WO2018180441A1 - 太陽電池用ペースト組成物 - Google Patents

太陽電池用ペースト組成物 Download PDF

Info

Publication number
WO2018180441A1
WO2018180441A1 PCT/JP2018/009621 JP2018009621W WO2018180441A1 WO 2018180441 A1 WO2018180441 A1 WO 2018180441A1 JP 2018009621 W JP2018009621 W JP 2018009621W WO 2018180441 A1 WO2018180441 A1 WO 2018180441A1
Authority
WO
WIPO (PCT)
Prior art keywords
aluminum
silicon
paste composition
solar cell
powder
Prior art date
Application number
PCT/JP2018/009621
Other languages
English (en)
French (fr)
Inventor
マルワン ダムリン
正博 中原
紹太 鈴木
直哉 森下
Original Assignee
東洋アルミニウム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋アルミニウム株式会社 filed Critical 東洋アルミニウム株式会社
Priority to CN201880020513.5A priority Critical patent/CN110462845B/zh
Priority to KR1020197023491A priority patent/KR102485772B1/ko
Priority to JP2019509193A priority patent/JP7173960B2/ja
Publication of WO2018180441A1 publication Critical patent/WO2018180441A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/0481Encapsulation of modules characterised by the composition of the encapsulation material
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/14Glass frit mixtures having non-frit additions, e.g. opacifiers, colorants, mill-additions
    • C03C8/18Glass frit mixtures having non-frit additions, e.g. opacifiers, colorants, mill-additions containing free metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/14Conductive material dispersed in non-conductive inorganic material
    • H01B1/16Conductive material dispersed in non-conductive inorganic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/022441Electrode arrangements specially adapted for back-contact solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • H01L31/1868Passivation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a solar cell paste composition, and more particularly to a solar cell intended to form a p + layer on a crystalline solar cell having a passivation film provided with an opening using laser irradiation or the like.
  • the present invention relates to a paste composition. More specifically, the solar cell is applied to a crystalline solar cell in which the diameter of the opening is 100 ⁇ m or less and the total area of the opening is 0.5 to 5% of the area of the crystalline solar cell.
  • the present invention relates to a paste composition.
  • PERC Passivated emitter and rear cell
  • the PERC type high conversion efficiency cell has a structure including an electrode layer mainly composed of aluminum, for example.
  • This electrode layer (especially the back electrode layer) is formed, for example, by applying a paste composition mainly composed of aluminum in a pattern shape so as to cover the opening of the passivation film, and drying and baking as necessary. Is done.
  • Patent Document 1 discloses a paste composition containing aluminum powder, aluminum-silicon alloy powder, silicon powder, glass powder, and an organic vehicle. It is known that the conversion efficiency of the PERC type high conversion efficiency cell can be increased by appropriately designing the configuration of the electrode layer.
  • the diameter of the opening is 100 ⁇ m or less, and the total area of the opening is 0.5 to 5% of the area of the crystalline solar cell.
  • the rate of decrease in conversion efficiency after a static mechanical load test is 3% or more.
  • the present invention has been made in view of the above, and a crystal having a passivation film having an opening with a diameter of 100 ⁇ m or less and a total area of the opening of 0.5 to 5% of the area of the crystalline solar cell. Excellent conversion efficiency can be achieved even when applied to solar cells, suppresses the generation of voids at the electrode layer interface after firing, and further suppresses the rate of decrease in conversion efficiency after static mechanical load testing It aims at providing the paste composition for solar cells which can be performed. Another object of the present invention is to provide a method for forming a back electrode using the solar cell paste composition.
  • this invention relates to the following paste composition for solar cells.
  • a solar cell paste composition containing a glass powder, an organic vehicle, and a conductive material for use in forming a p + layer for a crystalline solar cell having a passivation film provided with an opening, (1) The opening has a diameter of 100 ⁇ m or less, and the total area of the opening is 0.5 to 5% of the area of the crystalline solar cell, (2) The conductive material contains an aluminum powder and an aluminum-silicon alloy powder having a primary crystal of silicon having a major axis of 5 ⁇ m or less.
  • a solar cell paste composition characterized by the above. 2.
  • the above item 1 contains 40 to 700 parts by mass of the aluminum-silicon alloy powder, 0.1 to 15 parts by mass of the glass powder, and 20 to 45 parts by mass of the organic vehicle with respect to 100 parts by mass of the aluminum powder.
  • the paste composition for solar cells as described. 3.
  • Item 3 The solar cell paste composition according to Item 1 or 2, wherein the opening has a diameter of 20 to 100 ⁇ m. 4).
  • Step 1 for forming a coating film, and Step 2 for baking the coating film at 700 to 900 ° C. A method for forming a back electrode of a crystalline solar cell, comprising: (1) The opening has a diameter of 100 ⁇ m or less, and the total area of the opening is 0.5 to 5% of the area of the crystalline solar cell, (2) The conductive material contains an aluminum powder and an aluminum-silicon alloy powder having a primary crystal of silicon having a major axis of 5 ⁇ m or less. A method for forming a back electrode. 5). Item 4.
  • the above item 4 contains 40 to 700 parts by mass of the aluminum-silicon alloy powder, 0.1 to 15 parts by mass of the glass powder, and 20 to 45 parts by mass of the organic vehicle with respect to 100 parts by mass of the aluminum powder.
  • the paste composition for a solar cell of the present invention has a diameter of an opening of a passivation film of 100 ⁇ m or less among crystalline solar cells (particularly PERC type high conversion efficiency cells), and the total area of the openings is a crystalline solar cell. Even when applied to a crystalline solar cell having a cell area of 0.5 to 5%, excellent conversion efficiency can be achieved, generation of voids at the electrode layer interface after firing is suppressed, and static electricity is further reduced. The rate of decrease in conversion efficiency after a dynamic mechanical load test can be suppressed.
  • FIG. 1 It is a schematic diagram which shows an example of the cross-section of a PERC type
  • the solar cell paste composition of the present invention can be used, for example, to form electrodes of crystalline solar cells. Although it does not specifically limit as a crystalline solar cell, For example, a PERC (Passivated * emitter * and * rear * cell) type high conversion efficiency cell (henceforth a "PERC type solar cell”) is mentioned.
  • the solar cell paste composition of the present invention can be used, for example, to form a back electrode of a PERC solar cell.
  • the paste composition of the present invention is also simply referred to as “paste composition”.
  • FIGS. 1A and 1B are schematic views of a general cross-sectional structure of a PERC type solar cell.
  • the PERC type solar cell includes a silicon semiconductor substrate 1, an n-type impurity layer 2, an antireflection film (passivation film) 3, a grid electrode 4, an electrode layer (back electrode layer) 5, an alloy layer 6, and a p + layer 7. Can be provided as an element.
  • the silicon semiconductor substrate 1 is not particularly limited.
  • a p-type silicon substrate having a thickness of 180 to 250 ⁇ m is used.
  • the n-type impurity layer 2 is provided on the light receiving surface side of the silicon semiconductor substrate 1.
  • the thickness of the n-type impurity layer 2 is, for example, 0.3 to 0.6 ⁇ m.
  • the antireflection film 3 and the grid electrode 4 are provided on the surface of the n-type impurity layer 2.
  • the antireflection film 3 is formed of, for example, a silicon nitride film and is also referred to as a passivation film.
  • the antireflection film 3 acts as a so-called passivation film, so that recombination of electrons on the surface of the silicon semiconductor substrate 1 can be suppressed, and as a result, the recombination rate of the generated carriers can be reduced. Thereby, the conversion efficiency of a PERC type photovoltaic cell is increased.
  • the antireflection film (passivation film) 3 is also provided on the back surface side of the silicon semiconductor substrate 1, that is, the surface opposite to the light receiving surface. Further, a contact hole (opening in the present invention) formed so as to penetrate through the antireflection film (passivation film) 3 on the back surface side and scrape a part of the back surface of the silicon semiconductor substrate 1 is a silicon semiconductor. It is formed on the back side of the substrate 1.
  • the electrode layer 5 is formed in contact with the silicon semiconductor substrate 1 through the contact hole.
  • the electrode layer 5 is a member formed by the paste composition of the present invention, and is formed in a predetermined pattern shape.
  • the electrode layer 5 may be formed so as to cover the entire back surface of the PERC type solar battery cell as in the form of FIG. 1A, or the contact hole and the electrode layer 5 as in the form of FIG. You may form so that the vicinity may be covered. Since the main component of the electrode layer 5 is aluminum, the electrode layer 5 is an aluminum electrode layer.
  • the electrode layer 5 is formed, for example, by applying a paste composition in a predetermined pattern shape and baking it.
  • the coating method is not particularly limited, and examples thereof include known methods such as screen printing. After applying the paste composition and drying it as necessary, the electrode layer 5 is formed by firing for a short time at a temperature exceeding the melting point of aluminum (about 660 ° C.), for example.
  • the firing temperature may be a temperature exceeding the melting point of aluminum (about 660 ° C.), but is preferably about 700 to 900 ° C., more preferably about 780 to 900 ° C.
  • the firing time can be appropriately set according to the firing temperature within the range in which the desired electrode layer 5 is formed.
  • an aluminum-silicon (Al—Si) alloy layer (alloy layer 6) is formed between the electrode layer 5 and the silicon semiconductor substrate 1, and at the same time, by diffusion of aluminum atoms, p as an impurity layer is formed. A + layer 7 is formed.
  • the p + layer 7 can prevent recombination of electrons and improve the collection efficiency of generated carriers, that is, a so-called BSF (Back Surface Field) effect.
  • BSF Back Surface Field
  • the electrode formed by the electrode layer 5 and the alloy layer 6 is the back electrode 8 shown in FIG. Accordingly, the back electrode 8 is formed using a paste composition, and is applied, for example, so as to cover the contact hole 9 (opening) provided in the antireflection film (passivation film) 3 on the back side. Accordingly, the back electrode 8 can be formed by baking after drying.
  • the diameter of the opening of the passivation film is 100 ⁇ m or less (preferably 20 to 100 ⁇ m), and the total area of the opening is crystalline solar. Excellent conversion efficiency can be achieved even when applied to crystalline solar cells that are 0.5 to 5% (especially 2 to 4%, more preferably 2.5 to 3.5%) of the battery cell area. At the same time, generation of voids at the electrode layer interface after firing can be suppressed, and further, the rate of decrease in conversion efficiency after the static mechanical load test can be suppressed.
  • the paste composition of the present invention contains a glass powder, an organic vehicle and a conductive material used for forming a p + layer for a crystalline solar cell having a passivation film provided with an opening.
  • a solar cell paste composition comprising: (1) The opening has a diameter of 100 ⁇ m or less, and the total area of the opening is 0.5 to 5% of the area of the crystalline solar cell, (2)
  • the conductive material contains an aluminum powder and an aluminum-silicon alloy powder having a primary crystal of silicon having a major axis of 5 ⁇ m or less. It is characterized by that.
  • the back electrode of a solar battery cell such as a PERC solar battery cell can be formed by using the paste composition. That is, the paste composition of the present invention is used to form a back electrode for a solar cell that is in electrical contact with a silicon substrate through an opening (contact hole) provided in a passivation film formed on the silicon substrate. it can. And according to the paste composition of this invention, the diameter of the opening part of a passivation film is 100 micrometers or less among crystal type solar cells (especially PERC type solar cell), and the total area of an opening part is a crystal type solar cell.
  • the paste composition includes glass powder, an organic vehicle, and a conductive material (metal particles) as constituent components. And since the paste composition contains a conductive material (metal particles), the sintered body formed by baking the coating film of the paste composition exhibits electrical conductivity that is electrically connected to the silicon substrate. .
  • the conductive material contains aluminum powder and aluminum-silicon alloy powder having a primary crystal of silicon having a major axis of 5 ⁇ m or less.
  • the above-mentioned aluminum powder refers to aluminum in which an alloy is not formed, but does not exclude the presence of inevitable impurities and trace amounts of additive elements derived from raw materials.
  • the aluminum-silicon alloy powder used in the present invention is an alloy powder of aluminum and silicon, but does not exclude the inevitable impurities in aluminum and silicon and the presence of a trace amount of additive elements derived from raw materials.
  • the silicon content in the aluminum-silicon alloy is preferably 12 to 30 atomic%, and more preferably 17 to 25 atomic%.
  • the aluminum-silicon alloy powder used in the present invention is characterized by having a primary crystal of silicon having a major axis of 5 ⁇ m or less (that is, more than 0 ⁇ m and 5 ⁇ m or less).
  • the major axis of the primary crystal may be 5 ⁇ m or less. Among them, 1 to 5 ⁇ m is preferable, and 2 to 5 ⁇ m is more preferable.
  • the presence or absence of the primary crystal of the aluminum-silicon alloy powder and the shape of the primary crystal can be specified by observing the cross section of the aluminum-silicon alloy powder with an optical microscope.
  • FIG. 1 An observation image by an optical microscope of an example of aluminum powder and aluminum-silicon alloy powder is shown in FIG.
  • the primary crystal of silicon can be confirmed as an irregular gray point.
  • the observation image of the cross section of the aluminum powder (not including silicon) shown in (b) and the aluminum-silicon alloy powder having a silicon content of 15 atomic% shown in (c) shows the primary crystal of silicon. Cannot be confirmed.
  • the method for obtaining an aluminum-silicon alloy powder having a primary crystal having a major axis of 5 ⁇ m or less is not limited.
  • P phosphorus
  • Other examples include a method of atomizing aluminum-silicon alloy powder with an inert gas such as helium (He) or argon (Ar).
  • the content of the aluminum-silicon alloy powder with respect to the aluminum powder is not limited, but the content of the aluminum-silicon alloy powder is preferably 40 to 700 parts by mass, more preferably 40 to 250 parts by mass with respect to 100 parts by mass of the aluminum powder.
  • the shape of the conductive material is not particularly limited, and may be any of spherical, elliptical, indeterminate, scaly, fibrous, and the like. If the shape of the conductive material is spherical, in the electrode layer 5 formed of the paste composition, the filling property of the conductive material can be increased and the electrical resistance can be effectively reduced.
  • the contact between the silicon semiconductor substrate 1 and the conductive material is increased in the electrode layer 5 formed of the paste composition, so that a good BSF layer can be easily formed.
  • the average particle diameter measured by a laser diffraction method is preferably in the range of 1 to 10 ⁇ m.
  • any of these conductive materials can be produced by a known method such as a gas atomizing method. (Glass powder) It is said that the glass powder has an effect of assisting the reaction between the conductive material and silicon and the sintering of the conductive material itself.
  • glass powder it can be set as the well-known glass component contained in the paste composition currently used in order to form the electrode layer of a photovoltaic cell.
  • the glass powder include lead (Pb), bismuth (Bi), vanadium (V), boron (B), silicon (Si), tin (Sn), phosphorus (P), and zinc (Zn). And at least one selected from.
  • glass powder containing lead, or lead-free glass powder such as bismuth, vanadium, tin-phosphorus, zinc borosilicate, or alkali borosilicate can be used. In view of the influence on the human body, it is desirable to use lead-free glass powder.
  • a glass frit having a molar ratio (B 2 O 3 / Bi 2 O 3 ) of B 2 O 3 component to Bi 2 O 3 component of 0.8 or more and 4.0 or less, and V 2 O 5 molar ratio of the component and the BaO component (V 2 O 5 / BaO) may be combined with the glass frit is 1.0 to 2.5.
  • the softening point of the glass powder can be, for example, 750 ° C. or less.
  • the average particle size of the particles contained in the glass powder can be, for example, 1 to 3 ⁇ m.
  • the content of the glass powder contained in the paste composition is preferably, for example, 0.5 to 40 parts by mass with respect to 100 parts by mass of the conductive material, and in particular 0 with respect to 100 parts by mass of the aluminum powder. It is preferably 1 to 15 parts by mass. In this case, the adhesion between the silicon semiconductor substrate 1 and the antireflection film 3 (passivation film) is good, and the electrical resistance is hardly increased.
  • Organic vehicle a material in which various additives and resins are dissolved in a solvent as required can be used. Alternatively, the resin itself may be used as the organic vehicle without containing the solvent.
  • solvent known types can be used, and specific examples include diethylene glycol monobutyl ether, diethylene glycol monobutyl ether acetate, dipropylene glycol monomethyl ether, and the like.
  • an antioxidant for example, an antioxidant, a corrosion inhibitor, an antifoaming agent, a thickener, a tack fire, a coupling agent, an electrostatic imparting agent, a polymerization inhibitor, a thixotropic agent, an antisettling agent, etc.
  • an antioxidant for example, an antioxidant, a corrosion inhibitor, an antifoaming agent, a thickener, a tack fire, a coupling agent, an electrostatic imparting agent, a polymerization inhibitor, a thixotropic agent, an antisettling agent, etc.
  • polyethylene glycol ester compound polyethylene glycol ether compound, polyoxyethylene sorbitan ester compound, sorbitan alkyl ester compound, aliphatic polycarboxylic acid compound, phosphate ester compound, amide amine salt of polyester acid, polyethylene oxide Series compounds, fatty acid amide waxes and the like can be used.
  • Known resins can be used, such as ethyl cellulose, nitrocellulose, polyvinyl butyral, phenolic resin, melanin resin, urea resin, xylene resin, alkyd resin, unsaturated polyester resin, acrylic resin, polyimide resin, furan resin, Thermosetting resin such as urethane resin, isocyanate compound, cyanate compound, polyethylene, polypropylene, polystyrene, ABS resin, polymethyl methacrylate, polyvinyl chloride, polyvinylidene chloride, polyvinyl acetate, polyvinyl alcohol, polyacetal, polycarbonate, polyethylene terephthalate, Polybutylene terephthalate, polyphenylene oxide, polysulfone, polyimide, polyethersulfone, polyarylate, polyetherether Tons, polytetrafluoroethylene, can be used in combination of two or more kinds of such as silicon resin.
  • the ratio of the resin, solvent, and various additives contained in the organic vehicle can be arbitrarily adjusted.
  • the component ratio can be the same as that of a known organic vehicle.
  • the content ratio of the organic vehicle is not particularly limited, for example, from the viewpoint of having good printability, it is preferably 10 to 500 parts by weight, and 20 to 45 parts by weight with respect to 100 parts by weight of the conductive material. It is particularly preferred. In particular, the amount is preferably 10 to 500 parts by weight, and more preferably 20 to 45 parts by weight with respect to 100 parts by weight of the aluminum powder.
  • the paste composition of the present invention is suitable for use, for example, for forming an electrode layer of a solar battery cell (in particular, a back electrode 8 of a PERC type solar battery cell as shown in FIG. 1). Therefore, the paste composition of this invention can be used also as a solar cell back surface electrode formation agent.
  • the method for forming the back electrode (back electrode 8 in FIG. 1) of the crystalline solar cell of the present invention is as follows.
  • a solar cell paste composition containing glass powder, an organic vehicle and a conductive material to the crystalline solar cell having a passivation film provided with an opening so as to cover the opening.
  • Step 1 for forming a coating film, and Step 2 of baking the coating film at 700 to 900 ° C. (1)
  • the opening has a diameter of 100 ⁇ m or less, and the total area of the opening is 0.5 to 5% of the area of the crystalline solar cell
  • the conductive material contains an aluminum powder and an aluminum-silicon alloy powder having a primary crystal of silicon having a major axis of 5 ⁇ m or less. It is characterized by that.
  • the crystalline solar battery cell and the solar battery paste composition are basically as described above, but the diameter of the opening provided in the passivation film is preferably 20 to 100 ⁇ m, even within 100 ⁇ m or less.
  • the opening can usually be formed by laser irradiation or the like.
  • Step 1 a solar cell paste composition is applied to a crystalline solar cell having a passivation film provided with an opening so as to cover the opening. Thus, a coating film is formed.
  • the thickness of the coating film can be set according to the thickness of the back electrode after firing, but is preferably about 5 to 40 ⁇ m on the basis of the flat portion (other than the opening) of the passivation film.
  • the coating film is baked at 700 to 900 ° C.
  • the firing temperature may be 700 to 900 ° C., but preferably about 780 to 900 ° C.
  • the aluminum contained in the paste composition diffuses into the silicon semiconductor substrate 1, and an aluminum-silicon (Al—Si) alloy layer (alloy layer 6) is formed between the electrode layer 5 and the silicon semiconductor substrate 1.
  • an aluminum-silicon (Al—Si) alloy layer alloy layer 6
  • a p + layer 7 as an impurity layer is formed by diffusion of aluminum atoms.
  • the aluminum-silicon alloy powder having a primary crystal of silicon having a major axis of 2.0 ⁇ m is atomized by adding 0.01% P (phosphorus) to a molten aluminum-silicon alloy having a silicon content of 20 atomic%. It was prepared by doing. (Preparation of a fired substrate that is a solar cell) A fired substrate as a solar cell for evaluation was produced as follows.
  • a silicon semiconductor substrate 1 having a thickness of 160 ⁇ m (resistance value: 3 ⁇ ⁇ cm, including a passivation film on the back side) was prepared.
  • a YAG laser having a wavelength of 532 nm as a laser oscillator, contacts having a diameter of 50 ⁇ m at intervals of 500 ⁇ m so that the total area of the opening is 3.1% of the entire cell. Hole 9 was formed. The total area of the openings in the entire cell was calculated by multiplying the square of the radius of each opening by ⁇ and dividing this by the distance (pitch) between adjacent openings.
  • the passivation film is not shown and is handled as being included in the silicon semiconductor substrate 1, and the passivation film is a laminate of a 30 nm aluminum oxide layer and a 100 nm silicon nitride layer on the back side of the silicon semiconductor substrate 1. Included as a body.
  • the paste composition 10 obtained above is applied to the surface of the silicon semiconductor substrate 1 so as to cover the entire back surface (the surface on the side where the contact holes 9 are formed). On the top, printing was carried out at 1.0 to 1.1 g / pc using a screen printer. Next, although not shown, an Ag paste prepared by a known technique was printed on the light receiving surface.
  • a static load of 2400 Pa is applied to the front and back surfaces of a horizontally installed module for 1 hour, this is repeated 3 cycles, and then conversion efficiency is measured using a solar simulator, and the rate of decrease before and after the test is calculated. Calculated.
  • the module was manufactured by sandwiching a sealing material between glass and a back sheet and arranging solar cells in series in the sealing material.
  • Example 2 Evaluation was performed in the same manner as in Example 1 except that a cell in which contact holes 9 having a diameter of 30 ⁇ m were formed at intervals of 300 ⁇ m so that the total area of the opening was 3.1% of the whole cell was used.
  • Example 3 Evaluation was performed in the same manner as in Example 1 except that a cell in which contact holes having a diameter of 70 ⁇ m were formed at intervals of 700 ⁇ m so that the total area of the opening was 3.1% of the entire cell was used.
  • Example 4 Implementation was performed except that the aluminum powder produced by the gas atomization method and the aluminum-silicon alloy powder having the primary crystal of silicon having a major axis of 4.0 ⁇ m produced by the gas atomization method were adjusted to 30 mass%: 70 mass%.
  • a paste composition was prepared and evaluated in the same manner as in Example 1.
  • the aluminum-silicon alloy powder having a primary crystal of silicon having a major axis of 4.0 ⁇ m was prepared by atomizing into a molten aluminum-silicon alloy having a silicon content of 23 atomic% at a cooling rate of 103 K / Sec. .
  • Example 5 Implementation was carried out except that the aluminum powder produced by the gas atomization method and the aluminum-silicon alloy powder having the primary crystal of the major axis of 5.0 ⁇ m produced by the gas atomization method were adjusted to 50 mass%: 50 mass%.
  • a paste composition was prepared and evaluated in the same manner as in Example 1.
  • the aluminum-silicon alloy powder having a primary crystal of silicon having a major axis of 5.0 ⁇ m was prepared by atomizing with He gas using a molten aluminum-silicon alloy having a silicon content of 25 atomic%.
  • Comparative Example 1 A paste was prepared and evaluated in the same manner as in Example 1 except that only the aluminum powder produced by the gas atomization method was used. That is, in Comparative Example 1, an aluminum-silicon alloy powder having a primary crystal of silicon is not used.
  • Comparative Example 2 Implementation was performed except that the aluminum powder produced by the gas atomization method and the aluminum-silicon alloy powder having the primary crystal of the major axis of 7.0 ⁇ m produced by the gas atomization method were adjusted to 50 mass%: 50 mass%.
  • a paste was prepared and evaluated in the same manner as in Example 1.
  • the aluminum-silicon alloy powder having the primary crystal of silicon having a major axis of 7.0 ⁇ m is atomized by adding 0.005% P (phosphorus) to a molten aluminum-silicon alloy having a silicon content of 35 atomic%. It was prepared by doing.
  • Comparative Example 3 Implementation was performed except that the aluminum powder produced by the gas atomization method and the aluminum-silicon alloy powder having the primary crystal of the major axis of 10.0 ⁇ m produced by the gas atomization method were adjusted so as to be 50% by mass: 50% by mass.
  • a paste was prepared and evaluated in the same manner as in Example 1.
  • the aluminum-silicon alloy powder having a primary crystal of silicon having a major axis of 10.0 ⁇ m was prepared by atomizing a molten aluminum-silicon alloy having a silicon content of 40 atomic%.
  • Comparative Example 4 Implementation was performed except that the aluminum powder produced by the gas atomization method and the aluminum-silicon alloy powder having the primary crystal of silicon having a major axis of 6.0 ⁇ m produced by the gas atomization method were adjusted to 50 mass%: 50 mass%.
  • a paste was prepared and evaluated in the same manner as in Example 1.
  • the aluminum-silicon alloy powder having a primary crystal of silicon having a major axis of 6.0 ⁇ m was prepared by atomizing a molten aluminum-silicon alloy having a silicon content of 35 atomic%.
  • Comparative Example 5 Evaluation was performed in the same manner as in Example 1 except that a cell in which contact holes 9 having a diameter of 110 ⁇ m were formed at intervals of 1100 ⁇ m so that the total area of the opening was 3.1% of the whole cell was used.
  • Comparative Example 6 Evaluation was performed in the same manner as in Example 1 except that a cell in which contact holes 9 having a diameter of 50 ⁇ m were formed at equal intervals of 1400 ⁇ m so that the total area of the opening was 0.4% of the entire cell was used.
  • Comparative Example 7 Evaluation was performed in the same manner as in Example 1 except that a cell in which contact holes 9 having a diameter of 50 ⁇ m were formed at equal intervals of 360 ⁇ m so that the total area of the opening was 6.1% of the whole cell.
  • the diameter of the opening of the passivation film is 100 ⁇ m or less, and the total area of the opening is 0.5% of the area of the crystalline solar cell. Even when applied to a crystalline solar cell of ⁇ 5%, excellent conversion efficiency can be achieved (Eff is 22.0% or more), and the generation of voids at the electrode layer interface after firing is suppressed, Further, it can be seen that the rate of decrease in conversion efficiency after the static mechanical load test can be suppressed (a rate of decrease of less than 3%).

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Photovoltaic Devices (AREA)
  • Conductive Materials (AREA)
  • Glass Compositions (AREA)

Abstract

本発明は、パッシベーション膜の開口部の直径が100μm以下であり、開口部の総面積が結晶系太陽電池セルの面積の0.5~5%である結晶系太陽電池セルに対して適用した場合に、優れた変換効率が達成できるとともに、焼成後の電極層界面でのボイドの発生を抑制し、更に静的機械荷重試験後の変換効率の低下率を抑制できる太陽電池用ペースト組成物を提供する。 本発明は、具体的には、開口部を設けたパッシベーション膜を有する結晶系太陽電池セルに対してp+層を形成する用途に用いる、ガラス粉末、有機ビヒクル及び導電性材料を含有する太陽電池用ペースト組成物であって、 (1)前記開口部は直径が100μm以下であり、前記開口部の総面積は前記結晶系太陽電池セルの面積の0.5~5%であり、 (2)前記導電性材料は、アルミニウム粉末と、長径が5μm以下のシリコンの初晶を有するアルミニウム-シリコン合金粉末とを含有する、 ことを特徴とする太陽電池用ペースト組成物を提供する。

Description

太陽電池用ペースト組成物
 本発明は、太陽電池用ペースト組成物に関し、特にレーザー照射などを用いて開口部を設けたパッシベーション膜を有する結晶系太陽電池セルに対してp層を形成することを目的とした太陽電池用ペースト組成物に関する。より具体的には、開口部の直径が100μm以下であり、開口部の総面積が結晶系太陽電池セルの面積の0.5~5%である結晶系太陽電池セルに対して適用する太陽電池用ペースト組成物に関する。
 近年、結晶系太陽電池セルの変換効率(発電効率)、信頼性等を向上させることを目的として、種々の研究開発が行われている。その一つとして、セル裏面に窒化ケイ素、酸化ケイ素、酸化アルミニウム等からなるパッシベーション膜を有するPERC(Passivated emitter and rear cell)型高変換効率セルが注目されている。
 PERC型高変換効率セルは、例えばアルミニウムを主成分とする電極層を備えた構造を有する。この電極層(特に裏面電極層)は、例えばアルミニウムを主体とするペースト組成物を、パッシベーション膜の開口部を被覆するようにパターン形状に塗布し、必要に応じて乾燥後、焼成することにより形成される。例えば、特許文献1には、アルミニウム粉末と、アルミニウム-シリコン合金粉末と、シリコン粉末と、ガラス粉末と、有機ビヒクルとを含むペースト組成物が開示されている。そして、電極層の構成を適切に設計することで、PERC型高変換効率セルの変換効率を高められることが知られている。
 また、近年ではPERC型高変換効率セルの変換効率を更に高める方法として、パッシベーション膜の開口部の面積を小さくし、パッシベーション膜の面積を増やすことにより、電子とホールとの再結合を抑制することが検討されてきている。
特開2013-143499号公報
 しかしながら、従来のペースト組成物を用いて電極層を形成した場合に、特に開口部の直径が100μm以下であり、開口部の総面積が結晶系太陽電池セルの面積の0.5~5%である結晶系太陽電池セルに対しては変換効率の向上に未だ改善の余地がある。また、電極層界面にボイドと称される空隙が生じる場合がある他、静的機械荷重試験後の変換効率の低下率が3%以上になるという問題がある。電極層界面にボイドが生じた場合には、抵抗を増加させるとともに結晶系太陽電池セルの長期信頼性の低下の原因となり得る。
 本発明は、上記に鑑みてなされたものであり、パッシベーション膜の開口部の直径が100μm以下であり、開口部の総面積が結晶系太陽電池セルの面積の0.5~5%である結晶系太陽電池セルに対して適用した場合でも優れた変換効率が達成できるとともに、焼成後の電極層界面でのボイドの発生を抑制し、更に静的機械荷重試験後の変換効率の低下率を抑制できる太陽電池用ペースト組成物を提供することを目的とする。また、当該太陽電池用ペースト組成物を用いた裏面電極の形成方法を提供することも目的とする。
 本発明者は、上記目的を達成すべく鋭意研究を重ねた結果、特定の導電性材料を含むペースト組成物が上記目的を達成できることを見出し、本発明を完成するに至った。
 即ち、本発明は、下記の太陽電池用ペースト組成物に関する。
1.開口部を設けたパッシベーション膜を有する結晶系太陽電池セルに対してp層を形成する用途に用いる、ガラス粉末、有機ビヒクル及び導電性材料を含有する太陽電池用ペースト組成物であって、
(1)前記開口部は直径が100μm以下であり、前記開口部の総面積は前記結晶系太陽電池セルの面積の0.5~5%であり、
(2)前記導電性材料は、アルミニウム粉末と、長径が5μm以下のシリコンの初晶を有するアルミニウム-シリコン合金粉末とを含有する、
ことを特徴とする太陽電池用ペースト組成物。
2.前記アルミニウム粉末100質量部に対して、前記アルミニウム-シリコン合金粉末40~700質量部、前記ガラス粉末0.1~15質量部、及び前記有機ビヒクル20~45質量部を含有する、上記項1に記載の太陽電池用ペースト組成物。
3.前記開口部の直径が20~100μmである、上記項1又は2に記載の太陽電池用ペースト組成物。
4.開口部を設けたパッシベーション膜を有する結晶系太陽電池セルに対して、前記開口部を被覆するように、ガラス粉末、有機ビヒクル及び導電性材料を含有する太陽電池用ペースト組成物を塗布することにより塗膜を形成する工程1、並びに、
 前記塗膜を700~900℃で焼成する工程2、
を有する、結晶系太陽電池セルの裏面電極の形成方法であって、
(1)前記開口部は直径が100μm以下であり、前記開口部の総面積は前記結晶系太陽電池セルの面積の0.5~5%であり、
(2)前記導電性材料は、アルミニウム粉末と、長径が5μm以下のシリコンの初晶を有するアルミニウム-シリコン合金粉末とを含有する、
ことを特徴とする裏面電極の形成方法。
5.前記アルミニウム粉末100質量部に対して、前記アルミニウム-シリコン合金粉末40~700質量部、前記ガラス粉末0.1~15質量部、及び前記有機ビヒクル20~45質量部を含有する、上記項4に記載の裏面電極の形成方法。
6.前記開口部の直径が20~100μmである、上記項4又は5に記載の裏面電極の形成方法。
 本発明の太陽電池用ペースト組成物は、結晶系太陽電池セル(特にPERC型高変換効率セル)の中でもパッシベーション膜の開口部の直径が100μm以下であり、開口部の総面積が結晶系太陽電池セルの面積の0.5~5%である結晶系太陽電池セルに対して適用した場合でも優れた変換効率が達成できるとともに、焼成後の電極層界面でのボイドの発生を抑制し、更に静的機械荷重試験後の変換効率の低下率を抑制できる。
PERC型太陽電池セルの断面構造の一例を示す模式図であり、(a)はその実施形態の一例を示し、(b)はその実施形態の他例を示す。 実施例及び比較例において作製された電極構造の断面の模式図である。 アルミニウム粉末、及びアルミニウム-シリコン合金粉末の表面を電子顕微鏡により観察した観察像を示す図である。詳細には、(a)はシリコン含有量が20原子%のアルミニウム-シリコン合金粉末、(b)はアルミニウム粉末、(c)はシリコン含有量が15原子%のアルミニウム-シリコン合金粉末の観察像である。
 以下、本発明の太陽電池用ペースト組成物について詳細に説明する。なお、本明細書において、「~」で示される範囲は、特に説明する場合を除き「以上、以下」を意味する。
 本発明の太陽電池用ペースト組成物は、例えば、結晶系太陽電池セルの電極を形成するために使用することができる。結晶系太陽電池セルとしては特に限定されないが、例えば、PERC(Passivated emitter and rear cell)型高変換効率セル(以下、「PERC型太陽電池セル」という。)が挙げられる。本発明の太陽電池用ペースト組成物は、例えば、PERC型太陽電池セルの裏面電極を形成するために使用することができる。以下、本発明のペースト組成物を、単に「ペースト組成物」とも記載する。
 最初に、PERC型太陽電池セルの構造の一例を説明する。
 1.PERC型太陽電池セル
 図1(a)、(b)は、PERC型太陽電池セルの一般的な断面構造の模式図である。PERC型太陽電池セルは、シリコン半導体基板1、n型不純物層2、反射防止膜(パッシベーション膜)3、グリッド電極4、電極層(裏面電極層)5、合金層6、p層7を構成要素として備えることができる。
 シリコン半導体基板1は特に限定されず、例えば、厚みが180~250μmのp型シリコン基板が用いられる。
 n型不純物層2は、シリコン半導体基板1の受光面側に設けられる。n型不純物層2の厚みは、例えば、0.3~0.6μmである。
 反射防止膜3及びグリッド電極4は、n型不純物層2の表面に設けられる。反射防止膜3は、例えば、窒化シリコン膜で形成されパッシベーション膜とも称される。反射防止膜3は、いわゆるパッシベーション膜として作用することで、シリコン半導体基板1の表面での電子の再結合を抑制でき、結果として、発生したキャリアの再結合率を減らすことを可能にする。これにより、PERC型太陽電池セルの変換効率が高められる。
 反射防止膜(パッシベーション膜)3は、シリコン半導体基板1の裏面側、つまり、前記受光面と逆側の面にも設けられる。また、この裏面側の反射防止膜(パッシベーション膜)3を貫通し、かつ、シリコン半導体基板1の裏面の一部を削るように形成されたコンタクト孔(本発明での開口部)が、シリコン半導体基板1の裏面側に形成されている。
 電極層5は、前記コンタクト孔を通じてシリコン半導体基板1に接触するように形成されている。電極層5は、本発明のペースト組成物によって形成される部材であり、所定のパターン形状に形成される。図1(a)の形態のように、電極層5は、PERC型太陽電池セルの裏面全体を覆うように形成されていてもよいし、又は図1(b)の形態のようにコンタクト孔及びその近傍を覆うように形成されていてもよい。電極層5の主成分はアルミニウムであるので、電極層5はアルミニウム電極層である。
 電極層5は、例えば、ペースト組成物を所定のパターン形状に塗布し、焼成することで形成される。塗布方法は特に限定されず、例えば、スクリーン印刷等の公知の方法が挙げられる。ペースト組成物を塗布し、必要に応じて乾燥させた後、例えば、アルミニウムの融点(約660℃)を超える温度にて短時間焼成することで、電極層5が形成される。
 本発明では、焼成温度はアルミニウムの融点(約660℃)を超える温度であればよいが、700~900℃程度が好ましく、780~900℃程度がより好ましい。焼成時間は所望の電極層5が形成される範囲で焼成温度に応じて適宜設定することができる。
 このように焼成すると、ペースト組成物に含まれるアルミニウムが、シリコン半導体基板1の内部に拡散する。これにより、電極層5とシリコン半導体基板1との間に、アルミニウム-シリコン(Al-Si)合金層(合金層6)が形成され、これと同時に、アルミニウム原子の拡散によって、不純物層としてのp層7が形成される。
 p層7は、電子の再結合を防止し、生成キャリアの収集効率を向上させる効果、いわゆるBSF(Back Surface Field)効果をもたらすことができる。
 前記電極層5と合金層6とで形成される電極が、図1に示す裏面電極8である。従って、裏面電極8は、ペースト組成物を用いて形成され、例えば、裏面側の反射防止膜(パッシベーション膜)3に設けたコンタクト孔9(開口部)を被覆するように塗工し、必要に応じて乾燥後、焼成することによって裏面電極8を形成できる。
 ここで、本発明のペースト組成物を用いて裏面電極8を形成することにより、パッシベーション膜の開口部の直径が100μm以下(好ましくは20~100μm)であり、開口部の総面積が結晶系太陽電池セルの面積の0.5~5%(特に2~4%、更には2.5~3.5%)である結晶系太陽電池セルに対して適用した場合でも優れた変換効率が達成できるとともに、焼成後の電極層界面でのボイドの発生を抑制し、更に静的機械荷重試験後の変換効率の低下率を抑制できる。
 2.ペースト組成物
 本発明のペースト組成物は、開口部を設けたパッシベーション膜を有する結晶系太陽電池セルに対してp層を形成する用途に用いる、ガラス粉末、有機ビヒクル及び導電性材料を含有する太陽電池用ペースト組成物であって、
(1)前記開口部は直径が100μm以下であり、前記開口部の総面積は前記結晶系太陽電池セルの面積の0.5~5%であり、
(2)前記導電性材料は、アルミニウム粉末と、長径が5μm以下のシリコンの初晶を有するアルミニウム-シリコン合金粉末とを含有する、
ことを特徴とする。
 前述したように、ペースト組成物を使用することで、PERC型太陽電池セル等の太陽電池セルの裏面電極を形成することができる。つまり、本発明のペースト組成物は、シリコン基板上に形成されたパッシベーション膜に設けた開口部(コンタクト孔)を通じてシリコン基板に電気的に接触する太陽電池用裏面電極を形成するために用いることができる。そして、本発明のペースト組成物によれば、結晶系太陽電池セル(特にPERC型太陽電池セル)の中でもパッシベーション膜の開口部の直径が100μm以下であり、開口部の総面積が結晶系太陽電池セルの面積の0.5~5%である結晶系太陽電池セルに対して適用した場合でも優れた変換効率が達成できるとともに、焼成後の電極層界面でのボイドの発生を抑制し、更に静的機械荷重試験後の変換効率の低下率を抑制できる。
 ペースト組成物は、ガラス粉末、有機ビヒクル及び導電性材料(金属粒子)を構成成分として含む。そして、ペースト組成物が導電性材料(金属粒子)を含むことで、ペースト組成物の塗膜が焼成されて形成される焼結体は、シリコン基板と電気的に接続する導電性が発揮される。
(導電性材料)
 本発明において、導電性材料は、アルミニウム粉末と、長径が5μm以下のシリコンの初晶を有するアルミニウム-シリコン合金粉末とを含有する。
 上記アルミニウム粉末は合金が形成されていないアルミニウムをいうが、不可避不純物及び原料由来の微量の添加元素の存在は排除しない。
 本発明で用いるアルミニウム-シリコン合金粉末は、アルミニウムとシリコンとの合金粉末を示すが、アルミニウム及びシリコン中の不可避不純物及び原料由来の微量の添加元素の存在は排除しない。本発明では、当該アルミニウム-シリコン合金におけるシリコン含有量は12~30原子%が好ましく、17~25原子%がより好ましい。このようなアルミニウム-シリコン合金粉末を導電性材料に含有することにより、ペースト組成物の塗膜を焼成する際にペースト組成物中のアルミニウムとシリコン基板中のシリコンとの過剰な反応を抑制し、電極層界面(詳細には電極層とシリコン基板との界面)でのボイドの発生を抑制することができる。
 本発明で用いるアルミニウム-シリコン合金粉末は、長径が5μm以下(即ち、0μm超過5μm以下)のシリコンの初晶を有することを特徴とする。このようなアルミニウム-シリコン合金粉末を導電性材料に含有することにより、電極層の抵抗を低くし、優れた変換効率を達成できるとともに、静的機械荷重試験後の変換効率の低下率を抑制することができる。初晶の長径は5μm以下であればよいが、その中でも1~5μmが好ましく、2~5μmがより好ましい。
 アルミニウム-シリコン合金粉末の初晶の有無及び初晶の形状は、アルミニウム-シリコン合金粉末の断面を光学顕微鏡により観察することにより特定することができる。
 アルミニウム粉末、及びアルミニウム-シリコン合金粉末の一例の光学顕微鏡による観察像が図3に示されている。(a)で示されるシリコン含有量が20原子%のアルミニウム-シリコン合金粉末の断面の観察像にはシリコンの初晶が不定形の灰色点として確認できる。これに対して、(b)で示されるアルミニウム粉末(シリコンは含まない)及び(c)で示されるシリコン含有量が15原子%のアルミニウム-シリコン合金粉末の断面の観察像にはシリコンの初晶は確認できない。
 長径が5μm以下の初晶を有するアルミニウム-シリコン合金粉末を得る方法としては限定的ではないが、例えば、シリコン含有量が12原子%以上、好ましくは12~30原子%のアルミニウム-シリコン合金の溶湯に0.05原子%以上のリン(P)を添加してアトマイズする方法、又は当該溶湯を103K/s以上の速度で急冷しながらアトマイズする方法が挙げられる。急冷法であれば、初晶の長径を5μm以下とするために急冷速度を103K/s以上としてアトマイズすることが好ましい。その他、例えば、アルミニウム-シリコン合金粉末をヘリウム(He)、アルゴン(Ar)等の不活性ガスでアトマイズする方法も挙げられる。
 アルミニウム粉末に対するアルミニウム-シリコン合金粉末の含有量は限定されないが、アルミニウム粉末100質量部に対してアルミニウム-シリコン合金粉末の含有量は40~700質量部が好ましく、40~250質量部がより好ましい。
 導電性材料(アルミニウム粉末、及びアルミニウム-シリコン合金粉末)の形状は特に限定されず、例えば、球状、楕円状、不定形状、鱗片状、繊維状等のいずれでもよい。導電性材料の形状が球状であれば、ペースト組成物により形成される電極層5において、導電性材料の充填性が増大して電気抵抗を効果的に低下させることができる。
 また、導電性材料の形状が球状である場合、ペースト組成物により形成される電極層5において、シリコン半導体基板1と導電性材料との接点が増えるので、良好なBSF層を形成しやすい。球状の場合には、レーザー回折法により測定される平均粒子径が1~10μmの範囲であることが好ましい。
 なお、本発明の効果が阻害されない範囲で、必要に応じてアルミニウム粉末、及びアルミニウム-シリコン合金粉末以外の他の金属粒子を含有することは許容される。これらの導電性材料は、いずれもガスアトマイズ法などの公知の方法で製造することができる。
(ガラス粉末)
 ガラス粉末は、導電性材料とシリコンとの反応、及び、導電性材料自身の焼結を助ける作用があるとされている。
 ガラス粉末としては特に限定されず、例えば、太陽電池セルの電極層を形成するために使用されているペースト組成物に含まれる公知のガラス成分とすることができる。ガラス粉末の具体例としては、鉛(Pb)、ビスマス(Bi)、バナジウム(V)、ホウ素(B)、シリコン(Si)、スズ(Sn)、リン(P)及び亜鉛(Zn)からなる群から選択される少なくとも一種が挙げられる。また、鉛を含むガラス粉末、又は、ビスマス系、バナジウム系、スズ-リン系、ホウケイ酸亜鉛系、アルカリホウケイ酸系等の無鉛のガラス粉末を用いることができる。特に人体への影響を考慮すると、無鉛のガラス粉末を用いることが望ましい。
 具体的にガラス粉末は、B、Bi、ZnO、SiO、Al、BaO、CaO、SrO、V、Sb、WO、P及びTeOからなる群より選ばれる少なくとも1種の成分を含むことができる。例えば、ガラス粉末において、B成分とBi成分とのモル比(B/Bi)が0.8以上4.0以下であるガラスフリットと、V成分とBaO成分とのモル比(V/BaO)が1.0以上2.5以下であるガラスフリットとを組み合わせてもよい。
 ガラス粉末の軟化点は、例えば、750℃以下とすることができる。ガラス粉末に含まれる粒子の平均粒子径は、例えば、1~3μmとすることができる。
 ペースト組成物中に含まれるガラス粉末の含有量は、例えば、導電性材料100質量部に対して、0.5~40質量部であることが好ましく、特にアルミニウム粉末100質量部に対して、0.1~15質量部であることが好ましい。この場合、シリコン半導体基板1および反射防止膜3(パッシベーション膜)との密着性が良好となり、また、電気抵抗も増大しにくい。
(有機ビヒクル)
 有機ビヒクルとしては、溶剤に、必要に応じて各種添加剤及び樹脂を溶解した材料を使用できる。又は、溶剤を含まず、樹脂そのものを有機ビヒクルとして使用してもよい。
 溶剤は、公知の種類が使用可能であり、具体的には、ジエチレングリコールモノブチルエーテル、ジエチレングリコールモノブチルエーテルアセテート、ジプロピレングリコールモノメチルエーテル等が挙げられる。
 各種添加剤としては、例えば、酸化防止剤、腐食抑制剤、消泡剤、増粘剤、タックファイヤー、カップリング剤、静電付与剤、重合禁止剤、チキソトロピー剤、沈降防止剤等を使用することができる。具体的には、例えば、ポリエチレングリコールエステル化合物、ポリエチレングリコールエーテル化合物、ポリオキシエチレンソルビタンエステル化合物、ソルビタンアルキルエステル化合物、脂肪族多価カルボン酸化合物、燐酸エステル化合物、ポリエステル酸のアマイドアミン塩、酸化ポリエチレン系化合物、脂肪酸アマイドワックス等を使用することができる。
 樹脂としては公知の種類が使用可能であり、エチルセルロース、ニトロセルロース、ポリビニールブチラール、フェノール樹脂、メラニン樹脂、ユリア樹脂、キシレン樹脂、アルキッド樹脂、不飽和ポリエステル樹脂、アクリル樹脂、ポリイミド樹脂、フラン樹脂、ウレタン樹脂、イソシアネート化合物、シアネート化合物等の熱硬化樹脂、ポリエチレン、ポリプロピレン、ポリスチレン、ABS樹脂、ポリメタクリル酸メチル、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリ酢酸ビニル、ポリビニルアルコール、ポリアセタール、ポリカーボネート、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリフェニレンオキサイド、ポリスルフォン、ポリイミド、ポリエーテルスルフォン、ポリアリレート、ポリエーテルエーテルケトン、ポリ4フッ化エチレン、シリコン樹脂等の二種以上を組み合わせて用いることができる。
 有機ビヒクルに含まれる樹脂、溶剤、各種添加剤の割合は任意に調整することができ、例えば、公知の有機ビヒクルと同様の成分比とすることができる。
 有機ビヒクルの含有比率は特に限定されないが、例えば、良好な印刷性を有するという観点から、導電性材料100質量部に対して、10~500質量部であることが好ましく、20~45質量部であることが特に好ましい。また、特にアルミニウム粉末100質量部に対して、10~500質量部であることが好ましく、20~45質量部であることが好ましい。
 本発明のペースト組成物は、例えば、太陽電池セルの電極層(特には図1で示されるようなPERC型太陽電池セルの裏面電極8)を形成するための使用として適している。よって、本発明のペースト組成物は、太陽電池裏面電極形成剤としても使用され得る。
 3.裏面電極の形成方法
 本発明の結晶系太陽電池セルの裏面電極(図1の裏面電極8)の形成方法は、
 開口部を設けたパッシベーション膜を有する結晶系太陽電池セルに対して、前記開口部を被覆するように、ガラス粉末、有機ビヒクル及び導電性材料を含有する太陽電池用ペースト組成物を塗布することにより塗膜を形成する工程1、並びに、
 前記塗膜を700~900℃で焼成する工程2、を有し、
(1)前記開口部は直径が100μm以下であり、前記開口部の総面積は前記結晶系太陽電池セルの面積の0.5~5%であり、
(2)前記導電性材料は、アルミニウム粉末と、長径が5μm以下のシリコンの初晶を有するアルミニウム-シリコン合金粉末とを含有する、
ことを特徴とする。
 結晶系太陽電池セル及び太陽電池用ペースト組成物については、基本的には前述の通りであるが、パッシベーション膜に設けた開口部の直径は100μm以下の中でも、20~100μmであることが好ましい。開口部は、通常、レーザー照射などで形成できる。
 本発明の裏面電極の形成方法は、工程1において、開口部を設けたパッシベーション膜を有する結晶系太陽電池セルに対して、前記開口部を被覆するように、太陽電池用ペースト組成物を塗布することにより塗膜を形成する。
 ペースト組成物の塗膜を形成する際は、スクリーン印刷などの公知の塗工方法を用いて行うことができる。塗膜の厚さは、焼成後の裏面電極の厚さに応じて設定できるが、パッシベーション膜の平面部(開口部以外)を基準として5~40μm程度が好ましい。
 工程1により塗膜を形成後は、工程2において、塗膜を700~900℃で焼成する。焼成温度は700~900℃でよいが、780~900℃程度が好ましい。
 焼成により、ペースト組成物に含まれるアルミニウムが、シリコン半導体基板1の内部に拡散し、電極層5とシリコン半導体基板1との間にアルミニウム-シリコン(Al-Si)合金層(合金層6)が形成され、これと同時に、アルミニウム原子の拡散によって、不純物層としてのp層7が形成される。
 以下に実施例及び比較例を示して本発明を具体的に説明する。但し、本発明は実施例に限定されない。
 実施例1
(ペースト組成物の調製)
 ガスアトマイズ法により生成したアルミニウム粉末と、同じくガスアトマイズ法により生成した長径が2.0μmのシリコンの初晶を有するアルミニム-シリコン合金粉末を、40質量%:60質量%となるように調整した導電性材料100質量部と、B-Bi-SrO-BaO-Sb=40/40/10/5/5(mol%)のガラス粉末1.5質量部を、エチルセルロースをブチルジグリコールに溶解した樹脂液35質量部に、既知の分散装置(ディスパー)を用いてペースト化した。
 なお、長径が2.0μmのシリコンの初晶を有するアルミニウム-シリコン合金粉末は、シリコン含有量が20原子%のアルミニウム-シリコン合金の溶湯に0.01%のP(リン)を添加してアトマイズすることで調製した。
(太陽電池セルである焼成基板の作製)
 評価用の太陽電池セルである焼成基板を次のように作製した。
 まず、図2の(A)に示すように、まず、厚みが160μmのシリコン半導体基板1(抵抗値3Ω・cm。裏面側にパッシベーション膜を含む。)を準備した。そして、図2の(B)に示すように、レーザー発振器として波長が532nmのYAGレーザーを用いて、開口部の総面積がセル全体の3.1%となるように500μm間隔で直径50μmのコンタクト孔9を形成した。なお、セル全体における開口部の総面積は、一つあたりの開口の半径の二乗にπを乗じて、これを隣り合う開口部間の距離(ピッチ)で除することで算出した。
 なお、図2では、パッシベーション膜は図示しておらずシリコン半導体基板1に含まれるものとして取り扱い、パッシベーション膜はシリコン半導体基板1の裏面側に30nmの酸化アルミニウム層と100nmの窒化ケイ素層との積層体として含まれている。
 次に、図2の(C)に示すように、裏面全体(コンタクト孔9が形成されている側の面)を覆うように、上記で得たペースト組成物10を、シリコン半導体基板1の表面上に、スクリーン印刷機を用いて、1.0~1.1g/pcになるように印刷した。次いで、図示はしていないが、受光面に公知の技術で調製したAgペーストを印刷した。
 その後、800℃に設定した赤外ベルト炉を用いて焼成した。この焼成により、図2の(D)に示すように、電極層5を形成し、また、この焼成の際にアルミニウムがシリコン半導体基板1の内部に拡散することにより、電極層5とシリコン半導体基板1との間にAl-Siの合金層6が形成されると同時に、アルミニウム原子の拡散による不純物層としてp層(BSF層)7が形成された。これにより、評価用の焼成基板を製作した。
(太陽電池セルの評価)
 得られた太陽電池セルの評価においては、ワコム電創のソーラーシュミレータ:WXS-156S-10、I-V測定装置:IV15040-10を用いて、I-V測定を実施した。Effが21.5%以上で合格とした。
(ボイド「Void」の評価)
 ボイドの評価については、焼成基板の断面を光学顕微鏡(200倍)で観察し、シリコン半導体基板1と電極層5との界面におけるボイドの有無を評価した。ボイドが確認されなかったものを合格(○)、ボイドが確認されたものを不合格(×)と評価した。
(静的機械荷重試験後の変換効率の低下率)
 静的機械荷重試験後の変換効率の低下率は、IEC61215に従い特定した。具体的には、2400Paの静荷重を水平に設置したモジュールの表面及び裏面に1時間行い、これを3サイクル繰り返し、その後ソーラーシュミレータを用いて変換効率の測定を行い、試験前後での低下率を計算した。なお、モジュールは、ガラス及びバックシートの間に封止材を挟持し、封止材中に太陽電池セルを直列に配列することで作製した。
 各評価結果を下記表1に示す。
 実施例2
 開口部の総面積がセル全体の3.1%となるように300μm間隔で直径30μmのコンタクト孔9を形成したセルを用いた以外は、実施例1と同様にして評価を行った。
 実施例3
 開口部の総面積がセル全体の3.1%となるように700μm間隔で直径70μmのコンタクト孔を形成したセルを用いた以外は、実施例1と同様にして評価を行った。
 実施例4
 ガスアトマイズ法により生成したアルミニウム粉末と、同じくガスアトマイズ法により生成した長径が4.0μmのシリコンの初晶を有するアルミニウム-シリコン合金粉末を、30質量%:70質量%となるように調整した以外は実施例1と同様にしてペースト組成物を調製し、評価を行った。
 なお、長径が4.0μmのシリコンの初晶を有するアルミニウム-シリコン合金粉末は、シリコン含有量が23原子%のアルミニウム-シリコン合金の溶湯に、103K/Secの冷却速度でアトマイズすることで調製した。
 実施例5
 ガスアトマイズ法により生成したアルミニウム粉末と、同じくガスアトマイズ法により生成した長径が5.0μmのシリコンの初晶を有するアルミニウム-シリコン合金粉末を、50質量%:50質量%となるように調整した以外は実施例1と同様にしてペースト組成物を調製し、評価を行った。
 なお、長径が5.0μmのシリコンの初晶を有するアルミニウム-シリコン合金粉末は、シリコン含有量が25原子%のアルミニウム-シリコン合金の溶湯を用いてHeガスでアトマイズすることで調製した。
 比較例1
 ガスアトマイズ法により生成したアルミニウム粉末のみを用いた以外は、実施例1と同様にしてペーストを作成し、評価を行った。つまり、比較例1ではシリコンの初晶を有するアルミニウム-シリコン合金粉末は用いていない。
 比較例2
 ガスアトマイズ法により生成したアルミニウム粉末と、同じくガスアトマイズ法により生成した長径が7.0μmのシリコンの初晶を有するアルミニウム-シリコン合金粉末を、50質量%:50質量%となるように調整した以外は実施例1と同様にしてペーストを作成し、評価を行った。
 なお、長径が7.0μmのシリコンの初晶を有するアルミニウム-シリコン合金粉末は、シリコン含有量が35原子%のアルミニウム-シリコン合金の溶湯に0.005%のP(リン)を添加してアトマイズすることで調製した。
 比較例3
 ガスアトマイズ法により生成したアルミニウム粉末と、同じくガスアトマイズ法により生成した長径が10.0μmのシリコンの初晶を有するアルミニウム-シリコン合金粉末を、50質量%:50質量%となるように調整した以外は実施例1と同様にしてペーストを作成し、評価を行った。
 なお、長径が10.0μmのシリコンの初晶を有するアルミニム-シリコン合金粉末は、シリコン含有量が40原子%のアルミニウム-シリコン合金の溶湯をアトマイズすることで調製した。
 比較例4
 ガスアトマイズ法により生成したアルミニウム粉末と、同じくガスアトマイズ法により生成した長径が6.0μmのシリコンの初晶を有するアルミニウム-シリコン合金粉末を、50質量%:50質量%となるように調整した以外は実施例1と同様にしてペーストを作成し、評価を行った。
 なお、長径が6.0μmのシリコンの初晶を有するアルミニム-シリコン合金粉末は、シリコン含有量が35原子%のアルミニウム-シリコン合金の溶湯をアトマイズすることで調製した。
 比較例5
 開口部の総面積がセル全体の3.1%となるように1100μm間隔で直径110μmのコンタクト孔9を形成したセルを用いた以外は、実施例1と同様にして評価を行った。
 比較例6
 開口部の総面積がセル全体の0.4%となるように1400μm等間隔で直径50μmのコンタクト孔9を形成したセルを用いた以外は、実施例1と同様にして評価を行った。
 比較例7
 開口部の総面積がセル全体の6.1%となるように360μm等間隔で直径50μmのコンタクト孔9を形成したセルを用いた以外は、実施例1と同様にして評価を行った。
Figure JPOXMLDOC01-appb-T000001
 表1結果から明らかな通り、本発明所定の導電性材料を用いることにより、パッシベーション膜の開口部の直径が100μm以下であり、開口部の総面積が結晶系太陽電池セルの面積の0.5~5%である結晶系太陽電池セルに対して適用した場合でも優れた変換効率が達成できる(Effが22.0%以上)とともに、焼成後の電極層界面でのボイドの発生を抑制し、更に静的機械荷重試験後の変換効率の低下率を抑制(低下率3%未満)できることが分かる。
1:シリコン半導体基板
2:n型不純物層
3:反射防止膜(パッシベーション膜)
4:グリッド電極
5:電極層
6:合金層
7:p
8:裏面電極
9:コンタクト孔(開口部)
10:ペースト組成物

Claims (6)

  1.  開口部を設けたパッシベーション膜を有する結晶系太陽電池セルに対してp層を形成する用途に用いる、ガラス粉末、有機ビヒクル及び導電性材料を含有する太陽電池用ペースト組成物であって、
    (1)前記開口部は直径が100μm以下であり、前記開口部の総面積は前記結晶系太陽電池セルの面積の0.5~5%であり、
    (2)前記導電性材料は、アルミニウム粉末と、長径が5μm以下のシリコンの初晶を有するアルミニウム-シリコン合金粉末とを含有する、
    ことを特徴とする太陽電池用ペースト組成物。
  2.  前記アルミニウム粉末100質量部に対して、前記アルミニウム-シリコン合金粉末40~700質量部、前記ガラス粉末0.1~15質量部、及び前記有機ビヒクル20~45質量部を含有する、請求項1に記載の太陽電池用ペースト組成物。
  3.  前記開口部の直径が20~100μmである、請求項1又は2に記載の太陽電池用ペースト組成物。
  4.  開口部を設けたパッシベーション膜を有する結晶系太陽電池セルに対して、前記開口部を被覆するように、ガラス粉末、有機ビヒクル及び導電性材料を含有する太陽電池用ペースト組成物を塗布することにより塗膜を形成する工程1、並びに、
     前記塗膜を700~900℃で焼成する工程2、
    を有する、結晶系太陽電池セルの裏面電極の形成方法であって、
    (1)前記開口部は直径が100μm以下であり、前記開口部の総面積は前記結晶系太陽電池セルの面積の0.5~5%であり、
    (2)前記導電性材料は、アルミニウム粉末と、長径が5μm以下のシリコンの初晶を有するアルミニウム-シリコン合金粉末とを含有する、
    ことを特徴とする裏面電極の形成方法。
  5.  前記アルミニウム粉末100質量部に対して、前記アルミニウム-シリコン合金粉末40~700質量部、前記ガラス粉末0.1~15質量部、及び前記有機ビヒクル20~45質量部を含有する、請求項4に記載の裏面電極の形成方法。
  6.  前記開口部の直径が20~100μmである、請求項4又は5に記載の裏面電極の形成方法。
PCT/JP2018/009621 2017-03-27 2018-03-13 太陽電池用ペースト組成物 WO2018180441A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880020513.5A CN110462845B (zh) 2017-03-27 2018-03-13 太阳能电池用膏状组合物
KR1020197023491A KR102485772B1 (ko) 2017-03-27 2018-03-13 태양 전지용 페이스트 조성물
JP2019509193A JP7173960B2 (ja) 2017-03-27 2018-03-13 太陽電池用ペースト組成物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-061532 2017-03-27
JP2017061532 2017-03-27

Publications (1)

Publication Number Publication Date
WO2018180441A1 true WO2018180441A1 (ja) 2018-10-04

Family

ID=63677219

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/009621 WO2018180441A1 (ja) 2017-03-27 2018-03-13 太陽電池用ペースト組成物

Country Status (5)

Country Link
JP (1) JP7173960B2 (ja)
KR (1) KR102485772B1 (ja)
CN (1) CN110462845B (ja)
TW (1) TWI759447B (ja)
WO (1) WO2018180441A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020100792A1 (ja) * 2018-11-12 2020-05-22 東洋アルミニウム株式会社 ペースト組成物
WO2021060183A1 (ja) * 2019-09-26 2021-04-01 東洋アルミニウム株式会社 太陽電池用アルミニウムペースト
US20220077328A1 (en) * 2020-09-08 2022-03-10 Toyo Aluminium Kabushiki Kaisha Conductive paste and method for producing topcon solar cell

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102285734B1 (ko) * 2020-11-27 2021-08-05 주식회사 제이솔루션 태양전지 모듈용 전도성 첨가제 및 이의 제조방법

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04182057A (ja) * 1990-11-16 1992-06-29 Sumitomo Electric Ind Ltd 過共晶アルミニウム―ケイ素系ビレツトの製造方法
JPH0517845A (ja) * 1990-10-31 1993-01-26 Sumitomo Electric Ind Ltd 過共晶アルミニウム−シリコン系合金粉末およびその製造方法
JPH06224456A (ja) * 1993-01-27 1994-08-12 Semiconductor Energy Lab Co Ltd アモルファス太陽電池およびその作製方法
JPH093563A (ja) * 1995-06-22 1997-01-07 Hitachi Powdered Metals Co Ltd アルミニウム系耐摩耗性焼結合金の製造方法
JP2013143499A (ja) * 2012-01-11 2013-07-22 Toyo Aluminium Kk ペースト組成物
WO2013115076A1 (ja) * 2012-02-02 2013-08-08 東洋アルミニウム株式会社 ペースト組成物
US20160108500A1 (en) * 2014-10-15 2016-04-21 Hyundai Motor Company Alloy for die-cast vehicle parts and method for manufacturing the same
WO2016178386A1 (ja) * 2015-05-01 2016-11-10 東洋アルミニウム株式会社 Perc型太陽電池用アルミニウムペースト組成物

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5789077A (en) * 1994-06-27 1998-08-04 Ebara Corporation Method of forming carbide-base composite coatings, the composite coatings formed by that method, and members having thermally sprayed chromium carbide coatings
US6792187B2 (en) * 2002-12-17 2004-09-14 Corning Incorporated Ca-Al-Si oxide glasses and optical components containing the same
FR2857378B1 (fr) * 2003-07-10 2005-08-26 Pechiney Aluminium Piece moulee en alliage d'aluminium a haute resistance a chaud
JP2008294209A (ja) * 2007-05-24 2008-12-04 Mitsubishi Electric Corp 太陽電池基板の製造方法
JP2010241650A (ja) * 2009-04-08 2010-10-28 Mitsubishi Materials Techno Corp シリコンインゴットの製造方法、シリコンインゴットの製造装置及びシリコン結晶成長方法
CN101603162B (zh) * 2009-07-29 2012-05-30 福州大学 高硅铝合金的物理法变质工艺
CN102254587B (zh) * 2011-05-17 2014-05-28 陈晓东 一种硅太阳能电池铝背场用浆料及其制备方法
JP5856764B2 (ja) * 2011-06-21 2016-02-10 学校法人常翔学園 過共晶アルミニウム−シリコン合金圧延板成形品およびその製造方法
TWI636577B (zh) * 2013-02-07 2018-09-21 茂迪股份有限公司 太陽能電池及其模組
EP2787510B1 (en) * 2013-04-02 2018-05-30 Heraeus Deutschland GmbH & Co. KG Particles comprising Al, Si and Mg in electro-conductive pastes and solar cell preparation
JP2015050349A (ja) * 2013-09-02 2015-03-16 株式会社ノリタケカンパニーリミテド 太陽電池素子およびその製造方法並びにファイヤースルー用アルミニウムペースト
CN103474486B (zh) * 2013-09-25 2015-12-23 常州天合光能有限公司 晶体硅太阳电池的背面梁桥式接触电极及其制备方法
JP2015191971A (ja) * 2014-03-27 2015-11-02 株式会社ノリタケカンパニーリミテド ファイヤースルー用アルミニウムペーストおよび太陽電池素子
JP6280231B2 (ja) * 2014-09-22 2018-02-14 京セラ株式会社 太陽電池素子

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0517845A (ja) * 1990-10-31 1993-01-26 Sumitomo Electric Ind Ltd 過共晶アルミニウム−シリコン系合金粉末およびその製造方法
JPH04182057A (ja) * 1990-11-16 1992-06-29 Sumitomo Electric Ind Ltd 過共晶アルミニウム―ケイ素系ビレツトの製造方法
JPH06224456A (ja) * 1993-01-27 1994-08-12 Semiconductor Energy Lab Co Ltd アモルファス太陽電池およびその作製方法
JPH093563A (ja) * 1995-06-22 1997-01-07 Hitachi Powdered Metals Co Ltd アルミニウム系耐摩耗性焼結合金の製造方法
JP2013143499A (ja) * 2012-01-11 2013-07-22 Toyo Aluminium Kk ペースト組成物
WO2013115076A1 (ja) * 2012-02-02 2013-08-08 東洋アルミニウム株式会社 ペースト組成物
US20160108500A1 (en) * 2014-10-15 2016-04-21 Hyundai Motor Company Alloy for die-cast vehicle parts and method for manufacturing the same
WO2016178386A1 (ja) * 2015-05-01 2016-11-10 東洋アルミニウム株式会社 Perc型太陽電池用アルミニウムペースト組成物

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020100792A1 (ja) * 2018-11-12 2020-05-22 東洋アルミニウム株式会社 ペースト組成物
JP2020080341A (ja) * 2018-11-12 2020-05-28 東洋アルミニウム株式会社 ペースト組成物
CN112997321A (zh) * 2018-11-12 2021-06-18 东洋铝株式会社 糊料组合物
WO2021060183A1 (ja) * 2019-09-26 2021-04-01 東洋アルミニウム株式会社 太陽電池用アルミニウムペースト
CN114521294A (zh) * 2019-09-26 2022-05-20 东洋铝株式会社 太阳能电池用铝膏
EP4036991A4 (en) * 2019-09-26 2023-10-11 Toyo Aluminium Kabushiki Kaisha ALUMINUM PASTE FOR SOLAR BATTERY
US20220077328A1 (en) * 2020-09-08 2022-03-10 Toyo Aluminium Kabushiki Kaisha Conductive paste and method for producing topcon solar cell

Also Published As

Publication number Publication date
CN110462845A (zh) 2019-11-15
TW201836162A (zh) 2018-10-01
KR20190125971A (ko) 2019-11-07
JP7173960B2 (ja) 2022-11-16
CN110462845B (zh) 2023-01-13
TWI759447B (zh) 2022-04-01
KR102485772B1 (ko) 2023-01-05
JPWO2018180441A1 (ja) 2020-02-06

Similar Documents

Publication Publication Date Title
KR102524339B1 (ko) Perc형 태양전지용 알루미늄 페이스트 조성물
JP5924945B2 (ja) ペースト組成物
WO2018180441A1 (ja) 太陽電池用ペースト組成物
EP2418656B1 (en) Aluminium paste and solar cell using the same
EP2461366A1 (en) Paste composition and solar cell element using same
US8748304B2 (en) Devices containing silver compositions deposited by micro-deposition direct writing silver conductor lines
WO2018135430A1 (ja) 太陽電池用ペースト組成物
US8128846B2 (en) Silver composition for micro-deposition direct writing silver conductor lines on photovoltaic wafers
WO2018221578A1 (ja) 太陽電池用ペースト組成物
CN108022672B (zh) 膏状组合物
JP6896506B2 (ja) 太陽電池用ペースト組成物
JP5338846B2 (ja) 太陽電池集電電極形成方法、太陽電池セルおよび太陽電池モジュール
JP7303036B2 (ja) 導電性ペースト及びTOPCon型太陽電池の製造方法
KR102217722B1 (ko) 페이스트 조성물 및 태양 전지 소자
US8008179B2 (en) Methods using silver compositions for micro-deposition direct writing silver conductor lines on photovoltaic wafers
US20220077328A1 (en) Conductive paste and method for producing topcon solar cell
JP6825948B2 (ja) 太陽電池用ペースト組成物
JP2022074097A (ja) 太陽電池セルの電極形成方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18776081

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019509193

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197023491

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18776081

Country of ref document: EP

Kind code of ref document: A1