WO2018179382A1 - 感光性樹脂組成物、パターン硬化物の製造方法、硬化物、層間絶縁膜、カバーコート層、表面保護膜及び電子部品 - Google Patents

感光性樹脂組成物、パターン硬化物の製造方法、硬化物、層間絶縁膜、カバーコート層、表面保護膜及び電子部品 Download PDF

Info

Publication number
WO2018179382A1
WO2018179382A1 PCT/JP2017/013729 JP2017013729W WO2018179382A1 WO 2018179382 A1 WO2018179382 A1 WO 2018179382A1 JP 2017013729 W JP2017013729 W JP 2017013729W WO 2018179382 A1 WO2018179382 A1 WO 2018179382A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
photosensitive resin
cured product
resin composition
formula
Prior art date
Application number
PCT/JP2017/013729
Other languages
English (en)
French (fr)
Inventor
越晴 土屋
榎本 哲也
崇司 川守
伸行 斉藤
由香里 鯉渕
篤太郎 吉澤
皓 朝田
Original Assignee
日立化成デュポンマイクロシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成デュポンマイクロシステムズ株式会社 filed Critical 日立化成デュポンマイクロシステムズ株式会社
Priority to PCT/JP2017/013729 priority Critical patent/WO2018179382A1/ja
Priority to KR1020197020019A priority patent/KR102650469B1/ko
Priority to JP2019510240A priority patent/JP7147749B2/ja
Priority to US16/498,139 priority patent/US11487201B2/en
Priority to CN201880022380.5A priority patent/CN110520795A/zh
Priority to PCT/JP2018/013598 priority patent/WO2018181893A1/ja
Publication of WO2018179382A1 publication Critical patent/WO2018179382A1/ja
Priority to PH12019502065A priority patent/PH12019502065A1/en
Priority to JP2022150311A priority patent/JP7444215B2/ja

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • G03F7/032Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with binders
    • G03F7/037Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with binders the binders being polyamides or polyimides
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/085Photosensitive compositions characterised by adhesion-promoting non-macromolecular additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/12Unsaturated polyimide precursors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • G03F7/028Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with photosensitivity-increasing substances, e.g. photoinitiators
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/038Macromolecular compounds which are rendered insoluble or differentially wettable
    • G03F7/0382Macromolecular compounds which are rendered insoluble or differentially wettable the macromolecular compound being present in a chemically amplified negative photoresist composition
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/038Macromolecular compounds which are rendered insoluble or differentially wettable
    • G03F7/0388Macromolecular compounds which are rendered insoluble or differentially wettable with ethylenic or acetylenic bands in the side chains of the photopolymer
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2002Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image
    • G03F7/2004Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image characterised by the use of a particular light source, e.g. fluorescent lamps or deep UV light
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2002Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image
    • G03F7/2012Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image using liquid photohardening compositions, e.g. for the production of reliefs such as flexographic plates or stamps
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/30Imagewise removal using liquid means
    • G03F7/32Liquid compositions therefor, e.g. developers
    • G03F7/325Non-aqueous compositions
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/40Treatment after imagewise removal, e.g. baking

Definitions

  • the present invention relates to a photosensitive resin composition, a method for producing a patterned cured product, a cured product, an interlayer insulating film, a cover coat layer, a surface protective film, and an electronic component.
  • Non-Patent Document 1 a laminated device structure in which semiconductor elements are three-dimensionally stacked for further high performance and high speed. Has attracted attention (see, for example, Non-Patent Document 1).
  • the multi-die fanout wafer level package (Multi-die Fanout Wafer Level Packaging) is a package in which multiple dies are encapsulated in one package, and has been proposed in the past. It is attracting much attention because it can be expected to achieve lower cost and higher performance than conventional fan-out wafer level packages (which are manufactured by sealing one die in one package).
  • the object of the present invention is a photosensitive resin composition capable of forming a cured product having excellent adhesion and migration resistance even at low temperature curing of 200 ° C. or lower, a method for producing a patterned cured product, a cured product, an interlayer insulating film, It is to provide a cover coat layer, a surface protective film, and an electronic component.
  • the following photosensitive resin composition and the like are provided.
  • X 1 is a tetravalent aromatic group
  • the —COOR 1 group and the —CONH— group are ortho to each other
  • the —COOR 2 group and the —CO— group are ortho to each other.
  • Y 1 is a divalent aromatic group
  • R 1 and R 2 are each independently a hydrogen atom, a group represented by the following formula (2), or an aliphatic group having 1 to 4 carbon atoms It is a hydrocarbon group, and at least one of R 1 and R 2 is a group represented by the formula (2).
  • R 3 to R 5 are each independently a hydrogen atom or an aliphatic hydrocarbon group having 1 to 3 carbon atoms, and m is an integer of 1 to 10.
  • 3. 3 The photosensitive resin composition according to 1 or 2, wherein the component (B) includes a polymerizable monomer having a group containing a polymerizable unsaturated double bond and having an aliphatic cyclic skeleton. 4). 4.
  • R 6 and R 7 are each independently an aliphatic hydrocarbon group having 1 to 4 carbon atoms or a group represented by the following formula (4).
  • N1 is 0 or 1
  • N2 is an integer of 0 to 2
  • n1 + n2 is 1 or more.
  • At least one of n1 R 6 and n2 R 7 is a group represented by the following formula (4).
  • R 9 to R 11 are each independently a hydrogen atom or an aliphatic hydrocarbon group having 1 to 3 carbon atoms, and l is an integer of 0 to 10) 5). 5.
  • An electronic component comprising the interlayer insulating film, cover coat layer or surface protective film according to 12.11.
  • a photosensitive resin composition capable of forming a cured product having excellent adhesion and migration resistance even at low temperature curing of 200 ° C. or less, a method for producing a patterned cured product, a cured product, an interlayer insulating film, A cover coat layer, a surface protective film, and an electronic component can be provided.
  • a or B may include either one of A and B, or may include both.
  • the term “process” is not limited to an independent process, and even if it cannot be clearly distinguished from other processes, the term “process” is used as long as the intended action of the process is achieved. included.
  • the numerical range indicated by using “to” indicates a range including the numerical values described before and after “to” as the minimum value and the maximum value, respectively.
  • the content of each component in the composition is the sum of the plurality of substances present in the composition unless there is a specific indication when there are a plurality of substances corresponding to each component in the composition. Means quantity.
  • the exemplary materials may be used singly or in combination of two or more unless otherwise specified.
  • the “(meth) acryl group” in the present specification means “acryl group” and “methacryl group”.
  • the photosensitive resin composition of the present invention comprises (A) a polyimide precursor having a polymerizable unsaturated bond (hereinafter also referred to as “component (A)”), and (B) a polymerizable monomer having an aliphatic cyclic skeleton. (Hereinafter also referred to as “component (B)”), (C) photopolymerization initiator (hereinafter also referred to as “(C) component”), and (D) solvent (hereinafter referred to as “(D) component”). Contain).
  • cured material excellent in adhesiveness and migration tolerance can be formed. Further, as an optional effect, a cured product having excellent chemical resistance and a high residual film ratio after curing can be formed.
  • the photosensitive resin composition of the present invention is preferably a negative photosensitive resin composition.
  • the component (A) is not particularly limited, but is preferably a polyimide precursor that has high transmittance when i-line is used as a light source during patterning and exhibits high cured product characteristics even at low temperature curing of 200 ° C. or lower.
  • Examples of the polymerizable unsaturated bond include a carbon-carbon double bond.
  • the component (A) is preferably a polyimide precursor having a structural unit represented by the following formula (1).
  • the content of the structural unit represented by the formula (1) is preferably 50 mol% or more, more preferably 80 mol% or more, and 90 mol% or more with respect to all the structural units of the component (A). Further preferred. An upper limit is not specifically limited, 100 mol% may be sufficient.
  • X 1 is a tetravalent aromatic group
  • the —COOR 1 group and the —CONH— group are ortho to each other
  • the —COOR 2 group and the —CO— group are ortho to each other.
  • Y 1 is a divalent aromatic group
  • R 1 and R 2 are each independently a hydrogen atom, a group represented by the following formula (2), or an aliphatic group having 1 to 4 carbon atoms It is a hydrocarbon group, and at least one of R 1 and R 2 is a group represented by the formula (2).
  • R 3 to R 5 are each independently a hydrogen atom or an aliphatic hydrocarbon group having 1 to 3 carbon atoms, and m is an integer of 1 to 10 (preferably an integer of 2 to 5). , More preferably 2 or 3).)
  • the tetravalent aromatic group of X 1 in the formula (1) may be a tetravalent aromatic hydrocarbon group or a tetravalent aromatic heterocyclic group.
  • a tetravalent aromatic hydrocarbon group is preferred.
  • Examples of the tetravalent aromatic hydrocarbon group of X 1 in the formula (1) include, but are not limited to, the group of the following formula (6).
  • X and Y each independently represent a divalent group or a single bond that is not conjugated to the benzene ring to which each is bonded.
  • Z represents an ether group (—O—) or a sulfide group (—S -) (-O- is preferred).
  • the divalent group that is not conjugated to the benzene ring to which each of X and Y is bonded is —O—, —S—, a methylene group, a bis (trifluoromethyl) methylene group, or a difluoromethylene group. Is preferable, and —O— is more preferable.
  • the divalent aromatic group of Y 1 in the formula (1) may be a divalent aromatic hydrocarbon group or a divalent aromatic heterocyclic group.
  • a divalent aromatic hydrocarbon group is preferred.
  • Examples of the divalent aromatic hydrocarbon group represented by Y 1 in the formula (1) include, but are not limited to, the group represented by the following formula (7).
  • R 12 to R 19 are each independently a hydrogen atom, a monovalent aliphatic hydrocarbon group or a monovalent organic group having a halogen atom.
  • Examples of the monovalent aliphatic hydrocarbon group of R 12 to R 19 in Formula (7) include a methyl group.
  • R 12 and R 15 to R 19 may be a hydrogen atom
  • R 13 and R 14 may be a monovalent aliphatic hydrocarbon group.
  • the monovalent organic group having a halogen atom (preferably a fluorine atom) of R 12 to R 19 in the formula (7) is a monovalent aliphatic hydrocarbon group having a halogen atom (preferably having a carbon number of 1 to 10, more Preferably, it has 1 to 6 carbon atoms, and examples thereof include a trifluoromethyl group.
  • Examples of the aliphatic hydrocarbon group having 1 to 4 carbon atoms (preferably 1 or 2) of R 1 and R 2 in the formula (1) include methyl group, ethyl group, n-propyl group, 2-propyl group, n- A butyl group etc. are mentioned.
  • At least one of R 1 and R 2 in the formula (1) is a group represented by the formula (2), and both are preferably groups represented by the formula (2).
  • Examples of the aliphatic hydrocarbon group having 1 to 3 carbon atoms (preferably 1 or 2) of R 3 to R 5 in the formula (2) include a methyl group, an ethyl group, an n-propyl group, and a 2-propyl group. It is done. A methyl group is preferred.
  • a polyimide precursor having a structural unit represented by the formula (1) includes, for example, a tetracarboxylic dianhydride represented by the following formula (8) and a diamino compound represented by the following formula (9).
  • -By reacting in an organic solvent such as methyl-2-pyrrolidone to obtain a polyamic acid adding a compound represented by the following formula (10), reacting in an organic solvent and partially introducing an ester group Obtainable.
  • the tetracarboxylic dianhydride represented by the formula (8) and the diamino compound represented by the formula (9) may be used alone or in combination of two or more.
  • X 1 is a group corresponding to X 1 of the formula (1).
  • R is a group represented by the above formula (2).
  • a component may have structural units other than the structural unit represented by Formula (1).
  • Examples of the structural unit other than the structural unit represented by the formula (1) include a structural unit represented by the formula (11).
  • X 2 is a tetravalent aromatic group
  • the —COOR 51 group and the —CONH— group are in an ortho position to each other
  • the —COOR 52 group and the —CO— group are in an ortho position to each other.
  • Y 2 is a divalent aromatic group
  • R 51 and R 52 are each independently a hydrogen atom or an aliphatic hydrocarbon group having 1 to 4 carbon atoms.
  • Examples of the X 2 tetravalent aromatic group of the formula (11) include the same as the X 1 tetravalent aromatic group of the formula (1).
  • Examples of the divalent aromatic group represented by Y 2 in the formula (11) include the same divalent aromatic groups represented by Y 1 in the formula (1).
  • Examples of the aliphatic hydrocarbon group having 1 to 4 carbon atoms of R 51 and R 52 in the formula (11) include the same as the aliphatic hydrocarbon group having 1 to 4 carbon atoms of R 1 and R 2 .
  • Structural units other than the structural unit represented by Formula (1) may be used alone or in combination of two or more.
  • the content of the structural unit other than the structural unit represented by the formula (1) is preferably less than 50 mol% with respect to all the structural units of the component (A).
  • the proportion of carboxy groups esterified with the group represented by the formula (2) with respect to all carboxy groups and all carboxy esters is preferably 50 mol% or more, and 60 to 100 More preferred is mol%, and more preferred is 70 to 90 mol%.
  • the molecular weight of component (A) is not particularly limited, but is preferably 10,000 to 200,000 in terms of number average molecular weight.
  • the number average molecular weight can be measured, for example, by a gel permeation chromatography method, and can be determined by conversion using a standard polystyrene calibration curve.
  • the photosensitive resin composition of the present invention includes (B) a polymerizable monomer having an aliphatic cyclic skeleton (preferably having 4 to 15 carbon atoms, more preferably 5 to 12 carbon atoms).
  • a polymerizable monomer having an aliphatic cyclic skeleton preferably having 4 to 15 carbon atoms, more preferably 5 to 12 carbon atoms.
  • Component (B) is a polymer having a group containing a polymerizable unsaturated double bond (preferably a (meth) acryl group since it can be polymerized by a photopolymerization initiator) and an aliphatic cyclic skeleton.
  • a polymerizable unsaturated double bond preferably a (meth) acryl group since it can be polymerized by a photopolymerization initiator
  • an aliphatic cyclic skeleton In order to improve the crosslinking density and photosensitivity, and to suppress the swelling of the pattern after development, it is preferable to have 2 to 3 groups containing a polymerizable unsaturated double bond.
  • the component (B) preferably contains a polymerizable monomer represented by the following formula (3).
  • R 6 and R 7 are each independently an aliphatic hydrocarbon group having 1 to 4 carbon atoms or a group represented by the following formula (4).
  • N1 is 0 or 1
  • N2 is an integer of 0 to 2
  • n1 + n2 is 1 or more (preferably 2 or 3)
  • at least one of n1 R 6 and n2 R 7 (preferably 2 or 3) is It is a group represented by the formula (4).
  • the two R 7 may be the same or different.
  • R 9 to R 11 are each independently a hydrogen atom or an aliphatic hydrocarbon group having 1 to 3 carbon atoms, and l is an integer of 0 to 10 (preferably 0, 1 or 2). ).
  • a component contains the polymerizable monomer represented by following formula (5).
  • component (B) for example, the following polymerizable monomers may be used.
  • R 21 to R 24 are each independently an aliphatic hydrocarbon group having 1 to 4 carbon atoms or a group represented by the above formula (4).
  • n3 is an integer of 1 to 3 (preferably 2 or 3).
  • n4 is an integer of 1 to 3 (preferably 2 or 3).
  • n5 is 0 or 1
  • n6 is 0 or 1.
  • n5 + n6 is 1 or more (preferably 2).
  • R 21 When two or more R 21 are present, the two or more R 21 may be the same or different. If R 22 is present 2 or more, 2 or more R 22 may be the same or different.
  • At least one (preferably 2 or 3) of the n3 R 21 is a group represented by the above formula (4).
  • At least one (preferably 2 or 3) of the n4 R 22 is a group represented by the above formula (4).
  • At least one (preferably 2) of n5 R 23 and n6 R 24 is a group represented by the above formula (4).
  • Examples of the aliphatic hydrocarbon group having 1 to 4 carbon atoms of R 6 and R 7 of formula (3) and R 21 to R 24 of formula (12) include 1 carbon atom of R 1 and R 2 of formula (1). Examples similar to the aliphatic hydrocarbon groups of 4 to 4 are mentioned.
  • the aliphatic hydrocarbon group having 1 to 3 carbon atoms of R 9 to R 11 in the formula (4) is the same as the aliphatic hydrocarbon group having 1 to 3 carbon atoms in the R 3 to R 5 of the formula (2). Things.
  • a component may be used individually by 1 type and may combine 2 or more types.
  • the content of the component (B) is preferably 1 to 50 parts by mass with respect to 100 parts by mass of the component (A). From the viewpoint of improving the hydrophobicity of the cured product, the amount is more preferably 3 to 50 parts by mass, still more preferably 5 to 35 parts by mass. When it is within the above range, a practical relief pattern can be easily obtained, and residues after development of unexposed portions can be easily suppressed.
  • component (C) examples include benzophenone, methyl o-benzoylbenzoate, 4-benzoyl-4′-methyldiphenyl ketone, dibenzyl ketone, fluorenone and other benzophenone derivatives, Acetophenone derivatives such as 2,2′-diethoxyacetophenone, 2-hydroxy-2-methylpropiophenone, 1-hydroxycyclohexyl phenyl ketone, Thioxanthone derivatives such as thioxanthone, 2-methylthioxanthone, 2-isopropylthioxanthone, diethylthioxanthone, Benzyl derivatives such as benzyl, benzyldimethyl ketal, benzyl- ⁇ -methoxyethyl acetal, Benzoin derivatives such as benzoin and benzoin methyl ether, and 1-phenyl-1,2-butanedione-2- (o-methoxycarbonyl) oxime, 1-phen
  • oxime esters are preferable from the viewpoint of photosensitivity.
  • a component may be used individually by 1 type and may combine 2 or more types.
  • the content of component (C) is preferably 0.1 to 20 parts by mass, more preferably 0.1 to 10 parts by mass, and still more preferably 0.1 to 10 parts by mass with respect to 100 parts by mass of component (A). 5 parts by mass. Within the above range, photocrosslinking tends to be uniform in the film thickness direction, and a practical relief pattern can be easily obtained.
  • the photosensitive resin composition of the present invention contains (D) a solvent.
  • a solvent As the component (D), N-methyl-2-pyrrolidone, ⁇ -butyrolactone, ethyl lactate, propylene glycol monomethyl ether acetate, benzyl acetate, n-butyl acetate, ethoxyethyl propionate, 3-methylmethoxypropionate, N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide, hexamethylphosphorylamide, tetramethylene sulfone, cyclohexanone, cyclopentanone, diethyl ketone, diisobutyl ketone, methyl amyl ketone, etc.
  • N-methyl-2-pyrrolidone, ⁇ -butyrolactone, ethyl lactate, propylene glycol monomethyl ether acetate, N, N-dimethylformamide are preferred from the viewpoint of excellent solubility of each component and coatability when forming a photosensitive resin film.
  • N, N-dimethylacetamide is preferably used.
  • a component may be used individually by 1 type and may combine 2 or more types.
  • the content of component (D) is not particularly limited, but is generally 50 to 1000 parts by mass with respect to 100 parts by mass of component (A).
  • the photosensitive resin composition of the present invention may further contain (E) a thermal polymerization initiator (hereinafter also referred to as “component (E)”) from the viewpoint of promoting the polymerization reaction.
  • component (E) is not decomposed by heating (drying) to remove the solvent during film formation, but decomposes by heating at the time of curing to generate radicals, and the components (B) or (A) and (B) The compound which accelerates
  • Component (E) is preferably a compound having a decomposition point of 110 ° C. or higher and 200 ° C. or lower, and more preferably a compound of 110 ° C. or higher and 175 ° C. or lower from the viewpoint of promoting the polymerization reaction at a lower temperature.
  • ketone peroxides such as methyl ethyl ketone peroxide, 1,1-di (t-hexylperoxy) -3,3,5-trimethylcyclohexane, 1,1-di (t-hexylperoxy) cyclohexane, 1, Peroxyketals such as 1-di (t-butylperoxy) cyclohexane, hydroperoxides such as 1,1,3,3-tetramethylbutyl hydroperoxide, cumene hydroperoxide, p-menthane hydroperoxide, dicumyl peroxide, di Dialkyl peroxides such as t-butyl peroxide, diacyl peroxides such as dilauroyl peroxide, dibenzoyl peroxide, di (4-t-butylcyclohexyl) peroxydicarbonate, di (2-ethylhexyl) peroxydicar Peroxydicarbonates such as nates
  • the content of the component (E) is preferably 0.1 to 20 parts by mass with respect to 100 parts by mass of the component (A), and is 0 for ensuring good flux resistance. 2 to 20 parts by mass is more preferable, and 0.3 to 10 parts by mass is more preferable from the viewpoint of suppressing a decrease in solubility due to decomposition during drying.
  • the photosensitive resin composition of the present invention may contain a coupling agent, a surfactant or a leveling agent, a rust inhibitor, a polymerization inhibitor, and the like.
  • the coupling agent itself is polymerized in the step of reacting with the component (A) to be crosslinked or heat-treated.
  • substrate can be improved more.
  • a preferable silane coupling agent includes a compound having a urea bond (—NH—CO—NH—). Thereby, also when it hardens
  • a compound represented by the following formula (13) is more preferable in that it exhibits excellent adhesion when cured at a low temperature.
  • R 31 and R 32 are each independently an alkyl group having 1 to 5 carbon atoms. A is an integer of 1 to 10, and b is an integer of 1 to 3.
  • Specific examples of the compound represented by the formula (13) include ureidomethyltrimethoxysilane, ureidomethyltriethoxysilane, 2-ureidoethyltrimethoxysilane, 2-ureidoethyltriethoxysilane, and 3-ureidopropyltrimethoxysilane. , 3-ureidopropyltriethoxysilane, 4-ureidobutyltrimethoxysilane, 4-ureidobutyltriethoxysilane, and the like, preferably 3-ureidopropyltriethoxysilane.
  • silane coupling agent a silane coupling agent having a hydroxy group or a glycidyl group may be used.
  • a silane coupling agent having a hydroxy group or glycidyl group and a silane coupling agent having a urea bond in the molecule are used in combination, the adhesion of the cured product to the substrate during low-temperature curing can be further improved.
  • silane coupling agent having a hydroxy group or a glycidyl group examples include methylphenylsilanediol, ethylphenylsilanediol, n-propylphenylsilanediol, isopropylphenylsilanediol, n-butylphenylsilanediol, isobutylphenylsilanediol, tert- Butylphenylsilanediol, diphenylsilanediol, ethylmethylphenylsilanol, n-propylmethylphenylsilanol, isopropylmethylphenylsilanol, n-butylmethylphenylsilanol, isobutylmethylphenylsilanol, tert-butylmethylphenylsilanol, ethyl n-propyl group
  • R 33 is a monovalent organic group having a hydroxy group or a glycidyl group
  • R 34 and R 35 are each independently an alkyl group having 1 to 5 carbon atoms. (It is an integer of 10, and d is an integer of 1 to 3.)
  • Examples of the compound represented by the formula (14) include hydroxymethyltrimethoxysilane, hydroxymethyltriethoxysilane, 2-hydroxyethyltrimethoxysilane, 2-hydroxyethyltriethoxysilane, 3-hydroxypropyltrimethoxysilane, 3- Hydroxypropyltriethoxysilane, 4-hydroxybutyltrimethoxysilane, 4-hydroxybutyltriethoxysilane, glycidoxymethyltrimethoxysilane, glycidoxymethyltriethoxysilane, 2-glycidoxyethyltrimethoxysilane, 2- Glycidoxyethyltriethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, 4-glycidoxybutyltrimethoxysilane, 4-glycidoxybutyl Triethoxysilane, and the like.
  • the silane coupling agent having a hydroxy group or a glycidyl group preferably further contains a nitrogen atom, and a silane coupling agent having an amino group or an amide bond is preferred.
  • a silane coupling agent having an amino group include bis (2-hydroxymethyl) -3-aminopropyltriethoxysilane, bis (2-hydroxymethyl) -3-aminopropyltrimethoxysilane, and bis (2-glycidoxy And methyl) -3-aminopropyltriethoxysilane and bis (2-hydroxymethyl) -3-aminopropyltrimethoxysilane.
  • R 36 As the silane coupling agent having an amide bond, R 36 — (CH 2 ) e —CO—NH— (CH 2 ) f —Si (OR 37 ) 3 (R 36 is a hydroxy group or a glycidyl group, and e and f is an integer of 1 to 3 each independently, and R 37 is a methyl group, an ethyl group or a propyl group).
  • the silane coupling agent may be used alone or in combination of two or more.
  • the content of the silane coupling agent is preferably 0.1 to 20 parts by weight, more preferably 1 to 10 parts by weight, and more preferably 0.3 to 100 parts by weight of component (A). More preferred is 10 parts by mass.
  • coating properties for example, suppression of striation (film thickness unevenness)
  • developability can be improved.
  • surfactant or leveling agent examples include polyoxyethylene lauryl ether, polyoxyethylene stearyl ether, polyoxyethylene oleyl ether, polyoxyethylene octylphenol ether, and the like.
  • "F171”, “F173", “R-08” above, manufactured by DIC Corporation
  • trade names "Florard FC430”, “FC431” above, manufactured by Sumitomo 3M Corporation
  • trade names "organosiloxane polymer KP341", “KBM303”, “KBM403”, “KBM803” manufactured by Shin-Etsu Chemical Co., Ltd.
  • Surfactant and leveling agent may be used alone or in combination of two or more.
  • the content of the surfactant or leveling agent is preferably 0.01 to 10 parts by mass, more preferably 0.05 to 5 parts by mass with respect to 100 parts by mass of the component (A).
  • the amount is preferably 0.05 to 3 parts by mass.
  • a rust preventive agent By containing a rust preventive agent, it is possible to suppress corrosion and discoloration of copper and copper alloy.
  • the rust inhibitor include triazole derivatives and tetrazole derivatives.
  • a rust preventive may be used individually by 1 type, and may combine 2 or more types.
  • the content of the rust inhibitor is preferably 0.01 to 10 parts by mass, more preferably 0.1 to 5 parts by mass, and more preferably 0.5 to 100 parts by mass with respect to 100 parts by mass of the component (A). 3 parts by mass is more preferable.
  • polymerization inhibitor By containing a polymerization inhibitor, good storage stability can be ensured.
  • the polymerization inhibitor include radical polymerization inhibitors and radical polymerization inhibitors.
  • polymerization inhibitor examples include p-methoxyphenol, diphenyl-p-benzoquinone, benzoquinone, hydroquinone, pyrogallol, phenothiazine, resorcinol, orthodinitrobenzene, paradinitrobenzene, metadinitrobenzene, phenanthraquinone, N-phenyl-2- Examples thereof include naphthylamine, cuperone, 2,5-toluquinone, tannic acid, parabenzylaminophenol, nitrosamines and the like.
  • the polymerization inhibitor may be used alone or in combination of two or more.
  • the content of the polymerization inhibitor is 0 with respect to 100 parts by mass of component (A) from the viewpoint of storage stability of the photosensitive resin composition and heat resistance of the resulting cured product. 0.01 to 30 parts by mass is preferable, 0.01 to 10 parts by mass is more preferable, and 0.05 to 5 parts by mass is even more preferable.
  • the photosensitive resin composition of the present invention essentially comprises components (A) to (D), and optionally component (E), a coupling agent, a surfactant, a leveling agent, a rust inhibitor, and a polymerization inhibitor. And may contain other inevitable impurities as long as the effects of the present invention are not impaired.
  • a coupling agent for example, 80 mass% or more, 90 mass% or more, 95 mass% or more, 98 mass% or more, or 100 mass%
  • Components (A) to (D), (A) to (E) component or (A) to (D) component, and optionally (E) component, coupling agent, surfactant, leveling agent, rust inhibitor, and polymerization inhibitor are also good.
  • the cured product of the present invention can be obtained by curing the above-described photosensitive resin composition.
  • the cured product of the present invention may be used as a pattern cured product or a cured product having no pattern.
  • the film thickness of the cured product of the present invention is preferably 5 to 20 ⁇ m.
  • the above-described photosensitive resin composition is applied on a substrate and dried to form a photosensitive resin film, and the photosensitive resin film is subjected to pattern exposure to form a resin film.
  • a method for producing a cured product having no pattern includes, for example, a process of forming the above-described photosensitive resin film and a process of heat treatment. Furthermore, you may provide the process of exposing.
  • the substrate examples include a glass substrate, a semiconductor substrate such as a Si substrate (silicon wafer), a metal oxide insulator substrate such as a TiO 2 substrate and a SiO 2 substrate, a silicon nitride substrate, a copper substrate, and a copper alloy substrate.
  • a semiconductor substrate such as a Si substrate (silicon wafer)
  • a metal oxide insulator substrate such as a TiO 2 substrate and a SiO 2 substrate
  • silicon nitride substrate silicon nitride substrate
  • copper substrate examples include a copper alloy substrate.
  • the application method is not particularly limited, but can be performed using a spinner or the like.
  • Drying can be performed using a hot plate, an oven, or the like.
  • the drying temperature is preferably 90 to 150 ° C., and more preferably 90 to 120 ° C. from the viewpoint of ensuring dissolution contrast.
  • the drying time is preferably 30 seconds to 5 minutes. Drying may be performed twice or more. Thereby, the photosensitive resin film which formed the above-mentioned photosensitive resin composition in the film form can be obtained.
  • the film thickness of the photosensitive resin film is preferably 5 to 100 ⁇ m, more preferably 6 to 50 ⁇ m, and even more preferably 7 to 30 ⁇ m.
  • a predetermined pattern is exposed through a photomask.
  • Actinic rays to be irradiated include ultraviolet rays such as i-rays, visible rays, and radiation, but i-rays are preferable.
  • a parallel exposure machine, a projection exposure machine, a stepper, a scanner exposure machine, or the like can be used as the exposure apparatus.
  • a patterned resin film By developing, a patterned resin film (pattern resin film) can be obtained.
  • a negative photosensitive resin composition is used, an unexposed portion is removed with a developer.
  • a good solvent for the photosensitive resin film can be used alone, or a good solvent and a poor solvent can be appropriately mixed as the developer.
  • Good solvents include N-methyl-2-pyrrolidone, N-acetyl-2-pyrrolidone, N, N-dimethylacetamide, N, N-dimethylformamide, dimethyl sulfoxide, gamma butyrolactone, ⁇ -acetyl-gammabutyrolactone, cyclopenta Non, cyclohexanone, etc. are mentioned.
  • the poor solvent include toluene, xylene, methanol, ethanol, isopropanol, propylene glycol monomethyl ether acetate, propylene glycol monomethyl ether and water.
  • a surfactant may be added to the developer.
  • the addition amount is preferably 0.01 to 10 parts by mass, more preferably 0.1 to 5 parts by mass with respect to 100 parts by mass of the developer.
  • the development time can be set to, for example, twice the time until the photosensitive resin film is immersed and completely dissolved.
  • the development time varies depending on the component (A) used, but is preferably 10 seconds to 15 minutes, more preferably 10 seconds to 5 minutes, and further preferably 20 seconds to 5 minutes from the viewpoint of productivity.
  • rinsing liquid distilled water, methanol, ethanol, isopropanol, toluene, xylene, propylene glycol monomethyl ether acetate, propylene glycol monomethyl ether, etc. may be used alone or in combination as appropriate, or may be used in a stepwise combination. Good.
  • a patterned cured product can be obtained by heat-treating the pattern resin film.
  • the temperature of the heat treatment is preferably 250 ° C. or lower, more preferably 120 to 250 ° C., further preferably 200 ° C. or lower or 160 to 200 ° C. By being within the above range, damage to the substrate and the device can be suppressed, the device can be produced with a high yield, and energy saving of the process can be realized.
  • the heat treatment time is preferably 5 hours or less, more preferably 30 minutes to 3 hours. By being within the above range, the crosslinking reaction or dehydration ring-closing reaction can sufficiently proceed.
  • the atmosphere for the heat treatment may be in the air or in an inert atmosphere such as nitrogen, but a nitrogen atmosphere is preferable from the viewpoint of preventing oxidation of the pattern resin film.
  • Examples of the apparatus used for the heat treatment include a quartz tube furnace, a hot plate, rapid thermal annealing, a vertical diffusion furnace, an infrared curing furnace, an electron beam curing furnace, and a microwave curing furnace.
  • the cured product of the present invention can be used as a passivation film, a buffer coat film, an interlayer insulating film, a cover coat layer, or a surface protective film.
  • a passivation film a buffer coat film, an interlayer insulating film, a cover coat layer, or a surface protective film.
  • a highly reliable semiconductor device multilayer wiring board, various electronic devices, lamination Electronic parts such as devices (multi-die fan-out wafer level package etc.) can be manufactured.
  • FIG. 1 is a manufacturing process diagram of a semiconductor device having a multilayer wiring structure as an electronic component according to an embodiment of the present invention.
  • a semiconductor substrate 1 such as a Si substrate having a circuit element is covered with a protective film 2 such as a silicon oxide film except for a predetermined portion of the circuit element, and a first conductor layer 3 is formed on the exposed circuit element. It is formed. Thereafter, an interlayer insulating film 4 is formed on the semiconductor substrate 1.
  • a photosensitive resin layer 5 such as chlorinated rubber or phenol novolac is formed on the interlayer insulating film 4, and a window 6A is formed so that a predetermined portion of the interlayer insulating film 4 is exposed by a known photolithography technique.
  • the interlayer insulating film 4 from which the window 6A is exposed is selectively etched to provide the window 6B.
  • the photosensitive resin layer 5 is completely removed using an etching solution that corrodes only the photosensitive resin layer 5 without corroding the first conductor layer 3 exposed from the window 6B.
  • the second conductor layer 7 is formed by using a known photolithography technique, and electrical connection with the first conductor layer 3 is performed.
  • each of the layers can be formed by repeating the above-described steps.
  • the window 6C is opened by pattern exposure, and the surface protective film 8 is formed.
  • the surface protective film 8 protects the second conductor layer 7 from external stress, ⁇ rays, etc., and the obtained semiconductor device is excellent in reliability.
  • the interlayer insulating film can be formed using the photosensitive resin composition of the present invention.
  • Synthesis Example 1 (Synthesis of A1) 7.07 g of 3,3 ′, 4,4′-diphenyl ether tetracarboxylic dianhydride (ODPA) and 4.12 g of 2,2′-dimethylbiphenyl-4,4′-diamine (DMAP) were added to N-methyl- The product was dissolved in 30 g of 2-pyrrolidone (NMP) and stirred at 30 ° C. for 4 hours and then overnight at room temperature to obtain polyamic acid. Thereto was added 9.45 g of trifluoroacetic anhydride under water cooling, followed by stirring at 45 ° C. for 3 hours, and 7.08 g of 2-hydroxyethyl methacrylate (HEMA) was added.
  • ODPA 4,4′-diphenyl ether tetracarboxylic dianhydride
  • DMAP 2,2′-dimethylbiphenyl-4,4′-diamine
  • This reaction solution was dropped into distilled water, and the precipitate was collected by filtration and dried under reduced pressure to obtain a polyimide precursor A1.
  • the number average molecular weight was calculated
  • the number average molecular weight of A1 was 40,000.
  • esterification rate of A1 (reaction rate of carboxy group of ODPA with HEMA) was calculated by performing NMR measurement under the following conditions.
  • the esterification rate was 80 mol% with respect to the total carboxy groups of the polyamic acid (the remaining 20 mol% was carboxy groups).
  • Measuring instrument AV400M manufactured by Bruker BioSpin Magnetic field strength: 400MHz
  • Reference material Tetramethylsilane (TMS)
  • Solvent Dimethyl sulfoxide (DMSO)
  • Examples 1 to 11 and Comparative Example 1 (Preparation of photosensitive resin composition) Photosensitive resin compositions of Examples 1 to 11 and Comparative Example 1 were prepared using the components and blending amounts shown in Table 1. The compounding quantity of Table 1 is a mass part of each component with respect to 100 mass parts A1.
  • Each component used is as follows. As component (A), A1 obtained in Synthesis Example 1 was used.
  • B ′ Component B2: Tetraethylene glycol dimethacrylate
  • B3 A-TMMT (made by Shin-Nakamura Chemical Co., Ltd., pentaerythritol tetraacrylate)
  • Photopolymerization initiator C1 IRUGCURE OXE 02 (manufactured by BASF Japan Ltd., Etanone, 1- [9-ethyl-6- (2-methylbenzoyl) -9H-carbazol-3-yl]-, 1 -(0-acetyloxime))
  • C2 G-1820 (PDO) (Lambson, 1-phenyl-1,2-propanedione-2- (O-ethoxycarbonyl) oxime)
  • the obtained photosensitive resin composition is spin-coated on a silicon wafer using a coating apparatus Act8 (manufactured by Tokyo Electron Ltd.), dried at 100 ° C. for 2 minutes, and then dried at 110 ° C. for 2 minutes to obtain a dried film.
  • a photosensitive resin film having a thickness of 7 to 15 ⁇ m was formed.
  • the development time was set to twice the time required for the obtained photosensitive resin film to be immersed in cyclopentanone and completely dissolved.
  • a photosensitive resin film was prepared in the same manner as described above, and i-line stepper FPA-3000iW (manufactured by Canon Inc.) was used for the obtained photosensitive resin film, and i-line of 50 to 550 mJ / cm 2 was obtained. Exposure was performed by irradiating a predetermined pattern with an irradiation amount of 50 mJ / cm 2 . The exposed resin film was subjected to paddle development on cyclopentanone with Act 8 using Act8, and then rinsed with propylene glycol monomethyl ether acetate (PGMEA) to obtain a patterned resin film. The obtained pattern resin film was heated at 175 ° C. for 1 hour in a nitrogen atmosphere using a vertical diffusion furnace ⁇ -TF (manufactured by Koyo Thermo System Co., Ltd.) to obtain a pattern cured product (film thickness after curing 10 ⁇ m). Obtained.
  • i-line stepper FPA-3000iW manufactured by Canon Inc.
  • the silicon wafer is exposed by scribing a part of the film with respect to the film thickness after heating for 2 minutes on a 110 ° C. hot plate and the film thickness after curing, and the film is exposed from the exposed silicon wafer surface.
  • the height to the surface was measured using a contact-type profiler Dektak 150 (manufactured by Bruker) (measurement of film thickness is the same below).
  • the cured film thickness of 10 ⁇ m was divided by the film thickness after heating for 2 minutes on a 110 ° C. hot plate, and then the percentage was obtained to determine the remaining film ratio after curing. The results are shown in Tables 1 and 2.
  • the obtained pattern cured product was immersed in NMP heated to 80 ° C. for 30 minutes. After cooling, it was washed with acetone and dried. The film thickness of the cured pattern after drying is measured, and the absolute value of “(film thickness before NMP immersion) ⁇ (film thickness of NMP immersion, pattern cured product after drying)” is the film thickness before NMP immersion. The rate of change in film thickness was calculated as a percentage. The change in film thickness was evaluated with a film thickness change rate of less than 5% as ⁇ , a film thickness change rate of 5-10% as ⁇ , and a film thickness change rate of more than 10% as x. The results are shown in Tables 1 and 2.
  • the above-mentioned photosensitive resin composition was spin-coated on a Cu plated wafer using a coating apparatus Act8 (manufactured by Tokyo Electron Ltd.), dried at 100 ° C. for 2 minutes, and then dried at 110 ° C. for 2 minutes to be photosensitive. A resin film was formed. The obtained photosensitive resin film was exposed to 500 mJ / cm 2 using a proximity exposure machine mask aligner MA8 (manufactured by SUSS Microtec). About the resin film after exposure, it hardened
  • the obtained cured product was placed in a saturated pressure cooker (manufactured by Hirayama Seisakusho Co., Ltd.) and treated for 300 hours under conditions of a temperature of 121 ° C. and a relative humidity of 100%. After the treatment for 300 hours, the cured product was taken out, the epoxy resin layer at the tip of the aluminum stud was fixed to the surface of the cured product, and heated in an oven at 150 ° C. for 1 hour to adhere the epoxy resin layer and the cured product. Then, using a thin film adhesion strength measuring device ROMUS (manufactured by QUAD Group), the stud was pulled, the load at the time of peeling was measured, and the peeling mode was observed.
  • ROMUS thin film adhesion strength measuring device
  • Cu sputter wafer manufactured by Advanced Material Technology Co., Ltd., Cu sputter layer (0.1 ⁇ m) / Ti seed layer (0.1 ⁇ m) / SiN layer (1 ⁇ m) / wafer having a layer structure of silicon wafer) resist PMER-P-LA900PM
  • a comb tooth pattern (comb line width: 100 ⁇ m, number of teeth: 9 anodes, 9 cathodes, spacing: 20 ⁇ m) was formed using (manufactured by Tokyo Ohka Kogyo Co., Ltd.). After the comb tooth pattern was formed, Cu plating was performed (film thickness: 5 ⁇ m).
  • the photosensitive resin composition described above was spin-coated on a wafer with a copper comb electrode pattern so that the film thickness after curing was 10 ⁇ m using a coating apparatus Act8 (manufactured by Tokyo Electron Limited), and 100 ° C. And dried at 110 ° C. for 2 minutes to form a photosensitive resin film.
  • the obtained photosensitive resin film was exposed to 500 mJ / cm 2 by a proximity exposure machine mask aligner MA8 (manufactured by SUSS Microtec).
  • the photosensitive resin composition of the present invention can be used for an interlayer insulating film, a cover coat layer, or a surface protective film, and the interlayer insulating film, the cover coat layer, or the surface protective film of the present invention is used for an electronic component or the like. Can do.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Materials For Photolithography (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Photosensitive Polymer And Photoresist Processing (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

(A)重合性の不飽和結合を有するポリイミド前駆体、 (B)脂肪族環状骨格を有する重合性モノマー、 (C)光重合開始剤、及び (D)溶剤を含有する感光性樹脂組成物。

Description

感光性樹脂組成物、パターン硬化物の製造方法、硬化物、層間絶縁膜、カバーコート層、表面保護膜及び電子部品
 本発明は、感光性樹脂組成物、パターン硬化物の製造方法、硬化物、層間絶縁膜、カバーコート層、表面保護膜及び電子部品に関する。
 従来、半導体素子の表面保護膜及び層間絶縁膜には、優れた耐熱性と電気特性、機械特性等を併せ持つポリイミドやポリベンゾオキサゾールが用いられている。近年、これらの樹脂自身に感光特性を付与した感光性樹脂組成物が用いられており、これを用いるとパターン硬化物の製造工程が簡略化でき、煩雑な製造工程を短縮できる。(例えば、特許文献1参照)
 ところで、近年、コンピュータの高性能化を支えてきたトランジスタの微細化は、スケーリング則の限界に来ており、さらなる高性能化や高速化のために半導体素子を3次元的に積層する積層デバイス構造が注目を集めている(例えば、非特許文献1参照)。
 積層デバイス構造の中でも、マルチダイファンアウトウエハレベルパッケージ(Multi-die Fanout Wafer Level Packaging)は、一つのパッケージの中に複数のダイを一括封止して製造するパッケージであり、従来から提案されているファンアウトウエハレベルパッケージ(一つのパッケージの中に一つのダイを封止して製造する)よりも低コスト化、高性能化が期待できるので、非常に注目を集めている。
 マルチダイファンアウトウエハレベルパッケージの作製においては、高性能なダイの保護や耐熱性の低い封止材を保護し、歩留まりを向上させる観点から、低温硬化性が強く求められている(例えば、特許文献2参照)。
特開2009-265520号公報 国際公開第2008/111470号
"半導体技術年鑑 2013 パッケージング/実装編",日経BP社,p41-p50.
 本発明の目的は、200℃以下の低温硬化であっても、接着性及びマイグレーション耐性の優れた硬化物を形成できる感光性樹脂組成物、パターン硬化物の製造方法、硬化物、層間絶縁膜、カバーコート層、表面保護膜及び電子部品を提供することである。
 本発明によれば、以下の感光性樹脂組成物等が提供される。
1.(A)重合性の不飽和結合を有するポリイミド前駆体、
 (B)脂肪族環状骨格を有する重合性モノマー、
 (C)光重合開始剤、及び
 (D)溶剤を含有する感光性樹脂組成物。
2.前記(A)成分が、下記式(1)で表される構造単位を有するポリイミド前駆体である1に記載の感光性樹脂組成物。
Figure JPOXMLDOC01-appb-C000006
(式(1)中、Xは4価の芳香族基であって、-COOR基と-CONH-基とは互いにオルト位置にあり、-COOR基と-CO-基とは互いにオルト位置にある。Yは2価の芳香族基である。R及びRは、それぞれ独立に、水素原子、下記式(2)で表される基、又は炭素数1~4の脂肪族炭化水素基であり、R及びRの少なくとも一方が前記式(2)で表される基である。)
Figure JPOXMLDOC01-appb-C000007
(式(2)中、R~Rは、それぞれ独立に、水素原子又は炭素数1~3の脂肪族炭化水素基であり、mは1~10の整数である。)
3.前記(B)成分が、重合性の不飽和二重結合を含む基を有し、脂肪族環状骨格を有する重合性モノマーを含む、1又は2に記載の感光性樹脂組成物。
4.前記(B)成分が、下記式(3)で表される重合性モノマーを含む1~3のいずれかに記載の感光性樹脂組成物。
Figure JPOXMLDOC01-appb-C000008
(式(3)中、R及びRは、それぞれ独立に、炭素数1~4の脂肪族炭化水素基又は下記式(4)で表される基である。n1は0又は1であり、n2は0~2の整数であり、n1+n2は1以上である。n1個のR及びn2個のRの少なくとも1つは、下記式(4)で表される基である。)
Figure JPOXMLDOC01-appb-C000009
(式(4)中、R~R11は、それぞれ独立に、水素原子又は炭素数1~3の脂肪族炭化水素基であり、lは0~10の整数である。)
5.前記(B)成分が、下記式(5)で表される重合性モノマーを含む1~4のいずれかに記載の感光性樹脂組成物。
Figure JPOXMLDOC01-appb-C000010
6.さらに、(E)熱重合開始剤を含む1~5のいずれかに記載の感光性樹脂組成物。
7.1~6のいずれかに記載の感光性樹脂組成物を基板上に塗布、乾燥して感光性樹脂膜を形成する工程と、
 前記感光性樹脂膜をパターン露光して、樹脂膜を得る工程と、
 前記パターン露光後の樹脂膜を、有機溶剤を用いて、現像し、パターン樹脂膜を得る工程と、
 前記パターン樹脂膜を加熱処理する工程と、を含むパターン硬化物の製造方法。
8.前記加熱処理の温度が200℃以下である7に記載のパターン硬化物の製造方法。
9.1~6のいずれかに記載の感光性樹脂組成物を硬化した硬化物。
10.パターン硬化物である9に記載の硬化物。
11.9又は10に記載の硬化物を用いて作製された層間絶縁膜、カバーコート層又は表面保護膜。
12.11に記載の層間絶縁膜、カバーコート層又は表面保護膜を含む電子部品。
 本発明によれば、200℃以下の低温硬化であっても、接着性及びマイグレーション耐性の優れた硬化物を形成できる感光性樹脂組成物、パターン硬化物の製造方法、硬化物、層間絶縁膜、カバーコート層、表面保護膜及び電子部品が提供できる。
本発明の一実施形態に係る電子部品の製造工程図である。
 以下に、本発明の感光性樹脂組成物、それを用いたパターン硬化物の製造方法、硬化物、層間絶縁膜、カバーコート層、表面保護膜及び電子部品の実施の形態を詳細に説明する。尚、以下の実施の形態により本発明が限定されるものではない。
 本明細書において「A又はB」とは、AとBのどちらか一方を含んでいればよく、両方とも含んでいてもよい。また、本明細書において「工程」との語は、独立した工程だけではなく、他の工程と明確に区別できない場合であってもその工程の所期の作用が達成されれば、本用語に含まれる。
 「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。また、本明細書において組成物中の各成分の含有量は、組成物中に各成分に該当する物質が複数存在する場合、特に断らない限り、組成物中に存在する当該複数の物質の合計量を意味する。さらに、例示材料は特に断らない限り単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 本明細書における「(メタ)アクリル基」とは、「アクリル基」及び「メタクリル基」を意味する。
 本発明の感光性樹脂組成物は、(A)重合性の不飽和結合を有するポリイミド前駆体(以下、「(A)成分」ともいう。)、(B)脂肪族環状骨格を有する重合性モノマー(以下、「(B)成分」ともいう。)、(C)光重合開始剤(以下、「(C)成分」ともいう。)、及び(D)溶剤(以下、「(D)成分」ともいう。)を含有する。
 これにより、200℃以下の低温硬化であっても、接着性及びマイグレーション耐性の優れた硬化物を形成できる。
 また、任意の効果として、優れた薬品耐性の、硬化後の残膜率が高い、硬化物を形成できる。
 本発明の感光性樹脂組成物は、ネガ型感光性樹脂組成物であることが好ましい。
 (A)成分としては、特に制限はされないが、パターニング時の光源にi線を用いた場合の透過率が高く、200℃以下の低温硬化時にも高い硬化物特性を示すポリイミド前駆体が好ましい。
 重合性の不飽和結合としては、炭素炭素の二重結合等が挙げられる。
 (A)成分は、下記式(1)で表される構造単位を有するポリイミド前駆体であることが好ましい。これにより、i線の透過率が高く、200℃以下の低温硬化時にも良好な硬化物を形成できる。
 式(1)で表される構造単位の含有量は、(A)成分の全構成単位に対して、50モル%以上であることが好ましく、80モル%以上がより好ましく、90モル%以上がさらに好ましい。上限は特に限定されず、100モル%でもよい。
Figure JPOXMLDOC01-appb-C000011
(式(1)中、Xは4価の芳香族基であって、-COOR基と-CONH-基とは互いにオルト位置にあり、-COOR基と-CO-基とは互いにオルト位置にある。Yは2価の芳香族基である。R及びRは、それぞれ独立に、水素原子、下記式(2)で表される基、又は炭素数1~4の脂肪族炭化水素基であり、R及びRの少なくとも一方が前記式(2)で表される基である。)
Figure JPOXMLDOC01-appb-C000012
(式(2)中、R~Rは、それぞれ独立に、水素原子又は炭素数1~3の脂肪族炭化水素基であり、mは1~10の整数(好ましくは2~5の整数、より好ましくは2又は3)である。)
 式(1)のXの4価の芳香族基は、4価の芳香族炭化水素基でもよく、4価の芳香族複素環式基でもよい。4価の芳香族炭化水素基が好ましい。
 式(1)のXの4価の芳香族炭化水素基としては、例えば以下の式(6)の基が挙げられるが、これらに限定されるものではない。
Figure JPOXMLDOC01-appb-C000013
(式(6)中、X及びYは、それぞれ独立に、各々が結合するベンゼン環と共役しない2価の基又は単結合を示す。Zはエーテル基(-O-)又はスルフィド基(-S-)である(-O-が好ましい)。)
 式(6)において、X及びYの、各々が結合するベンゼン環と共役しない2価の基は、-O-、-S-、メチレン基、ビス(トリフルオロメチル)メチレン基、又はジフルオロメチレン基であることが好ましく、-O-であることがより好ましい。
 式(1)のYの2価の芳香族基は、2価の芳香族炭化水素基でもよく、2価の芳香族複素環式基でもよい。2価の芳香族炭化水素基が好ましい。
 式(1)のYの2価の芳香族炭化水素基としては、例えば以下の式(7)の基が挙げられるが、これに限定されるものではない。
Figure JPOXMLDOC01-appb-C000014
(式(7)中、R12~R19は、それぞれ独立に水素原子、1価の脂肪族炭化水素基又はハロゲン原子を有する1価の有機基である。)
 式(7)のR12~R19の1価の脂肪族炭化水素基(好ましくは炭素数1~10、より好ましくは炭素数1~6)としては、メチル基等が挙げられる。例えば、R12及びR15~R19が水素原子であり、R13及びR14が1価の脂肪族炭化水素基であってもよい。
 式(7)のR12~R19のハロゲン原子(好ましくはフッ素原子)を有する1価の有機基は、ハロゲン原子を有する1価の脂肪族炭化水素基(好ましくは炭素数1~10、より好ましくは炭素数1~6)が好ましく、トリフルオロメチル基等が挙げられる。
 式(1)のR及びRの炭素数1~4(好ましくは1又は2)の脂肪族炭化水素基としては、メチル基、エチル基、n-プロピル基、2-プロピル基、n-ブチル基等が挙げられる。
 式(1)のR及びRの少なくとも一方が、式(2)で表される基であり、ともに式(2)で表される基であることが好ましい。
 式(2)のR~Rの炭素数1~3(好ましくは1又は2)の脂肪族炭化水素基としては、メチル基、エチル基、n-プロピル基、2-プロピル基等が挙げられる。メチル基が好ましい。
 式(1)で表される構造単位を有するポリイミド前駆体は、例えば下記式(8)で表されるテトラカルボン酸二無水物と、下記式(9)で表されるジアミノ化合物とを、N-メチル-2-ピロリドン等の有機溶剤中にて反応させポリアミド酸を得て、下記式(10)で表される化合物を加え、有機溶剤中で反応させ部分的にエステル基を導入することで得ることができる。
 式(8)で表されるテトラカルボン酸二無水物及び式(9)で表されるジアミノ化合物は、1種単独で用いてもよく、2種以上を組み合わせてもよい。
Figure JPOXMLDOC01-appb-C000015
(式(8)中、Xは式(1)のXに対応する基である。)
Figure JPOXMLDOC01-appb-C000016
(式(9)中、Yは式(1)で定義した通りである。)
Figure JPOXMLDOC01-appb-C000017
(式(10)中、Rは上述の式(2)で表される基である。)
 (A)成分は、式(1)で表される構造単位以外の構造単位を有してもよい。
 式(1)で表される構造単位以外の構造単位としては、式(11)で表される構造単位等が挙げられる。
Figure JPOXMLDOC01-appb-C000018
(式(11)中、Xは4価の芳香族基であって、-COOR51基と-CONH-基とは互いにオルト位置にあり、-COOR52基と-CO-基とは互いにオルト位置にある。Yは2価の芳香族基である。R51及びR52は、それぞれ独立に、水素原子又は炭素数1~4の脂肪族炭化水素基である。)
 式(11)のXの4価の芳香族基は、式(1)のXの4価の芳香族基と同様のものが挙げられる。
 式(11)のYの2価の芳香族基は、式(1)のYの2価の芳香族基と同様のものが挙げられる。
 式(11)のR51及びR52の炭素数1~4の脂肪族炭化水素基は、R及びRの炭素数1~4の脂肪族炭化水素基と同様のものが挙げられる。
 式(1)で表される構造単位以外の構造単位は、1種単独で用いてもよく、2種以上を組み合わせてもよい。
 式(1)で表される構造単位以外の構造単位の含有量は、(A)成分の全構成単位に対して、50モル%未満であることが好ましい。
 (A)成分において、全カルボキシ基及び全カルボキシエステルに対して、式(2)で表される基でエステル化されたカルボキシ基の割合が、50モル%以上であることが好ましく、60~100モル%がより好ましく、70~90モル%がさらに好ましい。
 (A)成分の分子量に特に制限はないが、数平均分子量で10,000~200,000であることが好ましい。
 数平均分子量は、例えばゲルパーミエーションクロマトグラフィー法によって測定することができ、標準ポリスチレン検量線を用いて換算することによって求めることができる。
 本発明の感光性樹脂組成物は、(B)脂肪族環状骨格(好ましくは炭素数4~15、より好ましくは5~12)を有する重合性モノマーを含む。これにより、形成できる硬化物に疎水性を付与でき、高温多湿条件下での硬化物と基板間の接着性低下を抑制できる。
 (B)成分は、重合性の不飽和二重結合を含む基(好ましくは、光重合開始剤により重合可能であることから、(メタ)アクリル基)を有し、脂肪族環状骨格を有する重合性モノマーを含むことが好ましく、架橋密度及び光感度の向上、現像後のパターンの膨潤の抑制のため、2~3の、重合性の不飽和二重結合を含む基を、有することが好ましい。
 (B)成分は、下記式(3)で表される重合性モノマーを含むことが好ましい。
Figure JPOXMLDOC01-appb-C000019
(式(3)中、R及びRは、それぞれ独立に、炭素数1~4の脂肪族炭化水素基又は下記式(4)で表される基である。n1は0又は1であり、n2は0~2の整数であり、n1+n2は1以上(好ましくは2又は3)である。n1個のR及びn2個のRの少なくとも1つ(好ましくは2又は3)は、下記式(4)で表される基である。)
 Rが2つの場合、2つのRは同一でもよく、異なっていてもよい。
Figure JPOXMLDOC01-appb-C000020
(式(4)中、R~R11は、それぞれ独立に、水素原子又は炭素数1~3の脂肪族炭化水素基であり、lは0~10の整数(好ましくは0、1又は2)である。)
 (B)成分は、下記式(5)で表される重合性モノマーを含むことがより好ましい。
Figure JPOXMLDOC01-appb-C000021
 また、(B)成分として、例えば以下の重合性モノマーを用いてもよい。
Figure JPOXMLDOC01-appb-C000022
 式(12)中、R21~R24は、それぞれ独立に、炭素数1~4の脂肪族炭化水素基又は上記式(4)で表される基である。n3は1~3の整数(好ましくは2又は3)である。n4は1~3の整数(好ましくは2又は3)である。n5は0又は1であり、n6は0又は1である。n5+n6は1以上(好ましくは2)である。
 R21が2以上存在する場合、2以上のR21は同一でもよく、異なっていてもよい。
 R22が2以上存在する場合、2以上のR22は同一でもよく、異なっていてもよい。
 n3個のR21の少なくとも1つ(好ましくは2又は3)は、上記式(4)で表される基である。
 n4個のR22の少なくとも1つ(好ましくは2又は3)は、上記式(4)で表される基である。
 n5個のR23及びn6個のR24の少なくとも1つ(好ましくは2)は、上記式(4)で表される基である。
 式(3)のR及びR及び式(12)のR21~R24の炭素数1~4の脂肪族炭化水素基としては、式(1)のR及びRの炭素数1~4の脂肪族炭化水素基と同様のものが挙げられる。
 式(4)のR~R11の炭素数1~3の脂肪族炭化水素基としては、式(2)のR~Rの炭素数1~3の脂肪族炭化水素基と同様のものが挙げられる。
 (B)成分は、1種単独で用いてもよく、2種以上を組み合わせてもよい。
 (B)成分の含有量は、(A)成分100質量部に対して、1~50質量部が好ましい。硬化物の疎水性向上の観点から、より好ましくは3~50質量部、さらに好ましくは5~35質量部である。
 上記範囲内である場合、実用的なレリ-フパターンが得られやすく、未露光部の現像後残滓を抑制しやすい。
 (C)成分としては、例えば、ベンゾフェノン、o-ベンゾイル安息香酸メチル、4-ベンゾイル-4’-メチルジフェニルケトン、ジベンジルケトン、フルオレノン等のベンゾフェノン誘導体、
 2,2’-ジエトキシアセトフェノン、2-ヒドロキシ-2-メチルプロピオフェノン、1-ヒドロキシシクロヘキシルフェニルケトン等のアセトフェノン誘導体、
 チオキサントン、2-メチルチオキサントン、2-イソプロピルチオキサントン、ジエチルチオキサントン等のチオキサントン誘導体、
 ベンジル、ベンジルジメチルケタール、ベンジル-β-メトキシエチルアセタール等のベンジル誘導体、
 ベンゾイン、ベンゾインメチルエーテル等のベンゾイン誘導体、及び
 1-フェニル-1,2-ブタンジオン-2-(o-メトキシカルボニル)オキシム、1-フェニル-1,2-プロパンジオン-2-(o-メトキシカルボニル)オキシム、1-フェニル-1,2-プロパンジオン-2-(o-エトキシカルボニル)オキシム、1-フェニル-1,2-プロパンジオン-2-(o-ベンゾイル)オキシム、1,3-ジフェニルプロパントリオン-2-(o-エトキシカルボニル)オキシム、1-フェニル-3-エトキシプロパントリオン-2-(o-ベンゾイル)オキシム、エタノン,1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-,1-(0-アセチルオキシム)、下記式で表される化合物等のオキシムエステル類などが好ましく挙げられるが、これらに限定されるものではない。
Figure JPOXMLDOC01-appb-C000023
 特に光感度の点で、オキシムエステル類が好ましい。
 (C)成分は、1種単独で用いてもよく、2種以上を組み合わせてもよい。
 (C)成分の含有量は、(A)成分100質量部に対して、0.1~20質量部が好ましく、より好ましくは0.1~10質量部であり、さらに好ましくは0.1~5質量部である。
 上記範囲内の場合、光架橋が膜厚方向で均一となりやすく、実用的なレリ-フパターンを得やすくなる。
 本発明の感光性樹脂組成物は、(D)溶剤を含む。
 (D)成分としては、N-メチル-2-ピロリドン、γ-ブチロラクトン、乳酸エチル、プロピレングリコールモノメチルエーテルアセテート、酢酸ベンジル、n-ブチルアセテート、エトキシエチルプロピオネート、3-メチルメトキシプロピオネート、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド、ヘキサメチルホスホリルアミド、テトラメチレンスルホン、シクロヘキサノン、シクロペンタノン、ジエチルケトン、ジイソブチルケトン、メチルアミルケトン等が挙げられ、通常、他の成分を充分に溶解できるものであれば特に制限はない。
 この中でも、各成分の溶解性と感光性樹脂膜形成時の塗布性に優れる観点から、N-メチル-2-ピロリドン、γ-ブチロラクトン、乳酸エチル、プロピレングリコールモノメチルエーテルアセテート、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミドを用いることが好ましい。
 (D)成分は、1種単独で用いてもよく、2種以上を組み合わせてもよい。
 (D)成分の含有量は、特に限定されないが、一般的に、(A)成分100質量部に対して、50~1000質量部である。
 本発明の感光性樹脂組成物は、重合反応の促進の観点から、さらに、(E)熱重合開始剤(以下、「(E)成分」ともいう。)を含んでもよい。
 (E)成分としては、成膜時に溶剤を除去するための加熱(乾燥)では分解せず、硬化時の加熱により分解してラジカルを発生し、(B)成分同士、又は(A)成分及び(B)成分の重合反応を促進する化合物が好ましい。
 (E)成分は分解点が、110℃以上200℃以下の化合物が好ましく、より低温で重合反応を促進する観点から、110℃以上175℃以下の化合物がより好ましい。
 具体例としては、メチルエチルケトンペルオキシド等のケトンペルオキシド、1,1-ジ(t-ヘキシルパーオキシ)-3,3,5-トリメチルシクロヘキサン、1,1-ジ(t-ヘキシルパーオキシ)シクロヘキサン、1,1-ジ(t-ブチルパーオキシ)シクロヘキサン等のパーオキシケタール、1,1,3,3-テトラメチルブチルハイドロペルオキシド、クメンハイドロペルオキシド、p-メンタンハイドロペルオキシド等のハイドロペルオキシド、ジクミルペルオキシド、ジ-t-ブチルペルオキシド等のジアルキルペルオキシド、ジラウロイルペルオキシド、ジベンゾイルペルオキシド等のジアシルペルオキシド、ジ(4-t-ブチルシクロヘキシル)パーオキシジカーボネート、ジ(2-エチルヘキシル)パーオキシジカーボネート等のパーオキシジカーボネート、t-ブチルパーオキシ-2-エチルヘキサノエート、t-ヘキシルパーオキシイソプロピルモノカーボネート、t-ブチルパーオキシベンゾエート、1,1,3,3-テトラメチルブチルパーオキシ-2-エチルヘキサノエート等のパーオキシエステル、ビス(1-フェニル-1-メチルエチル)ペルオキシドなどが挙げられる。市販品としては、商品名「パークミルD」、「パークミルP」、「パークミルH」(以上、日油株式会社製)等が挙げられる。
 (E)成分を含有する場合、(E)成分の含有量は、(A)成分100質量部に対して、0.1~20質量部が好ましく、良好な耐フラックス性の確保のために0.2~20質量部がより好ましく、乾燥時の分解による溶解性低下抑制の観点から、0.3~10質量部がさらに好ましい。
 本発明の感光性樹脂組成物は、カップリング剤、界面活性剤又はレベリング剤、防錆剤、及び重合禁止剤等を含有してもよい。
 通常、カップリング剤は、現像後の加熱処理において、(A)成分と反応して架橋する、又は加熱処理する工程においてカップリング剤自身が重合する。これにより、得られる硬化物と基板との接着性をより向上させることができる。
 好ましいシランカップリング剤としては、ウレア結合(-NH-CO-NH-)を有する化合物が挙げられる。これにより、200℃以下の低温下で硬化を行った場合も基板との接着性をさらに高めることができる。
 低温での硬化を行った際の接着性の発現に優れる点で、下記式(13)で表される化合物がより好ましい。
Figure JPOXMLDOC01-appb-C000024
(式(13)中、R31及びR32は、それぞれ独立に炭素数1~5のアルキル基である。aは1~10の整数であり、bは1~3の整数である。)
 式(13)で表される化合物の具体例としては、ウレイドメチルトリメトキシシラン、ウレイドメチルトリエトキシシラン、2-ウレイドエチルトリメトキシシラン、2-ウレイドエチルトリエトキシシラン、3-ウレイドプロピルトリメトキシシラン、3-ウレイドプロピルトリエトキシシラン、4-ウレイドブチルトリメトキシシラン、4-ウレイドブチルトリエトキシシラン等が挙げられ、好ましくは3-ウレイドプロピルトリエトキシシランである。
 シランカップリング剤として、ヒドロキシ基又はグリシジル基を有するシランカップリング剤を用いてもよい。ヒドロキシ基又はグリシジル基を有するシランカップリング剤、及び分子内にウレア結合を有するシランカップリング剤を併用すると、さらに低温硬化時の硬化物の基板への接着性を向上することができる。
 ヒドロキシ基又はグリシジル基を有するシランカップリング剤としては、メチルフェニルシランジオール、エチルフェニルシランジオール、n-プロピルフェニルシランジオール、イソプロピルフェニルシランジオール、n-ブチルフェニルシランジオール、イソブチルフェニルシランジオール、tert-ブチルフェニルシランジオール、ジフェニルシランジオール、エチルメチルフェニルシラノール、n-プロピルメチルフェニルシラノール、イソプロピルメチルフェニルシラノール、n-ブチルメチルフェニルシラノール、イソブチルメチルフェニルシラノール、tert-ブチルメチルフェニルシラノール、エチルn-プロピルフェニルシラノール、エチルイソプロピルフェニルシラノール、n-ブチルエチルフェニルシラノール、イソブチルエチルフェニルシラノール、tert-ブチルエチルフェニルシラノール、メチルジフェニルシラノール、エチルジフェニルシラノール、n-プロピルジフェニルシラノール、イソプロピルジフェニルシラノール、n-ブチルジフェニルシラノール、イソブチルジフェニルシラノール、tert-ブチルジフェニルシラノール、フェニルシラントリオール、1,4-ビス(トリヒドロキシシリル)ベンゼン、1,4-ビス(メチルジヒドロキシシリル)ベンゼン、1,4-ビス(エチルジヒドロキシシリル)ベンゼン、1,4-ビス(プロピルジヒドロキシシリル)ベンゼン、1,4-ビス(ブチルジヒドロキシシリル)ベンゼン、1,4-ビス(ジメチルヒドロキシシリル)ベンゼン、1,4-ビス(ジエチルヒドロキシシリル)ベンゼン、1,4-ビス(ジプロピルヒドロキシシリル)ベンゼン、1,4-ビス(ジブチルヒドロキシシリル)ベンゼン、及び下記式(14)で表わされる化合物等が挙げられる。中でも、特に、基板との接着性をより向上させるため、式(14)で表される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000025
(式(14)中、R33はヒドロキシ基又はグリシジル基を有する1価の有機基であり、R34及びR35は、それぞれ独立に炭素数1~5のアルキル基である。cは1~10の整数であり、dは1~3の整数である。)
 式(14)で表される化合物としては、ヒドロキシメチルトリメトキシシラン、ヒドロキシメチルトリエトキシシラン、2-ヒドロキシエチルトリメトキシシラン、2-ヒドロキシエチルトリエトキシシラン、3-ヒドロキシプロピルトリメトキシシラン、3-ヒドロキシプロピルトリエトキシシラン、4-ヒドロキシブチルトリメトキシシラン、4-ヒドロキシブチルトリエトキシシラン、グリシドキシメチルトリメトキシシラン、グリシドキシメチルトリエトキシシラン、2-グリシドキシエチルトリメトキシシラン、2-グリシドキシエチルトリエトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリエトキシシラン、4-グリシドキシブチルトリメトキシシラン、4-グリシドキシブチルトリエトキシシラン等が挙げられる。
 ヒドロキシ基又はグリシジル基を有するシランカップリング剤は、さらに、窒素原子を含むことが好ましく、アミノ基又はアミド結合を有するシランカップリング剤が好ましい。
 アミノ基を有するシランカップリング剤としては、ビス(2-ヒドロキシメチル)-3-アミノプロピルトリエトキシシラン、ビス(2-ヒドロキシメチル)-3-アミノプロピルトリメトキシシラン、ビス(2-グリシドキシメチル)-3-アミノプロピルトリエトキシシラン、ビス(2-ヒドロキシメチル)-3-アミノプロピルトリメトキシシラン等が挙げられる。
 アミド結合を有するシランカップリング剤としては、R36-(CH-CO-NH-(CH-Si(OR37(R36はヒドロキシ基又はグリシジル基であり、e及びfは、それぞれ独立に、1~3の整数であり、R37はメチル基、エチル基又はプロピル基である)で表される化合物等が挙げられる。
 シランカップリング剤は、1種単独で用いてもよく、2種以上を組み合わせてもよい。
 シランカップリング剤を用いる場合、シランカップリング剤の含有量は、(A)成分100質量部に対して、0.1~20質量部が好ましく、1~10質量部がより好ましく、0.3~10質量部がさらに好ましい。
 界面活性剤又はレベリング剤を含むことで、塗布性(例えばストリエーション(膜厚のムラ)の抑制)及び現像性を向上させることができる。
 界面活性剤又はレベリング剤としては、例えば、ポリオキシエチレンウラリルエーテル、ポリオキシエチレンステアリルエーテル、ポリオキシエチレンオレイルエーテル、ポリオキシエチレンオクチルフェノールエーテル等が挙げられ、市販品としては、商品名「メガファックスF171」、「F173」、「R-08」(以上、DIC株式会社製)、商品名「フロラードFC430」、「FC431」(以上、住友スリーエム株式会社製)、商品名「オルガノシロキサンポリマーKP341」、「KBM303」、「KBM403」、「KBM803」(以上、信越化学工業株式会社製)等が挙げられる。
 界面活性剤及びレベリング剤は、1種単独で用いてもよく、2種以上を組み合わせてもよい。
 界面活性剤又はレベリング剤を含む場合、界面活性剤又はレベリング剤の含有量は、(A)成分100質量部に対して0.01~10質量部が好ましく、0.05~5質量部がより好ましく、0.05~3質量部がさらに好ましい。
 防錆剤を含むことで、銅及び銅合金の腐食の抑制や変色の防止ができる。
 防錆剤としては、例えば、トリアゾール誘導体及びテトラゾール誘導体等が挙げられる。
 防錆剤は、1種単独で用いてもよく、2種以上を組み合わせてもよい。
 防錆剤を用いる場合、防錆剤の含有量は、(A)成分100質量部に対して0.01~10質量部が好ましく、0.1~5質量部がより好ましく、0.5~3質量部がさらに好ましい。
 重合禁止剤を含有することで、良好な保存安定性を確保することができる。
 重合禁止剤としては、ラジカル重合禁止剤、ラジカル重合抑制剤等が挙げられる。
 重合禁止剤としては、例えば、p-メトキシフェノール、ジフェニル-p-ベンゾキノン、ベンゾキノン、ハイドロキノン、ピロガロール、フェノチアジン、レゾルシノール、オルトジニトロベンゼン、パラジニトロベンゼン、メタジニトロベンゼン、フェナントラキノン、N-フェニル-2-ナフチルアミン、クペロン、2,5-トルキノン、タンニン酸、パラベンジルアミノフェノール、ニトロソアミン類等が挙げられる。
 重合禁止剤は、1種単独で用いてもよく、2種以上を組み合わせてもよい。
 重合禁止剤を含有する場合、重合禁止剤の含有量としては、感光性樹脂組成物の保存安定性及び得られる硬化物の耐熱性の観点から、(A)成分100質量部に対して、0.01~30質量部が好ましく、0.01~10質量部がより好ましく、0.05~5質量部がさらに好ましい。
 本発明の感光性樹脂組成物は、本質的に、(A)~(D)成分、並びに任意に(E)成分、カップリング剤、界面活性剤、レベリング剤、防錆剤、及び重合禁止剤からなっており、本発明の効果を損なわない範囲で他に不可避不純物を含んでもよい。
 本発明の感光性樹脂組成物の、例えば、80質量%以上、90質量%以上、95質量%以上、98質量%以上又は100質量%が、
(A)~(D)成分、
(A)~(E)成分、又は
(A)~(D)成分、並びに任意に(E)成分、カップリング剤、界面活性剤、レベリング剤、防錆剤、及び重合禁止剤からなっていてもよい。
 本発明の硬化物は、上述の感光性樹脂組成物の硬化することで得ることができる。
 本発明の硬化物は、パターン硬化物として用いてもよく、パターンがない硬化物として用いてもよい。
 本発明の硬化物の膜厚は、5~20μmが好ましい。
 本発明のパターン硬化物の製造方法では、上述の感光性樹脂組成物を基板上に塗布、乾燥して感光性樹脂膜を形成する工程と、感光性樹脂膜をパターン露光して、樹脂膜を得る工程と、パターン露光後の樹脂膜を、有機溶剤を用いて、現像し、パターン樹脂膜を得る工程と、パターン樹脂膜を加熱処理する工程と、を含む。
 これにより、パターン硬化物を得ることができる。
 パターンがない硬化物を製造する方法は、例えば、上述の感光性樹脂膜を形成する工程と加熱処理する工程とを備える。さらに、露光する工程を備えてもよい。
 基板としては、ガラス基板、Si基板(シリコンウエハ)等の半導体基板、TiO基板、SiO基板等の金属酸化物絶縁体基板、窒化ケイ素基板、銅基板、銅合金基板などが挙げられる。
 塗布方法に特に制限はないが、スピナー等を用いて行うことができる。
 乾燥は、ホットプレート、オーブン等を用いて行うことができる。
 乾燥温度は90~150℃が好ましく、溶解コントラスト確保の観点から、90~120℃がより好ましい。
 乾燥時間は、30秒間~5分間が好ましい。
 乾燥は、2回以上行ってもよい。
 これにより、上述の感光性樹脂組成物を膜状に形成した感光性樹脂膜を得ることができる。
 感光性樹脂膜の膜厚は、5~100μmが好ましく、6~50μmがより好ましく、7~30μmがさらに好ましい。
 パターン露光は、例えばフォトマスクを介して所定のパターンに露光する。
 照射する活性光線は、i線等の紫外線、可視光線、放射線などが挙げられるが、i線であることが好ましい。
 露光装置としては、平行露光機、投影露光機、ステッパ、スキャナ露光機等を用いることができる。
 現像することで、パターン形成された樹脂膜(パターン樹脂膜)を得ることができる。一般的に、ネガ型感光性樹脂組成物を用いた場合には、未露光部を現像液で除去する。
 現像液として用いる有機溶剤は、現像液としては、感光性樹脂膜の良溶媒を単独で、又は良溶媒と貧溶媒を適宜混合して用いることができる。
 良溶媒としては、N-メチル-2-ピロリドン、N-アセチル-2-ピロリドン、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド、ジメチルスルホキシド、ガンマブチロラクトン、α-アセチル-ガンマブチロラクトン、シクロペンタノン、シクロヘキサノン等が挙げられる。
 貧溶媒としては、トルエン、キシレン、メタノール、エタノール、イソプロパノール、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノメチルエーテル及び水等が挙げられる。
 現像液に界面活性剤を添加してもよい。添加量としては、現像液100質量部に対して、0.01~10質量部が好ましく、0.1~5質量部がより好ましい。
 現像時間は、例えば感光性樹脂膜を浸漬して完全に溶解するまでの時間の2倍とすることができる。
 現像時間は、用いる(A)成分によっても異なるが、10秒間~15分間が好ましく、10秒間~5分間より好ましく、生産性の観点からは、20秒間~5分間がさらに好ましい。
 現像後、リンス液により洗浄を行ってもよい。
 リンス液としては、蒸留水、メタノール、エタノール、イソプロパノール、トルエン、キシレン、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノメチルエーテル等を単独又は適宜混合して用いてもよく、また段階的に組み合わせて用いてもよい。
 パターン樹脂膜を加熱処理することにより、パターン硬化物を得ることができる。
 (A)成分のポリイミド前駆体が、加熱処理工程によって、脱水閉環反応を起こし、通常対応するポリイミドとなる。
 加熱処理の温度は、250℃以下が好ましく、120~250℃がより好ましく、200℃以下又は160~200℃がさらに好ましい。
 上記範囲内であることにより、基板やデバイスへのダメージを小さく抑えることができ、デバイスを歩留り良く生産することが可能となり、プロセスの省エネルギー化を実現することができる。
 加熱処理の時間は、5時間以下が好ましく、30分間~3時間がより好ましい。
 上記範囲内であることにより、架橋反応又は脱水閉環反応を充分に進行することができる。
 加熱処理の雰囲気は大気中であっても、窒素等の不活性雰囲気中であってもよいが、パターン樹脂膜の酸化を防ぐことができる観点から、窒素雰囲気下が好ましい。
 加熱処理に用いられる装置としては、石英チューブ炉、ホットプレート、ラピッドサーマルアニール、縦型拡散炉、赤外線硬化炉、電子線硬化炉、マイクロ波硬化炉等が挙げられる。
 本発明の硬化物は、パッシベーション膜、バッファーコート膜、層間絶縁膜、カバーコート層又は表面保護膜等として用いることができる。
 上記パッシベーション膜、バッファーコート膜、層間絶縁膜、カバーコート層及び表面保護膜等からなる群から選択される1以上を用いて、信頼性の高い、半導体装置、多層配線板、各種電子デバイス、積層デバイス(マルチダイファンアウトウエハレベルパッケージ等)等の電子部品などを製造することができる。
 本発明の電子部品である半導体装置の製造工程の一例を、図面を参照して説明する。
 図1は、本発明の一実施形態に係る電子部品である多層配線構造の半導体装置の製造工程図である。
 図1において、回路素子を有するSi基板等の半導体基板1は、回路素子の所定部分を除いてシリコン酸化膜等の保護膜2などで被覆され、露出した回路素子上に第1導体層3が形成される。その後、前記半導体基板1上に層間絶縁膜4が形成される。
 次に、塩化ゴム系、フェノールノボラック系等の感光性樹脂層5が、層間絶縁膜4上に形成され、公知の写真食刻技術によって所定部分の層間絶縁膜4が露出するように窓6Aが設けられる。
 窓6Aが露出した層間絶縁膜4は、選択的にエッチングされ、窓6Bが設けられる。
 次いで、窓6Bから露出した第1導体層3を腐食することなく、感光性樹脂層5のみを腐食するようなエッチング溶液を用いて感光性樹脂層5が完全に除去される。
 さらに公知の写真食刻技術を用いて、第2導体層7を形成し、第1導体層3との電気的接続を行う。
 3層以上の多層配線構造を形成する場合には、上述の工程を繰り返して行い、各層を形成することができる。
 次に、上述の感光性樹脂組成物を用いて、パターン露光により窓6Cを開口し、表面保護膜8を形成する。表面保護膜8は、第2導体層7を外部からの応力、α線等から保護するものであり、得られる半導体装置は信頼性に優れる。
 尚、前記例において、層間絶縁膜を本発明の感光性樹脂組成物を用いて形成することも可能である。
 以下、実施例及び比較例に基づき、本発明についてさらに具体的に説明する。尚、本発明は下記実施例に限定されるものではない。
合成例1(A1の合成)
 3,3’,4,4’‐ジフェニルエーテルテトラカルボン酸二無水物(ODPA)7.07gと2,2’-ジメチルビフェニル-4,4’-ジアミン(DMAP)4.12gとをN-メチル-2-ピロリドン(NMP)30gに溶解し、30℃で4時間、その後室温下で一晩撹拌し、ポリアミド酸を得た。そこに水冷下で無水トリフルオロ酢酸を9.45g加え、45℃で3時間撹拌し、メタクリル酸2-ヒドロキシエチル(HEMA)7.08gを加えた。この反応液を蒸留水に滴下し、沈殿物をろ別して集め、減圧乾燥することによってポリイミド前駆体A1を得た。
 ゲルパーミエーションクロマトグラフ(GPC)法を用いて、標準ポリスチレン換算により、以下の条件で、数平均分子量を求めた。A1の数平均分子量は40,000であった。
 0.5mgのA1に対して溶剤[テトラヒドロフラン(THF)/ジメチルホルムアミド(DMF)=1/1(容積比)]1mLの溶液を用いて測定した。
 測定装置:検出器 株式会社日立製作所製L4000UV
 ポンプ:株式会社日立製作所製L6000
     株式会社島津製作所製C-R4A Chromatopac
 測定条件:カラムGelpack GL-S300MDT-5×2本
 溶離液:THF/DMF=1/1(容積比)
     LiBr(0.03mol/L)、HPO(0.06mol/L)
 流速:1.0mL/min、検出器:UV270nm
 また、A1のエステル化率(ODPAのカルボキシ基のHEMAとの反応率)を、以下の条件でNMR測定を行い、算出した。エステル化率は、ポリアミド酸の全カルボキシ基に対し80モル%であった(残り20モル%はカルボキシ基)。
測定機器:ブルカー・バイオスピン社製 AV400M
磁場強度:400MHz
基準物質:テトラメチルシラン(TMS)
溶媒:ジメチルスルホキシド(DMSO)
実施例1~11及び比較例1
(感光性樹脂組成物の調製)
 表1に示した成分及び配合量にて、実施例1~11及び比較例1の感光性樹脂組成物を調製した。表1の配合量は、100質量部のA1に対する、各成分の質量部である。
 用いた各成分は以下の通りである。(A)成分として、合成例1で得られたA1を用いた。
(B)成分:脂肪族環状骨格を有する重合性モノマー
B1:A-DCP(新中村化学工業株式会社製、トリシクロデカンジメタノールジアクリレート)
(B’ )成分
B2:テトラエチレングリコールジメタクリレート
B3:A-TMMT(新中村化学工業株式会社製、ペンタエリスリトールテトラアクリレート)
(C)成分:光重合開始剤
C1:IRUGCURE OXE 02(BASFジャパン株式会社製、エタノン,1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-,1-(0-アセチルオキシム))
C2:G-1820(PDO)(Lambson株式会社製、1-フェニル-1,2-プロパンジオン-2-(O-エトキシカルボニル)オキシム)
(D)成分:溶剤
NMP:N-メチル-2-ピロリドン
(E)成分:熱重合開始剤
E1:パークミルD(日油株式会社製、ビス(1-フェニル-1-メチルエチル)ペルオキシド、下記式で表される化合物)
Figure JPOXMLDOC01-appb-C000026
(パターン硬化物の製造)
 得られた感光性樹脂組成物を、塗布装置Act8(東京エレクトロン株式会社製)を用いて、シリコンウエハ上にスピンコートし、100℃で2分間乾燥後、110℃で2分間乾燥して乾燥膜厚が7~15μmの感光性樹脂膜を形成した。
 得られた感光性樹脂膜をシクロペンタノンに浸漬して完全に溶解するまでの時間の2倍を現像時間として設定した。
 また、上記と同様に感光性樹脂膜を作製し、得られた感光性樹脂膜に、i線ステッパFPA-3000iW(キヤノン株式会社製)を用いて、50~550mJ/cmのi線を、50mJ/cm刻みの照射量で、所定のパターンに照射して、露光を行った。
 露光後の樹脂膜を、Act8を用いて、シクロペンタノンに、上記の現像時間でパドル現像した後、プロピレングリコールモノメチルエーテルアセテート(PGMEA)でリンス洗浄を行い、パターン樹脂膜を得た。
 得られたパターン樹脂膜を、縦型拡散炉μ-TF(光洋サーモシステム株式会社製)を用いて、窒素雰囲気下、175℃で1時間加熱し、パターン硬化物(硬化後膜厚10μm)を得た。
(硬化後の残膜率)
 上記硬化物の製造において、110℃のホットプレート上で2分間加熱後の膜厚及び硬化後の膜厚について、膜の一部分をけがくことでシリコンウエハを露出させ、露出したシリコンウエハ表面から膜表面までの高さを、接針式プロファイラーDektak150(ブルカー社製)を用いて、測定した(膜厚の測定は以下同様である)。硬化後の膜厚10μmを、110℃のホットプレート上で2分間加熱後の膜厚で割った後、百分率にし、硬化後の残膜率を求めた。結果を表1及び2に示す。
(薬品耐性の評価)
 得られたパターン硬化物を、80℃に加熱したNMPに30分間浸漬した。冷却後、アセトンで洗浄、乾燥した。
 乾燥後のパターン硬化物の膜厚を測定し、「(NMP浸漬前の膜厚)―(NMP浸漬、乾燥後のパターン硬化物の膜厚)」の絶対値を、NMP浸漬前の膜厚で除して、百分率にすることで、膜厚変化率を算出した。膜厚変化率が5%未満のものを○、膜厚変化率が5~10%のものを△、膜厚変化率が10%を超えるものを×として、膜厚変化を評価した。結果を表1及び2に示す。
(接着性の評価)
 上述の感光性樹脂組成物を、塗布装置Act8(東京エレクトロン株式会社製)を用いて、Cuめっきウエハ上にスピンコートし、100℃で2分間乾燥後、110℃で2分間乾燥して感光性樹脂膜を形成した。
 得られた感光性樹脂膜に、プロキシミティ露光機マスクアライナーMA8(ズース・マイクロテック社製)を用いて500mJ/cmの露光を行った。
 露光後の樹脂膜について、上述のパターン硬化物の製造と同様に硬化し、硬化物を得た。
 得られた硬化物を、飽和型プレッシャークッカー装置(株式会社平山製作所製)に配置し、温度121℃、相対湿度100%の条件で、300時間処理した。
 300時間処理後に硬化物を取り出し、アルミニウム製スタッドの先端にあるエポキシ樹脂層を硬化物表面に固定して、150℃のオーブン中で1時間加熱してエポキシ樹脂層と硬化物を接着した。そして、薄膜密着強度測定装置ロミュラス(QUAD Group社製)を用いて、スタッドを引張り、剥離時の荷重を測定し、剥離モードを観察した。
 剥離モードの観察において、凝集破壊であり(硬化物とCuめっきウエハとの間での剥離なし)、剥離時の荷重が500kg/cm以上であり、かつ300時間処理後の硬化物に腐食(変色)が見られなかったものを○とした。硬化物とCuめっきウエハとの間で剥離したもの、剥離時の荷重が500kg/cm未満であったもの、又は300時間処理後の硬化物に腐食(変色)が見られたものを×とした。
 凝集破壊の場合、硬化物の凝集破壊強さよりも、硬化物とCuめっきウエハの接着強さが強いことを示す。×の場合は、剥離時の荷重が硬化物とCuめっきウエハの接着強さとなる。
 結果を表1及び2に示す。
(マイグレーションの評価)
 Cuスパッタウエハ(アドバンストマテリアルテクノロジー株式会社製、Cuスパッタ層(0.1μm)/Tiシード層(0.1μm)/SiN層(1μm)/シリコンウエハという層構成のウエハについて、レジストPMER-P-LA900PM(東京応化工業株式会社製)を用いて、櫛歯パターン(櫛歯の線幅:100μm、歯の数:陽極9本、陰極9本、間隔:20μmを形成した。
 櫛歯パターン形成後、Cuめっきを行った(膜厚:5μm)。Cuめっき後、レジストを剥離し、その後、Cuスパッタ層及びTiシード層を除去し、銅櫛歯電極パターンを形成した。
 上述の感光性樹脂組成物を、塗布装置Act8(東京エレクトロン株式会社製)を用いて、硬化後の膜厚が10μmとなるように、銅櫛歯電極パターン付きウエハ上にスピンコートし、100℃で2分間乾燥後、110℃で2分間乾燥して感光性樹脂膜を形成した。
 得られた感光性樹脂膜に、プロキシミティ露光機マスクアライナーMA8(ズース・マイクロテック社製)により、500mJ/cmの露光を行った。
 露光後の樹脂膜について、上述のパターン硬化物の製造と同様に、現像、硬化し、硬化物を得た。
 硬化物を形成した銅櫛歯電極パターン付きウエハを用いて、130℃、相対湿度85%の下、DC6Vを印加してマイグレーション試験を500時間行った。金属顕微鏡にて観察を行い、櫛歯間にデンドライトが発生せず、硬化物の腐食(変色)が見られず、抵抗値が1.0×4Ω以下のものを○とした。櫛歯間にデンドライトが発生した場合、硬化物の腐食(変色)が見られた場合、又は抵抗値が1.0×4Ωを超える場合を×とした。結果を表1及び2に示す。
Figure JPOXMLDOC01-appb-T000027
Figure JPOXMLDOC01-appb-T000028
 本発明の感光性樹脂組成物は、層間絶縁膜、カバーコート層又は表面保護膜等に用いることができ、本発明の層間絶縁膜、カバーコート層又は表面保護膜は、電子部品等に用いることができる。
 上記に本発明の実施形態及び/又は実施例を幾つか詳細に説明したが、当業者は、本発明の新規な教示及び効果から実質的に離れることなく、これら例示である実施形態及び/又は実施例に多くの変更を加えることが容易である。従って、これらの多くの変更は本発明の範囲に含まれる。

Claims (12)

  1.  (A)重合性の不飽和結合を有するポリイミド前駆体、
     (B)脂肪族環状骨格を有する重合性モノマー、
     (C)光重合開始剤、及び
     (D)溶剤を含有する感光性樹脂組成物。
  2.  前記(A)成分が、下記式(1)で表される構造単位を有するポリイミド前駆体である請求項1に記載の感光性樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001
    (式(1)中、Xは4価の芳香族基であって、-COOR基と-CONH-基とは互いにオルト位置にあり、-COOR基と-CO-基とは互いにオルト位置にある。Yは2価の芳香族基である。R及びRは、それぞれ独立に、水素原子、下記式(2)で表される基、又は炭素数1~4の脂肪族炭化水素基であり、R及びRの少なくとも一方が前記式(2)で表される基である。)
    Figure JPOXMLDOC01-appb-C000002
    (式(2)中、R~Rは、それぞれ独立に、水素原子又は炭素数1~3の脂肪族炭化水素基であり、mは1~10の整数である。)
  3.  前記(B)成分が、重合性の不飽和二重結合を含む基を有し、脂肪族環状骨格を有する重合性モノマーを含む、請求項1又は2に記載の感光性樹脂組成物。
  4.  前記(B)成分が、下記式(3)で表される重合性モノマーを含む請求項1~3のいずれかに記載の感光性樹脂組成物。
    Figure JPOXMLDOC01-appb-C000003
    (式(3)中、R及びRは、それぞれ独立に、炭素数1~4の脂肪族炭化水素基又は下記式(4)で表される基である。n1は0又は1であり、n2は0~2の整数であり、n1+n2は1以上である。n1個のR及びn2個のRの少なくとも1つは、下記式(4)で表される基である。)
    Figure JPOXMLDOC01-appb-C000004
    (式(4)中、R~R11は、それぞれ独立に、水素原子又は炭素数1~3の脂肪族炭化水素基であり、lは0~10の整数である。)
  5.  前記(B)成分が、下記式(5)で表される重合性モノマーを含む請求項1~4のいずれかに記載の感光性樹脂組成物。
    Figure JPOXMLDOC01-appb-C000005
  6.  さらに、(E)熱重合開始剤を含む請求項1~5のいずれかに記載の感光性樹脂組成物。
  7.  請求項1~6のいずれかに記載の感光性樹脂組成物を基板上に塗布、乾燥して感光性樹脂膜を形成する工程と、
     前記感光性樹脂膜をパターン露光して、樹脂膜を得る工程と、
     前記パターン露光後の樹脂膜を、有機溶剤を用いて、現像し、パターン樹脂膜を得る工程と、
     前記パターン樹脂膜を加熱処理する工程と、を含むパターン硬化物の製造方法。
  8.  前記加熱処理の温度が200℃以下である請求項7に記載のパターン硬化物の製造方法。
  9.  請求項1~6のいずれかに記載の感光性樹脂組成物を硬化した硬化物。
  10.  パターン硬化物である請求項9に記載の硬化物。
  11.  請求項9又は10に記載の硬化物を用いて作製された層間絶縁膜、カバーコート層又は表面保護膜。
  12.  請求項11に記載の層間絶縁膜、カバーコート層又は表面保護膜を含む電子部品。
PCT/JP2017/013729 2017-03-31 2017-03-31 感光性樹脂組成物、パターン硬化物の製造方法、硬化物、層間絶縁膜、カバーコート層、表面保護膜及び電子部品 WO2018179382A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
PCT/JP2017/013729 WO2018179382A1 (ja) 2017-03-31 2017-03-31 感光性樹脂組成物、パターン硬化物の製造方法、硬化物、層間絶縁膜、カバーコート層、表面保護膜及び電子部品
KR1020197020019A KR102650469B1 (ko) 2017-03-31 2018-03-30 감광성 수지 조성물, 패턴 경화물의 제조 방법, 경화물, 층간 절연막, 커버 코트층, 표면 보호막 및 전자부품
JP2019510240A JP7147749B2 (ja) 2017-03-31 2018-03-30 感光性樹脂組成物、パターン硬化物の製造方法、硬化物、層間絶縁膜、カバーコート層、表面保護膜及び電子部品
US16/498,139 US11487201B2 (en) 2017-03-31 2018-03-30 Photosensitive resin composition, method of manufacturing pattern cured product, cured product, interlayer insulating film, cover-coat layer, surface protective film, and electronic component
CN201880022380.5A CN110520795A (zh) 2017-03-31 2018-03-30 感光性树脂组合物、图案固化物的制造方法、固化物、层间绝缘膜、覆盖涂层、表面保护膜以及电子部件
PCT/JP2018/013598 WO2018181893A1 (ja) 2017-03-31 2018-03-30 感光性樹脂組成物、パターン硬化物の製造方法、硬化物、層間絶縁膜、カバーコート層、表面保護膜及び電子部品
PH12019502065A PH12019502065A1 (en) 2017-03-31 2019-09-11 Photosensitive resin composition, method of manufacturing pattern cured product, cured product, interlayer insulating film, cover-coat layer, surface protective film, and electronic component
JP2022150311A JP7444215B2 (ja) 2017-03-31 2022-09-21 感光性樹脂組成物、パターン硬化物の製造方法、硬化物、層間絶縁膜、カバーコート層、表面保護膜及び電子部品

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/013729 WO2018179382A1 (ja) 2017-03-31 2017-03-31 感光性樹脂組成物、パターン硬化物の製造方法、硬化物、層間絶縁膜、カバーコート層、表面保護膜及び電子部品

Publications (1)

Publication Number Publication Date
WO2018179382A1 true WO2018179382A1 (ja) 2018-10-04

Family

ID=63677717

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2017/013729 WO2018179382A1 (ja) 2017-03-31 2017-03-31 感光性樹脂組成物、パターン硬化物の製造方法、硬化物、層間絶縁膜、カバーコート層、表面保護膜及び電子部品
PCT/JP2018/013598 WO2018181893A1 (ja) 2017-03-31 2018-03-30 感光性樹脂組成物、パターン硬化物の製造方法、硬化物、層間絶縁膜、カバーコート層、表面保護膜及び電子部品

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/013598 WO2018181893A1 (ja) 2017-03-31 2018-03-30 感光性樹脂組成物、パターン硬化物の製造方法、硬化物、層間絶縁膜、カバーコート層、表面保護膜及び電子部品

Country Status (6)

Country Link
US (1) US11487201B2 (ja)
JP (2) JP7147749B2 (ja)
KR (1) KR102650469B1 (ja)
CN (1) CN110520795A (ja)
PH (1) PH12019502065A1 (ja)
WO (2) WO2018179382A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020031240A1 (ja) * 2018-08-06 2020-02-13 日立化成デュポンマイクロシステムズ株式会社 感光性樹脂組成物、パターン硬化膜の製造方法、硬化膜、層間絶縁膜、カバーコート層、表面保護膜及び電子部品
JP7110090B2 (ja) * 2018-12-28 2022-08-01 東京エレクトロン株式会社 基板処理方法および基板処理システム
WO2022070362A1 (ja) * 2020-09-30 2022-04-07 昭和電工マテリアルズ株式会社 樹脂組成物、半導体装置の製造方法、硬化物及び半導体装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004133435A (ja) * 2002-09-17 2004-04-30 Toray Ind Inc ネガ型感光性樹脂前駆体組成物およびそれを用いた電子部品ならびに表示装置
JP2006193691A (ja) * 2005-01-17 2006-07-27 Nippon Kayaku Co Ltd 感光性ポリアミド酸及びこれを含有する感光性組成物
WO2006098291A1 (ja) * 2005-03-15 2006-09-21 Toray Industries, Inc. 感光性樹脂組成物
JP2006342310A (ja) * 2005-06-10 2006-12-21 Kaneka Corp 新規ポリイミド前駆体およびその利用
JP2009227959A (ja) * 2008-02-26 2009-10-08 Hitachi Chem Co Ltd 感光性接着剤組成物、接着シート、接着剤パターン、接着剤層付半導体ウェハ、並びに半導体装置及びその製造方法
JP2012198361A (ja) * 2011-03-22 2012-10-18 Fujifilm Corp 感光性組成物、感光性フィルム、永久パターン形成方法、永久パターン、及びプリント基板
WO2015052885A1 (ja) * 2013-10-09 2015-04-16 日立化成デュポンマイクロシステムズ株式会社 ポリイミド前駆体を含む樹脂組成物、及びそれを用いた硬化膜の製造方法
JP2016199662A (ja) * 2015-04-09 2016-12-01 日立化成デュポンマイクロシステムズ株式会社 ポリイミド前駆体を含む樹脂組成物、それを用いた硬化膜及びパターン硬化膜の製造方法、並びに電子部品

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2626696B2 (ja) * 1988-04-11 1997-07-02 チッソ株式会社 感光性重合体
KR100692339B1 (ko) * 2002-07-11 2007-03-13 아사히 가세이 일렉트로닉스 가부시끼가이샤 고내열성 네가티브형 감광성 수지 조성물
KR100901756B1 (ko) 2007-09-10 2009-06-10 주식회사 유로하우징 돈사의 악취제거방법과 그 시스템
KR20080111470A (ko) 2008-10-10 2008-12-23 톰슨 라이센싱 디플렉스 프론트 엔드를 이용한 능동 분배기 장치 및 방법
JP6101226B2 (ja) * 2013-03-14 2017-03-22 富士フイルム株式会社 固体撮像素子及びその製造方法、赤外光カットフィルタ形成用硬化性組成物、カメラモジュール
TWI671343B (zh) * 2014-06-27 2019-09-11 日商富士軟片股份有限公司 熱硬化性樹脂組成物、硬化膜、硬化膜的製造方法以及半導體裝置
JP2016086000A (ja) * 2014-10-22 2016-05-19 太陽インキ製造株式会社 ドライフィルムおよびプリント配線板

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004133435A (ja) * 2002-09-17 2004-04-30 Toray Ind Inc ネガ型感光性樹脂前駆体組成物およびそれを用いた電子部品ならびに表示装置
JP2006193691A (ja) * 2005-01-17 2006-07-27 Nippon Kayaku Co Ltd 感光性ポリアミド酸及びこれを含有する感光性組成物
WO2006098291A1 (ja) * 2005-03-15 2006-09-21 Toray Industries, Inc. 感光性樹脂組成物
JP2006342310A (ja) * 2005-06-10 2006-12-21 Kaneka Corp 新規ポリイミド前駆体およびその利用
JP2009227959A (ja) * 2008-02-26 2009-10-08 Hitachi Chem Co Ltd 感光性接着剤組成物、接着シート、接着剤パターン、接着剤層付半導体ウェハ、並びに半導体装置及びその製造方法
JP2012198361A (ja) * 2011-03-22 2012-10-18 Fujifilm Corp 感光性組成物、感光性フィルム、永久パターン形成方法、永久パターン、及びプリント基板
WO2015052885A1 (ja) * 2013-10-09 2015-04-16 日立化成デュポンマイクロシステムズ株式会社 ポリイミド前駆体を含む樹脂組成物、及びそれを用いた硬化膜の製造方法
JP2016199662A (ja) * 2015-04-09 2016-12-01 日立化成デュポンマイクロシステムズ株式会社 ポリイミド前駆体を含む樹脂組成物、それを用いた硬化膜及びパターン硬化膜の製造方法、並びに電子部品

Also Published As

Publication number Publication date
JPWO2018181893A1 (ja) 2020-05-28
JP7147749B2 (ja) 2022-10-05
WO2018181893A1 (ja) 2018-10-04
KR20190129828A (ko) 2019-11-20
US11487201B2 (en) 2022-11-01
JP2022179529A (ja) 2022-12-02
PH12019502065A1 (en) 2020-09-14
JP7444215B2 (ja) 2024-03-06
CN110520795A (zh) 2019-11-29
KR102650469B1 (ko) 2024-03-22
US20210116809A1 (en) 2021-04-22

Similar Documents

Publication Publication Date Title
JP2018084626A (ja) 感光性樹脂組成物、パターン硬化膜の製造方法、硬化膜、層間絶縁膜、カバーコート層、表面保護膜及び電子部品
JP7444215B2 (ja) 感光性樹脂組成物、パターン硬化物の製造方法、硬化物、層間絶縁膜、カバーコート層、表面保護膜及び電子部品
JP7363789B2 (ja) 感光性樹脂組成物、パターン硬化膜の製造方法、硬化膜、層間絶縁膜、カバーコート層、表面保護膜及び電子部品
JP7395817B2 (ja) パターン硬化膜の製造方法、感光性樹脂組成物、硬化膜、層間絶縁膜、カバーコート層、表面保護膜及び電子部品
JP2018146964A (ja) 感光性樹脂組成物、パターン硬化物の製造方法、硬化物、層間絶縁膜、カバーコート層、表面保護膜及び電子部品
JP7355025B2 (ja) 感光性樹脂組成物、パターン硬化物の製造方法、硬化物、層間絶縁膜、カバーコート層、表面保護膜及び電子部品
JP7405088B2 (ja) 感光性樹脂組成物、パターン硬化物の製造方法、硬化物、層間絶縁膜、カバーコート層、表面保護膜及び電子部品
WO2020071201A1 (ja) 感光性樹脂組成物、パターン硬化物の製造方法、硬化物、層間絶縁膜、カバーコート層、表面保護膜及び電子部品
JP7243233B2 (ja) 感光性樹脂組成物、パターン硬化物の製造方法、硬化物、層間絶縁膜、カバーコート層、表面保護膜及び電子部品
JP7009803B2 (ja) 感光性樹脂組成物、パターン硬化物の製造方法、硬化物、層間絶縁膜、カバーコート層、表面保護膜及び電子部品
JP7035632B2 (ja) 感光性樹脂組成物、パターン硬化膜の製造方法、硬化膜、層間絶縁膜、カバーコート層、表面保護膜及び電子部品
WO2018179330A1 (ja) 感光性樹脂組成物、パターン硬化膜の製造方法、硬化物、層間絶縁膜、カバーコート層、表面保護膜、及び電子部品
WO2021215374A1 (ja) 感光性樹脂組成物、パターン硬化膜の製造方法、硬化膜、層間絶縁膜、カバーコート層、表面保護膜及び電子部品
JP7225652B2 (ja) 感光性樹脂組成物、パターン硬化物の製造方法、硬化物、層間絶縁膜、カバーコート層、表面保護膜及び電子部品
JP7238316B2 (ja) 感光性樹脂組成物、パターン硬化物の製造方法、硬化物、層間絶縁膜、カバーコート層、表面保護膜及び電子部品
JP2021167926A (ja) 感光性樹脂組成物、それを用いた硬化物、パターン硬化物の製造方法及び電子部品の製造方法
JP2022110710A (ja) 感光性樹脂組成物、パターン硬化物の製造方法、硬化物、層間絶縁膜、カバーコート層、表面保護膜及び電子部品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17903320

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17903320

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP