WO2022145217A1 - 居住空間の二酸化炭素の低減方法、並びに、二酸化炭素吸着材およびその製造方法 - Google Patents

居住空間の二酸化炭素の低減方法、並びに、二酸化炭素吸着材およびその製造方法 Download PDF

Info

Publication number
WO2022145217A1
WO2022145217A1 PCT/JP2021/045957 JP2021045957W WO2022145217A1 WO 2022145217 A1 WO2022145217 A1 WO 2022145217A1 JP 2021045957 W JP2021045957 W JP 2021045957W WO 2022145217 A1 WO2022145217 A1 WO 2022145217A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon dioxide
dioxide adsorbent
adsorbent
living space
alkali metal
Prior art date
Application number
PCT/JP2021/045957
Other languages
English (en)
French (fr)
Inventor
宗弘 林
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to KR1020237021440A priority Critical patent/KR20230128278A/ko
Priority to US18/253,104 priority patent/US20230415087A1/en
Priority to EP21915078.6A priority patent/EP4268933A1/en
Priority to CN202180087154.7A priority patent/CN116669837A/zh
Priority to JP2022502182A priority patent/JPWO2022145217A1/ja
Publication of WO2022145217A1 publication Critical patent/WO2022145217A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/0462Temperature swing adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/62Carbon oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/81Solid phase processes
    • B01D53/82Solid phase processes with stationary reactants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/96Regeneration, reactivation or recycling of reactants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/04Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/04Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium
    • B01J20/043Carbonates or bicarbonates, e.g. limestone, dolomite, aragonite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • B01J20/08Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04 comprising aluminium oxide or hydroxide; comprising bauxite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/103Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate comprising silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28078Pore diameter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3202Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the carrier, support or substrate used for impregnation or coating
    • B01J20/3204Inorganic carriers, supports or substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3234Inorganic material layers
    • B01J20/3236Inorganic material layers containing metal, other than zeolites, e.g. oxides, hydroxides, sulphides or salts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/34Regenerating or reactivating
    • B01J20/3433Regenerating or reactivating of sorbents or filter aids other than those covered by B01J20/3408 - B01J20/3425
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/34Regenerating or reactivating
    • B01J20/3483Regenerating or reactivating by thermal treatment not covered by groups B01J20/3441 - B01J20/3475, e.g. by heating or cooling
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/50Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/30Alkali metal compounds
    • B01D2251/304Alkali metal compounds of sodium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/30Alkali metal compounds
    • B01D2251/306Alkali metal compounds of potassium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/60Inorganic bases or salts
    • B01D2251/606Carbonates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/106Silica or silicates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/112Metals or metal compounds not provided for in B01D2253/104 or B01D2253/106
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/112Metals or metal compounds not provided for in B01D2253/104 or B01D2253/106
    • B01D2253/1122Metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/112Metals or metal compounds not provided for in B01D2253/104 or B01D2253/106
    • B01D2253/1124Metal oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/25Coated, impregnated or composite adsorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/40083Regeneration of adsorbents in processes other than pressure or temperature swing adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/40083Regeneration of adsorbents in processes other than pressure or temperature swing adsorption
    • B01D2259/40088Regeneration of adsorbents in processes other than pressure or temperature swing adsorption by heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/45Gas separation or purification devices adapted for specific applications
    • B01D2259/4508Gas separation or purification devices adapted for specific applications for cleaning air in buildings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/45Gas separation or purification devices adapted for specific applications
    • B01D2259/4566Gas separation or purification devices adapted for specific applications for use in transportation means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Definitions

  • the present invention relates to a method for reducing carbon dioxide in a living space, and a carbon dioxide adsorbent and a method for producing the same.
  • the carbon dioxide adsorption rate (hereinafter referred to as carbon dioxide adsorption rate) with respect to the carbon dioxide adsorbent is not sufficient, and further, the carbon dioxide adsorbent. It cannot be said that the maintenance rate of the carbon dioxide adsorption rate with respect to the carbon dioxide adsorbent (hereinafter referred to as the carbon dioxide adsorption rate maintenance rate) is sufficient when the use and regeneration of the above are repeated a plurality of times.
  • the present invention provides the following [1] to [17].
  • [1] A step of bringing a carbon dioxide adsorbent into contact with a gas containing carbon dioxide and water vapor in a living space to adsorb carbon dioxide to the carbon dioxide adsorbent.
  • the carbon dioxide adsorbent is a metal compound containing at least one alkali metal carbonate containing an alkali metal and at least one element selected from the group consisting of Group 3 elements of the Periodic Table and Group 4 elements of the Periodic Table.
  • a method for reducing carbon dioxide in a living space [2] The method for reducing carbon dioxide in a living space according to [1], wherein the metal compound contains at least one element selected from the group consisting of cerium, titanium and zirconium. [3] The method for reducing carbon dioxide in a living space according to [2], wherein the metal compound contains zirconium. [4] The method for reducing carbon dioxide in a living space according to [3], wherein the metal compound is zirconium oxide.
  • [5] The method for reducing carbon dioxide in a living space according to any one of [1] to [4], wherein the living space is a house, an office or a school.
  • [6] The method for reducing carbon dioxide in a living space according to any one of [1] to [4], wherein the living space is a vehicle.
  • the content of at least one element selected from the group consisting of Group 3 elements of the Periodic Table and Group 4 elements of the Periodic Table is 0.1 mmol / g to 25.0 mmol / g, [7] or The carbon dioxide adsorbent according to [8].
  • the carbon dioxide adsorbent according to any one of [7] to [10] which contains two or more of the alkali metal carbonates.
  • Step (1) Step of contacting the porous material with a solution containing the metal compound and heating to obtain a carbon dioxide adsorbent precursor
  • Step (2) The step according to any one of steps [17] [7] to [15], wherein the carbon dioxide adsorbent precursor is brought into contact with a solution containing an alkali metal carbonate and heated to obtain the carbon dioxide adsorbent.
  • a step of bringing a carbon dioxide adsorbent into contact with a gas containing carbon dioxide to adsorb carbon dioxide to the carbon dioxide adsorbent comprises a step of separating carbon dioxide from the carbon dioxide adsorbent by heating the carbon dioxide adsorbent to which carbon dioxide is adsorbed at 50 ° C to 900 ° C.
  • the carbon dioxide adsorption rate can be further improved, and further, the carbon dioxide adsorption rate maintenance rate can be further improved. Further, according to the method for reducing carbon dioxide in a living space according to the present invention, carbon dioxide in a living space can be efficiently reduced.
  • the carbon dioxide adsorbent of the present embodiment consists of a porous material, at least one alkali metal carbonate containing an alkali metal, and a group consisting of Group 3 elements of the Periodic Table and Group 4 elements of the Periodic Table. It contains a metal compound containing at least one element of choice.
  • the carbon dioxide adsorbent used in the method for reducing carbon dioxide in the living space of the present embodiment includes at least one alkali metal carbonate containing an alkali metal.
  • the carbon dioxide adsorbent of the method of this embodiment may further contain a porous material.
  • the carbon dioxide adsorbent of the present embodiment and the carbon dioxide adsorbent of the method of the present embodiment are the carbon dioxide adsorbents from the viewpoint of further improving the carbon dioxide adsorption rate and further improving the carbon dioxide adsorption rate maintenance rate.
  • the average pore diameter is 0.3 nm to 500 nm, preferably 1 nm to 100 nm.
  • the average pore diameter (unit: nm) of the carbon dioxide adsorbent of the present embodiment and the carbon dioxide adsorbent of the method of the present embodiment is nitrogen-adsorbed using a conventionally known arbitrary suitable specific surface area / pore distribution measuring device. It can be analyzed and measured by the method.
  • the carbon dioxide adsorbent of the present embodiment and the carbon dioxide adsorbent of the method of the present embodiment may contain a porous material carrying an alkali metal carbonate and a metal compound, in other words, the dioxide of the present embodiment.
  • the alkali metal carbonate and the metal compound may be supported on the porous material and integrally formed.
  • the embodiment of the carbon dioxide adsorbent of the present embodiment and the carbon dioxide adsorbent of the method of the present embodiment is not limited to this, and the carbon dioxide adsorbent, particularly the alkali metal carbonate, is in a state of being free from the porous material. It may exist.
  • Porous material examples include oxides such as aluminum oxide and silicon oxide, composite oxides such as calcium silicate and silica alumina, and activated carbon.
  • oxides such as aluminum oxide and silicon oxide
  • composite oxides such as calcium silicate and silica alumina
  • activated carbon at least one selected from the group consisting of silicon oxide, aluminum oxide, activated carbon and calcium silicate is used from the viewpoint of further improving the carbon dioxide adsorption rate and further improving the carbon dioxide adsorption rate maintenance rate. Is preferable.
  • activated carbon is a flammable substance. Therefore, when the temperature (regeneration temperature) for regenerating the carbon dioxide adsorbent described later is, for example, 250 ° C. or higher, it is more preferable to use silicon oxide as the porous material.
  • the above-exemplified porous material can be produced by a conventionally known arbitrary suitable production method. Further, as the above-exemplified porous material, a commercially available porous material can also be used.
  • the type of aluminum oxide is not particularly limited, and any type of crystal system such as ⁇ -type, ⁇ -type, and ⁇ -type can be adopted. Further, the method for producing aluminum oxide is not particularly limited. For example, aluminum hydroxide is produced by washing bauxite, which is a mineral containing aluminum, with a hot solution of sodium hydroxide, cooling and precipitating aluminum hydroxide dissolved in the sodium hydroxide solution, and heating to dehydrate. can do.
  • silicon oxide examples include silica gel, mesoporous silica, and zeolite.
  • Silicon oxide can be produced by a wet method or a dry method. Examples of the wet method include a precipitation method and a gel method. Examples of the dry method include a combustion method.
  • silica gel which is a porous material
  • a compound represented by the general formula of Na 2O ⁇ nSiO 2 is used, and this is neutralized with sulfuric acid or hydrochloric acid to obtain the composition of polysilicic acid.
  • a hydrogel can be obtained via the silica gel having the silica gel, and silica gel can be obtained by further removing the water content in the hydrogel.
  • the method for removing water in the hydrogel is not particularly limited.
  • the water content in the hydrogel may be directly evaporated, or may be dried and heated after replacing the water content with a hydrophilic organic solvent having a relatively low boiling point such as alcohol or a ketone. By substituting the hydrogel with a hydrophilic organic solvent having a low boiling point such as alcohol or a ketone, drying and heating, silicon oxide having a larger pore volume and pore diameter can be obtained.
  • the type of mesoporous silica is not particularly limited as long as it has mesopores in its structure.
  • the pore size of mesoporous silica is usually 1.5 nm to 50 nm.
  • the method for producing mesoporous silica is not particularly limited.
  • a self-assembling process can produce mesoporous lysica from a mixture of Zollugel precursors and structurally defined amphiphiles. Specifically, first, liquid crystal micelles are formed in water using a surfactant such as cetyltrimethylammonium bromide, and hydrolysis and condensation are caused by adding a ceramic sol-gel precursor such as tetraethyl orthosilicic acid to cause hydrolysis and condensation around the micelles. Form a network of silica. Next, the mesoporous lysica is obtained by heat-treating or extracting the solvent to remove the organic template.
  • the type of zeolite is not particularly limited, and examples thereof include synthetic zeolite, artificial zeolite, and natural zeolite.
  • the method for producing zeolite is not particularly limited. For example, a mixture consisting of an alumina source, a silica source, an alkali source, an organic structure defining agent and water can be hydrothermally reacted, and then dried and fired to produce a zeolite.
  • the type of calcium silicate is not particularly limited, and for example, any crystal form such as wallastnite type, tobermolite type, and zonotrite type can be adopted. Further, the method for producing calcium silicate is not particularly limited. For example, calcium silicate (secondary particles) can be produced by subjecting a mixture of a silicic acid raw material, a calcareous raw material and water to a hydrothermal reaction while stirring.
  • activated carbon can be produced by heating the carbonaceous substance as a raw material to carbonize it into a carbide, and then activating it.
  • the carbonaceous substance that is the raw material of activated carbon is not particularly limited.
  • Examples of the carbonaceous substance include wood, sawdust, coconut shell, pulp waste liquid, coal, petroleum quality, and synthetic resin.
  • the method of activating (activating) the carbide after carbonizing the carbonaceous substance is not particularly limited.
  • Examples of the activation method include gas activation and chemical activation.
  • Examples of the gas activation method include a method of high-temperature treatment with steam, carbon dioxide, and air. It is thought that gas activation proceeds in a two-step process, and in the heating process, which is the first step, the unassembled portion of carbide is selectively decomposed and consumed, and fine pores in the carbon structure are released to release the inside. Surface area increases rapidly. In the second stage gasification reaction process, the carbon crystals constituting the carbide or the carbon constituting the fine pore portions are reacted and consumed, and pores having a large pore diameter are formed in a complicated and systematic manner.
  • the activated carbon when the reaction consumption rate of carbon is 50% or less, the activated carbon is mainly composed of micropores, and when the reaction consumption rate of carbon exceeds 75%, the activated carbon has increased macropores. With the reaction consumption rate of carbon in the middle, activated carbon having both micropores and macropores can be obtained.
  • Examples of the method for activating chemicals include a method using zinc chloride, phosphoric acid, calcium chloride, and potassium sulfide. It is generally known that activation with chemicals increases the pore volume and average pore diameter of activated carbon.
  • the activated carbon has various shapes such as powder, granular, crushed, fibrous, and honeycomb depending on the raw material and the manufacturing method, but the shape of the activated carbon that can be applied to the carbon dioxide adsorbent of the present invention is not particularly limited. ..
  • the carbon dioxide adsorbent of the present embodiment and the carbon dioxide adsorbent of the method of the present embodiment contain at least one alkali metal carbonate containing an alkali metal.
  • the carbon dioxide adsorbent of the present embodiment and the carbon dioxide adsorbent of the method of the present embodiment use alkali metal carbonate from the viewpoint of further improving the carbon dioxide adsorption rate and further improving the carbon dioxide adsorption rate maintenance rate. It is preferable to contain two or more kinds.
  • the alkali metal carbonate preferably contains at least one element selected from the group consisting of lithium, sodium, potassium, rubidium and cesium.
  • the alkali metal carbonate preferably contains sodium, potassium or cesium, and more preferably potassium, from the viewpoint of further improving the carbon dioxide adsorption rate and further improving the carbon dioxide adsorption rate maintenance rate.
  • alkali metal carbonate examples include lithium carbonate, lithium hydrogen carbonate, sodium carbonate, sodium hydrogen carbonate, potassium carbonate, potassium hydrogen carbonate, rubidium carbonate, rubidium hydrogen carbonate, cesium carbonate, and cesium hydrogen carbonate.
  • the content of the alkali metal in the carbon dioxide adsorbent of the present embodiment and the content of the alkali metal in the carbon dioxide adsorbent of the method of the present embodiment further improve the carbon dioxide adsorption rate, and further improve the carbon dioxide adsorption rate. From the viewpoint of further improving the maintenance rate, it is preferably 1.0 mmol / g to 50.0 mmol / g, and more preferably 1.0 mmol / g to 20.0 mmol / g.
  • the metal compound contained in the carbon dioxide adsorbent of the present embodiment and the carbon dioxide adsorbent of the method of the present embodiment is selected from the group consisting of Group 3 elements of the Periodic Table and Group 4 elements of the Periodic Table. It is a metal compound containing at least one element.
  • the above elements contained in the metal compound are selected from the group consisting of cerium, titanium and zirconium from the viewpoint of further improving the carbon dioxide adsorption rate, further improving the carbon dioxide adsorption rate maintenance rate, and further from the viewpoint of availability. It is preferably at least one element.
  • the metal compound contained in the carbon dioxide adsorbent include cerium oxide, cerium carbonate, cerium nitrate, cerium hydroxide (III), cerium hydroxide (IV), cerium chloride, cerium acetate, and cerium (III) acetylacetate.
  • Cerium compounds such as nat, titanium oxide, titanium hydroxide, tetramethyl titanate, tetraethyl titanate, tetrapropyl titanate, tetraisopropyl titanate, tetrabutyl titanate, tetraisobutyl titanate, tetra-2-ethylhexyl titanate, titanium Titanium compounds such as tetraoctadecyl acid acid, titanium (IV) oxyacetylacetonate, titanium (IV) diisipropoxybisacetylacetonate, zirconium oxide, zirconium carbonate (IV), zirconium oxynitrite, zirconium hydroxide (IV), chloride. Examples thereof include zirconium compounds such as zirconium (IV).
  • the above-exemplified metal compound may be contained as the metal compound itself in the carbon dioxide adsorbent, and may be contained in a porous material, an alkali metal carbonate, another metal compound, and / or other components described later. It may be contained in an embodiment such as a complex.
  • the content of the above elements contained in the metal compound is 0.1 mmol / g to 25.0 mmol / g from the viewpoint of further improving the carbon dioxide adsorption rate and further improving the carbon dioxide adsorption rate maintenance rate. Is preferable, and it is more preferably 0.1 mmol / g to 10.0 mmol / g.
  • the carbon dioxide adsorbent of the present embodiment may further contain other components in addition to the above components (1) to (3). Further, the carbon dioxide adsorbent of the method of the present embodiment may further contain other components in addition to the above components (2) and (3). Examples of other components include alkali metal compounds such as cesium nitrate, cesium oxide, cesium hydroxide and cesium acetate, and alkaline earth metal compounds such as magnesium carbonate, magnesium oxide, calcium carbonate and calcium oxide.
  • alkali metal compounds such as cesium nitrate, cesium oxide, cesium hydroxide and cesium acetate
  • alkaline earth metal compounds such as magnesium carbonate, magnesium oxide, calcium carbonate and calcium oxide.
  • the other components of the above examples may be contained as themselves in the carbon dioxide adsorbent, such as a porous material, an alkali metal carbonate, a composite with a metal compound, and an oxide derived from these. It may be included in an embodiment.
  • the shape of the carbon dioxide adsorbent of the present embodiment and the carbon dioxide adsorbent of the method of the present embodiment is not particularly limited.
  • the carbon dioxide adsorbent of the present embodiment and the carbon dioxide adsorbent of the method of the present embodiment are usually in the form of powder or a molded product.
  • a porous material molded into a granular shape (spherical shape), a pellet shape (columnar shape), a ring shape, a honeycomb shape, or the like is used, or a powdery carbon dioxide adsorbent is used by any conventionally known suitable method. It can be molded into a predetermined shape to obtain any suitable embodiment.
  • the carbon dioxide adsorbent of the present embodiment and the carbon dioxide adsorbent of the method of the present embodiment can be formed into, for example, granular (spherical), pellet-shaped (columnar), extruded shape, ring-shaped, honeycomb-shaped, and further. Can also be formed into granules having an arbitrary suitable size, which is once molded into a predetermined shape and then crushed into grades.
  • the diameter of the granular (spherical) carbon dioxide adsorbent is usually preferably 10 mm or less, and more preferably 5 mm or less, from the viewpoint of improving handleability and maximizing the carbon dioxide adsorption capacity. preferable.
  • the lower limit of the diameter of the carbon dioxide adsorbent of the present embodiment is not particularly limited.
  • the diameter of the carbon dioxide adsorbent means the diameter of the sphere when it is spherical, and the diameter when it is pellet-shaped (columnar) and the cross section cut in the direction orthogonal to the extending direction is circular. In the case of other shapes, it means the maximum width (maximum diameter) of the cross section.
  • the method for producing the carbon dioxide adsorbent of the present embodiment includes the following steps (1) and the following steps (2).
  • Step (1) A step of contacting a porous material with a solution containing a metal compound and heating it to obtain a carbon dioxide adsorbent precursor
  • Step (2) A step of contacting a carbon dioxide adsorbent precursor with a solution containing an alkali metal carbonate and heating the carbon dioxide adsorbent precursor to obtain a carbon dioxide adsorbent will be specifically described below.
  • the step (1) is a step of contacting the already described porous material with the solution containing the already described metal compound and heating to obtain a carbon dioxide adsorbent precursor.
  • heating includes a drying step and / or a baking step.
  • carbon dioxide adsorbent precursor means a material of a carbon dioxide adsorbent that becomes a carbon dioxide adsorbent by being further processed.
  • Examples of the solvent that can be used in the "solution containing a metal compound" used in the step (1) include water (ion-exchanged water), alcohols such as methanol, ethanol and isopropyl alcohol, and polarities such as acetone, acetonitrile and tetrahydrofuran. Examples thereof include an organic solvent having a solvent and a mixed solvent containing two or more of these solvents.
  • the “solution” may also include a dispersion, a suspension, and the like.
  • the concentration of the metal compound in the solution is preferably 0.01% by mass to 100% by mass, and from the viewpoint of production efficiency of the carbon dioxide adsorbent precursor, it is preferably 0.1% by mass to 100% by mass. It is more preferably 1% by mass to 100% by mass.
  • the “other material” already described is used as a mixed solution (eg, mixed aqueous solution) in which the “solution” is added to the “metal compound” and the “other material” is added to the solvent already described. Can be used.
  • a mixed solution eg, mixed aqueous solution
  • the content of “other materials” in the mixed solution is preferably 0.01% by mass to 90% by mass, and the production efficiency of the carbon dioxide adsorbent precursor is high. From the viewpoint, it is more preferably 0.1% by mass to 90% by mass, and further preferably 1% by mass to 90% by mass.
  • the method of contacting the solution containing the metal compound with the porous material is to bring the solution containing the metal compound into contact with the porous material evenly so that the solution is evenly absorbed even in the pores of the porous material.
  • the contact method any conventionally known suitable method such as dropping, spraying, or dipping a droplet can be applied.
  • the drying step is performed by drying until the weight change of the porous material in contact with the solution (mixed solution) disappears. Specifically, for example, after drying at room temperature for about 1 hour, a conventionally known arbitrary suitable drying device (eg, oven) is used until the weight does not change at a temperature of preferably 30 ° C to 120 ° C. It can be done by heating.
  • a conventionally known arbitrary suitable drying device eg, oven
  • a firing process is performed. Specifically, the firing step can be performed by firing at 200 ° C. to 800 ° C. for 1 hour to 12 hours using a conventionally known arbitrary suitable heat treatment device (eg, muffle furnace).
  • a conventionally known arbitrary suitable heat treatment device eg, muffle furnace.
  • Step (2) is a step of contacting a solution containing an alkali metal carbonate with a carbon dioxide adsorbent precursor and heating the carbon dioxide adsorbent to obtain a carbon dioxide adsorbent.
  • heating includes a drying step and / or a baking step.
  • the carbon dioxide adsorbent precursor obtained in the step (1) is brought into contact with a solution containing an alkali metal carbonate (eg, an aqueous solution of potassium carbonate).
  • a solution containing an alkali metal carbonate eg, an aqueous solution of potassium carbonate.
  • the method of contacting the solution containing the alkali metal carbonate with the carbon dioxide adsorbent precursor is to bring the solution containing the alkali metal carbonate into contact with the carbon dioxide adsorbent precursor evenly to form the pores of the carbon dioxide adsorbent precursor.
  • the condition is not particularly limited as long as the solution can be spread and uniformly absorbed inside.
  • any conventionally known suitable method such as dropping, spraying, or dipping a droplet can be applied.
  • the drying step is performed by drying until the weight change of the carbon dioxide adsorbent precursor in contact with the alkali metal carbonate disappears. Specifically, for example, after drying at room temperature for about 1 hour, a conventionally known arbitrary suitable drying device (eg, oven) is used until the weight does not change at a temperature of preferably 30 ° C to 120 ° C. It can be done by heating.
  • a conventionally known arbitrary suitable drying device eg, oven
  • the firing step may be performed following the drying step.
  • the firing step is specifically weighted at 30 ° C. to 500 ° C., more preferably at a temperature of 30 ° C. to 300 ° C., using any conventionally known suitable heat treatment device (eg, oven, muffle furnace). This can be done by heating until there is no change.
  • any conventionally known suitable heat treatment device eg, oven, muffle furnace. This can be done by heating until there is no change.
  • the solvent that can be used for the "solution containing an alkali metal carbonate” examples include water (ion-exchanged water), alcohols such as methanol, ethanol and isopropyl alcohol, organic solvents having polarities such as acetone, acetonitrile and tetrahydrofuran, and solvents. , A mixed solvent containing two or more of these solvents.
  • the “solution” may also include a dispersion, a suspension, and the like.
  • the concentration of the alkali metal carbonate in the solution is preferably 1% by mass to 53% by mass, and more preferably 5% by mass to 50% by mass from the viewpoint of the production efficiency of the carbon dioxide adsorbent precursor. It is more preferably 10% by mass to 50% by mass.
  • the content of the “other material” in the mixed solution is preferably 0.01% by mass to 90% by mass, and the carbon dioxide adsorbent of the method of the present embodiment. From the viewpoint of the production efficiency of the above, it is more preferably 0.1% by mass to 90% by mass, and further preferably 1% by mass to 90% by mass.
  • the solution containing the alkali metal carbonate is evenly contacted with the metal compound, and the solution is evenly absorbed even in the pores of the metal compound. It is not particularly limited as long as it can be done.
  • any conventionally known suitable method such as dropping, spraying, or dipping a droplet can be applied.
  • the drying step is performed by drying until the weight change of the metal compound in contact with the alkali metal carbonate disappears. Specifically, for example, after drying at room temperature for about 1 hour, a conventionally known arbitrary suitable drying device (eg, oven) is used until the weight does not change at a temperature of preferably 30 ° C to 120 ° C. It can be done by heating.
  • a conventionally known arbitrary suitable drying device eg, oven
  • the firing step may be performed following the drying step.
  • the firing step is specifically weighted at 30 ° C. to 500 ° C., more preferably at a temperature of 30 ° C. to 300 ° C., using any conventionally known suitable heat treatment device (eg, oven, muffle furnace). This can be done by heating until there is no change.
  • any conventionally known suitable heat treatment device eg, oven, muffle furnace. This can be done by heating until there is no change.
  • a carbon dioxide adsorbent to which at least a part of the alkali metal carbonate is attached can be obtained on the surface of the metal compound and / or in the pores.
  • the method for adsorbing and desorbing carbon dioxide using the carbon dioxide adsorbent of the present embodiment includes a step of bringing the carbon dioxide adsorbent into contact with a gas containing carbon dioxide to adsorb carbon dioxide to the carbon dioxide adsorbent. It includes a step of separating carbon dioxide from the carbon dioxide adsorbent by heating the carbon dioxide adsorbent to which carbon dioxide is adsorbed at 50 ° C to 900 ° C.
  • step (i) A step of bringing a carbon dioxide adsorbent into contact with a gas containing carbon dioxide to adsorb carbon dioxide to the carbon dioxide adsorbent (referred to as step (i)).
  • the temperature (operating temperature of the carbon dioxide adsorbent) in the step (i), that is, the step of bringing the carbon dioxide adsorbent into contact with the gas containing carbon dioxide to adsorb carbon dioxide to the carbon dioxide adsorbent is from 0 ° C. 100 ° C. is preferable, and 5 ° C. to 80 ° C. is more preferable.
  • the carbon dioxide adsorbent of this embodiment is usually used at a temperature of 100 ° C. or lower (eg, normal temperature), that is, it is brought into contact with a gas containing carbon dioxide.
  • the carbon dioxide adsorbent of the present embodiment can be used even at a temperature higher than 100 ° C.
  • the humidity (usage humidity of the carbon dioxide adsorbent) in the step (i), that is, the step of bringing the carbon dioxide adsorbent into contact with the gas containing carbon dioxide to adsorb carbon dioxide to the carbon dioxide adsorbent, is 1% or more. 100% is preferable, and 5% to 90% is more preferable.
  • the carbon dioxide adsorbent of the present embodiment is for recovering carbon dioxide from a gas containing carbon dioxide or selectively removing carbon dioxide from a gas having a particularly high concentration (partial pressure) of carbon dioxide. It can be suitably applied to a carbon dioxide recovery device.
  • an air purifier When the carbon dioxide adsorbent of the present embodiment is used particularly at a temperature of 100 ° C. or lower, an air purifier, an air conditioner, particularly an air purifier, an air conditioner for adjusting the components of the atmosphere inside the automobile. It can be suitably mounted on air conditioners for agricultural greenhouse houses, as well as building materials and containers.
  • the carbon dioxide adsorbent of the present embodiment When the carbon dioxide adsorbent of the present embodiment is used at a temperature higher than 100 ° C., it can be suitably applied to, for example, recovery of carbon dioxide in exhaust gas from a chemical factory or a power plant.
  • the concentration (partial pressure) of carbon dioxide in the gas containing carbon dioxide that comes into contact with the carbon dioxide adsorbent is not limited.
  • the concentration of carbon dioxide in the atmosphere is about 400 ppm, but for example, when the outside air is not introduced while the car is driving and the inside air is circulated, the concentration of carbon dioxide in the atmosphere inside the car is as high as about 7,000 ppm. Can be. It is generally said that when the internal air circulation is selected in an automobile, the respiratory rate increases and drowsiness is induced when the carbon dioxide concentration is 2000 ppm or more, and dizziness or headache is induced when the carbon dioxide concentration is 3000 ppm or more. .. Therefore, in particular, when the carbon dioxide adsorbent of the present embodiment is applied to an air purifier or an air conditioner for an automobile, the concentration of carbon dioxide assumed is 400 ppm to 7000 ppm.
  • components other than carbon dioxide and the concentration (partial pressure) thereof in the "gas containing carbon dioxide" applied to the carbon dioxide adsorbent of the present embodiment are not particularly limited.
  • components other than carbon dioxide include nitrogen oxides (NOx) such as nitrogen, hydrogen, carbon monoxide, and nitrogen monoxide, and hydrocarbons such as methane.
  • NOx nitrogen oxides
  • hydrocarbons such as methane.
  • the method of contacting the carbon dioxide adsorbent with the gas containing carbon dioxide is not particularly limited.
  • the contact between the carbon dioxide adsorbent and the gas containing carbon dioxide may be, for example, brought into contact with the container containing the carbon dioxide adsorbent of the present embodiment by circulating the gas containing carbon dioxide in a flow format.
  • the carbon dioxide adsorbent may be allowed to stand in direct contact with a gas containing carbon dioxide.
  • the supply amount (space velocity) of the gas containing carbon dioxide in the standard state (0 ° C., 0.1 MPa) is preferably 10. It is ⁇ 10,000,000 / h, more preferably 100 to 5,000,000 / h, and even more preferably 1,000 to 1,000,000 / h. If the space velocity is 10 or more and 10,000,000 / h or less, the efficiency of carbon dioxide adsorption per hour can be further improved.
  • the treatment pressure for the carbon dioxide adsorbent is preferably 0.1 to 5 MPa, more preferably 0.1 to 1 MPa.
  • Step (ii) A step of separating carbon dioxide from the carbon dioxide adsorbent by heating the carbon dioxide adsorbent to which carbon dioxide is adsorbed at 50 ° C to 900 ° C (hereinafter referred to as step (ii)).
  • Step (ii) may be performed on the carbon dioxide adsorbent itself or the component removed from the device including the component to which the carbon dioxide adsorbent is applied (eg, filter, cartridge), or carbon dioxide adsorption. It may be carried out in the equipment already described including the material.
  • the step (ii) transfers the gas to be distributed to the carbon dioxide adsorbent to "dioxide. This can be carried out by switching from "a gas containing carbon” to a gas heated to the above temperature for regeneration, separating carbon dioxide from the carbon dioxide adsorbent and releasing it to the outside.
  • the heating temperature in the step (ii) is not particularly limited as long as it does not impair the functions of the carbon dioxide adsorbent, the device containing the carbon dioxide adsorbent, and the like.
  • the heating temperature of the carbon dioxide adsorbent (regeneration temperature of the carbon dioxide adsorbent) in the step (ii) can be 50 ° C to 900 ° C, preferably 50 ° C to 600 ° C, and more preferably 50 ° C to 300 ° C. Is more preferable.
  • the treatment pressure for the carbon dioxide adsorbent is preferably 0.001 to 5 MPa, more preferably 0.01 to 1 MPa.
  • the regeneration temperature of the carbon dioxide adsorbent can be made lower.
  • the carbon dioxide adsorbent of the present embodiment is applied to, for example, an electric vehicle, it is preferably set to 50 ° C to 200 ° C from the viewpoint of more effectively utilizing the heat generated by a motor or the like.
  • the components of the gas (atmosphere) used for heating in the step (ii) are not particularly limited.
  • the atmosphere at the time of heating for example, air (atmosphere) can be applied.
  • an inert gas such as nitrogen gas may be used.
  • the carbon dioxide separated from the carbon dioxide absorbent material of the present embodiment can be recovered by any conventionally known suitable method. Specifically, for example, there is a method of recovering as dry ice by pressurizing and compressing the separated carbon dioxide and cooling it.
  • the carbon dioxide adsorbent is brought into contact with a gas containing carbon dioxide and water vapor in the living space, and the carbon dioxide adsorbent is used.
  • the step of adsorbing carbon dioxide to the carbon dioxide adsorbent, the step of separating carbon dioxide from the carbon dioxide adsorbent by heating the carbon dioxide adsorbent to which carbon dioxide is adsorbed to 50 ° C to 900 ° C, and the process of separating the separated carbon dioxide. Includes the step of releasing to the outside of the space.
  • step (i') A step of bringing a carbon dioxide adsorbent into contact with a gas containing carbon dioxide and water vapor in a living space to adsorb carbon dioxide to the carbon dioxide adsorbent (referred to as step (i')).
  • living spaces include houses, offices, schools, and vehicles.
  • the carbon dioxide concentration in the gas containing carbon dioxide and water vapor in the living space is usually 400 ppm to 5000 ppm, and the water vapor concentration is usually 10% RH to 90% RH as a relative humidity.
  • Other components include volatile organic compounds such as carbon monoxide, ammonia, formaldehyde, acetaldehyde, and toluene.
  • step (ii') A step of separating carbon dioxide from the carbon dioxide adsorbent by heating the carbon dioxide adsorbent to which carbon dioxide is adsorbed to 50 ° C. to 900 ° C. (hereinafter referred to as step (ii')).
  • step (ii') A step of separating carbon dioxide from the carbon dioxide adsorbent by heating the carbon dioxide adsorbent to which carbon dioxide is adsorbed to 50 ° C. to 900 ° C.
  • step (iii') A step of releasing the separated carbon dioxide to the outside of the living space (hereinafter referred to as a step (iii')).
  • the step (iii') may be carried out by taking out the carbon dioxide adsorbent that has adsorbed carbon dioxide from the living space and performing the step (iii') outside the living space, or the carbon dioxide adsorbent may be living. It is installed in a container connected by separate flow paths in the space and outside the living space, and the gas that comes into contact with the carbon dioxide adsorbent is continuously switched by the valves installed in each flow path. (I') and the step (ii') may be alternately performed.
  • the amount of carbon dioxide released to the outside of the living space is preferably 1 to 10,000,000 L / h, more preferably 10 to 5,000,000 L / h, and further preferably 1,000 to 1. , 000,000 L / h.
  • the pressure for releasing carbon dioxide to the outside of the living space is preferably 0.001 to 5 MPa, more preferably 0.01 to 1 MPa.
  • the temperature at which carbon dioxide is released to the outside of the living space can be 50 ° C to 900 ° C, preferably 50 ° C to 600 ° C, and more preferably 50 ° C to 300 ° C.
  • the carbon dioxide adsorbent of this embodiment can be suitably applied to carbon dioxide recovery devices, air purifiers, air conditioners, building materials, containers, etc., and more specifically. Can be suitably applied to these components such as filters and cartridges.
  • the carbon dioxide adsorbent of this embodiment can be applied to a filter by any conventionally known suitable method.
  • the material of the filter is not particularly limited, and examples thereof include diatomaceous earth, activated carbon, zeolite, paper, resin, metal, glass, and ceramic.
  • the filter material is preferably a material that can withstand the heating temperature for carbon dioxide separation described above.
  • the structure of the filter is not particularly limited, and for example, the carbon dioxide adsorbent of the present embodiment may be contained in a filter material such as honeycomb, filter paper, non-woven fabric, cloth, etc. in any suitable manner.
  • the filter may have a structure in which the carbon dioxide adsorbent of the present embodiment is filled in a space defined by a breathable thin film filter material such as filter paper, non-woven fabric, or cloth.
  • a breathable thin film filter material such as filter paper, non-woven fabric, or cloth.
  • the diameter of the carbon dioxide adsorbent is preferably 5 mm or less.
  • the method of incorporating the carbon dioxide adsorbent of the present embodiment into the filter material is not particularly limited, and any conventionally known and suitable method can be applied.
  • the carbon dioxide adsorbent of the present embodiment may be mixed with the raw material for producing the filter material to produce the filter material.
  • the slurry containing the carbon dioxide adsorbent of the present embodiment may be supported on the filter material by a method such as dip coating, coating, or spray spraying.
  • the slurry containing the carbon dioxide adsorbent of the present embodiment can be prepared by any conventionally known suitable method using a predetermined solvent, and the solvent used for preparing the slurry is not particularly limited, for example, water. Alcohol can be used.
  • the slurry containing the carbon dioxide adsorbent of the present embodiment prepared using the above solvent can be applied or sprayed on the filter material by a coating method such as a dip coating method or a spray coating method.
  • the filter material to which the slurry containing the carbon dioxide adsorbent of the present embodiment is applied or sprayed may be dried by any conventionally known suitable method.
  • the temperature for drying is preferably 0 ° C. to 200 ° C., more preferably 20 ° C. to 150 ° C. After drying, it may be further fired.
  • the firing temperature is preferably 150 ° C. to 400 ° C., more preferably 200 ° C. to 300 ° C.
  • the atmosphere during drying and / or firing is not particularly limited.
  • the atmosphere for drying and / or firing can be an air atmosphere, or an inert gas atmosphere such as nitrogen gas or argon gas.
  • the carbon dioxide adsorbent of the present embodiment can be pelletized as described above, and for example, the pelletized carbon dioxide adsorbent can withstand at least the heating temperature for separating carbon dioxide. It can also be applied by filling a member (eg, a cartridge) formed of a material and configured to allow a gas containing carbon dioxide to flow by any conventionally known suitable method.
  • a member eg, a cartridge formed of a material and configured to allow a gas containing carbon dioxide to flow by any conventionally known suitable method.
  • the carbon dioxide adsorbent according to the present embodiment it is considered that the carbon dioxide adsorption rate can be further improved and the decrease due to the use of the surface area of the carbon dioxide adsorbent can be prevented.
  • the maintenance rate can be further improved.
  • the carbon dioxide adsorbent of the present embodiment is applied to an air conditioner or an air purifier of an automobile, even if "inside air circulation" is selected, it is possible to prevent the carbon dioxide concentration in the atmosphere inside the vehicle from becoming excessive. Since heating and cooling can be used while preventing the induction of symptoms such as drowsiness, dizziness, and headache, the efficiency of air conditioning is improved, which not only keeps the in-vehicle environment good for passengers. The energy efficiency can be further improved.
  • Example 1 Production of carbon dioxide adsorbent 1> An aqueous solution of cerium nitrate (III) hexahydrate (manufactured by Wako Pure Chemical Industries, Ltd.) (using ion-exchanged water, concentration: 61.7% by mass) was prepared. 0.8 mL of an aqueous solution of cerium (III) nitrate hexahydrate was evenly added dropwise to 1.0 g of porous silicon oxide (Fuji Silysia Chemical Ltd., Q-30, particle size: 30 nm). After absorption, it was dried at room temperature for 1 hour, and then dried at 40 ° C. using a multi-oven (manufactured by AS ONE, MOV-300S) until there was no change in weight.
  • the carbon dioxide adsorbent precursor 1X was obtained by firing at 600 ° C. for 2 hours using a muffle furnace (manufactured by Yamato Kagaku Co., Ltd., FP100).
  • Example 2 Production of carbon dioxide adsorbent 2> Instead of the aqueous solution of cerium (III) nitrate hexahydrate, an aqueous solution of zirconyl nitrate dihydrate (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) (ion-exchanged water was used, concentration: 50.0% by mass) was used. Except for the above, the carbon dioxide adsorbent 2 was produced in the same manner as in Example 1.
  • Example 3 Production of carbon dioxide adsorbent 3> Instead of the aqueous solution of cerium nitrate (III) hexahydrate, a mixed aqueous solution of cerium nitrate (III) hexahydrate (manufactured by Fujifilm Wako Junyaku Co., Ltd.) and cesium nitrate (manufactured by Fujifilm Wako Junyaku Co., Ltd.) Carbon dioxide adsorption in the same manner as in Example 1 except that ion-exchanged water was used and cerium nitrate (III) hexahydrate concentration: 9.8% by mass and cesium nitrate concentration: 22.0% by mass) were used. Material 3 was manufactured.
  • Example 4 Production of carbon dioxide adsorbent 4> A solution (referred to as an isopropyl alcohol solution) (concentration: 46.2% by mass) of isopropyl alcohol (manufactured by Kanto Chemical Co., Inc.) of tetraisopropyl orthotetraate (manufactured by Tokyo Kasei Co., Ltd.) was prepared. 1.8 mL of the prepared isopropyl alcohol solution was evenly dropped against 1.0 g of porous particulate silicon oxide (Fuji Silysia Chemical Ltd., Q-30), contacted and absorbed, and then weighted at room temperature. It was dried until there was no change.
  • isopropyl alcohol solution concentration: 46.2% by mass
  • isopropyl alcohol manufactured by Kanto Chemical Co., Inc.
  • tetraisopropyl orthotetraate manufactured by Tokyo Kasei Co., Ltd.
  • Example 5 Production of carbon dioxide adsorbent 5> 1.0 g of powdered zirconium oxide (manufactured by Daiichi Rare Element Chemical Industry Co., Ltd., RC-100) and an aqueous solution of potassium carbonate (manufactured by Fujifilm Wako Junyaku Co., Ltd.) (using ion-exchanged water, concentration: 46.3 mass) %) 0.4 mL is dropped evenly and brought into contact with each other for absorption, then dried at room temperature for 1 hour, and then dried at 40 ° C. using a multi-orange (manufactured by AS ONE, MOV-300S) until the weight does not change. The carbon dioxide adsorbent 5 was produced by removing the solvent.
  • the content of metal elements is determined by an inductively coupled plasma emission spectrometer (ICP-AES, Vista-PRO) and an inductively coupled plasma mass spectrometer (ICP-MS, Thermo Fisher Scientific, iCAP Q). It was performed by analysis using.
  • ICP-AES inductively coupled plasma emission spectrometer
  • ICP-MS inductively coupled plasma mass spectrometer
  • the average pore diameter (unit: nm) of the carbon dioxide adsorbent according to Examples 1 to 5 and Comparative Examples 1 and 2 is determined by measuring the specific surface area / pore distribution measuring device (BEL-SORP manufactured by Microtrac Bell). Analysis was performed using MINI).
  • the carbon dioxide adsorbents of Examples 1 to 5 and Comparative Examples 1 and 2 are vacuum-exhausted at 120 ° C. for 2 hours, and then nitrogen gas is absorbed at 77K (-196 ° C.). A desorption isotherm was obtained.
  • the carbon dioxide adsorbents of Examples 1 to 5 and Comparative Examples 1 and 2 were heat-treated at 200 ° C. for 10 minutes using a muffle furnace (manufactured by Yamato Scientific Co., Ltd., FP100) and adsorbed on the carbon dioxide adsorbent. Carbon dioxide was desorbed.
  • the carbon dioxide adsorbent was brought into contact with air at 25 ° C. and a humidity of 50% for 20 minutes using a constant temperature and humidity dryer (SH-641 manufactured by Espec) to adsorb carbon dioxide.
  • SH-641 manufactured by Espec
  • the amount of carbon dioxide adsorbed on the carbon dioxide adsorbent was measured using the above-mentioned TG-MS.
  • the first carbon dioxide adsorption rate was calculated by dividing the obtained measured value by the carbon dioxide adsorption time (20 minutes). The results are shown in Table 2.
  • the carbon dioxide adsorption rate at the 2nd to 5th times was calculated by the following operations 1 and 2, and the carbon dioxide adsorption rate maintenance rate (%) was further calculated.
  • Operation 1 The carbon dioxide adsorbent was heat-treated at 200 ° C. for 10 minutes using a muffle furnace (manufactured by Yamato Scientific Co., Ltd., FP100) to desorb the carbon dioxide adsorbed on the carbon dioxide adsorbent. Then, carbon dioxide was adsorbed on the carbon dioxide adsorbent using a constant temperature and humidity dryer (SH-641, manufactured by Espec Co., Ltd.) under the conditions of 25 ° C., 50% humidity, and 20 minutes.
  • Operation 2 After repeating the above operation 1 four more times, the amount of carbon dioxide adsorbed on the carbon dioxide adsorbent was measured using the above-mentioned TG-MS.
  • the fifth carbon dioxide adsorption rate was calculated by dividing the measured value by the carbon dioxide adsorption time (20 minutes). The results are shown in Table 2.
  • the adsorption rate maintenance rate can be an index of the durability of the carbon dioxide adsorbent.
  • the carbon dioxide adsorbents 1 to 5 according to Examples 1 to 5 have a higher carbon dioxide adsorption rate than the carbon dioxide adsorbents C1 and C2 according to Comparative Examples 1 and 2, and the maintenance rate of the carbon dioxide adsorption rate is high. It turns out that it is expensive.
  • V indicates the volume (L) of the living space.
  • CH-OUT indicates the carbon dioxide concentration (%) in a person's breathing.
  • VH-OUT indicates the exhalation flow rate (L / hr / person) of breathing per person.
  • n indicates the number of people (people) in the living space.
  • V Air-IN indicates the flow velocity (L / hr) of the air flowing into the living space.
  • V Air-OUT indicates the flow velocity (L / hr) of the air discharged to the outside of the living space.
  • v (C (t)) indicates the carbon dioxide adsorption rate (mmol / g ⁇ hr) of the carbon dioxide adsorbent at time t.
  • w indicates the amount (g) of the carbon dioxide adsorbent used.
  • Vmol indicates the molar volume (L / mmol) of carbon dioxide in the living space.
  • the calculation result is shown in Fig. 1.
  • the carbon dioxide concentration in the living space increased to 4000 to 5000 ppm after 90 minutes.
  • the carbon dioxide adsorbents 1 to 5 were used, the carbon dioxide concentration in the living space was maintained at 3500 ppm or less even after 90 minutes.
  • the carbon dioxide adsorption rate can be further improved, and further, the carbon dioxide adsorption rate maintenance rate can be further improved. Further, according to the method for reducing carbon dioxide in a living space according to the present invention, carbon dioxide in a living space can be efficiently reduced.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Biomedical Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Treating Waste Gases (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

居住空間内の二酸化炭素を効率的に低減する方法を提供する。 二酸化炭素吸着材と、居住空間内の二酸化炭素および水蒸気を含む気体とを接触させて、二酸化炭素吸着材に二酸化炭素を吸着させる工程と、二酸化炭素が吸着した二酸化炭素吸着材を50℃~900℃に加熱することで、二酸化炭素吸着材から二酸化炭素を分離させる工程と、分離させた二酸化炭素を居住空間外に放出する工程とを含み、二酸化炭素吸着材が、アルカリ金属を含む少なくとも1種のアルカリ金属炭酸塩と、周期表第3族元素および周期表第4族元素からなる群から選ばれる少なくとも1種の元素を含む金属化合物とを含有する、居住空間内の二酸化炭素の低減方法。

Description

居住空間の二酸化炭素の低減方法、並びに、二酸化炭素吸着材およびその製造方法
 本発明は、居住空間の二酸化炭素の低減方法、並びに、二酸化炭素吸着材およびその製造方法に関する。
 地球温暖化の原因物質とされる二酸化炭素の回収方法については、近年、種々の研究がなされている。
 具体的には、例えば火力発電所等の施設から放出される二酸化炭素を回収することを目的とした二酸化炭素回収材であって、細孔を有する多孔質材料の当該細孔内に、炭酸ナトリウムまたは炭酸カリウムを有する二酸化炭素吸収材が知られている(特許文献1参照。)。
特開2016-59917号公報
 しかしながら、上記従来の二酸化炭素吸収材(二酸化炭素吸着材)によれば、二酸化炭素吸着材に対する二酸化炭素の吸着速度(以下、二酸化炭素吸着速度という。)が十分ではなく、さらには二酸化炭素吸着材の使用および再生を複数回繰り返したときの二酸化炭素吸着材に対する二酸化炭素の吸着速度の維持率(以下、二酸化炭素吸着速度維持率という。)が十分であるとはいえなかった。
 本発明者らは、上記課題を解決すべく鋭意研究を進めたところ、特に所定の元素を含む金属化合物を配合することにより上記課題を解決できることを見出し、本発明を完成するに至った。
 よって、本発明は、下記[1]~[17]を提供する。
[1] 二酸化炭素吸着材と、居住空間内の二酸化炭素および水蒸気を含む気体とを接触させて、前記二酸化炭素吸着材に二酸化炭素を吸着させる工程と、
 二酸化炭素が吸着した前記二酸化炭素吸着材を50℃~900℃に加熱することで、前記二酸化炭素吸着材から二酸化炭素を分離させる工程と、
 分離させた二酸化炭素を居住空間外に放出する工程とを含み、
 前記二酸化炭素吸着材が、アルカリ金属を含む少なくとも1種のアルカリ金属炭酸塩と、周期表第3族元素および周期表第4族元素からなる群から選ばれる少なくとも1種の元素を含む金属化合物とを含有する、居住空間内の二酸化炭素の低減方法。
[2] 前記金属化合物が、セリウム、チタンおよびジルコニウムからなる群から選ばれる少なくとも1種の元素を含む、[1]に記載の居住空間内の二酸化炭素の低減方法。
[3] 前記金属化合物がジルコニウムを含む、[2]に記載の居住空間内の二酸化炭素の低減方法。
[4] 前記金属化合物が酸化ジルコニウムである、[3]に記載の居住空間内の二酸化炭素の低減方法。
[5] 前記居住空間が、住宅、オフィスまたは学校である、[1]~[4]のいずれか1つに記載の居住空間内の二酸化炭素の低減方法。
[6] 前記居住空間が車両である、[1]~[4]のいずれか1つに記載の居住空間内の二酸化炭素の低減方法。
[7] 多孔質材料と、
 アルカリ金属を含む少なくとも1種のアルカリ金属炭酸塩と、
 周期表第3族元素および周期表第4族元素からなる群から選ばれる少なくとも1種の元素を含む金属化合物と
を含有する、二酸化炭素吸着材。
[8] 前記金属化合物が、セリウム、チタンおよびジルコニウムからなる群から選ばれる少なくとも1種の元素を含む、[7]に記載の二酸化炭素吸着材。
[9] 周期表第3族元素および周期表第4族元素からなる群から選ばれる少なくとも1種の元素の含有量が、0.1mmol/g~25.0mmol/gである、[7]または[8]に記載の二酸化炭素吸着材。
[10] 前記アルカリ金属炭酸塩が、ナトリウム、カリウムおよびセシウムからなる群から選ばれる少なくとも1種の元素を含む、[7]~[9]のいずれか1つに記載の二酸化炭素吸着材。
[11] 前記アルカリ金属炭酸塩を2種以上含有する、[7]~[10]のいずれか1つに記載の二酸化炭素吸着材。
[12] 前記アルカリ金属の含有量が、1.0mmol/g~50.0mmol/gである、[7]~[11]のいずれか1つに記載の二酸化炭素吸着材。
[13] 前記多孔質材料が、酸化ケイ素、酸化アルミニウム、活性炭およびケイ酸カルシウムからなる群から選ばれる少なくとも1種である、[7]~[12]のいずれか1つに記載の二酸化炭素吸着材。
[14] 平均細孔直径が0.3nm~500nmである、[7]~[13]のいずれか1つに記載の二酸化炭素吸着材。
[15] 前記アルカリ金属炭酸塩および前記金属化合物が担持されている前記多孔質材料を含む、[7]~[14]のいずれか1つに記載の二酸化炭素吸着材。
[16] 下記工程(1)と下記工程(2)とを含む、[7]~[15]のいずれか1つに記載の二酸化炭素吸着材の製造方法。
 工程(1):
前記多孔質材料に、前記金属化合物を含む溶液を接触させ、加熱して、二酸化炭素吸着材前駆体を得る工程
 工程(2):
 前記二酸化炭素吸着材前駆体に、アルカリ金属炭酸塩を含む溶液を接触させ、加熱して、前記二酸化炭素吸着材を得る工程
[17] [7]~[15]のいずれか1つに記載の二酸化炭素吸着材と、二酸化炭素を含む気体とを接触させて、前記二酸化炭素吸着材に二酸化炭素を吸着させる工程と、
 二酸化炭素が吸着した前記二酸化炭素吸着材を、50℃~900℃に加熱することで、前記二酸化炭素吸着材から二酸化炭素を分離させる工程と
を含む、二酸化炭素の吸着および分離方法。
 本発明にかかる二酸化炭素吸着材によれば、二酸化炭素吸着速度をより向上させることができ、さらには二酸化炭素吸着速度維持率をより向上させることができる。また、本発明にかかる居住空間内の二酸化炭素の低減方法によれば、居住空間内の二酸化炭素を効率的に低減させることができる。
実施例1~5並びに比較例1および2の二酸化炭素吸着材を用いた居住空間内の二酸化炭素濃度の低減方法に関する計算結果を示す図である。
 以下、本発明の実施形態について具体的に説明する。本発明は、以下に示される具体的な実施形態に限定されず、本発明の目的を逸脱しない範囲において適宜変更することができる。
1.二酸化炭素吸着材
 本実施形態の二酸化炭素吸着材は、多孔質材料と、アルカリ金属を含む少なくとも1種のアルカリ金属炭酸塩と、周期表第3族元素および周期表第4族元素からなる群から選ばれる少なくとも1種の元素を含む金属化合物とを含有している。
 本実施形態の居住空間内の二酸化炭素の低減方法に用いる二酸化炭素吸着材(以下、本実施形態の方法の二酸化炭素吸着材ともいう)は、アルカリ金属を含む少なくとも1種のアルカリ金属炭酸塩と、周期表第3族元素および周期表第4族元素からなる群から選ばれる少なくとも1種の元素を含む金属化合物とを含有している。本実施形態の方法の二酸化炭素吸着材は、多孔質材料をさらに含有していてもよい。
 本実施形態の二酸化炭素吸着材および本実施形態の方法の二酸化炭素吸着材は、二酸化炭素吸着速度をより向上させ、さらには二酸化炭素吸着速度維持率をより向上させる観点から、二酸化炭素吸着材の平均細孔直径が0.3nm~500nmであり、1nm~100nmであることが好ましい。
 本実施形態の二酸化炭素吸着材および本実施形態の方法の二酸化炭素吸着材の平均細孔直径(単位:nm)は、従来公知の任意好適な比表面積・細孔分布測定装置を用いて窒素吸着法により分析し、測定することができる。
 具体的には、二酸化炭素吸着材に対する窒素の吸脱着等温線を得て、得られた吸脱着等温線から、全細孔容積(V)(単位:cm/g)と比表面積(A)(単位:m/g)とをさらに得て、下記式に基づいて平均細孔直径(D)を算出することができる。
 D=4V/A
 本実施形態の二酸化炭素吸着材および本実施形態の方法の二酸化炭素吸着材は、アルカリ金属炭酸塩および金属化合物が担持されている多孔質材料を含んでいてもよい換言すると、本実施形態の二酸化炭素吸着材においては、アルカリ金属炭酸塩と金属化合物とが多孔質材料に担持されて一体的に構成されていてもよい。しかしながら、本実施形態の二酸化炭素吸着材および本実施形態の方法の二酸化炭素吸着材の態様はこれに限定されず、二酸化炭素吸着材中、特にアルカリ金属炭酸塩は多孔質材料から遊離した状態で存在していてもよい。
 ここで、本実施形態の二酸化炭素吸着材および本実施形態の方法の二酸化炭素吸着材に含まれうる成分(材料)について具体的に説明する。
 (1)多孔質材料
 多孔質材料としては、例えば、酸化アルミニウム、酸化ケイ素などの酸化物、ケイ酸カルシウム、シリカアルミナなどの複合酸化物、および活性炭が挙げられる。これらの中でも、二酸化炭素吸着速度をより向上させ、さらには二酸化炭素吸着速度維持率をより向上させる観点から、酸化ケイ素、酸化アルミニウム、活性炭およびケイ酸カルシウムからなる群から選ばれる少なくとも1種を用いることが好ましい。
 ここで活性炭は可燃性物質である。よって、後述する二酸化炭素吸着材を再生するための温度(再生温度)が、例えば250℃以上である場合には、多孔質材料として酸化ケイ素を用いることがより好ましい。
 上記例示の多孔質材料は、従来公知の任意好適な製造方法によって製造することができる。また、上記例示の多孔質材料としては市販の多孔質材料を用いることもできる。
 酸化アルミニウムの種類は特に制限されず、例えば、α型、γ型、θ型等、いずれの結晶系の種類も採用することができる。また、酸化アルミニウムの製造方法は特に制限されない。例えば、アルミニウムを含む鉱物であるボーキサイトを水酸化ナトリウムの熱溶液で洗浄し、水酸化ナトリウム溶液中に溶解した水酸化アルミニウムを冷却して沈殿させ、加熱して脱水することで、酸化アルミニウムを製造することができる。
 多孔質材料が酸化ケイ素である場合には、酸化ケイ素は、例えば、シリカゲル、メソポーラスシリカ、ゼオライトなどが挙げられる。酸化ケイ素は、湿式法、乾式法により製造することができる。湿式法としては、例えば、沈殿法、ゲル法が挙げられる。乾式法としては、例えば、燃焼法が挙げられる。
 多孔質材料であるシリカゲルを湿式法により製造する場合には、NaO・nSiOの一般式で表される化合物を用い、これを硫酸または塩酸で中和することにより、ポリケイ酸の組成を有するシリカゾルを経てヒドロゲルが得られ、さらにヒドロゲル中の水分を除去することによりシリカゲルを得ることができる。ヒドロゲル中の水分を除去する方法は特に限定されない。ヒドロゲル中の水分は、直接蒸発させてもよく、アルコール、ケトンなど比較的低沸点の親水性有機溶媒で水分を置換した後、乾燥、加熱してもよい。ヒドロゲルをアルコール、ケトンなど低沸点の親水性有機溶媒で水分を置換した後、乾燥し、加熱することにより、細孔容積および細孔径がより大きい酸化ケイ素が得られる。
 メソポーラスシリカは、構造内にメソ孔を有するものであれば、その種類は特に制限されない。メソポーラスシリカの空孔サイズは、通常、1.5nm~50nmである。また、メソポーラスシリカの製造方法は特に制限されない。例えば、自己組織化プロセスによって、ゾルーゲル前駆体と構造規定性両親媒性物質との混合液からメソポーラスリシカを製造することができる。具体的には、まず、臭化セチルトリメチルアンモニウムなどの界面活性剤を用いて水中に液晶ミセルを形成し、テトラエチルオルトケイ酸などのセラミックゾルーゲル前駆体を加えることにより加水分解および縮合を起こし、ミセル周辺にシリカのネットワークを形成する。次に、これを熱処理または溶媒抽出して有機鋳型を除去することにより、メソポーラスリシカが得られる。
 ゼオライトの種類は特に制限されず、例えば、合成ゼオライト、人工ゼオライト、天然ゼオライトが挙げられる。また、ゼオライトの製造方法は特に制限されない。例えば、アルミナ源、シリカ源、アルカリ源、有機構造規定剤および水からなる混合物を水熱反応し、次いで、乾燥し焼成して、ゼオライトを製造することができる。
 ケイ酸カルシウムの種類は特に制限されず、例えば、ワラストナイト系、トベルモライト系、ゾノトライト系等のいずれの結晶形も採用することができる。また、ケイ酸カルシウムの製造方法は特に限定されない。例えば、珪酸質原料、石灰質原料および水からなる混合物を攪拌しながら水熱反応させることにより、ケイ酸カルシウム(二次粒子)を製造することができる。
 多孔質材料が活性炭である場合の活性炭は、原料の炭素質物質を加熱することにより炭化して炭化物とし、次いで、これを賦活することにより製造することができる。
 活性炭の原料である炭素質物質は特に限定されない。炭素質物質としては、例えば、木材、オガクズ、ヤシ殻、パルプ廃液、石炭、石油質、合成樹脂が挙げられる。
 炭素質物質を炭化した後の炭化物の賦活(活性化)方法は特に限定されない。賦活方法としては、例えば、ガス賦活と薬品賦活とが挙げられる。
 ガス賦活の方法としては、例えば、水蒸気、二酸化炭素、空気で高温処理する方法が挙げられる。ガス賦活は二段階の過程により進行すると考えられており、第一段階である加熱過程では炭化物の未組織化部分が選択的に分解消費され、炭素構造内の微細な孔隙が解放されて、内部の表面積が急速に増加する。第二段階のガス化反応過程では、炭化物を構成する炭素結晶体、または微細な孔隙部分を構成する炭素が反応消耗して、細孔径の大きな孔隙が複雑に組織的に形成する。この孔隙の形成過程は、炭素の反応消耗率が50%以下である場合にはミクロ孔が主体の活性炭となり、炭素の反応消耗率が75%を超えるとマクロ孔が増加した活性炭となる。その中間の炭素の反応消耗率では、ミクロ孔およびマクロ孔のいずれもを有する活性炭を得ることができる。
 薬品賦活の方法としては、例えば、塩化亜鉛、リン酸、塩化カルシウム、硫化カリウムを用いる方法が挙げられる。一般に薬品による賦活では、活性炭の細孔容積および平均細孔直径が大きくなることが知られている。また、活性炭は、原料や製法によって粉末状、粒状、破砕状、繊維状、ハニカム状など、多彩な形状を有するが、本発明の二酸化炭素吸着材に適用されうる活性炭の形状は、特に限定されない。
 (2)アルカリ金属炭酸塩
 本実施形態の二酸化炭素吸着材および本実施形態の方法の二酸化炭素吸着材は、アルカリ金属を含む、少なくとも1種のアルカリ金属炭酸塩を含有する。本実施形態の二酸化炭素吸着材および本実施形態の方法の二酸化炭素吸着材は、二酸化炭素吸着速度をより向上させ、さらには二酸化炭素吸着速度維持率をより向上させる観点から、アルカリ金属炭酸塩を2種以上含有することが好ましい。
 本実施形態において、アルカリ金属炭酸塩は、リチウム、ナトリウム、カリウム、ルビジウムおよびセシウムからなる群から選ばれる少なくとも1種の元素を含むことが好ましい。アルカリ金属炭酸塩は、二酸化炭素吸着速度をより向上させ、さらには二酸化炭素吸着速度維持率をより向上させる観点から、ナトリウム、カリウムまたはセシウムを含むことが好ましく、カリウムを含むことがより好ましい。
 アルカリ金属炭酸塩の具体例としては、炭酸リチウム、炭酸水素リチウム、炭酸ナトリウム、炭酸水素ナトリウム、炭酸カリウム、炭酸水素カリウム、炭酸ルビジウム、炭酸水素ルビジウム、炭酸セシウム、炭酸水素セシウムを挙げることができる。
 本実施形態の二酸化炭素吸着材中のアルカリ金属の含有量および本実施形態の方法の二酸化炭素吸着材中のアルカリ金属の含有量は、二酸化炭素吸着速度をより向上させ、さらには二酸化炭素吸着速度維持率をより向上させる観点から、1.0mmol/g~50.0mmol/gであることが好ましく、1.0mmol/g~20.0mmol/gであることがより好ましい。
 (3)金属化合物
 本実施形態の二酸化炭素吸着材および本実施形態の方法の二酸化炭素吸着材が含有する金属化合物は、周期表第3族元素および周期表第4族元素からなる群から選ばれる少なくとも1種の元素を含む金属化合物である。
 金属化合物に含まれる上記元素は、二酸化炭素吸着速度をより向上させ、さらには二酸化炭素吸着速度維持率をより向上させる観点、さらには入手性の観点から、セリウム、チタンおよびジルコニウムからなる群から選ばれる少なくとも1種の元素であることが好ましい。
 二酸化炭素吸着材が含有する金属化合物の具体例としては、酸化セリウム、炭酸セリウム、硝酸セリウム、水酸化セリウム(III)、水酸化セリウム(IV)、塩化セリウム、酢酸セリウム、セリウム(III)アセチルアセトナート等のセリウム化合物、酸化チタン、水酸化チタン、チタン酸テトラメチル、チタン酸テトラエチル、チタン酸テトラプロピル、チタン酸テトライソプロピル、チタン酸テトラブチル、チタン酸テトライソブチル、チタン酸テトラ-2-エチルヘキシル、チタン酸テトラオクタデシルやチタニウム(IV)オキシアセチルアセトナート、チタニウム(IV)ジイシプロポキシビスアセチルアセトナート等のチタン化合物、酸化ジルコニウム、炭酸ジルコニウム(IV)、オキシ硝酸ジルコニウム、水酸化ジルコニウム(IV)、塩化ジルコニウム(IV)等のジルコニウム化合物が挙げられる。
 上記例示の金属化合物は、二酸化炭素吸着材中において、金属化合物自体として含まれていてもよいし、多孔質材料、アルカリ金属炭酸塩、他の金属化合物、および/または後述するその他の成分との複合体などの態様で含まれていてもよい。
 金属化合物に含まれる上記元素の含有量は、二酸化炭素吸着速度をより向上させ、さらには二酸化炭素吸着速度維持率をより向上させる観点から、0.1mmol/g~25.0mmol/gであることが好ましく、0.1mmol/g~10.0mmol/gであることがより好ましい。
 (4)その他の成分
 本実施形態の二酸化炭素吸着材は、上記の成分(1)~(3)に加えて、その他の成分をさらに含んでいてもよい。また、本実施形態の方法の二酸化炭素吸着材は、上記の成分(2)および(3)に加えて、その他の成分をさらに含んでいてもよい。その他の成分としては、例えば、硝酸セシウム、酸化セシウム、水酸化セシウム、酢酸セシウム等のアルカリ金属化合物、炭酸マグネシウム、酸化マグネシウム、炭酸カルシウム、酸化カルシウム等のアルカリ土類金属化合物が挙げられる。
 上記例示のその他の成分は、二酸化炭素吸着材中において、これら自体として含まれていてもよいし、多孔質材料、アルカリ金属炭酸塩、金属化合物との複合体、これらに由来する酸化物などの態様で含まれていてもよい。
 本実施形態の二酸化炭素吸着材および本実施形態の方法の二酸化炭素吸着材の形状は特に限定されない。本実施形態の二酸化炭素吸着材および本実施形態の方法の二酸化炭素吸着材は、通常、粉末状または成形体である。成形体は、粒状(球状)、ペレット状(柱状)、リング状、ハニカム状などに成形された多孔質材料を用いるか、または粉末状の二酸化炭素吸着材を、従来公知の任意好適な方法により所定の形状に成形して任意好適な態様とすることができる。
 本実施形態の二酸化炭素吸着材および本実施形態の方法の二酸化炭素吸着材は、例えば、粒状(球状)、ペレット状(柱状)、押出形状、リング状、ハニカム状に成形することができ、さらには一旦所定の形状に成形した後にこれを粉砕して分級した任意好適な大きさの顆粒状とすることもができる。
 例えば、粒状(球状)である二酸化炭素吸着材の直径は、取り扱い性を向上させ、二酸化炭素の吸着能を最大化する観点から、通常10mm以下であることが好ましく、5mm以下とすることがより好ましい。本実施形態の二酸化炭素吸着材の直径の下限は特に限定されない。ここで、二酸化炭素吸着材の直径とは、球状である場合には球の直径をいい、ペレット状(柱状)であって延在方向直交する方向で切断した断面が円形である場合には直径をいい、その他の形状である場合には断面の最大幅(最大径)をいう。
2.本実施形態の二酸化炭素吸着材の製造方法
 本実施形態の二酸化炭素吸着材の製造方法は、下記工程(1)と下記工程(2)とを含む。
 工程(1):
 多孔質材料に、金属化合物を含む溶液を接触させ、加熱して、二酸化炭素吸着材前駆体を得る工程
 工程(2):
 二酸化炭素吸着材前駆体に、アルカリ金属炭酸塩を含む溶液を接触させ、加熱して、二酸化炭素吸着材を得る工程
 以下、具体的に説明する。
 (1)工程(1)
 工程(1)は、既に説明した多孔質材料に、既に説明した金属化合物を含む溶液を接触させ、加熱して、二酸化炭素吸着材前駆体を得る工程である。ここで「加熱」には、乾燥工程および/または焼成工程が含まれる。
 ここで、「二酸化炭素吸着材前駆体」とは、さらに加工されることにより二酸化炭素吸着材となる二酸化炭素吸着材の材料を意味している。
 工程(1)において用いられる「金属化合物を含む溶液」に用いられうる溶媒としては、例えば、水(イオン交換水)、メタノール、エタノール、イソプロピルアルコール等のアルコール、アセトン、アセトニトリル、テトラヒドロフラン等の極性を持つ有機溶媒、並びに、これらの溶媒の2種以上を含む混合溶媒が挙げられる。ここで、「溶液」には、分散液、懸濁液なども含まれうる。
 溶液中における金属化合物の濃度は、0.01質量%~100質量%であることが好ましく、二酸化炭素吸着材前駆体の製造効率の観点から、0.1質量%~100質量%であることがより好ましく、1質量%~100質量%であることがさらに好ましい。
 なお、既に説明した「その他の材料」が用いられる場合には、「溶液」を「金属化合物」に加えて「その他の材料」を既に説明した溶媒に添加した混合溶液(例、混合水溶液)として用いることができる。
 「その他の材料」が用いられる場合において、混合溶液中の「その他の材料」の含有量は、0.01質量%~90質量%であることが好ましく、二酸化炭素吸着材前駆体の製造効率の観点から、0.1質量%~90質量%であることがより好ましく、1質量%~90質量%であることがさらに好ましい。
 多孔質材料への金属化合物を含む溶液の接触の方法は、金属化合物を含む溶液を多孔質材料にまんべんなく接触させて、多孔質材料の細孔内にも溶液が行き渡って均一に吸収されるようにできることを条件として特に限定されない。接触方法の例としては、液滴の滴下、噴霧、浸漬などの従来公知の任意好適な方法を適用することができる。
 乾燥工程は、溶液(混合溶液)と接触させた多孔質材料の重量変化がなくなるまで乾燥させることにより行われる。具体的には、例えば常温にて1時間程度乾燥した後、さらに従来公知の任意好適な乾燥装置(例、オーブン)を用いて、好ましくは30℃~120℃の温度にて重量変化がなくなるまで加熱することにより行うことができる。
 上記乾燥工程に引き続き、焼成工程が行われる。焼成工程は、具体的には従来公知の任意好適な加熱処理装置(例、マッフル炉)を用いて、200℃~800℃にて、1時間~12時間焼成することにより行うことができる。以上の工程により、表面、および/または細孔内に金属化合物または金属化合物に由来する金属元素あるいは化合物のうちの少なくとも一部が付着または固溶した二酸化炭素吸着材前駆体を得ることができる。
 (2)工程(2)
 工程(2)は、二酸化炭素吸着材前駆体に、アルカリ金属炭酸塩を含む溶液を接触させ、加熱して、二酸化炭素吸着材を得る工程である。ここで「加熱」には乾燥工程および/または焼成工程が含まれる。
 工程(2)においては、まず、工程(1)により得られた二酸化炭素吸着材前駆体に対し、アルカリ金属炭酸塩を含む溶液(例、炭酸カリウムの水溶液)に接触させる。
 二酸化炭素吸着材前駆体へのアルカリ金属炭酸塩を含む溶液の接触の方法は、アルカリ金属炭酸塩を含む溶液を二酸化炭素吸着材前駆体にまんべんなく接触させて、二酸化炭素吸着材前駆体の細孔内にも溶液が行き渡って均一に吸収されるようにできることを条件として特に限定されない。接触方法の例としては、液滴の滴下、噴霧、浸漬などの従来公知の任意好適な方法を適用することができる。
 乾燥工程は、アルカリ金属炭酸塩と接触させた二酸化炭素吸着材前駆体の重量変化がなくなるまで乾燥させることにより行われる。具体的には、例えば常温にて1時間程度乾燥した後、さらに従来公知の任意好適な乾燥装置(例、オーブン)を用いて、好ましくは30℃~120℃の温度にて重量変化がなくなるまで加熱することにより行うことができる。
 上記乾燥工程に引き続き、焼成工程を行ってもよい。焼成工程は、具体的には従来公知の任意好適な加熱処理装置(例、オーブン、マッフル炉)を用いて、30℃~500℃にて、より好ましくは30℃~300℃の温度にて重量変化がなくなるまで加熱することにより行うことができる。
 以上の工程により、表面、および/または細孔内にアルカリ金属炭酸塩のうちの少なくとも一部が付着した二酸化炭素吸着材を得ることができる。
3.本実施形態の方法の二酸化炭素吸着材の製造方法
 本実施形態の方法の二酸化炭素吸着材の製造方法は、金属化合物に、アルカリ金属炭酸塩を含む溶液を接触させ、加熱して、本実施形態の方法の二酸化炭素吸着材を得る工程を含む。ここで「加熱」には乾燥工程および/または焼成工程が含まれる。
 以下、具体的に説明する。
 「アルカリ金属炭酸塩を含む溶液」に用いられうる溶媒としては、例えば、水(イオン交換水)、メタノール、エタノール、イソプロピルアルコール等のアルコール、アセトン、アセトニトリル、テトラヒドロフラン等の極性を持つ有機溶媒、並びに、これらの溶媒の2種以上を含む混合溶媒が挙げられる。ここで、「溶液」には、分散液、懸濁液なども含まれうる。
 溶液中におけるアルカリ金属炭酸塩の濃度は、1質量%~53質量%であることが好ましく、二酸化炭素吸着材前駆体の製造効率の観点から、5質量%~50質量%であることがより好ましく、10質量%~50質量%であることがさらに好ましい。
 なお、既に説明した「その他の材料」が用いられる場合には、「溶液」を「アルカリ金属炭酸塩」に加えて「その他の材料」を既に説明した溶媒に添加した混合溶液(例、混合水溶液)として用いることができる。
 「その他の材料」が用いられる場合において、混合溶液中の「その他の材料」の含有量は、0.01質量%~90質量%であることが好ましく、本実施形態の方法の二酸化炭素吸着材の製造効率の観点から、0.1質量%~90質量%であることがより好ましく、1質量%~90質量%であることがさらに好ましい。
 金属化合物へのアルカリ金属炭酸塩を含む溶液の接触の方法は、アルカリ金属炭酸塩を含む溶液を金属化合物にまんべんなく接触させて、金属化合物の細孔内にも溶液が行き渡って均一に吸収されるようにできることを条件として特に限定されない。接触方法の例としては、液滴の滴下、噴霧、浸漬などの従来公知の任意好適な方法を適用することができる。
 乾燥工程は、アルカリ金属炭酸塩と接触させた金属化合物の重量変化がなくなるまで乾燥させることにより行われる。具体的には、例えば常温にて1時間程度乾燥した後、さらに従来公知の任意好適な乾燥装置(例、オーブン)を用いて、好ましくは30℃~120℃の温度にて重量変化がなくなるまで加熱することにより行うことができる。
 上記乾燥工程に引き続き、焼成工程を行ってもよい。焼成工程は、具体的には従来公知の任意好適な加熱処理装置(例、オーブン、マッフル炉)を用いて、30℃~500℃にて、より好ましくは30℃~300℃の温度にて重量変化がなくなるまで加熱することにより行うことができる。
 以上の工程により、金属化合物の表面、および/または細孔内に、アルカリ金属炭酸塩のうちの少なくとも一部が付着した二酸化炭素吸着材を得ることができる。
4.二酸化炭素の吸着および脱離方法(二酸化炭素吸着材の使用方法)
 本実施形態の二酸化炭素吸着材を用いる二酸化炭素の吸着および脱離方法は、二酸化炭素吸着材と、二酸化炭素を含む気体とを接触させて、二酸化炭素吸着材に二酸化炭素を吸着させる工程と、二酸化炭素が吸着した二酸化炭素吸着材を、50℃~900℃に加熱することで、二酸化炭素吸着材から二酸化炭素を分離させる工程とを含む。
 (1)二酸化炭素吸着材と、二酸化炭素を含む気体とを接触させて、二酸化炭素吸着材に二酸化炭素を吸着させる工程(工程(i)という)
 工程(i)、すなわち二酸化炭素吸着材と、二酸化炭素を含む気体とを接触させて、二酸化炭素吸着材に二酸化炭素を吸着させる工程における温度(二酸化炭素吸着材の使用温度)は、0℃~100℃が好ましく、5℃~80℃がより好ましい。
 本実施形態の二酸化炭素吸着材は、通常、100℃以下の温度(例、常温)で使用、すなわち二酸化炭素を含む気体と接触させる。しかしながら、本実施形態の二酸化炭素吸着材は、100℃より高い温度でも使用することができる。
 工程(i)、すなわち二酸化炭素吸着材と、二酸化炭素を含む気体とを接触させて、二酸化炭素吸着材に二酸化炭素を吸着させる工程における湿度(二酸化炭素吸着材の使用湿度)は、1%~100%が好ましく、5%~90%がより好ましい。
 本実施形態の二酸化炭素吸着材は、例えば、二酸化炭素を含む気体からの二酸化炭素の回収または特に二酸化炭素の濃度(分圧)が高い気体から二酸化炭素を選択的に除去して回収するための二酸化炭素回収装置に好適に適用することができる。
 本実施形態の二酸化炭素吸着材が特に100℃以下の温度で使用される場合には、空気清浄機、空調機、特に自動車の車内の雰囲気の成分を調整するための空気清浄機、空調機、農業用温室ハウス用の空調機、さらには建材、容器に好適に搭載することができる。本実施形態の二酸化炭素吸着材が100℃よりも高い温度で使用される場合には、例えば、化学工場や発電所からの排ガス中の二酸化炭素の回収に好適に適用することができる。
 工程(i)において、二酸化炭素吸着材に接触させる二酸化炭素を含む気体中の二酸化炭素の濃度(分圧)は限定されない。通常、大気中の二酸化炭素濃度は400ppm程度であるところ、例えば、自動車の運転中において外気導入を行わず、内気循環を行った場合には、車内の雰囲気の二酸化炭素の濃度は7000ppm程度にもなり得る。一般に、自動車内において、内気循環を選択した場合には、二酸化炭素の濃度が2000ppm以上となると呼吸数が増大し眠気が誘発され、3000ppm以上となるとめまいや頭痛などが誘発されるといわれている。よって、特に本実施形態の二酸化炭素吸着材を自動車用の空気清浄機、空調機に適用する場合に想定される二酸化炭素の濃度は、400ppm~7000ppmである。
 本実施形態の二酸化炭素吸着材に適用される「二酸化炭素を含む気体」における二酸化炭素以外の成分およびその濃度(分圧)については特に限定されない。二酸化炭素以外の成分の例としては、窒素、水素、一酸化炭素、一酸化窒素等の窒素酸化物(NOx)、メタン等の炭化水素が挙げられる。
 工程(i)において、二酸化炭素吸着材と二酸化炭素を含む気体とを接触させる方法は特に限定されない。二酸化炭素吸着材と二酸化炭素を含む気体との接触は、例えば、本実施形態の二酸化炭素吸着材を収容した容器に、二酸化炭素を含む気体を流通形式で流通させることにより接触させてもよく、二酸化炭素吸着材を二酸化炭素を含む気体に直接的に接触するように静置してもよい。
 上記のとおり流通形式で二酸化炭素吸着材と二酸化炭素を含む気体とを接触させる場合、標準状態(0℃、0.1MPa)における二酸化炭素を含む気体の供給量(空間速度)は、好ましくは10~10,000,000/hであり、より好ましくは100~5,000,000/hであり、さらに好ましくは1,000~1,000,000/hである。空間速度を10以上とし、10,000,000/h以下とすれば、時間あたりの二酸化炭素の吸着の効率をより良好にすることができる。二酸化炭素吸着材に対する処理圧力は、好ましくは0.1~5MPaであり、より好ましくは0.1~1MPaである。
 (2)二酸化炭素が吸着した二酸化炭素吸着材を、50℃~900℃に加熱することで、二酸化炭素吸着材から二酸化炭素を分離させる工程(以下、工程(ii)という。)
 工程(ii)は、二酸化炭素吸着材自体または二酸化炭素吸着材が適用されている部品(例、フィルター、カートリッジ)を含む機器から取り外した当該部品に対して実施してもよいし、二酸化炭素吸着材を含む既に説明した機器において実施してもよい。
 例えば、本実施形態の二酸化炭素吸着材が自動車の空調機(空気清浄機)において特に流通形式で適用される場合には、工程(ii)は、二酸化炭素吸着材に流通させる気体を、「二酸化炭素を含む気体」から再生用の上記温度に加熱された気体に切り替えて、二酸化炭素を二酸化炭素吸着材から分離して外部に放出することにより実施することができる。
 工程(ii)における加熱温度は、二酸化炭素吸着材、二酸化炭素吸着材を含む機器等の機能を損なわないことを条件として特に限定されない。
 工程(ii)における二酸化炭素吸着材の加熱温度(二酸化炭素吸着材の再生温度)は、50℃~900℃とすることができ、50℃~600℃とすることが好ましく、50℃~300℃とすることがより好ましい。二酸化炭素吸着材に対する処理圧力は、好ましくは0.001~5MPaであり、より好ましくは0.01~1MPaである。
 特に本実施形態の二酸化炭素吸着材を家庭向けの機器に適用する場合には、二酸化炭素吸着材の再生温度はより低温とすることができる。
 本実施形態の二酸化炭素吸着材を、例えば、電気自動車に適用する場合には、モーターなどが発生する熱をより有効に利用する観点から、50℃~200℃とすることが好ましい。
 工程(ii)における加熱の際に用いられる気体(雰囲気)の成分は特に限定されない。加熱の際の雰囲気としては、例えば、空気(大気)を適用することができる。二酸化炭素をより効率的に分離させて除去する観点から、窒素ガス等の不活性ガスを用いてもよい。
 本実施形態の二酸化炭素吸収材から分離した二酸化炭素は、従来公知の任意好適な方法により回収することができる。具体的には例えば、分離された二酸化炭素を加圧圧縮して冷却することでドライアイスとして回収する方法が挙げられる。
5.居住空間内の二酸化炭素の低減方法(二酸化炭素吸着材の使用方法)
 本実施形態の方法の二酸化炭素吸着材を用いる居住空間内の二酸化炭素の低減方法は、二酸化炭素吸着材と、居住空間内の二酸化炭素および水蒸気を含む気体とを接触させて、二酸化炭素吸着材に二酸化炭素を吸着させる工程と、二酸化炭素が吸着した二酸化炭素吸着材を50℃~900℃に加熱することで、二酸化炭素吸着材から二酸化炭素を分離させる工程と、分離させた二酸化炭素を居住空間外に放出する工程とを含む。
 (1’)二酸化炭素吸着材と、居住空間内の二酸化炭素および水蒸気を含む気体とを接触させて、二酸化炭素吸着材に二酸化炭素を吸着させる工程(工程(i’)という)
 居住空間は、例えば、住宅、オフィス、学校、車両が挙げられる。
 居住空間内の二酸化炭素および水蒸気を含む気体中の二酸化炭素濃度は、通常、400ppm~5000ppmであり、水蒸気濃度は、相対湿度として通常、10%RH~90%RHである。その他の成分として、一酸化炭素やアンモニア、ホルムアルデヒドやアセトアルデヒド、トルエンなどの揮発性有機化合物などが挙げられる。
 上記以外の工程(i’)の例および好ましい形態は、上記工程(i)の例および好ましい形態と同じである。
 (2’)二酸化炭素が吸着した二酸化炭素吸着材を50℃~900℃に加熱することで、二酸化炭素吸着材から二酸化炭素を分離させる工程(以下、工程(ii’)という。)
 工程(ii’)の例および好ましい形態は、上記工程(ii)の例および好ましい形態と同じである。
 (3’)分離させた二酸化炭素を居住空間外に放出する工程(以下、工程(iii’)という。)
 工程(iii’)は、二酸化炭素を吸着した二酸化炭素吸着材を居住空間内から持ち出して、工程(ii’)を居住空間外で行うことで実施してもよいし、二酸化炭素吸着材を居住空間内と居住空間外とそれぞれ別々の流路で接続された容器の中に設置し、二酸化炭素吸着材に接触させる気体を、それぞれの流路に設置されたバルブなどで連続的に切り替えて工程(i’)と工程(ii’)とを交互に行うことで実施してもよい。
 二酸化炭素を居住空間外に放出する量は、好ましくは、1~10,000,000L/hであり、より好ましくは10~5,000,000L/hであり、さらに好ましくは1,00~1,000,000L/hである。
 二酸化炭素を居住空間外に放出する圧力は、好ましくは0.001~5MPaであり、より好ましくは0.01~1MPaである。
 二酸化炭素を居住空間外に放出する温度は、50℃~900℃とすることができ、50℃~600℃とすることが好ましく、50℃~300℃とすることがより好ましい。
6.二酸化炭素吸着材の用途
 本実施形態の二酸化炭素吸着材は、既に説明したとおり、二酸化炭素回収装置、空気清浄機、空調機、建材および容器等に好適に適用することができ、より具体的にはこれらの部品であるフィルター、カートリッジ等に好適に適用することができる。
 本実施形態の二酸化炭素吸着材は、従来公知の任意好適な方法によりフィルターに適用することができる。
 フィルターの材料は特に限定されず、例えば、珪藻土、活性炭、ゼオライト、紙、樹脂、金属、ガラス、セラミックが挙げられる。フィルターの材料は、既に説明した二酸化炭素の分離のための加熱温度に耐えうる材料とすることが好ましい。
 フィルターの構造は特に限定されず、例えば、ハニカム、濾紙、不織布、布等のフィルター材に本実施形態の二酸化炭素吸着材を任意好適な態様で含有させればよい。
 フィルターは、濾紙、不織布、布などの通気性を有する薄膜状のフィルター材が画成する空間に本実施形態の二酸化炭素吸着材が充填された構造であってもよい。本実施形態の二酸化炭素吸着材をフィルター材に充填する場合の二酸化炭素吸着材の直径は5mm以下であることが好ましい。
 フィルター材に本実施形態の二酸化炭素吸着材を含有させる方法は特に限定されず、従来公知の任意好適な方法を適用することできる。フィルター材に本実施形態の二酸化炭素吸着材を含有させる方法としては、例えば、フィルター材を製造するための原料に、本実施形態の二酸化炭素吸着材を混合してフィルター材を製造してもよいし、本実施形態の二酸化炭素吸着材を含むスラリーを、フィルター材にディップコーティング、塗布、スプレー散布などの方法で担持させてもよい。
 本実施形態の二酸化炭素吸着材を含むスラリーの調製は、所定の溶媒を用いる従来公知の任意好適な方法により行うことができる、スラリーの調製に用いられる溶媒は特に限定されず、例えば、水、アルコールを用いることができる。
 上記溶媒を用いて調製された本実施形態の二酸化炭素吸着材を含むスラリーは、ディップコーティング法、スプレーコート法といった塗布法により、フィルター材に塗布または散布することができる。
 本実施形態の二酸化炭素吸着材を含むスラリーが塗布または散布されたフィルター材は、従来公知の任意好適な方法により乾燥させればよい。乾燥させるための温度は、好ましくは0℃~200℃であり、より好ましくは20℃~150℃である。乾燥後、さらに焼成してもよい。焼成温度は、好ましくは150℃~400℃であり、より好ましくは200℃~300℃である。
 乾燥および/または焼成する際の雰囲気は特に制限されない。乾燥および/または焼成する際の雰囲気は、空気雰囲気、さらには窒素ガス、アルゴンガスなどの不活性ガス雰囲気とすることができる。
 本実施形態の二酸化炭素吸着材は、特に既に説明したとおりペレット状とすることができ、例えば、ペレット状とされた二酸化炭素吸着材を、少なくとも二酸化炭素の分離のための加熱の温度に耐えうる材料により形成され、かつ二酸化炭素を含む気体を流通させることができるように構成した部材(例、カートリッジ)に、従来公知の任意好適な方法により充填することにより適用することもできる。
 本実施形態にかかる二酸化炭素吸着材によれば、二酸化炭素吸着速度をより向上させることができ、さらには二酸化炭素吸着材の表面積の使用による減少を防ぐことができると考えられるため二酸化炭素吸着速度維持率をより向上させることができる。
 特に自動車の空調機、空気清浄機に本実施形態の二酸化炭素吸着材を適用した場合には、「内気循環」を選択したとしても車内の雰囲気の二酸化炭素濃度が過剰となることを防止して、眠気、めまい、頭痛といった症状の誘発を防止しつつ、暖房、冷房を使用することができるので空調の効率が向上することから、車内環境を搭乗者にとって良好に保つことができるのみならず、エネルギー効率をより向上させることができる。
 以下、実施例および比較例により、本発明をさらに具体的に説明する。本発明は、以下の実施例により限定されない。
<実施例1:二酸化炭素吸着材1の製造>
 硝酸セリウム(III)六水和物(富士フイルム和光純薬社製)の水溶液(イオン交換水を使用、濃度:61.7質量%)を調製した。多孔質である粒子状の酸化ケイ素(富士シリシア化学社製、Q-30、粒径:30nm)1.0gに対し、硝酸セリウム(III)六水和物の水溶液0.8mLをまんべんなく滴下して吸収させた後、常温で1時間乾燥し、次いで、マルチオーブン(アズワン社製、MOV-300S)を用い、40℃で重量変化がなくなるまで乾燥した。
 次いで、マッフル炉(ヤマト科学社製、FP100)を用いて600℃、2時間焼成して、二酸化炭素吸着材前駆体1Xを得た。
 得られた二酸化炭素吸着材前駆体1Xの全量に対し、炭酸カリウム(富士フイルム和光純薬社製)の水溶液(イオン交換水を使用、濃度:46.3質量%)0.8mLをまんべんなく滴下して二酸化炭素吸着材前駆体1Xに接触させることにより吸収させた後、常温で1時間乾燥し、次いで、マルチオーブン(アズワン社製、MOV-300S)を用い、40℃で重量変化がなくなるまで乾燥して溶媒を除去することにより、二酸化炭素吸着材1を得た。
<実施例2:二酸化炭素吸着材2の製造>
 硝酸セリウム(III)六水和物の水溶液の代わりに、硝酸ジルコニル二水和物(富士フイルム和光純薬社製)の水溶液(イオン交換水を使用、濃度:50.0質量%)を用いた以外は、実施例1と同様にして、二酸化炭素吸着材2を製造した。
<実施例3:二酸化炭素吸着材3の製造>
 硝酸セリウム(III)六水和物の水溶液の代わりに、硝酸セリウム(III)六水和物(富士フイルム和光純薬社製)と硝酸セシウム(富士フイルム和光純薬社製)との混合水溶液(イオン交換水を使用、硝酸セリウム(III)六水和物濃度:9.8質量%、硝酸セシウム濃度:22.0質量%)を用いた以外は、実施例1と同様にして、二酸化炭素吸着材3を製造した。
<実施例4:二酸化炭素吸着材4の製造>
 オルトチタン酸テトライソプロピル(東京化成社製)のイソプロピルアルコール(関東化学社製)の溶液(イソプロピルアルコール溶液という。)(濃度:46.2質量%)を調製した。多孔質である粒子状の酸化ケイ素(富士シリシア社製、Q-30)1.0gに対し、調製されたイソプロピルアルコール溶液1.8mLをまんべんなく滴下して接触させて吸収させた後、常温で重量変化がなくなるまで乾燥した。
 次いで、マッフル炉(ヤマト科学社製、FP100)を用い、600℃で2時間焼成して、二酸化炭素吸着材前駆体4Xを得た。得られた二酸化炭素吸着材前駆体4Xの全量に、炭酸カリウム(富士フイルム和光純薬社製)の水溶液(濃度:46.3質量%)0.8mLをまんべんなく滴下して吸収させた後、常温で1時間乾燥し、次いで、マルチオーブン(アズワン社製、MOV-300S)を用いて40℃で重量変化がなくなるまで乾燥して溶媒を除去することにより、二酸化炭素吸着材4を製造した。
<実施例5:二酸化炭素吸着材5の製造>
 粉状の酸化ジルコニウム(第一稀元素化学工業社製、RC-100)1.0gに、炭酸カリウム(富士フイルム和光純薬社製)の水溶液(イオン交換水を使用、濃度:46.3質量%)0.4mLをまんべんなく滴下して接触させて吸収させた後、常温で1時間乾燥し、次いで、マルチオーブン(アズワン社製、MOV-300S)を用い、40℃で重量変化がなくなるまで乾燥して溶媒を除去することにより、二酸化炭素吸着材5を製造した。
<比較例1:二酸化炭素吸着材C1の製造>
 多孔質である粒子状の酸化ケイ素(富士シリシア社製、Q-30)1.0gに、炭酸カリウム(富士フイルム和光純薬社製)の水溶液(イオン交換水を使用、濃度:46.3質量%)0.8mLをまんべんなく滴下して接触させて吸収させた後、常温で1時間乾燥し、次いで、マルチオーブン(アズワン社製、MOV-300S)を用い、40℃で重量変化がなくなるまで乾燥して溶媒を除去することにより、二酸化炭素吸着材C1を製造した。
<比較例2:二酸化炭素吸着材C2の製造>
 まず、硝酸セシウム(富士フイルム和光純薬社製)の水溶液(イオン交換水を使用、濃度:12.6質量%)を調製した。多孔質である粒子状の酸化ケイ素(富士シリシア社製、Q-30)1.0gに、調製された硝酸セシウムの水溶液0.8mLをまんべんなく滴下して接触させて吸収させた後、常温で1時間乾燥し、次いで、マルチオーブン(アズワン社製、MOV-300S)を用いて40℃で重量変化がなくなるまで乾燥した。
 次いで、マッフル炉(ヤマト科学社製、FP100)を用い、600℃で2時間焼成して、二酸化炭素吸着材前駆体C2Xを得た。得られた二酸化炭素吸着材前駆体C2Xの全量に、炭酸カリウム(富士フイルム和光純薬社製)の水溶液(イオン交換水を使用、濃度:46.3質量%)0.8mLをまんべんなく滴下して接触させて吸収させた後、常温で1時間乾燥し、次いで、マルチオーブン(アズワン社製、MOV-300S)を用いて40℃で重量変化がなくなるまで乾燥して溶媒を除去することにより、二酸化炭素吸着材C2を製造した。
<金属元素の含有量の測定>
 上記実施例1~5並びに比較例1および2にかかる二酸化炭素吸着材1~5並びにC1およびC2が含有する金属元素、すなわちアルカリ金属炭酸塩に由来する金属元素(アルカリ金属)および周期表第3族元素および周期表第4族元素の含有量(単位:mmol/g)を測定した。
 金属元素の含有量は、誘導結合プラズマ発光分析計(ICP-AES、アジレントテクノロジーズ社製、Vista-PRO)および誘導結合プラズマ質量分析計(ICP-MS、サーモフィッシャーサイエンティフィック社製、iCAP Q)を用いた分析により行った。
 具体的には、上記実施例1~5並びに比較例1および2それぞれにかかる二酸化炭素吸着材0.01gを、ふっ化水素酸(ステラケミファ社製、50%高純度品)と硝酸(関東化学社製、ELグレード)との混合溶媒に溶解させた溶液を試料として、ICP-AESおよびICP-MSにより金属元素の濃度を測定した。
 測定結果を下記表1に示す。
 上記実施例1~5並びに比較例1および2それぞれにかかる二酸化炭素吸着材の平均細孔直径(単位:nm)を、比表面積・細孔分布測定装置(マイクロトラック・ベル社製、BEL-SORP MINI)を用いて分析した。
 具体的には、上記実施例1~5並びに比較例1および2それぞれにかかる二酸化炭素吸着材に対し、120℃で真空排気を2時間実施した後、77K(-196℃)で窒素ガスの吸脱着等温線を得た。
 得られた吸脱着等温線から、全細孔容積(V)と比表面積(A)とを得て、平均細孔直径(D)を下記式に基づいて算出した。結果を表1に示す。
   D=4V/A
Figure JPOXMLDOC01-appb-T000001

 表1中、符号「-」は測定対象外であることを示している。
 上記実施例1~5並びに比較例1および2それぞれにかかる二酸化炭素吸着材の二酸化炭素吸着速度(単位:mmol/g/hr)を、熱重量・質量分析装置(TG-MS、リガク社製、Thermo Mass Photo)を用いて、シュウ酸カルシウム水和物の分解によって発生した二酸化炭素由来のマススペクトルのm/z=44のイオン強度を基準にして測定した。
 上記実施例1~5並びに比較例1および2それぞれにかかる二酸化炭素吸着材を、マッフル炉(ヤマト科学社製、FP100)を用い、200℃で10分間熱処理して、二酸化炭素吸着材に吸着した二酸化炭素を脱離させた。
 その後、二酸化炭素吸着材に、恒温恒湿乾燥器(エスペック社製、SH-641)を用いて25℃、湿度50%の空気と材とを20分間接触させて、二酸化炭素を吸着させた。次いで、二酸化炭素吸着材に吸着した二酸化炭素の脱離量を、上述のTG-MSを用いて測定した。得られた測定値を二酸化炭素の吸着時間(20分間)で除算することで、1回目の二酸化炭素吸着速度を算出した。結果を表2に示す。
 下記の操作1および2により、2~5回目の二酸化炭素吸着速度を算出し、さらに二酸化炭素吸着速度維持率(%)を算出した。
 操作1:二酸化炭素吸着材を、マッフル炉(ヤマト科学社製、FP100)を用いて200℃、10分間熱処理して、二酸化炭素吸着材に吸着した二酸化炭素を脱離させた。その後、二酸化炭素吸着材に、恒温恒湿乾燥器(エスペック社製、SH-641)を用いて25℃、湿度50%、20分間の条件で二酸化炭素を吸着させた。
 操作2:上記操作1をさらに4回繰り返した後、二酸化炭素吸着材に吸着した二酸化炭素の脱離量を、上述のTG-MSを用いて測定した。
 測定値を二酸化炭素の吸着時間(20分間)で除算することで、5回目の二酸化炭素吸着速度を算出した。結果を表2に示す。
 1回目の二酸化炭素吸着速度と5回目の二酸化炭素吸着速度とから、二酸化炭素吸着材の吸着速度維持率を算出した。結果を表2に示す。吸着速度維持率は、二酸化炭素吸着材の耐久性の指標となりうる。
Figure JPOXMLDOC01-appb-T000002

 実施例1~5にかかる二酸化炭素吸着材1~5は、比較例1および2にかかる二酸化炭素吸着材C1およびC2よりも、二酸化炭素吸着速度が優れており、二酸化炭素吸着速度の維持率が高いことがわかる。
 実施例1~5並びに比較例1および2それぞれの5回目の二酸化炭素吸着速度の値を用いて、居住空間内の二酸化炭素濃度を、下記式を用いて計算した。
Figure JPOXMLDOC01-appb-I000003
(式中、
 C(t)は、時刻tにおける二酸化炭素濃度(%)を示す。
 Vは、居住空間の容積(L)を示す。
 CH-OUTは、人の呼吸中の二酸化炭素濃度(%)を示す。
 VH-OUTは、人一人当たりの呼吸の吐き出し流速(L/hr・人)を示す。
 nは、居住空間内の人の人数(人)を示す。
 VAir-INは、居住空間内に流入する空気の流速(L/hr)を示す。
 VAir-OUTは、居住空間該外に放出する空気の流速(L/hr)を示す。
 v(C(t))は、時刻tにおける二酸化炭素吸着材の二酸化炭素吸着速度(mmol/g・hr)を示す。
 wは、二酸化炭素吸着材の使用量(g)を示す。
 Vmolは、居住空間内の二酸化炭素のモル体積(L/mmol)を示す。)
 上記計算では、以下の値を用いた。

 ・C(0):0.04%
 ・V:4000L
 ・CH-OUT:4.3%
 ・VH-OUT:900L/hr・人
 ・n:2人
 ・VAir-IN:7800L/hr
 ・VAir-OUT:7800L/hr
 ・v(C(t)):二酸化炭素吸着材の二酸化炭素吸着速度は二酸化炭素濃度に比例するものとして、各二酸化炭素吸着材の5回目の二酸化炭素吸着速度(二酸化炭素濃度は400ppm)に基づき計算された値。なお、二酸化炭素吸着材の二酸化炭素吸着速度は二酸化炭素濃度に比例することは、二酸化炭素吸着材5を用いた実験で確認した。
 ・w:250g
 ・Vmol:0.0245L/mmol(常圧、25℃での値)
なお、VAir-INとVAir-OUTの値は等しいと仮定し、その値は、二酸化炭素吸着材を用いない場合の室内の二酸化炭素濃度の時間変化のグラフ[Heejung Jung, SAE International (2013-01-1497), Figure 4]が再現できるような値とした。
 計算結果を図1に示す。二酸化炭素吸着材C1およびC2を用いた場合、居住空間内の二酸化炭素濃度は90分後に4000~5000ppmに上昇した。一方、二酸化炭素吸着材1~5を用いた場合、居住空間内の二酸化炭素濃度は90分後でも3500ppm以下に維持された。
 本発明にかかる二酸化炭素吸着材によれば、二酸化炭素吸着速度をより向上させることができ、さらには二酸化炭素吸着速度維持率をより向上させることができる。また、本発明にかかる居住空間内の二酸化炭素の低減方法によれば、居住空間内の二酸化炭素を効率的に低減させることができる。

Claims (17)

  1.  二酸化炭素吸着材と、居住空間内の二酸化炭素および水蒸気を含む気体とを接触させて、前記二酸化炭素吸着材に二酸化炭素を吸着させる工程と、
     二酸化炭素が吸着した前記二酸化炭素吸着材を50℃~900℃に加熱することで、前記二酸化炭素吸着材から二酸化炭素を分離させる工程と、
     分離させた二酸化炭素を居住空間外に放出する工程とを含み、
     前記二酸化炭素吸着材が、アルカリ金属を含む少なくとも1種のアルカリ金属炭酸塩と、周期表第3族元素および周期表第4族元素からなる群から選ばれる少なくとも1種の元素を含む金属化合物とを含有する、居住空間内の二酸化炭素の低減方法。
  2.  前記金属化合物が、セリウム、チタンおよびジルコニウムからなる群から選ばれる少なくとも1種の元素を含む、請求項1に記載の居住空間内の二酸化炭素の低減方法。
  3.  前記金属化合物がジルコニウムを含む、請求項2に記載の居住空間内の二酸化炭素の低減方法。
  4.  前記金属化合物が酸化ジルコニウムである、請求項3に記載の居住空間内の二酸化炭素の低減方法。
  5.  前記居住空間が、住宅、オフィスまたは学校である、請求項1~4のいずれか一項に記載の居住空間内の二酸化炭素の低減方法。
  6.  前記居住空間が車両である、請求項1~4のいずれか一項に記載の居住空間内の二酸化炭素の低減方法。
  7.  多孔質材料と、
     アルカリ金属を含む少なくとも1種のアルカリ金属炭酸塩と、
     周期表第3族元素および周期表第4族元素からなる群から選ばれる少なくとも1種の元素を含む金属化合物と
    を含有する、二酸化炭素吸着材。
  8.  前記金属化合物が、セリウム、チタンおよびジルコニウムからなる群から選ばれる少なくとも1種の元素を含む、請求項7に記載の二酸化炭素吸着材。
  9.  周期表第3族元素および周期表第4族元素からなる群から選ばれる少なくとも1種の元素の含有量が、0.1mmol/g~25.0mmol/gである、請求項7または8に記載の二酸化炭素吸着材。
  10.  前記アルカリ金属炭酸塩が、ナトリウム、カリウムおよびセシウムからなる群から選ばれる少なくとも1種の元素を含む、請求項7~9のいずれか1項に記載の二酸化炭素吸着材。
  11.  前記アルカリ金属炭酸塩を2種以上含有する、請求項7~10のいずれか1項に記載の二酸化炭素吸着材。
  12.  前記アルカリ金属の含有量が、1.0mmol/g~50.0mmol/gである、請求項7~11のいずれか1項に記載の二酸化炭素吸着材。
  13.  前記多孔質材料が、酸化ケイ素、酸化アルミニウム、活性炭およびケイ酸カルシウムからなる群から選ばれる少なくとも1種である、請求項7~12のいずれか1項に記載の二酸化炭素吸着材。
  14.  平均細孔直径が0.3nm~500nmである、請求項7~13のいずれか1項に記載の二酸化炭素吸着材。
  15.  前記アルカリ金属炭酸塩および前記金属化合物が担持されている前記多孔質材料を含む、請求項7~14のいずれか1項に記載の二酸化炭素吸着材。
  16.  下記工程(1)と下記工程(2)とを含む、請求項7~15のいずれか1項に記載の二酸化炭素吸着材の製造方法。
     工程(1):
    前記多孔質材料に、前記金属化合物を含む溶液を接触させ、加熱して、二酸化炭素吸着材前駆体を得る工程
     工程(2):
     前記二酸化炭素吸着材前駆体に、アルカリ金属炭酸塩を含む溶液を接触させ、加熱して、前記二酸化炭素吸着材を得る工程
  17.  請求項7~15のいずれか1項に記載の二酸化炭素吸着材と、二酸化炭素を含む気体とを接触させて、前記二酸化炭素吸着材に二酸化炭素を吸着させる工程と、
     二酸化炭素が吸着した前記二酸化炭素吸着材を、50℃~900℃に加熱することで、
    前記二酸化炭素吸着材から二酸化炭素を分離させる工程と
    を含む、二酸化炭素の吸着および分離方法。
PCT/JP2021/045957 2020-12-28 2021-12-14 居住空間の二酸化炭素の低減方法、並びに、二酸化炭素吸着材およびその製造方法 WO2022145217A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020237021440A KR20230128278A (ko) 2020-12-28 2021-12-14 거주 공간의 이산화탄소의 저감 방법, 그리고, 이산화탄소 흡착재 및 그 제조 방법
US18/253,104 US20230415087A1 (en) 2020-12-28 2021-12-14 Method for reducing carbon dioxide in living space, and carbon dioxide adsorbent and production method therefor
EP21915078.6A EP4268933A1 (en) 2020-12-28 2021-12-14 Method for reducing carbon dioxide in living space, and carbon dioxide adsorbent and production method therefor
CN202180087154.7A CN116669837A (zh) 2020-12-28 2021-12-14 居住空间的二氧化碳的减少方法、以及二氧化碳吸附材料及其制造方法
JP2022502182A JPWO2022145217A1 (ja) 2020-12-28 2021-12-14

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-219016 2020-12-28
JP2020219016 2020-12-28

Publications (1)

Publication Number Publication Date
WO2022145217A1 true WO2022145217A1 (ja) 2022-07-07

Family

ID=82260463

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/045957 WO2022145217A1 (ja) 2020-12-28 2021-12-14 居住空間の二酸化炭素の低減方法、並びに、二酸化炭素吸着材およびその製造方法

Country Status (6)

Country Link
US (1) US20230415087A1 (ja)
EP (1) EP4268933A1 (ja)
JP (1) JPWO2022145217A1 (ja)
KR (1) KR20230128278A (ja)
CN (1) CN116669837A (ja)
WO (1) WO2022145217A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0999214A (ja) * 1995-08-01 1997-04-15 Toshiba Corp 炭酸ガスの分離方法及び炭酸ガス吸収材
JP2001252557A (ja) * 2000-03-14 2001-09-18 Toshiba Corp 炭酸ガス吸収材および炭酸ガス吸収材の製造方法
JP2004255315A (ja) * 2003-02-26 2004-09-16 Toshiba Ceramics Co Ltd 炭酸ガス吸収体
JP2012024648A (ja) * 2010-07-20 2012-02-09 Hitachi Ltd 二酸化炭素捕捉材
JP2016059917A (ja) 2014-09-14 2016-04-25 国立大学法人 千葉大学 二酸化炭素回収材、二酸化炭素回収材の生産方法及び二酸化炭素の回収方法
WO2018179351A1 (ja) * 2017-03-31 2018-10-04 日立化成株式会社 二酸化炭素除去装置及び吸着剤の二酸化炭素吸着容量の回復方法
JP2019094229A (ja) * 2017-11-22 2019-06-20 日立化成株式会社 液状組成物及びその製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0999214A (ja) * 1995-08-01 1997-04-15 Toshiba Corp 炭酸ガスの分離方法及び炭酸ガス吸収材
JP2001252557A (ja) * 2000-03-14 2001-09-18 Toshiba Corp 炭酸ガス吸収材および炭酸ガス吸収材の製造方法
JP2004255315A (ja) * 2003-02-26 2004-09-16 Toshiba Ceramics Co Ltd 炭酸ガス吸収体
JP2012024648A (ja) * 2010-07-20 2012-02-09 Hitachi Ltd 二酸化炭素捕捉材
JP2016059917A (ja) 2014-09-14 2016-04-25 国立大学法人 千葉大学 二酸化炭素回収材、二酸化炭素回収材の生産方法及び二酸化炭素の回収方法
WO2018179351A1 (ja) * 2017-03-31 2018-10-04 日立化成株式会社 二酸化炭素除去装置及び吸着剤の二酸化炭素吸着容量の回復方法
JP2019094229A (ja) * 2017-11-22 2019-06-20 日立化成株式会社 液状組成物及びその製造方法

Also Published As

Publication number Publication date
KR20230128278A (ko) 2023-09-04
EP4268933A1 (en) 2023-11-01
US20230415087A1 (en) 2023-12-28
CN116669837A (zh) 2023-08-29
JPWO2022145217A1 (ja) 2022-07-07

Similar Documents

Publication Publication Date Title
AU2007267719B2 (en) Hydrothermally stable alumina
US10661225B2 (en) Copper supported catalyst comprising a Ca-deficient hydroxyapatite for waste gas NOx removal
CA2781794C (en) Complex oxide, method for producing same and exhaust gas purifying catalyst
JP5487483B2 (ja) 吸着材
KR20140123849A (ko) 이산화탄소 흡착제와 그 제조방법, 이를 포함한 이산화탄소 포집 모듈, 및 이를 이용한 이산화탄소 분리 방법
KR20140113169A (ko) 이산화탄소 흡착제와 그 제조방법, 이를 포함한 이산화탄소 포집 모듈, 및 이를 이용한 이산화탄소 분리 방법
JP2009515697A (ja) 高温用途のハロゲン化物捕捉剤
KR101543962B1 (ko) 이산화탄소 흡착제의 제조방법 및 이로부터 제조된 흡착제를 포함하는 이산화탄소 포집모듈
Tiwari et al. Urea-formaldehyde derived porous carbons for adsorption of CO 2
JP2018510837A (ja) 安定化されたマイクロポーラス結晶性物質、それを作成する方法、およびNOxの選択的触媒還元のためのその使用
WO2022145217A1 (ja) 居住空間の二酸化炭素の低減方法、並びに、二酸化炭素吸着材およびその製造方法
JP6926459B2 (ja) Szr型ゼオライトを含む炭化水素吸着剤及び炭化水素の吸着方法
JP3540040B2 (ja) 吸着剤の製造方法
RU2659256C1 (ru) Способ получения высокотемпературных адсорбентов CO2
EP1967254A1 (en) Agent for rendering halogen-containing gas harmless, and method of rendering halogen-containing gas harmless using same
Hsu et al. Copper loaded on sol-gel-derived alumina adsorbents for phosphine removal
JP2002003208A (ja) 水素ガスの精製方法
RU2566782C1 (ru) Сорбент серосодержащих соединений и способ его получения (варианты)
JP2001347123A (ja) 二酸化炭素の吸着分離方法
RU2525178C1 (ru) Адсорбент для осушки газов
US9764306B2 (en) Modified alkali metal nanotitanates for hydrogen sulfide adsorption
JP4438145B2 (ja) 一酸化炭素の吸着分離方法
JP2019094229A (ja) 液状組成物及びその製造方法
KR101488237B1 (ko) 기체상 이산화탄소에 대한 선택적 건식 포집체의 제조방법
JP2003126688A (ja) 炭酸ガス吸収材、その使用方法およびその再生方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022502182

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21915078

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18253104

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202180087154.7

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2021915078

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021915078

Country of ref document: EP

Effective date: 20230728