WO2018135430A1 - 太陽電池用ペースト組成物 - Google Patents

太陽電池用ペースト組成物 Download PDF

Info

Publication number
WO2018135430A1
WO2018135430A1 PCT/JP2018/000802 JP2018000802W WO2018135430A1 WO 2018135430 A1 WO2018135430 A1 WO 2018135430A1 JP 2018000802 W JP2018000802 W JP 2018000802W WO 2018135430 A1 WO2018135430 A1 WO 2018135430A1
Authority
WO
WIPO (PCT)
Prior art keywords
paste composition
aluminum
mass
alloy
powder
Prior art date
Application number
PCT/JP2018/000802
Other languages
English (en)
French (fr)
Inventor
正博 中原
マルワン ダムリン
Original Assignee
東洋アルミニウム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋アルミニウム株式会社 filed Critical 東洋アルミニウム株式会社
Priority to CN201880007555.5A priority Critical patent/CN110192285A/zh
Priority to JP2018563309A priority patent/JP7039491B2/ja
Publication of WO2018135430A1 publication Critical patent/WO2018135430A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells

Definitions

  • the present invention relates to a solar cell paste composition, and more particularly to a solar cell intended to form a p + layer on a crystalline solar cell having a passivation film provided with an opening using laser irradiation or the like.
  • the present invention relates to a paste composition.
  • the PERC type high conversion efficiency cell has a structure including an electrode layer mainly composed of aluminum, for example.
  • This electrode layer (particularly the back electrode layer) is formed, for example, by applying a paste composition mainly composed of aluminum in a pattern shape, and drying and baking as necessary. It is known that the conversion efficiency of the PERC type high conversion efficiency cell can be increased by appropriately designing the configuration of the electrode layer.
  • Patent Document 1 discloses an aluminum paste containing glass frit composed of 30 to 70 mol% Pb 2+ , 1 to 40 mol% Si 4+ , 10 to 65 mol% B 3+ , and 1 to 25 mol% Al 3+.
  • a composition is disclosed.
  • Patent Document 2 discloses a paste composition containing aluminum powder, aluminum-silicon alloy powder, silicon powder, glass powder, and an organic vehicle.
  • an electrode layer formed using a conventional paste composition has a granular material having an aluminum or aluminum-silicon alloy composition on the surface of the fired electrode layer with a diameter of about 20 to 200 ⁇ m (hereinafter referred to as “particulate material”). "Sandy”) occurs, resulting in a problem of appearance defects. Further, there is a problem in that when the solar battery cell is modularized, the cell breaks starting from this Sandy.
  • FIG. 3 shows an example in which 220 ⁇ m Sandy is recognized
  • FIG. 4 shows an example in which 30 ⁇ m Sandy is recognized
  • FIG. 5 is an example in which Sandy is not recognized (an example in which there is no poor appearance).
  • the present invention has been made in view of the above, and in a crystalline solar cell, a paste composition that prevents or suppresses the generation of Sandy on the surface of the electrode layer after baking and has high adhesion after baking.
  • the purpose is to provide.
  • a solar cell paste composition comprising glass powder, an organic vehicle and a conductive material, (1) The conductive material contains 40% by mass or more of Al—X alloy powder having a melting point specified by differential scanning calorimetry exceeding 660 ° C. and less than 800 ° C., (2) The element X in the Al—X alloy powder is at least one selected from the group consisting of silicon, barium, bismuth, calcium, germanium, indium, lanthanum, nickel, lead, antimony, strontium, tellurium and yttrium. , A solar cell paste composition characterized by the above. 2. Item 2. The solar cell paste composition according to Item 1, wherein the conductive material further contains Al powder in addition to the Al-X alloy powder. 3. Item 3. The solar cell paste composition according to Item 1 or 2, wherein the element X in the Al—X alloy powder is silicon.
  • the solar cell paste composition of the present invention in a crystalline solar cell (particularly, a PERC type high conversion efficiency cell), generation of Sandy on the surface of the electrode layer after firing can be prevented or suppressed, and the electrode layer High adhesion can be obtained.
  • the ability to prevent or suppress the generation of Sandy on the surface of the electrode layer after sintering is useful in terms of preventing poor appearance and cracking during modularization of solar cells.
  • FIG. 1 It is a schematic diagram which shows an example of the cross-section of a PERC type
  • the solar cell paste composition of the present invention can be used, for example, to form electrodes of crystalline solar cells. Although it does not specifically limit as a crystalline solar cell, For example, a PERC (Passivated * emitter * and * rear * cell) type high conversion efficiency cell (henceforth a "PERC type solar cell”) is mentioned.
  • the solar cell paste composition of the present invention can be used, for example, to form a back electrode of a PERC solar cell.
  • the paste composition of the present invention is also simply referred to as “paste composition”.
  • FIGS. 1A and 1B are schematic views of a general cross-sectional structure of a PERC type solar cell.
  • the PERC type solar battery cell includes a silicon semiconductor substrate 1, an n-type impurity layer 2, an antireflection film (passivation film) 3, a grid electrode 4, an electrode layer 5, an alloy layer 6, and a p + layer 7 as constituent elements. it can.
  • the silicon semiconductor substrate 1 is not particularly limited.
  • a p-type silicon substrate having a thickness of 180 to 250 ⁇ m is used.
  • the n-type impurity layer 2 is provided on the light receiving surface side of the silicon semiconductor substrate 1.
  • the thickness of the n-type impurity layer 2 is, for example, 0.3 to 0.6 ⁇ m.
  • the antireflection film 3 and the grid electrode 4 are provided on the surface of the n-type impurity layer 2.
  • the antireflection film 3 is formed of, for example, a silicon nitride film and is also referred to as a passivation film.
  • the antireflection film 3 acts as a so-called passivation film, so that recombination of electrons on the surface of the silicon semiconductor substrate 1 can be suppressed, and as a result, the recombination rate of the generated carriers can be reduced. Thereby, the conversion efficiency of a PERC type photovoltaic cell is increased.
  • the antireflection film 3 is also provided on the back surface side of the silicon semiconductor substrate 1, that is, the surface opposite to the light receiving surface.
  • a contact hole is formed on the back surface side of the silicon semiconductor substrate 1 so as to penetrate the antireflection film 3 on the back surface side and cut away a part of the back surface of the silicon semiconductor substrate 1.
  • the electrode layer 5 is formed in contact with the silicon semiconductor substrate 1 through the contact hole.
  • the electrode layer 5 is a member formed by the paste composition of the present invention, and is formed in a predetermined pattern shape.
  • the electrode layer 5 may be formed so as to cover the entire back surface of the PERC type solar battery cell as in the form of FIG. 1A, or the contact hole and the electrode layer 5 as in the form of FIG. You may form so that the vicinity may be covered. Since the main component of the electrode layer 5 is aluminum, the electrode layer 5 is an aluminum electrode layer.
  • the electrode layer 5 can be formed, for example, by applying a paste composition in a predetermined pattern shape.
  • the coating method is not particularly limited, and examples thereof include known methods such as screen printing. After applying the paste composition and drying it as necessary, the electrode layer 5 is formed by firing for a short time at a temperature exceeding the melting point of aluminum (about 660 ° C.), for example.
  • the firing temperature may be a temperature exceeding the melting point of aluminum (about 660 ° C.), but is preferably about 750 to 950 ° C., more preferably about 780 to 900 ° C.
  • the firing time can be appropriately set according to the firing temperature within the range in which the desired electrode layer 5 is formed.
  • an aluminum-silicon (Al—Si) alloy layer (alloy layer 6) is formed between the electrode layer 5 and the silicon semiconductor substrate 1, and at the same time, by diffusion of aluminum atoms, p as an impurity layer is formed. A + layer 7 is formed.
  • the p + layer 7 can bring about an effect of preventing recombination of electrons and improving the collection efficiency of generated carriers, that is, a so-called BSF (Back Surface Field) effect.
  • BSF Back Surface Field
  • the electrode formed by the electrode layer 5 and the alloy layer 6 is the back electrode 8 shown in FIG. Accordingly, the back electrode 8 is formed using a paste composition, and is applied on the antireflection film 3 (passivation film 3) on the back side, dried, if necessary, and fired as necessary. Can be formed.
  • the back electrode 8 is formed using the paste composition of the present invention, it is possible to prevent or suppress the generation of Sandy on the surface of the electrode layer 5 after baking, and the high adhesion of the electrode layer 5 after baking. Sex is obtained.
  • the ability to prevent or suppress the generation of Sandy on the surface of the electrode layer 5 after sintering is useful in terms of preventing poor appearance and cracking when modularizing solar cells.
  • the paste composition of the present invention is a solar cell paste composition comprising glass powder, an organic vehicle and a conductive material, (1)
  • the conductive material contains 40% by mass or more of Al—X alloy powder having a melting point specified by differential scanning calorimetry exceeding 660 ° C. and less than 800 ° C.
  • the element X in the Al—X alloy powder is at least one selected from the group consisting of silicon, barium, bismuth, calcium, germanium, indium, lanthanum, nickel, lead, antimony, strontium, tellurium and yttrium. , It is characterized by that.
  • the back electrode of a solar battery cell such as a PERC solar battery cell can be formed by using the paste composition. That is, the paste composition of the present invention can be used to form a back electrode for a solar cell that is in electrical contact with a silicon substrate through a hole of a passivation film formed on the silicon substrate.
  • the paste composition of the present invention in crystalline solar cells (particularly PERC type solar cells), generation of Sandy on the surface of the electrode layer after firing can be prevented or suppressed, and the electrode after firing High adhesion of the layer is obtained.
  • the ability to prevent or suppress the generation of Sandy on the surface of the electrode layer after sintering is useful in terms of preventing poor appearance and cracking when modularizing solar cells.
  • the paste composition includes glass powder, an organic vehicle, and a conductive material (metal particles) as constituent components. And since the paste composition contains a conductive material (metal particles), the sintered body formed by baking the coating film of the paste composition exhibits electrical conductivity that is electrically connected to the silicon substrate. .
  • the conductive material is (1) Containing at least 40% by mass of Al—X alloy powder having a melting point (hereinafter abbreviated as “melting point”) specified by differential scanning calorimetry and exceeding 660 ° C. and less than 800 ° C.
  • the element X in the Al—X alloy powder is at least one selected from the group consisting of silicon, barium, bismuth, calcium, germanium, indium, lanthanum, nickel, lead, antimony, strontium, tellurium and yttrium.
  • the alloy component X is one or more of the above elements, and the element X may be one type or two or more types.
  • Al—X alloy having a melting point exceeding 660 ° C. and less than 800 ° C. examples include aluminum-silicon alloy, aluminum-barium alloy, aluminum-bismuth alloy, aluminum-calcium alloy, aluminum-germanium alloy, aluminum-indium alloy, aluminum- Examples thereof include lanthanum alloys, aluminum-nickel alloys, aluminum-lead alloys, aluminum-antimony alloys, aluminum-strontium alloys, aluminum-tellurium alloys, and aluminum-yttrium alloys.
  • At least the aluminum-silicon alloy, the aluminum-bismuth alloy, the aluminum-germanium alloy, the aluminum-indium alloy, the aluminum-nickel alloy, the aluminum-lead alloy, and the aluminum-antimony alloy are used in that the alloy powder can be easily formed.
  • One type is preferred.
  • an aluminum-silicon alloy is more preferable from the viewpoint of good conductivity.
  • the melting point since the melting point changes according to the content of the element X, the melting point can be adjusted to over 660 ° C. and less than 800 ° C. by adjusting the content of the element X in each alloy.
  • fusing point should just be in this range, 670 degreeC or more and 790 degrees C or less are preferable among these, 680 degreeC or more and 770 degrees C or less are more preferable, and 690 degreeC or more and 750 degrees C or less are the most preferable.
  • the differential scanning calorimetry in this specification is a value measured by a differential scanning calorimeter (model number ThermoTheplus EVO2 TG-DTA / H-IR, manufactured by Rigaku Corporation).
  • an aluminum-silicon alloy has a silicon content of 18 to 28% by mass
  • an aluminum-barium alloy has a barium content of 3 to 12% by mass
  • an aluminum-bismuth alloy has a bismuth content of 4 to 10%.
  • Mass% aluminum content in aluminum-calcium alloy is 12-19 mass%
  • aluminum-germanium alloy is germanium content is 74-89 mass%
  • aluminum-indium alloy is indium content is 21-39 mass%
  • the aluminum-lanthanum alloy has a lanthanum content of 13 to 23% by mass
  • the aluminum-nickel alloy has a nickel content of 6 to 18% by mass
  • the aluminum-lead alloy has a lead content of 2 to 4% by mass
  • aluminum -Antimony In an aluminum-strontium alloy the strontium content is 1-5% by mass.
  • the tellurium content is 6-60% by mass.
  • the melting point of each alloy can be adjusted to exceed 660 ° C. and less than 800 ° C. Two or more of these alloys may be used in combination.
  • the conductive material contains 40% by mass or more of the Al—X alloy powder.
  • the content can be set widely from 40% by mass to 100% by mass (when all of the conductive material is the Al—X alloy powder), but from the viewpoint of obtaining good conductivity, it is 50 to 80% by mass. % Is preferred.
  • the content of the Al—X alloy powder is less than 100% by mass, the remaining aluminum powder is preferable. It should be noted that it is allowed to contain other metal particles other than the Al—X alloy powder and the aluminum powder as required, as long as the effects of the present invention are not inhibited.
  • Any of these conductive materials can be produced by a known atomizing method such as a gas atomizing method, a water atomizing method, or a disk atomizing method.
  • the above-mentioned aluminum powder refers to aluminum in which an alloy is not formed, but does not exclude the presence of inevitable impurities and trace amounts of additive elements derived from raw materials.
  • the Al—X alloy in the present invention represents an alloy of aluminum and element X, but the presence of inevitable impurities in aluminum and element X and a trace amount of additive elements derived from the raw materials is not excluded.
  • the shape of the conductive material is not particularly limited, and may be any of a spherical shape, an oval shape, an indefinite shape, a scale shape, a fiber shape, and the like. If the shape of the conductive material is spherical, in the electrode layer 5 formed of the paste composition, the filling property of the conductive material can be increased and the electric resistance can be effectively reduced.
  • the shape of the conductive material is spherical, the number of contacts between the silicon semiconductor substrate 1 and the conductive material is increased in the electrode layer 5 formed of the paste composition, so that a good BSF layer can be easily formed.
  • the average particle diameter measured by a laser diffraction method is preferably in the range of 1 to 10 ⁇ m. (Glass powder) It is said that the glass powder has an effect of assisting the reaction between the conductive material and silicon and the sintering of the conductive material itself.
  • glass powder it can be set as the well-known glass component contained in the paste composition currently used in order to form the electrode layer of a photovoltaic cell.
  • the glass powder include lead (Pb), bismuth (Bi), vanadium (V), boron (B), silicon (Si), tin (Sn), phosphorus (P), and zinc (Zn). And at least one selected from.
  • glass powder containing lead, or lead-free glass powder such as bismuth, vanadium, tin-phosphorus, zinc borosilicate, or alkali borosilicate can be used. In view of the influence on the human body, it is desirable to use lead-free glass powder.
  • a glass frit having a molar ratio (B 2 O 3 / Bi 2 O 3 ) of B 2 O 3 component to Bi 2 O 3 component of 0.8 or more and 4.0 or less, and V 2 O 5 molar ratio of the component and the BaO component (V 2 O 5 / BaO) may be combined with the glass frit is 1.0 to 2.5.
  • the softening point of the glass powder can be, for example, 750 ° C. or less.
  • the average particle diameter of the particles contained in the glass powder can be, for example, 1 ⁇ m or more and 3 ⁇ m or less.
  • content of the glass powder contained in a paste composition is 0.5 to 40 mass parts with respect to 100 mass parts of electroconductive materials, for example. In this case, the adhesion between the silicon semiconductor substrate 1 and the antireflection film 3 (passivation film) is good, and the electrical resistance is hardly increased.
  • the content of the glass powder contained in the paste composition is particularly preferably 1 part by mass or more and 8 parts by mass or less with respect to 100 parts by mass of the conductive material.
  • Organic vehicle As the organic vehicle, a material in which various additives and resins are dissolved in a solvent as required can be used. Alternatively, the resin itself may be used as the organic vehicle without containing the solvent.
  • solvent known types can be used, and specific examples include diethylene glycol monobutyl ether, diethylene glycol monobutyl ether acetate, dipropylene glycol monomethyl ether, and the like.
  • an antioxidant for example, an antioxidant, a corrosion inhibitor, an antifoaming agent, a thickener, a tack fire, a coupling agent, an electrostatic imparting agent, a polymerization inhibitor, a thixotropic agent, an antisettling agent, etc.
  • an antioxidant for example, an antioxidant, a corrosion inhibitor, an antifoaming agent, a thickener, a tack fire, a coupling agent, an electrostatic imparting agent, a polymerization inhibitor, a thixotropic agent, an antisettling agent, etc.
  • polyethylene glycol ester compound polyethylene glycol ether compound, polyoxyethylene sorbitan ester compound, sorbitan alkyl ester compound, aliphatic polycarboxylic acid compound, phosphate ester compound, amide amine salt of polyester acid, polyethylene oxide Series compounds, fatty acid amide waxes and the like can be used.
  • Known resins can be used, such as ethyl cellulose, nitrocellulose, polyvinyl butyral, phenolic resin, melanin resin, urea resin, xylene resin, alkyd resin, unsaturated polyester resin, acrylic resin, polyimide resin, furan resin, Thermosetting resin such as urethane resin, isocyanate compound, cyanate compound, polyethylene, polypropylene, polystyrene, ABS resin, polymethyl methacrylate, polyvinyl chloride, polyvinylidene chloride, polyvinyl acetate, polyvinyl alcohol, polyacetal, polycarbonate, polyethylene terephthalate, Polybutylene terephthalate, polyphenylene oxide, polysulfone, polyimide, polyethersulfone, polyarylate, polyetherether Tons, polytetrafluoroethylene, can be used in combination of two or more kinds of such as silicon resin.
  • the ratio of the resin, solvent, and various additives contained in the organic vehicle can be arbitrarily adjusted.
  • the component ratio can be the same as that of a known organic vehicle.
  • the content ratio of the organic vehicle is not particularly limited, for example, from the viewpoint of having good printability, it is preferably 10 parts by mass or more and 500 parts by mass or less, and 20 parts by mass with respect to 100 parts by mass of the conductive material.
  • the amount is particularly preferably 45 parts by mass or less.
  • the paste composition of the present invention is suitable for use, for example, for forming an electrode layer of a solar battery cell (in particular, a back electrode 8 of a PERC type solar battery cell as shown in FIG. 1). Therefore, the paste composition of this invention can be used also as a solar cell back surface electrode formation agent.
  • a fired substrate which is a solar cell for evaluation, was manufactured as follows.
  • a silicon semiconductor substrate 1 having a thickness of 180 ⁇ m was prepared.
  • a contact hole 9 having a width D of 50 ⁇ m and a depth of 1 ⁇ m was formed on the back surface of the silicon semiconductor substrate 1 using a YAG laser having a wavelength of 532 nm as a laser oscillator.
  • This silicon semiconductor substrate 1 had a resistance value of 3 ⁇ ⁇ cm and was a back surface passivation type single crystal.
  • the paste composition 10 obtained above is applied to the surface of the silicon semiconductor substrate 1 so as to cover the entire back surface (the surface on the side where the contact holes 9 are formed).
  • printing was carried out at 1.0 to 1.1 g / pc using a screen printer.
  • an Ag paste prepared by a known technique was printed on the light receiving surface.
  • an electrode layer 5 is formed, and during the firing, aluminum diffuses into the silicon semiconductor substrate 1 so that the electrode layer 5 and the silicon semiconductor substrate.
  • an Al—Si alloy layer 6 was formed between the p + layer 1 and the p + layer (BSF layer) 7 as an impurity layer by diffusion of aluminum atoms. As described above, a fired substrate for evaluation was manufactured.
  • a mending tape (12 mm width, manufactured by 3M) was attached to the surface of an aluminum electrode formed on a silicon substrate for about 3 cm in length, and then momentum was applied at an angle of 45 degrees with respect to the silicon substrate.
  • the tape was peeled off, and the evaluation was performed by calculating the ratio of the total area of the part to which the aluminum was adhered and the original mending tape area that was pasted using analysis software capable of binarization.
  • the evaluation of adhesion was performed by the same person with the same posture, angle, force, and constant speed. Evaluation was made with ⁇ indicating that the aluminum did not adhere to the mending tape, and ⁇ indicating that the aluminum had adhered even a little.
  • Example 2 A paste was prepared and evaluated in the same manner as in Example 1 except that 65 parts by mass of Al-20.0Si powder produced by the atomizing method and 35 parts by mass of Al powder produced by the atomizing method were used.
  • Example 3 A paste was prepared and evaluated in the same manner as in Example 1 except that 100 parts by mass of Al-20.0Si powder produced by the atomization method was used.
  • Example 4 A paste was prepared and evaluated in the same manner as in Example 1 except that 45 parts by mass of Al-3.0Pb powder produced by the atomizing method and 55 parts by mass of Al powder produced by the atomizing method were used.
  • Example 5 A paste was prepared and evaluated in the same manner as in Example 1 except that 45 parts by mass of Al-6.0Sb powder produced by the atomizing method and 55 parts by mass of Al powder produced by the atomizing method were used.
  • Example 6 A paste was prepared and evaluated in the same manner as in Example 1 except that 45 parts by mass of Al-25.0In powder produced by the atomizing method and 55 parts by mass of Al powder produced by the atomizing method were used.
  • Example 7 A paste was prepared and evaluated in the same manner as in Example 1 except that 45 parts by mass of Al-10.0Ni powder produced by the atomizing method and 55 parts by mass of Al powder produced by the atomizing method were used.
  • Comparative Example 1 A paste was prepared and evaluated in the same manner as in Example 1 except that 40 parts by mass of Al-28.0Si powder produced by the atomizing method and 60 parts by mass of Al powder produced by the atomizing method were used.
  • Comparative Example 2 A paste was prepared and evaluated in the same manner as in Example 1 except that 40 parts by mass of Al-10.0Mg powder produced by the atomizing method and 60 parts by mass of Al powder produced by the atomizing method were used.
  • Comparative Example 3 A paste was prepared and evaluated in the same manner as in Example 1 except that 40 parts by mass of Al-15.0Ge powder produced by the atomizing method and 60 parts by mass of Al powder produced by the atomizing method were used.
  • Comparative Example 4 A paste was prepared and evaluated in the same manner as in Example 1 except that 100 parts by mass of Al powder produced by the atomization method was used.
  • Comparative Example 5 A paste was prepared and evaluated in the same manner as in Example 1 except that 20 parts by mass of Al-20.0Si powder produced by the atomizing method and 80 parts by mass of Al powder produced by the atomizing method were used.
  • Comparative Example 6 A paste was prepared and evaluated in the same manner as in Example 1 except that 30 parts by mass of Al-20.0Si powder produced by the atomizing method and 70 parts by mass of Al powder produced by the atomizing method were used.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)
  • Conductive Materials (AREA)

Abstract

本発明は、結晶系太陽電池セルにおいて、焼成後の電極層の表面でのSandy(Al又はAl-Siの組成を有する粒状物質)の発生を防止又は抑制するとともに、焼成後の密着性の高いペースト組成物を提供する。 本発明は、具体的には、ガラス粉末、有機ビヒクル及び導電性材料を含む太陽電池用ペースト組成物であって、 (1)前記導電性材料は、示差走査熱量測定により特定される融点が660℃超過800℃未満のAl-X合金粉末を40質量%以上含有し、 (2)前記Al-X合金粉末における元素Xは、シリコン、バリウム、ビスマス、カルシウム、ゲルマニウム、インジウム、ランタン、ニッケル、鉛、アンチモン、ストロンチウム、テルル及びイットリウムからなる群から選択される少なくとも一種である、 ことを特徴とする太陽電池用ペースト組成物を提供する。

Description

太陽電池用ペースト組成物
 本発明は、太陽電池用ペースト組成物に関し、特にレーザー照射などを用いて開口部を設けたパッシベーション膜を有する結晶系太陽電池セルに対してp層を形成することを目的とした太陽電池用ペースト組成物に関する。
 近年、結晶系太陽電池セルの変換効率(発電効率)、信頼性等を向上させることを目的として、種々の研究開発が行われている。その一つとして、PERC(Passivated emitter and rear cell)型高変換効率セルが注目されている。
 PERC型高変換効率セルは、例えばアルミニウムを主成分とする電極層を備えた構造を有する。この電極層(特に裏面電極層)は、例えばアルミニウムを主体とするペースト組成物をパターン形状に塗布し、必要に応じて乾燥後、焼成することにより形成される。そして、電極層の構成を適切に設計することで、PERC型高変換効率セルの変換効率を高められることが知られている。例えば、特許文献1には、30~70mol%Pb2+、1~40mol%Si4+、10~65mol%B3+、1~25mol%Al3+から構成されるガラスフリットを含有するアルミニウムペースト組成物が開示されている。また、特許文献2には、アルミニウム粉末と、アルミニウム-シリコン合金粉末と、シリコン粉末と、ガラス粉末と、有機ビヒクルとを含むペースト組成物が開示されている。
特開2013-145865号公報 特開2013-143499号公報
 しかしながら、従来のペースト組成物を用いて形成された電極層は、焼成後の電極層の表面にアルミニウム又はアルミニウム-シリコン合金組成を有する直径20~200μm程度の粒状物質(以下、この粒状物質を「Sandy」ともいう。)が発生して外観不良を生じるという問題がある。また、太陽電池セルをモジュール化する際にこのSandyを起点としてセルが割れてしまうという不具合が発生するという問題がある。
 Sandyの一例を図3、図4に示す。図3は220μmのSandyが認められる例であり、図4は30μmのSandyが認められる例である。他方、図5はSandyが認められない例(外観不良の無い例)である。
 本発明は、上記に鑑みてなされたものであり、結晶系太陽電池セルにおいて、焼成後の電極層の表面でのSandyの発生を防止又は抑制するとともに、焼成後の密着性の高いペースト組成物を提供することを目的とする。
 本発明者は、上記目的を達成すべく鋭意研究を重ねた結果、特定の導電性材料を含むペースト組成物が上記目的を達成できることを見出し、本発明を完成するに至った。
 即ち、本発明は、下記の太陽電池用ペースト組成物に関する。
1.ガラス粉末、有機ビヒクル及び導電性材料を含む太陽電池用ペースト組成物であって、
(1)前記導電性材料は、示差走査熱量測定により特定される融点が660℃超過800℃未満のAl-X合金粉末を40質量%以上含有し、
(2)前記Al-X合金粉末における元素Xは、シリコン、バリウム、ビスマス、カルシウム、ゲルマニウム、インジウム、ランタン、ニッケル、鉛、アンチモン、ストロンチウム、テルル及びイットリウムからなる群から選択される少なくとも一種である、
ことを特徴とする太陽電池用ペースト組成物。
2.前記導電性材料は、前記Al-X合金粉末に加えて、更にAl粉末を含有する、上記項1に記載の太陽電池用ペースト組成物。
3.前記Al-X合金粉末における元素Xは、シリコンである、上記項1又は2に記載の太陽電池用ペースト組成物。
 本発明の太陽電池用ペースト組成物によれば、結晶系太陽電池セル(特にPERC型高変換効率セル)において、焼成後の電極層の表面でのSandyの発生を防止又は抑制できるとともに、電極層の高い密着性が得られる。焼結後の電極層の表面でのSandyの発生を防止又は抑制できることは、外観不良及び太陽電池セルのモジュール化の際の割れを防止する点で有用である。
PERC型太陽電池セルの断面構造の一例を示す模式図であり、(a)はその実施形態の一例を、(b)はその実施形態の他例である。 実施例及び比較例において作製された電極構造の断面の模式図である。 焼成後の電極層の表面にSandy(220μm)が認められた一例である。 焼成後の電極層の表面にSandy(30μm)が認められた一例である。 焼成後の電極層の表面にSandyが認められない一例である。
 以下、本発明の太陽電池用ペースト組成物について詳細に説明する。なお、本明細書において、「~」で示される範囲は、特に説明する場合を除き「以上、以下」を意味する。
 本発明の太陽電池用ペースト組成物は、例えば、結晶系太陽電池セルの電極を形成するために使用することができる。結晶系太陽電池セルとしては特に限定されないが、例えば、PERC(Passivated emitter and rear cell)型高変換効率セル(以下、「PERC型太陽電池セル」という。)が挙げられる。本発明の太陽電池用ペースト組成物は、例えば、PERC型太陽電池セルの裏面電極を形成するために使用することができる。以下、本発明のペースト組成物を、単に「ペースト組成物」とも記載する。
 最初に、PERC型太陽電池セルの構造の一例を説明する。
 1.PERC型太陽電池セル
 図1(a)、(b)は、PERC型太陽電池セルの一般的な断面構造の模式図である。PERC型太陽電池セルは、シリコン半導体基板1、n型不純物層2、反射防止膜(パッシベーション膜)3、グリッド電極4、電極層5、合金層6、p層7を構成要素として備えることができる。
 シリコン半導体基板1は特に限定されず、例えば、厚みが180~250μmのp型シリコン基板が用いられる。
 n型不純物層2は、シリコン半導体基板1の受光面側に設けられる。n型不純物層2の厚みは、例えば、0.3~0.6μmである。
 反射防止膜3及びグリッド電極4は、n型不純物層2の表面に設けられる。反射防止膜3は、例えば、窒化シリコン膜で形成されパッシベーション膜とも称される。反射防止膜3は、いわゆるパッシベーション膜として作用することで、シリコン半導体基板1の表面での電子の再結合を抑制でき、結果として、発生したキャリアの再結合率を減らすことを可能にする。これにより、PERC型太陽電池セルの変換効率が高められる。
 反射防止膜3は、シリコン半導体基板1の裏面側、つまり、前記受光面と逆側の面にも設けられる。また、この裏面側の反射防止膜3を貫通し、かつ、シリコン半導体基板1の裏面の一部を削るように形成されたコンタクト孔が、シリコン半導体基板1の裏面側に形成されている。
 電極層5は、前記コンタクト孔を通じてシリコン半導体基板1に接触するように形成されている。電極層5は、本発明のペースト組成物によって形成される部材であり、所定のパターン形状に形成される。図1(a)の形態のように、電極層5は、PERC型太陽電池セルの裏面全体を覆うように形成されていてもよいし、又は図1(b)の形態のようにコンタクト孔及びその近傍を覆うように形成されていてもよい。電極層5の主成分はアルミニウムであるので、電極層5はアルミニウム電極層である。
 電極層5は、例えば、ペースト組成物を所定のパターン形状に塗布することで形成され得る。塗布方法は特に限定されず、例えば、スクリーン印刷等の公知の方法が挙げられる。ペースト組成物を塗布し、必要に応じて乾燥させた後、例えば、アルミニウムの融点(約660℃)を超える温度にて短時間焼成することで、電極層5が形成される。
 本発明では、焼成温度はアルミニウムの融点(約660℃)を超える温度であればよいが、750~950℃程度が好ましく、780~900℃程度がより好ましい。焼成時間は所望の電極層5が形成される範囲で焼成温度に応じて適宜設定することができる。
 このように焼成すると、ペースト組成物に含まれるアルミニウムが、シリコン半導体基板1の内部に拡散する。これにより、電極層5とシリコン半導体基板1との間に、アルミニウム-シリコン(Al-Si)合金層(合金層6)が形成され、これと同時に、アルミニウム原子の拡散によって、不純物層としてのp層7が形成される。
 p層7は、電子の再結合を防止し、生成キャリアの収集効率を向上させる効果、いわゆる、BSF(Back Surface Field)効果をもたらすことができる。
 前記電極層5と合金層6とで形成される電極が、図1に示す裏面電極8である。従って、裏面電極8は、ペースト組成物を用いて形成され、例えば、裏面側の反射防止膜3(パッシベーション膜3)上に塗工し、必要に応じて乾燥後、焼成することによって裏面電極8を形成できる。ここで、本発明のペースト組成物を用いて裏面電極8を形成することにより、焼成後の電極層5の表面でのSandyの発生を防止又は抑制できるとともに、焼成後の電極層5の高い密着性が得られる。特に焼結後の電極層5の表面でのSandyの発生を防止又は抑制できることは、外観不良及び太陽電池セルのモジュール化の際の割れを防止する点で有用である。
 2.ペースト組成物
 本発明のペースト組成物は、ガラス粉末、有機ビヒクル及び導電性材料を含む太陽電池用ペースト組成物であって、
(1)前記導電性材料は、示差走査熱量測定により特定される融点が660℃超過800℃未満のAl-X合金粉末を40質量%以上含有し、
(2)前記Al-X合金粉末における元素Xは、シリコン、バリウム、ビスマス、カルシウム、ゲルマニウム、インジウム、ランタン、ニッケル、鉛、アンチモン、ストロンチウム、テルル及びイットリウムからなる群から選択される少なくとも一種である、
ことを特徴とする。
 前述したように、ペースト組成物を使用することで、PERC型太陽電池セル等の太陽電池セルの裏面電極を形成することができる。つまり、本発明のペースト組成物は、シリコン基板上に形成されたパッシベーション膜が有する穴を通じてシリコン基板に電気的に接触する太陽電池用裏面電極を形成するために用いることができる。そして、本発明のペースト組成物によれば、結晶系太陽電池セル(特にPERC型太陽電池セル)において、焼成後の電極層の表面でのSandyの発生を防止又は抑制できるとともに、焼成後の電極層の高い密着性が得られる。特に焼結後の電極層の表面でのSandyの発生を防止又は抑制できることは、外観不良及び太陽電池セルのモジュール化の際の割れを防止する点で有用である。
 ペースト組成物は、ガラス粉末、有機ビヒクル及び導電性材料(金属粒子)を構成成分として含む。そして、ペースト組成物が導電性材料(金属粒子)を含むことで、ペースト組成物の塗膜が焼成されて形成される焼結体は、シリコン基板と電気的に接続する導電性が発揮される。
(導電性材料)
 本発明において、導電性材料は、
(1)示差走査熱量測定により特定される融点(以下「融点」と略記する。)が660℃超過800℃未満のAl-X合金粉末を40質量%以上含有し、
(2)前記Al-X合金粉末における元素Xは、シリコン、バリウム、ビスマス、カルシウム、ゲルマニウム、インジウム、ランタン、ニッケル、鉛、アンチモン、ストロンチウム、テルル及びイットリウムからなる群から選択される少なくとも一種である。ここで、合金成分Xは上記元素の一種以上であり、元素Xは1種類でもよく2種類以上でもよい。
 融点が660℃超過800℃未満のAl-X合金としては、例えば、アルミニウム-シリコン合金、アルミニウム-バリウム合金、アルミニウム-ビスマス合金、アルミニウム-カルシウム合金、アルミニウム-ゲルマニウム合金、アルミニウム-インジウム合金、アルミニウム-ランタン合金、アルミニウム-ニッケル合金、アルミニウム-鉛合金、アルミニウム-アンチモン合金、アルミニウム-ストロンチウム合金、アルミニウム-テルル合金、アルミニウム-イットリウム合金等が挙げられる。この中でも、合金粉の形成が容易である点では、アルミニウム-シリコン合金、アルミニウム-ビスマス合金、アルミニウム-ゲルマニウム合金、アルミニウム-インジウム合金、アルミニウム-ニッケル合金、アルミニウム-鉛合金及びアルミニウム-アンチモン合金の少なくとも一種が好ましい。更に、これらの合金の中でも、良好な導電性の観点からはアルミニウム-シリコン合金がより好ましい。
 これらの合金では、元素Xの含有量に応じて融点が変化するため、各合金中の元素Xの含有量を調整することにより、融点を660℃超過800℃未満に調整することができる。融点は、かかる範囲内であればよいが、その中でも670℃以上790℃以下が好ましく、680℃以上770℃以下がより好ましく、690℃以上750℃以下が最も好ましい。本明細書における示差走査熱量測定は、示差走査熱量測定装置(株式会社リガク製、型番Thermo plus EVO2 TG-DTA/H-IR)により測定した値である。
 より詳細には、アルミニウム-シリコン合金においてはシリコン含有量が18~28質量%、アルミニウム-バリウム合金においてはバリウム含有量が3~12質量%、アルミニウム-ビスマス合金においてはビスマス含有量が4~10質量%、アルミニウム-カルシウム合金においてはカルシウム含有量が12~19質量%、アルミニウム-ゲルマニウム合金においてはゲルマニウム含有量が74~89質量%、アルミニウム-インジウム合金においてはインジウム含有量が21~39質量%、アルミニウム-ランタン合金においてはランタン含有量が13~23質量%、アルミニウム-ニッケル合金においてはニッケル含有量が6~18質量%、アルミニウム-鉛合金においては鉛含有量が2~4質量%、アルミニウム-アンチモン合金においてはアンチモン含有量が2~10質量%、アルミニウム-ストロンチウム合金においてはストロンチウム含有量が1~5質量%、アルミニウム-テルル合金においてはテルル含有量が6~60質量%、アルミニウム-イットリウム合金においてはイットリウム含有量が11~20質量%(いずれも合金中の含有量)である場合に、各合金の融点を660℃超過800℃未満に調整することができる。なお、これらの合金を2種類以上を組み合わせて用いてもよい。
 導電性材料は、前記Al-X合金粉末を40質量%以上含有する。かかる含有量は40質量%~100質量%(導電性材料の全てが前記Al-X合金粉末の場合)の中から幅広く設定することができるが、良好な導電性を得る観点から50~80質量%が好ましい。ここで、前記Al-X合金粉末の含有量が100質量%未満の場合は、残部アルミニウム粉末であることが好ましい。なお、本発明の効果が阻害されない範囲で、必要に応じて前記Al-X合金粉末及びアルミニウム粉末以外の他の金属粒子を含有することは許容される。これらの導電性材料は、いずれもガスアトマイズ法、水アトマイズ法、ディスクアトマイズ等の公知のアトマイズ法により製造することができる。
 上記アルミニウム粉末は合金が形成されていないアルミニウムをいうが、不可避不純物及び原料由来の微量の添加元素の存在は排除しない。また同様に、本発明におけるAl-X合金は、アルミニウムと元素Xとの合金を示すが、アルミニウム及び元素X中の不可避不純物及び原料由来の微量の添加元素の存在は排除しない。
 導電性材料(Al-X合金粉末、アルミニウム粉末)の形状は特に限定されず、例えば、球状、楕円状、不定形状、鱗片状、繊維状等のいずれでもよい。導電性材料の形状が球状であれば、ペースト組成物により形成される前記電極層5において、導電性材料の充填性が増大して電気抵抗を効果的に低下させることができる。
 また、導電性材料の形状が球状である場合、ペースト組成物により形成される前記電極層5において、シリコン半導体基板1と導電性材料との接点が増えるので、良好なBSF層を形成しやすい。球状の場合には、レーザー回折法により測定される平均粒子径が1~10μmの範囲であることが好ましい。
(ガラス粉末)
 ガラス粉末は、導電性材料とシリコンとの反応、及び、導電性材料自身の焼結を助ける作用があるとされている。
 ガラス粉末としては特に限定されず、例えば、太陽電池セルの電極層を形成するために使用されているペースト組成物に含まれる公知のガラス成分とすることができる。ガラス粉末の具体例としては、鉛(Pb)、ビスマス(Bi)、バナジウム(V)、ホウ素(B)、シリコン(Si)、スズ(Sn)、リン(P)及び亜鉛(Zn)からなる群から選択される少なくとも一種が挙げられる。また、鉛を含むガラス粉末、又は、ビスマス系、バナジウム系、スズ-リン系、ホウケイ酸亜鉛系、アルカリホウケイ酸系等の無鉛のガラス粉末を用いることができる。特に人体への影響を考慮すると、無鉛のガラス粉末を用いることが望ましい。
 具体的にガラス粉末は、B、Bi、ZnO、SiO、Al、BaO、CaO、SrO、V、Sb、WO、P及びTeOからなる群より選ばれる少なくとも1種の成分を含むことができる。例えば、ガラス粉末において、B成分とBi成分とのモル比(B/Bi)が0.8以上4.0以下であるガラスフリットと、V成分とBaO成分とのモル比(V/BaO)が1.0以上2.5以下であるガラスフリットとを組み合わせてもよい。
 ガラス粉末の軟化点は、例えば、750℃以下とすることができる。ガラス粉末に含まれる粒子の平均粒子径は、例えば、1μm以上3μm以下とすることができる。
 ペースト組成物中に含まれるガラス粉末の含有量は、例えば、導電性材料100質量部に対して、0.5質量部以上40質量部以下であることが好ましい。この場合、シリコン半導体基板1および反射防止膜3(パッシベーション膜)との密着性が良好となり、また、電気抵抗も増大しにくい。ペースト組成物中に含まれるガラス粉末の含有量は、導電性材料100質量部に対して、1質量部以上8質量部以下であることが特に好ましい。
(有機ビヒクル)
 有機ビヒクルとしては、溶剤に、必要に応じて各種添加剤及び樹脂を溶解した材料を使用できる。又は、溶剤を含まず、樹脂そのものを有機ビヒクルとして使用してもよい。
 溶剤は、公知の種類が使用可能であり、具体的には、ジエチレングリコールモノブチルエーテル、ジエチレングリコールモノブチルエーテルアセテート、ジプロピレングリコールモノメチルエーテル等が挙げられる。
 各種添加剤としては、例えば、酸化防止剤、腐食抑制剤、消泡剤、増粘剤、タックファイヤー、カップリング剤、静電付与剤、重合禁止剤、チキソトロピー剤、沈降防止剤等を使用することができる。具体的には、例えば、ポリエチレングリコールエステル化合物、ポリエチレングリコールエーテル化合物、ポリオキシエチレンソルビタンエステル化合物、ソルビタンアルキルエステル化合物、脂肪族多価カルボン酸化合物、燐酸エステル化合物、ポリエステル酸のアマイドアミン塩、酸化ポリエチレン系化合物、脂肪酸アマイドワックス等を使用することができる。
 樹脂としては公知の種類が使用可能であり、エチルセルロース、ニトロセルロース、ポリビニールブチラール、フェノール樹脂、メラニン樹脂、ユリア樹脂、キシレン樹脂、アルキッド樹脂、不飽和ポリエステル樹脂、アクリル樹脂、ポリイミド樹脂、フラン樹脂、ウレタン樹脂、イソシアネート化合物、シアネート化合物等の熱硬化樹脂、ポリエチレン、ポリプロピレン、ポリスチレン、ABS樹脂、ポリメタクリル酸メチル、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリ酢酸ビニル、ポリビニルアルコール、ポリアセタール、ポリカーボネート、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリフェニレンオキサイド、ポリスルフォン、ポリイミド、ポリエーテルスルフォン、ポリアリレート、ポリエーテルエーテルケトン、ポリ4フッ化エチレン、シリコン樹脂等の二種以上を組み合わせて用いることができる。
 有機ビヒクルに含まれる樹脂、溶剤、各種添加剤の割合は任意に調整することができ、例えば、公知の有機ビヒクルと同様の成分比とすることができる。
 有機ビヒクルの含有比率は特に限定されないが、例えば、良好な印刷性を有するという観点から、導電性材料100質量部に対して、10質量部以上500質量部以下であることが好ましく、20質量部以上45質量部以下であることが特に好ましい。
 本発明のペースト組成物は、例えば、太陽電池セルの電極層(特には図1で示されるようなPERC型太陽電池セルの裏面電極8)を形成するための使用として適している。よって、本発明のペースト組成物は、太陽電池裏面電極形成剤としても使用され得る。
 以下に実施例及び比較例を示して本発明を具体的に説明する。但し、本発明は実施例に限定されない。
 実施例1
 アトマイズ法により生成したAl-6.0質量%Bi粉末40質量部と、アトマイズ法により生成したAl粉末60質量部と、B-Bi-SrO-BaO-Sb=40/40/10/5/5(mol%)のガラス粉1.5質量部を、エチルセルロースをブチルジグリコールに溶解した樹脂液35質量部に、既知の分散装置(ディスパー)を用いてペースト化した。
 評価用の太陽電池セルである焼成基板を次のように製作した。
 まず、図1の(A)に示すように、まず、厚みが180μmのシリコン半導体基板1を準備した。そして、図1の(B)に示すように、レーザー発振器として波長が532nmのYAGレーザーを用いて、幅Dが50μm、深さが1μmのコンタクト孔9をシリコン半導体基板1の裏面に形成した。このシリコン半導体基板1は、抵抗値3Ω・cmであり、裏面パッシベーション型単結晶であった。
 次に、図2の(C)に示すように、裏面全体(コンタクト孔9が形成されている側の面)を覆うように、上記で得たペースト組成物10を、シリコン半導体基板1の表面上に、スクリーン印刷機を用いて、1.0~1.1g/pcになるように印刷した。次いで、図示はしていないが、受光面に公知の技術で作成したAgペーストを印刷した。
 その後、800℃に設定した赤外ベルト炉を用いて焼成した。この焼成により、図2の(D)に示すように、電極層5を形成し、また、この焼成の際にアルミニウムがシリコン半導体基板1の内部に拡散することにより、電極層5とシリコン半導体基板1との間にAl-Siの合金層6が形成されると同時に、アルミニウム原子の拡散による不純物層としてp層(BSF層)7が形成された。以上のように、評価用の焼成基板を製作した。
 得られた太陽電池セルの評価においては、キーエンス社製マイクロスコープVHX-D500を用いて、Sandyの有無を確認した。
 Sandyが全く確認されなかったものを○、50μm以下の小さなSandyが確認されたものを△、50μm以上の大きなSandyが確認されたものを×とした。なお、○評価のみが合格である。
 密着性の評価については、シリコン基板上に形成されたアルミニウム電極の表面にメンディングテープ(12mm幅、3M社製)を長さ3cm程度貼り付けた後、シリコン基板に対し45度の角度で勢いよくテープを剥がし、アルミニウムが付着した部分の合計面積と、貼り付けた元のメンディングテープ面積の割合を、二値化処理可能な解析ソフトを用いて算出することで評価を行った。密着性の評価は、全て同一人物が同一の姿勢、角度、力、および一定の速度で行った。メンディングテープにアルミニウムの付着が全くないものを○、少しでも付着していたものを×として評価した。
 実施例2
 アトマイズ法により生成したAl-20.0Si粉末65質量部と、アトマイズ法により生成したAl粉末35質量部を用いた以外は実施例1と同様にしてペーストを作成し、評価を行った。
 実施例3
 アトマイズ法により生成したAl-20.0Si粉末100質量部を用いた以外は実施例1と同様にしてペーストを作成し、評価を行った。
 実施例4
 アトマイズ法により生成したAl-3.0Pb粉末45質量部と、アトマイズ法により生成したAl粉末55質量部を用いた以外は実施例1と同様にしてペーストを作成し、評価を行った。
 実施例5
 アトマイズ法により生成したAl-6.0Sb粉末45質量部と、アトマイズ法により生成したAl粉末55質量部を用いた以外は実施例1と同様にしてペーストを作成し、評価を行った。
 実施例6
 アトマイズ法により生成したAl-25.0In粉末45質量部と、アトマイズ法により生成したAl粉末55質量部を用いた以外は実施例1と同様にしてペーストを作成し、評価を行った。
 実施例7
 アトマイズ法により生成したAl-10.0Ni粉末45質量部と、アトマイズ法により生成したAl粉末55質量部を用いた以外は実施例1と同様にしてペーストを作成し、評価を行った。
 比較例1
 アトマイズ法により生成したAl-28.0Si粉末40質量部と、アトマイズ法により生成したAl粉末60質量部を用いた以外は実施例1と同様にしてペーストを作成し、評価を行った。
 比較例2
 アトマイズ法により生成したAl-10.0Mg粉末40質量部と、アトマイズ法により生成したAl粉末60質量部を用いた以外は実施例1と同様にしてペーストを作成し、評価を行った。
 比較例3
 アトマイズ法により生成したAl-15.0Ge粉末40質量部と、アトマイズ法により生成したAl粉末60質量部を用いた以外は実施例1と同様にしてペーストを作成し、評価を行った。
 比較例4
 アトマイズ法により生成したAl粉末100質量部を用いた以外は実施例1と同様にしてペーストを作成し、評価を行った。
 比較例5
 アトマイズ法により生成したAl-20.0Si粉末20質量部と、アトマイズ法により生成したAl粉末80質量部を用いた以外は実施例1と同様にしてペーストを作成し、評価を行った。
 比較例6
 アトマイズ法により生成したAl-20.0Si粉末30質量部と、アトマイズ法により生成したAl粉末70質量部を用いた以外は実施例1と同様にしてペーストを作成し、評価を行った。
Figure JPOXMLDOC01-appb-T000001
 表1の結果から明らかな通り、本発明の太陽電池用ペースト組成物を結晶系太陽電池セルに用いることによって、焼成後の電極層の表面でのSandyの発生を防止又は抑制できるとともに、電極層の高い密着性が得られる。
1:シリコン半導体基板
2:n型不純物層
3:反射防止膜(パッシベーション膜)
4:グリッド電極
5:電極層
6:合金層
7:p+層
8:裏面電極
9:コンタクト孔
10:ペースト組成物

Claims (3)

  1.  ガラス粉末、有機ビヒクル及び導電性材料を含む太陽電池用ペースト組成物であって、
    (1)前記導電性材料は、示差走査熱量測定により特定される融点が660℃超過800℃未満のAl-X合金粉末を40質量%以上含有し、
    (2)前記Al-X合金粉末における元素Xは、シリコン、バリウム、ビスマス、カルシウム、ゲルマニウム、インジウム、ランタン、ニッケル、鉛、アンチモン、ストロンチウム、テルル及びイットリウムからなる群から選択される少なくとも一種である、
    ことを特徴とする太陽電池用ペースト組成物。
  2.  前記導電性材料は、前記Al-X合金粉末に加えて、更にAl粉末を含有する、請求項1に記載の太陽電池用ペースト組成物。
  3.  前記Al-X合金粉末における元素Xは、シリコンである、請求項1又は2に記載の太陽電池用ペースト組成物。
PCT/JP2018/000802 2017-01-23 2018-01-15 太陽電池用ペースト組成物 WO2018135430A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880007555.5A CN110192285A (zh) 2017-01-23 2018-01-15 太阳能电池用膏状组合物
JP2018563309A JP7039491B2 (ja) 2017-01-23 2018-01-15 太陽電池用ペースト組成物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-009685 2017-01-23
JP2017009685 2017-01-23

Publications (1)

Publication Number Publication Date
WO2018135430A1 true WO2018135430A1 (ja) 2018-07-26

Family

ID=62908939

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/000802 WO2018135430A1 (ja) 2017-01-23 2018-01-15 太陽電池用ペースト組成物

Country Status (4)

Country Link
JP (1) JP7039491B2 (ja)
CN (1) CN110192285A (ja)
TW (1) TW201827530A (ja)
WO (1) WO2018135430A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020080341A (ja) * 2018-11-12 2020-05-28 東洋アルミニウム株式会社 ペースト組成物
JP2020161599A (ja) * 2019-03-26 2020-10-01 東洋アルミニウム株式会社 太陽電池の製造方法
WO2021060183A1 (ja) * 2019-09-26 2021-04-01 東洋アルミニウム株式会社 太陽電池用アルミニウムペースト
EP4040449A4 (en) * 2020-12-01 2023-03-15 Guangzhou Ruxing Technology Development Co., Ltd. ELECTRODE SLURRY CONTACTING THE P+ EMITTER OF AN N-TYPE SOLAR CELL

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0930124A1 (en) * 1997-01-09 1999-07-21 Ford Motor Company Aluminium components coated with zinc-antimony alloy for manufacturing assemblies by controlled atmosphere brazing
JP2004505411A (ja) * 2000-07-21 2004-02-19 トムソン プラスマ 導電性材料で作られた電極を設けたガラスプレート
JP2006261621A (ja) * 2005-02-21 2006-09-28 Osaka Univ 太陽電池およびその製造方法
JP2007234625A (ja) * 2006-02-27 2007-09-13 Kyocera Corp 光電変換素子用導電性ペースト、光電変換素子、および光電変換素子の作製方法
JP2012109620A (ja) * 2012-03-02 2012-06-07 Toyota Motor Corp 半導体モジュールの冷却装置
JP2013143499A (ja) * 2012-01-11 2013-07-22 Toyo Aluminium Kk ペースト組成物
US20150090325A1 (en) * 2013-09-27 2015-04-02 Richard Hamilton SEWELL Metal Seed Layer for Solar Cell Conductive Contact

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140191167A1 (en) * 2013-01-04 2014-07-10 Giga Solar Materials Corporation Conductive Composition
US9577122B2 (en) 2013-04-04 2017-02-21 Namics Corporation Conductive paste-forming electrode, solar cell manufacturing method and solar cell

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0930124A1 (en) * 1997-01-09 1999-07-21 Ford Motor Company Aluminium components coated with zinc-antimony alloy for manufacturing assemblies by controlled atmosphere brazing
JP2004505411A (ja) * 2000-07-21 2004-02-19 トムソン プラスマ 導電性材料で作られた電極を設けたガラスプレート
JP2006261621A (ja) * 2005-02-21 2006-09-28 Osaka Univ 太陽電池およびその製造方法
JP2007234625A (ja) * 2006-02-27 2007-09-13 Kyocera Corp 光電変換素子用導電性ペースト、光電変換素子、および光電変換素子の作製方法
JP2013143499A (ja) * 2012-01-11 2013-07-22 Toyo Aluminium Kk ペースト組成物
JP2012109620A (ja) * 2012-03-02 2012-06-07 Toyota Motor Corp 半導体モジュールの冷却装置
US20150090325A1 (en) * 2013-09-27 2015-04-02 Richard Hamilton SEWELL Metal Seed Layer for Solar Cell Conductive Contact

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020080341A (ja) * 2018-11-12 2020-05-28 東洋アルミニウム株式会社 ペースト組成物
CN112997321A (zh) * 2018-11-12 2021-06-18 东洋铝株式会社 糊料组合物
JP2020161599A (ja) * 2019-03-26 2020-10-01 東洋アルミニウム株式会社 太陽電池の製造方法
JP7193393B2 (ja) 2019-03-26 2022-12-20 東洋アルミニウム株式会社 太陽電池の製造方法
WO2021060183A1 (ja) * 2019-09-26 2021-04-01 東洋アルミニウム株式会社 太陽電池用アルミニウムペースト
EP4036991A4 (en) * 2019-09-26 2023-10-11 Toyo Aluminium Kabushiki Kaisha ALUMINUM PASTE FOR SOLAR BATTERY
EP4040449A4 (en) * 2020-12-01 2023-03-15 Guangzhou Ruxing Technology Development Co., Ltd. ELECTRODE SLURRY CONTACTING THE P+ EMITTER OF AN N-TYPE SOLAR CELL

Also Published As

Publication number Publication date
CN110192285A (zh) 2019-08-30
JPWO2018135430A1 (ja) 2019-11-07
JP7039491B2 (ja) 2022-03-22
TW201827530A (zh) 2018-08-01

Similar Documents

Publication Publication Date Title
TWI667218B (zh) PERC type aluminum paste composition for solar cells
WO2018135430A1 (ja) 太陽電池用ペースト組成物
CN102376380B (zh) 铝浆料和使用其的太阳能电池
JP5924945B2 (ja) ペースト組成物
JP7173960B2 (ja) 太陽電池用ペースト組成物
JP7013458B2 (ja) 太陽電池用ペースト組成物
JP6896506B2 (ja) 太陽電池用ペースト組成物
JP5879790B2 (ja) 電極用ペースト組成物および太陽電池
JP6762848B2 (ja) ペースト組成物
JP5338846B2 (ja) 太陽電池集電電極形成方法、太陽電池セルおよび太陽電池モジュール
JP7303036B2 (ja) 導電性ペースト及びTOPCon型太陽電池の製造方法
KR102217722B1 (ko) 페이스트 조성물 및 태양 전지 소자
JP6825948B2 (ja) 太陽電池用ペースト組成物
JP2022074097A (ja) 太陽電池セルの電極形成方法
WO2022138385A1 (ja) 電極形成用組成物、太陽電池素子及びアルミニウム/銀積層電極
JP2013074259A (ja) 積層体
JP2020080341A (ja) ペースト組成物
JP2013008759A (ja) ペースト組成物、太陽電池素子の製造方法および太陽電池素子
JP2015115400A (ja) 導電性アルミニウムペースト
JP2017162943A (ja) 太陽電池の電極形成方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18741192

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018563309

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18741192

Country of ref document: EP

Kind code of ref document: A1