second voltage value.
  • the emergency operation condition may be satisfied when the control unit 12 detects that the input voltage has become lower than the input lower limit voltage.
  • the in-vehicle power supply device 6 of the present disclosure of the present disclosure described above further includes a collision signal receiving unit 20 that is connected to the control unit 12 and receives a collision signal.
  • the collision signal receiving unit 20 receives the collision signal to perform an emergency operation. Conditions may be met.
  • the on-vehicle power supply device 6 of the present disclosure described above further reduces the output instruction voltage V3 from the second voltage value when the power output from the discharge circuit 9 becomes higher than the power threshold value Wt and then becomes lower than the power threshold value Wt again.
  • the voltage may be increased to the first voltage value.
  • the vehicle-mounted power supply device 6 of the present disclosure described above may perform comparison between the power output from the discharge circuit 9 and the power threshold Wt using the current value, as described with reference to FIG.
  • the in-vehicle power supply device 6 of the present disclosure described above starts from the first voltage value when the control unit 12 reduces the output instruction voltage V3 from the first voltage value to the second voltage value.
  • the voltage may be decreased continuously or stepwise to the second voltage value.
  • the on-vehicle power supply device 6 of the present disclosure described above further includes the residual detection unit 23 that detects the residual power storage amount of the power storage unit 7, and the power storage unit 7 detected by the residual detection unit 23.
  • the power threshold value Wt may be determined based on the remaining power storage amount.
  • the in-vehicle power supply device 6 of the present disclosure is provided in the power storage unit 7, the charging path of the power storage unit 7, the charging circuit 8 that charges power to the power storage unit 7, and the output path of the power storage unit 7, A discharge circuit 9 for discharging the power of the unit 7, an input unit 10 connected to the charging circuit 8, an output unit 11 connected to the discharge circuit 9, an input voltage of the input unit 10, and an output current of the output unit 11 And a control unit 12 that detects the output voltage of the output unit 11 and controls the charging circuit 8 and the discharging circuit 9.
  • the charging circuit 8 After the charging to the power storage unit 7 is stopped, the discharge circuit 9 is discharged with the first voltage, and the control unit 12 controls the discharge circuit 9 to discharge the power charged in the power storage unit 7, When the power output from the discharge circuit 9 becomes higher than the power threshold Wt, the discharge circuit Discharges at lower than the first voltage value the second voltage value.
  • the vehicle 14 includes any one of the above-described vehicle-mounted power supply devices 6, a vehicle body 15 on which the vehicle-mounted power supply device 6 is mounted, and a vehicle battery 17 that is mounted on the vehicle body 15 and supplies power to the vehicle-mounted power supply device 6. Prepare.
  • the in-vehicle power supply apparatus reduces the output instruction voltage by a predetermined value, particularly when large output power is required, for example, in the emergency power supply mode. This suppresses temporary output voltage pulsation caused by the output power approaching the supply limit, in other words, temporary output voltage pulsation caused by the influence of the load. For this reason, large fluctuations in the output voltage are alleviated. Therefore, the in-vehicle power supply device can output a stable voltage without adding an auxiliary power storage element. As a result, the in-vehicle power supply device can operate stably and can be miniaturized at the same time.
  • the in-vehicle power supply device of the present disclosure has the effect that it can operate stably and at the same time can be miniaturized, and is useful in various electronic devices.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

本開示の車載電源装置は、蓄電部と、充電回路と、放電回路と、入力部と、出力部と、制御部と、を有する。制御部が、非常動作条件が満たされていると判断したとき、制御部は、充電回路から蓄電部への充電を停止させた後、放電回路の出力の目標電圧値である出力指示電圧を第1電圧値に設定し、更に、制御部は前電回路が蓄電部に充電されている電力を放電するように制御し、放電回路から出力される電力が電力閾値より高くなると、制御部は出力指示電圧を第1電圧値から第2電圧値へと低下させる。

Description

車載電源装置およびその車載電源装置が搭載される車両
 本開示は、車載電源装置およびその車載電源装置車両に関する。
 以下、従来の車載電源装置について図面を用いて説明する。図9は従来の車載電源装置の構成を示す回路ブロック図であり、車載電源装置1の出力部30は負荷2に接続されている。車載電源装置1は、蓄電素子3と補助蓄電素子4と切換部5とを有している。蓄電素子3は切換部5を介して出力部30に接続されており、補助蓄電素子4は切換部5の出力に接続されている。つまり、補助蓄電素子4は出力部30に接続されている。蓄電素子3の電圧が正常なとき、切換部5は、蓄電素子3から負荷2へ電力を供給させる。同時に、切換部5は、蓄電素子3が補助蓄電素子4を充電するように動作する。
 一方、蓄電素子3の電圧が低下したとき、切換部5は、補助蓄電素子4の電力を放電させるとともに、補助蓄電素子4の電圧を蓄電素子3の電圧に重畳させる。蓄電素子3と補助蓄電素子4との両方から負荷2へ電力が供給される。この構成により、蓄電素子3の電圧が低下したときでも車載電源装置1は負荷2へ安定した電圧で電力を供給することができる。
 なお、この出願に関連する先行技術文献情報としては、例えば特許文献1が知られている。
国際公開第2013/125170号
 本開示の一態様の車載電源装置は、蓄電部と、前記蓄電部の充電経路に設けられ、前記蓄電部へ電力を充電する充電回路と、前記蓄電部の出力経路に設けられ、前記蓄電部の電力を放電する放電回路と、前記充電回路に接続された入力部と、前記放電回路に接続された出力部と、前記入力部の入力電圧と、前記出力部の出力電流と、前記出力部の出力電圧と、を検出し、前記充電回路および前記放電回路を制御する、制御部と、を備え、前記制御部が、非常動作条件が満たされていると判断したとき、前記制御部は、前記充電回路から前記蓄電部への充電を停止させた後、前記放電回路の出力の目標電圧値である出力指示電圧を第1電圧値に設定し、更に、前記制御部は前記放電回路が前記蓄電部に充電されている電力を放電するように制御し、前記放電回路から出力される電力が電力閾値より高くなると、前記制御部は前記出力指示電圧を前記第1電圧値から第2電圧値へと低下させる。
 また、本開示の車両は、上述した一態様の車載電源装置と、前記車載電源装置が搭載される車体と、前記車体に搭載され、前記車載電源装置に電力を供給する車両バッテリーと、を備える。
本開示の実施の形態1における車載電源装置の構成を示す回路ブロック図 本開示の実施の形態1における車載電源装置を搭載した車両の構成を示すブロック図 本開示の実施の形態1における車載電源装置の動作を説明するフローチャート 本開示の実施の形態2における車載電源装置の動作を説明するフローチャート 本開示の実施の形態における車載電源装置の動作を説明するフローチャート 本開示の実施の形態における車載電源装置の動作を説明するフローチャート 本開示の実施の形態1における車載電源装置の動作を説明するタイミングチャート 本開示の実施の形態2における車載電源装置を搭載した車両の構成を示すブロック図 本開示の実施の形態2における車載電源装置の動作を説明するタイミングチャート 本開示の実施の形態3における車載電源装置の動作を示すタイミングチャート 本開示の実施の形態4における車載電源装置を搭載した車両の構成を示すブロック図 従来の車載電源装置の構成を示す回路ブロック図
 図9を参照しながら説明した車載電源装置1では、蓄電素子3の電圧が低下したときに、その低下分を補うための補助蓄電素子4を構成する必要がある。そのため、車載電源装置1を構成する素子数が増加してしまう。その結果、車載電源装置1が大型化してしまう。
 以下で説明する本開示の車載電源装置6は、安定して動作し、かつ、小型化を実現できる。
 (実施の形態1)
 本開示の実施の形態1について図面を用いて説明する。
 図1は本開示の実施の形態1における車載電源装置6の構成を示す回路ブロック図である。車載電源装置6は、蓄電部7と充電回路8と放電回路9と入力部10と出力部11と制御部12とを含む。
 充電回路8は蓄電部7の充電経路に設けられており、蓄電部7へ電力を充電することができる。放電回路9は、蓄電部7の出力経路に設けられており、蓄電部7の電力を放電する。入力部10は充電回路8に接続され、出力部11は放電回路9に接続されている。制御部12は、入力部10における入力電圧、出力部11おける出力電流、出力部11における出力電圧と、を検出し、充電回路8および放電回路9の動作を制御する。
 図1では、電力供給経路を太いラインで示し、信号伝送経路を細いラインで示している。例えば、入力部10と充電回路8とを接続する電力供給経路は太いラインで示され、入力部10と制御部12とを接続する信号伝送経路は細いラインで示されている。しかしながら、電力供給経路や信号伝送経路で伝送する電力の大小はあくまで目安であり、太いラインおよび細いラインの何れも電気的に接続されているという点で同様である。
 制御部12は、入力部10における入力電圧が入力下限電圧以上であることを検出すると、制御部12は通常動作条件が満たされていると判断する。さらに制御部12は、出力部11が所定蓄電電圧になるまで充電回路8から蓄電部7に連続的にあるいは間欠的に充電するように充電回路8を制御する。以下、入力電圧が入力下限電圧以上である状態を『通常モード』と表す。
 一方、制御部12は、入力電圧が入力下限電圧よりも低いことを検出すると、制御部12は非常動作条件が満たされていると判断する。さらに制御部12は、充電回路8から蓄電部7への充電を停止させた後に、蓄電部7から放電回路9に放電するよう制御する。この時、制御部12は、放電回路9の出力の目標電圧値である出力指示電圧を放電回路9へ指示し、蓄電部7から放電回路9へ電力の放電が開始する。この時の出力指示電圧は『第1電圧値』である。以下、入力電圧が入力下限電圧よりも低い状態を『非常電源モード』表す。その後、非常電源モードにおいて、出力電流と出力電圧とによる出力電力が電力閾値以上となると、制御部12は、放電回路9に対して出力指示電圧を第1電圧値から第2電圧値へと低下させるよう指示する。電圧の変化の詳細については、図4などを参照しながら後述する。
 以上の説明の通り、車載電源装置6は非常電源モードにおいて、大きな出力電力が必要となったときに、出力指示電圧を第1電圧値から第2電圧値へと低下させる。この構成により、出力電力が供給限界に接近することに伴って生じる一時的な電圧の脈動、言い換えると出力部11に接続された負荷13からの影響によって生じる一時的な電圧の脈動が抑制される。よって、大きな出力電圧の変動が緩和される。車載電源装置6は補助的な蓄電素子(例えば図9に示す蓄電素子3)を増設することなく安定した電圧を出力することができる。この結果、車載電源装置6は安定的に動作することができ、同時に小型化が可能となる。
 次に、車載電源装置6の構成および動作の詳細について図面を用いて説明する。図2は本開示の実施の形態1における車載電源装置6を搭載した車両14の構成を示すブロック図である。図3Aは、本開示の実施の形態1における車載電源装置6の動作を説明するフローチャート、図4は、本開示の実施の形態1における車載電源装置6の動作を説明するタイミングチャートである。
 図2に示すように車載電源装置6は車両14を構成する車体15に配置されていている。入力部10は、スイッチ16を介して車両バッテリー17に接続されている。また出力部11は負荷13に接続されている。さらに車両バッテリー17は送電路18を介して負荷13に接続されている。なお、車載電源装置6については図1を用いて既に説明しているので、ここでは説明を省略する。
 搭乗者が車両14へ乗り車両14を起動させるための起動スイッチ(図示せず)をオンあるいはオフさせることに連動して、スイッチ16はオンあるいはオフされる。そしてスイッチ16が搭乗者によってオフからオンへと切り換えられると車両14が起動するとともに、スイッチ16が接続状態となる。そして、車載電源装置6の制御部12も起動する。以上は、図3AのフローチャートにおけるステップAに相当する。
 つぎに、制御部12は、入力部10に接続されており、入力部10の入力電圧を常時において検出する。なお、制御部12を充電回路8と接続させ、充電回路8の入力電圧を検出することで、入力部10の入力電圧を検出してもよい。制御部12が入力部10の入力電圧を検出するということは、制御部12が車両バッテリー17の電圧を検出することになる。また、制御部12は車両バッテリー17の電圧を検出すると、制御部12は充電回路8を起動さる。そして、充電回路8は蓄電部7を連続的、または間欠的に所定の蓄電電圧へと充電させる。以上は、図3AのフローチャートにおけるステップBおよびステップCに相当する。
 なお、本実施の形態では、充電回路8と入力部10とは個別の要素として説明しているが、充電回路8が入力部10を含んでいてもよい。
 なお、本実施の形態では、制御部12が車両バッテリー17の電圧を検出してから、充電回路8が蓄電部7を充電しているが、これらの動作の順序は、逆であってもよい。
 また、仮に車両バッテリー17が車両14の起動時に異常状態である場合には、車両14は正常に起動しない。このため、車両14が正常に起動しない場合には、車載電源装置6も起動しない。以下で説明する車載電源装置6の動作は、車両14が起動する時点で車両バッテリー17が正常な状態であるときに行われる動作である。さらに、以下で説明する車載電源装置6の動作は、車両14が正常に起動した後、車両14が正常に走行あるいは走行可能な状態であるときに行われる。
 つぎに、ステップDについて説明する。制御部12はステップBで検出した入力電圧を用い、入力下限電圧と入力電圧とを比較する。入力下限電圧には車両14が正常に動作しているときには起こり得ない値が設定されている。例えば車両14が衝突事故などを起こして、車両バッテリー17を失陥した状態を想定して、入力下限電圧が設定されるとよい。言い換えると、入力下限電圧は、車両14の全体の制御を担う制御ユニット19や負荷13が動作できない0Vから数Vのような低い値に近い値に設定することができる。
 入力電圧が入力下限電圧よりも大きい値であると、車両14や車両バッテリー17は事故などに遭遇していない正常な状態であると制御部12は判定し、ステップBに戻る。制御部12は入力電圧の検出と、入力電圧と入力下限電圧との比較判定を車両14が起動している間は常時において実施する。以上は、図3AのフローチャートにおけるステップDの『No』に相当する。
 なお、制御部12が車両14や車両バッテリー17が正常であると判定しているとき、基本的に放電回路9は負荷13動作していない。放電回路9は制御部12に接続されていて、制御部12は放電回路9の動作を制御する。制御部12が車両14や車両バッテリー17が正常であると判定しているとき、放電回路9は一時的に蓄電部7の蓄電量を調節するために動作する場合があるものの、そのときに放電回路9は蓄電部7の蓄電可能な容量に比較して微弱電力を出力するだけであり、この微弱電力が負荷13の動作に影響を与えることはない。また、制御部12が車両14や車両バッテリー17が正常であると判定しているとき、制御ユニット19や負荷13へは車両バッテリー17から送電路18を通じて電力が供給されている。本実施の形態では負荷13へは車両バッテリー17から常時において電力供給が可能な接続となっているが、実際には負荷13は複数の様々な負荷から構成されている。したがって、車両バッテリー17と負荷13との間へスイッチ16に連動する負荷スイッチ(図示せず)が設けられていてもよい。
 ここまで説明した図3AにおけるステップB、ステップC、ステップDの繰り返しは通常モードであり、先にも述べたように、車両14や車両バッテリー17が正常であるときの動作である。
 つぎに、ステップDからステップEに進む場合の動作について説明する。ステップEに動作が進む場合を本実施の形態では、『非常電源モード』と表す。
 制御部12はステップBで検出した入力電圧を用い、入力下限電圧と入力電圧とを比較する。入力電圧が入力下限電圧以下の値であると、制御部12は、車両14や車両バッテリー17は事故などに遭遇して異常な状態(『非常電源モード』)であると判定する。図3AのフローチャートにおけるステップDの『Yes』に相当する。
 スイッチ16が接続状態であるにもかかわらず(車両14が起動状態であるにもかかわらず)、入力電圧が入力下限電圧以下の値であると制御部12が判定すると、制御部12は非常電源モードとして以下の制御を行う。
 まず、ステップDで、制御部12は、入力電圧が入力下限電圧以下の値であると判定すると、充電回路8から蓄電部7への充電を停止させる。そのご制御部12は、放電回路9を放電可能状態にし、放電回路9が負荷13を駆動させるために放電動作をするように制御する。入力電圧が入力下限電圧以下の値であると制御部12が判定すると、放電回路9の放電動作は直ちに行われる。
 なお、放電回路9の放電動作は、本実施の形態では、入力電圧が入力下限電圧以下の値であると判定すると開始するが、図3BのステップDに示すように制御部12が放電回路9を動作させるための信号を外部から受信したことに応じて行われてもよい。図3Bでは外部からの受信信号の一例として、衝突信号が用いられている。
 ここで、放電回路9が負荷13を駆動させるために出力する電圧の目標電圧値を『出力指示電圧』と表すものとする。制御部12は出力指示電圧を第1電圧値に設定する。そして放電回路9は、出力指示電圧が第1電圧値となるように蓄電部7に蓄えられた電力を放電する。非常電源モードでは、図1や図2には図示していないが、制御部12が動作するための電力は、蓄電部7もしくは放電回路9から供給されている。
 また、制御部12や制御ユニット19の機能を維持するために、入力電圧が入力下限電圧以下の値であると制御部12が判定すると、放電回路9は直ちに負荷13へ供給する電力と比較して小さい電力での所定電圧を制御部12や制御ユニット19に供給する。以上は、図3AのフローチャートにおけるステップEに相当する。
 つぎに、制御部12は放電回路9の出力電圧と出力電流を検出する。なお、放電回路9の出力の代わりに、出力部11における出力電圧と出力電流とを検出してもよい。言い換えると、制御部12は負荷13へ供給する電力(以下、『出力電力』と表す)を検出する。ここで、負荷13へ供給する電力は、放電回路9の出力電圧と出力電流との積(または、出力部11における出力電圧と出力電流の積)によって制御部12で求められてもよい。以上は、図3AのフローチャートにおけるステップFに相当する。ここで、放電回路9と出力部11とは別の構成要素として説明しているが、放電回路9が出力部11を含んでいてもよい。
 つぎに、ステップFで検出した出力電圧と出力電流を用い、制御部12は電力閾値と出力電力とを比較する。電力閾値は、蓄電部7の最大蓄電容量と、放電回路9から負荷13へ電力を供給するにあたって費やす放電時間と、などに基づいて決定される。なお、電力閾値の決定方法はこれに限定されるものではない。以上は、図3AのフローチャートにおけるステップFに相当する。ステップGにおいて、出力電力が電力閾値以下のとき、制御部12によって放電回路9は、継続して出力指示電圧を第1電圧値として動作するよう指示される(ステップGの『No』)。
 この一方で、出力電力が電力閾値よりも大きくなったときは、制御部12が放電回路9に対して出力指示電圧を第1電圧値から第2電圧値へと低下させる。これは、図3AのフローチャートにおけるGおよびステップHに相当する。
 ここで図4を用いて、制御部12が、放電回路9に対して出力指示電圧V1を第1電圧値に維持するよう指示する場合と、出力指示電圧V3を第1電圧値から出力電圧V2に変化させる場合とを比較する。
 図4には、制御部12が、放電回路9に対して出力指示電圧V1を第1電圧値に維持した場合の出力電圧V2の変化を示す。また、制御部12が、放電回路9に対して出力指示電圧V3を第1電圧値から第2電圧値へと低下させるよう指示する場合の出力電圧V4の変化を示している。更に、出力部11からの出力電力W1の変化も示している。
 ここで、負荷13が電動機である例で説明する。図4のW1に示すように、負荷13(電動機)を起動させるためにt0のタイミングで負荷13へ放電回路9が電力を供給し始める。t0からt2のタイミングまで、負荷13の動作は定常状態にはなっていない。つまり、t0からt2までの間、つまり、電動機に電力が供給されてから定速での回転を始めるまでの間、一時的に負荷13へは大きな電流が流れる。そしてこのとき、蓄電部7と放電回路9とによって負荷13へ供給可能な電力には限界が存在する。
 そのため、図4に示す通り、放電回路9に対する出力指示電圧V1が第1電圧値で維持される制御の場合、瞬間的に負荷13へ大きな電力を供給するために大きな電流が流れるときには、放電回路9の出力電流の値が大きくなり過ぎても放電回路9は放電電力を維持する状態で動作を続ける。よって放電電力を維持するがために、一時的に放電回路9の出力電圧V2が大幅に低下してしまう場合がある。つまり、放電回路9から出力されて出力部11で検出される出力電圧V2と、制御部12が放電回路9に対して指示する出力指示電圧V1とは異なった値となり、出力電圧V2が出力指示電圧V1よりも低くなる。
 放電回路9の出力電圧V2が低下しても、これは一時的な現象である。出力電力W1が一時的に増加しても、いずれ減少し、出力電力W1の減少に合わせて出力電圧V2は第1電圧値に一致するように戻る。
 しかしながら、車載電源装置6が起動する非常電源モードでは、放電回路9は制御ユニット19や制御部12へ安定した電圧を供給する必要となる場合もある。よって、非常電源モードにおける放電回路9の出力電圧は制御ユニット駆動限界電圧VLo(以下、限界電圧VLoと表す)よりも、常時において高い電圧を維持する必要がある。このような制約が存在するにも関わらず、制御部12が放電回路9に対して出力指示電圧V1を第1電圧値で維持するよう制御する場合、放電電力を維持するがために、一時的に放電回路9の出力電圧V2が大幅に低下してしまい、出力電圧V2は限界電圧VLoより低い値へ低下してしまう可能性がある。
 ここで、出力電力が電力閾値Wtよりも大きくなったタイミングであるt1で、制御部12が放電回路9に対して出力指示電圧V3を第1電圧値から第2電圧値へと低下させるよう制御する場合について説明する。この時も、負荷13へ大きな電力を供給するために出力部11からは大きな電流が流れる。そして、放電回路9の出力電流の値が大きくなり過ぎても放電回路9は放電電力を維持する状態で動作を続ける。よって、ここでも放電電力を維持するがために、一時的に放電回路9の出力電圧V4が低下してしまうおそれが生じる。しかしながら、出力指示電圧V3が第2電圧値へと低下させられているので、放電回路9における出力電流の許容量が大きくなる。このため、瞬間的に負荷13へ大きな電流が流れても、これに伴う放電回路9の出力電圧V4の低下量は大幅に抑制される。これにより、放電回路9の出力電圧V4は限界電圧VLoよりも高い電圧を維持することが容易となる。この結果として、車載電源装置6が起動する非常電源モードにおいても、放電回路9は制御ユニット19および制御部12に安定した電圧を供給することができる。当然ながらここで、第2電圧値は限界電圧VLoよりも高い電圧値である。
 図4のタイミングチャートにおいて、放電回路9の出力指示電圧V1が第1電圧値で維持される制御で一時的に放電回路9の出力電圧が大幅に低下してしまう領域を出力電圧V2に網掛けで示している。放電回路9の出力指示電圧V3が第1電圧値から第2電圧値へと低下させられる制御で一時的に放電回路9の出力電圧V4が大幅に低下してしまう領域を出力電圧V4に網掛けで示している。これらの網掛けの面積は概ね放電回路9における出力電力W1の電力の不足分に相当することになる。したがって、負荷13に応じて変化することとなる出力電圧V2に示す網掛け領域の面積と、出力指示電圧V3の水準を変化させることで設定される出力電圧V4に示す網掛け領域の面積とを概ね一致させる。言い換えると、不足電圧を積分した値と、出力指示電圧の水準を低下させた値を積分した値とを概ね一致させるとよい。これにより、瞬間的に負荷13へ大きな電流が流れても、これに伴う放電回路9の出力電圧V4の低下は大幅に抑制することができる。あるいは、瞬間的に負荷13へ大きな電流が流れても、放電回路9の出力電圧V4が第2電圧値以下へ低下することを防止することができる。図4のタイミングチャートでは、第2電圧値は一定値として図示されているが、負荷13からの影響を受ける場合もあるため、脈動する場合もある。
 以上のように、制御部12が図3AのフローチャートにおけるステップGおよびステップHにおいて図4のタイミングチャートに準じた制御を行うことにより、車載電源装置6は安定して動作することができる。つまり、蓄電部7に補助的な蓄電素子(例えば図9の補助蓄電素子4)が設けられることなく、蓄電部7と放電回路9とによって安定した出力電圧V4が出力される。したがって、車載電源装置6は小型化が可能となる。
 以上の説明では、制御部12が出力指示電圧V3を第1電圧値から第2電圧値へと低下させるための、制御部12からの放電回路9への指示に関する動作の側面から説明している。これに対して、放電回路9の動作の側面から説明しても、動作の順序は同様である。
 例えば、上述した通り、非常電源モードにおいて出力電力W1が電力閾値Wtよりも大きくなったとき、「制御部12が出力指示電圧V3を第1電圧値から第2電圧値へと低下させる」と説明したが、これらの制御および動作ではなくてもよい。例えば、「制御部12からの制御によって、放電回路9の出力電圧V4が第1電圧から第2電圧に低下する」と説明してもよい。ここで述べた制御および動作に関する説明の置き換えについては、同様の動作および同様の制御において適用できる。
 また、「制御部12は出力指示電圧を第1電圧値とする」と説明したが、「制御部12は放電回路9に対して第1電圧値を出力するように制御する」に置き換えても構わない。さらに他の例として、「制御部12は出力指示電圧V3を第2電圧値とする」と説明したが、「制御部12は放電回路9に第2電圧値を出力させる」に置き換えても構わない。
 また図4には、便宜上、非常電源モードにおいて出力指示電圧V3が第2電圧値に低下したときに、出力電圧V4は出力指示電圧に相似した波形として示している。しかしながら、出力電圧V4はt1からt3までの期間において小さな変動が生じていてもよい。出力電圧V4はt1からt3の期間において限界電圧VLoよりも高い電圧を維持する。
 ここでさらに、図3Aのフローチャートに示すステップIおよびステップJの動作が行われてもよい。先にも例に挙げたように負荷13が電動機であったとすると、出力電力W1の変動の軌跡は概ね負荷13である電動機のトルク変動の軌跡に相当する。そして、出力電力W1の軌跡は時間の経過とともに極大値を過ぎて低下を始め、t2のタイミングでは電力閾値Wtよりも低くなる。後で述べるように、t2のタイミングよりも後のt3のタイミングでは、負荷13は定常動作状態に近くなることでトルクはさらに低下し、t3のタイミングにおいても出力電力W1は電力閾値Wtよりも低くなる。
 出力電力W1の低下は、負荷13である電動機の動作(主に回転)が定常状態になったこと、または定常状態に近づいたことによるものであり、負荷13の動作が定常状態となった後では、大きな出力電力は要求されない。したがって、負荷13が定常状態となったと見なすことが可能なタイミングで、放電回路9への出力指示電圧V3は第2電圧値から第1電圧値へと戻されるとよい。これにより、放電回路9からの出力電圧V4は、限界電圧VLoに対して余裕をもって常に高くなる。よって、放電回路9は制御ユニット19および制御部12に安定して駆動電圧を供給することができる。
 放電回路9への出力指示電圧V3が第2電圧値から第1電圧値へと戻されるタイミングは、先に用いた電力閾値Wtよりも出力電力W1が再び小さくなったタイミングのt2であってもよい。放電回路9への出力指示電圧V3が第2電圧値から第1電圧値へと戻されるタイミングは、t2のタイミングから所望の期間を経過したt3であってもよい。図4に示す例では、t3のタイミングで放電回路9への出力指示電圧V3は第2電圧値から第1電圧値へと戻されている。以上は、図3AのフローチャートにおけるステップIおよびステップJの動作に相当する。
 先にも述べたように、ここの説明では、制御部12が出力指示電圧V3を第2電圧値から第1電圧値へと戻している。つまり、制御部12による指示に関する側面から動作を説明している。これに対して、放電回路9の動作に関する側面から動作を説明してもよい。「制御部12が出力指示電圧を第2電圧値から第1電圧値へと戻す」と説明している制御および動作は、「制御部12からの制御によって放電回路9の出力電圧は第2電圧から第1電圧に戻る」との置き換えても構わない。
 図4のタイミングチャートでは、負荷13の定常状態での動作はt4のタイミングまで継続する。そしてt4のタイミングで、負荷13である電動機の動作が動作範囲の限界に達する。言い換えると電動機が回転していた状態から回転限界に達することによって、再び負荷13へは大きな電流が流れ、大きな電力が供給される。このタイミングであるt4およびt4以降では、車載電源装置6の主な動作は完了している。したがって、t4のタイミング以後では、出力指示電圧V3を別の水準へと変化させる必要はない。
 本実施の形態の車載電源装置6は、車両14における異常状態の発生の有無に対して一層正確な判定が可能となる。この結果、車載電源装置6は必要なタイミングで非常電源モードとして動作することができる。
 (実施の形態2)
 次に実施の形態2について図3B、図5、図6を参照しながら説明する。
 図5は、実施の形態2における車載電源装置6を搭載した車両14の構成を示すブロック図である。なお、図2に示す車両14の構成と、図5に示す車両14の構成とで、同様の構成については、同一の符号を付し説明を省略する場合がある。
 図3Bは、本実施の形態2における車載電源装置の動作を説明するフローチャートである。図3Aに示すフローチャートと、図3Bに示すフローチャートで異なるステップはステップDだけである。
 図5に示すように、車載電源装置6には、制御部12に接続された衝突信号受信部20が設けられている。制御部12は入力部10の入力電圧を常時において検出する。なお、制御部12は入力電圧を充電回路8から検出してもよい。そして制御部12は、(1)入力電圧が入力下限電圧よりも低くなったと検出する、(2)衝突信号受信部20を介しての衝突信号を受信検出する、(1)、(2)の少なくともいずれか一方を検出すると、ステップDでは『YES』に進み、実施の形態1と同様に、車載電源装置6は非常電源モードとして動作する(ステップE~ステップH)。また、実施の形態1と同様に実施の形態2でもステップIおよびステップJが実施されても良い。
 なお、本実施の形態においても、非常電源モードでは、図5には図示していないが、制御部12が動作するための電力は、蓄電部7もしくは放電回路9から供給されている。
 車載電源装置6の非常電源モードは、上述した実施の形態1と同様である。制御部12は充電回路8による蓄電部7への充電を停止させたあと、放電回路9に対する出力指示電圧を第1電圧値とし(ステップE)、放電回路9に蓄電部7の電力の放電を始めさせる。そして、出力電力W1が電力閾値Wtよりも大きくなったとき、制御部12が放電回路9への出力指示電圧を第1電圧値から第2電圧値へと低下させる(ステップH)。
 本実施の形態の車載電源装置6は実施の形態1と同様に、車両14における異常状態の発生の有無に対して一層正確な判定が可能となる。この結果、車載電源装置6は必要なタイミングで非常電源モードとして動作することができる。
 図5に示す通り、衝突信号受信部20は車体15に配置された衝突検出部21に接続されているので、車両14が事故に遭遇した場合に、衝突検出部21から衝突信号受信部20を介して制御部12へ衝突信号が送信される。なお、衝突信号受信部20と制御部12とは説明の便宜上で個別の構成要素として示しているが、衝突信号受信部20は制御部12に含まれていても構わない。
 本実施の形態では、車載電源装置6の通常モードについて特に説明は無いが、制御部12が、入力電圧が入力下限電圧より高いことを検出し、かつ、制御部12が、衝突信号受信部20を介しての衝突信号の受信を検出していない場合、車載電源装置6は通常モードとして動作する。
 なお、図4を用いて説明した実施の形態1と同様に、実施の形態2においても、非常電源モードで車載電源装置6を動作させるとき、制御部12は、出力電力W1が電力閾値Wtより高くなったとき(ステップG)、放電回路9に対して出力指示電圧V3を第1電圧値から第2電圧値へと低下させる。
 図6の車載電源装置の動作を示すタイミングチャートで示すように、放電回路9への出力指示電圧が第1電圧値から第2電圧値へと低下させるタイミングは、図3Aおよび図3BのステップGに示す通り、出力電力と電力閾値とを比較して判断している。しかしながら図3Cおよび図3DのステップGに示すように出力電流I1と電流閾値Itとを比較して判断してもよい。いいかえると、後述する実施の形態3を含め、本開示の実施の形態全てにおいて、出力電力には出力電流が、電力閾値には電流閾値が用いられてもよい。
 上述した図4と同様に、図6に示す負荷13が電動機であったとして説明する。この場合、負荷13を起動させるためにt0のタイミングで負荷13へ放電回路9が電力を供給し始めたとする。t0のタイミングから負荷13へ電流が流れ始める。t0からt2までの間、負荷13の動作が定常状態となる前まで(電動機に電力が供給されてから定速での回転を始めるまで)は、一時的に負荷13へは大きな電流(図6に出力電流I1として示す)が流れるが、出力電圧の低下はt0のタイミングでは始まらない。
 言い換えると、出力電圧V4の低下は、蓄電部7と放電回路9とによって負荷13へ供給可能な電力の限界に接近した時に始まる。つまり、出力電圧V4の低下は、出力電流I1が流れると直ちに始まるのではなく、出力電流I1が電流閾値It以上となったタイミングのt1のタイミングで始まる。したがって、制御部12が放電回路9へ出力指示電圧V3を第1電圧値から第2電圧値へと低下させるかどうかの判断は、出力電流I1と電流閾値Itとにもとづいて実施されることで、正確な判断が可能となる。
 (実施の形態3)
 次に、図7を参照しながら、制御部12による出力指示電圧V3の別の制御方法について説明する。
 実施の形態1または実施の形態2では、車載電源装置6の非常電源モードの動作については、出力電力W1が電力閾値Wtより大きくなったとき、または、出力電流I1が電流閾値Itより大きくなったとき(ステップGの『Yes』)、制御部12は放電回路9に対する出力指示電圧V3を第1電圧値から第2電圧値へと低下させていた(ステップH)。
 この一方、本実施の形態では、図7に示す通り、非常電源モードにおいて、出力電流I1が、電流閾値Itより大きくなったとき、制御部12は放電回路9に出力指示電圧を第1電圧値から第2電圧値へと出力電流の値に応じて連続的または段階的に順次低下させる制御を実施している。
 なお、ここでは、出力電流I1および電流閾値Itを用いて説明したが、ステップGにおける判断において、出力電流I1および電流閾値Itの代わりに、図3Aと同様に、出力電力W1および電力閾値Wtを用いてもよい。
 図7のタイミングチャートに示すように、制御部12は放電回路9に対して、出力電流I1が最大になるタイミングのt11で出力指示電圧が第2電圧値となるように漸減させる制御を行っている。これにより、実際に検出される出力電圧V4は、出力指示電圧V3に概ね同期して漸減するものの、検出される出力電圧が限界電圧VLoに近接する期間を短くすることができる。この結果、放電回路9からの出力電圧V4は、限界電圧VLoより高くなる。よって、放電回路9は制御ユニット19や制御部12に安定して駆動電圧を供給することができる。
 (実施の形態4)
 次に図8を参照しながら、本開示の実施の形態4における車載電源装置6を搭載した車両14について説明する。
 図8に示す車両14と図3に示す車両14との構成の違いは、図8に示す車載電源装置6が蓄電部7の残留蓄電量を検出する残留検出部23をさらに備えている点である。その他の構成については同様であるので、同一の符号を付して説明を省略する。
 残留検出部23は蓄電部7の残留蓄電量を検出することができ、その検出結果が制御部12に入力される。そして制御部12では、残留検出部23から入力された残留蓄電量にもとづいて、電力閾値Wtの値が決定される。
 この構成により、蓄電部7の残留蓄電量が低下すると、放電回路9から負荷13へ供給可能な電力もまた低下する。しかしながら、放電回路9は蓄電部7の残留蓄電量に応じた電力が出力されるように制御部12によって制御されているので、車載電源装置6は安定した電力供給が可能となる。
 上述した実施の形態では、制御部12は非常電源モードで車載電源装置6を動作させるにあたって、出力電流I1と出力電圧V4とによる出力電力W1が電力閾値Wtより大きくとなったとき、制御部12は放電回路9に対して出力指示電圧V3を第1電圧値から第2電圧値へと低下させる制御を行う。なお、出力電流I1が電流閾値Itより大きくなったとき、制御部12は放電回路9に出力指示電圧V3を第1電圧値から第2電圧値へと低下させる制御を行ってもよい。
 なお、上述した実施の形態では制御部12が出力指示電圧V3を低下させるタイミングは、図4に示したt1などとして、電力閾値Wtや電流閾値Itに関連して決定されている。
 なお、制御部12は出力指示電圧V3を低下させたうえで、出力電流I1に上限値を設けたうえで、車載電源装置6を非常電源モードで動作させてもよい。当然ながら、出力電流I1に設定された上限値は、負荷13が電動機である場合には上記の出力指示電圧V3において、電動機が回転を始めることが可能な値、つまり負荷13が動作可能な値よりも大きな値とする。
 一例として、具体的な値を用いて説明する。制御部12が車載電源装置6を非常電源モードで動作させるときに、車載電源装置6が蓄電部7の満充電時に200Wの電力を20Aの電流と10Vの電圧によって出力可能な能力を有すると仮定する。ここで、蓄電部7が満充電であるか否かにかかわらず、出力電力W1が電力閾値Wt以上となったときには、車載電源装置6の出力電力が80Wへと低下させられる。つまり、10Aの電流と8Vの電圧とによって出力するように充電回路8は制御部12に制御されてもよい。出力電圧の8Vは、制御部12による出力指示電圧であればよい。つまり、図4に示した出力電力W1が電力閾値Wt以上となったt1のタイミングで、制御部12は出力指示電圧V3を低下させ、さらに制御部12は出力電流I1を上限値以下に抑制する。
 これにより、制御部12によって出力指示電圧V3が下げられているときには、蓄電部7から放電回路9へ供給される電力も、抑制されることになる。図1に示すように、蓄電部7の内部には内部抵抗Rが存在する。したがって蓄電部7から放電回路9へ供給される電力が低下することに伴って蓄電部7に流れる電流も低下し、必然的に内部抵抗Rによって生じる電圧降下も低下する。この結果として、車載電源装置6からの出力電力W1を低下させたときには、蓄電部7での内部損失も小さくなる。このため、図4に示すt1のタイミングからt3のタイミングにかけて、蓄電部7の電圧は変動し易い状況におかれるものの、内部損失が抑制されるので、蓄電部7から放電回路9へ供給される電圧および電流は安定する。
 当然ながら、制御部12によって出力指示電圧V3が下げられているときに、放電回路9からの出力電圧V4は出力指示電圧V3に忠実に追従しやすくなる。そして、放電回路9の出力電圧V4は限界電圧VLoよりも高い電圧を維持することが容易となる。
 上記では、蓄電部7が満充電であるか否かにかかわらず、出力電力W1が電力閾値Wt以上となったとき、または、出力電流I1が電流閾値It以上となったときには、車載電源装置6が出力電力W1または出力電流I1を上限値以下に抑制している。この一方で、特に蓄電部7の残留蓄電量が低下した場合に、制御部12は蓄電部7の残留蓄電量に応じて出力電力W1を設定し、残留蓄電量に応じて設定された電力を出力するように放電回路9が制御部12に制御されてもよい。これにより、車載電源装置6は非常電源モードにおいて変動が少なく安定した電力供給が可能となる。
 ここでも非常電源モードでは、図8には図示していないが、制御部12が動作するための電力は、蓄電部7または放電回路9から供給されている。
 なお、上述した実施の形態における負荷13としては、起動時に一時的に大きな電流が必要となるモータなどが挙げられる。例えばドアロック解除のために動作するモータや、ドアラッチを解除するために動作するモータなどである。
 以上の実施の形態に関する説明では便宜上、制御部12は独立した要素として図示しているが、制御部12が有する機能は、蓄電部7、放電回路9、充電回路8、入力部10、出力部11などに分散されて配置されても構わない。
 (まとめ)
 本開示の車載電源装置6は、蓄電部7と、蓄電部7の充電経路に設けられ、蓄電部7へ電力を充電する充電回路8と、蓄電部7の出力経路に設けられ、蓄電部7の電力を放電する放電回路9と、充電回路8に接続された入力部10と、放電回路9に接続された出力部11と、入力部10の入力電圧と、出力部11の出力電流と、出力部11の出力電圧と、を検出し、充電回路8および放電回路9を制御する、制御部12と、を備え、制御部12が、非常動作条件が満たされていると判断したとき、制御部12は、充電回路8から蓄電部7への充電を停止させた後、放電回路9の出力の目標電圧値である出力指示電圧V3を第1電圧値に設定し、更に、制御部12は放電回路9が蓄電部7に充電されている電力を放電するように制御し、放電回路9から出力される電力が電力閾値Wtより高くなると、制御部は出力指示電圧V3を第1電圧値から第2電圧値へと低下させる。
 上述した本開示の車載電源装置6は、入力電圧が入力下限電圧より低くなったことを制御部12が検出することによって非常動作条件は満たされても良い。
 上述した本開示の本開示の車載電源装置6は、制御部12に接続され、衝突信号を受信する衝突信号受信部20をさらに備え、衝突信号受信部20が衝突信号を受信することによって非常動作条件が満たされてもよい。
 上述した本開示の車載電源装置6は、更に、放電回路9から出力される電力が電力閾値Wtより高くなったのち、電力閾値Wtよりも再び低くなると、出力指示電圧V3を第2電圧値から第1電圧値へと上昇させてもよい。
 上述した本開示の車載電源装置6は、図6を参照しながら説明した通り、放電回路9から出力される電力と電力閾値Wtとの比較を、電流値を用いて行ってもよい。
 上述した本開示の車載電源装置6は、図7を参照しながら説明した通り、制御部12が出力指示電圧V3を第1電圧値から第2電圧値へと低下させるとき、第1電圧値から第2電圧値へ連続的または段階的に低下させてもよい。
 上述した本開示の車載電源装置6は、図8を参照しながら説明した通り、蓄電部7の残留蓄電量を検出する残留検出部23をさらに備え、残留検出部23によって検出された蓄電部7の残留蓄電量にもとづいて、電力閾値Wtが決定されてもよい。
 また、本開示の車載電源装置6は、蓄電部7と、蓄電部7の充電経路に設けられ、蓄電部7へ電力を充電する充電回路8と、蓄電部7の出力経路に設けられ、蓄電部7の電力を放電する放電回路9と、充電回路8に接続された入力部10と、放電回路9に接続された出力部11と、入力部10の入力電圧と、出力部11の出力電流と、出力部11の出力電圧と、を検出し、充電回路8および放電回路9を制御する、制御部12と、を備え、制御部12が非常動作条件を満たしたと判断するとき、充電回路8は蓄電部7への充電を停止した後、放電回路9は第1電圧で放電し、更に、制御部12は放電回路9が蓄電部7に充電されている電力を放電するように制御し、放電回路9から出力される電力が電力閾値Wtより高くなると、放電回路9は、第1電圧値より低い第2電圧値で放電する。
 本開示の車両14は、上述したいずれかの車載電源装置6と、車載電源装置6が搭載される車体15と、車体15に搭載され、車載電源装置6に電力を供給する車両バッテリー17とを備える。
 本開示によれば、車載電源装置は特に例えば非常電源モードなどの大きな出力電力が必要となったときに、出力指示電圧を所定値相当で低下させる。これにより、出力電力が供給限界に接近することに伴って生じる一時的な出力電圧の脈動、言い換えると負荷からの影響によって生じる一時的な出力電圧の脈動が抑制される。このため、出力電圧の大きな変動が緩和される。したがって、車載電源装置は補助的な蓄電素子を増設することなく安定した電圧を出力することができる。この結果、車載電源装置は安定的に動作することができ、同時に小型化が可能となる。
 本開示の車載電源装置は、安定的に動作することができ、同時に小型化が可能となるという効果を有し、各種電子機器において有用である。
 1、6 車載電源装置
 2、13 負荷
 3 蓄電素子
 4 補助蓄電素子
 5 切換部
 7 蓄電部
 8 充電回路
 9 放電回路
 10 入力部
 11 出力部
 12 制御部
 14 車両
 15 車体
 16 スイッチ
 17 車両バッテリー
 18 送電路
 19 制御ユニット
 20 衝突信号受信部
 21 衝突検出部
 23 残留検出部
 30 出力部
 I1 出力電流
 It 電流閾値
 V1、V3 出力指示電圧
 V2、V4 出力電圧
 VLo 限界電圧
 W1 出力電力
 Wt 電力閾値

Claims (9)

  1.  蓄電部と、
     前記蓄電部の充電経路に設けられ、前記蓄電部へ電力を充電する充電回路と、
     前記蓄電部の出力経路に設けられ、前記蓄電部の電力を放電する放電回路と、
     前記充電回路に接続された入力部と、
     前記放電回路に接続された出力部と、
     前記入力部の入力電圧と、前記出力部の出力電流と、前記出力部の出力電圧と、を検出し、前記充電回路および前記放電回路を制御する、制御部と、
    を備え、
     前記制御部が、非常動作条件が満たされていると判断したとき、前記制御部は、前記充電回路から前記蓄電部への充電を停止させた後、前記放電回路の出力の目標電圧値である出力指示電圧を第1電圧値に設定し、
     更に、前記制御部は前記放電回路が前記蓄電部に充電されている電力を放電するように制御し、
     前記放電回路から出力される電力が電力閾値より高くなると、前記制御部は前記出力指示電圧を前記第1電圧値から第2電圧値へと低下させる、
    車載電源装置。
  2.  前記入力電圧が入力下限電圧より低くなったことを前記制御部が検出することによって前記非常動作条件は満たされる、
    請求項1に記載の車載電源装置。
  3.  前記制御部に接続され、衝突信号を受信する受信部をさらに備え、
     前記受信部が前記衝突信号を受信することによって前記非常動作条件が満たされる、
    請求項1に記載の車載電源装置。
  4.  前記放電回路から出力される電力が前記電力閾値より高くなったのち、前記電力閾値よりも再び低くなると、前記出力指示電圧を前記第2電圧値から前記第1電圧値へと上昇させる、
    請求項1に記載の車載電源装置。
  5.  前記放電回路から出力される電力と前記電力閾値との比較を、電流値を用いて行う、
    請求項1に記載の車載電源装置。
  6.  前記制御部が前記出力指示電圧を前記第1電圧値から前記第2電圧値へと低下させるとき、前記第1電圧値から前記第2電圧値へ連続的または段階的に低下させる、
    請求項1に記載の車載電源装置。
  7.  前記蓄電部の残留蓄電量を検出する残留検出部をさらに備え、
     前記残留検出部によって検出された前記蓄電部の前記残留蓄電量にもとづいて、前記電力閾値が決定される、
    請求項1に記載の車載電源装置。
  8.  蓄電部と、
     前記蓄電部の充電経路に設けられ、前記蓄電部へ電力を充電する充電回路と、
     前記蓄電部の出力経路に設けられ、前記蓄電部の電力を放電する放電回路と、
     前記充電回路に接続された入力部と、
     前記放電回路に接続された出力部と、
     前記入力部の入力電圧と、前記出力部の出力電流と、前記出力部の出力電圧と、を検出し、前記充電回路および前記放電回路を制御する、制御部と、
    を備え、
     前記制御部が非常動作条件を満たしたと判断するとき、前記充電回路は前記蓄電部への充電を停止した後、前記放電回路は第1電圧値で放電し、
     更に、前記制御部は前記放電回路が前記蓄電部に充電されている電力を放電するように制御し、
     前記放電回路から出力される電力が電力閾値より高くなると、前記放電回路は、前記第1電圧値より低い第2電圧値で放電する、
    車載電源装置。
  9.  請求項1に記載の車載電源装置と、
     前記車載電源装置が搭載される車体と、
     前記車体に搭載され、前記車載電源装置に電力を供給する車両バッテリーと、
    を備えた車両。
PCT/JP2018/010497 2017-03-27 2018-03-16 車載電源装置およびその車載電源装置が搭載される車両 WO2018180606A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP18777151.4A EP3604046B1 (en) 2017-03-27 2018-03-16 On-vehicle power supply device and vehicle having on-vehicle power supply device mounted thereon
JP2019509289A JP7016061B2 (ja) 2017-03-27 2018-03-16 車載電源装置およびその車載電源装置が搭載される車両
US16/491,481 US11059371B2 (en) 2017-03-27 2018-03-16 On-vehicle power supply device and vehicle having on-vehicle power supply device mounted thereon
CN201880018791.7A CN110431047B (zh) 2017-03-27 2018-03-16 车载电源装置以及搭载该车载电源装置的车辆

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-061044 2017-03-27
JP2017061044 2017-03-27

Publications (1)

Publication Number Publication Date
WO2018180606A1 true WO2018180606A1 (ja) 2018-10-04

Family

ID=63675898

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/010497 WO2018180606A1 (ja) 2017-03-27 2018-03-16 車載電源装置およびその車載電源装置が搭載される車両

Country Status (5)

Country Link
US (1) US11059371B2 (ja)
EP (1) EP3604046B1 (ja)
JP (1) JP7016061B2 (ja)
CN (1) CN110431047B (ja)
WO (1) WO2018180606A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7151660B2 (ja) * 2019-08-05 2022-10-12 トヨタ自動車株式会社 電力分配装置
CN117944598A (zh) * 2022-10-28 2024-04-30 神基科技股份有限公司 车辆电力管理系统及其运作方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004262377A (ja) * 2003-03-03 2004-09-24 Denso Corp エアバッグ装置
JP2004284378A (ja) * 2003-03-19 2004-10-14 Denso Corp エアバッグの電源回路
JP2006224772A (ja) * 2005-02-16 2006-08-31 Toyota Motor Corp 車両の電源装置
WO2013125170A1 (ja) 2012-02-22 2013-08-29 パナソニック株式会社 バックアップ電源装置とそれを搭載した自動車

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10030389C2 (de) * 2000-06-21 2002-07-18 Siemens Ag Schaltungsanordnung zum Messen der Kapazität des Zündkondensators für ein Insassenschutzmittel
JP2004166367A (ja) * 2002-11-12 2004-06-10 Nissan Motor Co Ltd ハイブリッド車両の電池制御装置
DE10255429A1 (de) * 2002-11-28 2004-06-09 Conti Temic Microelectronic Gmbh Verfahren zum Betreiben einer aus einer Betriebsspannungsquelle versorgten elektronischen Baugruppe
ES2295729T3 (es) * 2004-05-28 2008-04-16 Catem Develec Gmbh Interruptor electronico para la proteccion de baterias.
JP4327143B2 (ja) * 2005-09-30 2009-09-09 パナソニックEvエナジー株式会社 二次電池用の制御装置及び二次電池の出力制御方法及び二次電池の出力制御実行プログラム
JP5076936B2 (ja) * 2008-02-05 2012-11-21 トヨタ自動車株式会社 ハイブリッド車両
JP2013090424A (ja) * 2011-10-18 2013-05-13 Toyota Motor Corp 走行用モータを有する自動車
EP2607178B1 (en) * 2011-12-21 2014-07-30 Volvo Car Corporation Power supply for powering an electric load of a vehicle
EP2657091B1 (en) * 2012-04-23 2019-06-12 Autoliv Development AB A drive arrangement
CN102765363A (zh) * 2012-06-19 2012-11-07 常州瑞恩动力科技有限公司 一种新能源汽车撞车自动保护器
JP6074586B2 (ja) * 2012-08-03 2017-02-08 パナソニックIpマネジメント株式会社 バックアップ電源装置およびこれを用いた自動車
MY175571A (en) * 2012-09-07 2020-07-01 Huang Yung Sheng Method for jump starting a vehicle
JP2014110666A (ja) * 2012-11-30 2014-06-12 Toyota Motor Corp 放電制御システム及び放電装置
US9397520B2 (en) * 2012-12-14 2016-07-19 Sensormatic Electronics, LLC Intelligent adaptive power supply
JP6526567B2 (ja) * 2012-12-24 2019-06-05 マグナ クロージャーズ インコーポレイテッド 自動車クロージャデバイスの電子ラッチにおける衝突管理システム及び方法
WO2014156016A1 (ja) * 2013-03-29 2014-10-02 パナソニック株式会社 ドアラッチ装置とそれを搭載した移動体
US20140375066A1 (en) * 2013-06-19 2014-12-25 Tai-Her Yang Combustion and emergency start controlling device having auxiliary power source and system thereof
JP6413905B2 (ja) * 2014-04-21 2018-10-31 トヨタ自動車株式会社 車両用電力変換装置の制御装置
JP6705357B2 (ja) * 2016-10-14 2020-06-03 株式会社オートネットワーク技術研究所 車載用のバックアップ装置
JP6686923B2 (ja) * 2017-02-06 2020-04-22 トヨタ自動車株式会社 車両のバッテリーシステム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004262377A (ja) * 2003-03-03 2004-09-24 Denso Corp エアバッグ装置
JP2004284378A (ja) * 2003-03-19 2004-10-14 Denso Corp エアバッグの電源回路
JP2006224772A (ja) * 2005-02-16 2006-08-31 Toyota Motor Corp 車両の電源装置
WO2013125170A1 (ja) 2012-02-22 2013-08-29 パナソニック株式会社 バックアップ電源装置とそれを搭載した自動車

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3604046A4

Also Published As

Publication number Publication date
JPWO2018180606A1 (ja) 2020-02-06
CN110431047B (zh) 2021-10-15
EP3604046A4 (en) 2020-04-15
US20200016981A1 (en) 2020-01-16
US11059371B2 (en) 2021-07-13
CN110431047A (zh) 2019-11-08
EP3604046A1 (en) 2020-02-05
JP7016061B2 (ja) 2022-02-21
EP3604046B1 (en) 2021-05-05

Similar Documents

Publication Publication Date Title
US20190334375A1 (en) Power redundancy system
CN109792160B (zh) 车载用的备用装置
EP3726694B1 (en) Vehicle-mounted power supply apparatus
JP5360245B2 (ja) 蓄電装置
JP6528129B2 (ja) バックアップ電源装置およびバックアップ電源装置を用いた車両
JP6751512B2 (ja) 車載用電源装置
KR102699015B1 (ko) 차량용 저전압 직류 컨버터 제어 시스템 및 방법
JP2015231269A (ja) バックアップ電源回路
WO2018056190A1 (ja) 電源装置および電源装置を搭載した車両
WO2018180606A1 (ja) 車載電源装置およびその車載電源装置が搭載される車両
CN113169563B (zh) 车载用的备用电源控制装置及车载用的备用电源
US11338748B2 (en) In-vehicle power source control device and in-vehicle power source system
US11855475B2 (en) Charge/discharge control apparatus
US11699918B2 (en) Power supply switching apparatus
JP6757887B2 (ja) 車載用非常電源装置
US7034502B2 (en) Stabilization of a vehicle network by generating short-term available power
WO2021005924A1 (ja) バックアップ電源システム
EP3708436B1 (en) Vehicle-mounted power source device
TW201307109A (zh) 電動車輛之電力控制系統及其放電與充電控制方法
WO2023228287A1 (ja) 給電制御装置
JP2022164117A (ja) 車載電源装置
CN118020224A (zh) 车载用控制装置
JP2010035278A (ja) 車両用電源装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18777151

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019509289

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018777151

Country of ref document: EP

Effective date: 20191028