WO2018179836A1 - 排ガス浄化システム - Google Patents

排ガス浄化システム Download PDF

Info

Publication number
WO2018179836A1
WO2018179836A1 PCT/JP2018/003740 JP2018003740W WO2018179836A1 WO 2018179836 A1 WO2018179836 A1 WO 2018179836A1 JP 2018003740 W JP2018003740 W JP 2018003740W WO 2018179836 A1 WO2018179836 A1 WO 2018179836A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust gas
gas purification
catalyst
purification system
exhaust
Prior art date
Application number
PCT/JP2018/003740
Other languages
English (en)
French (fr)
Inventor
恵理 高橋
金枝 雅人
一浩 押領司
直樹 米谷
猿渡 匡行
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Priority to US16/489,008 priority Critical patent/US11007480B2/en
Publication of WO2018179836A1 publication Critical patent/WO2018179836A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9445Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC]
    • B01D53/945Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC] characterised by a specific catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • B01J21/04Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/08Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of gallium, indium or thallium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/62Platinum group metals with gallium, indium, thallium, germanium, tin or lead
    • B01J35/56
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0207Pretreatment of the support
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • B01J37/0242Coating followed by impregnation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • F01N3/2803Construction of catalytic reactors characterised by structure, by material or by manufacturing of catalyst support
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/30Arrangements for supply of additional air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1473Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the regulation method
    • F02D41/1475Regulating the air fuel ratio at a value other than stoichiometry
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1025Rhodium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/209Other metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/209Other metals
    • B01D2255/2092Aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2370/00Selection of materials for exhaust purification
    • F01N2370/02Selection of materials for exhaust purification used in catalytic reactors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2430/00Influencing exhaust purification, e.g. starting of catalytic reaction, filter regeneration, or the like, by controlling engine operating characteristics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2430/00Influencing exhaust purification, e.g. starting of catalytic reaction, filter regeneration, or the like, by controlling engine operating characteristics
    • F01N2430/10Influencing exhaust purification, e.g. starting of catalytic reaction, filter regeneration, or the like, by controlling engine operating characteristics by modifying inlet or exhaust valve timing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/02Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor
    • F01N2560/025Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor for measuring or detecting O2, e.g. lambda sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2570/00Exhaust treating apparatus eliminating, absorbing or adsorbing specific elements or compounds
    • F01N2570/16Oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/08Parameters used for exhaust control or diagnosing said parameters being related to the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/14Parameters used for exhaust control or diagnosing said parameters being related to the exhaust gas
    • F01N2900/1402Exhaust gas composition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/16Parameters used for exhaust control or diagnosing said parameters being related to the exhaust apparatus, e.g. particulate filter or catalyst
    • F01N2900/1624Catalyst oxygen storage capacity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/101Three-way catalysts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N5/00Exhaust or silencing apparatus combined or associated with devices profiting from exhaust energy
    • F01N5/04Exhaust or silencing apparatus combined or associated with devices profiting from exhaust energy the devices using kinetic energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0223Variable control of the intake valves only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/06Cutting-out cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to a novel exhaust gas purification system suitable for purifying NOx contained in lean burn exhaust gas in an internal combustion engine operated in a lean burn state where fuel is leaner than the stoichiometric air-fuel ratio.
  • the air-fuel ratio represents the ratio of air to fuel in the gas.
  • Lean burn engine exhaust gas is difficult to purify NOx with a three-way catalyst that has been conventionally used to purify the exhaust gas of a stoichiometric engine. For this reason, exhaust gas purification catalysts for lean burn engines have been studied.
  • Patent Document 1 describes that when a catalyst containing gallium and a refractory oxide (alumina, titania, magnesia, zirconia, etc.) is used, NOx can be reduced and removed in an oxidizing atmosphere.
  • a catalyst containing gallium and a refractory oxide alumina, titania, magnesia, zirconia, etc.
  • Patent Document 2 durability against SOx is improved by using a catalyst containing rhodium and aluminum and containing one or more of gallium and zirconium.
  • Patent Document 1 and Patent Document 2 describe the NOx purification performance in an oxygen-excess atmosphere, but the influence when the oxygen concentration fluctuates is not examined, and the influence on the catalyst performance is unknown. .
  • An object of the present invention is to improve the exhaust gas purification performance of the catalyst by providing a system for increasing the oxygen concentration flowing into the exhaust gas purification catalyst, and to stably maintain high exhaust gas purification performance.
  • the present invention includes a carrier containing aluminum oxide, a catalyst containing gallium provided on the carrier, connected to an internal combustion engine, connected to the exhaust gas purification device, and an oxygen concentration
  • the system for increasing the oxygen concentration is characterized in that the oxygen concentration is higher than the oxygen concentration of the gas after combustion of the internal combustion engine.
  • noxious substances particularly NOx
  • FIG. 1 is a conceptual diagram showing the structure of an exhaust gas purification catalyst 11 in the present invention.
  • the exhaust gas purification catalyst 11 is formed by coating a base material 4 having a honeycomb structure with a carrier 3 containing aluminum oxide (Al 2 O 3 ), and carrying the first catalyst 1 containing at least gallium (Ga) on the carrier 3. Can be used. Further, the second catalyst 2 containing at least rhodium (Rh) may be supported.
  • the exhaust gas can be highly purified by increasing the oxygen (O 2 ) concentration of the exhaust gas flowing into the exhaust gas purification catalyst 11 in the present invention.
  • NOx purification reaction by the exhaust gas purification catalyst 11 proceeds by the following mechanism.
  • NO and hydrocarbon as a reducing agent are adsorbed on the first catalyst 1 and the second catalyst 2.
  • NO reacts with hydrocarbons as in Equation (2) is oxidized to NO 2 by O 2 as in Equation (1), eliminated as N 2, CO 2, H 2 O.
  • the oxidation (combustion reaction) of hydrocarbons by O 2 proceeds simultaneously as shown in Equation (3).
  • NO + O 2 ⁇ NO 2 Formula (1) NO 2 + hydrocarbon ⁇ N 2 + CO 2 + H 2 O Formula (2) (3) Hydrocarbon + O 2 ⁇ CO 2 + H 2 O Formula (3) Therefore, it is considered that the NOx purification rate can be increased by promoting the reaction of the formula (3) rather than the reaction of the formula (2). For that purpose, it is important to promote the reaction of the formula (1).
  • the first catalyst 1 preferably contains Ga.
  • the amount of the first catalytic element is preferably in the range of 0.5 to 20% by weight with respect to Al 2 O 3 contained in the support 3.
  • wt% represents the content ratio of each component in terms of g.
  • the loading amount of the B component with respect to the A component is 0.5 wt%.
  • A is 100 and B is supported at a ratio of 0.5 regardless of the amount of A.
  • the amount of the first catalytic element is less than 0.5% by weight, the reactions of the formulas (1) and (2) are difficult to proceed, and NOx may not be sufficiently purified. Even if it is more than 20% by weight, the surface exposure amount of the first catalytic element may decrease, or the second catalytic element may be covered with the first catalytic element, and the catalytic activity may not be sufficiently exhibited.
  • the amount of the second catalytic element is preferably 2% by weight or less with respect to Al 2 O 3 contained in the support 3.
  • the formula (3) proceeds with priority over the formula (2), and NOx may not be sufficiently purified.
  • the amount of the first catalyst element is 0.5 to 20% by weight and the amount of the second catalyst element is 2% by weight or less with respect to Al 2 O 3 contained in the carrier 3. If there exists a part which becomes, the said effect can be expressed efficiently.
  • the following cases (1) and (2) can be considered as examples of the form of the catalyst.
  • (1) As a layer not including the first catalyst 1 and the second catalyst 2 on the substrate 4, there is plate-like or granular Al 2 O 3 , and the first catalyst 1 and the second catalyst 2 are further formed thereon.
  • the carrier 3 containing the first catalyst 1 and the second catalyst 2 is present on the surface of the granular Al 2 O 3 not containing the first catalyst 1 and the second catalyst 2.
  • the amount of the first catalytic element is 0. 0 relative to the Al 2 O 3 contained in the carrier 3 including the first catalyst 1 and the second catalyst 2. It is preferable that a portion where the amount of the second catalytic element is 5 to 20% by weight and the second catalytic element is 2% by weight or less is present.
  • the first catalyst 1 and the second catalyst 2 are preferably in contact with the support 3 containing Al 2 O 3 , and the first catalyst 1 and the second catalyst 2 are formed on the surface of the support 3 containing Al 2 O 3 .
  • a state in which the catalyst 2 is provided is preferable.
  • the second catalytic element in addition to Rh, Ce, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Zr, Mo, Ru, Pd, Ag, Ce, W, Ir, Au Such metals can be used.
  • Pt when Pt is used, NOx may be converted to N 2 O, and the substantial NOx purification rate may decrease.
  • transition metals in addition to Ga and Rh, other transition metals can also be added.
  • other transition metals Fe, Co, Ni, Pd, Ag, Au, etc. are particularly suitable. Since these metals promote the oxidation of NO into NO 2 and the adsorption of hydrocarbons, the exhaust gas purification performance can be improved.
  • the carrier 3 is considered to play a role of enhancing the dispersibility of the catalytically active component.
  • the carrier 3 may be supported on the base material 4.
  • the support amount of the carrier 3 is 30 g or more and 400 g or less with respect to the 1 L base material 4. If the loading amount of the carrier 3 is less than 30 g, the effect of the carrier 3 is insufficient, and if it is more than 400 g, the specific surface area of the carrier 3 itself decreases, which is not preferable.
  • the carrier 3 contains Al 2 O 3, and the specific surface area of Al 2 O 3 is preferably 100 to 300 m 2 / g for the exhaust gas purification performance. In addition, it is preferable for the exhaust gas purification performance that the particle size of Al 2 O 3 is 1 to 25 ⁇ m.
  • the support 3 is most preferably Al 2 O 3, but other metal oxides such as TiO 2 , SiO 2 , SiO 2 —Al 2 O 3 , ZrO 2 , MgO, CoO, NiO, CuO, composite oxides, etc. Can also be used. It is considered that Al 2 O 3 is most preferable because Ga—O—Al is formed by supporting the first catalyst 1 containing Ga, and this becomes a catalytic active point.
  • zeolite such as ⁇ -zeolite, mordenite, ferrierite, Y-type zeolite and the like can be added to the carrier 3 and used.
  • the exhaust gas purification catalyst 11 may support the catalytically active component after coating the carrier 3 on the substrate 4 such as a honeycomb structure, or may coat the substrate 4 with the carrier 3 supporting the catalytically active component.
  • the base material 4 is optimally cordierite, but good results can be obtained even if a metal material is used.
  • the shape of the exhaust gas purification catalyst 11 can be applied in various shapes depending on the application.
  • the present invention can be applied to pellets, plates, granules, powders, etc., including honeycombs obtained by coating catalyst powder carrying various components on honeycomb structures made of various materials such as cordierite and stainless steel.
  • the preparation method of the exhaust gas purification catalyst 11 may be any of a physical preparation method such as an impregnation method, a kneading method, a coprecipitation method, a sol-gel method, an ion exchange method, and a vapor deposition method, and a preparation method using a chemical reaction.
  • a physical preparation method such as an impregnation method, a kneading method, a coprecipitation method, a sol-gel method, an ion exchange method, and a vapor deposition method
  • a preparation method using a chemical reaction a chemical reaction.
  • various compounds such as nitric acid compounds, acetic acid compounds, complex compounds, hydroxides, carbonate compounds, organic compounds, metals, and metal oxides can be used.
  • FIG. 2 is a diagram illustrating an example of an engine system including the exhaust gas purification catalyst 11.
  • an air flow sensor 12 for measuring the intake air amount a compressor 13a of a supercharger 13 for supercharging intake air, an intercooler 14 for cooling intake air, and a pressure in the intake pipe 15 are adjusted.
  • an intake pipe 15 provided with an intake pressure sensor 17 for measuring the pressure in the intake pipe 15.
  • the engine is provided with a fuel injection device (hereinafter referred to as an injector) 19, a piston 20 for compressing a mixture of injected fuel and air, and a spark plug 21 for supplying ignition energy for each cylinder.
  • the fuel may be injected into the cylinder 18 of each cylinder or may be injected into the intake pipe 15.
  • FIG. 2 is a diagram assuming fuel injection into the cylinder 18.
  • a valve timing mechanism 22 that adjusts gas flowing into or out of the cylinder is provided in the cylinder head. By adjusting the opening and closing timings of the intake valves 23 and the exhaust valves 24 of all the cylinders by the valve timing mechanism 22, the intake amount and the internal EGR amount can be adjusted.
  • the valve timing mechanism 22 a variable valve timing mechanism, a variable valve lift mechanism, a camshaft switching mechanism, or the like can be used.
  • a high pressure fuel pump for supplying high pressure fuel is connected to the injector 19 by a fuel pipe, and a fuel pressure sensor for measuring the fuel injection pressure is provided in the fuel pipe.
  • a turbine 13b for applying a rotational force to the compressor 13a of the supercharger 13 by exhaust energy
  • an electronically controlled waste gate valve 25 for adjusting the exhaust flow rate flowing through the turbine 13b
  • an exhaust gas purification catalyst 11 for purifying the exhaust gas.
  • an air-fuel ratio sensor 26 that detects the air-fuel ratio of the exhaust gas upstream of the exhaust gas purification catalyst 11 is provided in the exhaust pipe 27.
  • the crankshaft is provided with a crank angle sensor for calculating the rotation angle.
  • the engine may be provided with an EGR pipe 30 for recirculating exhaust gas from the downstream side of the exhaust gas purification catalyst 11 to the upstream side of the compressor 13a.
  • the EGR pipe 30 includes an EGR cooler 31 for cooling the EGR, an EGR valve 32 for controlling the EGR flow rate, a differential pressure sensor 33 for detecting the differential pressure before and after the EGR valve, and an EGR temperature sensor 34 for detecting the EGR temperature. Are attached to each appropriate position.
  • Signals obtained from the air flow sensor 12, the air-fuel ratio sensor 26, the intake pressure sensor 17, the differential pressure sensor 33, and the EGR temperature sensor 34 are sent to an engine control unit (ECU) 28.
  • a signal obtained from the accelerator opening sensor 29 is also sent to the ECU 28.
  • the accelerator opening sensor 29 detects the depression amount of the accelerator pedal, that is, the accelerator opening.
  • the ECU 28 calculates the required torque based on the output signal of the accelerator opening sensor 29. That is, the accelerator opening sensor 29 is used as a required torque detection sensor that detects a required torque for the engine. Further, the ECU 28 calculates the rotational speed of the engine based on the output signal of the crank angle sensor.
  • the ECU 28 optimally calculates main engine operating amounts such as air flow rate, fuel injection amount, ignition timing, fuel pressure, and the like based on the operating state of the engine obtained from the outputs of the various sensors.
  • the fuel injection amount calculated by the ECU 28 is converted into a valve opening pulse signal and sent to the injector 19. Further, an ignition signal is sent to the spark plug 21 so as to be ignited at the ignition timing calculated by the ECU 28.
  • the throttle opening calculated by the ECU 28 is sent to the electronic control throttle 16 as a throttle drive signal.
  • the valve timing operation amount calculated by the ECU 28 is sent to the valve timing mechanism 22 as a valve timing drive signal.
  • the waste gate valve opening calculated by the ECU 28 is sent to the waste gate valve 25 as a waste gate valve drive signal.
  • the EGR valve opening that is constantly calculated by the ECU 28 is sent to the EGR valve 32 as an EGR valve opening driving signal.
  • Fuel is injected from the intake pipe 15 through the intake valve 23 into the cylinder 18 to form an air-fuel mixture.
  • the air-fuel mixture is burned by a spark generated from the spark plug 21 at a predetermined ignition timing, and the piston 20 is pushed down by the combustion pressure to become the driving force of the engine.
  • the post-combustion gas 41 is sent to the exhaust gas purification catalyst 11 through the exhaust pipe 27, and then purified in the exhaust gas purification catalyst 11 and discharged to the outside.
  • the exhaust gas purification catalyst 11 of the present invention is used for exhaust gas purification of a stoichiometric engine, and for exhaust gas purification of a lean burn engine that operates at an air / fuel ratio (14.7 or more) that is leaner than the theoretical air / fuel ratio. Can be used. Moreover, you may use combining the exhaust gas purification catalyst 11 and a three-way catalyst.
  • the reaction of the formula (1) may be promoted.
  • the O of exhaust gas flowing into the exhaust gas purification catalyst 11 (hereinafter referred to as catalyst inflow gas 42) is required. 2 It is preferable to increase the concentration.
  • the following shows an example method for increasing the O 2 concentration of the catalyst inlet gas 42.
  • the O 2 concentration of the catalyst inflow gas 42 is preferably 0.5% by volume or more with respect to the entire exhaust gas for the exhaust gas purification performance. If the O 2 concentration is less than 0.5% by volume, the reaction of the formula (1) hardly proceeds and NOx may not be sufficiently purified by the formula (2).
  • the catalyst inlet gas 42 increases the O 2 concentration in the mixture of fuel and air introduced into the cylinder 18 of each cylinder, or the catalyst inlet gas 42 O 2 concentration of combustion gas after 41 O 2 may be higher than the concentration.
  • the ECU 28 controls the air flow rate, the fuel injection amount, etc. so as to increase the air-fuel ratio, the ratio of the air in the mixture of fuel and air introduced into the cylinder 18, that is, the O 2 concentration can be increased. Therefore, the O 2 concentration of the catalyst inflow gas 42 increases as the air-fuel ratio increases.
  • the exhaust valve 24 may be opened to exhaust air to the exhaust pipe 27.
  • valve timing mechanism 22 when a variable valve timing mechanism is used as the valve timing mechanism 22, a post-combustion gas 42 discharged from a cylinder burned by introducing a mixture of fuel and air into the cylinder 18 and air is introduced into the cylinder 18. It is possible to adjust so that the air discharged from the cylinders discharged is simultaneously discharged to the exhaust pipe 27. Therefore, the post-combustion gas 41 and air are easily mixed.
  • FIG. 3 is a diagram showing an example of the relationship between each stroke and the intake and exhaust timing when the exhaust stroke of the cylinder that discharges the gas and air after combustion is performed simultaneously.
  • FIG. 4 is a diagram showing an example of the relationship between each stroke and the intake and exhaust timing when the intake and exhaust strokes of the cylinder that discharges air are performed twice per cycle. If air is introduced into the cylinder 18 of some cylinders and the two strokes of intake and exhaust are repeated twice in one cycle instead of the four strokes of intake, compression, expansion, and exhaust, the exhaust pipe is exhausted in two exhaust strokes. Air is discharged to 27. One of the two exhaust strokes is simultaneously with the exhaust stroke of the cylinder burned by introducing a mixture of fuel and air into the cylinder 18, so that the post-combustion gas 41 and air are simultaneously discharged to the exhaust pipe 27. Is done.
  • FIG. 5 is a diagram showing the timing of intake and exhaust when one cycle is six strokes.
  • a mixture of fuel and air is introduced into the cylinder 18 to perform intake, compression, expansion, and exhaust four strokes, and then air is introduced into the cylinder 18 to intake and exhaust.
  • the after-combustion gas 41 or air is discharged to the exhaust pipe 27.
  • a gas having a higher air ratio than the post-combustion gas 41 alone that is, a gas having a high O 2 concentration is supplied to the exhaust gas purification catalyst 11 as the catalyst inflow gas 42. can do.
  • FIG. 6 is a diagram showing an example of an engine system provided with a device for increasing the O 2 concentration in addition to the engine system shown in FIG.
  • Respect burned gas 41 which is discharged into the exhaust pipe 27, O 2 concentration increasing device 43 by adding a gas containing O 2 with, O 2 of the O 2 after combustion the concentration gas 41 the catalyst inlet gas 42
  • the concentration can be increased.
  • a secondary air introducing device can be used as the O 2 concentration increasing device 43.
  • a gas having a higher proportion of air than the post-combustion gas 41 alone that is, a gas having a high O 2 concentration is introduced into the catalyst inflow gas 42.
  • a supercharger may be used to introduce air into the exhaust pipe 27. If a supercharger is used, air can be introduced even when the pressure in the exhaust pipe 27 is high.
  • the O 2 concentration increasing device 43 comprising an O 2 storage material
  • O 2 storage material to properly control the temperature for storing and releasing O 2
  • O 2 in the air flowing into the O 2 concentration increasing device 43 during the fuel cut is stored in the O 2 storage material
  • the exhaust pipe 27 O 2 is released by increasing the temperature of the burned gas 41 discharged by flowing into O 2 storage material O 2 storage material. That is, a gas having a higher O 2 concentration than the post-combustion gas 41 alone can be supplied to the exhaust gas purification catalyst 11 as the catalyst inflow gas 42.
  • the exhaust gas purification performance of the exhaust gas purification catalyst 11 can be further improved by using an ozonizer in addition to the system in which the O 2 concentration of the catalyst inflow gas 42 is higher than the O 2 concentration of the post-combustion gas 41.
  • an ozonizer When a gas containing O 2 is passed through the ozonizer, ozone is generated from O 2 . For this reason, ozone is added to the catalyst inflow gas 42 that flows into the exhaust gas purification catalyst 11 by providing an ozonizer in front of the exhaust gas purification catalyst 11. Since ozone has a strong oxidizing power than O 2, the formula (1) to O is NO oxidation reaction by ozone as compared to the NO oxidation reaction by 2 easily proceeds shown, NOx is easily purified by Equation (2). In order to increase the amount of ozone generated, it is necessary to increase the O 2 concentration of the gas flowing into the ozonizer. In this case, any of the methods described above may be used as a method for increasing the O 2 concentration.
  • the catalyst inlet gas 42 described above may be used in combination of two or more, thereby further increasing the O 2 concentration of the catalyst inlet gas 42. Further, in the above description and using air as the gas containing O 2, but in the case of using the other gas containing O 2 in place of air, in a manner similar to that described above, O 2 catalyst inlet gas 42 The concentration can be made higher than the O 2 concentration of the gas 41 after combustion.
  • the method for increasing the O 2 concentration described above can also be used only when the exhaust gas component from the engine increases. In this case, the exhaust gas purification activity can be improved while suppressing a decrease in engine output.
  • a method of increasing the O 2 concentration can be used when the exhaust gas component emission amount with respect to the operating condition of the engine is confirmed in advance and it is determined that the exhaust gas component has increased under a certain operating condition. Further, by providing a NOx sensor for detecting the NOx concentration of the post-combustion gas 41 or the catalyst inflow gas 42, a method of increasing the O 2 concentration can be used when an increase in the NOx concentration is detected.
  • Example 1 A cordierite honeycomb (400 cells / inc 2 ) coated with a slurry made of Al 2 O 3 powder and Al 2 O 3 precursor and adjusted to nitric acid acidity was dried and fired, and the apparent volume of the honeycomb was 1 liter. An Al 2 O 3 coated honeycomb coated with 170 g of Al 2 O 3 was obtained. The Al 2 O 3 coated honeycomb was impregnated with a Ga nitrate solution as a catalyst component, dried at 120 ° C., and then fired at 600 ° C. for 1 hour.
  • Example Catalyst 1 containing 170 g of Al 2 O 3 with respect to 1 L of honeycomb and 10% by weight of Ga in terms of element with respect to Al 2 O 3 was obtained.
  • the obtained catalyst was subjected to an exhaust gas purification performance test under the following conditions.
  • a honeycomb catalyst having a capacity of 6 cc was fixed in a reaction tube made of quartz glass.
  • the reaction tube was introduced into an electric furnace, and the heating was controlled so that the gas temperature introduced into the reaction tube was 400, 450, and 500 ° C.
  • a model gas was introduced into the reaction tube at a space velocity of 30000 h ⁇ 1 assuming exhaust gas when the engine of the automobile is performing lean burn operation.
  • the composition of the model gas is NOx: 150 ppm, C 3 H 6 : 250 ppm, O 2 : 0.5, 3 , 5, 10, 20, 25, 30%, H 2 O: 2.8%, N 2 : remaining It was a difference.
  • the NOx purification rate and the C 3 H 6 purification rate were calculated by the following equations.
  • NOx purification rate (%) (NOx amount flowing into the catalyst ⁇ NOx amount flowing out from the catalyst) / NOx amount flowing into the catalyst ⁇ 100 (4)
  • C 3 H 6 purification ratio (%) - C 3 H 6 weight ⁇ 100 ... formula that has flowed into ⁇ catalyst (amount C 3 H 6 flowing into the catalyst C 3 H 6 amount flowing out from the catalyst) (5)
  • Example 2 An implementation containing 10 wt% Ga and 0.61 wt% Rh in terms of element with respect to Al 2 O 3 by the same operation as in Example 1 except that a nitric acid Rh solution was used in addition to the Ga nitrate solution as the impregnation component.
  • Example catalyst 2 was obtained. The obtained catalyst was subjected to an exhaust gas purification performance test in the same manner as in Example 1.
  • Comparative Example 1 Comparative Example Catalyst 1 containing 0.61% by weight of Rh in terms of element with respect to Al 2 O 3 was obtained in the same manner as in Example 1 except that a Rh nitrate solution was used instead of the Ga nitrate solution as an impregnation component. Obtained. The obtained catalyst was subjected to an exhaust gas purification performance test in the same manner as in Example 1 with the O 2 concentration of the model gas set to 3 and 10%.
  • Tables 1 to 3 and FIG. 7 show the results of NOx purification rates of Example Catalysts 1 and 2 and Comparative Example Catalyst 1.
  • increasing the O 2 concentration of the catalyst inflow gas increases the NOx purification activity.
  • the activity of the comparative example catalyst 1 decreases when the O 2 concentration is increased. From the above results, it can be seen that in Example Catalysts 1 and 2 containing Ga as a catalyst active component, the NOx purification activity is improved by increasing the O 2 concentration. The reason for this is considered that the oxidation reaction from NO to NO 2 by O 2 was promoted, and the purification reaction of NO 2 by C 3 H 6 was promoted.
  • the temperature of the catalyst inflow gas is controlled to be 500 ° C. for the example catalyst 1 and 400 ° C. for the example catalyst 2 in addition to the O 2 concentration of the catalyst inflow gas, the NOx purification activity is further increased. .
  • Example 3 In the engine system shown in FIG. 2, by controlling the air-fuel ratio to be high by the ECU 28, the ratio of air in the mixture of fuel and air introduced into the cylinder 18, that is, the O 2 concentration can be increased. . Therefore, when the Example catalyst 1 is provided in the exhaust gas purification catalyst 11 of the present system, the exhaust gas purification activity is improved.
  • Example 4 In the engine system shown in FIG. 2, the intake valve 23 and the exhaust valve 24 are simultaneously opened to introduce air into the cylinders 18 of some cylinders, and the post-combustion gas 41 and air are mixed in the exhaust pipe 27. Thus, the O 2 concentration of the catalyst inflow gas 42 can be increased. Therefore, when the Example catalyst 1 is provided in the exhaust gas purification catalyst 11 of the present system, the exhaust gas purification activity is improved.
  • Example 5 In the engine system shown in FIG. 2, only the intake valve 23 is opened and air is introduced into the cylinder 18, and then the exhaust valve 24 is opened to discharge the air into the exhaust pipe 27 and burn in the exhaust pipe 27. By mixing the rear gas 41 and air, the O 2 concentration of the catalyst inflow gas 42 can be increased. Therefore, when the Example catalyst 1 is provided in the exhaust gas purification catalyst 11 of the present system, the exhaust gas purification activity is improved.
  • Example 6 In the engine system shown in FIGS. 2 and 3, by changing the intake and exhaust timing of the cylinder B that introduces air into the cylinder 18 as in the cylinder B ′, the post-combustion gas 41 and the air are supplied to the exhaust pipe 27. The discharge can be done at the same time. Accordingly, the post-combustion gas 41 and air can be easily mixed in the exhaust pipe 27, and the O 2 concentration of the catalyst inflow gas 42 can be efficiently increased. Therefore, the exhaust gas purifying catalyst 11 of this system includes the embodiment catalyst 1. And the exhaust gas purification activity is improved.
  • Example 7 In the engine system shown in FIGS. 2 and 4, air is introduced into the cylinder 18 of some cylinders, and instead of the four strokes of intake, compression, expansion, and exhaust, two strokes of intake and exhaust are performed twice per cycle. By repeating, the post-combustion gas 41 and air can be discharged to the exhaust pipe 27 at the same time. Accordingly, the post-combustion gas 41 and air can be easily mixed in the exhaust pipe 27, and the O 2 concentration of the catalyst inflow gas 42 can be efficiently increased. Therefore, the exhaust gas purifying catalyst 11 of this system includes the embodiment catalyst 1. And the exhaust gas purification activity is improved.
  • Example 8 In the engine system shown in FIGS. 2 and 5, after a mixture of fuel and air is introduced into the cylinder 18 in some or all of the cylinders to perform four strokes of intake, compression, expansion, and exhaust, By introducing the air into the intake stroke and the exhaust stroke, the exhaust gas is mixed in the exhaust pipe 27 so that the O 2 concentration of the catalyst inflow gas 42 can be increased. Therefore, when the Example catalyst 1 is provided in the exhaust gas purification catalyst 11 of the present system, the exhaust gas purification activity is improved.
  • Example 9 In the engine system shown in FIGS. 2 and 6, a secondary air introduction device is used as the O 2 concentration increasing device 43, and air is introduced into the exhaust pipe 27 and mixed with the post-combustion gas 41.
  • the O 2 concentration can be increased. Therefore, when the Example catalyst 1 is provided in the exhaust gas purification catalyst 11 of the present system, the exhaust gas purification activity is improved.
  • Example 11 In the engine system shown in FIGS. 2 and 6, comprises an O 2 storage material in the O 2 concentration increasing device 43, the O 2 in the air flowing into the O 2 concentration increasing device 43 during the fuel cut O 2 storage material pooled and burned gas 41 by releasing O 2 from O 2 storage material when flowing, it can increase the O 2 concentration of the catalyst inlet gas 42. Therefore, when the Example catalyst 1 is provided in the exhaust gas purification catalyst 11 of the present system, the exhaust gas purification activity is improved.
  • Example 12 In Example 4, when an ozonizer is provided in front of the exhaust gas purification catalyst 11, ozone is generated from O 2 and added to the catalyst inflow gas 42, and the ozone concentration of the catalyst inflow gas 42 can be increased. Since ozone has a stronger oxidizing power than O 2 , the exhaust gas purification activity is further improved.
  • Example 13 In the engine system shown in FIG. 2, when the exhaust gas purifying catalyst 11 includes the catalyst 1 of the embodiment and a system for controlling the O 2 concentration and temperature of the catalyst inflow gas 42 is provided, the O 2 concentration of the catalyst inflow gas 42 is 5%. Further, since the O 2 concentration can be 20% and the temperature can be 500 ° C. from the state where the temperature is 400 ° C., as can be seen from Table 1, the NOx purification rate is improved from 4.9% to 49.8%.
  • the present invention is not limited to the above-described embodiments, and various designs can be made without departing from the spirit of the present invention described in the claims. It can be changed.
  • the above-described embodiment has been described in detail for easy understanding of the present invention, and is not necessarily limited to one having all the configurations described.
  • a part of the configuration of an embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of an embodiment.

Abstract

本発明の目的は、高い排ガス浄化性能を示す排ガス浄化システムを提供することである。本発明は、酸化アルミニウムを含む担体と、前記担体に設けられガリウムを含む触媒を備え、内燃機関と繋がる排ガス浄化装置と、前記排ガス浄化装置と接続され、酸素濃度を高めるシステムと、を有する排ガス浄化システムにおいて、前記酸素濃度を高めるシステムは、前記内燃機関の燃焼後ガスの酸素濃度よりも高い酸素濃度にすることを特徴としてなるものである。

Description

排ガス浄化システム
 本発明は、理論空燃比よりも燃料が希薄なリーンバーン状態で運転される内燃機関において、リーンバーン排ガスに含まれるNOxを浄化するのに好適な新規排ガス浄化システムに関する。
 近年、空燃比を燃料希薄とするリーンバーンエンジンが注目されている。ここで空燃比とはガス中の空気と燃料の比を表す。リーンバーンエンジンの排ガスは、理論空燃比(ストイキ)用エンジンの排ガス浄化に従来使用されてきた三元触媒ではNOxを浄化することが難しい。このため、リーンバーンエンジン用の排ガス浄化触媒が検討されている。
 リーンバーンエンジン用の排ガス浄化触媒として、金属酸化物担体にガリウムを担持した触媒が酸素過剰雰囲気下でもNOx浄化性能を有することが知られている。
 特許文献1には、ガリウムと耐火性酸化物(アルミナ、チタニア、マグネシア、ジルコニア等)を含む触媒を用いると、酸化雰囲気中でNOxを還元除去可能であることが記載されている。
 特許文献2では、ロジウムとアルミニウムとを含み、ガリウム、ジルコニウムのうちの1以上を含む触媒を用いることで、SOxに対する耐久性を向上させている。
 また、リーンバーンエンジンでは、空燃比をより燃料希薄とする、つまり空気の割合を増やし酸素濃度を高めることで燃費が向上する。そのため、酸素濃度を高めてもNOx浄化性能を維持可能な排ガス浄化触媒が要求されている。
特開平7-178338 特開2001-170488
 特許文献1及び特許文献2では、酸素過剰雰囲気下でのNOx浄化性能について記載しているが、酸素濃度が変動した場合の影響については検討されておらず、触媒性能への影響は不明である。
 本発明の目的は、排ガス浄化触媒に流入する酸素濃度を高めるシステムを備えることにより、触媒の排ガス浄化性能を向上させること、及び高い排ガス浄化性能を安定して保持することである。
 上記目的を達成するために、本発明は、酸化アルミニウムを含む担体と、前記担体に設けられガリウムを含む触媒を備え、内燃機関と繋がる排ガス浄化装置と、前記排ガス浄化装置と接続され、酸素濃度を高めるシステムと、を有する排ガス浄化システムにおいて、前記酸素濃度を高めるシステムは、前記内燃機関の燃焼後ガスの酸素濃度よりも高い酸素濃度にすることを特徴としている。
 本発明によれば、内燃機関の燃焼後ガスの酸素濃度に関わらず、有害物質、特にNOxを高効率で浄化することができる。
排ガス浄化触媒表面上での担体と触媒活性成分の状態を表した図である。 エンジンシステムの一例を表した図である。 燃焼後ガス及び空気を排出する気筒の排気行程を同時にしたエンジンシステムにおける、各行程と吸気及び排気時期の関係の一例を表した図である。 空気を排出する気筒の吸気、排気行程を1サイクルにつき2回ずつにしたエンジンシステムにおける、各行程と吸気及び排気時期の関係の一例を表した図である。 1サイクルを6行程としたエンジンシステムにおける、各行程と吸気及び排気時期の関係の一例を表した図である。 酸素濃度を高める装置を備えたエンジンシステムの一例を表した図である。 酸素濃度と触媒のNOx浄化活性との関係を示したグラフである。 酸素濃度と触媒のC浄化活性との関係を示したグラフである。
 図1は本発明における排ガス浄化触媒11の構造を示す概念図である。
 排ガス浄化触媒11は、ハニカム構造の基材4に酸化アルミニウム(Al)を含んだ担体3をコートし、担体3に少なくともガリウム(Ga)を含む第一の触媒1を担持したものを用いることができる。更に、少なくともロジウム(Rh)を含む第二の触媒2を担持しても良い。
 以下に詳細を記すが、本発明における排ガス浄化触媒11に流入する排ガスの酸素(O)濃度を高めることで排ガスを高度に浄化できる。
 排ガス浄化触媒11によるNOx浄化反応は次のメカニズムで進行すると考えている。まず、第一の触媒1及び第二の触媒2にNO及び還元剤である炭化水素が吸着する。NOは式(1)のようにOによってNOに酸化されてから式(2)のように炭化水素と反応し、N、CO、HOとして脱離する。しかし、リーン状態では排ガス中にOが多量に含まれるため、式(3)のようにOによる炭化水素の酸化(燃焼反応)も同時に進行する。
 (1)NO+O → NO  …式(1)
 (2)NO+炭化水素 → N+CO+HO  …式(2)
 (3)炭化水素+O → CO+HO  …式(3)
 したがって、式(2)の反応よりも式(3)の反応を促進させれば、NOxの浄化率を高くすることができると考えられる。そのためには、式(1)の反応を促進することが重要である。
 式(3)よりも優先的に式(1)の反応を促進するためには、第一の触媒1にGaを含むことが好ましい。また、第一の触媒元素量は、担体3に含まれるAlに対して0.5~20重量%の範囲にあることが好ましい。(ここで重量%とは、各成分のg換算での含有比率を表したものであり、例えばA成分に対してB成分の担持量が0.5重量%ということは、A成分の絶対量の多少に関わらず、g換算でAが100に対しBが0.5の割合で担持されていることを意味する。)
 第一の触媒元素量が0.5重量%よりも少ない場合、式(1)及び式(2)の反応が進行しにくく、NOxが充分に浄化されない可能性がある。20重量%より多くても、第一の触媒元素の表面露出量が低下する、もしくは第一の触媒元素による第二の触媒元素の被覆が生じ、触媒活性が充分に発現しない可能性がある。
 第二の触媒元素量は、担体3に含まれるAlに対して2重量%以下にすることが好ましい。2重量%よりも多い場合、式(3)が式(2)より優先的に進行してしまい、NOxが充分に浄化されない可能性がある。
 また、排ガス浄化触媒11の一部でも、担体3に含まれるAlに対して第一の触媒元素量が0.5~20重量%、第二の触媒元素量が2重量%以下となる部分が存在すると、上記効果を効率的に発現させることができる。例えば触媒の形態例として、次の(1)、(2)の場合が考えられる。(1)基材4の上に第一の触媒1及び第二の触媒2を含まない層として板状もしくは粒状のAlがあり、更にその上に第一の触媒1及び第二の触媒2を含む担体3が存在する。(2)第一の触媒1及び第二の触媒2を含まない粒状Alの表面上に第一の触媒1及び第二の触媒2を含む担体3が存在する。(1)、(2)のいずれの場合においても、第一の触媒1及び第二の触媒2を含む担体3に含有されているAlに対し、第一の触媒元素量が0.5~20重量%、第二の触媒元素量が2重量%以下となる部分が存在することが好ましい。
 第一の触媒1及び第二の触媒2は、Alを含む担体3と接触していることが好ましく、Alを含む担体3の表面に第一の触媒1と、第二の触媒2が設けられた状態が好ましい。
 第二の触媒元素としては、Rhの他に、Ce、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Zr、Mo、Ru、Pd、Ag、Ce、W、Ir、Au等の金属を用いることができる。一方、Ptを用いるとNOxがNOに転化する可能性があり、実質的なNOx浄化率が低下する場合がある。
 触媒活性成分としては、Ga及びRhに加えて更に他の遷移金属を添加することもできる。他の遷移金属としては、特にFe、Co、Ni、Pd、Ag、Au等が好適である。これらの金属はNOのNOへの酸化や炭化水素の吸着を促進するため、排ガス浄化性能を向上することができる。
 担体3は触媒活性成分の分散性を高める役割をするものと考えられる。担体3は基材4上に担持しても良く、その場合1Lの基材4に対し担体3の担持量を30g以上400g以下とすると排ガス浄化性能にとって好ましい。担体3の担持量が30gより少ないと担体3の効果は不十分となり、400gより多いと担体3自体の比表面積が低下するため好ましくない。
 担体3はAlを含むが、Alの比表面積を100~300m/gとすると排ガス浄化性能にとって好ましい。また、Alの粒径を1~25μmとすると排ガス浄化性能にとって好ましい。
 担体3としては、Alが最も好ましいが、他にTiO、SiO、SiO-Al、ZrO、MgO、CoO、NiO、CuO等の金属酸化物や複合酸化物等を用いることもできる。Alが最も好ましい理由としては、Gaを含む第一の触媒1を担持することでGa-O-Alを形成し、これが触媒活性点となるためと考えている。また、上記の担体3にβ-ゼオライト、モルデナイト、フェリエライト、Y型ゼオライト等のゼオライトを添加して用いることができる。
 排ガス浄化触媒11は、ハニカム構造等の基材4に担体3をコーティングした後に触媒活性成分を担持しても、触媒活性成分を担持した担体3を基材4にコーティングしても良い。基材4はコ-ジェライトが最適であるが、金属製のものを用いても良好な結果を得ることができる。
 排ガス浄化触媒11の形状は、用途に応じ各種の形状で適用できる。コージェライト、ステンレス等の各種材料からなるハニカム構造体に各種成分を担持した触媒粉末をコーティングして得られるハニカム形状を始めとし、ペレット状、板状、粒状、粉末状等として適用できる。
 排ガス浄化触媒11の調製方法は、含浸法、混練法、共沈法、ゾルゲル法、イオン交換法、蒸着法等の物理的調製方法や化学反応を利用した調製方法等いずれも適用可能である。排ガス浄化触媒11の出発原料としては、硝酸化合物、酢酸化合物、錯体化合物、水酸化物、炭酸化合物、有機化合物などの種々の化合物や金属及び金属酸化物を用いることができる。
 図2は、排ガス浄化触媒11を備えたエンジンシステムの一例を表した図である。エンジンには、吸入空気量を計測するエアフローセンサ12と、吸気を過給するための過給機13のコンプレッサ13aと、吸気を冷却するためのインタークーラ14と、吸気管15内の圧力を調整する電子制御スロットル16と、吸気管15内の圧力を計測する吸気圧力センサ17を設けた吸気管15が備えられている。
 また、エンジンには、燃料噴射装置(以下、インジェクタ)19と、噴射された燃料と空気の混合気を圧縮するためのピストン20、点火エネルギーを供給する点火プラグ21が気筒ごとに備えられている。燃料は各気筒のシリンダ18内に噴射されても、吸気管15内に噴射されても良いが、図2はシリンダ18内への燃料噴射を想定した図である。
 また、筒内に流入、または筒内から排出するガスを調整するバルブタイミング機構22が、シリンダヘッドに設けられている。バルブタイミング機構22により、全気筒の吸気バルブ23及び排気バルブ24の開弁、閉弁時期を調整することで、吸気量及び内部EGR量を調整できる。バルブタイミング機構22としては、可変バルブタイミング機構や、可変バルブリフト機構、カムシャフト切替え機構などを用いることもできる。
 また、高圧燃料を供給するための高圧燃料ポンプが燃料配管によってインジェクタ19と接続されており、燃料配管中には、燃料噴射圧力を計測するための燃料圧力センサが備えられている。
 更に、排気エネルギーによって過給機13のコンプレッサ13aに回転力を与えるためのタービン13bと、タービン13bに流れる排気流量を調整するための電子制御ウェイストゲート弁25と、排気を浄化する排ガス浄化触媒11と、空燃比検出器の一態様であって、排ガス浄化触媒11の上流側にて排気の空燃比を検出する空燃比センサ26と、が排気管27に設けられている。また、クランク軸には、回転角度を算出するためのクランク角度センサが備えられている。
 エンジンには、排ガス浄化触媒11の下流から、コンプレッサ13aの上流に排気を還流させるためのEGR管30を備えていても良い。EGR管30には、EGRを冷却するためのEGRクーラ31、EGR流量を制御するためのEGR弁32、EGR弁前後の差圧を検出する差圧センサ33、EGR温度を検出するEGR温度センサ34が、各々の適宜位置に取りつけられている。
 エアフローセンサ12と空燃比センサ26と吸気圧力センサ17と差圧センサ33とEGR温度センサ34から得られる信号は、エンジンコントロールユニット(ECU)28に送られる。また、アクセル開度センサ29から得られる信号もECU28に送られる。アクセル開度センサ29は、アクセルペダルの踏み込み量、すなわち、アクセル開度を検出する。ECU28は、アクセル開度センサ29の出力信号に基づいて、要求トルクを演算する。すなわち、アクセル開度センサ29は、エンジンへの要求トルクを検出する要求トルク検出センサとして用いられる。また、ECU28は、クランク角度センサの出力信号に基づいて、エンジンの回転速度を演算する。ECU28は、上記各種センサの出力から得られるエンジンの運転状態に基づき、空気流量、燃料噴射量、点火時期、燃料圧力等のエンジンの主要な作動量を最適に演算する。
 ECU28で演算された燃料噴射量は開弁パルス信号に変換され、インジェクタ19に送られる。また、ECU28で演算された点火時期で点火されるように、点火信号が点火プラグ21に送られる。また、ECU28で演算されたスロットル開度は、スロットル駆動信号として電子制御スロットル16に送られる。また、ECU28で演算されたバルブタイミングの作動量は、バルブタイミング駆動信号としてバルブタイミング機構22へ送られる。また、ECU28で演算されたウェイストゲート弁開度は、ウェイストゲート弁駆動信号としてウェイストゲート弁25へ送られる。また、ECU28で常時演算されるEGR弁開度は、EGR弁開度駆動信号としてEGR弁32へ送られる。
 吸気管15から吸気バルブ23を経てシリンダ18内に流入した空気に対し、燃料が噴射され混合気を形成する。混合気は、所定の点火時期で点火プラグ21から発生される火花により燃焼し、その燃焼圧によりピストン20を押し下げてエンジンの駆動力となる。更に、燃焼後ガス41は排気管27を経て排ガス浄化触媒11に送りこまれた後、排ガス浄化触媒11内で浄化され外部へと排出される。
 本発明の排ガス浄化触媒11は、理論空燃比(ストイキ)用エンジンの排ガス浄化にも、理論空燃比よりも希薄な空燃比(14.7以上)で運転を行うリーンバーンエンジンの排ガス浄化にも用いることができる。また、排ガス浄化触媒11及び三元触媒を組み合わせて用いても良い。
 本発明の排ガス浄化触媒11の排ガス浄化活性を向上するには、式(1)の反応を促進すれば良く、そのためには排ガス浄化触媒11に流入する排ガス(以下、触媒流入ガス42)のO濃度を高めることが好ましい。
 以下に、触媒流入ガス42のO濃度を高めるための方法例を示す。
 触媒流入ガス42のO濃度としては、排ガス全体に対して0.5体積%以上とすると排ガス浄化性能にとって好ましい。O濃度が0.5体積%より少ないと式(1)の反応が進行しにくく、式(2)によりNOxが充分に浄化されない可能性がある。
 触媒流入ガス42のO濃度を高めるには、各気筒のシリンダ18内に導入する燃料と空気の混合気のO濃度を高める、もしくは触媒流入ガス42のO濃度を燃焼後ガス41のO濃度よりも高くすれば良い。
 ECU28により、空気流量や燃料噴射量等を空燃比が高くなるように制御すれば、シリンダ18内に導入する燃料と空気の混合気中の空気の割合、つまりO濃度を高めることができる。そのため、空燃比が高くなる程、触媒流入ガス42のO濃度が高まる。
 気筒が複数ある場合、一部の気筒のシリンダ18内に燃料と空気の混合気の代わりに空気を導入すれば、本気筒に接続された排気管27に空気が排出される。そのため、シリンダ18内に燃料と空気を導入して燃焼させた気筒から排出される燃焼後ガス41と、シリンダ18内に空気を導入した気筒から排出される空気が排気管27で混合され、燃焼後ガス41のみよりも空気の割合が高い、つまりO濃度の高いガスを触媒流入ガス42として排ガス浄化触媒11に供給することができる。
 シリンダ18内に空気を導入する際には、吸気バルブ23及び排気バルブ24を同時に開弁して空気を流通させても、吸気バルブ23のみを開弁してシリンダ18内に空気を導入した後に排気バルブ24を開弁して排気管27に空気を排出しても良い。
 また、バルブタイミング機構22として可変バルブタイミング機構を用いると、シリンダ18内に燃料と空気の混合気を導入して燃焼させた気筒から排出される燃焼後ガス42と、シリンダ18内に空気を導入した気筒から排出される空気が、排気管27へ同時に排出されるように調整することができる。そのため、燃焼後ガス41と空気が混合されやすくなる。
 図3は、燃焼後ガス及び空気を排出する気筒の排気行程を同時にした場合の、各行程と吸気及び排気時期の関係の一例を表した図である。気筒Aのシリンダ18内に燃料と空気の混合気を導入すると、排気行程において燃焼後ガス41が排出される。この時、気筒Bの吸気及び排気時期を気筒B’のように変更し、シリンダ18内に空気のみを導入すると、気筒Aの排気行程で排出される燃焼後ガス41と気筒B’の排気行程で排出される空気が、排気管27へ同時に排出される。
 図4は、空気を排出する気筒の吸気、排気行程を1サイクルにつき2回ずつにした場合の、各行程と吸気及び排気時期の関係の一例を表した図である。一部の気筒のシリンダ18内に空気を導入し、吸気、圧縮、膨張、排気の4行程の代わりに吸気、排気の2行程を1サイクルで2回繰り返すと、2回の排気行程で排気管27へ空気が排出される。2回の排気行程のうち1回は、シリンダ18内に燃料と空気の混合気を導入して燃焼させた気筒の排気行程と同時になるため、燃焼後ガス41と空気が排気管27へ同時に排出される。
 図5は、1サイクルを6行程とした場合の吸気及び排気のタイミングを表した図である。一部もしくは全部の気筒について、シリンダ18内に燃料と空気の混合気を導入して吸気、圧縮、膨張、排気の4行程を行った後、シリンダ18内に空気を導入して吸気、排気を行う6行程とすると、排気管27に燃焼後ガス41もしくは空気が排出される。この燃焼後ガス41と空気が排気管27内で混合されると、燃焼後ガス41のみよりも空気の割合が高い、つまりO濃度の高いガスを触媒流入ガス42として排ガス浄化触媒11に供給することができる。
 図6は、図2で示したエンジンシステムに加えてO濃度を高める装置を備えたエンジンシステムの一例を表した図である。排気管27に排出された燃焼後ガス41に対し、O濃度増加装置43を用いてOを含むガスを添加することで、触媒流入ガス42のO濃度を燃焼後ガス41のO濃度よりも高めることができる。
 O濃度増加装置43としては、二次空気導入装置を用いることができる。二次空気導入装置により排気管27に空気を導入し、燃焼後ガス41と混合させることで、燃焼後ガス41のみよりも空気の割合が高い、つまりO濃度の高いガスを触媒流入ガス42として排ガス浄化触媒11に供給することができる。排気管27への空気の導入には過給機を用いても良く、過給機を用いると、排気管27内の圧力が高い場合でも空気を導入することができる。
 O濃度増加装置43にO貯蔵材を備えると、O濃度増加装置43に流入したガスに含まれるOを貯蔵することができる。O貯蔵材がOを貯蔵及び放出する温度を適切に制御すると、燃料カットの際にO濃度増加装置43へ流入する空気中のOがO貯蔵材に貯蔵され、排気管27に排出された燃焼後ガス41をO貯蔵材へ流入させてO貯蔵材の温度を上げることでOが放出される。つまり、燃焼後ガス41のみよりもO濃度の高いガスを触媒流入ガス42として排ガス浄化触媒11に供給することができる。
 触媒流入ガス42のO濃度を燃焼後ガス41のO濃度よりも高めるシステムに加えて、オゾナイザを用いることで、排ガス浄化触媒11の排ガス浄化性能を更に向上させることができる。オゾナイザにOを含むガスを流通させると、Oからオゾンが生成する。そのため、排ガス浄化触媒11の前段にオゾナイザを設けることで、排ガス浄化触媒11に流入する触媒流入ガス42にオゾンが添加される。オゾンはOよりも酸化力が強いため、式(1)に示したOによるNO酸化反応と比べてオゾンによるNO酸化反応は進行しやすく、式(2)によりNOxが浄化されやすくなる。オゾンの生成量を増加させるにはオゾナイザに流入するガスのO濃度を高める必要があるが、その際はO濃度を高める方法として上記で説明したいずれの手法を用いても良い。
 上記で説明した触媒流入ガス42のO濃度を燃焼後ガス41のO濃度よりも高める方法は複数を組み合わせても良く、それにより触媒流入ガス42のO濃度を更に高めることができる。また、上記の説明ではOを含むガスとして空気を用いているが、空気の代わりにOを含む他のガスを用いた場合も、上記と同様の方法で、触媒流入ガス42のO濃度を燃焼後ガス41のO濃度よりも高めることができる。
 O濃度を高める方法に加えて、排ガス浄化触媒11に流入する触媒流入ガス42の温度を、排ガス浄化活性が最大となる温度に制御すると、NOxを始めとした排ガス成分を更に高度に浄化することができる。
 上記で説明したO濃度を高める方法を、エンジンからの排ガス成分が増加した時にのみ用いることもできる。この場合、エンジン出力の低下を抑制しつつ排ガス浄化活性を向上させることができる。あらかじめエンジンの運転条件に対する排ガス成分の排出量を確認しておき、ある運転条件において排ガス成分が増加したと判断した場合、O濃度を高める方法を用いることができる。また、燃焼後ガス41もしくは触媒流入ガス42のNOx濃度を検出するNOxセンサを備えることで、NOx濃度の増加を検出した場合、O濃度を高める方法を用いることができる。
 以下、具体的な例で本発明を説明するが、本発明はこれらの実施例により制限されるものではない。
 (実施例1)
 Al粉末及びAlの前駆体からなり硝酸酸性に調整したスラリーをコージェライト製ハニカム(400セル/inc)にコーティングした後、乾燥焼成して、ハニカムの見掛けの容積1リットルあたり170gのAlをコーティングしたAlコートハニカムを得た。該Alコートハニカムに触媒成分として硝酸Ga溶液を含浸した後、120℃で乾燥、続いて600℃で1時間焼成した。
 以上により、ハニカム1Lに対してAlが170g、及びAlに対して元素換算でGa10重量%を含有する実施例触媒1を得た。
 得られた触媒に対して、次の条件で排ガス浄化性能試験を行った。容量6ccのハニカム触媒を石英ガラス製反応管中に固定した。この反応管を電気炉中に導入し、反応管に導入されるガス温度が400、450、500℃となるように加熱制御した。反応管には、自動車のエンジンがリーンバーン運転を行っているときの排ガスを想定したモデルガスを、空間速度30000h-1で導入した。モデルガスの組成は、NOx:150ppm、C:250ppm、O:0.5、3、5、10、20、25、30%、HO:2.8%、N:残差とした。この時、NOx浄化率、C浄化率を次式により算出した。
 NOx浄化率(%)=(触媒に流入したNOx量-触媒から流出したNOx量)       ÷触媒に流入したNOx量×100  …式(4)
 C浄化率(%)=(触媒に流入したC量-触媒から流出したC量)       ÷触媒に流入したC量×100  …式(5)
 (実施例2)
 含浸成分として硝酸Ga溶液に加えて硝酸Rh溶液を用いた以外は、実施例1と同様の操作により、Alに対して元素換算でGa10重量%、Rh0.61重量%を含有する実施例触媒2を得た。得られた触媒に対して、実施例1と同様の方法で排ガス浄化性能試験を行った。
 (比較例1)
 含浸成分として硝酸Ga溶液の代わりに硝酸Rh溶液を用いた以外は、実施例1と同様の操作により、Alに対して元素換算でRh0.61重量%を含有する比較例触媒1を得た。得られた触媒に対して、実施例1と同様の方法で、モデルガスのO濃度を3、10%として排ガス浄化性能試験を行った。
 (試験結果)
 実施例触媒1、2及び比較例触媒1のNOx浄化率の結果を表1~3及び図7に示す。実施例触媒1及び2に関しては、触媒流入ガスのO濃度を増加させるとNOx浄化活性が高くなる。一方、比較例触媒1ではO濃度を増加させると活性が低下する。以上の結果より、触媒活性成分としてGaを含む実施例触媒1及び2では、O濃度増加によりNOx浄化活性が向上することが分かる。この理由としては、OによるNOからNOへの酸化反応が促進され、CによるNOの浄化反応が促進されたためと考えられる。
 また、触媒流入ガスのO濃度に加えて、触媒流入ガスの温度を実施例触媒1については500℃、実施例触媒2については400℃となるように制御すると、NOx浄化活性が更に高くなる。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 実施例触媒1及び2のC浄化率の結果を表4、5及び図8に示す。表4、5及び図8から、触媒に流入するO濃度を増加させるとC浄化活性が高くなる。つまり、O濃度を増加させると、NOx浄化活性を向上させるだけではなく、C浄化活性も向上させることが分かる。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 (実施例3)
 図2に示したエンジンシステムにおいて、ECU28により空燃比が高くなるように制御することで、シリンダ18内に導入する燃料と空気の混合気中の空気の割合、つまりO濃度を高めることができる。従って、本システムの排ガス浄化触媒11に実施例触媒1を備えると、排ガス浄化活性が向上する。
 (実施例4)
 図2に示したエンジンシステムにおいて、吸気バルブ23及び排気バルブ24を同時に開弁して一部の気筒のシリンダ18内に空気を導入し、排気管27内で燃焼後ガス41と空気を混合させることで、触媒流入ガス42のO濃度を高めることができる。従って、本システムの排ガス浄化触媒11に実施例触媒1を備えると、排ガス浄化活性が向上する。
 (実施例5)
 図2に示したエンジンシステムにおいて、吸気バルブ23のみを開弁してシリンダ18内に空気を導入した後に排気バルブ24を開弁して排気管27に空気を排出し、排気管27内で燃焼後ガス41と空気を混合させることで、触媒流入ガス42のO濃度を高めることができる。従って、本システムの排ガス浄化触媒11に実施例触媒1を備えると、排ガス浄化活性が向上する。
 (実施例6)
 図2及び3に示したエンジンシステムにおいて、シリンダ18内に空気を導入する気筒Bの吸気及び排気時期を気筒B’のように変更することで、燃焼後ガス41及び空気の排気管27への排出を同時にすることができる。従って、排気管27内で燃焼後ガス41と空気が混合しやすくなり、触媒流入ガス42のO濃度を効率良く高めることができるため、本システムの排ガス浄化触媒11に実施例触媒1を備えると、排ガス浄化活性が向上する。
 (実施例7)
 図2及び4に示したエンジンシステムにおいて、一部の気筒のシリンダ18内に空気を導入し、吸気、圧縮、膨張、排気の4行程の代わりに吸気、排気の2行程を1サイクルに2回繰り返すことで、燃焼後ガス41及び空気の排気管27への排出を同時にすることができる。従って、排気管27内で燃焼後ガス41と空気が混合しやすくなり、触媒流入ガス42のO濃度を効率良く高めることができるため、本システムの排ガス浄化触媒11に実施例触媒1を備えると、排ガス浄化活性が向上する。
 (実施例8)
 図2及び5に示したエンジンシステムにおいて、一部もしくは全部の気筒でシリンダ18内に燃料と空気の混合気を導入して吸気、圧縮、膨張、排気の4行程を行った後、シリンダ18内に空気を導入して吸気、排気を行う6行程とし、排気管27内で燃焼後ガスと空気を混合させることで、触媒流入ガス42のO濃度を高めることができる。従って、本システムの排ガス浄化触媒11に実施例触媒1を備えると、排ガス浄化活性が向上する。
 (実施例9)
 図2及び6に示したエンジンシステムにおいて、O濃度増加装置43として二次空気導入装置を用い、排気管27に空気を導入して燃焼後ガス41と混合させることで、触媒流入ガス42のO濃度を高めることができる。従って、本システムの排ガス浄化触媒11に実施例触媒1を備えると、排ガス浄化活性が向上する。
 (実施例10)
 実施例9において、過給機を用いることで、排気管27内の圧力が高くても触媒流入ガス42のO濃度を高めることができる。
 (実施例11)
 図2及び6に示したエンジンシステムにおいて、O濃度増加装置43にO貯蔵材を備え、燃料カットの際にO濃度増加装置43へ流入する空気中のOをO貯蔵材に貯蔵し、燃焼後ガス41が流入した際にO貯蔵材からOを放出することで、触媒流入ガス42のO濃度を高めることができる。従って、本システムの排ガス浄化触媒11に実施例触媒1を備えると、排ガス浄化活性が向上する。
 (実施例12)
 実施例4において、排ガス浄化触媒11の前段にオゾナイザを設けると、Oからオゾンが生成し触媒流入ガス42に添加されることに加え、触媒流入ガス42のオゾン濃度を高めることができる。オゾンはOよりも酸化力が強いため、排ガス浄化活性が更に向上する。
 (実施例13)
 図2に示したエンジンシステムにおいて、排ガス浄化触媒11に実施例触媒1を備え、触媒流入ガス42のO濃度及び温度を制御するシステムを設けると、触媒流入ガス42のO濃度が5%かつ温度が400℃の状態から、O濃度を20%かつ温度を500℃とすることができるため、表1から分かるようにNOx浄化率が4.9%から49.8%に向上する。
 以上、本発明の実施形態について詳述したが、本発明は、前記の実施形態に限定されるものではなく、特許請求の範囲に記載された本発明の精神を逸脱しない範囲で、種々の設計変更を行うことができるものである。例えば、前記した実施の形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、また、ある実施形態の構成に他の実施形態の構成を加えることも可能である。さらに、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
1 第一の触媒
2 第二の触媒
3 担体
4 基材
11 排ガス浄化触媒
12 エアフローセンサ
13 過給機
13a コンプレッサ
13b タービン
14 インタークーラ
15 吸気管
16 電子制御スロットル
17 吸気圧力センサ
18 シリンダ
19 インジェクタ
20 ピストン
21 点火プラグ
22 バルブタイミング機構
23 吸気バルブ
24 排気バルブ
25 ウェイストゲート弁
26 空燃比センサ
27 排気管
28 ECU
29 アクセル開度センサ
30 EGR管
31 EGRクーラ
32 EGR弁
33 差圧センサ
34 EGR温度センサ
41 燃焼後ガス
42 触媒流入ガス
43 O濃度増加装置

Claims (10)

  1.  酸化アルミニウムを含む担体と、前記担体に設けられガリウムを含む触媒を備え、内燃機関と繋がる排ガス浄化装置と、前記排ガス浄化装置と接続され、酸素濃度を高めるシステムと、を有する排ガス浄化システムにおいて、
     前記酸素濃度を高めるシステムは、前記内燃機関の燃焼後ガスの酸素濃度よりも高い酸素濃度にすることを特徴とする排ガス浄化システム。
  2.  請求項1に記載の排ガス浄化システムにおいて、
     前記触媒に更にロジウムを含むことを特徴とする排ガス浄化システム。
  3.  請求項1又は請求項2に記載の排ガス浄化システムにおいて、
     前記酸素濃度を高めるシステムは、前記触媒に流入するガスの酸素濃度を0.5%以上とすることを特徴とする排ガス浄化システム。
  4.  請求項1乃至請求項3のいずれかに記載の排ガス浄化システムおいて、
     前記酸素濃度を高めるシステムは、内燃機関から排出される排ガスとは別に酸素を含むガスを前記触媒に供給することを特徴とする排ガス浄化システム。
  5.  請求項4に記載の排ガス浄化システムにおいて、
     前記酸素濃度を高めるシステムは、過給機を有することを特徴とする排ガス浄化システム。
  6.  請求項1乃至3の何れかに記載の排ガス浄化システムにおいて、
     前記内燃機関は、燃料を燃焼させない少なくとも一つの気筒を有することを特徴とする排ガス浄化システム。
  7.  請求項1乃至3の何れかに記載の排ガス浄化システムにおいて、
     前記内燃機関は、燃焼行程の後に空気を流通させて吸気を行う吸気行程と、当該吸気行程の直後に排気行程を有することを特徴とする排ガス浄化システム。
  8.  請求項1乃至3の何れかに記載の排ガス浄化システムにおいて、
     前記酸素濃度を高めるシステムは、酸素貯蔵材料を有することを特徴とする排ガス浄化システム。
  9.  請求項1乃至8の何れかに記載の排ガス浄化システムにおいて、
     前記排ガス浄化装置に、オゾンを添加する装置を有することを特徴とする排ガス浄化システム。
  10.  請求項1乃至9の何れかに記載の排ガス浄化システムにおいて、
     更に前記内燃機関の燃焼後ガスの温度を制御する装置を有することを特徴とする排ガス浄化システム。
PCT/JP2018/003740 2017-03-30 2018-02-05 排ガス浄化システム WO2018179836A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/489,008 US11007480B2 (en) 2017-03-30 2018-02-05 Exhaust gas purification system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017066628A JP6887284B2 (ja) 2017-03-30 2017-03-30 排ガス浄化システム
JP2017-066628 2017-03-30

Publications (1)

Publication Number Publication Date
WO2018179836A1 true WO2018179836A1 (ja) 2018-10-04

Family

ID=63675002

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/003740 WO2018179836A1 (ja) 2017-03-30 2018-02-05 排ガス浄化システム

Country Status (3)

Country Link
US (1) US11007480B2 (ja)
JP (1) JP6887284B2 (ja)
WO (1) WO2018179836A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114028940A (zh) * 2021-11-25 2022-02-11 江南大学 一种装配式有机污染废气处理装置及方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102146286B1 (ko) * 2018-11-09 2020-08-21 한국화학연구원 선택적 환원 촉매의 내구성 향상방법, 그 방법이 적용된 선택적 환원 촉매 시스템, 및 내연기관

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001170488A (ja) * 1999-12-15 2001-06-26 Next Generation Catalyst Research Institute Co Ltd 排気ガス浄化触媒
JP2003336538A (ja) * 2002-05-20 2003-11-28 Denso Corp 内燃機関の排出ガス浄化装置
JP2006200414A (ja) * 2005-01-19 2006-08-03 Nissan Motor Co Ltd 内燃機関の排気温度制御装置
JP2007154722A (ja) * 2005-12-02 2007-06-21 Toyota Motor Corp 内燃機関の排気浄化装置
JP2008163887A (ja) * 2006-12-28 2008-07-17 Toyota Motor Corp 内燃機関の排気ガス浄化装置
JP2013217266A (ja) * 2012-04-06 2013-10-24 Toyota Motor Corp 排ガス浄化装置
WO2017006669A1 (ja) * 2015-07-03 2017-01-12 株式会社日立製作所 排ガス浄化触媒

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2060229A1 (en) * 1991-02-05 1992-08-06 Toshiaki Hayasaka Exhaust gas purifying catalyst and an exhaust gas purifying method using the catalyst
JPH07178338A (ja) 1991-02-05 1995-07-18 Sekiyu Sangyo Kasseika Center 排ガス浄化用触媒及びこれを使用した排ガスの浄化方法
US5173278A (en) * 1991-03-15 1992-12-22 Mobil Oil Corporation Denitrification of flue gas from catalytic cracking
JPH05171921A (ja) * 1991-12-20 1993-07-09 Mazda Motor Corp 排気ガス浄化装置
JPH0693839A (ja) * 1992-09-10 1994-04-05 Hitachi Ltd 内燃機関の排気ガス浄化装置
US6348430B1 (en) * 1997-06-20 2002-02-19 Degussa Ag Exhaust gas treatment catalyst for internal combustion engines with two catalytically active layers on a carrier structure
US20030118960A1 (en) * 2001-12-21 2003-06-26 Balmer-Millar Mari Lou Lean NOx aftertreatment system
WO2007122090A2 (de) * 2006-04-21 2007-11-01 Basf Se Verfahren zur herstellung von ethylenoxid in einem mikrokanalreaktor
US7767175B2 (en) * 2007-01-09 2010-08-03 Catalytic Solutions, Inc. Ammonia SCR catalyst and method of using the catalyst

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001170488A (ja) * 1999-12-15 2001-06-26 Next Generation Catalyst Research Institute Co Ltd 排気ガス浄化触媒
JP2003336538A (ja) * 2002-05-20 2003-11-28 Denso Corp 内燃機関の排出ガス浄化装置
JP2006200414A (ja) * 2005-01-19 2006-08-03 Nissan Motor Co Ltd 内燃機関の排気温度制御装置
JP2007154722A (ja) * 2005-12-02 2007-06-21 Toyota Motor Corp 内燃機関の排気浄化装置
JP2008163887A (ja) * 2006-12-28 2008-07-17 Toyota Motor Corp 内燃機関の排気ガス浄化装置
JP2013217266A (ja) * 2012-04-06 2013-10-24 Toyota Motor Corp 排ガス浄化装置
WO2017006669A1 (ja) * 2015-07-03 2017-01-12 株式会社日立製作所 排ガス浄化触媒

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114028940A (zh) * 2021-11-25 2022-02-11 江南大学 一种装配式有机污染废气处理装置及方法

Also Published As

Publication number Publication date
JP6887284B2 (ja) 2021-06-16
US20200001236A1 (en) 2020-01-02
US11007480B2 (en) 2021-05-18
JP2018168752A (ja) 2018-11-01

Similar Documents

Publication Publication Date Title
US8959894B2 (en) Manganese-based oxides promoted lean NOx trap (LNT) catalyst
US8466083B2 (en) Bi-functional catalyst materials for lean exhaust NOx reduction
US8409518B2 (en) Sulfur tolerant perovskite supported catalysts
US9810120B2 (en) Exhaust gas purifying system
WO2007138874A1 (ja) NOx還元触媒、NOx還元触媒システム、及びNOx還元方法
US8404201B2 (en) Mn, Ce and Zr mixed oxides oxidation catalyst
EP0994243A2 (en) Exhaust gas purifying device
WO2016031104A1 (ja) 排気ガス浄化触媒装置及び排気ガス浄化方法
JP5337930B2 (ja) 排気浄化方法
JP2007534467A (ja) リーンバーンエンジンからの排気ガスから汚染物質を除去するための酸化鉄で安定化された貴金属触媒
US20100221154A1 (en) Method and apparatus for reducing nox emissions from a lean burning hydrocarbon fueled power source
JP2016508872A (ja) 窒素酸化物を低減するための触媒および方法
KR101855537B1 (ko) Rh 로딩량이 감소된 NOx 저장 촉매
WO2018179836A1 (ja) 排ガス浄化システム
JP6217677B2 (ja) 排気ガス浄化触媒装置及び排気ガス浄化方法
EP1340537B1 (en) Catalyst for purifying exhaust gases and exhaust gas purification system
US11959408B2 (en) Exhaust system for an ammonia-burning combustion engine
JP3589763B2 (ja) ガソリンエンジンの排気ガス浄化方法
EP2788118B1 (en) Exhaust gas cleaning catalyst apparatus with control unit, exhaust gas cleaning method using said apparatus
EP4230850A1 (en) Exhaust system for an ammonia-burning combustion engine
JP2003286835A (ja) エンジン排気ガスの浄化方法
JP2000204927A (ja) 排気浄化装置
JP3549687B2 (ja) 排ガス浄化触媒、排ガス浄化装置、及び、排ガス浄化方法
JP2007084391A (ja) 自動車用排ガス浄化装置及び水素製造触媒
JP2004122122A (ja) 排気ガス浄化用触媒及び排気ガス浄化装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18776194

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18776194

Country of ref document: EP

Kind code of ref document: A1