WO2018179351A1 - 二酸化炭素除去装置及び吸着剤の二酸化炭素吸着容量の回復方法 - Google Patents

二酸化炭素除去装置及び吸着剤の二酸化炭素吸着容量の回復方法 Download PDF

Info

Publication number
WO2018179351A1
WO2018179351A1 PCT/JP2017/013630 JP2017013630W WO2018179351A1 WO 2018179351 A1 WO2018179351 A1 WO 2018179351A1 JP 2017013630 W JP2017013630 W JP 2017013630W WO 2018179351 A1 WO2018179351 A1 WO 2018179351A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon dioxide
adsorbent
water
reaction vessel
temperature
Prior art date
Application number
PCT/JP2017/013630
Other languages
English (en)
French (fr)
Inventor
真裕 青嶌
保彦 吉成
中村 英博
大剛 小野寺
晃平 吉川
金枝 雅人
Original Assignee
日立化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成株式会社 filed Critical 日立化成株式会社
Priority to JP2019508120A priority Critical patent/JPWO2018179351A1/ja
Priority to EP17903697.5A priority patent/EP3603769A1/en
Priority to CN201780087494.3A priority patent/CN110352090A/zh
Priority to US16/488,311 priority patent/US20200016536A1/en
Priority to PCT/JP2017/013630 priority patent/WO2018179351A1/ja
Priority to CA3053097A priority patent/CA3053097A1/en
Priority to TW107110212A priority patent/TW201841683A/zh
Publication of WO2018179351A1 publication Critical patent/WO2018179351A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/96Regeneration, reactivation or recycling of reactants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/025Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with wetted adsorbents; Chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/0407Constructional details of adsorbing systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/62Carbon oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/81Solid phase processes
    • B01D53/82Solid phase processes with stationary reactants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/04Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium
    • B01J20/041Oxides or hydroxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/04Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium
    • B01J20/043Carbonates or bicarbonates, e.g. limestone, dolomite, aragonite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • B01J20/08Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04 comprising aluminium oxide or hydroxide; comprising bauxite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/103Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate comprising silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/16Alumino-silicates
    • B01J20/18Synthetic zeolitic molecular sieves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28042Shaped bodies; Monolithic structures
    • B01J20/28045Honeycomb or cellular structures; Solid foams or sponges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/34Regenerating or reactivating
    • B01J20/3433Regenerating or reactivating of sorbents or filter aids other than those covered by B01J20/3408 - B01J20/3425
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/34Regenerating or reactivating
    • B01J20/345Regenerating or reactivating using a particular desorbing compound or mixture
    • B01J20/3475Regenerating or reactivating using a particular desorbing compound or mixture in the liquid phase
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/10Inorganic absorbents
    • B01D2252/103Water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/102Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/112Metals or metal compounds not provided for in B01D2253/104 or B01D2253/106
    • B01D2253/1124Metal oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/206Rare earth metals
    • B01D2255/2065Cerium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20715Zirconium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20792Zinc
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/02Other waste gases
    • B01D2258/0283Flue gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/40083Regeneration of adsorbents in processes other than pressure or temperature swing adsorption
    • B01D2259/40088Regeneration of adsorbents in processes other than pressure or temperature swing adsorption by heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/40083Regeneration of adsorbents in processes other than pressure or temperature swing adsorption
    • B01D2259/40088Regeneration of adsorbents in processes other than pressure or temperature swing adsorption by heating
    • B01D2259/40092Regeneration of adsorbents in processes other than pressure or temperature swing adsorption by heating using hot liquid
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Definitions

  • the present invention relates to a carbon dioxide removing device and a method for recovering the carbon dioxide adsorption capacity of an adsorbent.
  • One of the causes of global warming is the emission of greenhouse gases.
  • the greenhouse gas include carbon dioxide (CO 2 ), methane (CH 4 ), and chlorofluorocarbons (CFCs and the like).
  • CO 2 carbon dioxide
  • CH 4 methane
  • CFCs and the like chlorofluorocarbons
  • Examples of a solution to the above problem include a method of removing carbon dioxide by a chemical absorption method, a physical absorption method, a membrane separation method, an adsorption separation method, a cryogenic separation method, or the like.
  • a method of separating and recovering carbon dioxide using a solid carbon dioxide adsorbent CO 2 separation and recovery method
  • a gas to be treated containing carbon dioxide is introduced into a reaction vessel filled with the adsorbent, and the adsorbent and the gas to be treated are brought into contact under atmospheric pressure or under pressure.
  • adsorb carbon dioxide to the adsorbent.
  • the adsorbent is heated or the inside of the reaction vessel is depressurized to desorb carbon dioxide from the adsorbent.
  • the adsorbent from which carbon dioxide has been desorbed can be used again for removing carbon dioxide by cooling or pressurizing.
  • zeolite is mainly used as an adsorbent.
  • carbon dioxide-containing gas is brought into contact with a zeolite-based adsorbent to adsorb carbon dioxide to the adsorbent, and then the adsorbent is heated to remove carbon dioxide.
  • a method for removing carbon is described.
  • exhaust gas discharged from a plant or the like may contain nitrogen oxide (NOx) or sulfur oxide (SOx) in addition to carbon dioxide, and the exhaust gas was subjected to a denitration process or a deflow process. Even tens of ppm of NOx or SOx may remain.
  • an adsorbent solid carbon dioxide scavenger
  • zeolite zeolite
  • the present invention efficiently removes carbon dioxide even when the gas to be treated containing carbon dioxide further contains nitrogen oxide (NOx) or sulfur oxide (SOx) and water.
  • An object of the present invention is to provide a carbon dioxide removing device capable of performing Another object of the present invention is to provide a method for recovering the carbon dioxide adsorption capacity of an adsorbent using the carbon dioxide removing device.
  • the present inventors have washed an adsorbent whose carbon dioxide adsorption capacity (CO 2 adsorption capacity) has decreased due to poisoning with water, so that poisonous components (acids, metal salts) attached to the adsorbent And the like, and the surface of the adsorbent can be exposed, whereby the carbon dioxide adsorption capacity of the adsorbent can be recovered.
  • the present inventors have completed the present invention based on such findings.
  • the present invention includes an adsorbent and a reaction vessel in which the adsorbent is installed, and makes a treatment target gas containing carbon dioxide contact the adsorbent, so that carbon dioxide is produced from the treatment target gas.
  • a carbon dioxide removing device for removing carbon dioxide further comprising a water adjusting unit that supplies water to the reaction vessel and discharges water from the reaction vessel.
  • the carbon dioxide removing device of the present invention poisoning components adhering to the adsorbent can be washed with water supplied by the water adjusting unit. Therefore, even when the carbon dioxide adsorption capacity of the adsorbent is reduced by repeated use, the carbon dioxide adsorption capacity of the adsorbent can be recovered, and carbon dioxide can be continuously removed. That is, according to the carbon dioxide removing apparatus of the present invention, carbon dioxide can be efficiently removed.
  • the water adjustment unit includes a water supply channel that supplies water to the reaction vessel, a water supply amount adjustment unit that adjusts the amount of water supplied from the water supply channel to the reaction vessel, and water from the reaction vessel. And a water discharge amount adjusting unit that adjusts the amount of water discharged from the reaction vessel to the water discharge channel. In this case, it is possible to adjust the amount of water supplied and the amount of water discharged. After supplying water to the reaction vessel, the water is retained in the reaction vessel and the adsorbent is immersed in water and held for a certain period of time. Etc. are possible.
  • the carbon dioxide removal device may include a carbon dioxide adsorption capacity detection unit that detects the carbon dioxide adsorption capacity of the adsorbent.
  • the water supply amount adjustment unit may adjust the amount of water supplied to the reaction vessel based on the carbon dioxide adsorption capacity of the adsorbent detected by the carbon dioxide adsorption capacity detection unit. According to the carbon dioxide removing device having such a configuration, it is possible to perform operations such as supplying water to the reaction vessel when the carbon dioxide adsorption capacity of the adsorbent reaches saturation.
  • the carbon dioxide removal device may include a temperature detection unit that detects the temperature of the adsorbent.
  • the water supply amount adjustment unit may adjust the amount of water supplied to the reaction vessel based on the temperature of the adsorbent detected by the temperature detection unit.
  • the water adjusting unit may further include a first temperature adjusting unit that adjusts the temperature of water supplied to the reaction vessel.
  • a first temperature adjusting unit that adjusts the temperature of water supplied to the reaction vessel.
  • water vapor can be supplied into the reaction vessel by vaporizing water supplied to the reaction vessel by the first temperature adjustment unit.
  • the temperature of water supplied to the reaction vessel can be adjusted in order to increase the solubility of poisoning components (for example, metal salts) adhering to the adsorbent.
  • the carbon dioxide removal device may include a second temperature adjustment unit that adjusts the temperature in the reaction vessel.
  • the adsorbent is heated to desorb the carbon dioxide adsorbed on the adsorbent, and the adsorbent is cooled to increase the amount of carbon dioxide adsorbed to the adsorbent. And so on.
  • the carbon dioxide adsorption capacity can be recovered by heating the adsorbent with the second temperature adjusting unit. .
  • the carbon dioxide removal device may include a temperature detection unit that detects the temperature of the adsorbent.
  • the second temperature adjustment unit may adjust the temperature in the reaction vessel based on the temperature detected by the temperature detection unit.
  • the inside of the reaction vessel can be heated or cooled so that the solubility of poisonous components (metal salts, etc.) adhering to the adsorbent becomes the highest. It is easy to recover the carbon dioxide adsorption capacity of the adsorbent.
  • the carbon dioxide removal device may further include a water recovery unit that recovers water discharged from the reaction vessel.
  • a water recovery unit that recovers water discharged from the reaction vessel.
  • the water supplied to the reaction vessel can be recovered and reused.
  • the metal salt deposited on the adsorbent surface can be recovered.
  • the carbon dioxide removal device may include a third temperature adjustment unit that adjusts the temperature of water in the water recovery unit. According to the carbon dioxide removal device having such a configuration, the water in the recovery unit can be evaporated and reused. When the adsorbent contains a metal oxide, the metal oxide salt dissolved in the water in the recovery unit can be recovered and reused.
  • the adsorbent may contain a metal oxide containing at least one selected from the group consisting of rare earth elements and zirconium. These adsorbents have an excellent carbon dioxide adsorption capacity even when the gas to be treated contains water. Moreover, when using these adsorbents, the temperature at which carbon dioxide is desorbed from the adsorbents can be lowered. That is, when these adsorbents are used, carbon dioxide can be removed more efficiently.
  • the present invention further provides a method for recovering the carbon dioxide adsorption capacity of the adsorbent using the carbon dioxide removing device.
  • this method water is supplied to the reaction vessel and brought into contact with the adsorbent, and then the water in the reaction vessel is discharged. Thereby, the poisoning component adhering to the adsorbent can be washed, and the carbon dioxide adsorption capacity of the adsorbent can be recovered.
  • the method after supplying water to the reaction vessel and bringing the adsorbent into contact with water, detecting the temperature of the adsorbent, and the inside of the reaction vessel based on the detected temperature of the adsorbent. Discharging the water in the reaction vessel after heating or cooling.
  • the inside of the reaction vessel can be heated or cooled so that the solubility of poisonous components (metal salt or the like) adhering to the adsorbent becomes the highest, it is easy to recover the carbon dioxide adsorption capacity of the adsorbent.
  • carbon dioxide is efficiently removed even when the gas to be treated containing carbon dioxide further contains nitrogen oxide (NOx) or sulfur oxide (SOx) and water. It is possible to provide a carbon dioxide removing device capable of Moreover, according to this invention, the recovery method of the carbon dioxide adsorption capacity of adsorbent using the said carbon dioxide removal apparatus can be provided.
  • NOx nitrogen oxide
  • SOx sulfur oxide
  • FIG. 1 is a schematic view showing an embodiment of a carbon dioxide removing device.
  • FIG. 2 is a graph showing the desorption behavior of NOx from the adsorbent.
  • FIG. 1 is a schematic view showing an embodiment of a carbon dioxide removing device.
  • FIG. 2 is a graph showing the desorption behavior of NOx from the adsorbent.
  • FIG. 3 is a graph showing the results of the CO 2 adsorption / desorption cycle test of Examples and Comparative Examples.
  • 4 is a graph showing a Raman spectrum of the adsorbent of Example 1.
  • FIG. 1 is a schematic view showing an embodiment of a carbon dioxide removing device.
  • FIG. 2 is a graph showing the desorption behavior of NOx from the adsorbent.
  • the carbon dioxide removal apparatus of this embodiment is used for bringing carbon dioxide-containing treatment target gas into contact with an adsorbent and removing carbon dioxide from the treatment target gas. Specifically, an adsorption step in which a gas to be treated containing carbon dioxide is brought into contact with the adsorbent to adsorb carbon dioxide to the adsorbent, and a desorption step in which carbon dioxide is desorbed (desorbed) from the adsorbent after the adsorption step. After the adsorption step, carbon dioxide is removed from the gas to be treated by a method comprising: a washing step (carbon dioxide adsorption capacity recovery step) in which water is brought into contact with the adsorbent to wash the adsorbent.
  • a washing step carbon dioxide adsorption capacity recovery step
  • FIG. 1 is a schematic diagram showing a carbon dioxide removal apparatus of the present embodiment.
  • the carbon dioxide removal apparatus 100 includes an adsorbent 1, a reaction vessel 10, a water adjustment unit 20, a gas supply channel 30, a first gas discharge channel 31, and a second gas discharge.
  • the water adjustment unit 20 includes a water supply channel 21, a water discharge channel 22, a water supply amount adjustment unit 23, a water discharge amount adjustment unit 24, and a first temperature adjustment unit 25.
  • the adsorbent 1 is disposed (for example, filled) inside the reaction vessel 10.
  • the filling amount and arrangement position of the adsorbent 1 are not particularly limited.
  • the adsorbent 1 may be filled in the central portion of the reaction vessel 10 or may be disposed on a part of the inner wall surface.
  • the more air gaps between adsorbents the higher the porosity
  • the pressure loss Details of the adsorbent 1 and the reaction vessel 10 will be described later.
  • the reaction vessel 10 includes a gas supply flow path 30, a first gas discharge flow path 31, a second gas discharge flow path 32, a water supply flow path 21, a water discharge flow path 22, and a temperature detection unit 40.
  • the pressure adjusting unit 42 is connected to each other.
  • a second temperature adjustment unit 41 is provided outside the reaction vessel 10.
  • the gas supply channel 30 is a channel for supplying the gas to be processed to the reaction vessel in the adsorption process.
  • a valve (gas supply amount adjusting unit) 33 for adjusting the supply amount of the processing target gas and a concentration of a gas component in the processing target gas (for example, a concentration of carbon dioxide) are detected.
  • the first gas concentration detector 36 is provided.
  • the first gas discharge flow path 31 is a flow path for discharging the processed gas (processing target gas from which carbon dioxide has been removed) from the reaction vessel in the adsorption step.
  • the first gas discharge channel 31 includes a valve (first gas discharge amount adjusting unit) 34 for adjusting the discharge amount of the processed gas, and the concentration of the gas component in the processed gas (for example, carbon dioxide)
  • a second gas concentration detector 37 for detecting (concentration) is provided.
  • the second gas discharge channel 32 is a channel for discharging a gas containing carbon dioxide desorbed from the adsorbent in the desorption process.
  • the second gas discharge channel 32 is provided with a valve (second gas discharge amount adjusting unit) 35 for adjusting the discharge amount of the gas containing carbon dioxide.
  • the downstream end of the second gas discharge channel 32 is connected to the carbon dioxide recovery unit 70.
  • the water supply channel 21 is a channel for supplying water to the reaction vessel 10 in the cleaning process.
  • the water supply channel 21 is provided with a valve (water supply amount adjusting unit) 23 for adjusting the amount of water supplied into the reaction vessel and a first temperature adjusting unit 25 for adjusting the temperature of the water. It has been.
  • the water discharge channel 22 is a channel for discharging water supplied into the reaction vessel 10 from the reaction vessel in the cleaning process.
  • the water discharge channel 22 is provided with a valve (water discharge amount adjusting unit) 24 for adjusting the amount of water discharged from the reaction vessel.
  • the downstream end of the water discharge channel 22 is connected to the water recovery unit 50.
  • a water circulation channel 60 is connected to the water recovery unit 50, and a third temperature adjustment unit 51 is provided outside the water recovery unit 50.
  • the water circulation channel 60 is a channel for circulating and reusing the water collected by the water collection unit 50.
  • the downstream end of the water circulation channel 60 is connected to the water supply channel 21.
  • the water recovery unit 50 may have any configuration.
  • the temperature detection unit 40 is composed of a device for detecting the temperature in the reaction vessel (for example, the temperature of the adsorbent). Since the temperature inside the reaction vessel and the temperature of the adsorbent arranged inside the reaction vessel are substantially the same, the temperature detection unit 40 detects the temperature inside the reaction vessel, and is arranged inside the reaction vessel. The temperature of the adsorbent is detected.
  • the pressure adjusting unit 42 is composed of a device for adjusting the pressure in the reaction vessel.
  • Examples of the equipment constituting the pressure adjusting unit 42 include equipment (pump, compressor, etc.) that can carry out a method for adjusting the total pressure described later.
  • the second temperature adjustment unit 41 is a device for adjusting the temperature in the reaction vessel (for example, the temperature of the adsorbent).
  • the equipment that constitutes the second temperature adjustment unit 41 include equipment (such as an electric furnace and a heat transfer tube) that can implement a method for heating the adsorbent and a method for cooling the adsorbent described below.
  • the detection unit 36, the second gas concentration detection unit 37, the temperature detection unit 40, the second temperature adjustment unit 41, the pressure adjustment unit 42, and the third temperature adjustment unit 51 are electrically connected to the control unit 80.
  • the control unit 80 controls the water supply amount adjustment unit 23, the water discharge amount adjustment unit 24, the first Operation of the temperature adjustment unit 25, the gas supply amount adjustment unit 33, the first gas discharge amount adjustment unit 34, the second gas discharge amount adjustment unit 35, the second temperature adjustment unit 41, the pressure adjustment unit 42, and the third temperature adjustment unit 51 To control.
  • the gas to be processed is supplied from the gas supply channel 30 into the reaction vessel 10. Thereby, process target gas contacts the adsorption agent 1 installed in reaction container, and a carbon dioxide is removed from process target gas. The treated gas is discharged from the reaction vessel 10 to the first gas discharge channel 31.
  • the gas to be treated contains, for example, carbon dioxide (CO 2 ), water (water vapor, H 2 O), nitrogen oxide (NOx) and / or sulfur oxide (SOx).
  • gas to be treated include gas discharged from a plant (particularly a large-scale plant) or the like (for example, boiler exhaust gas from a coal-fired power plant), combustion exhaust gas from an automobile or the like.
  • Boiler exhaust gas and combustion exhaust gas are carbon dioxide (CO 2 ), water (water vapor, H 2 O), nitrogen (N 2 ), oxygen (O 2 ), nitrogen oxide (NOx), sulfur oxide (SOx), one Includes hydrocarbons such as carbon oxide (CO), methane (CH 4 ), and hydrogen sulfide (H 2 S), and ash dust.
  • the supply amount of the processing target gas and the gas supply amount adjustment unit 33 provided in the gas supply channel 30 and the first gas discharge amount adjustment unit 34 provided in the first gas discharge channel 31 are determined. You may adjust the discharge
  • the temperature of the adsorbent 1 may be adjusted by the second temperature adjustment unit 41.
  • the amount of CO 2 adsorption can be adjusted by adjusting the temperature T 1 of the adsorbent 1 when the gas to be treated is brought into contact with the adsorbent 1 in the adsorption step.
  • the temperature T 1 may be ⁇ 20 to 100 ° C. or 10 to 40 ° C.
  • the temperature T 1 of the adsorbent 1 may be adjusted by heating or cooling the adsorbent 1, and heating and cooling may be used in combination. Further, the temperature T 1 of the indirect adsorbent may be adjusted by heating or cooling the processed gas.
  • a heat medium for example, heated gas or liquid
  • a heat medium for example, heated gas or liquid
  • a method of heating the adsorbent 1 by heat conduction from the heat transfer surface a method of heating the adsorbent 1 by an electrically heated electric furnace or the like.
  • a method for cooling the adsorbent 1 a method in which a refrigerant (for example, a cooled gas or liquid) is directly brought into contact with the adsorbent 1; a refrigerant (for example, a cooled gas or liquid) is circulated through a heat transfer tube, etc.
  • a refrigerant for example, a cooled gas or liquid
  • the pressure adjusting unit 42 may adjust the total pressure of the atmosphere in which the adsorbent is present.
  • the CO 2 adsorption amount can be adjusted by adjusting the total pressure of the atmosphere in which the adsorbent 1 exists.
  • the higher the total pressure the greater the amount of CO 2 adsorbed by the adsorbent.
  • the total pressure is preferably 0.1 atm or more, and more preferably 1 atm or more.
  • the total pressure may be 10 atm or less, 2 atm or less, or 1.3 atm or less from the viewpoint of energy saving.
  • the total pressure may be 5 atmospheres or more.
  • the total pressure of the atmosphere in which the adsorbent 1 exists may be adjusted by pressurization or depressurization, and pressurization and depressurization may be used in combination.
  • Examples of a method for adjusting the total pressure include a method in which the pressure is mechanically adjusted by a pump, a compressor, and the like; a method in which a gas having a pressure different from the pressure in the ambient atmosphere of the adsorbent is supplied.
  • a method utilizing the temperature dependence of the adsorption amount (temperature swing method; a method utilizing the difference in the CO 2 adsorption amount of the adsorbent accompanying a temperature change); a method utilizing the pressure dependence of the adsorption amount (pressure) Swing method: a method utilizing the difference in the amount of CO 2 adsorbed by the adsorbent accompanying pressure change); carbon dioxide is desorbed from the adsorbent by a method using these methods in combination (temperature / pressure swing method).
  • the temperature of the adsorbent 1 in the desorption process is set higher than that in the adsorption process.
  • Heating of the adsorbent 1 can be performed using the above-described second temperature adjustment unit 41.
  • Examples of the method for heating the adsorbent 1 include the same method as the method for heating the adsorbent 1 in the above-described adsorption step; the method using the peripheral exhaust heat, and the like. From the viewpoint of reducing the energy required for heating, it is preferable to use the peripheral exhaust heat.
  • Temperature T 1 of the adsorbent 1 in the adsorption step the temperature difference between the temperature T 2 of the adsorbent 1 in the desorption step (T 2 -T 1), from the viewpoint of energy saving, may also be 200 ° C. or less, 100 The temperature may be 50 ° C. or less.
  • the temperature difference (T 2 ⁇ T 1 ) may be 10 ° C. or higher, 20 ° C. or higher, or 30 ° C. or higher from the viewpoint of easily desorbing carbon dioxide adsorbed on the adsorbent 1. Also good.
  • the temperature T 2 of the adsorbent 1 in the desorption step may be, for example, 40 to 300 ° C., 50 to 200 ° C., or 80 to 120 ° C.
  • the CO 2 adsorption amount increases as the total pressure of the atmosphere in which the adsorbent 1 exists (for example, the total pressure in the container containing the adsorbent) increases. It is preferable to change so that the total pressure in the desorption process is lower than the total pressure.
  • the total pressure may be adjusted by pressurizing or depressurizing, and pressurization and depressurization may be used in combination.
  • the adjustment of the total pressure can be performed using the pressure adjusting unit 42 described above.
  • a method for adjusting the total pressure for example, a method similar to the adsorption step described above can be used.
  • the total pressure in the desorption process may be the ambient atmospheric pressure (for example, 1 atmosphere) or less than 1 atmosphere from the viewpoint of increasing the amount of CO 2 desorption.
  • the gas containing carbon dioxide desorbed from the adsorbent 1 is discharged from the reaction vessel 10 to the second gas discharge channel 32.
  • the second gas discharge amount adjustment unit 35 may be used to adjust the discharge amount of the gas containing carbon dioxide.
  • the carbon dioxide recovery unit 70 can be used to recover the gas containing the discharged carbon dioxide.
  • the recovered carbon dioxide may be reused in the field where carbon dioxide is used. For example, in greenhouse cultivation for house or the like, since the plant growth by increasing the CO 2 concentration is accelerated, which may increase the CO 2 concentration 1000ppm level. Therefore, the recovered carbon dioxide may be reused to increase the CO 2 concentration.
  • the processing target gas is not supplied, but the desorption process may be performed in a state where the processing target gas is supplied.
  • a gas containing water water vapor
  • NOx and / or SOx may be adsorbed on the adsorbent in addition to carbon dioxide. Since NOx and SOx can cause deterioration of the adsorbent as described above, it is desirable to desorb NOx and SOx from the adsorbent as much as possible during the carbon dioxide adsorption / desorption cycle.
  • FIG. As shown, the desorption of NOx from the adsorbent is promoted.
  • a gas containing water water vapor
  • Water (steam) may be supplied by the water adjustment unit 20, or a processing target gas with an adjusted amount of water may be supplied.
  • the adjustment of the amount of water in the gas to be processed may be performed using a device that adjusts the amount of water (H 2 O concentration) in the gas to be processed using the temperature dependence of the saturated vapor pressure of water.
  • washing process water is supplied to the reaction vessel 10 by the water adjustment unit 20 to bring the adsorbent 1 into contact with water, and then the water is discharged from the reaction vessel 10.
  • Water used in the washing step is supplied to the reaction vessel 10 through the water supply channel 21 and is discharged from the reaction vessel 10 through the water discharge channel 22.
  • the gas to be treated contains carbon dioxide, water, NOx and / or SOx
  • the adsorbent is poisoned and the CO 2 adsorption capacity is reduced.
  • the adsorbent contains a metal component (for example, a metal oxide).
  • the present inventors presume this cause as follows.
  • Nitric acid or sulfuric acid is produced (as an example, a reaction in which nitric acid is produced by NOx and water is shown in the following formula). This acid is thought to reduce the carbon dioxide adsorption capacity of the adsorbent.
  • the carbon dioxide adsorption capacity is prominent due to the metal salt (nitrate or sulfate) generated by the reaction between the metal component and the acid. Presumed to decline.
  • the carbon dioxide adsorption capacity of the adsorbent can be recovered, and the CO 2 adsorption / desorption cycle characteristics of the adsorbent can be improved. That is, according to the carbon dioxide removal apparatus of this embodiment, carbon dioxide can be efficiently removed even when the gas to be treated contains carbon dioxide, water, NOx and / or SOx. it can.
  • the water used in the washing step may be either liquid or gas (water vapor), and is preferably liquid from the viewpoint of excellent recovery effect of carbon dioxide adsorption capacity. That is, it is preferable that the water adjustment part 20 supplies liquid water to the reaction vessel.
  • the temperature of the water supplied by the first temperature adjustment unit 25 may be adjusted. By adjusting the temperature of water, for example, when the adsorbent contains a metal component, the solubility of poisoning components adhering to the adsorbent (for example, metal salts deposited on the adsorbent surface) can be increased.
  • the temperature of water may be, for example, 0 to 100 ° C., 30 to 100 ° C., 60 to 100 ° C., or 0 to 60 ° C. It may be 0 to 30 ° C. or 30 to 60 ° C.
  • the water supply amount adjustment unit 23 may adjust the water supply amount
  • the water discharge amount adjustment unit 24 may adjust the water discharge amount. For example, by making the amount of water discharged less than the amount of water supplied or not discharging water during the water supply, the water is retained in the reaction vessel 10 and the adsorbent 1 is turned into water. It may be immersed.
  • the amount of water supplied may be adjusted as appropriate according to the amount of poisoning components (acid, metal salt, etc.) adhering to the surface of the adsorbent 1.
  • the supply amount of water may be, for example, 0.1 mL / g or more, 1 mL / g or more, or 10 mL / g or more based on the total mass of the adsorbent.
  • the amount of water supplied may be measured using a measuring device that measures the amount of water supplied, and the amount of water supplied may be adjusted based on the measured amount of water supplied.
  • the cleaning step is based on the step of detecting the temperature of the adsorbent 1 by the temperature detection unit 40 after supplying water to the reaction vessel 10 and bringing the water into contact with the adsorbent 1 and the detected temperature of the adsorbent 1.
  • a step of discharging the water in the reaction vessel 10 by the water adjustment unit after the second temperature adjustment unit 41 is controlled to heat or cool the inside of the reaction vessel 10.
  • the reaction vessel is heated or cooled so as to maintain high solubility for poison components (metal salts, etc.).
  • the temperature detected by the temperature detector 40 is lower than a certain temperature, the inside of the reaction vessel is heated, and when the temperature detected by the temperature detector 40 is higher than the certain temperature, the reaction vessel Cool inside. Next, after it is detected that the temperature has become constant by heating or cooling, the water in the reaction vessel is discharged.
  • the timing for performing the washing step is not particularly limited, and may be performed after the adsorption step, before the desorption step, or after the desorption step.
  • the cleaning process may be performed for each cycle, and the cleaning process may be performed after the adsorption process and the desorption process are repeated a predetermined number of times.
  • the cleaning process may be performed based on the temperature of the adsorbent 1. That is, the amount of water supplied to the reaction vessel 10 may be adjusted by controlling the water supply amount adjusting unit 23 based on the temperature of the adsorbent 1. For example, the water supply amount adjusting unit 23 may be controlled so as to supply water when the temperature of the adsorbent 1 becomes a certain temperature or higher due to heating in the desorption process. Thereby, cooling and washing
  • the cleaning process may be performed based on the carbon dioxide adsorption capacity of the adsorbent 1. That is, the amount of water supplied to the reaction vessel 10 may be adjusted by controlling the water supply amount adjusting unit 23 based on the carbon dioxide adsorption capacity of the adsorbent 1. For example, the water supply amount adjustment unit 23 may be controlled so that water is supplied when the carbon dioxide adsorption capacity becomes a certain value or less. At this time, the amount of water to be supplied may be adjusted according to the degree of decrease in the carbon dioxide adsorption capacity. The greater the amount of water supplied, the better the adsorbent cleaning effect.
  • the carbon dioxide adsorption capacity of the adsorbent can be determined from the difference between the concentration of carbon dioxide in the gas to be treated and the concentration of carbon dioxide in the gas after treatment.
  • the carbon dioxide concentration in the gas to be processed can be detected by the first gas concentration detector 36, and the concentration in the gas after the processing can be detected by the second gas concentration detector 37.
  • the first gas concentration detection unit 36 and the second gas concentration detection unit 37 constitute a carbon dioxide adsorption capacity detection unit. Such control may be performed using the control unit 80.
  • the water discharged in the cleaning process by the water recovery unit 50 may be recovered.
  • the recovered water can be used again for the washing step by supplying it to the reaction vessel 10 via the water circulation channel 60.
  • the recovered water contains poisoning components (acid, metal salt, etc.) adhering to the adsorbent 1, it is preferable to separate the water from the poisoning components.
  • the poisoning component is a metal salt
  • a fired product (metal oxide) obtained by firing the metal salt may be reused as an adsorbent.
  • NOx and SOx generated by firing may be recovered.
  • the heating method is not particularly limited.
  • a method in which the water recovery unit 50 is used as a furnace tube and heated in an electric furnace can be used.
  • the method for circulating the collected water is not particularly limited.
  • the carbon dioxide removal method using the carbon dioxide removal apparatus 100 of the present embodiment further includes other processes other than the adsorption process, the desorption process, and the cleaning process. It may be.
  • the carbon dioxide removal method may further include a step of cooling the adsorbent 1. Examples of the method for cooling the adsorbent 1 include the methods described above. As described above, the adsorbent 1 can be cooled by supplying water into the reaction vessel 10 by the water adjusting unit 20.
  • H 2 O desorbing water
  • water may be desorbed by heating the adsorbent by the second temperature adjustment unit 41 described above.
  • the method may further include an impurity removal step of removing impurities such as SOx, NOx, and dust from the gas to be treated from the viewpoint of easily maintaining the carbon dioxide adsorption capacity of the adsorbent 1 before the adsorption step.
  • the impurity removal step can be performed using a removal device such as a denitration device, a desulfurization device, or a dust removal device, and the gas to be treated can be brought into contact with the adsorbent on the downstream side of these devices.
  • the adsorbent 1 is an adsorbent used for removing carbon dioxide and has carbon dioxide adsorptivity.
  • the adsorbent 1 includes, for example, at least one selected from the group consisting of metal oxides, activated carbon, alkali metal carbonates, alkali metal hydroxides, layered double hydroxides, and solid organic compounds.
  • a single type of adsorbent may be used, or a plurality of types of adsorbents may be used in combination.
  • one adsorbent (carrier) carrying the other adsorbent may be used.
  • the loading may be performed by a method such as impregnation.
  • the metal oxide may be a metal oxide containing one kind of metal element or a complex metal oxide containing multiple kinds of metal elements.
  • the metal oxide preferably contains at least one selected from the group consisting of rare earth elements, zirconium and zinc, and more preferably contains cerium (Ce), from the viewpoint of excellent carbon dioxide adsorption.
  • CeOx 1.5 to 2.0
  • specific examples include CeO 2 and Ce 2 O 3 .
  • the metal oxide may be silica (SiO 2 ), alumina (Al 2 O 3 ), zeolite, or the like.
  • the metal oxide is at least one selected from the group consisting of silica, alumina or zeolite, rare earth metal (for example, cerium) and zirconium from the viewpoints of improvement in specific surface area, improvement in heat resistance, reduction in the amount of metal used, and the like.
  • An oxide (such as a composite oxide) containing any of these metals may be supported.
  • a single type of metal oxide may be used, or a plurality of types of metal oxides may be used in combination.
  • the carbon dioxide adsorptivity decreases. Therefore, it is common to remove water from the processing target gas before the processing target gas is brought into contact with the adsorbent.
  • the concentration of water in the gas to be treated is preferably reduced to 400 ppm or less, and reduced to 20 ppm or less. It is more preferable to do this.
  • a hydroxyl group (—OH) is formed on the surface of the oxide by the reaction of the oxide with H 2 O on the surface.
  • This hydroxyl group reacts with carbon dioxide to form a bicarbonate (—CO 3 H). Since carbon dioxide is adsorbed on the surface of the metal oxide in this way, it is presumed that the above effect can be obtained.
  • the metal oxide may be, for example, a porous metal oxide (porous metal oxide), a layered metal oxide (layered metal oxide), or a metal oxide having a core-shell structure.
  • a metal oxide having a large specific surface area is preferable. From such a viewpoint, a porous metal oxide is preferable.
  • the layered metal oxide may be an oxide obtained by firing a layered double hydroxide, for example.
  • the layered double hydroxide is also called a hydrotalcite compound and contains two or more kinds of metal elements, and the composition thereof can be represented by the following formula (1).
  • M (2+) is a divalent metal ion.
  • magnesium (Mg) ion, manganese (Mn) ion, iron (Fe) ion, cobalt (Co) ion, nickel (Ni) ion, copper It represents at least one metal ion selected from the group consisting of Cu) ions and zinc (Zn) ions.
  • M (3+) is a trivalent metal ion, for example, selected from the group consisting of aluminum (Al) ion, chromium (Cr), iron (Fe) ion, cobalt (Co) ion, and indium (In) ion. Represents at least one ion.
  • a (n ⁇ ) is an n-valent anion and represents, for example, at least one ion selected from the group consisting of carbonate ion, nitrate ion and sulfate ion.
  • M (2+) , M (3+) and A (n ⁇ ) may each be a single ion or a plurality of types of ions.
  • Examples of methods for synthesizing metal oxides include preparation methods such as an impregnation method, a kneading method, a coprecipitation method, and a sol-gel method.
  • the pH is adjusted to 7 to 7 by adding a basic compound such as ammonia, sodium hydroxide, calcium hydroxide to a solution containing an acidic salt of cerium (for example, nitrate). It may be adjusted to 10 for precipitation.
  • the precipitate may be used as it is or may be further oxidized by baking the precipitate.
  • Examples of the method for synthesizing the layered double hydroxide include preparation methods such as an impregnation method, a kneading method, a coprecipitation method, and a sol-gel method.
  • preparation methods such as an impregnation method, a kneading method, a coprecipitation method, and a sol-gel method.
  • a basic compound such as ammonia, sodium hydroxide, or calcium hydroxide is added. It may be precipitated by adjusting the pH to 8 to 11 by adding.
  • the resulting precipitate is a layered double hydroxide, and a metal oxide or a composite metal oxide can be obtained by firing the precipitate.
  • the firing temperature is not particularly limited, and may be, for example, 200 ° C. or higher.
  • the composition of the activated carbon is not particularly limited.
  • the activated carbon contains a large amount of nitrogen element (N)
  • the basicity increases, and the carbon dioxide adsorption may be improved.
  • Examples of a method for synthesizing such activated carbon include a method in which activated carbon is brought into contact with a gas containing ammonia (NH 3 ), a method in which activated carbon is synthesized from an organic compound containing a large amount of nitrogen element, and the like.
  • the solid organic compound a basic organic compound is preferable.
  • the organic compound which has an amino group is mentioned.
  • the shape of the adsorbent is not particularly limited, and may be, for example, a powder shape, a pellet shape, a granular shape, a honeycomb shape, or the like.
  • the adsorbent may be supported on a honeycomb substrate.
  • the porosity can be increased, so that the pressure loss can be reduced.
  • the shape and usage of the adsorbent may be determined in consideration of the required reaction rate, pressure loss, purity of the gas (adsorbed gas) adsorbed on the adsorbent (CO 2 purity), and the like.
  • the reaction vessel 10 may be a fixed bed type, a rotor type, or a fluidized bed type.
  • the rotor type and the fluidized bed type are systems in which the adsorbent itself is moved without switching the gas (circulation gas) to be circulated in the reaction vessel.
  • the fixed bed type reaction vessel is filled with, for example, adsorbent 1 (for example, granular adsorbent) in the reaction vessel, and the temperature and pressure in the processing target gas or the reaction vessel are changed without moving the adsorbent 1 itself. It is comprised so that adsorption
  • the movement of the adsorbent 1 is small, the wear of the adsorbent 1 due to the adsorbents 1 or between the adsorbents 1 and the contact between the adsorbent 1 and the reaction vessel can be reduced, and the decrease in the performance of the adsorbent 1 can be suppressed. .
  • the packing density can be increased, the porosity is low, and the amount of carbon dioxide removed per volume of the reaction vessel can be increased.
  • Examples of the rotor-type reaction container include a reaction container including a container, an adsorbent filling unit provided inside the container, and a partition plate for partitioning the gas flowing in the container.
  • the adsorbent filling portion is filled with the adsorbent 1.
  • This reaction vessel is internally divided into a plurality of regions by partition plates, and is divided into a carbon dioxide adsorption region, an adsorbent heating region (CO 2 desorption region), an adsorbent cooling region, etc., depending on the type of gas flowing. It has been.
  • the adsorbent 1 by rotating the adsorbent filling unit, the adsorbent 1 can be moved to the carbon dioxide adsorption region, the adsorbent heating region (CO 2 desorption region), the adsorbent cooling region, etc.
  • Adsorption / desorption cycles such as adsorption of 2 (adsorption process), heating of the adsorbent 1 (desorption process), and cooling of the adsorbent 1 (cooling process) can be performed.
  • adsorption process adsorption process
  • heating of the adsorbent 1 desorption process
  • cooling of the adsorbent 1 cooling process
  • each region can be determined by changing the position where the partition plate is installed, the flow time of the gas to be treated (the time for adsorbing carbon dioxide), the heating time of the adsorbent 1 (the carbon dioxide is removed).
  • the ratio of the cooling time of the adsorbent 1 and the like can be easily determined.
  • a honeycomb for example, a honeycomb rotor
  • the adsorbent 1 may be disposed in the reaction vessel.
  • the wear of the adsorbent 1 itself can be reduced, and the decrease in the performance of the adsorbent 1 can be suppressed.
  • two or more reaction vessels may be installed, and different adsorbents 1 may be disposed in each reaction vessel.
  • different adsorbents 1 may be arranged on the upstream side and the downstream side in the reaction vessel 10.
  • an adsorbent containing cerium oxide may be arranged on the upstream side
  • an adsorbent containing zeolite may be arranged on the downstream side.
  • the gas to be treated is circulated from the upstream side to the downstream side, and the heating gas is circulated from the downstream side to the upstream side, so that water contacts the zeolite. It can suppress that the carbon dioxide adsorption capacity of a zeolite reduces. Further, when the adsorbent 1 is carried on a honeycomb (honeycomb rotor), the place where each adsorbent 1 is carried may be divided in the honeycomb.
  • the fluidized bed type reaction vessel is configured such that the adsorbent 1 can flow by power (conveyor, blower, etc.) by reducing the amount of the adsorbent 1 filled, for example.
  • a fluidized bed type reaction vessel for example, a reaction vessel in which a gas to be treated flows and a heating vessel in which a heating gas circulates are installed, and power (conveyor, blower, etc.) is used to adsorbent 1
  • the adsorption and desorption of carbon dioxide may be repeated by moving (for example, a granular or powdery adsorbent) between the reaction vessel and the heating vessel.
  • the configuration of piping, valves, etc. is simplified.
  • different porosity can be set during carbon dioxide adsorption and desorption.
  • the void ratio may be set to be low during desorption, and the purity (CO 2 purity) of the gas (adsorbed gas) adsorbed by the adsorbent may be increased.
  • carbon dioxide may be removed by blowing up the adsorbent 1 with a gas instead of a conveyor. Since the number of machine parts is reduced compared to a conveyor, a simple configuration can be achieved.
  • the gas supply flow path 30 is connected to the lower side of the reaction container 10, and the first gas discharge flow path 31 and the second gas discharge flow path 32 are connected to the upper side of the reaction container 10.
  • the arrangement positions of the supply flow path 30, the first gas discharge flow path 31, and the second gas discharge flow path 32 are not particularly limited.
  • the first gas discharge channel 31 and the second gas discharge channel 32 are each connected to the reaction vessel 10, but one channel is connected to the reaction vessel 10 and the two channels are connected. You may comprise the 1st gas discharge flow path 31 and the 2nd gas discharge flow path 32 by making it branch.
  • the water supply channel 21 is connected above the reaction vessel 10 and the water discharge channel 22 is connected below the reaction vessel 10.
  • the connection position of the supply flow path 21 and the water discharge flow path 22 is not particularly limited.
  • the second temperature adjusting unit is provided outside the reaction vessel 10, but may be provided in the reaction vessel.
  • the third temperature adjustment unit 51 is provided outside the water recovery unit 50, but may be provided inside the water recovery unit 50.
  • the gas supply amount adjustment unit 33, the first gas discharge amount adjustment unit 34, the second gas discharge amount adjustment unit 35, the water supply amount adjustment unit 23, and the water discharge amount adjustment unit 24 shown in FIG. You may be comprised with the other apparatus.
  • the equipment constituting the water supply amount adjusting unit 23 may be equipment such as a screw flow meter, an impeller flow meter, a bypass flow meter, a differential pressure flow meter, and an electromagnetic flow meter, for example.
  • the water supply amount adjustment unit 23 may preferably include a measuring device that measures the water supply amount.
  • the control unit 80 may be a control unit that controls the water supply amount adjusting unit 23 based on an electrical signal from the measuring device.
  • the carbon dioxide removal device 100 may further include a gas concentration adjusting unit for adjusting the concentration of each gas component in the processing target gas supplied to the reaction vessel.
  • the control unit 80 may be a control unit that controls the gas concentration adjusting unit based on information detected by the first gas concentration detecting unit.
  • a reaction vessel filled with the same or different adsorbent an adsorbent capable of adsorbing carbon dioxide or other gas
  • a valve for switching the flow path may be installed in a piping part connecting the reaction containers. In this case, a subsequent reaction vessel may be used as necessary.
  • an adsorbent capable of adsorbing carbon dioxide when an adsorbent capable of adsorbing carbon dioxide is filled in the previous reaction vessel, the carbon dioxide is first captured and saturated, and the carbon dioxide is discharged from the outlet of the previous reaction vessel.
  • carbon dioxide is saturated before capture, that is, when the adsorbent adsorbs carbon dioxide for the adsorption capacity and carbon dioxide can no longer be adsorbed, gas other than carbon dioxide is circulated in the reaction vessel installed in the subsequent stage.
  • an adsorbent that reduces the carbon dioxide adsorption capacity may be used.
  • adsorbents include zeolite and activated carbon.
  • An agent is installed, and at least one kind selected from the group consisting of rare earth elements other than cerium, zirconium, and zinc, which has carbon dioxide adsorptivity and is excellent in H 2 S adsorptivity, is installed in the subsequent reaction vessel.
  • the combination which installs the adsorption agent containing the oxide to contain is mentioned.
  • the load required for heating and decompression is higher than in the case of desorbing carbon dioxide. Therefore, in this configuration, from the viewpoint of reducing energy consumption, it is preferable to appropriately perform the desorption step so that carbon dioxide is not trapped and saturated in the previous reaction vessel.
  • the carbon dioxide removal apparatus 100 includes a gas supply amount adjustment unit 33, a first gas discharge amount adjustment unit 34, a second gas discharge amount adjustment unit 35, a first gas concentration detection unit 36, a second gas concentration detection unit 37,
  • the first temperature adjustment unit 25, the second temperature adjustment unit 41, the third temperature adjustment unit 51, the pressure adjustment unit 42, the water recovery unit 50, the carbon dioxide recovery unit 70, the control unit 80, the water circulation channel 60, etc. are not provided. May be.
  • a carbon dioxide removal system may be configured by using a plurality of carbon dioxide removal apparatuses 100 of the present embodiment.
  • a control device for controlling the plurality of carbon dioxide removal devices in an integrated manner may be provided to control the plurality of carbon dioxide devices.
  • the present invention is not limited to the following examples.
  • the gas to be treated in the CO 2 adsorption / desorption cycle test of the example and the comparative example simulates the exhaust gas of a thermal power plant.
  • CeO 2 powdered cerium oxide
  • the temperature of the adsorbent is raised to 50 ° C. using an electric furnace, and then the volume of the adsorbent is maintained at 50 ° C. in the electric furnace while 15 volume% CO 2 and 5 volume% O.
  • a mixed gas containing 2 and 150 ppm NO and about 80% by volume of N 2 containing saturated water vapor at about 50 ° C. was passed through the reaction tube. The flow rate of the mixed gas was 2000 mL / min.
  • the CO 2 concentration at the outlet of the reaction tube was measured by a gas chromatograph (carrier gas: He), and gas introduction was continued until the CO 2 concentration measured at the outlet of the reaction tube was saturated. CO 2 concentration was measured inlet and CO 2 adsorption amount from the difference between the CO 2 concentration in the outlet side of the reaction tube until saturated.
  • CO 2 adsorption amount maintenance rate in 24 cycles (CO 2 adsorption amount at the first cycle) / (CO 2 adsorption amount at the 24 cycle) ⁇ 100
  • Example 1 the Raman spectrum of the adsorbent was measured before the first cycle, after 24 cycles, and after 25 cycles.
  • the Raman spectrum was measured using a microscopic Raman spectroscope (RAMAN touch, manufactured by Nanophoton Co., Ltd.), laser analysis: 532 nm, magnification: 50 times, measurement time: 5 minutes spot analysis.
  • the measurement results are shown in FIG. (A) in FIG. 4 shows the Raman spectrum before the first cycle, (b) in FIG. 4 shows the Raman spectrum after 24 cycles, and (c) in FIG. 4 shows the Raman spectrum after 25 cycles.
  • Example 2 A CO 2 adsorption / desorption cycle test was performed in the same procedure as in Example 1 except that the washing step was performed in the following procedure.
  • the washing step of Example 2 water was not discharged when water was supplied, and water was supplied into the reaction tube until the adsorbent filled in the reaction tube was immersed in water. After leaving in that state for 10 minutes, water was discharged from the reaction tube to the downstream side.
  • Example 3 The same procedure as in Example 1 was used except that a mixed gas containing 15% by volume CO 2 , 5% by volume O 2 , 300 ppm SO 2 and about 80% by volume N 2 was used as the mixed gas. A CO 2 adsorption / desorption cycle test was conducted.
  • Example 4 The same procedure as in Example 2 was used except that a mixed gas containing 15% by volume CO 2 , 5% by volume O 2 , 300 ppm SO 2 and about 80% by volume N 2 was used as the mixed gas. A CO 2 adsorption / desorption cycle test was conducted.
  • FIG. 3 is a graph showing the results of the CO 2 adsorption amount maintenance rate after 25 cycles.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Treating Waste Gases (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Separation Of Gases By Adsorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

吸着剤1と、当該吸着剤1を内部に設置した反応容器10と、を備え、二酸化炭素を含有する処理対象ガスを吸着剤1に接触させて、処理対象ガスから二酸化炭素を除去する二酸化炭素除去装置100であって、反応容器10に水を供給し、且つ、反応容器10から水を排出する水調整部20、を更に備える、二酸化炭素除去装置100。

Description

二酸化炭素除去装置及び吸着剤の二酸化炭素吸着容量の回復方法
 本発明は、二酸化炭素除去装置及び吸着剤の二酸化炭素吸着容量の回復方法に関する。
 地球温暖化の原因の一つとして、温室効果ガスの排出が挙げられる。温室効果ガスとしては、二酸化炭素(CO)、メタン(CH)、フロン類(CFCs等)などが挙げられる。温室効果ガスの中でも、二酸化炭素の影響が最も大きく、二酸化炭素(火力発電所、製鉄所等のプラントから排出される二酸化炭素など)の除去システムの構築が緊急の課題となっている。
 上記課題の解決策としては、例えば、化学吸収法、物理吸収法、膜分離法、吸着分離法、深冷分離法等により二酸化炭素を除去する方法が挙げられる。例えば、固体の二酸化炭素吸着剤を用いて二酸化炭素を分離及び回収する方法(CO分離回収法)が挙げられる。
 吸着剤を用いた二酸化炭素除去システムでは、吸着剤を充填した反応容器に、二酸化炭素を含有する処理対象ガスを導入し、吸着剤と処理対象ガスとを大気圧下又は加圧下で接触させることで二酸化炭素を吸着剤に吸着させる。その後、例えば、吸着剤を加熱すること、又は、反応容器内を減圧することで吸着剤から二酸化炭素を脱離させる。二酸化炭素を脱離させた吸着剤は、冷却又は加圧することにより再度二酸化炭素の除去に使用することができる。
 このような二酸化炭素除去システムにおいては、吸着剤としてゼオライトが主に用いられている。例えば下記特許文献1には、二酸化炭素を含有するガスをゼオライト系の吸着剤に接触させることで吸着剤に二酸化炭素を吸着させた後、吸着剤を加熱することで二酸化炭素を脱離させる二酸化炭素の除去方法が記載されている。
特表2010-527757号公報
 ところで、プラント等から排出される排出ガスは、二酸化炭素の他に、窒素酸化物(NOx)又は硫黄酸化物(SOx)を含有する場合があり、排出ガスを脱硝工程又は脱流工程に供したとしても数十ppmのNOx又はSOxが残存し得る。本発明者らの検討の結果、このように微量のNOx又はSOxと共に水(水蒸気、HO)を含有する処理対象ガスを用いる場合、ゼオライト等の吸着剤(固体系二酸化炭素捕捉剤)が被毒し、二酸化炭素吸着容量(CO吸着容量)が低下することが見出された。特許文献1においては、吸着剤のこのような被毒に関する議論はされておらず、また、このような事情を加味した二酸化炭素除去装置の構成について記載がない。
 そこで、本発明は、二酸化炭素を含有する処理対象ガスが窒素酸化物(NOx)又は硫黄酸化物(SOx)と水とを更に含有する場合であっても、効率的に二酸化炭素を除去することができる二酸化炭素除去装置を提供することを目的とする。また、本発明は、前記二酸化炭素除去装置を用いた、吸着剤の二酸化炭素吸着容量の回復方法を提供することを目的とする。
 本発明者らは、鋭意検討の結果、被毒により二酸化炭素吸着容量(CO吸着容量)が低下した吸着剤を水で洗浄することで、吸着剤に付着した被毒成分(酸、金属塩等)を洗浄し、吸着剤表面を露出させることができ、これにより吸着剤の二酸化炭素吸着容量を回復させることができることを見出した。本発明者らはこのような知見に基づき本発明を完成させた。
 すなわち、本発明は、吸着剤と、当該吸着剤を内部に設置した反応容器と、を備え、二酸化炭素を含有する処理対象ガスを前記吸着剤に接触させて、前記処理対象ガスから二酸化炭素を除去する二酸化炭素除去装置であって、前記反応容器に水を供給し、且つ、前記反応容器から水を排出する水調整部、を更に備える、二酸化炭素除去装置を提供する。
 本発明の二酸化炭素除去装置によれば、水調整部により供給される水によって吸着剤に付着した被毒成分を洗浄することができる。そのため、繰り返しの使用により吸着剤の二酸化炭素吸着容量が低下した場合であっても、吸着剤の二酸化炭素吸着容量を回復させることができ、二酸化炭素の除去を継続して行うことができる。つまり、本発明の二酸化炭素除去装置によれば、効率的に二酸化炭素を除去することができる。
 前記水調整部は、前記反応容器に水を供給する水供給流路と、前記水供給流路から前記反応容器に供給する水の量を調整する水供給量調整部と、前記反応容器から水を排出する水排出流路と、前記反応容器から前記水排出流路に排出する水の量を調整する水排出量調整部と、を備えてよい。この場合、水の供給量及び水の排出量の調整が可能であり、反応容器に水を供給した後、反応容器内に水を滞留させ、吸着剤を水に浸漬した状態で一定時間保持する等の操作が可能である。
 前記二酸化炭素除去装置は、前記吸着剤の二酸化炭素吸着容量を検出する二酸化炭素吸着容量検出部を備えていてよい。この場合、前記水供給量調整部は、前記二酸化炭素吸着容量検出部で検出された前記吸着剤の二酸化炭素吸着容量に基づき前記反応容器に供給する水の量を調整するものであってよい。このような構成を備える二酸化炭素除去装置によれば、吸着剤の二酸化炭素吸着容量が飽和に達した場合に反応容器に水を供給する等の操作を行うことが可能である。
 前記二酸化炭素除去装置は、前記吸着剤の温度を検出する温度検出部を備えていてよい。この場合、前記水供給量調整部は、前記温度検出部で検出された前記吸着剤の温度に基づき前記反応容器に供給する水の量を調整するものであってよい。このような構成を備える二酸化炭素除去装置によれば、吸着剤から二酸化炭素を脱着するための加熱により吸着剤が一定温度以上となった場合に反応容器に水を供給する等の操作を行うことが可能である。この場合、反応容器に供給する水により吸着剤を冷却することができる。
 前記水調整部は、前記反応容器に供給する水の温度を調整する第1温度調整部を更に備えてよい。このような構成を備える二酸化炭素除去装置によれば、例えば、第1温度調整部によって反応容器に供給する水を気化することで反応容器内に水蒸気を供給することができる。また、例えば、吸着剤に付着した被毒成分(例えば金属塩等)の溶解度を高めるために、反応容器に供給する水の温度を調整することができる。
 前記二酸化炭素除去装置は、前記反応容器内の温度を調整する第2温度調整部を備えてよい。このような構成を備える二酸化炭素除去装置によれば、吸着剤を加熱することで吸着剤に吸着した二酸化炭素を脱着させる、吸着剤を冷却することで吸着剤に吸着する二酸化炭素の量を増加させる等の操作を行うことができる。また、水(HO)の吸着によりCOの吸着容量が低下する吸着剤を用いる場合、前記第2温度調整部により吸着剤を加熱することで、二酸化炭素吸着容量を回復させることができる。
 前記二酸化炭素除去装置は、前記吸着剤の温度を検出する温度検出部を備えてよい。この場合、前記第2温度調整部は、前記温度検出部で検出された温度に基づき前記反応容器内の温度を調整するものであってよい。このような構成を備える二酸化炭素除去装置によれば、例えば、吸着剤に付着した被毒成分(金属塩等)の溶解度が最も高くなるように反応容器内を加熱又は冷却することができるため、吸着剤の二酸化炭素吸着容量を回復させやすい。
 前記二酸化炭素除去装置は、前記反応容器から排出された水を回収する水回収部を更に備えてよい。このような構成を備える二酸化炭素除去装置によれば、反応容器に供給した水を回収して再利用することができる。また、例えば、吸着剤が金属酸化物を含む場合、吸着剤表面に析出した金属塩を回収することができる。
 前記二酸化炭素除去装置は、前記水回収部内の水の温度を調整する第3温度調整部を備えてよい。このような構成を備える二酸化炭素除去装置によれば、回収部内の水を蒸発させて再利用することができる。また、吸着剤が金属酸化物を含む場合には、回収部内の水に溶解した金属酸化物の塩を回収して再利用することもできる。
 前記吸着剤は、希土類元素及びジルコニウムからなる群より選択される少なくとも1種を含む金属酸化物を含有してよい。これらの吸着剤は、処理対象ガスが水を含有する場合であっても優れた二酸化炭素吸着容量を有する。また、これらの吸着剤を用いる場合、吸着剤から二酸化炭素を脱着させる温度を低くすることができる。すなわち、これらの吸着剤を用いる場合、より効率的に二酸化炭素を除去することができる。
 本発明は、さらに、前記二酸化炭素除去装置を用いた、吸着剤の二酸化炭素吸着容量の回復方法を提供する。この方法では、前記反応容器に水を供給して前記吸着剤に水を接触させた後、前記反応容器内の水を排出する。これにより、吸着剤に付着した被毒成分を洗浄することができ、吸着剤の二酸化炭素吸着容量を回復させることができる。
 前記方法は、前記反応容器に水を供給して前記吸着剤に水を接触させた後、前記吸着剤の温度を検出する工程と、検出された前記吸着剤の温度に基づき前記反応容器内を加熱又は冷却した後、前記反応容器内の水を排出する工程と、を備える。この方法では、吸着剤に付着した被毒成分(金属塩等)の溶解度が最も高くなるように反応容器内を加熱又は冷却することができるため、吸着剤の二酸化炭素吸着容量を回復させやすい。
 本発明によれば、二酸化炭素を含有する処理対象ガスが窒素酸化物(NOx)又は硫黄酸化物(SOx)と水とを更に含有する場合であっても、効率的に二酸化炭素を除去することができる二酸化炭素除去装置を提供することができる。また、本発明によれば、前記二酸化炭素除去装置を用いた、吸着剤の二酸化炭素吸着容量の回復方法を提供することができる。
図1は、二酸化炭素除去装置の一実施形態を示す模式図である。 図2は、吸着剤からのNOxの脱着挙動を示すグラフである。 図3は、実施例及び比較例のCO吸脱着サイクル試験の結果を示すグラフである。 図4は、実施例1の吸着剤のラマンスペクトルを示す図である。
 以下、本発明を実施するための形態について詳細に説明する。ただし、本発明は以下の実施形態に限定されるものではない。
<二酸化炭素除去装置>
 本実施形態の二酸化炭素除去装置は、二酸化炭素を含有する処理対象ガスを吸着剤に接触させて、処理対象ガスから二酸化炭素を除去するために用いられる。具体的には、二酸化炭素を含有する処理対象ガスを吸着剤に接触させて二酸化炭素を吸着剤に吸着させる吸着工程と、吸着工程後に、二酸化炭素を吸着剤から脱着(脱離)させる脱着工程と、吸着工程後に、吸着剤に水を接触させて吸着剤を洗浄する洗浄工程(二酸化炭素吸着容量回復工程)と、を備える方法によって処理対象ガスから二酸化炭素を除去する。以下では、まず、本実施形態の二酸化炭素除去装置の全体構成を説明する。
 図1は、本実施形態の二酸化炭素除去装置を示す模式図である。図1に示すように、二酸化炭素除去装置100は、吸着剤1と、反応容器10と、水調整部20と、ガス供給流路30と、第1ガス排出流路31と、第2ガス排出流路32と、ガス供給量調整部33と、第1ガス排出量調整部34と、第2ガス排出量調整部35と、第1ガス濃度検出部36と、第2ガス濃度検出部37と、温度検出部40と、第2温度調整部41と、圧力調整部42と、水回収部50と、第3温度調整部51と、水循環流路60と、二酸化炭素回収部70と、制御部80と、を備えている。水調整部20は、水供給流路21と、水排出流路22と、水供給量調整部23と、水排出量調整部24と、第1温度調整部25と、を備えている。
 吸着剤1は反応容器10の内部に配置(例えば充填)されている。吸着剤1の充填量及び配置位置は特に限定されない。吸着剤1は、例えば、反応容器10の中央部に充填されていてもよく、内壁面の一部に配置されていてもよい。吸着剤間の空隙が少ない(空隙率が低い)ほど、空隙内に残留する二酸化炭素以外のガス量が少なくなるため、吸着ガス中の二酸化炭素の純度を高めることができる。一方、吸着剤間の空隙が多い(空隙率が高い)ほど、圧力損失を小さくすることができる。吸着剤1及び反応容器10の詳細は後述する。
 反応容器10には、ガス供給流路30と、第1ガス排出流路31と、第2ガス排出流路32と、水供給流路21と、水排出流路22と、温度検出部40と、圧力調整部42と、がそれぞれ接続されている。また、反応容器10の外部には第2温度調整部41が設けられている。
 ガス供給流路30は、吸着工程において、処理対象ガスを反応容器に供給するための流路である。ガス供給流路30には、処理対象ガスの供給量を調整するためのバルブ(ガス供給量調整部)33と、処理対象ガス中のガス成分の濃度(例えば二酸化炭素の濃度)を検出するための第1ガス濃度検出部36とが設けられている。
 第1ガス排出流路31は、吸着工程において、処理後のガス(二酸化炭素が除去された処理対象ガス)を反応容器から排出するための流路である。第1ガス排出流路31には、処理後のガスの排出量を調整するためのバルブ(第1ガス排出量調整部)34と、処理後のガス中のガス成分の濃度(例えば二酸化炭素の濃度)を検出するための第2ガス濃度検出部37とが設けられている。
 第2ガス排出流路32は、脱着工程において、吸着剤から脱着した二酸化炭素を含むガスを排出するための流路である。第2ガス排出流路32には、二酸化炭素を含むガスの排出量を調整するためのバルブ(第2ガス排出量調整部)35が設けられている。第2ガス排出流路32の下流側の端部は、二酸化炭素回収部70に接続されている。
 水供給流路21は、洗浄工程において、反応容器10に水を供給するための流路である。水供給流路21には、反応容器内に供給する水の量を調整するためのバルブ(水供給量調整部)23と、水の温度を調整するための第1温度調整部25とが設けられている。
 水排出流路22は、洗浄工程において、反応容器10内に供給された水を反応容器から排出するための流路である。水排出流路22には、反応容器から排出する水の量を調整するためのバルブ(水排出量調整部)24が設けられている。水排出流路22の下流側の端部は、水回収部50に接続されている。
 水回収部50には、水循環流路60が接続されており、水回収部50の外部には第3温度調整部51が設けられている。水循環流路60は、水回収部50で回収した水を循環して再利用するための流路である。水循環流路60の下流側の端部は、水供給流路21に接続されている。なお、水回収部50は如何なる構成であってもよい。
 温度検出部40は反応容器内の温度(例えば、吸着剤の温度)を検出するための機器で構成されている。反応容器内の温度と反応容器の内部に配置された吸着剤の温度とは略同じであることから、温度検出部40は、反応容器内の温度を検出することで、反応容器の内部に配置された吸着剤の温度を検出する。
 圧力調整部42は反応容器内の圧力を調整するための機器で構成されている。圧力調整部42を構成する機器としては、後述する全圧を調整する方法を実施可能な機器(ポンプ、コンプレッサー等)などが挙げられる。
 第2温度調整部41は、反応容器内の温度(例えば、吸着剤の温度)を調整するための機器である。第2温度調整部41を構成する機器としては、後述する吸着剤を加熱する方法及び吸着剤を冷却する方法を実施可能な機器(電気炉、伝熱管等)などが挙げられる。
 水供給量調整部23、水排出量調整部24、第1温度調整部25、ガス供給量調整部33、第1ガス排出量調整部34、第2ガス排出量調整部35、第1ガス濃度検出部36、第2ガス濃度検出部37、温度検出部40、第2温度調整部41、圧力調整部42及び第3温度調整部51は、制御部80と電気的に接続されている。制御部80は、第1ガス濃度検出部36、第2ガス濃度検出部37、及び温度検出部40からの電気的信号に基づき、水供給量調整部23、水排出量調整部24、第1温度調整部25、ガス供給量調整部33、第1ガス排出量調整部34、第2ガス排出量調整部35、第2温度調整部41、圧力調整部42及び第3温度調整部51の動作を制御する。
<二酸化炭素除去方法>
 次に、本実施形態の二酸化炭素除去装置100を用いた二酸化炭素の除去方法及び吸着剤1の吸着容量の回復方法について説明する。
[吸着工程]
 吸着工程では、ガス供給流路30から反応容器10内に処理対象ガスを供給する。これにより、処理対象ガスが反応容器内に設置された吸着剤1に接触し、処理対象ガスから二酸化炭素が除去される。処理後のガスは、反応容器10から第1ガス排出流路31へ排出される。
 処理対象ガスは、例えば、二酸化炭素(CO)と、水(水蒸気、HO)と、窒素酸化物(NOx)及び/又は硫黄酸化物(SOx)と、を含有する。このような処理対象ガスの具体例としては、プラント(特に大規模プラント)等から排出されるガス(例えば石炭火力発電所のボイラ排ガス)、自動車等の燃焼排ガスなどが挙げられる。ボイラ排ガス及び燃焼排ガスは、二酸化炭素(CO)、水(水蒸気、HO)、窒素(N)、酸素(O)、窒素酸化物(NOx)、硫黄酸化物(SOx)、一酸化炭素(CO)、メタン(CH)、硫化水素(HS)等のハイドロカーボン類、灰塵などを含む。
 吸着工程では、ガス供給流路30に設けられたガス供給量調整部33及び第1ガス排出流路31に設けられた第1ガス排出量調整部34を用いて、処理対象ガスの供給量及び処理後のガスの排出量を調整してもよい。
 吸着工程では、第2温度調整部41により吸着剤1の温度を調整してよい。吸着工程において処理対象ガスを吸着剤1に接触させる際の吸着剤1の温度Tを調整することにより、CO吸着量を調整することができる。温度Tが高いほど吸着剤1のCO吸着量が少なくなりやすい。温度Tは、-20~100℃であってもよく、10~40℃であってもよい。
 吸着剤1の温度Tは、吸着剤1を加熱又は冷却することにより調整してよく、加熱及び冷却を併用してもよい。また、処理対象ガスを加熱又は冷却することにより間接的に吸着剤の温度Tを調整してもよい。吸着剤1を加熱する方法としては、熱媒(例えば、加熱されたガス又は液体)を直接吸着剤1に接触させる方法;伝熱管等に熱媒(例えば、加熱されたガス又は液体)を流通させ、伝熱面からの熱伝導により吸着剤1を加熱する方法;電気的に発熱させた電気炉等により吸着剤1を加熱する方法などが挙げられる。吸着剤1を冷却する方法としては、冷媒(例えば、冷却されたガス又は液体)を直接吸着剤1に接触させる方法;伝熱管等に冷媒(例えば、冷却されたガス又は液体)を流通させ、伝熱面からの熱伝導により冷却する方法などが挙げられる。
 吸着工程では、圧力調整部42により、吸着剤の存在する雰囲気の全圧を調整してもよい。吸着工程において、吸着剤1の存在する雰囲気の全圧を調整することにより、CO吸着量を調整することができる。全圧が高いほど吸着剤のCO吸着量が多くなりやすい。全圧は、二酸化炭素の除去効率が更に向上する観点から、0.1気圧以上が好ましく、1気圧以上がより好ましい。全圧は、省エネルギーの観点から、10気圧以下であってもよく、2気圧以下であってもよく、1.3気圧以下であってもよい。全圧は、5気圧以上であってもよい。
 吸着剤1の存在する雰囲気の全圧は、加圧又は減圧することにより調整されてもよく、加圧及び減圧を併用してもよい。全圧を調整する方法としては、ポンプ、コンプレッサー等により機械的に圧力を調整する方法;吸着剤の周辺雰囲気の圧力とは異なる圧力を有するガスを供給する方法などが挙げられる。
[脱着工程]
 脱着工程では、吸着量の温度依存性を利用する方法(温度スイング法。温度変化に伴う吸着剤のCO吸着量の差を利用する方法);吸着量の圧力依存性を利用する方法(圧力スイング法。圧力変化に伴う吸着剤のCO吸着量の差を利用する方法);これらの方法を併用する方法(温度・圧力スイング法)等により吸着剤から二酸化炭素を脱着させる。
 吸着量の温度依存性を利用する方法では、例えば、脱着工程における吸着剤1の温度を吸着工程よりも高くする。吸着剤1の加熱は、上述の第2温度調整部41を用いて実施することができる。吸着剤1を加熱する方法としては、上述した吸着工程における吸着剤1を加熱する方法と同様の方法;周辺の排熱を利用する方法等が挙げられる。加熱に要するエネルギーを抑える観点からは、周辺の排熱を利用することが好ましい。
 吸着工程における吸着剤1の温度Tと、脱着工程における吸着剤1の温度Tとの温度差(T-T)は、省エネルギーの観点から、200℃以下であってもよく、100℃以下であってもよく、50℃以下であってもよい。温度差(T-T)は、吸着剤1に吸着した二酸化炭素を脱着しやすい観点から、10℃以上であってもよく、20℃以上であってもよく、30℃以上であってもよい。脱着工程における吸着剤1の温度Tは、例えば、40~300℃であってもよく、50~200℃であってもよく、80~120℃であってもよい。
 吸着量の圧力依存性を利用する方法では、吸着剤1の存在する雰囲気の全圧(例えば、吸着剤を含む容器内の全圧)が高いほどCO吸着量が多くなることから、吸着工程の全圧よりも脱着工程の全圧が低圧となるように変化させることが好ましい。全圧は、加圧又は減圧することにより調整されてもよく、加圧及び減圧を併用してもよい。全圧の調整は上述の圧力調整部42を用いて実施することができる。全圧を調整する方法としては、例えば、上述した吸着工程と同様の方法が挙げられる。脱着工程における全圧は、CO脱離量が多くなる観点から、周辺大気の圧力(例えば1気圧)であってもよく、1気圧未満であってもよい。
 脱着工程では、吸着剤1から脱着した二酸化炭素を含むガスが反応容器10から第2ガス排出流路32へ排出される。脱着工程では、第2ガス排出量調整部35を用いて、二酸化炭素を含むガスの排出量を調整してもよい。また、本実施形態では、二酸化炭素回収部70を用いて、排出された二酸化炭素を含むガスを回収することができる。回収された二酸化炭素は、二酸化炭素を利用する分野において再利用してもよい。例えば、温室栽培向けハウス等では、CO濃度を高めることで植物の成長が促進されることから、CO濃度を1000ppmレベルに高める場合がある。そのため、回収された二酸化炭素を、CO濃度を高めることに再利用してもよい。
 通常、脱着工程では、処理対象ガスを供給しないが、処理対象ガスを供給した状態で脱着工程を行ってもよい。また、脱着工程では、二酸化炭素を脱着させる温度領域で水(水蒸気)を含むガスを反応容器10内に供給してもよい。処理対象ガスがNOx及び/SOxを含む場合、吸着剤には二酸化炭素の他にNOx及び/又はSOxが吸着する場合がある。NOx及びSOxは前述のように吸着剤の劣化の原因となり得るため、二酸化炭素の吸脱着サイクルの過程で、NOx及びSOxをできる限り吸着剤から脱着させることが望ましい。一方、本発明者らの知見によれば、脱着工程において、吸着剤から二酸化炭素を脱着させるために反応容器を200℃に加熱し、水(水蒸気)を含むガスを供給した場合、図2に示すように、吸着剤からのNOxの脱離が促進される。このことを利用して、二酸化炭素を脱着させる温度領域で水(水蒸気)を含むガスを供給することにより、吸着剤に吸着したNOx及びSOxの一部を除去することができる。水(水蒸気)は、水調整部20により供給してよく、水量を調整した処理対象ガスを供給してもよい。処理対象ガス中の水量の調整は、水の飽和蒸気圧の温度依存性を利用して処理対象ガス中における水量(HO濃度)を調整する機器を用いて行ってよい。
[洗浄工程]
 洗浄工程では、水調整部20により反応容器10に水を供給して吸着剤1に水を接触させた後、反応容器10から水を排出する。洗浄工程で用いる水は、水供給流路21を介して反応容器10に供給され、水排出流路22を介して反応容器10から排出される。
 上述のとおり、処理対象ガスが二酸化炭素と、水と、NOx及び/又はSOxと、を含有する場合、吸着剤が被毒し、CO吸着容量が低下する。これは、吸着剤が金属成分(例えば金属酸化物)を含む場合に顕著である。この原因を本発明者らは以下のように推察している。
 すなわち、前記処理対象ガスが吸着剤に接触した場合、NOx及び/又はSOxが吸着剤の表面に吸着した後、水がその表面に共吸着することで水と被毒成分とが反応して酸(硝酸又は硫酸)が生成する(一例として、NOxと水とにより硝酸が生成する反応を下記式に示す)。この酸によって吸着剤の二酸化炭素吸着容量が低下すると考えられる。特に、吸着剤が金属成分(例えば金属酸化物)を含む場合には、金属成分と上記の酸との反応により生成する金属塩(硝酸塩又は硫酸塩)に起因して二酸化炭素吸着容量が顕著に低下すると推察される。
 NO + 1/2O → NO
 3NO + HO → 2HNO + NO
 以上の理由から、NOx及びSOxが多く含まれる場合には予め除去することが好ましいが、これらを完全に除去することは難しい。例えば、石炭火力発電所において、脱硝工程及び脱硫工程を行ったとしても15ppm程度のNOx及びSOxが残留する。一方、本実施形態の二酸化炭素除去装置では、洗浄工程を実施することで、吸着剤に付着した被毒成分(酸、金属塩等)を洗浄し、清浄な吸着剤表面を露出させることができる。そのため、本実施形態の二酸化炭素除去装置によれば、吸着剤の二酸化炭素吸着容量を回復させて、吸着剤のCO吸脱着サイクル特性を向上させることができる。すなわち、本実施形態の二酸化炭素除去装置によれば、処理対象ガスが、二酸化炭素と、水と、NOx及び/又はSOxとを含有する場合であっても効率的に二酸化炭素を除去することができる。
 洗浄工程で用いる水は、液体又は気体(水蒸気)のいずれであってもよく、二酸化炭素吸着容量の回復効果に優れる観点から、液体であることが好ましい。すなわち、水調整部20は、反応容器に液体の水を供給するものであることが好ましい。洗浄工程では、第1温度調整部25により供給する水の温度を調整してもよい。水の温度を調整することにより、例えば吸着剤が金属成分を含む場合には、吸着剤に付着した被毒成分(例えば、吸着剤表面に析出した金属塩)の溶解度を高めることができる。このような観点から、水の温度は、例えば、0~100℃であってよく、30~100℃であってもよく、60~100℃であってもよく、0~60℃であってもよく、0~30℃であってもよく、30~60℃であってもよい。
 洗浄工程では、水供給量調整部23により水の供給量を調整してよく、水排出量調整部24により水の排出量を調整してもよい。例えば、水の排出量を水の供給量よりも少なくする又は水の供給中に水の排出を行わないようにすることで、反応容器10内に水を滞留させて、吸着剤1を水に浸漬させてもよい。
 水の供給量は、吸着剤1の表面に付着した被毒成分(酸、金属塩等)の量に応じて適宜調整してよい。金属成分を含む吸着剤を用いる場合、析出する金属塩の水への溶解度に基づき、最小限の量の水が吸着剤1に接触するように水を供給することが好ましい。例えば、硝酸セリウムが析出した場合、硝酸セリウムの水100mlへの溶解度は20℃で234gであるため、234gの硝酸セリウムの析出が見込まれる場合に20℃の水で洗浄工程を行うのであれば、少なくとも100mlの水が吸着剤1に接触するように水を供給することが好ましい。水の供給量は、例えば、吸着剤の全質量基準で、0.1mL/g以上であってよく、1mL/g以上であってもよく、10mL/g以上であってもよい。
 洗浄工程では、水の供給量を計測する計測機器を用いて水の供給量を計測し、計測した水の供給量に基づいて水の供給量を調整してもよい。
 洗浄工程は、反応容器10に水を供給して吸着剤1に水を接触させた後、温度検出部40で吸着剤1の温度を検出する工程と、検出された吸着剤1の温度に基づき第2温度調整部41を制御して反応容器10内を加熱又は冷却した後、水調整部により反応容器10内の水を排出する工程と、を備えていてもよい。検出された吸着剤1の温度に基づき第2温度調整部41を制御して反応容器10内を加熱又は冷却した後、水調整部により反応容器10内の水を排出する工程では、例えば、被毒成分(金属塩等)に対する高い溶解度を維持するように反応容器内を加熱又は冷却する。具体的には、温度検出部40で検出された温度が一定温度よりも低い場合には反応容器内を加熱し、温度検出部40で検出された温度が一定温度よりも高い場合には反応容器内を冷却する。次いで、加熱又は冷却により一定温度となったことが検出された後、反応容器内の水を排出する。
 洗浄工程を実施するタイミングは特に限定されず、吸着工程後、脱着工程前に実施してよく、脱着工程後に実施してもよい。また、吸着工程及び脱着工程を繰り返し実施する場合、サイクル毎に洗浄工程を実施してよく、吸着工程及び脱着工程を所定回数繰り返し行った後に洗浄工程を実施してもよい。
 サイクル毎に洗浄工程を実施する場合、吸着剤1の温度に基づき洗浄工程を実施してよい。すなわち、吸着剤1の温度に基づき水供給量調整部23を制御して反応容器10に供給する水の量を調整してよい。例えば、脱着工程での加熱により吸着剤1の温度が一定温度以上になった場合に水を供給するように水供給量調整部23を制御してよい。これにより、吸着剤1の冷却と洗浄とを同時に実施することができる。この際、吸着剤の温度が二酸化炭素を吸着させる温度領域に入るように反応容器10内に供給する水の量を調整してよい。このような制御は、制御部80を用いて行ってよい。
 吸着工程及び脱着工程を所定回数繰り返し行った後に洗浄工程を実施する場合、吸着剤1の二酸化炭素吸着容量に基づき洗浄工程を実施してよい。すなわち、吸着剤1の二酸化炭素吸着容量に基づき水供給量調整部23を制御して反応容器10に供給する水の量を調整してよい。例えば、二酸化炭素吸着容量が一定値以下となった場合に水を供給するように水供給量調整部23を制御してよい。この際、二酸化炭素吸着容量の低下の程度に応じて、供給する水の量を調整してよい。供給する水の量が多いほど吸着剤の洗浄効果が得られる。吸着剤の二酸化炭素吸着容量は、処理対象ガス中の二酸化炭素の濃度と処理後のガス中の二酸化炭素濃度との差から判断することができる。処理対象ガス中の二酸化炭素濃度は第1ガス濃度検出部36により検出することができ、処理後のガス中の濃度は第2ガス濃度検出部37により検出することができる。換言すれば、第1ガス濃度検出部36及び第2ガス濃度検出部37が二酸化炭素吸着容量検出部を構成している。また、このような制御は、制御部80を用いて行ってよい。
 本実施形態では、水回収部50により洗浄工程で排出された水を回収してよい。また、回収した水は、水循環流路60を介して反応容器10に供給することで再度洗浄工程に用いることができる。この際、回収した水には吸着剤1に付着していた被毒成分(酸、金属塩等)が含まれるため、水と被毒成分とを分離することが好ましい。例えば、第3温度調整部51により水を加熱し気化させることで、水と被毒成分とを分離することができる。被毒成分が金属塩である場合、金属塩を焼成して得られる焼成物(金属酸化物)を吸着剤として再利用してもよい。また、焼成により発生するNOx及びSOxを回収してもよい。加熱方法は特に限定されない。例えば、水回収部50を炉心管にして電気炉で加熱する方法が挙げられる。また、回収した水を循環させる方法も特に限定されない。
 以上、吸着工程、脱着工程及び洗浄工程について説明したが、本実施形態の二酸化炭素除去装置100を用いた二酸化炭素の除去方法は、吸着工程、脱着工程及び洗浄工程以外の他の工程を更に備えていてもよい。例えば、脱着工程において吸着剤1を加熱する場合、二酸化炭素の除去方法は、吸着剤1を冷却する工程を更に備えていてもよい。吸着剤1を冷却する方法としては上述の方法が挙げられる。上述のように、水調整部20により反応容器10内に水を供給することで吸着剤1を冷却することもできる。
 また、例えば、HOを吸着することで二酸化炭素吸着容量が低下する吸着剤(例えばゼオライト)を用いる場合には、洗浄工程後に吸着剤から水(HO)を脱着させる工程を更に備えていてもよい。例えば、上述の第2温度調整部41により吸着剤を加熱することで水を脱着させてよい。
 また、例えば、処理対象ガスがSOx、NOx、煤塵等を含有する場合(例えば、処理対象ガスが、石炭火力発電所等から排出される排ガスである場合)、本実施形態に係る二酸化炭素の除去方法は、吸着剤1の二酸化炭素吸着容量を維持しやすい観点から、吸着工程の前に、処理対象ガスからSOx、NOx、煤塵等の不純物を除去する不純物除去工程を更に備えてもよい。不純物除去工程は、脱硝装置、脱硫装置、脱塵装置等の除去装置を用いて行うことが可能であり、これらの装置の下流側において、処理対象ガスを吸着剤に接触させることができる。
<吸着剤及び反応容器>
 次に、吸着剤1及び反応容器10の詳細について説明する。
(吸着剤)
 吸着剤1は、二酸化炭素を除去するために用いられる吸着剤であり、二酸化炭素吸着性を有する。吸着剤1は、例えば、金属酸化物、活性炭、アルカリ金属の炭酸塩、アルカリ金属の水酸化物、層状複水酸化物及び固体の有機化合物からなる群より選択される少なくとも1種を含む。本実施形態では、単一の種類の吸着剤を用いてよく、複数の種類の吸着剤を組み合わせて用いてもよい。また、一方の吸着剤(担体)に他方の吸着剤を担持したものを用いてもよい。担持は、含浸等の方法で行ってよい。
 金属酸化物は、1種の金属元素を含有する金属酸化物であってもよく、複数種の金属元素を含有する複合金属酸化物であってもよい。金属酸化物としては、二酸化炭素の吸着性に優れる観点から、希土類元素、ジルコニウム及び亜鉛からなる群より選択される少なくとも1種を含むことが好ましく、セリウム(Ce)を含むことより好ましい。セリウムを含む金属酸化物としては、CeOx(x=1.5~2.0)等が挙げられ、具体的には、CeO、Ce等が挙げられる。金属酸化物は、シリカ(SiO)、アルミナ(Al)、ゼオライト等であってもよい。金属酸化物は、比表面積の向上、耐熱性の向上、使用金属量の低減等の観点から、シリカ、アルミナ又はゼオライトに、希土類金属(例えばセリウム)及びジルコニウムからなる群より選択される少なくとも1種の金属を含む酸化物(複合酸化物等)が担持されていてもよい。本実施形態では、単一の種類の金属酸化物を用いてよく、複数の種類の金属酸化物を組み合わせて用いてもよい。
 ところで、ゼオライトは、水を含有する処理対象ガスに接触すると、二酸化炭素の吸着性が低下する。そのため、処理対象ガスを吸着剤に接触させる前段で、処理対象ガスから水を除去することが一般的である。例えば、前記特許文献1に記載の二酸化炭素の除去方法においては、処理対象ガスが水を含有する場合には、処理対象ガスにおける水の濃度を400ppm以下に低減することが好ましく、20ppm以下に低減することがより好ましいとされている。一方、上述の希土類元素、ジルコニウム及び亜鉛からなる群より選択される少なくとも1種を含む酸化物を用いた場合、HOを接触させた後も二酸化炭素の吸着性が良好であり、且つ二酸化炭素を脱着させる際の温度を低温化することが可能である。この理由を本発明者らは次のように推察している。
 すなわち、上記酸化物においては、酸化物がその表面においてHOと反応することで酸化物の表面にヒドロキシル基(-OH)が形成される。このヒドロキシル基が二酸化炭素と反応し炭酸水素塩(-COH)を形成する。このようにして金属酸化物の表面に二酸化炭素が金属酸化物に吸着されるため、上記効果が得られると推察している。
 金属酸化物は、例えば、多孔質状の金属酸化物(多孔質金属酸化物)、層状の金属酸化物(層状金属酸化物)、又はコアシェル構造の金属酸化物であってもよい。金属酸化物としては、比表面積の大きい金属酸化物が好ましく、このような観点では、多孔質状の金属酸化物が好ましい。
 層状金属酸化物は、例えば、層状複水酸化物を焼成して得られる酸化物であってもよい。層状複水酸化物は、ハイドロタルサイト状化合物とも呼ばれ、2種類以上の金属元素を含み、その組成は下記式(1)で表すことができる。
 [M(2+) 1-x(3+) (OH)][A(n-) x/n・yHO]・・・(1)
 上記式においてM(2+)は2価の金属イオンであり、例えば、マグネシウム(Mg)イオン、マンガン(Mn)イオン、鉄(Fe)イオン、コバルト(Co)イオン、ニッケル(Ni)イオン、銅(Cu)イオン及び亜鉛(Zn)イオンからなる群より選択される少なくとも1種の金属イオンを表す。M(3+)は3価の金属イオンであり、例えば、アルミニウム(Al)イオン、クロム(Cr)、鉄(Fe)イオン、コバルト(Co)イオン、及びインジウム(In)イオンからなる群より選択される少なくとも1種のイオンを表す。A(n-)はn価の陰イオンであり、例えば、炭酸イオン、硝酸イオン及び硫酸イオンからなる群より選択される少なくとも1種のイオンを表す。上記式(1)において、M(2+)、M(3+)及びA(n-)は、それぞれ単一のイオンであってもよく、複数種のイオンであってもよい。
 金属酸化物を合成する方法としては、含浸法、混練法、共沈法、ゾルゲル法等の調製方法が挙げられる。例えば、セリウムを含む金属酸化物を合成する方法では、セリウムの酸性塩(例えば硝酸塩)を含む溶液に、アンモニア、水酸化ナトリウム、水酸化カルシウム等の塩基性の化合物を加えることでpHを7~10に調整して沈殿させてもよい。沈殿により酸化物が形成される場合には、沈殿物をそのまま用いてもよく、沈殿物を焼成することにより更に酸化させてもよい。
 層状複水酸化物を合成する方法としては、含浸法、混練法、共沈法、ゾルゲル法等の調製方法が挙げられる。例えば、層状複水酸化物を合成する方法では、Mgを含む硝酸塩及びAlを含む硝酸塩を含有する溶液に炭酸ナトリウムを添加した後、アンモニア、水酸化ナトリウム、水酸化カルシウム等の塩基性の化合物を加えることでpHを8~11に調整して沈殿させてもよい。得られる沈殿物は層状複水酸化物であり、沈殿物を焼成することで金属酸化物又は複合金属酸化物を得ることができる。焼成温度は、特に限定されず、例えば200℃以上であってもよい。
 活性炭の組成等は特に限定されない。活性炭は、その内部に窒素元素(N)を多く含む場合に塩基性が増し、二酸化炭素吸着性が向上することがある。このような活性炭を合成する方法としては、活性炭にアンモニア(NH)を含むガスを接触させる方法、窒素元素を多く含む有機化合物から活性炭を合成する方法等が挙げられる。
 固体の有機化合物としては、塩基性を有する有機化合物が好ましい。例えばアミノ基を有する有機化合物が挙げられる。
 吸着剤の形状は、特に限定されず、例えば、粉状、ペレット状、粒状、ハニカム状等であってもよい。また、本実施形態では、吸着剤をハニカム状の基材に担持して用いてもよい。吸着剤をハニカムに担持して用いる場合、空隙率を高めることができることから圧力損失を小さくすることができる。吸着剤の形状及び使用形態は、必要となる反応速度、圧力損失、吸着剤に吸着されるガス(吸着ガス)の純度(CO純度)等を勘案して決定すればよい。
(反応容器)
 反応容器10は、固定床式であってもよく、ローター式であってもよく、流動床式であってもよい。ローター式及び流動床式は、反応容器に流通させるガス(流通ガス)等の切り替えを行わず、吸着剤そのものを移動させる方式である。
 固定床式の反応容器は、例えば、吸着剤1(例えば粒状の吸着剤)を反応容器内に充填し、吸着剤1自体は移動させずに処理対象ガス又は反応容器内の温度及び圧力を変化させることで二酸化炭素の吸着及び脱着を行うように構成されている。この方式では、吸着剤1の移動が少ないため、吸着剤1同士、又は吸着剤1と反応容器との接触による吸着剤1の摩耗を低減でき、吸着剤1の性能の低下を抑えることができる。また、充填密度を高めることができるため、空隙率が低く、反応容器の容積あたりの二酸化炭素除去量を高めることができる。
 ローター式の反応容器としては、例えば、容器と、容器内部に設けられた吸着剤充填部と、容器内に流通するガスを仕切るための仕切り板と、を備える反応容器が挙げられる。吸着剤充填部には吸着剤1が充填されている。この反応容器は、内部が仕切り板によって複数の領域に仕切られており、流通するガスの種類によって、二酸化炭素吸着領域、吸着剤加熱領域(CO脱離領域)、吸着剤冷却領域等に分けられている。そのため、この方式では、吸着剤充填部を回転させることで、吸着剤1を二酸化炭素吸着領域、吸着剤加熱領域(CO脱離領域)、吸着剤冷却領域等に移動させることができ、COの吸着(吸着工程)、吸着剤1の加熱(脱着工程)、吸着剤1の冷却(冷却工程)等の吸脱着サイクルを実施できる。この方式では、加熱用ガスを流通させて吸着剤1を加熱し、COを脱離させる温度スイング法を行う場合等であっても、反応容器に流通させるガスの切り替えが不要であるため、配管、弁等の構成が簡潔になる。また、仕切り板を設置する位置を変化させることにより、各領域の大きさを決定できるため、処理対象ガスの流通時間(二酸化炭素を吸着させる時間)、吸着剤1の加熱時間(二酸化炭素を脱離させる時間)、吸着剤1の冷却時間等の比を容易に決めることができる。
 上記ローター式では、吸着剤1が担持されたハニカム(例えばハニカムローター)を反応容器内に配置してもよい。この場合、吸着剤1がハニカムに担持されているため、吸着剤1自体の摩耗を低減でき、吸着剤1の性能の低下を抑えることができる。
 また、上記ローター方式において2種以上の吸着剤1を用いる場合には、2つ以上の反応容器を設置し、それぞれに異なる吸着剤1を配置してもよく、1つの反応容器において、反応容器内の異なる箇所に吸着剤1を配置してもよい。例えば、反応容器10内の上流側と下流側にそれぞれ異なる吸着剤1を配置してもよい。この場合、例えば、上流側にセリウム酸化物を含む吸着剤を配置し、下流側にゼオライトを含む吸着剤を配置してもよい。このような構成とすることにより、例えば、処理対象ガスは上流側から下流側の方向へ流通させ、加熱用ガスは下流側から上流側の方向へ流通させることで、ゼオライトに水が接触してゼオライトの二酸化炭素吸着容量が低減することを抑制できる。また、吸着剤1をハニカム(ハニカムローター)に担持させる場合、ハニカム内で各吸着剤1の担持する場所を分けてもよい。
 流動床式の反応容器は、例えば、吸着剤1の充填量を少なくすることで、動力(コンベヤ、ブロア等)によって吸着剤1が流動可能なように構成されている。流動床式の反応容器を用いる場合、例えば、処理対象ガスが流通する反応容器と、加熱用のガスが流通する加熱用容器を設置し、動力(コンベヤ、ブロア等)を用いて、吸着剤1(例えば、粒状又は粉状の吸着剤)を反応容器と加熱用容器の間で移動させることで、二酸化炭素の吸着と脱着を繰り返してもよい。この方式では、反応容器に流通させるガスの切り替えが不要であるため、配管、弁等の構成が簡潔になる。また、二酸化炭素の吸着時と脱着時において異なる空隙率を設定できる。例えば、脱着時には空隙率が低くなるよう設定し、吸着剤に吸着されるガス(吸着ガス)の純度(CO純度)を高めてもよい。ガス流量が非常に大きいガス(ボイラ排ガス等)を処理対象ガスとする場合には、コンベヤの代わりにガスにより吸着剤1を吹き上げる方式で二酸化炭素の除去を行ってもよい。コンベヤと比較して機械部品が減るために簡潔な構成とできる。
 以上、本実施形態の二酸化炭素除去装置及び当該装置を用いた二酸化炭素の除去方法(吸着剤の二酸化炭素吸着容量の回復方法)について説明したが、本発明は上記実施形態に限定されない。
 例えば、図1では、ガス供給流路30が反応容器10の下方に接続され、第1ガス排出流路31及び第2ガス排出流路32が反応容器10の上方に接続されているが、ガス供給流路30、第1ガス排出流路31及び第2ガス排出流路32の配置位置は特に限定されない。また、図1では、第1ガス排出流路31及び第2ガス排出流路32がそれぞれ反応容器10に接続されているが、反応容器10に1つの流路を接続し、当該流路を二分岐させることで第1ガス排出流路31及び第2ガス排出流路32を構成してもよい。また、図1では、水の排出が容易となる観点から、水供給流路21が反応容器10の上方に接続され、水排出流路22が反応容器10の下方に接続されているが、水供給流路21及び水排出流路22の接続位置は特に限定されない。
 また、図1では、第2温度調整部は反応容器10の外部に設けられているが、反応容器内に設けられていてもよい。また、図1では、第3温度調整部51は、水回収部50の外部に設けられているが、水回収部50の内部に設けられていてもよい。
 また、図1に示すガス供給量調整部33、第1ガス排出量調整部34、第2ガス排出量調整部35、水供給量調整部23及び水排出量調整部24はバルブであるが、他の機器で構成されていてもよい。水供給量調整部23を構成する機器は、例えば、スクリュー式流量計、羽根車式流量計、バイパス式流量計、差圧式流量計、電磁式流量計等の機器であってよい。水供給量調整部23は、水の供給量に基づいて水の供給量を調整するために、水の供給量を計測する計測機器を備えるものであることがあることが好ましい。この場合、制御部80は、計測機器からの電気信号に基づいて水供給量調整部23を制御する制御部であってよい。
 また、二酸化炭素除去装置100は、反応容器に供給する処理対象ガス中の各ガス成分の濃度を調整するためのガス濃度調整部を更に備えていてもよい。この場合、制御部80は、第1ガス濃度検出手段で検出した情報に基づき、ガス濃度調整部を制御する制御部であってよい。
 また、二酸化炭素除去装置100の各構成要素は複数であってもよい。例えば、吸着剤を充填した反応容器の後段に、同じ又は異なる吸着剤(二酸化炭素又はその他のガスを吸着し得る吸着剤)を充填した反応容器を設置してもよい。さらに、反応容器をつなぐ配管部に流路切り替え用の弁を設置してもよい。この場合、必要に応じて後段の反応容器を使用してよい。
 例えば、前段の反応容器に二酸化炭素を吸着し得る吸着剤を充填した場合には、二酸化炭素が先に捕捉飽和となり、前段の反応容器の出口から二酸化炭素が排出されると考えられる。二酸化炭素が先に捕捉飽和となる場合、すなわち、吸着剤が吸着容量分の二酸化炭素を吸着し、二酸化炭素が吸着されなくなる場合は、後段に設置する反応容器には二酸化炭素以外のガスが流通することで二酸化炭素吸着容量が低下する吸着剤を使用してよい。このような吸着剤の例としては、ゼオライト及び活性炭が挙げられる。また、二酸化炭素以外のガスが先に捕捉飽和となる場合には、後段に設置する反応容器には二酸化炭素の吸着性に優れる吸着剤(二酸化炭素吸着容量が大きい吸着剤)を使用してもよい。このような吸着剤の例としては、セリア(CeO)が挙げられる。処理対象ガス中の二酸化炭素とその他のガスとの濃度比が変動しやすく、いずれのガスが捕捉飽和となりやすいか不明な場合には、後段に2つの反応容器を設置し、捕捉飽和となったガスの種類に応じて使用する反応容器を選択する方式としてもよい。前段の反応容器のみを使用して二酸化炭素を除去できた場合には、後段の反応容器において二酸化炭素の脱離処理を行う必要が無く、消費エネルギーを低減できる。
 反応容器及び吸着剤の組み合わせの例としては、前段の反応容器にはCO吸着性に優れる、希土類元素、ジルコニウム、及び亜鉛からなる群より選択される少なくとも1種を含む酸化物を含有する吸着剤を設置し、後段の反応容器には、二酸化炭素吸着性を有し、さらにHS吸着性に優れる、セリウム以外の希土類元素、ジルコニウム、及び亜鉛からなる群より選択される少なくとも1種を含む酸化物を含有する吸着剤を設置する組み合わせが挙げられる。このような構成の二酸化炭素除去装置を用いて二酸化炭素及び硫化水素(HS)を含有する処理対象ガスから二酸化炭素を除去する場合、前段の反応容器において二酸化炭素が捕捉飽和となり、二酸化炭素が前段の反応容器から排出された場合であっても、後段の反応容器において二酸化炭素を除去できる。前段の反応容器において二酸化炭素以外のガス(硫化水素)が捕捉飽和となり、二酸化炭素以外のガスが前段の反応容器から排出された場合であっても、後段の吸着剤(例えばゼオライト)により二酸化炭素以外のガスを除去し得る。ただし、一般に硫化水素の吸着剤に対する吸着力は強い。そのため、吸着剤から硫化水素を脱着させるためには、二酸化炭素を脱着させる場合よりも加熱及び減圧に必要な負荷が高い。したがって、本構成では、消費エネルギーを低減できる観点から、前段の反応容器において二酸化炭素が捕捉飽和とならないように、適宜脱着工程を実施することが好ましい。
 また、二酸化炭素除去装置100は、ガス供給量調整部33、第1ガス排出量調整部34、第2ガス排出量調整部35、第1ガス濃度検出部36、第2ガス濃度検出部37、第1温度調整部25、第2温度調整部41、第3温度調整部51、圧力調整部42、水回収部50、二酸化炭素回収部70、制御部80、水循環流路60等を備えていなくてもよい。
 また、本実施形態の二酸化炭素除去装置100を複数用いて二酸化炭素除去システムを構成してもよい。この場合、複数の二酸化炭素除去装置を統括的に制御するための制御装置を設けて、複数の二酸化炭素装置を制御してよい。
 以下、実施例及び比較例を用いて本発明の内容を更に詳細に説明する。ただし、本発明は以下の実施例に限定されるものではない。なお、実施例及び比較例のCO吸脱着サイクル試験における処理対象ガスは、火力発電所の排ガスを模擬したものである。
(実施例1)
<CO吸脱着サイクル試験>
 30gの粉末状のセリウム酸化物(CeO)を直径40mmの金型を使用して、プレス機により500kgfでペレット化した。次いで、ペレットを破砕した後、篩を用いて粒状(粒径:0.5~1.0mm)に整粒して粒状の吸着剤(以下、単に「吸着剤」という)を得た。その後、メスシリンダーを用いて吸着剤20.0mlを量りとり、SUS製反応管中に固定した。次いで、吸着工程、脱着工程、及び冷却工程を実施した。
 吸着工程では、電気炉を用いて吸着剤の温度を50℃まで昇温させた後、電気炉で吸着剤の温度を50℃に保ちながら、15体積%のCOと、5体積%のOと、150ppmのNOと、約50℃での飽和水蒸気を含んだ約80体積%のNとを含有する混合ガスを反応管に流通させた。混合ガスの流量は2000mL/minとした。反応管の出口のCO濃度をガスクロマトグラフ(キャリアガス:He)により測定し、反応管の出口で測定されるCO濃度が飽和するまでガスの導入を継続した。CO濃度が飽和するまでの反応管の入口側と出口側とのCO濃度の差分からCO吸着量を測定した。
 続く脱着工程では、電気炉で吸着剤の温度を200℃まで昇温させることにより吸着剤からCOを脱着させた。その後、冷却工程では、反応管にNガスのみを流通させながら吸着剤の温度を50℃まで冷却した。
 この一連の工程(吸着工程、脱着工程、及び冷却工程)を24サイクル繰り返した後、24サイクル時のCO吸着量を測定し、下記式に基づき24サイクルでのCO吸着量維持率を算出した。
24サイクルでのCO吸着量維持率(%)=(初回サイクル時のCO吸着量)/(24サイクル時のCO吸着量)×100
 次いで、反応管の上方に接続された水供給流路から反応管内に液体の水を10ml/minで10分間流通させることにより、洗浄工程を実施した。洗浄工程後、再度、吸着工程及び脱着工程を実施した。25サイクル時のCO吸着量を測定し、下記式に基づき25サイクルでのCO吸着量を測定した。
25サイクルでのCO吸着量維持率(%)=(初回サイクル時のCO吸着量)/(25サイクル時のCO吸着量)×100
 実施例1では、初回サイクル前、24サイクル後、及び25サイクル後に吸着剤のラマンスペクトルを測定した。ラマンスペクトルの測定条件は、顕微ラマン分光装置(RAMAN touch、ナノフォトン社製)を用い、レーザ波長:532nm、倍率:50倍、測定時間:5分のスポット分析とした。測定結果を図4に示す。図4中の(a)は初回サイクル前のラマンスペクトルを示し、図4中(b)は24サイクル後のラマンスペクトルを示し、図4中の(c)は25サイクル後のラマンスペクトルを示す。
(実施例2)
 洗浄工程を次の手順で行ったこと以外は、実施例1と同様の手順でCO吸脱着サイクル試験を行った。実施例2の洗浄工程では、水の供給の際に水の排出を行わず、反応管内に充填した吸着剤が水に浸漬するまで水を反応管内に供給した。その状態で10分間放置した後、反応管から水を下流側へ排出した。
(実施例3)
 混合ガスとして、15体積%のCO、5体積%のO、300ppmのSO及び約80体積%のNを含有する混合ガスを用いたこと以外は、実施例1と同様の手順でCO吸脱着サイクル試験を実施した。
(実施例4)
 混合ガスとして、15体積%のCO、5体積%のO、300ppmのSO及び約80体積%のNを含有する混合ガスを用いたこと以外は、実施例2と同様の手順でCO吸脱着サイクル試験を実施した。
(比較例1)
 洗浄工程を実施しなかったこと以外は、実施例1と同様の手順でCO吸脱着サイクル試験を実施した。
(比較例2)
 洗浄工程を実施しなかったこと以外は、実施例3と同様の手順でCO吸脱着サイクル試験を実施した。
 実施例及び比較例のCO吸脱着サイクル試験の結果を表1及び図3に示す。図3は、25サイクル後のCO吸着量維持率の結果を示すグラフである。
Figure JPOXMLDOC01-appb-T000001
 洗浄工程を実施した実施例1~4では、25サイクルでのCO吸着量維持率が90%前後であり、吸着剤は高いCO吸脱着サイクル特性を示した。一方で、洗浄工程を実施していない比較例1及び2では、25サイクルでのCO吸着量維持率がいずれも実施例に比べ著しく低かった。
 また、図4に示すように、24サイクル後のラマンスペクトルにおいて、1000cm-1付近に硝酸セリウムに由来するピークが確認された。すなわち、吸着剤表面に硝酸セリウムが析出していることが確認された。一方、吸着工程後(25サイクル後)のラマンスペクトルでは、1000cm-1付近のピークが消失し、初回サイクル前と同様のスペクトルが確認された。これらの結果より、二酸化炭素除去装置に水調整部を設けて洗浄工程を実施することにより、吸着剤の二酸化炭素吸着容量を回復でき、吸着剤のCO吸脱着サイクル特性を向上させることができることが確認された。
 1…吸着剤、10…反応容器、20…水調整部、21…水供給流路、22…水排出流路、23…水供給量調整部、24…水排出量調整部、25…第1温度調整部、40…温度検出部、41…第2温度調整部、50…水回収部、51…第3温度調整部、80…制御部。

Claims (12)

  1.  吸着剤と、当該吸着剤を内部に設置した反応容器と、を備え、二酸化炭素を含有する処理対象ガスを前記吸着剤に接触させて、前記処理対象ガスから二酸化炭素を除去する二酸化炭素除去装置であって、
     前記反応容器に水を供給し、且つ、前記反応容器から水を排出する水調整部、を更に備える、二酸化炭素除去装置。
  2.  前記水調整部は、
     前記反応容器に水を供給する水供給流路と、
     前記水供給流路から前記反応容器に供給する水の量を調整する水供給量調整部と、
     前記反応容器から水を排出する水排出流路と、
     前記反応容器から前記水排出流路に排出する水の量を調整する水排出量調整部と、を備える、請求項1に記載の二酸化炭素除去装置。
  3.  前記吸着剤の二酸化炭素吸着容量を検出する二酸化炭素吸着容量検出部を備え、
     前記水供給量調整部は、前記二酸化炭素吸着容量検出部で検出された前記吸着剤の二酸化炭素吸着容量に基づき前記反応容器に供給する水の量を調整する、請求項2に記載の二酸化炭素除去装置。
  4.  前記吸着剤の温度を検出する温度検出部を備え、
     前記水供給量調整部は、前記温度検出部で検出された前記吸着剤の温度に基づき前記反応容器に供給する水の量を調整する、請求項2又は3に記載の二酸化炭素除去装置。
  5.  前記水調整部は、前記反応容器に供給する水の温度を調整する第1温度調整部を更に備える、請求項1~4のいずれか一項に記載の二酸化炭素除去装置。
  6.  前記反応容器内の温度を調整する第2温度調整部を備える、請求項1~5のいずれか一項に記載の二酸化炭素除去装置。
  7.  前記吸着剤の温度を検出する温度検出部を備え、
     前記第2温度調整部は、前記温度検出部で検出された温度に基づき前記反応容器内の温度を調整する、請求項6に記載の二酸化炭素除去装置。
  8.  前記反応容器から排出された水を回収する水回収部を更に備える、請求項1~7のいずれか一項に記載の二酸化炭素除去装置。
  9.  前記水回収部内の水の温度を調整する第3温度調整部を備える、請求項8に記載の二酸化炭素除去装置。
  10.  前記吸着剤が、希土類元素及びジルコニウムからなる群より選択される少なくとも1種を含む金属酸化物を含有する、請求項1~9のいずれか一項に記載の二酸化炭素除去装置。
  11.  請求項1~10のいずれか一項に記載の二酸化炭素除去装置を用いた、吸着剤の二酸化炭素吸着容量の回復方法であって、
     前記反応容器に水を供給して前記吸着剤に水を接触させた後、前記反応容器内の水を排出する、方法。
  12.  前記反応容器に水を供給して前記吸着剤に水を接触させた後、前記吸着剤の温度を検出する工程と、検出された前記吸着剤の温度に基づき前記反応容器内を加熱又は冷却した後、前記反応容器内の水を排出する工程と、を備える、請求項11に記載の方法。
PCT/JP2017/013630 2017-03-31 2017-03-31 二酸化炭素除去装置及び吸着剤の二酸化炭素吸着容量の回復方法 WO2018179351A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2019508120A JPWO2018179351A1 (ja) 2017-03-31 2017-03-31 二酸化炭素除去装置及び吸着剤の二酸化炭素吸着容量の回復方法
EP17903697.5A EP3603769A1 (en) 2017-03-31 2017-03-31 Carbon dioxide removal device and method for recovering carbon dioxide adsorption capacity of adsorbent
CN201780087494.3A CN110352090A (zh) 2017-03-31 2017-03-31 二氧化碳除去装置、和吸附剂的二氧化碳吸附容量的恢复方法
US16/488,311 US20200016536A1 (en) 2017-03-31 2017-03-31 Carbon dioxide removal device and method for recovering carbon dioxide adsorption capacity of adsorbent
PCT/JP2017/013630 WO2018179351A1 (ja) 2017-03-31 2017-03-31 二酸化炭素除去装置及び吸着剤の二酸化炭素吸着容量の回復方法
CA3053097A CA3053097A1 (en) 2017-03-31 2017-03-31 Carbon dioxide removal device and method for recovering carbon dioxide adsorption capacity of adsorbent
TW107110212A TW201841683A (zh) 2017-03-31 2018-03-26 二氧化碳去除裝置、及吸附劑的二氧化碳吸附容量的回復方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/013630 WO2018179351A1 (ja) 2017-03-31 2017-03-31 二酸化炭素除去装置及び吸着剤の二酸化炭素吸着容量の回復方法

Publications (1)

Publication Number Publication Date
WO2018179351A1 true WO2018179351A1 (ja) 2018-10-04

Family

ID=63677768

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/013630 WO2018179351A1 (ja) 2017-03-31 2017-03-31 二酸化炭素除去装置及び吸着剤の二酸化炭素吸着容量の回復方法

Country Status (7)

Country Link
US (1) US20200016536A1 (ja)
EP (1) EP3603769A1 (ja)
JP (1) JPWO2018179351A1 (ja)
CN (1) CN110352090A (ja)
CA (1) CA3053097A1 (ja)
TW (1) TW201841683A (ja)
WO (1) WO2018179351A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020089833A (ja) * 2018-12-05 2020-06-11 栗田工業株式会社 ガス吸着装置及びガス吸着方法
JP2020163246A (ja) * 2019-03-28 2020-10-08 株式会社豊田中央研究所 二酸化炭素回収装置、炭化水素製造装置、および、二酸化炭素回収方法
JP2022093075A (ja) * 2020-12-11 2022-06-23 大陽日酸株式会社 Co2回収装置及びco2回収方法
WO2022145217A1 (ja) * 2020-12-28 2022-07-07 住友化学株式会社 居住空間の二酸化炭素の低減方法、並びに、二酸化炭素吸着材およびその製造方法
JP7301253B1 (ja) * 2022-10-19 2023-06-30 三菱電機株式会社 二酸化炭素回収方法
WO2023171466A1 (ja) 2022-03-07 2023-09-14 Jfeスチール株式会社 炭素含有ガスからの炭素回収方法および炭素回収装置
WO2023248609A1 (ja) * 2022-06-24 2023-12-28 日本特殊陶業株式会社 濃度測定方法、二酸化炭素の回収方法および回収装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02187145A (ja) * 1989-01-12 1990-07-23 Sumitomo Heavy Ind Ltd アミン系イオン交換樹脂の前処理装置
JPH06248616A (ja) * 1993-02-24 1994-09-06 Hiroomi Ichinose 環境浄化パネル
JP2000167394A (ja) * 1998-11-30 2000-06-20 Nippon Shokubai Co Ltd 窒素酸化物等吸着剤の再生法
JP2010527757A (ja) 2007-05-18 2010-08-19 エクソンモービル リサーチ アンド エンジニアリング カンパニー 平行チャネル接触器を用いる、排煙からのco2の温度スイング吸着
JP2012071246A (ja) * 2010-09-28 2012-04-12 Jfe Steel Corp 二酸化炭素除去装置
JP2015009185A (ja) * 2013-06-28 2015-01-19 公益財団法人地球環境産業技術研究機構 二酸化炭素分離材及び二酸化炭素を分離又は回収する方法
JP2015507527A (ja) * 2011-12-22 2015-03-12 アールイ−エヌ、テクノロジー、アンパルトゼルスカブRe−N Technology Aps ガスの改良方法
JP2016016369A (ja) * 2014-07-09 2016-02-01 日立化成株式会社 Co2除去装置及びco2除去方法
JP2016117052A (ja) * 2014-12-19 2016-06-30 株式会社西部技研 吸収式除去・濃縮装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2931699B1 (fr) * 2008-05-28 2011-02-11 Rhodia Operations Procede de traitement d'un gaz pour diminuer sa teneur en dioxyde de carbone
JP5812694B2 (ja) * 2011-05-31 2015-11-17 川崎重工業株式会社 二酸化炭素回収方法および装置
JP5820254B2 (ja) * 2011-12-09 2015-11-24 川崎重工業株式会社 二酸化炭素分離装置
JP6298360B2 (ja) * 2014-05-28 2018-03-20 川崎重工業株式会社 二酸化炭素分離システム

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02187145A (ja) * 1989-01-12 1990-07-23 Sumitomo Heavy Ind Ltd アミン系イオン交換樹脂の前処理装置
JPH06248616A (ja) * 1993-02-24 1994-09-06 Hiroomi Ichinose 環境浄化パネル
JP2000167394A (ja) * 1998-11-30 2000-06-20 Nippon Shokubai Co Ltd 窒素酸化物等吸着剤の再生法
JP2010527757A (ja) 2007-05-18 2010-08-19 エクソンモービル リサーチ アンド エンジニアリング カンパニー 平行チャネル接触器を用いる、排煙からのco2の温度スイング吸着
JP2012071246A (ja) * 2010-09-28 2012-04-12 Jfe Steel Corp 二酸化炭素除去装置
JP2015507527A (ja) * 2011-12-22 2015-03-12 アールイ−エヌ、テクノロジー、アンパルトゼルスカブRe−N Technology Aps ガスの改良方法
JP2015009185A (ja) * 2013-06-28 2015-01-19 公益財団法人地球環境産業技術研究機構 二酸化炭素分離材及び二酸化炭素を分離又は回収する方法
JP2016016369A (ja) * 2014-07-09 2016-02-01 日立化成株式会社 Co2除去装置及びco2除去方法
JP2016117052A (ja) * 2014-12-19 2016-06-30 株式会社西部技研 吸収式除去・濃縮装置

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020089833A (ja) * 2018-12-05 2020-06-11 栗田工業株式会社 ガス吸着装置及びガス吸着方法
JP7243161B2 (ja) 2018-12-05 2023-03-22 栗田工業株式会社 ガス吸着装置及びガス吸着方法
JP2020163246A (ja) * 2019-03-28 2020-10-08 株式会社豊田中央研究所 二酸化炭素回収装置、炭化水素製造装置、および、二酸化炭素回収方法
JP7263882B2 (ja) 2019-03-28 2023-04-25 株式会社豊田中央研究所 二酸化炭素回収装置、炭化水素製造装置、および、二酸化炭素回収方法
JP2022093075A (ja) * 2020-12-11 2022-06-23 大陽日酸株式会社 Co2回収装置及びco2回収方法
WO2022145217A1 (ja) * 2020-12-28 2022-07-07 住友化学株式会社 居住空間の二酸化炭素の低減方法、並びに、二酸化炭素吸着材およびその製造方法
WO2023171466A1 (ja) 2022-03-07 2023-09-14 Jfeスチール株式会社 炭素含有ガスからの炭素回収方法および炭素回収装置
WO2023248609A1 (ja) * 2022-06-24 2023-12-28 日本特殊陶業株式会社 濃度測定方法、二酸化炭素の回収方法および回収装置
JP7301253B1 (ja) * 2022-10-19 2023-06-30 三菱電機株式会社 二酸化炭素回収方法
WO2024084605A1 (ja) * 2022-10-19 2024-04-25 三菱電機株式会社 二酸化炭素回収方法

Also Published As

Publication number Publication date
TW201841683A (zh) 2018-12-01
EP3603769A1 (en) 2020-02-05
US20200016536A1 (en) 2020-01-16
CN110352090A (zh) 2019-10-18
CA3053097A1 (en) 2018-10-04
JPWO2018179351A1 (ja) 2020-02-06

Similar Documents

Publication Publication Date Title
WO2018179351A1 (ja) 二酸化炭素除去装置及び吸着剤の二酸化炭素吸着容量の回復方法
JP6413408B2 (ja) Co2除去装置
JP6575050B2 (ja) 二酸化炭素の回収方法及び回収装置
US10682603B2 (en) Carbon dioxide recovery method and recovery device
EP2567751B1 (en) CO2 Sorbent
WO2017163549A1 (ja) 二酸化炭素の回収方法及び回収装置
JP5906074B2 (ja) 水素製造システム
US20160199808A1 (en) Carbon-dioxide capturing material, and carbon-dioxide recovery apparatus using same
JP2019147710A (ja) 酸化セリウム(iv)の製造方法、酸化セリウム(iv)、吸着剤、二酸化炭素の除去方法及び二酸化炭素除去装置
EP3406318A1 (en) Carbon dioxide separation/recovery device, combustion system using same, thermal power generation system using same, and method for separating and recovering carbon dioxide
EP3459625A1 (en) Adsorbent, method for removing carbon dioxide, device for removing carbon dioxide, and system for removing carbon dioxide
WO2018179089A1 (ja) 吸着剤、反応容器、二酸化炭素除去装置及び二酸化炭素除去システム
JP6721020B2 (ja) Co2除去装置
JP6089579B2 (ja) 二酸化炭素吸着剤及びこれを用いた二酸化炭素回収装置並びに二酸化炭素の回収方法
JP6721019B2 (ja) Co2除去装置
Rutten et al. Xe collection and purification from air in three types of porous materials
JPH04187208A (ja) 圧力スイング式h↓2s除去方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17903697

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019508120

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3053097

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017903697

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017903697

Country of ref document: EP

Effective date: 20191031