WO2018174114A1 - アルミニウム酸化物物品 - Google Patents
アルミニウム酸化物物品 Download PDFInfo
- Publication number
- WO2018174114A1 WO2018174114A1 PCT/JP2018/011242 JP2018011242W WO2018174114A1 WO 2018174114 A1 WO2018174114 A1 WO 2018174114A1 JP 2018011242 W JP2018011242 W JP 2018011242W WO 2018174114 A1 WO2018174114 A1 WO 2018174114A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- aluminum oxide
- island
- oxide article
- sea
- article
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/628—Inhibitors, e.g. gassing inhibitors, corrosion inhibitors
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01F—COMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
- C01F7/00—Compounds of aluminium
- C01F7/02—Aluminium oxide; Aluminium hydroxide; Aluminates
- C01F7/30—Preparation of aluminium oxide or hydroxide by thermal decomposition or by hydrolysis or oxidation of aluminium compounds
- C01F7/302—Hydrolysis or oxidation of gaseous aluminium compounds in the gaseous phase
- C01F7/304—Hydrolysis or oxidation of gaseous aluminium compounds in the gaseous phase of organic aluminium compounds
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01F—COMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
- C01F7/00—Compounds of aluminium
- C01F7/02—Aluminium oxide; Aluminium hydroxide; Aluminates
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01F—COMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
- C01F7/00—Compounds of aluminium
- C01F7/02—Aluminium oxide; Aluminium hydroxide; Aluminates
- C01F7/30—Preparation of aluminium oxide or hydroxide by thermal decomposition or by hydrolysis or oxidation of aluminium compounds
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/10—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/64—Burning or sintering processes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
- H01M4/366—Composites as layered products
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/01—Crystal-structural characteristics depicted by a TEM-image
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/01—Particle morphology depicted by an image
- C01P2004/04—Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3217—Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
- C04B2235/6567—Treatment time
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/80—Phases present in the sintered or melt-cast ceramic products other than the main phase
- C04B2235/85—Intergranular or grain boundary phases
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to an aluminum oxide article having moderate crystallinity and non-crystallinity (amorphous). Specifically, the present invention relates to an aluminum oxide article useful as a coating film for an electrode of a non-aqueous secondary battery, a cured film with improved scratch resistance or hardness, and a gas shielding film having high gas shielding properties and transparency.
- Alumina (aluminum oxide) excels in insulation, heat resistance, wear resistance, and chemical resistance, and slides for electrical equipment insulation parts, crucibles, refractories such as exhaust gas parts, dental implants and medical bone joint parts Widely used as parts.
- Patent Documents 1 and 2 In recent years, it has also been used for the surface coating of the positive electrode active material for the purpose of improving the thermal stability of the lithium ion secondary battery having excellent output density and energy density and cycle characteristics during charging (Patent Documents 1 and 2).
- Patent Document 3 It is also used for cured coatings that have transparency, abrasion resistance, and scratch resistance on the surface of plastic optical components, touch panels, film-type liquid crystal elements, etc. (Patent Document 3)
- Patent Document 4 it is also used as a gas shielding film that combines transparency and transparency with oxygen and moisture as a packaging material for foods and pharmaceuticals.
- Japanese Unexamined Patent Publication No. 2001-143703 Japanese Unexamined Patent Publication No. 2010-140737 Japanese Unexamined Patent Publication No. 2001-139888 Japanese Unexamined Patent Publication No. 08-183139 Japanese Patent Laid-Open No. 2002-151077 Japanese Unexamined Patent Publication No. 2006-143490 Japanese Unexamined Patent Application Publication No. 2002-187738 Japanese Unexamined Patent Publication No. 2000-71396 Japanese Unexamined Patent Publication No. 2013-216760
- Patent Documents 1 to 9 and Non-Patent Documents 1 to 3 are specifically incorporated herein by reference.
- Patent Documents 5 and 6 propose a method of forming a thin film on the positive electrode surface of a lithium ion secondary battery using a sol-gel method.
- Patent Document 7 proposes a method of forming a cured film on a glass substrate by a sol-gel method.
- Patent Documents 8 and 9 propose a method of coating a thermoplastic resin film with a gas shielding film by a sol-gel method.
- Patent Documents 5 and 6 a method is proposed in which aluminum hydroxide colloid generated by hydrolysis is adsorbed on positive electrode active material particles and then heat-treated in an oxidizing atmosphere.
- aluminum hydroxide is treated at a temperature of 700 ° C. or lower, it is known to take an amorphous structure.
- the temperature is further increased to about 900 ° C., crystallization proceeds from the surface of the particles.
- the crystalline state is not uniform.
- the coating produced by this method is a part of particles or a dispersed film, and a part where an oxide film is not formed. Is preferably dispersed on the surface of the particles.
- the coating film produced by the method of Patent Document 7 has an amorphous structure, and unless a special method such as ultraviolet irradiation is used, the pencil hardness is low and it is not satisfactory.
- the present invention has been made in view of the above problems. That is, the object of the present invention is useful as a coating film for an electrode that improves battery performance of a lithium ion secondary battery, a cured film having improved scratch resistance and hardness, and a gas shielding film having both high gas shielding properties and transparency.
- An aluminum oxide article is provided.
- the present inventors have made use of an aluminum oxide article in which a crystallized portion and an amorphous portion are uniformly present.
- the inventors have found that the scratch resistance, hardness, and gas shielding properties of the gas shielding film are improved, and have completed the present invention.
- the present invention is as follows.
- An aluminum oxide article composed of at least aluminum atoms and oxygen atoms The cross section of the aluminum oxide article in the transmission electron microscope observation includes a crystallized portion where a crystal lattice image can be confirmed and an amorphous portion where a crystal lattice image cannot be confirmed,
- a sea-island structure including an isolated part including the crystallized part and a continuous non-crystalline part (provided that the isolated part corresponds to an island part of the sea-island structure, and the continuous non-crystalline part has a sea-island structure)
- the heating is carried out until an aluminum oxide article having a structure satisfying the following (1) to (3) is obtained: (1)
- the cross section of the aluminum oxide article observed with a transmission electron microscope includes a crystallized portion where a crystal lattice image can be confirmed and an amorphous portion where a crystal lattice image cannot be confirmed, (2) It has a sea-island structure including an isolated part including the crystallized part and a continuous amorphous part (provided that the isolated part corresponds to an island part of the sea-island structure, and the continuous amorphous part is (3) A plurality of the islands are uniformly scattered in the sea.
- the manufacturing method according to [8], wherein the heating condition is a firing time of 10 minutes or more at a temperature of 100 ° C and a firing time of 2 minutes or more at 400 ° C.
- the said alkyl aluminum is a manufacturing method as described in [8] or [9] which is a compound represented by following General formula (1).
- R 1 independently represents a linear or branched alkyl group having 1 to 8 carbon atoms, an alkoxy group or an acyloxy group, X represents a hydrogen atom or a halogen atom, and n represents 0 to 2)
- It is an integer.
- [11] The production method according to any one of [8] to [10], wherein the alkylaluminum partial hydrolyzate is obtained using water having a molar ratio of 1.3 or less to the alkylaluminum of the general formula (1). .
- [13] [8]
- An oxide article can be provided.
- FIG. 2 is a TEM image (50,000 times) according to Example 1; It is the identification result of the island part of the TEM image (50,000 times) of Example 1.
- FIG. 2 is a TEM image (1.5 million times) of Example 1.
- FIG. It is the identification result of the grain which is an island part of the TEM image (1.5 million times) of Example 1, the peripheral crystallized part, and the non-crystalline part which is a sea part.
- 2 is a TEM image (200,000 times) of Example 1.
- FIG. It is the identification result of the island part of the TEM image (200,000 times) of Example 1.
- FIG. It is a TEM image (100,000 times) of Example 4.
- It is the identification result of the island part of the TEM image (100,000 times) of Example 4.
- It is a TEM image (100,000 times) of Reference Example 4.
- 10 is a schematic diagram showing a coin cell battery used
- the present invention is described in further detail below.
- the aluminum oxide article of the present invention is composed of at least aluminum atoms and oxygen atoms, and further includes a crystallized portion where a crystal lattice image can be confirmed and an amorphous portion where a crystal lattice image cannot be confirmed in a cross-sectional observation with a transmission electron microscope.
- the aluminum oxide article has a sea-island structure including an isolated portion including the crystallized portion and a continuous non-crystalline portion, and a plurality of island portions are uniformly scattered in the sea portion.
- the isolated portion corresponds to the island portion of the sea-island structure
- the continuous non-crystalline portion corresponds to the sea portion of the sea-island structure.
- a plurality of island parts including crystallized parts are uniformly scattered in the sea part of the amorphous part, so that the crystallized part having high hardness and the amorphous part having high gas shielding properties and ion conductivity coexist.
- battery performance can be improved, scratch resistance and hardness can be improved as a cured film, and gas shielding properties can be achieved as a gas shielding film. Will improve.
- crystal lattice image refers to a transmission electron microscope when observed by (T ransmission E lectron M icroscope, hereinafter referred to as TEM), a part of the crystal lattice image can be confirmed, "non-crystalline portion” Means a portion where a crystal lattice image cannot be confirmed by TEM.
- TEM Transmission E lectron M icroscope
- non-crystalline portion Means a portion where a crystal lattice image cannot be confirmed by TEM.
- JEOL JEM-2010 can be used.
- the measurement method for confirming the lattice image is not particularly limited, but can be confirmed by performing bright field high magnification observation at an acceleration voltage of 200 kV.
- the aluminum oxide article in the present invention has a sea part and an island part in the depth direction from the surface of the aluminum oxide article to the inner surface from a low-magnification (for example, 2,000 to 200,000 times) cross-sectional TEM image. (See, for example, FIGS. 2, 3, 4, and 5). Further, from a TEM image of the same cross section with a high magnification (for example, 80,0000 times to 1,500,000 times), a lattice image was confirmed in the vicinity of the outer periphery of the island (for example, see FIGS. 3 and 4). From this, it was confirmed that the cross section of the island part has a structure in which a crystal lattice image cannot be confirmed at the center part, and the peripheral part is the crystallized part.
- a low-magnification for example, 2,000 to 200,000 times
- a lattice image was confirmed in the vicinity of the outer periphery of the island (for example, see FIGS. 3 and 4). From this, it was confirmed that the cross section of
- the island portion has a structure in which the outer periphery is covered with a crystallized portion, and the inner portion is an amorphous structure that is not crystallized, or the outer periphery is crystallized. It is presumed to be a grain having a structure close to the chemical structure. It is considered that the island part may be crystallized from the outer periphery toward the inside by applying energy such as heat. On the other hand, since the lattice image is not confirmed in the sea part, it is considered to be an amorphous structure.
- the size of the island part is relatively uniform in the cross-sectional observation, and the island part is uniformly dispersed in the sea part (for example, FIG. 2, 3, 4). Therefore, it is considered that the crystallized portion and the amorphous portion are uniformly mixed in the aluminum oxide article.
- the sea-island structure in which a plurality of the island portions are uniformly scattered in the sea portion is observed in an area of at least 100 nm ⁇ 100 nm in the cross-sectional image.
- the sea-island structure is more preferably observed throughout or nearly the entire aluminum oxide article.
- the transmission electron microscope observation image (cross-section TEM image) of the cross section is equally divided into three in the depth direction from the article surface, and the average particle size of the island portion existing in the outermost region
- the value is A
- the average value of the particle size of the island portion existing in the intermediate region is B
- the average value of the particle size of the island portion existing in the deepest region is C
- a / X, B / X, and C / X are independently greater than 0.9 and less than 1.1.
- the ratio of the average value of the particle size of the island portion is independently 0.9 or less or 1.1 or more, there is a tendency that island portions having different particle sizes tend to be ubiquitous, and the hardness of the portion may decrease. Therefore, the above range is preferable.
- the aluminum oxide article of the present invention is obtained by equally dividing the transmission electron microscope observation image of the cross section of the aluminum oxide article into three in the depth direction from the article surface, and a is the number of island portions in the outermost region.
- a is the number of island portions in the outermost region.
- the number of islands in the region is b
- the number of islands in the deepest layer is c
- the total number of islands is Y, 0.27 ⁇ a / Y, b / Y, c / Y ⁇ 0.40. It is preferable to satisfy this relationship from the viewpoint that the islands are uniformly dispersed in the sea. That is, 0.27 ⁇ a / Y ⁇ 0.40, 0.27 ⁇ b / Y ⁇ 0.40, 0.27 ⁇ c / Y ⁇ 0.40.
- a / Y, b / Y and c / Y are independently more than 0.27 and less than 0.40.
- elements other than aluminum and oxygen may be mixed in the aluminum oxide article as long as the physical properties of the article of the present invention are not impaired.
- the ratio of the average value of the number of island portions is independently 0.27 or less or 0.40 or more, the hardness of a portion having a small number of island portions may be lowered, and thus the above range is preferable.
- the crystal structure contained in the crystallized portion of the aluminum oxide article in the present invention may be a crystal structure containing aluminum and oxygen atoms.
- ⁇ , ⁇ , ⁇ , ⁇ , ⁇ , ⁇ , ⁇ , ⁇ , ⁇ , ⁇ , ⁇ , ⁇ , ⁇ , ⁇ , ⁇ structure is known as the crystal form of alumina (aluminum oxide), but if it is other than amorphous structure (amorphous), There is no particular limitation. However, as described in the examples, no diffraction peak was obtained with the XRD used in the examples. Therefore, in the XRD used in the examples, the crystal structure of the crystallized portion could not be specified.
- the aluminum oxide article of the present invention can be a thin film provided on a substrate. Alternatively, it can be an independent membrane or an independent mass without a substrate.
- the thickness from the surface of the aluminum oxide to the deepest part is not particularly limited, but for example, in the range of 5 nm to 5 ⁇ m, in the range of 10 nm to 1 ⁇ m, in the range of 50 nm to 1 ⁇ m, Furthermore, it can be in the range of 100 nm to 1 ⁇ m.
- the aluminum oxide article of the present invention has a pencil hardness of F or higher than F. Since the aluminum oxide article of the present invention has the above-mentioned sea-island structure, it has high hardness.
- the pencil hardness of the aluminum oxide article of the present invention is preferably H or higher.
- the identification of the aluminum oxide in which the crystallized portion and the amorphous portion are uniformly mixed can be performed by TEM.
- a method for acquiring a TEM image, a method for analyzing a crystallized portion from the TEM image, and a method for analyzing the uniformity of a crystallized portion and an amorphous portion will be described.
- ⁇ TEM image acquisition method> As a method for acquiring a TEM image of a cross section of an aluminum oxide article, a method of thinning an aluminum oxide in a cross-sectional direction is known.
- the method for thinning is not particularly limited, and examples include a method using a general thinning device such as an argon ion slicer, a focused ion beam (FIB) device, and an ultramicrotome.
- a general thinning device such as an argon ion slicer, a focused ion beam (FIB) device, and an ultramicrotome.
- the distribution state of the “crystallized portion” and “amorphous portion” of the aluminum oxide article of the present invention is determined by TEM images obtained by slicing the aluminum oxide in the cross-sectional direction and observing it at a low magnification (2000 ⁇ to 200000 ⁇ ) It is observed as a sea-island structure and can be confirmed by comparing the island and the sea.
- the magnification when observing the TEM image is preferably selected so that the structure in the depth direction from the surface of the aluminum oxide article to the inner surface can be confirmed with the same TEM image, so that the entire aluminum oxide can be confirmed. It is desirable to select a magnification at which the sea-island structure can be confirmed.
- magnification is such that the entire aluminum oxide can be confirmed, and the sea-island structure cannot be confirmed, images are taken in the depth direction from the surface of the aluminum oxide article to the inside. It may be obtained by dividing and analyzing. When the image is divided and acquired, it is desirable to measure at the same magnification.
- the “sea-island structure” in the TEM image observed at a low magnification is a structure in which “sea part” and “island part” are mixed in the TEM image. This is shown in FIG. “Sea part” is a region having a relatively large amount of non-crystalline parts because no lattice image is observed in a TEM image observed at a high magnification (800,000 to 1500,000 times).
- the outer periphery is a crystallized portion, and the inner portion is amorphous or the outer periphery is crystallized, so that it is amorphous.
- the island part has a three-dimensional structure in which the periphery of an amorphous grain is covered with a crystallized part.
- the density around the grain is clear, and a place that can be distinguished from the grain due to the difference in density can be an island.
- FIG. 4 shows the crystallized part of the island part, the amorphous part of the island part, and the sea part (non-crystalline part).
- a method of evaluating the size of the island portion as a particle size by image analysis software can be used.
- image analysis software commonly used image analysis software can be used.
- MacView can be used.
- the aluminum oxide article is sectioned in the cross-sectional direction in the image analysis software, and the TEM image observed at a low magnification is taken into the analysis software (MacView) as a general image digital file and observed as a bright part. Identify the island part as a grain.
- the area to be identified may be a rectangular shape (for example, a rectangle or a square) in which the aluminum oxide article is accommodated in the depth direction from the surface of the aluminum oxide article to the inner surface, and the inside of the square may be used as the identification area. desirable.
- the rectangular region is divided into three in the depth direction from the surface of the aluminum oxide article to the inner surface, the outermost layer region is the region 1, the intermediate layer region is the region 2, the deepest layer region is the region 3, Identify islands in each region.
- an identification method either a manual identification method or an automatic identification method may be used.
- manually identifying it is possible to use a method of identifying a place that is a bright part in the TEM image and has a dark part outline around it as an island part.
- the TEM image of Example 1 obtained by this method is illustrated in FIG.
- the identification condition is adjusted for each image so that the island portion can be identified. After identifying the island portion, information on the particle size, particle size distribution, and particle distribution of the island portion is obtained.
- the rectangular region is divided into three in the depth direction from the surface of the aluminum oxide surface toward the inner surface, the region of the outermost layer is region 1, the region of the intermediate layer is region 2, and the region of the deepest layer is region 3. , Identified islands in each region. It is preferable to identify the island portion existing near the boundary of each region as an island portion of a region having a large area ratio. Then, the dispersion state in the aluminum oxide article of an island part can be investigated by calculating
- the method for producing an aluminum oxide article of the present invention comprises: A step of applying and drying a solution containing a partial hydrolyzate of alkylaluminum, and a step of heating the dried product at a temperature of 70 ° C. or higher to obtain an aluminum oxide article composed of at least aluminum atoms and oxygen atoms Including, However, the heating is a method for producing an aluminum oxide article, which is carried out until an aluminum oxide article having a structure satisfying the following (1) to (3) is obtained.
- the cross section of the aluminum oxide article observed with a transmission electron microscope includes a crystallized portion where a crystal lattice image can be confirmed and an amorphous portion where a crystal lattice image cannot be confirmed, (2) It has a sea-island structure including an isolated part including the crystallized part and a continuous amorphous part (provided that the isolated part corresponds to an island part of the sea-island structure, and the continuous amorphous part is (3) A plurality of the islands are uniformly scattered in the sea.
- Examples of the solution containing a partially hydrolyzed alkylaluminum include a solution obtained by partially hydrolyzing a solution obtained by diluting an alkylaluminum with a solvent.
- a solution obtained by partially hydrolyzing a solution obtained by diluting an alkylaluminum with a solvent By partial hydrolysis of alkylaluminum, it is considered that aluminum and oxygen become a precursor in which a binding site has been formed in advance, and under heating, this binding part becomes a nucleus, so that islands are uniformly generated without being ubiquitous. .
- Alkyl aluminum is a compound represented by the following general formula (1).
- each R 1 independently represents a linear or branched alkyl group having 1 to 8 carbon atoms, an alkoxy group or an acyloxy group, and X represents a halogen atom such as hydrogen, fluorine, chlorine, bromine or iodine.
- N is an integer of 0-2.
- the solution obtained by hydrolyzing alkylaluminum is a solution containing a partially hydrolyzed product of alkylaluminum by partially hydrolyzing the alkylaluminum represented by the general formula (1) in an organic solvent.
- Any organic solvent may be used as long as it has solubility in the alkylaluminum represented by the general formula (1) or a partial hydrolyzate of alkylaluminum.
- an electron-donating organic solvent or a hydrocarbon compound is raised. Can do.
- the electron-donating organic solvent include N-methyl-2-pyrrolidone, 1,3-dimethyl-imidazolidinone, 1,3-dimethyl-3,4,5,6-tetrahydro-2 (1H) -pyrimidinone.
- cyclic ethers such as diethyl ether, tetrahydrofuran, diisopropyl ether, dioxane, di-n-butyl ether, dialkyl ethylene glycol, dialkyl diethylene glycol, and dialkyl triethylene glycol.
- hydrocarbon compound examples include aliphatic hydrocarbons such as n-hexane, octane, and n-decane; alicyclic hydrocarbons such as cyclopentane, cyclohexane, methylcyclohexane, and ethylcyclohexane; benzene, toluene, xylene, cumene And aromatic hydrocarbons such as mineral spirits, solvent naphtha, kerosene, petroleum ether, and the like.
- aliphatic hydrocarbons such as n-hexane, octane, and n-decane
- alicyclic hydrocarbons such as cyclopentane, cyclohexane, methylcyclohexane, and ethylcyclohexane
- aromatic hydrocarbons such as mineral spirits, solvent naphtha, kerosene
- an organic solvent having solubility in water can be used alone, or an organic solvent having solubility in water and a solvent having low solubility in water can be used in combination.
- the organic solvent can be an electron donating solvent, a hydrocarbon compound, or a mixture thereof.
- the hydrolysis is preferably performed at a molar ratio of 1.3 or less to the alkylaluminum of the general formula (1).
- a molar ratio of 1.3 or less to the alkylaluminum of the general formula (1) When water exceeding 1.3 is added, crystals may precipitate in the precursor solution and the islands in the aluminum oxide article may become uneven.
- the step of preparing a dried product containing a partial hydrolyzate of alkylaluminum from a solution containing a partial hydrolyzate of alkylaluminum is not particularly limited.
- a coating film is formed by a method of applying a solution containing a hydrolyzate, a method of immersing a substrate in a solution containing an aluminum raw material, or a method of precipitating from a solution containing an aluminum raw material, and drying it. This can be done.
- the coating method on the substrate surface is not particularly limited. For example, dip coating method, spin coating method, slit coating method, slot coating method, bar coating method, roll coating method, curtain coating method, ink jet method, screen printing. Method, dipping method and the like can be used.
- the dried product is heated at a temperature of 70 ° C. or higher in the next step to obtain an aluminum oxide article composed of at least aluminum atoms and oxygen atoms.
- the heating device is not particularly limited.
- a device that applies heat from the bottom of the base material such as a hot plate can be used. In other cases, heat is applied from the surface of the aluminum oxide such as an electric furnace. An additional heating device can be used.
- the heating is performed until an aluminum oxide article having a structure satisfying the above (1) to (3) is obtained.
- the heat treatment temperature is 70 ° C. or higher, preferably in the range of 75 ° C. to 800 ° C., in the range of 75 ° C. to 700 ° C. Is more preferable.
- the temperature is less than 70 ° C., the crystal structure is not well formed, and when the temperature exceeds 800 ° C., the whole is in a crystalline state and may not have a uniform composition with the amorphous state.
- the time for the heat treatment depends on the heating temperature, and is prepared in such a range that an aluminum oxide article having a structure satisfying the above (1) to (3) can be obtained. Is done. For example, when the firing temperature is 75 ° C., the firing time is 10 minutes or more, at 100 ° C., the firing time is 10 minutes or more, and at 400 ° C., the firing time is 2 minutes or more. It is preferable to obtain an aluminum oxide article having a structure satisfying 3).
- the substrate for forming the aluminum oxide is not particularly limited in material, shape, dimensions, etc., for example, inorganic materials such as glass, metal, ceramics, resinous substrates such as plastic, paper, Organic materials such as wood and composites thereof can be exemplified.
- the thickness from the surface of the aluminum oxide to the deepest part when it is coated on a substrate or the like there is no particular limitation on the thickness from the surface of the aluminum oxide to the deepest part when it is coated on a substrate or the like, and it can be selected depending on the application of the coating, preferably 5 nm to 10 ⁇ m, more preferably 10 nm to 5 ⁇ m. preferable.
- the aluminum oxide of the present invention is a Li-ion secondary battery active material coating, food and pharmaceutical packaging applications, gas shielding films such as flat panel displays, solar power generation elements, organic EL elements, plastic optical parts, touch panels, etc. It can be used as a hard coat film.
- the aluminum and oxygen composition of the aluminum oxide article of the present invention can be measured by X-ray photoelectron spectroscopy (XPS).
- the binding energy of aluminum and oxygen in the depth direction from the aluminum oxide article surface to the inner surface can be acquired as peak information.
- a method of specifying the measurement location in the depth direction from the surface to the inner surface of the aluminum oxide article by determining the etching rate can be used.
- the thickness of the aluminum oxide article from the base material can be measured by SEM, TEM or the like.
- the area until the XPS peak of the base material appears is the area of the aluminum oxide article, and the total time required for the etching so far can be used.
- the measurement location in the depth direction from the surface to the inner surface of the aluminum oxide article can be specified.
- the ratio of the area intensity of each peak between the peak of 2p orbital of aluminum and the peak of 1s orbital of oxygen the composition of Al and O at each location in the depth direction from the surface of the aluminum oxide article Changes can be confirmed.
- the bonding state of aluminum can be confirmed by comparing the peak of Al 2p orbit in the depth direction from the surface of the aluminum oxide article to the inner surface.
- the binding state reflects structural information.
- the Al 2p orbital peak of the aluminum oxide article in the present invention is separated into two peaks, separation peak 1 and separation peak 2, by fitting. Although not clear, these two peaks are considered to have the following structure.
- the energy position of these separation peaks 1 is about 71.9 eV, and the energy position of the separation peak 2 is about 73.0 eV.
- the XPS spectrum needs to be corrected for energy shift due to charging of the sample.
- the measurement is performed while cutting the sample by argon etching, and since the peak energy of the reference element is not obtained, the energy shift is not corrected.
- the Al2p peak energy position 74.5 eV derived from the Al—O bond of the complete crystal of alumina Non-patent Document 2
- the Al2p peak energy position 72.7 eV derived from the Al—Al bond of metal aluminum (non-patent document). 3).
- the peak observed in this measurement is close to the reported peak energy position derived from Al—O or Al—Al bond, and it can be seen that Al having a bond with some element exists.
- the separation peak 1 on the low energy side is a main peak in the XPS spectrum of Al, and can be considered as a peak reflecting a crystallized portion and an amorphous portion. Furthermore, in this measurement, since the peak of elements other than Al, O, and C is not observed, it can be seen that in the aluminum oxide article of the present invention, x of AlOx is 0 ⁇ x ⁇ 1.5. In the aluminum oxide article of the present invention, x of AlOx may be 0.5 ⁇ x ⁇ 1.5.
- the separation peak 2 on the high energy side is considered to be a peak derived from the bond between an Al atom and a hydroxyl group (OH group). The hydroxyl group is considered to be derived from the raw material.
- Peak separation can be performed using, for example, analysis software OriginPro. Specifically, first, the base line is processed, and then peak fitting is performed. Examples of the baseline processing include a method using a constant and a method using an XPS baseline model (Sherley, Tougaard), and a method using an XPS model is preferable. For the peak fit, a general fit function such as a Gauss function or a Lorentz function can be used as a fit function.
- the structures of aluminum oxide articles in Examples and Reference Examples are X-ray diffraction measurement (XRD), X-ray reflection measurement (XRR), transmission electron microscope (TEM), X-ray photoelectron spectroscopy measurement (XPS), atomic force microscope. Identification was performed in (AFM) and visible light transmission measurements.
- XRD X-ray diffraction measurement
- XRR X-ray reflection measurement
- TEM transmission electron microscope
- XPS X-ray photoelectron spectroscopy measurement
- AFM visible light transmission measurements.
- X'ert PRO MRD manufactured by PANalytical was used for X-ray diffraction measurement (XRD).
- the oblique X-ray diffraction measurement was performed by collimating the X-ray with an X-ray Mirror and making it incident on the sample at an angle of about 1 ° and operating the 2 ⁇ axis. Diffraction X-rays from the sample were collimated with a collimator and detected with a proportional counter.
- the X'pert PRO MRD manufactured by PANalytical was used for X-ray reflectivity (XRR) measurement.
- a 1.8 kW CuK ⁇ radiation source (8048 eV) was used as the X-ray source.
- the X-ray is collimated by the X-ray Mirror and incident at a grazing angle of the sample surface, and the dependency of the X-ray reflectivity on the incident angle is measured.
- X-rays reflected from the sample were collimated with a collimator and detected with a proportional counter.
- JEM-2010 manufactured by JEOL Ltd. was used for transmission electron microscope (TEM) observation. High resolution observation was performed at an acceleration voltage of 200 kV.
- An ion slicer EM-09100IS manufactured by JEOL Ltd. was used for thinning the aluminum oxide article.
- an ultramicrotome MT-7000 manufactured by RMC Boeckler was used for the aluminum oxide article on the PET substrate.
- AXIS-HS manufactured by KRATOS was used for X-ray photoelectron spectroscopy (XPS).
- XPS X-ray photoelectron spectroscopy
- a monochromatic 150 W AlK ⁇ radiation source 1486.6 eV
- High resolution measurement was performed at an arbitrary location in the range of about 0.8 mm ⁇ .
- AFM5200S manufactured by Hitachi High-Tech Science Co., Ltd. was used for the atomic force microscope (AFM).
- the measurement was performed in a dynamic force mode (DFM) measurement mode in which the surface shape was measured while controlling the distance between the probe and the sample so that the vibration amplitude of the lever was constant.
- DFM dynamic force mode
- Haze ratio (Integral sphere transmittance at specific wavelength ⁇ Vertical transmittance at specific wavelength) / Integral sphere transmittance at specific wavelength ⁇ 100
- Pencil hardness test The hardness of the aluminum oxide article was measured according to JIS K5600-5-4, scratch hardness (pencil method). Specifically, using a pencil hardness tester manufactured by Toyo Seiki Seisakusho, a 750g load is attached to the tester in a measurement atmosphere with an air temperature of 23 ⁇ 2 degrees and a humidity of 50 ⁇ 5% Rh, and the sample is penciled at an angle of 45 degrees. Attached. When the sample is scratched, move it about 10 mm. If the sample is scratched, lower the pencil hardness. If the sample is not scratched, increase the pencil hardness and repeat the evaluation until it is scratched. The hardness of the pencil when scratched was taken as the pencil hardness.
- Test Example 2 Water vapor transmission rate test The water vapor transmission rate test of the aluminum oxide article was conducted according to JIS K7129 appendix A wet and dry sensor method. Specifically, using a water vapor permeability meter (L80-5000) manufactured by Lyssy, a substrate having a measurement temperature of 40 ° C., a humidity of 90% Rh, and a measurement diameter of 80 mm is set, and the aluminum oxide article is not formed. The water vapor transmission rate was measured by transmitting.
- L80-5000 water vapor permeability meter manufactured by Lyssy
- Example 1 Solution A obtained in Synthesis Example 1 was applied on the surface of a base material (single crystal silicon substrate having an 18 mm square and a thickness of 0.25 mm) by a spin coating method. At room temperature in the atmosphere, 0.1 ml of solution A is dropped onto the silicon substrate, and after rotating the substrate for 10 seconds at a rotation speed of 200 rpm, the substrate is rotated for 20 seconds at a rotation speed of 2000 rpm. After applying and drying at room temperature, baking was performed at 100 ° C. for 2 hours to obtain an aluminum oxide article.
- a base material single crystal silicon substrate having an 18 mm square and a thickness of 0.25 mm
- FIG. 5 shows a cross-sectional TEM image (FIG. 5) of the aluminum oxide article observed at a magnification of 200,000 times, it was confirmed to have a sea-island structure having a sea part and an island part.
- FIG. 6 shows a shaded area of the island.
- the TEM image which can observe the whole aluminum oxide and can confirm a sea-island structure in the depth direction which goes to an inner surface from the aluminum oxide article surface by TEM was acquired. It is shown in FIG. 1 (50,000 times).
- FIG. 3 shows the islands, which identify the grains and the surrounding crystallized and non-crystalline seas.
- a TEM image that allows observation of the entire aluminum oxide article observed at a low magnification was taken as digital data into image analysis software (MacView), and the island portions that are bright portions were identified as grains and identified.
- the identified region is in a square (rectangle or square) in which all of the aluminum oxide article is accommodated in the depth direction from the surface of the aluminum oxide article to the inner surface. Further, the rectangular region is divided into three in the depth direction from the surface of the aluminum oxide article to the inner surface, the outermost layer region is the region 1, the intermediate layer region is the region 2, the deepest layer region is the region 3, The islands of each area were identified.
- an identification method was used in which the density around the grain is clear, and the place where the grain can be identified by the difference in density is an island.
- FIG. 2 shows the result of identifying the island.
- the image was appropriately enlarged to confirm a part where the density around the grain was clear.
- region and the whole and the number of island parts were calculated
- the islands that exist in the vicinity of the boundaries of each region are identified as islands in regions that have a large area ratio.
- the volume average diameter was used for the average particle diameter.
- Table 1 shows the average value of each region of the island portion and the whole particle size.
- the reason why the diffraction peak could not be confirmed by XRD is not clear but can be considered as follows.
- the crystal growth direction of the crystallized portion is not constant, and the diffraction intensity is weak because it is oriented in various directions.
- the other is that the diffraction intensity is weak because the crystallized portion is small.
- the film density was 1.9 g / cm 3 .
- the root mean square roughness was 1.219 nm.
- Example 2 An aluminum oxide article was obtained in the same manner as in Example 1 except that the firing temperature was changed to 700 ° C. Measurement of TEM, XRD, XRR and AFM was performed to identify the obtained aluminum oxide article.
- the TEM image which can observe the whole aluminum oxide article and can confirm a sea island structure in the depth direction which goes to an inner surface from the aluminum oxide surface by TEM was acquired. It was confirmed from the TEM image that it has a sea-island structure having a sea part and an island part. Next, it was found from the TEM image observed by increasing the observation magnification of TEM to 1.5 million times that the islands were crystallized around the grains. The density around the grain is clear, and the location that can be distinguished from the grain by the difference in density is identified as the island.
- Example 1 The same image processing as in Example 1 was performed, and the average value of the particle size of each region of the island portion and the whole, the ratio of the particle size to each region of the island portion, and the ratio of the number to each region of the island portion were calculated. The results are shown in Table 1.
- Reference Example 2 An aluminum oxide article was obtained in the same manner as in Reference Example 1 except that the firing temperature was 700 ° C.
- TEM measurements were taken to identify the acquired aluminum oxide article.
- the TEM image which can observe the whole aluminum oxide article and can confirm a sea island structure in the depth direction which goes to an inner surface from the aluminum oxide surface by TEM was acquired. It was confirmed from the TEM image that it has a sea-island structure having a sea part and an island part.
- Example 2 The same image processing as in Example 1 was performed, and the average value of the particle size of each region of the island portion and the whole, the ratio of the particle size to each region of the island portion, and the ratio of the number to each region of the island portion were calculated. The results are shown in Table 1. Next, a pencil hardness test was performed to evaluate the characteristics of the aluminum oxide article. The results of the pencil hardness test are shown in Table 1.
- Example 3 An aluminum oxide article was obtained in the same manner as in Example 1 except that the base material used was changed to an 18 mm square PET substrate. For identification of the obtained aluminum oxide article, TEM measurement and visible light transmission measurement were performed. The TEM image which can observe the whole aluminum oxide article and can confirm a sea island structure in the depth direction which goes to an inner surface from the aluminum oxide article surface by TEM was acquired. It was confirmed from the TEM image that it has a sea-island structure having a sea part and an island part. Next, it was found from the TEM image observed by increasing the observation magnification of TEM to 1.5 million times that the islands were crystallized around the grains.
- the density around the grain is clear, and the location that can be distinguished from the grain by the difference in density is identified as the island.
- the same image processing as in Example 1 was performed, and the average value of the particle size of each region of the island portion and the whole, the ratio of the particle size to each region of the island portion, and the ratio of the number to each region of the island portion were calculated. The results are shown in Table 1.
- the vertical sphere transmittance at 550 nm was 84%, and the integrating sphere transmittance was 91%. Further, the haze ratio obtained from the vertical sphere transmittance and the integral transmittance was 8.3%.
- a pencil hardness test and a gas barrier test were performed. The results of the pencil hardness test are shown in Table 1. The results of the gas barrier test are shown in Table 2.
- Example 2 The same image processing as in Example 1 was performed, and the average value of the particle size of each region of the island portion and the whole, the ratio of the particle size to each region of the island portion, and the ratio of the number to each region of the island portion were calculated. The results are shown in Table 1. Next, in order to evaluate the characteristics of the aluminum oxide article, a pencil hardness test and a gas barrier test were performed. The results of the pencil hardness test are shown in Table 1. The results of the gas barrier test are shown in Table 2.
- Example 4 An aluminum oxide article was obtained in the same manner as in Example 1 except that the firing temperature was 200 ° C. and the base material used was changed to a LiCoO 2 substrate (manufactured by Toshima Seisakusho).
- the LiCoO 2 substrate is a substrate formed by sputtering on a Si substrate.
- TEM, SEM and XPS measurements were taken to identify the acquired aluminum oxide article.
- the TEM image which can observe the whole aluminum oxide article and can confirm a sea island structure in the depth direction which goes to an inner surface from the aluminum oxide article surface by TEM was acquired. It is shown in FIG. 7 (100,000 times). It was confirmed from the TEM image that it has a sea-island structure having a sea part and an island part.
- FIG. 8 shows the result of recognizing the island. Then, the average value of the particle size of each region of the island portion and the whole, the ratio of the particle size to each region of the island portion, and the ratio of the number of the island portion to each region were calculated. The results are shown in Table 1.
- SEM revealed the thickness of the aluminum oxide article from the substrate. The thickness of the aluminum oxide article from the substrate was about 210 nm.
- the XPS peak at each location in the depth direction from the aluminum oxide article surface to the inner surface was obtained. The time required for the argon etching from the surface of the aluminum oxide article to the base material was 13 minutes.
- Judgment of the interface between the aluminum oxide article and the base material was performed at the peak of the Co 2p orbit of LiCoO 2 which is the base material.
- the etching rate was calculated using the thickness of the aluminum oxide article obtained by SEM from the base material and the time required for argon etching from the surface of the aluminum oxide to the base material. As a result of the calculation, the etching rate was 16 nm / min. From the obtained etching rate, the measured location of the measured aluminum oxide article in the depth direction from the surface of the aluminum oxide article to the inner surface is 16 nm, 64 nm, 112 nm, 160 nm, and 208 nm from the surface of the aluminum oxide article. Identified that. From the ratio of the peak area intensity of Al and O in the depth direction from the surface of the aluminum oxide article to the inner surface, it was confirmed that the composition of Al and O hardly changed in all places. Table 4 shows the composition ratio of Al and O.
- the Al 2p orbital peak was separated into two peaks, separation peak 1 and separation peak 2.
- the peak positions of the separation peak 1 and the separation peak 2 were constant at all locations.
- a Gaussian function was used by the peak fitting function of the analysis software OriginPro2015.
- Table 5 shows the area ratio of each separated peak.
- Reference Example 4 An aluminum oxide article was obtained in the same manner as in Reference Example 1 except that the firing temperature was 200 ° C. and the base material used was changed to a LiCoO 2 substrate (manufactured by Toshima Seisakusho).
- the LiCoO 2 substrate is a substrate formed by sputtering on a Si substrate.
- TEM, SEM and XPS measurements were taken to identify the acquired aluminum oxide article.
- the TEM image which can observe the whole aluminum oxide article and can confirm a sea island structure in the depth direction which goes to an inner surface from the aluminum oxide article surface by TEM was acquired. It is shown in FIG. 9 (100,000 times). It was confirmed from the TEM image that it has a sea-island structure having a sea part and an island part.
- FIG. 10 shows the result of recognizing the island. Then, the average value of the particle size of each region of the island portion and the whole, the ratio of the particle size to each region of the island portion, and the ratio of the number of each region of the island portion to each region were calculated. The results are shown in Table 1.
- SEM revealed the thickness of the aluminum oxide article from the substrate. The thickness of the aluminum oxide article from the substrate was about 339 nm. The time required for argon etching from the surface of the aluminum oxide article to the base material was 7 minutes. Judgment of the interface between the aluminum oxide and the base material (LiCoO 2 ) was performed at the peak of the Co 2p orbital of LiCoO 2 as well as the base material.
- the etching rate was calculated using the thickness of the aluminum oxide article from the base material determined by SEM and the time required for argon etching from the surface of the aluminum oxide article to the base material. As a result of the calculation, the etching rate was 48 nm / min. From the obtained etching rate, it was determined that the measured location of the measured aluminum oxide article in the direction from the aluminum oxide article surface to the substrate was 48 nm, 194 nm, and 339 nm from the aluminum oxide surface. From the ratio of the composition of Al and O in the depth direction from the surface of the aluminum oxide article to the inner surface, it was confirmed that the composition of Al and O hardly changed at all locations. Table 6 shows the composition ratio of Al and O.
- the Al 2p orbital peak was separated into two peaks, separation peak 1 and separation peak 2.
- the peak positions of the separation peak 1 and the separation peak 2 were constant at all locations.
- a Gaussian function was used by the peak fitting function of the analysis software OriginPro2015.
- Table 7 shows the area ratio of each separated peak.
- the ratio of the separation peak 2 increases when approaching the substrate surface in the depth direction from the surface of the aluminum oxide article toward the inner surface. This indicates that the bonding state of aluminum atoms is not constant in the depth direction from the surface of the aluminum oxide article to the inner surface.
- Example 2 An aluminum oxide article was obtained in the same manner as in Example 1 except that the firing temperature was 400 ° C., the firing time was 2 minutes, and the base material was changed to a glass substrate. A pencil hardness test was performed to evaluate the properties of the aluminum oxide article. Table 3 shows the results of the pencil hardness test.
- Example 5 An aluminum oxide article was obtained in the same manner as in Example 1 except that the firing temperature was 400 ° C., the firing time was 5 minutes, 10 minutes, 30 minutes, and 60 minutes, and the base material was changed to a glass substrate. A pencil hardness test was performed to evaluate the properties of the aluminum oxide article. Table 3 shows the results of the pencil hardness test.
- Example 3 An aluminum oxide article was obtained in the same manner as in Example 1 except that the firing time was 2 minutes and 5 minutes, and the base material was changed to a PET substrate. A pencil hardness test was performed to evaluate the properties of the aluminum oxide article. Table 3 shows the results of the pencil hardness test.
- Example 6 An aluminum oxide article was obtained in the same manner as in Example 1 except that the baking time was 10 minutes and the base material was changed to a PET substrate. A pencil hardness test was performed to evaluate the properties of the aluminum oxide article. Table 3 shows the results of the pencil hardness test.
- Example 7 An aluminum oxide article was obtained in the same manner as in Example 1 except that the firing temperature was 75 ° C., the firing time was 10 minutes, and the base material was changed to a PET substrate. A pencil hardness test was performed to evaluate the properties of the aluminum oxide article. Table 3 shows the results of the pencil hardness test.
- LiCoO 2 Lithium cobalt oxide (manufactured by Aldrich, 99.8% trace metals basis, hereinafter abbreviated as LiCoO 2 ) was used which was dried at 1000 ° C. and 5 kPa for about 3 hours. Under a nitrogen stream, 9.3 g of NMP was added to 20 g of LiCoO 2 pretreated, and stirred in a slurry state. To this slurry solution, 0.6 g of solution A (aluminum concentration: 6.2 wt%) synthesized in Synthesis Example 1 (0.5 parts by mass with respect to 100 parts by mass of LiCoO 2 in terms of alumina) was added and stirred overnight.
- solution A aluminum concentration: 6.2 wt% synthesized in Synthesis Example 1 (0.5 parts by mass with respect to 100 parts by mass of LiCoO 2 in terms of alumina) was added and stirred overnight.
- the TEM image which can observe the whole aluminum oxide article and can confirm a sea island structure in the depth direction which goes to an inner surface from the aluminum oxide article surface by TEM was acquired. It was confirmed from the TEM image that it has a sea-island structure having a sea part and an island part. Next, it was found from the TEM image observed by increasing the observation magnification of TEM to 1.5 million times that the islands were crystallized around the grains. The density around the grain is clear, and the location that can be distinguished from the grain by the difference in density is identified as the island. It was found from the TEM image that the islands were uniformly scattered.
- PVDF polyvinylidene fluoride
- an electrolyte solvent a solvent (battery grade manufactured by Kishida Chemical Co., Ltd.) in which ethylene carbonate (hereinafter abbreviated as EC) and ethyl methyl carbonate (hereinafter abbreviated as EMC) are mixed at a volume ratio of 3: 7 is used.
- EC ethylene carbonate
- EMC ethyl methyl carbonate
- a lithium secondary battery using a coin-type cell having the structure shown in FIG. 11 was prepared using a metallic lithium foil (Honjo Chemical Co., 0.5 mm thickness) as the negative electrode active material and a polyolefin porous film containing an inorganic filler as the separator. did.
- a positive electrode 1 and a negative electrode 4 are arranged opposite to each other with a separator 6 interposed therebetween, a stainless steel leaf spring 5 is installed on a negative electrode stainless steel cap 3, and a laminate composed of the negative electrode 4, the separator 6 and the positive electrode 1 Stored in the cell.
- the gasket 7 was placed, then the cap 2 made of a positive electrode stainless steel was covered, and the coin-type cell case was crimped.
- a coin cell type lithium secondary battery (half cell) made of this aluminum oxide-coated LiCoO 2 positive electrode and metallic lithium was charged at a constant current of 25 ° C. with a charging current of 0.1 CmA and an upper limit voltage of 4.2 V, followed by It discharged until it became 3.0V with the discharge current of 0.1 CmA.
- constant current-low voltage charging was performed up to 4.5 V with a charging current of 1 CmA under a constant temperature condition of 50 ° C.
- constant current discharging was performed up to a final voltage of 3.0 V with a discharging current of 1 CmA. .
- the discharge capacity at this time was defined as the initial discharge capacity, the discharge capacity when this operation was repeated 100 times was measured, and the comparison was performed using the discharge capacity / initial discharge capacity ratio after 100 cycles as the cycle retention rate. As a result, the discharge capacity retention rate after 100 cycles was 96%.
- Example 4 A positive electrode sheet and a coin cell type lithium secondary battery were prepared in the same manner as in Example 9 except that the coating treatment of LiCoO 2 was not performed, and a charge / discharge test was performed. As a result, the discharge capacity retention rate after 100 cycles was 14%.
- a coin cell type lithium secondary battery (half cell) made of the produced aluminum oxide article-coated LiCoO 2 positive electrode and metallic lithium is charged at a constant current of 25 ° C. with a charging current of 0.1 CmA and an upper limit voltage of 4.2 V, Then, it discharged until it became 3.0V with the discharge current of 0.1 CmA. After this operation was performed three times, constant current-low voltage charging was performed up to 4.5 V with a charging current of 1 CmA under a constant temperature of 25 ° C., and constant current discharging was performed up to a final voltage of 3.0 V with a discharging current of 1 CmA. .
- the discharge capacity at this time was defined as the initial discharge capacity, the discharge capacity when this operation was repeated 100 times was measured, and the comparison was performed using the discharge capacity / initial discharge capacity ratio after 100 cycles as the cycle retention rate. As a result, the discharge seizure retention rate after 100 cycles was 27%.
- the present invention is useful in the field relating to aluminum oxide articles useful as electrode coatings, cured films, gas shielding films and the like.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Electrochemistry (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- General Chemical & Material Sciences (AREA)
- Geology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Composite Materials (AREA)
- Structural Engineering (AREA)
- Thermal Sciences (AREA)
- Physics & Mathematics (AREA)
- Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Laminated Bodies (AREA)
Abstract
本発明は、少なくともアルミニウム原子と酸素原子から構成されたアルミニウム酸化物物品であって、透過電子顕微鏡観察での前記アルミニウム酸化物物品の断面は、結晶格子像が確認できる結晶化部分と結晶格子像が確認できない非結晶部分を含み、前記結晶化部分を含む孤立した部分と連続した非結晶部分とを含む海島構造を有し(但し、前記孤立した部分が海島構造の島部に相当し、前記連続した非結晶部分が海島構造の海部に相当する)、かつ複数の前記島部が前記海部に一様に点在する、前記アルミニウム酸化物物品に関する。本発明によれば、リチウムイオン二次電池の電池性能および硬化膜の耐擦傷性、硬度、さらにはガス遮蔽膜のガス遮蔽性が向上させるためのアルミニウム酸化物が提供される。
Description
本発明は適度な結晶性と非結晶性(アモルファス性)を有するアルミニウム酸化物物品に関する。具体的には非水系二次電池の電極用被膜、耐擦傷性または硬度を向上させた硬化膜、高いガス遮蔽性と透明性を兼ね備えたガス遮蔽膜として有用なアルミニウム酸化物物品に関する。
関連出願の相互参照
本出願は、2017年3月22日出願の日本特願2017−56166号の優先権を主張し、その全記載は、ここに特に開示として援用される。
関連出願の相互参照
本出願は、2017年3月22日出願の日本特願2017−56166号の優先権を主張し、その全記載は、ここに特に開示として援用される。
アルミナ(酸化アルミニウム)は絶縁性、耐熱性、耐摩耗性、耐薬品性に優れ電気機器の絶縁部品やるつぼ、排ガス用部品等の耐火物、歯科用インプラントや医療用骨接合部品などの摺動部品として多用されている。
アルミナには数多くの構造が知られており、アモルファス、α、β、γ、δ、ζ、η、θ、κ、ρ、χの11種類が存在している(非特許文献1)。
近年では、出力密度やエネルギー密度に優れたリチウムイオン二次電池の熱安定性や充電時におけるサイクル特性を改善する目的で正極活物質の表面被膜にも用いられている(特許文献1、2)
また、プラスチックの光学部品やタッチパネル、フィルム型液晶素子等の表面に透明性と耐摩耗性、耐擦傷性を兼ね備えた硬化被膜にも用いられている(特許文献3)
さらには、食品や医薬品等の包装材料として酸素や湿気を遮蔽する効果と透明性を兼ね備えたガス遮蔽膜としても用いられている(特許文献4)
このように非常に有用なアルミナであるが、アルミナ結晶で電極の活物質や樹脂を被覆するためには、物理的な圧力や結着剤(バインダー)を用いる必要があった。また、この様な方法で被膜を形成した場合は、アルミナの大きさやバインダーの厚みが加えられることにより薄膜化が難しく、結果として透明性の低下や電池性能が低下する等の課題があった。
Oxides and Hydroxides of Aluminum,Alcoa Laboratories,USA,1987.
Bolt P.H.et al.,Surf.Sci.329 227(1995).
Sarapatka T.J.,J.Phys.Chem.97 11274(1993)
特許文献1~9及び非特許文献1~3の全記載は、ここに特に開示として援用される。
アルミナをより薄く被覆する方法として加水分解性有機基を有するアルミ化合物の加水分解(いわゆるゾル・ゲル法)によって被覆する方法が知られている。例えば、特許文献5、6にはゾル・ゲル法を用いてリチウムイオン二次電池の正極表面に薄膜を形成する方法が提案されている。また、特許文献7にはゾル・ゲル法でガラス基板上に硬化膜を形成する方法が提案されている。さらに、特許文献8、9には熱可塑性樹脂フィルムにゾル・ゲル法でガス遮蔽膜を被覆する方法が提案されている。
特許文献5、6に記載の方法では、加水分解によって生成した水酸化アルミニウムコロイドを正極活物質粒子に吸着させ、次いで酸化雰囲気で熱処理する方法が提案されている。しかし、水酸化アルミニウムを700℃以下の温度で処理すると、アモルファス構造をとることが知られており、さらに900℃程度まで高温にした場合、粒子の表面から結晶化が進むため、表面と内部の結晶状態は均一ではない。さらに特許文献5の段落[0020]、特許文献6の段落[0087]には、本方法で生成した被覆物は、粒子の一部または分散した被膜であり、酸化物被膜が形成されていない部分がこの粒子表面に分散されていることが好ましいと記載されている。しかし、近年ではさらにエネルギー密度の向上を目的とした作動電圧の向上が進み、充電時に高電圧の電極表面と電解液の接触部分が存在することで電解液の分解が進行し、結果として電池性能が低下するという課題があった。
また、特許文献7の方法で生成した被膜はアモルファス構造である事が記載されており、紫外線照射のような特殊な方法を用いなければ、鉛筆硬度が低く、十分満足できるものではなかった。
さらに、特許文献8の方法では、オートクレーブや紫外線照射等の特殊な方法を用いなければ、良好な透明性とガス遮蔽性を両立した被膜を形成することはできなかった。
本発明は上記の課題に鑑みてなされたものである。即ち、本発明の課題は、リチウムイオン二次電池の電池性能を向上する電極用被膜、耐擦傷性および硬度を向上させた硬化膜、高いガス遮蔽性と透明性を兼ね備えたガス遮蔽膜として有用なアルミニウム酸化物物品を提供することである。
本発明者らは先の課題を解決すべく鋭意検討した結果、結晶化部分と非結晶部分が均一に存在したアルミニウム酸化物物品を用いることにより、リチウムイオン二次電池の電池性能および硬化膜の耐擦傷性、硬度、さらにはガス遮蔽膜のガス遮蔽性が向上することを見出し、本発明を完成させるに至った。
すなわち本発明は、下記のとおりである。
[1]
少なくともアルミニウム原子と酸素原子から構成されたアルミニウム酸化物物品であって、
透過電子顕微鏡観察での前記アルミニウム酸化物物品の断面は、結晶格子像が確認できる結晶化部分と結晶格子像が確認できない非結晶部分を含み、
前記結晶化部分を含む孤立した部分と連続した非結晶部分とを含む海島構造を有し(但し、前記孤立した部分が海島構造の島部に相当し、前記連続した非結晶部分が海島構造の海部に相当する)、かつ
複数の前記島部が前記海部に一様に点在する、前記アルミニウム酸化物物品。
[2]
前記島部は、中心部に結晶格子像が確認できない構造であり、周辺部が前記結晶化部分である[1]に記載のアルミニウム酸化物物品。
[3]
前記島部の複数が海に一様に点在する海島構造が、前記断面の画像中の少なくとも100nm×100nmの領域において観察される[1]又は[2]に記載のアルミニウム酸化物物品。
[4]
前記物品は、基材上に設けられた薄膜、独立膜、又は独立塊である[1]~[3]のいずれか1項に記載のアルミニウム酸化物物品。
[5]
[1]~[4]のいずれか1項に記載のアルミニウム酸化物物品であって、アルミニウム酸化物物品の断面の透過電子顕微鏡観察画像を物品表面から深さ方向に均等に3分割し、かつ最表領域に存在する島部の粒径の平均値をA、中間領域に存在する島部の粒径の平均値をB、最深領域に存在する島部の粒径の平均値をC、物品断面の全体に存在する島部の粒径の平均値をXとしたときに、0.9<A/X、B/X、C/X<1.1の関係を満たす、アルミニウム酸化物物品。
[6]
[1]~[5]のいずれか1項に記載のアルミニウム酸化物物品であって、アルミニウム酸化物物品の断面の透過電子顕微鏡観察画像を物品表面から深さ方向に均等に3分割し、かつ最表領域の島部の数をa、中間領域の島部の数をb、最深層の島部の数をc、全体の島の数をYとしたときに、0.27<a/Y、b/Y、c/Y<0.40の関係を満たす、アルミニウム酸化物物品。
[7]
鉛筆硬度がFであるか、またはFより硬い、[1]~[6]のいずれか1項に記載のアルミニウム酸化物物品。
[8]
アルキルアルミニウムの部分加水分解物を含有する溶液から、アルキルアルミニウムの部分加水分解物を含有する乾燥物を調製する工程、及び
前記乾燥物を70℃以上の温度で加熱して、少なくともアルミニウム原子と酸素原子から構成されたアルミニウム酸化物物品を得る工程、を含み、
但し、前記加熱は、下記(1)~(3)を満足する構造を有するアルミニウム酸化物物品が得られるまで実施する、アルミニウム酸化物物品の製造方法。
(1)透過電子顕微鏡観察での前記アルミニウム酸化物物品の断面が、結晶格子像が確認できる結晶化部分と結晶格子像が確認できない非結晶部分を含み、
(2)前記結晶化部分を含む孤立した部分と連続した非結晶部分とを含む海島構造を有し(但し、前記孤立した部分が海島構造の島部に相当し、前記連続した非結晶部分が海島構造の海部に相当する)、及び
(3)前記島部の複数が前記海部に一様に点在する。
[9]
前記加熱の条件は、温度100℃においては焼成時間10分以上であり、400℃においては焼成時間2分以上である、[8]に記載の製造方法。
[10]
前記アルキルアルミニウムは下記一般式(1)で表される化合物である[8]又は[9]に記載の製造方法。
(式中、R1は、それぞれ独立して炭素数1~8の直鎖または分岐したアルキル基、アルコキシ基、アシルオキシ基を表し、Xは、水素またはハロゲン原子を表す。nは0~2の整数である。)
[11]
アルキルアルミニウムの部分加水分解物は、一般式(1)のアルキルアルミニウムに対するモル比が1.3以下の水を用いて得られる、[8]~[10]のいずれか1項に記載の製造方法。
[12]
前記乾燥物を基材上に調製する、[8]~[11]のいずれか1項に記載の製造方法。
[13]
前記アルミニウム酸化物物品の表面から最深部までの厚さは、5nm~5μmの範囲である、[8]~[12]のいずれか1項に記載の製造方法。
[1]
少なくともアルミニウム原子と酸素原子から構成されたアルミニウム酸化物物品であって、
透過電子顕微鏡観察での前記アルミニウム酸化物物品の断面は、結晶格子像が確認できる結晶化部分と結晶格子像が確認できない非結晶部分を含み、
前記結晶化部分を含む孤立した部分と連続した非結晶部分とを含む海島構造を有し(但し、前記孤立した部分が海島構造の島部に相当し、前記連続した非結晶部分が海島構造の海部に相当する)、かつ
複数の前記島部が前記海部に一様に点在する、前記アルミニウム酸化物物品。
[2]
前記島部は、中心部に結晶格子像が確認できない構造であり、周辺部が前記結晶化部分である[1]に記載のアルミニウム酸化物物品。
[3]
前記島部の複数が海に一様に点在する海島構造が、前記断面の画像中の少なくとも100nm×100nmの領域において観察される[1]又は[2]に記載のアルミニウム酸化物物品。
[4]
前記物品は、基材上に設けられた薄膜、独立膜、又は独立塊である[1]~[3]のいずれか1項に記載のアルミニウム酸化物物品。
[5]
[1]~[4]のいずれか1項に記載のアルミニウム酸化物物品であって、アルミニウム酸化物物品の断面の透過電子顕微鏡観察画像を物品表面から深さ方向に均等に3分割し、かつ最表領域に存在する島部の粒径の平均値をA、中間領域に存在する島部の粒径の平均値をB、最深領域に存在する島部の粒径の平均値をC、物品断面の全体に存在する島部の粒径の平均値をXとしたときに、0.9<A/X、B/X、C/X<1.1の関係を満たす、アルミニウム酸化物物品。
[6]
[1]~[5]のいずれか1項に記載のアルミニウム酸化物物品であって、アルミニウム酸化物物品の断面の透過電子顕微鏡観察画像を物品表面から深さ方向に均等に3分割し、かつ最表領域の島部の数をa、中間領域の島部の数をb、最深層の島部の数をc、全体の島の数をYとしたときに、0.27<a/Y、b/Y、c/Y<0.40の関係を満たす、アルミニウム酸化物物品。
[7]
鉛筆硬度がFであるか、またはFより硬い、[1]~[6]のいずれか1項に記載のアルミニウム酸化物物品。
[8]
アルキルアルミニウムの部分加水分解物を含有する溶液から、アルキルアルミニウムの部分加水分解物を含有する乾燥物を調製する工程、及び
前記乾燥物を70℃以上の温度で加熱して、少なくともアルミニウム原子と酸素原子から構成されたアルミニウム酸化物物品を得る工程、を含み、
但し、前記加熱は、下記(1)~(3)を満足する構造を有するアルミニウム酸化物物品が得られるまで実施する、アルミニウム酸化物物品の製造方法。
(1)透過電子顕微鏡観察での前記アルミニウム酸化物物品の断面が、結晶格子像が確認できる結晶化部分と結晶格子像が確認できない非結晶部分を含み、
(2)前記結晶化部分を含む孤立した部分と連続した非結晶部分とを含む海島構造を有し(但し、前記孤立した部分が海島構造の島部に相当し、前記連続した非結晶部分が海島構造の海部に相当する)、及び
(3)前記島部の複数が前記海部に一様に点在する。
[9]
前記加熱の条件は、温度100℃においては焼成時間10分以上であり、400℃においては焼成時間2分以上である、[8]に記載の製造方法。
[10]
前記アルキルアルミニウムは下記一般式(1)で表される化合物である[8]又は[9]に記載の製造方法。
[11]
アルキルアルミニウムの部分加水分解物は、一般式(1)のアルキルアルミニウムに対するモル比が1.3以下の水を用いて得られる、[8]~[10]のいずれか1項に記載の製造方法。
[12]
前記乾燥物を基材上に調製する、[8]~[11]のいずれか1項に記載の製造方法。
[13]
前記アルミニウム酸化物物品の表面から最深部までの厚さは、5nm~5μmの範囲である、[8]~[12]のいずれか1項に記載の製造方法。
本発明によれば、リチウムイオン二次電池の電池性能を向上する電極用被膜、耐擦傷性および硬度を向上させた硬化膜、高いガス遮蔽性と透明性を兼ね備えたガス遮蔽膜として有用なアルミニウム酸化物物品を提供できる。
本発明について以下にさらに詳しく説明する。
本発明のアルミニウム酸化物物品は、少なくともアルミニウム原子と酸素原子から構成されており、さらに透過電子顕微鏡の断面観察において、結晶格子像が確認できる結晶化部分と結晶格子像が確認できない非結晶部分を含む。さらに、前記結晶化部分を含む孤立した部分と連続した非結晶部分とを含む海島構造を有し、かつ複数の島部が海部に一様に点在するアルミニウム酸化物物品である。但し、前記孤立した部分が海島構造の島部に相当し、前記連続した非結晶部分が海島構造の海部に相当する。
本発明のアルミニウム酸化物物品は、少なくともアルミニウム原子と酸素原子から構成されており、さらに透過電子顕微鏡の断面観察において、結晶格子像が確認できる結晶化部分と結晶格子像が確認できない非結晶部分を含む。さらに、前記結晶化部分を含む孤立した部分と連続した非結晶部分とを含む海島構造を有し、かつ複数の島部が海部に一様に点在するアルミニウム酸化物物品である。但し、前記孤立した部分が海島構造の島部に相当し、前記連続した非結晶部分が海島構造の海部に相当する。
結晶化部分を含む複数の島部が非結晶部分の海部に一様に点在することで、硬度の高い結晶化部分とガス遮蔽性及びイオン電導性の高い非結晶部分が共存している。その結果、リチウムイオン二次電池の電極用被膜に用いると電池性能を向上させることができ、硬化膜としては耐擦傷性及び硬度を向上させることができ、さらにはガス遮蔽膜としてはガス遮蔽性が向上する。
ここで、「結晶化部分」とは、透過型電子顕微鏡(Transmission Electron Microscope、以後、TEMと略す)で観測した際に、結晶格子像が確認できる部分であり、「非結晶部分」とは、TEMで結晶格子像が確認できない部分を指す。使用できる透過電子顕微鏡にとくに制限はないが、例えば、日本電子製JEM−2010を用いることができる。格子像を確認するための測定方法は特に制限はないが、加速電圧200kVにおいて明視野の高倍率観察を行うことで確認できる。
本発明におけるアルミニウム酸化物物品は、断面の低倍率(例えば、2,000倍~200,000倍)のTEM画像から、アルミニウム酸化物物品表面から内面に向かう深さ方向において、海部と島部とに相分離した海島構造を形成していることが分かった(例えば、図2、3、4、5参照)。さらに、同じ断面の高倍率(例えば、80,0000倍~1,500,000倍)のTEM画像から、島部の外周付近には格子像が確認された(例えば、図3、4参照)。このことから、島部の断面は、中心部に結晶格子像が確認できない構造であり、周辺部が前記結晶化部分であることが確認された。3次元的には、島部は、外周が結晶化部分で覆われている構造であり、内部は、結晶化してない非結晶構造か、あるいは外周が結晶化していることから、比較的、結晶化構造に近い構造を有する粒であると推察される。島部については、熱などのエネルギーを与えることにより、外周から内側に向けて結晶化が進んでいく可能性があると考えられる。一方、海部は格子像が確認されないことから、非結晶構造であると考えられる。
また、実施例で具体的に示すように、断面観察において島部の大きさが比較的均一であり、且つ、島部が海部に一様に分散している(例えば、図2、3、4、5参照)ことから、アルミニウム酸化物物品内において、結晶化部分と非結晶部分が均一に混在していると考えられる。
本発明におけるアルミニウム酸化物物品においては、前記島部の複数が海部に一様に点在する海島構造は、前記断面の画像中の少なくとも100nm×100nmの領域において観察されることが好ましい。海島構造は、より好ましくはアルミニウム酸化物物品の全体あるいはほぼ全体に観察される。
本発明のアルミニウム酸化物物品は、断面の透過電子顕微鏡観察画像(断面TEM画像)を、物品表面から深さ方向に均等に3分割し、かつ最表領域に存在する島部の粒径の平均値をA、中間領域に存在する島部の粒径の平均値をB、最深領域に存在する島部の粒径の平均値をC、物品断面の全体に存在する島部の粒径の平均値をXとしたときに、0.9<A/X、B/X、C/X<1.1の関係を満たすことが、島部の大きさが比較的均一であるという観点から好ましい。即ち、0.9<A/X<1.1、0.9<B/X<1.1、0.9<C/X<1.1である。A/X、B/X、C/Xは独立に0.9超及び1.1未満である。
島部の粒径の平均値の比率が独立に0.9以下または、1.1以上である場合は、粒径の異なる島部が遍在する傾向があり、その部分の硬度が低下する可能性があるので、上記範囲であることが好ましい。
島部の粒径の平均値の比率が独立に0.9以下または、1.1以上である場合は、粒径の異なる島部が遍在する傾向があり、その部分の硬度が低下する可能性があるので、上記範囲であることが好ましい。
さらに、本発明のアルミニウム酸化物物品は、アルミニウム酸化物物品の断面の透過電子顕微鏡観察画像を物品表面から深さ方向に均等に3分割し、かつ最表領域の島部の数をa、中間領域の島部の数をb、最深層の島部の数をc、全体の島の数をYとしたときに、0.27<a/Y、b/Y、c/Y<0.40の関係を満たすことが、島部が海部に一様に分散しているという観点から好ましい。即ち、0.27<a/Y<0.40、0.27<b/Y<0.40、0.27<c/Y<0.40である。a/Y、b/Y、c/Yは独立に0.27超、0.40未満である。なお、本発明の物品の物性を損なわない範囲で、アルミニウム酸化物物品中にはアルミニウム及び酸素以外の元素が混在していてもよい。
島部の数の平均値の比率が独立に0.27以下または、0.40以上である場合、島部の少ない部分の硬度が低下する可能性があるので、上記範囲であることが好ましい。
島部の数の平均値の比率が独立に0.27以下または、0.40以上である場合、島部の少ない部分の硬度が低下する可能性があるので、上記範囲であることが好ましい。
本発明におけるアルミニウム酸化物物品の結晶化部分中に含まれる結晶構造は、アルミニウムと酸素原子を含む結晶構造であればよい。例えば、アルミナ(酸化アルミニウム)の結晶形としてはα、β、γ、δ、ζ、η、θ、κ、ρ、χ構造が知られているが、非結晶構造(アモルファス)以外であれば、特に制限はない。但し、実施例で記載するように、実施例で用いたXRDでは回折ピークが得られなかった。そのため、実施例で用いたXRDでは、結晶化部分の結晶構造の特定はできなかった。
本発明のアルミニウム酸化物物品は、基材上に設けられた薄膜であることができる。あるいは、基材を有さない、独立の膜、又は独立の塊であることもできる。基材上に設けられた薄膜の場合、アルミニウム酸化物の表面から最深部までの厚さに特に制限はないが、例えば、5nm~5μmの範囲、10nm~1μmの範囲、50nm~1μmの範囲、さらには、100nm~1μmの範囲であることができる。
本発明のアルミニウム酸化物物品は、鉛筆硬度がFであるか、またはFより硬い。本発明のアルミニウム酸化物物品は、上記海島構造を有するため、硬度が高い。本発明のアルミニウム酸化物物品の鉛筆硬度は、好ましくはH以上である。
(アルミニウム酸化物物品の同定方法)
本発明において、結晶化部分と非結晶部分が均一に混在しているアルミニウム酸化物の同定はTEMによって行うことができる。TEM画像の取得方法及び、TEM画像からの結晶化部分の解析方法及び、結晶化部分と非結晶部分の均一性の解析方法について説明する。
本発明において、結晶化部分と非結晶部分が均一に混在しているアルミニウム酸化物の同定はTEMによって行うことができる。TEM画像の取得方法及び、TEM画像からの結晶化部分の解析方法及び、結晶化部分と非結晶部分の均一性の解析方法について説明する。
<TEM画像取得方法>
アルミニウム酸化物物品断面のTEM画像を取得する方法としては、アルミニウム酸化物を断面方向に薄切片化する方法が知られている。薄切片化する方法としては特に制限はないが、例えばアルゴンイオンスライサー、収束イオンビーム(FIB)装置、ウルトラミクロトームなどの一般的な薄切片化装置を用いる方法が例示できる。
アルミニウム酸化物物品断面のTEM画像を取得する方法としては、アルミニウム酸化物を断面方向に薄切片化する方法が知られている。薄切片化する方法としては特に制限はないが、例えばアルゴンイオンスライサー、収束イオンビーム(FIB)装置、ウルトラミクロトームなどの一般的な薄切片化装置を用いる方法が例示できる。
<TEM画像解析方法>
本発明のアルミニウム酸化物物品の「結晶化部分」と「非結晶部分」の分布状態は、アルミニウム酸化物を断面方向に切片化して、低倍率(2000倍~200000倍)で観察したTEM画像により、海島構造として観測され、島部と海部を比較することにより確認できる。TEM画像を観察する際の倍率は、アルミニウム酸化物物品表面から内面における深さ方向においての構造を同一のTEM画像で確認することが好ましいことから、アルミニウム酸化物全体が確認できる倍率を選択すること、または海島構造が確認できる倍率を選択することが望ましい。アルミニウム酸化物の表面から最深部までの厚さが厚く、アルミニウム酸化物全体が確認できる倍率で、海島構造が確認できない倍率である場合は、アルミニウム酸化物物品表面から内部における深さ方向において画像を分割して取得して、解析してもよい。画像を分割して取得する際には、同倍率で測定することが望ましい。
本発明のアルミニウム酸化物物品の「結晶化部分」と「非結晶部分」の分布状態は、アルミニウム酸化物を断面方向に切片化して、低倍率(2000倍~200000倍)で観察したTEM画像により、海島構造として観測され、島部と海部を比較することにより確認できる。TEM画像を観察する際の倍率は、アルミニウム酸化物物品表面から内面における深さ方向においての構造を同一のTEM画像で確認することが好ましいことから、アルミニウム酸化物全体が確認できる倍率を選択すること、または海島構造が確認できる倍率を選択することが望ましい。アルミニウム酸化物の表面から最深部までの厚さが厚く、アルミニウム酸化物全体が確認できる倍率で、海島構造が確認できない倍率である場合は、アルミニウム酸化物物品表面から内部における深さ方向において画像を分割して取得して、解析してもよい。画像を分割して取得する際には、同倍率で測定することが望ましい。
低倍率で観察したTEM画像における「海島構造」とは、TEM画像において「海部」と「島部」が混在している構造である。後述の図1に示す。「海部」については高倍率(800000倍~1500000倍)で観察されたTEM画像において、格子像が観察されないことから、相対的に非結晶部分が多い領域である。一方、島部は外周付近には格子像が確認されたことから、外周は結晶化部分であり、内部は、非結晶であるか、かるいは外周が結晶化していることから、非結晶ではあるが結晶化し易い構造の粒であると考えられる。すなわち、島部は、3次元的に、非結晶の粒の周辺が結晶化部分で覆われている構造である。低倍率のTEM画像で確認した際に、粒周辺の濃淡が明らかであり、その濃淡の差異により粒と識別できる場所を島部とすることができる。図4に、島部の結晶化部分、島部の非結晶及び海部(非結晶部分)を示す。
このことから、島部の大きさ及び島部の分散状態を調べることにより、複数の島部が海部に一様に点在すること非結晶部分を明らかにすることができる。
島部の大きさ及び分散状態を把握するためには、画像解析ソフトにより島部分の大きさを粒径として評価する方法を用いることができる。画像解析ソフトは、一般的に利用されている画像解析ソフトを用いることができる。例えば、MacViewなどが使用できる。
具体的には、画像解析ソフトに、アルミニウム酸化物物品を断面方向に切片化して、低倍率で観察したTEM画像を一般的な画像デジタルファイルとして解析ソフト(MacView)に取り込み、明部として観測される島部分を粒として識別する。識別する領域は、アルミニウム酸化物物品表面から内面に向かう深さ方向の向きにおいて、アルミニウム酸化物物品がすべて収まる方形(例えば、長方形又は正方形)を作成し、その方形内を識別領域とすることが望ましい。さらに、方形の領域をアルミニウム酸化物物品表面から内面に向かう深さ方向に向かって3分割し、最表層の領域を領域1、中間層の領域を領域2、最深層の領域を領域3とし、各領域の島部を識別する。識別の方法としては、手動で識別する方法、自動で識別する方法どちらでも良い。手動で識別する際には、TEM画像の中で明部となっている且つ、その周囲に暗部の輪郭がある場所を島部と識別する方法を用いることができる。この手法により得られた実施例1のTEM画像を図2に例示する。自動で識別する場合には、島部分を識別できるように識別条件を画像ごとに調整する。島部分を識別した後に、島部分の、粒径、粒度分布、粒子分布の情報を得る。さらに、方形の領域をアルミニウム酸化物表物品面から内面に向かう深さ方向に向かって3分割し、最表層の領域を領域1、中間層の領域を領域2、最深層の領域を領域3とし、各領域の島部を識別した。各領域の境界付近に存在する島部に関しては、面積の割合が多く存在している領域の島部として識別することが好ましい。その後、各領域の、粒径の平均値及び粒子の数を求め、かつ比較することにより、島部のアルミニウム酸化物物品においての分散状態を調べることができる。すなわち、結晶化部分と非結晶部分の分散状態を調べることができる。
(アルミニウム酸化物物品の製造方法)
本発明のアルミニウム酸化物物品の製造方法は、
アルキルアルミニウムの部分加水分解物を含有する溶液を塗布し乾燥する工程、及び
前記乾燥物を70℃以上の温度で加熱して、少なくともアルミニウム原子と酸素原子から構成されたアルミニウム酸化物物品を得る工程、を含み、
但し、前記加熱は、下記(1)~(3)を満足する構造を有するアルミニウム酸化物物品が得られるまで実施する、アルミニウム酸化物物品の製造方法である。
(1)透過電子顕微鏡観察での前記アルミニウム酸化物物品の断面が、結晶格子像が確認できる結晶化部分と結晶格子像が確認できない非結晶部分を含み、
(2)前記結晶化部分を含む孤立した部分と連続した非結晶部分とを含む海島構造を有し(但し、前記孤立した部分が海島構造の島部に相当し、前記連続した非結晶部分が海島構造の海部に相当する)、及び
(3)前記島部の複数が前記海部に一様に点在する。
本発明のアルミニウム酸化物物品の製造方法は、
アルキルアルミニウムの部分加水分解物を含有する溶液を塗布し乾燥する工程、及び
前記乾燥物を70℃以上の温度で加熱して、少なくともアルミニウム原子と酸素原子から構成されたアルミニウム酸化物物品を得る工程、を含み、
但し、前記加熱は、下記(1)~(3)を満足する構造を有するアルミニウム酸化物物品が得られるまで実施する、アルミニウム酸化物物品の製造方法である。
(1)透過電子顕微鏡観察での前記アルミニウム酸化物物品の断面が、結晶格子像が確認できる結晶化部分と結晶格子像が確認できない非結晶部分を含み、
(2)前記結晶化部分を含む孤立した部分と連続した非結晶部分とを含む海島構造を有し(但し、前記孤立した部分が海島構造の島部に相当し、前記連続した非結晶部分が海島構造の海部に相当する)、及び
(3)前記島部の複数が前記海部に一様に点在する。
アルキルアルミニウムの部分加水分解物を含有する溶液は、アルキルアルミニウムを溶媒により希釈した溶液を部分加水分解することにより得られる溶液が挙げられる。アルキルアルミニウムを部分加水分解することでアルミと酸素が予め結合部位を形成した前駆体となり、加熱下で、この結合部分が核になることで島部が遍在することなく均一に生成すると考えられる。
アルキルアルミニウムは下記一般式(1)で表される化合物である。
(式中、R1は、それぞれ独立して炭素数1~8の直鎖または分岐したアルキル基、アルコキシ基、アシルオキシ基を表し、Xは、水素、フッ素、塩素、臭素、ヨウ素等のハロゲン原子を表す。nは0~2の整数である。)
アルキルアルミニウムを加水分解した溶液とは、一般式(1)で示されるアルキルアルミニウムを有機溶媒中で部分的に加水分解して、アルキルアルミニウムの部分加水分解物を含有する溶液である。
有機溶媒としては一般式(1)で表されるアルキルアルミニウムやアルキルアルミニウムの部分加水分解物に対して溶解性を有するものであればよく、例えば、電子供与性有機溶媒や炭化水素化合物を上げることができる。電子供与性有機溶媒としては、例えばN−メチル−2−ピロリドン、又は1,3−ジメチル−イミダゾリジノン、1,3−ジメチル−3,4,5,6−テトラヒドロ−2(1H)−ピリミジノン等の環状アミド、ジエチルエーテル、テトラヒドロフラン、ジイソプロピルエーテル、ジオキサン、ジ−n−ブチルエーテル、ジアルキルエチレングリコール、ジアルキルジエチレングリコール、ジアルキルトリエチレングリコール等のエーテル、グライム、ジグライム、トリグライム系溶媒等を挙げることができる。
また、炭化水素化合物としては、n−ヘキサン、オクタン、n−デカン、等の脂肪族炭化水素;シクロペンタン、シクロヘキサン、メチルシクロヘキサン、エチルシクロヘキサン等の脂環式炭化水素;ベンゼン、トルエン、キシレン、クメン等の芳香族炭化水素;ミネラルスピリット、ソルベントナフサ、ケロシン、石油エーテル、等の炭化水素系溶媒をあげることができる。
有機溶媒は、水に対して溶解性を有する有機溶媒を単独で用いることもでき、水に対して溶解性を有する有機溶媒と水に対する溶解性が低いものを併用することもできる。有機溶媒は、電子供与性溶媒、炭化水素化合物またはそれらの混合物であることができる。
加水分解は、一般式(1)のアルキルアルミニウムに対するモル比が1.3以下で行うことが好ましい。1.3を超える水を添加した場合、前駆体となる溶液中で結晶が析出し、アルミニウム酸化物物品中の島部が不均一になる場合がある。
アルキルアルミニウムの部分加水分解物を含有する溶液から、アルキルアルミニウムの部分加水分解物を含有する乾燥物を調製する工程は、特に制限されるものではないが、例えば、基材表面にアルキルアルミニウムの部分加水分解物を含有する溶液を塗布する方法や、アルミ原料を含んだ溶液中に基材を浸漬する方法、さらにはアルミ原料を含んだ溶液から析出する方法により塗膜を形成し、これを乾燥することで実施できる。基材表面への塗布方法は、特に制限はないが、例えば、ディップコート法、スピンコート法、スリットコート法、スロットコート法、バーコート法、ロールコート法、カーテンコート法、インクジェット法、スクリーン印刷法、浸漬法等を用いることができる。
前記乾燥物は、次の工程で70℃以上の温度で加熱して、少なくともアルミニウム原子と酸素原子から構成されたアルミニウム酸化物物品を得る。加熱装置は特に制限はない。基材上に設けた乾燥物の加熱には、ホットプレートなどの基材の下部から熱を加える装置を用いることができ、それ以外の場合には、電気炉などのアルミニウム酸化物表面から熱を加える加熱装置を用いることができる。
加熱は、上記(1)~(3)を満足する構造を有するアルミニウム酸化物物品が得られるまで実施する。
上記(1)~(3)を満足する構造を有するアルミニウム酸化物物品が得られるという観点から、熱処理温度は70℃以上とし、75℃~800℃の範囲が好ましく、75℃~700℃の範囲がさらに好ましい。70℃未満の温度の場合、結晶構造がうまく形成されず、800℃を超えると全体が結晶状態となり、非結晶状態との均一な組成ではなくなる場合がある。本発明のアルミニウム酸化物物品を製造する方法として、熱処理行う時間には、加熱温度に依存し、かつ上記(1)~(3)を満足する構造を有するアルミニウム酸化物物品が得られる範囲で調製される。例えば、焼成温度75℃においては、焼成時間10分以上であり、100℃においては、焼成時間10分以上であり、400℃においては、焼成時間2分以上であることで上記(1)~(3)を満足する構造を有するアルミニウム酸化物物品が得られることが好ましい。
上記(1)~(3)を満足する構造を有するアルミニウム酸化物物品が得られるという観点から、熱処理温度は70℃以上とし、75℃~800℃の範囲が好ましく、75℃~700℃の範囲がさらに好ましい。70℃未満の温度の場合、結晶構造がうまく形成されず、800℃を超えると全体が結晶状態となり、非結晶状態との均一な組成ではなくなる場合がある。本発明のアルミニウム酸化物物品を製造する方法として、熱処理行う時間には、加熱温度に依存し、かつ上記(1)~(3)を満足する構造を有するアルミニウム酸化物物品が得られる範囲で調製される。例えば、焼成温度75℃においては、焼成時間10分以上であり、100℃においては、焼成時間10分以上であり、400℃においては、焼成時間2分以上であることで上記(1)~(3)を満足する構造を有するアルミニウム酸化物物品が得られることが好ましい。
本発明において、アルミニウム酸化物を形成するための基材は、材質、形状、寸法等に特に制限はないが、例えば、ガラス、金属、セラミックス等の無機物、プラスチック等の樹脂性基材や紙、木材等の有機物およびこれらの複合物が例示できる。
基材等に被覆させた場合の、アルミニウム酸化物の表面から最深部までの厚さに特に制限はなく、被覆の用途によって選定することができ、5nm~10μmが好ましく、さらには10nm~5μmが好ましい。
本発明のアルミニウム酸化物はLiイオン二次電池活物質の被膜、食品や医薬品の包装用途、又はフラットパネルディスプレイや太陽光発電素子、有機EL素子等のガス遮蔽膜、あるいはプラスチック光学部品やタッチパネル等のハードコート膜として用いることができる。
(その他)
X線光電子分光法(XPS)により、アルミニウム酸化物物品表面から内面に向かう深さ方向において、アルミに由来する構造が均一であることを確認できる。すなわち、海島構造「結晶化部分と非結晶部分」がアルミニウム酸化物物品表面から内面に向かう深さ方向において均一であることを比較することができる、分光学的測定方法の一つである。超高真空化で試料表面にX線を照射すると、光電効果により表面から光電子が真空中に放出される。その光電子の運動エネルギーを観測することにより、その表面状態の化学状態に関する情報を得ることができる。本測定においては試料表面からの光電子の検出範囲は0.8mmφであるために、アルミニウム酸化物物品表面から内面に向かう深さ方向においての、特定の場所の平均化された情報を得ることができる。
X線光電子分光法(XPS)により、アルミニウム酸化物物品表面から内面に向かう深さ方向において、アルミに由来する構造が均一であることを確認できる。すなわち、海島構造「結晶化部分と非結晶部分」がアルミニウム酸化物物品表面から内面に向かう深さ方向において均一であることを比較することができる、分光学的測定方法の一つである。超高真空化で試料表面にX線を照射すると、光電効果により表面から光電子が真空中に放出される。その光電子の運動エネルギーを観測することにより、その表面状態の化学状態に関する情報を得ることができる。本測定においては試料表面からの光電子の検出範囲は0.8mmφであるために、アルミニウム酸化物物品表面から内面に向かう深さ方向においての、特定の場所の平均化された情報を得ることができる。
本発明においての、XPS測定方法及び、XPSピークからの構造の解析方法について説明する。
本発明のアルミニウム酸化物物品のアルミと酸素の組成はX線光電子分光法(XPS)により測定することができる。
アルミニウム酸化物物品をアルゴンイオンエネルギーでエッチングし、XPS測定することを繰り返すことでアルミニウム酸化物物品表面から内面に向かう深さ方向におけるアルミと酸素の結合エネルギーをピーク情報として取得することができる。
アルミニウム酸化物物品の表面から内面に向かう深さ方向における、測定場所の特定にはエッチング速度を求めることにより特定する方法を用いることができる。エッチング速度(nm/分)は、以下の式で算出することができる。
エッチング速度(nm/分)=アルミニウム酸化物の基材からの厚さ(nm)/アルミニウム酸化物領域のエッチング時間の合計(分)
エッチング速度(nm/分)=アルミニウム酸化物の基材からの厚さ(nm)/アルミニウム酸化物領域のエッチング時間の合計(分)
アルミニウム酸化物物品の基材からの厚さは、SEM、TEM等で測定することができる。アルミニウム酸化物物品のエッチング時間の合計は、基材のXPSピークが出現するまでの領域をアルミニウム酸化物物品の領域とし、そこまでにエッチングに要した合計時間を用いることができる。
エッチングに要した時間とエッチング速度を用いることにより、アルミニウム酸化物物品の表面から内面に向かう深さ方向の測定場所を特定することができる。
アルミの2p軌道のピークと酸素の1s軌道のピークの、それぞれのピークの面積強度の比率を比較することにより、アルミニウム酸化物物品表面から深さ方向における、それぞれの場所のAlとOの組成の変化を確認することができる。AlとOのピーク面積強度の比率は以下の式で算出できる。
AlとOのピーク面積強度の比率=Alの2p軌道のピーク面積/Oの1s軌道のピークの面積
アルミの2p軌道のピークと酸素の1s軌道のピークの、それぞれのピークの面積強度の比率を比較することにより、アルミニウム酸化物物品表面から深さ方向における、それぞれの場所のAlとOの組成の変化を確認することができる。AlとOのピーク面積強度の比率は以下の式で算出できる。
AlとOのピーク面積強度の比率=Alの2p軌道のピーク面積/Oの1s軌道のピークの面積
さらに、アルミニウム酸化物物品表面から内面に向かう深さ方向おいてのAlの2p軌道のピークを比較することにより、アルミの結合状態を確認することができる。結合状態は、構造の情報を反映している。
本発明におけるアルミニウム酸化物物品のAlの2p軌道ピークは、フィッティングを行うことにより分離ピーク1と分離ピーク2の2つのピークに分離される。これらの2つのピークに関しては、明らかではないが以下のような構造であると考えられる。
これらの分離ピーク1のエネルギー位置は約71.9eVであり、分離ピーク2のエネルギー位置は約73.0eVである。通常XPSスペクトルは試料の帯電によるエネルギーシフトの補正を行う必要がある。しかしながら本測定においては、アルゴンエッチングにより試料を削りながら測定を行っており、基準となる元素のピークエネルギーが得られていないため、エネルギーシフトの補正は行っていない。一方、アルミナの完全結晶がもつAl−O結合由来のAl2pピークエネルギー位置74.5eV(非特許文献2)と、金属アルミがもつAl−Al結合由来のAl2pピークエネルギー位置72.7eV(非特許文献3)、と報告されている。本測定で観測されたピークは報告されているAl−OやAl−Al結合由来のピークエネルギー位置と近く、何らかの元素と結合をもったAlが存在していることがわかる。低エネルギー側の分離ピーク1はAlのXPSスペクトルの中で主たるピークで、結晶化部分と非結晶部分を反映しているピークと考えらえられる。さらに、本測定においては、Al、O、C以外の元素のピークは観測されていないことから本発明におけるアルミニウム酸化物物品はAlOxのxが0<x<1.5であることがわかる。本発明におけるアルミニウム酸化物物品はAlOxのxが0.5<x<1.5であることもできる。高エネルギー側の分離ピーク2はAl原子と水酸基(OH基)との結合に由来するピークと考えられる。水酸基については、原料由来のものと考えられる。
ピーク分離は、例えば解析ソフトOriginPro等を用いて行うことができる。具体的には、まず、基線の処理を行った後に、ピークフィットを行う。基線の処理としては、定数を用いる方法、XPSの基線モデル(Sherley、Tougaard)を用いる方法が挙げられるが、XPSのモデルを用いる方法が好ましい。ピークフィットには、フィット関数として、Gauss関数、Lorentz関数などの一般的なフィット関数を用いることができる。
アルミニウム酸化物物品表面から内面に向かう深さ方向においての各測定場所における分離ピーク1の面積と分離ピーク2の面積の比率を比較することにより、アルミニウム酸化物の表面から内面に向かう深さ方向においてのAl原子の結合状態を明らかにすることができる。
以下、実施例、合成例、参考例及び比較例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。
(合成例1)
Nメチル−2−ピロリドン(以後、NMPと略す)73.2gに、トリエチルアルミニウム(以後、TEALと略す)11.35gを室温で加えた。十分攪拌して得られたTEAL/NMP溶液に、20±5℃の温度範囲で、水1.08gを滴下した。この時の水のTEALに対するモル比(水/TEAL)は1.0であった。水を所定量滴下後、65℃まで加熱し、65℃で2.5時間反応させた。反応終了後、放冷して反応生成物を回収した。反応後の生成物は黄色透明溶液であった。この生成物中に含まれる微量のゲル状の不溶物をフィルター(細孔:3μm以下)でろ過し、TEAL部分加水分解物のNMP溶液を回収した(溶液A)。
Nメチル−2−ピロリドン(以後、NMPと略す)73.2gに、トリエチルアルミニウム(以後、TEALと略す)11.35gを室温で加えた。十分攪拌して得られたTEAL/NMP溶液に、20±5℃の温度範囲で、水1.08gを滴下した。この時の水のTEALに対するモル比(水/TEAL)は1.0であった。水を所定量滴下後、65℃まで加熱し、65℃で2.5時間反応させた。反応終了後、放冷して反応生成物を回収した。反応後の生成物は黄色透明溶液であった。この生成物中に含まれる微量のゲル状の不溶物をフィルター(細孔:3μm以下)でろ過し、TEAL部分加水分解物のNMP溶液を回収した(溶液A)。
(合成例2)
アルミニウムイソプロキシド((iPrO)3Al))0.2gをヘプタン16g、ジイソプロピレングリコール0.35g及びイソプロパノール0.65gに室温で加えた後に、十分に攪拌を行った。この生成物中に含まれる微量の白色物の不要物を除去するために、遠心沈降機を用いて、上澄みの無色透明な部分のみを回収した(溶液B)
28%アンモニア水0.20gと超純水26.02gを混合して、ゲル析出のための加水分解溶液を調整した。(溶液C)
アルミニウムイソプロキシド((iPrO)3Al))0.2gをヘプタン16g、ジイソプロピレングリコール0.35g及びイソプロパノール0.65gに室温で加えた後に、十分に攪拌を行った。この生成物中に含まれる微量の白色物の不要物を除去するために、遠心沈降機を用いて、上澄みの無色透明な部分のみを回収した(溶液B)
28%アンモニア水0.20gと超純水26.02gを混合して、ゲル析出のための加水分解溶液を調整した。(溶液C)
実施例及び参考例におけるアルミニウム酸化物物品の構造は、X線回折測定(XRD)、X線反射測定(XRR)、透過電子顕微鏡(TEM)、X線光電子分光測定(XPS)、原子間力顕微鏡(AFM)及び可視光透過測定において同定を行った。
X線回折測定(XRD)にはPANalytical社製X’ert PRO MRDを使用した。X線源には1.8kWのCuKα線源(8048eV)を用いた。X線MirrorによりX線を平行化し、約1°の角度で試料に入射させ2θ軸を操作する斜入射X線回折測定を行った。試料からの回折X線はコリメーターで平行化し、プロポーショナルカウンタで検出した。
X線反射率(XRR)測定にはPANalytical社製X’pert PRO MRDを使用した。X線源には1.8kWのCuKα線源(8048eV)を用いた。X線MirrorによりX線を平行化し、試料表面すれすれの角度で入射させ、その入射角度に対するX線反射率の依存性を測定する。試料から反射したX線はコリメーターで平行化し、プロポーショナルカウンタで検出した。
透過電子顕微鏡(TEM)観察には日本電子製JEM−2010を使用した。加速電圧200kVで高分解能観察を行なった。アルミニウム酸化物物品の薄切片化には日本電子製のイオンスライサーEM−09100ISを用いた。PET基板上アルミニウム酸化物物品にはRMC Boeckeler社製のウルトラミクロトームMT−7000を用いた。
X線光電子分光測定(XPS)にはKRATOS社製AXIS−HSを使用した。X線源には単色化された150WのAlKα線源(1486.6eV)を用いた。約0.8mmφの範囲の任意の場所で高分解能測定を行った。
原子間力顕微鏡(AFM)には日立ハイテクサイエンス社製AFM5200Sを使用した。カンチレバーを共振させた状態で、レバーの振動振幅が一定になるように探針・試料間の距離を制御しながら表面形状を測定するダイナミック・フォース・モード(DFM)測定モードで行った。
可視光透過測定は日本分光社製V670を使用した。測定方法は、垂直及び積分球による透過率測定を行った。また、測定は波長200nmから波長2500nmの範囲で行った。さらに、ヘイズ率の算出には以下の式を用いた。
ヘイズ率 = (特定波長における積分球透過率 − 特定波長における垂直透過率)/特定波長における積分球透過率 × 100
ヘイズ率 = (特定波長における積分球透過率 − 特定波長における垂直透過率)/特定波長における積分球透過率 × 100
実施例、参考例及び比較例におけるアルミニウム酸化物物品の特性は、鉛筆硬度試験、水蒸気透過率試験及び電池試験において評価した。
(試験例1)鉛筆硬度試験
アルミニウム酸化物物品の硬度はJIS K5600−5−4、引っかき硬度(鉛筆法)に準じて行った。具体的には、東洋精機製作所製鉛筆硬度試験機を用い、気温23±2度、湿度50±5%Rhの測定雰囲気で、試験機に750gの荷重を取り付け、試料に45度の角度で鉛筆を取り付けた。試料に鉛筆を当てた状態で10mm程度移動させ、試料に傷がついた場合は、鉛筆の硬度を下げ、試料に傷がつかなかった場合は、鉛筆硬度を上げて傷がつくまで評価を繰り返し、傷がついた際の鉛筆の硬度を鉛筆硬度とした。
アルミニウム酸化物物品の硬度はJIS K5600−5−4、引っかき硬度(鉛筆法)に準じて行った。具体的には、東洋精機製作所製鉛筆硬度試験機を用い、気温23±2度、湿度50±5%Rhの測定雰囲気で、試験機に750gの荷重を取り付け、試料に45度の角度で鉛筆を取り付けた。試料に鉛筆を当てた状態で10mm程度移動させ、試料に傷がついた場合は、鉛筆の硬度を下げ、試料に傷がつかなかった場合は、鉛筆硬度を上げて傷がつくまで評価を繰り返し、傷がついた際の鉛筆の硬度を鉛筆硬度とした。
(試験例2)水蒸気透過率試験
アルミニウム酸化物物品の水蒸気透過率試験はJIS K7129 付属書A 乾湿センサー法に準じて行った。具体的にはLyssy社製、水蒸気透過度計(L80−5000)を用い、測定温度40℃、湿度90%Rh、測定直径80mmの基板をセットし、アルミニウム酸化物物品を形成していない側から透過することで水蒸気透過率を測定した。
アルミニウム酸化物物品の水蒸気透過率試験はJIS K7129 付属書A 乾湿センサー法に準じて行った。具体的にはLyssy社製、水蒸気透過度計(L80−5000)を用い、測定温度40℃、湿度90%Rh、測定直径80mmの基板をセットし、アルミニウム酸化物物品を形成していない側から透過することで水蒸気透過率を測定した。
(実施例1)
合成例1で取得した溶液Aをスピンコート法により基材(18mm角、厚さ0.25mmの単結晶シリコン基板)表面上に塗布した。大気中、室温において、溶液A0.1mlを、前記シリコン基板に滴下し、回転数200rpmで10秒間基板を回転させた後に、回転数2000rpmで20秒間基板を回転させて、溶液をシリコン基板全体に塗布し、室温で乾燥後、100℃で2時間焼成を行い、アルミニウム酸化物物品を取得した。
合成例1で取得した溶液Aをスピンコート法により基材(18mm角、厚さ0.25mmの単結晶シリコン基板)表面上に塗布した。大気中、室温において、溶液A0.1mlを、前記シリコン基板に滴下し、回転数200rpmで10秒間基板を回転させた後に、回転数2000rpmで20秒間基板を回転させて、溶液をシリコン基板全体に塗布し、室温で乾燥後、100℃で2時間焼成を行い、アルミニウム酸化物物品を取得した。
取得したアルミニウム酸化物物品の同定のために、TEM、XRD、XRR及びAFMの測定を行った。
20万倍の倍率で観測した、アルミニウム酸化物物品の断面TEM画像(図5)より海部と島部を有する海島構造をしていることが確認された。島部を網掛けした図を図6に示す。さらに、TEMによりアルミニウム酸化物物品表面から内面に向かう深さ方向において、アルミニウム酸化物全体が観察できる且つ、海島構造を確認できるTEM画像を取得した。図1(5万倍)に示す。次にTEMの観察倍率を150万倍に上げて観察したTEM画像(図3)より、島部は粒の周辺が結晶化していることが分かった。島部である、粒と周辺の結晶化部分及び非結晶部分である海部を識別した図4を示す。
20万倍の倍率で観測した、アルミニウム酸化物物品の断面TEM画像(図5)より海部と島部を有する海島構造をしていることが確認された。島部を網掛けした図を図6に示す。さらに、TEMによりアルミニウム酸化物物品表面から内面に向かう深さ方向において、アルミニウム酸化物全体が観察できる且つ、海島構造を確認できるTEM画像を取得した。図1(5万倍)に示す。次にTEMの観察倍率を150万倍に上げて観察したTEM画像(図3)より、島部は粒の周辺が結晶化していることが分かった。島部である、粒と周辺の結晶化部分及び非結晶部分である海部を識別した図4を示す。
低倍率で観察したアルミニウム酸化物物品全体が観察できるTEM画像をデジタルデータとして画像解析ソフト(MacView)に取り込み、明部である島部分を粒とみなして識別を行った。識別した領域は、アルミニウム酸化物物品表面から内面に向かう深さ方向の向きにおいて、アルミニウム酸化物物品がすべて収まる方形(長方形又は正方形)内である。さらに、方形の領域をアルミニウム酸化物物品表面から内面に向かう深さ方向に向かって3分割し、最表層の領域を領域1、中間層の領域を領域2、最深層の領域を領域3とし、各領域の島部を識別した。識別の方法は、粒周辺の濃淡が明らかであり、その濃淡の差異により粒と識別できる場所を島部とする識別方法を用いた。図2に島部を識別した結果を示す。島部の識別の際には、画像を適宜拡大して粒周辺の濃淡が明らかな部分を確認することも行った。その後、各領域及び全体の、島部の粒径の平均値及び島部の数を求めた。各領域の境界付近に存在する島部に関しては、面積の割合が多く存在している領域の島部として識別した。粒径の平均値については体積平均径を用いた。島部の各領域及び全体の粒径の平均値を表1に示す。
求めた各領域及び全体の島部の粒径の平均値を用いて、全体に対する各領域の粒径の比率を算出した。算出には以下の式を用いた。
島部の各領域に対する粒径の比率 = 各領域の平均粒径 / 全体の平均粒径
次いで、求めた各領域及び全体の島部の個数(粒子数)を用いて、全体に対する各領域の島部の個数の比率を算出した。算出には以下の式を用いた。
島部の各領域に対する個数の比率 = 各領域の島部の個数 / 全体の島部の個数
それぞれの算出結果を表1に示す。
前記XRD装置を用いてアルミニウム酸化物物品のXRD測定を行った結果、回折ピークは得られなかった。
島部の各領域に対する粒径の比率 = 各領域の平均粒径 / 全体の平均粒径
次いで、求めた各領域及び全体の島部の個数(粒子数)を用いて、全体に対する各領域の島部の個数の比率を算出した。算出には以下の式を用いた。
島部の各領域に対する個数の比率 = 各領域の島部の個数 / 全体の島部の個数
それぞれの算出結果を表1に示す。
前記XRD装置を用いてアルミニウム酸化物物品のXRD測定を行った結果、回折ピークは得られなかった。
TEM画像により格子像が確認されたことから、結晶化部分は存在するが、XRDにより回折ピークを確認できなかった要因としては、明らかではないが次のことが考えられる。一つは、結晶化部分は結晶の成長方向が一定ではなく、様々な方位を向いているために回折強度が弱いこと。もう一つは、結晶化部分が小さいために、回折強度が弱いとことである。
アルミニウム酸化物のXRR測定を行った結果、膜密度は1.9g/cm3となった。
アルミニウム酸化物のAFM測定を行った結果、二乗平均平方根粗さは1.219nmとなった。
アルミニウム酸化物のAFM測定を行った結果、二乗平均平方根粗さは1.219nmとなった。
次に、アルミニウム酸化物物品の特性を評価するために鉛筆硬度試験を行った。
鉛筆硬度試験の結果を表1に示す。
鉛筆硬度試験の結果を表1に示す。
(参考例1)
合成例2で取得した溶液Bをスピンコート法により基材(18mm角、厚さ0.25mmの単結晶シリコン基板)表面上に塗布した。大気中、室温において、溶液B0.5mlを、前記シリコン基板に滴下し、回転数800rpmで30秒間基板を回転させた後に、回転数2000rpmで8秒間基板を回転させて、溶液をシリコン基板全体に塗布し、室温で乾燥させた。室温で乾燥後、合成例1で取得したC液0.3mlをシリコン基板上に滴下し、塗布した。室温で乾燥後、100℃で2時間焼成を行い、アルミニウム酸化物を取得した。
合成例2で取得した溶液Bをスピンコート法により基材(18mm角、厚さ0.25mmの単結晶シリコン基板)表面上に塗布した。大気中、室温において、溶液B0.5mlを、前記シリコン基板に滴下し、回転数800rpmで30秒間基板を回転させた後に、回転数2000rpmで8秒間基板を回転させて、溶液をシリコン基板全体に塗布し、室温で乾燥させた。室温で乾燥後、合成例1で取得したC液0.3mlをシリコン基板上に滴下し、塗布した。室温で乾燥後、100℃で2時間焼成を行い、アルミニウム酸化物を取得した。
次に、アルミニウム酸化物物品の特性を評価するために鉛筆硬度試験を行った。
鉛筆硬度試験の結果を表1に示す。
鉛筆硬度試験の結果を表1に示す。
(実施例2)
焼成温度を700℃に変更した以外は実施例1と同様にし、アルミニウム酸化物物品を取得した。
取得したアルミニウム酸化物物品の同定のために、TEM、XRD、XRR及びAFMの測定を行った。
TEMによりアルミニウム酸化物表面から内面に向かう深さ方向において、アルミニウム酸化物物品全体が観察できる且つ、海島構造を確認できるTEM画像を取得した。TEM画像から海部と島部を有する海島構造をしていることが確認された。次にTEMの観察倍率を150万倍に上げて観察したTEM画像より、島部は粒の周辺が結晶化していることが分かった。粒周辺の濃淡が明らかであり、その濃淡の差異により粒と識別できる場所を島部と識別した。
焼成温度を700℃に変更した以外は実施例1と同様にし、アルミニウム酸化物物品を取得した。
取得したアルミニウム酸化物物品の同定のために、TEM、XRD、XRR及びAFMの測定を行った。
TEMによりアルミニウム酸化物表面から内面に向かう深さ方向において、アルミニウム酸化物物品全体が観察できる且つ、海島構造を確認できるTEM画像を取得した。TEM画像から海部と島部を有する海島構造をしていることが確認された。次にTEMの観察倍率を150万倍に上げて観察したTEM画像より、島部は粒の周辺が結晶化していることが分かった。粒周辺の濃淡が明らかであり、その濃淡の差異により粒と識別できる場所を島部と識別した。
実施例1と同様の画像処理を行い、島部の各領域及び全体の粒径の平均値、島部の各領域に対する粒径の比率、島部の各領域に対する個数の比率を算出した。結果を表1に示す。
前記XRD装置を用いてアルミニウム酸化物物品のXRD測定を行った結果、回折ピークは得られなかった。
回折ピークが得られなかった要因は、実施例1と同様であると考えられる。
アルミニウム酸化物物品のXRR測定を行った結果、膜密度は2.2g/cm3となった。
アルミニウム酸化物物品のAFM測定を行った結果、二乗平均平方根粗さは6.214nmとなった。
次に、アルミニウム酸化物物品の特性を評価するために鉛筆硬度試験を行った。
鉛筆硬度試験の結果を表1に示す。
回折ピークが得られなかった要因は、実施例1と同様であると考えられる。
アルミニウム酸化物物品のXRR測定を行った結果、膜密度は2.2g/cm3となった。
アルミニウム酸化物物品のAFM測定を行った結果、二乗平均平方根粗さは6.214nmとなった。
次に、アルミニウム酸化物物品の特性を評価するために鉛筆硬度試験を行った。
鉛筆硬度試験の結果を表1に示す。
(参考例2)
焼成温度を700℃以外は参考例1と同様にし、アルミニウム酸化物物品を取得した。
焼成温度を700℃以外は参考例1と同様にし、アルミニウム酸化物物品を取得した。
取得したアルミニウム酸化物物品の同定のために、TEMの測定を行った。
TEMによりアルミニウム酸化物表面から内面に向かう深さ方向において、アルミニウム酸化物物品全体が観察できる且つ、海島構造を確認できるTEM画像を取得した。TEM画像から海部と島部を有する海島構造をしていることが確認された。次にTEMの観察倍率を150万倍に上げて観察したTEM画像より、島部は粒の周辺が結晶化していることが分かった。粒周辺の濃淡が明らかであり、その濃淡の差異により粒と識別できる場所を島部と識別した。
実施例1と同様の画像処理を行い、島部の各領域及び全体の粒径の平均値、島部の各領域に対する粒径の比率、島部の各領域に対する個数の比率を算出した。結果を表1に示す。
次に、アルミニウム酸化物物品の特性を評価するために鉛筆硬度試験を行った。
鉛筆硬度試験の結果を表1に示す。
TEMによりアルミニウム酸化物表面から内面に向かう深さ方向において、アルミニウム酸化物物品全体が観察できる且つ、海島構造を確認できるTEM画像を取得した。TEM画像から海部と島部を有する海島構造をしていることが確認された。次にTEMの観察倍率を150万倍に上げて観察したTEM画像より、島部は粒の周辺が結晶化していることが分かった。粒周辺の濃淡が明らかであり、その濃淡の差異により粒と識別できる場所を島部と識別した。
実施例1と同様の画像処理を行い、島部の各領域及び全体の粒径の平均値、島部の各領域に対する粒径の比率、島部の各領域に対する個数の比率を算出した。結果を表1に示す。
次に、アルミニウム酸化物物品の特性を評価するために鉛筆硬度試験を行った。
鉛筆硬度試験の結果を表1に示す。
(実施例3)
用いた基材を18mm角のPET基板に変更した以外は実施例1と同様にし、アルミニウム酸化物物品を取得した。
取得したアルミニウム酸化物物品の同定のために、TEM測定及び可視光透過測定を行った。
TEMによりアルミニウム酸化物物品表面から内面に向かう深さ方向において、アルミニウム酸化物物品全体が観察できる且つ、海島構造を確認できるTEM画像を取得した。TEM画像から海部と島部を有する海島構造をしていることが確認された。次にTEMの観察倍率を150万倍に上げて観察したTEM画像より、島部は粒の周辺が結晶化していることが分かった。粒周辺の濃淡が明らかであり、その濃淡の差異により粒と識別できる場所を島部と識別した。
実施例1と同様の画像処理を行い、島部の各領域及び全体の粒径の平均値、島部の各領域に対する粒径の比率、島部の各領域に対する個数の比率を算出した。結果を表1に示す。
用いた基材を18mm角のPET基板に変更した以外は実施例1と同様にし、アルミニウム酸化物物品を取得した。
取得したアルミニウム酸化物物品の同定のために、TEM測定及び可視光透過測定を行った。
TEMによりアルミニウム酸化物物品表面から内面に向かう深さ方向において、アルミニウム酸化物物品全体が観察できる且つ、海島構造を確認できるTEM画像を取得した。TEM画像から海部と島部を有する海島構造をしていることが確認された。次にTEMの観察倍率を150万倍に上げて観察したTEM画像より、島部は粒の周辺が結晶化していることが分かった。粒周辺の濃淡が明らかであり、その濃淡の差異により粒と識別できる場所を島部と識別した。
実施例1と同様の画像処理を行い、島部の各領域及び全体の粒径の平均値、島部の各領域に対する粒径の比率、島部の各領域に対する個数の比率を算出した。結果を表1に示す。
アルミニウム酸化物物品の可視光透過率測定の結果、550nmにおける垂直球透過率は84%、積分球透過率は91%となった。さらに、垂直球透過率と積分透過率から求めたヘイズ率は8.3%となった。
次に、アルミニウム酸化物物品の特性を評価するために鉛筆硬度試験及びガスバリア試験を行った。
鉛筆硬度試験の結果を表1に示す。
ガスバリア試験の結果を表2に示す。
次に、アルミニウム酸化物物品の特性を評価するために鉛筆硬度試験及びガスバリア試験を行った。
鉛筆硬度試験の結果を表1に示す。
ガスバリア試験の結果を表2に示す。
(参考例3)
用いた基材を18mm角のPET基板に変更した以外は参考例1と同様にし、アルミニウム酸化物物品を取得した。
取得したアルミニウム酸化物物品の同定のために、TEM測定を行った。
TEMによりアルミニウム酸化物物品表面から内面に向かう深さ方向において、アルミニウム酸化物物品全体が観察できる且つ、海島構造を確認できるTEM画像を取得した。TEM画像から海部と島部を有する海島構造をしていることが確認された。次にTEMの観察倍率を150万倍に上げて観察したTEM画像より、島部は粒の周辺が結晶化していることが分かった。粒周辺の濃淡が明らかであり、その濃淡の差異により粒と識別できる場所を島部と識別した。
実施例1と同様の画像処理を行い、島部の各領域及び全体の粒径の平均値、島部の各領域に対する粒径の比率、島部の各領域に対する個数の比率を算出した。結果を表1に示す。
次に、アルミニウム酸化物物品の特性を評価するために鉛筆硬度試験及びガスバリア試験を行った。
鉛筆硬度試験の結果を表1に示す。
ガスバリア試験の結果を表2に示す。
用いた基材を18mm角のPET基板に変更した以外は参考例1と同様にし、アルミニウム酸化物物品を取得した。
取得したアルミニウム酸化物物品の同定のために、TEM測定を行った。
TEMによりアルミニウム酸化物物品表面から内面に向かう深さ方向において、アルミニウム酸化物物品全体が観察できる且つ、海島構造を確認できるTEM画像を取得した。TEM画像から海部と島部を有する海島構造をしていることが確認された。次にTEMの観察倍率を150万倍に上げて観察したTEM画像より、島部は粒の周辺が結晶化していることが分かった。粒周辺の濃淡が明らかであり、その濃淡の差異により粒と識別できる場所を島部と識別した。
実施例1と同様の画像処理を行い、島部の各領域及び全体の粒径の平均値、島部の各領域に対する粒径の比率、島部の各領域に対する個数の比率を算出した。結果を表1に示す。
次に、アルミニウム酸化物物品の特性を評価するために鉛筆硬度試験及びガスバリア試験を行った。
鉛筆硬度試験の結果を表1に示す。
ガスバリア試験の結果を表2に示す。
(実施例4)
焼成温度を200℃、用いた基材をLiCoO2基板(豊島製作所製)に変更した以外は実施例1と同様にし、アルミニウム酸化物物品を取得した。
LiCoO2基板はSi基板上にスパッタ成膜により成膜を行った基板である。
取得したアルミニウム酸化物物品の同定のために、TEM、SEM及びXPSの測定を行った。
TEMによりアルミニウム酸化物物品表面から内面に向かう深さ方向において、アルミニウム酸化物物品全体が観察できる且つ、海島構造を確認できるTEM画像を取得した。図7(10万倍)に示す。TEM画像から海部と島部を有する海島構造をしていることが確認された。次にTEMの観察倍率を150万倍に上げて観察したTEM画像より、島部は粒の周辺が結晶化していることが分かった。粒周辺の濃淡が明らかであり、その濃淡の差異により粒と識別できる場所を島部と識別した。
焼成温度を200℃、用いた基材をLiCoO2基板(豊島製作所製)に変更した以外は実施例1と同様にし、アルミニウム酸化物物品を取得した。
LiCoO2基板はSi基板上にスパッタ成膜により成膜を行った基板である。
取得したアルミニウム酸化物物品の同定のために、TEM、SEM及びXPSの測定を行った。
TEMによりアルミニウム酸化物物品表面から内面に向かう深さ方向において、アルミニウム酸化物物品全体が観察できる且つ、海島構造を確認できるTEM画像を取得した。図7(10万倍)に示す。TEM画像から海部と島部を有する海島構造をしていることが確認された。次にTEMの観察倍率を150万倍に上げて観察したTEM画像より、島部は粒の周辺が結晶化していることが分かった。粒周辺の濃淡が明らかであり、その濃淡の差異により粒と識別できる場所を島部と識別した。
実施例1と同様の画像処理を行った。図8に島部を認識した結果を示す。その後、島部の各領域及び全体の粒径の平均値、島部の各領域に対する粒径の比率、島部の各領域に対する個数の比率を算出した。結果を表1に示す。
SEMにより、アルミニウム酸化物物品の基材からの厚さを明らかにした。アルミニウム酸化物物品の基材からの厚さは約210nmであった。
アルゴンエッチングを行い、XPS測定を繰り返すことにより、アルミニウム酸化物物品表面から内面に向かう深さ方向における、それぞれの場所のXPSピークの取得を行った。
アルミニウム酸化物物品表面から基材までのアルゴンエッチングに要した時間は13分であった。アルミニウム酸化物物品と基材(LiCoO2)の境界面の判断は、基材であるさらに、LiCoO2のCoの2p軌道のピークで行った。
SEMにより求めたアルミニウム酸化物物品の基材からの厚さと、アルミニウム酸化物の表面から基材までのアルゴンエッチングに要した時間を用いてエッチング速度を算出した。計算の結果、エッチング速度は16nm/分となった。
求めたエッチング速度から、測定したアルミニウム酸化物物品の、アルミニウム酸化物物品表面から内面に向かう深さ方向における測定場所は、アルミニウム酸化物物品表面から16nm、64nm、112nm、160nm、208nmの場所であることを特定した。
アルミニウム酸化物物品表面から内面に向かう深さ方向においての、AlとOのピーク面積強度の比率から、AlとOの組成はすべての場所でほとんど変化がないことが確認された。AlとOの組成の比率を表4に示す。
SEMにより、アルミニウム酸化物物品の基材からの厚さを明らかにした。アルミニウム酸化物物品の基材からの厚さは約210nmであった。
アルゴンエッチングを行い、XPS測定を繰り返すことにより、アルミニウム酸化物物品表面から内面に向かう深さ方向における、それぞれの場所のXPSピークの取得を行った。
アルミニウム酸化物物品表面から基材までのアルゴンエッチングに要した時間は13分であった。アルミニウム酸化物物品と基材(LiCoO2)の境界面の判断は、基材であるさらに、LiCoO2のCoの2p軌道のピークで行った。
SEMにより求めたアルミニウム酸化物物品の基材からの厚さと、アルミニウム酸化物の表面から基材までのアルゴンエッチングに要した時間を用いてエッチング速度を算出した。計算の結果、エッチング速度は16nm/分となった。
求めたエッチング速度から、測定したアルミニウム酸化物物品の、アルミニウム酸化物物品表面から内面に向かう深さ方向における測定場所は、アルミニウム酸化物物品表面から16nm、64nm、112nm、160nm、208nmの場所であることを特定した。
アルミニウム酸化物物品表面から内面に向かう深さ方向においての、AlとOのピーク面積強度の比率から、AlとOの組成はすべての場所でほとんど変化がないことが確認された。AlとOの組成の比率を表4に示す。
次に、Alの2p軌道のピークを2つのピーク、分離ピーク1と分離ピーク2に分離を行った。アルミニウム酸化物物品表面から内面へ向かう深さ方向において、すべての場所で、分離ピーク1及び分離ピーク2のピーク位置は一定であった。ピーク分離には、解析ソフトOriginePro2015のピークフィット機能により、ガウス関数を使用した。
分離したそれぞれの分離ピークの面積比率を表5に示す。
アルミニウム酸化物物品表面から内面に向かう深さ方向において、どの測定場所でも、分離ピーク1と分離ピーク2の比率はほぼ同じであった。このことから、アルミニウム酸化物物品表面から基材方向において、アルミニウム原子の結合状態がほぼ一定であるとわかった。
(参考例4)
焼成温度を200℃、用いた基材をLiCoO2基板(豊島製作所製)に変更した以外は参考例1と同様にし、アルミニウム酸化物物品を取得した。
LiCoO2基板はSi基板上にスパッタ成膜により成膜を行った基板である。
取得したアルミニウム酸化物物品の同定のために、TEM、SEM及びXPSの測定を行った。
TEMによりアルミニウム酸化物物品表面から内面に向かう深さ方向において、アルミニウム酸化物物品全体が観察できる且つ、海島構造を確認できるTEM画像を取得した。図9(10万倍)に示す。TEM画像から海部と島部を有する海島構造をしていることが確認された。次にTEMの観察倍率を150万倍に上げて観察したTEM画像より、島部は粒の周辺が結晶化していることが分かった。粒周辺の濃淡が明らかであり、その濃淡の差異により粒と識別できる場所を島部と識別した。
焼成温度を200℃、用いた基材をLiCoO2基板(豊島製作所製)に変更した以外は参考例1と同様にし、アルミニウム酸化物物品を取得した。
LiCoO2基板はSi基板上にスパッタ成膜により成膜を行った基板である。
取得したアルミニウム酸化物物品の同定のために、TEM、SEM及びXPSの測定を行った。
TEMによりアルミニウム酸化物物品表面から内面に向かう深さ方向において、アルミニウム酸化物物品全体が観察できる且つ、海島構造を確認できるTEM画像を取得した。図9(10万倍)に示す。TEM画像から海部と島部を有する海島構造をしていることが確認された。次にTEMの観察倍率を150万倍に上げて観察したTEM画像より、島部は粒の周辺が結晶化していることが分かった。粒周辺の濃淡が明らかであり、その濃淡の差異により粒と識別できる場所を島部と識別した。
実施例1と同様の画像処理を行った。図10に島部を認識した結果を示す。その後、島部の各領域及び全体の粒径の平均値、島部の各領域に対する粒径の比率、島部の各領域に対する個数の比率を算出した。結果を表1に示す。
SEMにより、アルミニウム酸化物物品の基材からの厚さを明らかにした。アルミニウム酸化物物品の基材からの厚さは約339nmであった。
アルミニウム酸化物物品表面から基材までのアルゴンエッチングに要した時間は7分であった。アルミニウム酸化物と基材(LiCoO2)の境界面の判断は、基材であるさらに、LiCoO2のCoの2p軌道のピークで行った。
SEMにより求めたアルミニウム酸化物物品の基材からの厚さと、アルミニウム酸化物物品表面から基材までのアルゴンエッチングに要した時間を用いてエッチング速度を算出した。計算の結果、エッチング速度は48nm/分となった。
求めたエッチング速度から、測定したアルミニウム酸化物物品の、アルミニウム酸化物物品表面から基材の方向における測定場所は、アルミニウム酸化物表面から48nm、194nm、339nmの場所であることを特定した。
アルミニウム酸化物物品表面から内面へ向かう深さ方向においての、AlとOの組成の比率から、AlとOの組成はすべての場所でほとんど変化がないことが確認された。AlとOの組成の比率を表6に示す。
SEMにより、アルミニウム酸化物物品の基材からの厚さを明らかにした。アルミニウム酸化物物品の基材からの厚さは約339nmであった。
アルミニウム酸化物物品表面から基材までのアルゴンエッチングに要した時間は7分であった。アルミニウム酸化物と基材(LiCoO2)の境界面の判断は、基材であるさらに、LiCoO2のCoの2p軌道のピークで行った。
SEMにより求めたアルミニウム酸化物物品の基材からの厚さと、アルミニウム酸化物物品表面から基材までのアルゴンエッチングに要した時間を用いてエッチング速度を算出した。計算の結果、エッチング速度は48nm/分となった。
求めたエッチング速度から、測定したアルミニウム酸化物物品の、アルミニウム酸化物物品表面から基材の方向における測定場所は、アルミニウム酸化物表面から48nm、194nm、339nmの場所であることを特定した。
アルミニウム酸化物物品表面から内面へ向かう深さ方向においての、AlとOの組成の比率から、AlとOの組成はすべての場所でほとんど変化がないことが確認された。AlとOの組成の比率を表6に示す。
次に、Alの2p軌道のピークを2つのピーク、分離ピーク1と分離ピーク2に分離を行った。アルミニウム酸化物物品表面から内面へ向かう深さ方向において、すべての場所で、分離ピーク1及び分離ピーク2のピーク位置は一定であった。ピーク分離には、解析ソフトOriginePro2015のピークフィット機能により、ガウス関数を使用した。
アルミニウム酸化物物品表面から内面に向かう深さ方向において、基材表面に近づくと、分離ピーク2の比率が増加することがわかった。このことから、アルミニウム酸化物物品表面から内面に向かう深さ方向において、アルミニウム原子の結合状態が一定ではないことがわかった。
(比較例1)
基材であるPET基板の特性を調べるために、鉛筆硬度試験及びガスバリア試験を行った。
ガスバリア試験の結果を表2に示す。
基材であるPET基板の特性を調べるために、鉛筆硬度試験及びガスバリア試験を行った。
ガスバリア試験の結果を表2に示す。
(比較例2)
焼成温度を400℃、焼成時間を2分とし、基材をガラス基板に変更した以外は実施例1と同様にし、アルミニウム酸化物物品を取得した。アルミニウム酸化物物品の特性を評価するために鉛筆硬度試験を行った。鉛筆硬度試験の結果を表3に示す。
焼成温度を400℃、焼成時間を2分とし、基材をガラス基板に変更した以外は実施例1と同様にし、アルミニウム酸化物物品を取得した。アルミニウム酸化物物品の特性を評価するために鉛筆硬度試験を行った。鉛筆硬度試験の結果を表3に示す。
(実施例5)
焼成温度を400℃、焼成時間を5分、10分、30分、60分とし、基材をガラス基板に変更した以外は実施例1と同様にし、アルミニウム酸化物物品を取得した。
アルミニウム酸化物物品の特性を評価するために鉛筆硬度試験を行った。
鉛筆硬度試験の結果を表3に示す。
焼成温度を400℃、焼成時間を5分、10分、30分、60分とし、基材をガラス基板に変更した以外は実施例1と同様にし、アルミニウム酸化物物品を取得した。
アルミニウム酸化物物品の特性を評価するために鉛筆硬度試験を行った。
鉛筆硬度試験の結果を表3に示す。
(比較例3)
焼成時間を2分、5分とし、基材をPET基板に変更した以外は実施例1と同様にし、アルミニウム酸化物物品を取得した。
アルミニウム酸化物物品の特性を評価するために鉛筆硬度試験を行った。
鉛筆硬度試験の結果を表3に示す。
焼成時間を2分、5分とし、基材をPET基板に変更した以外は実施例1と同様にし、アルミニウム酸化物物品を取得した。
アルミニウム酸化物物品の特性を評価するために鉛筆硬度試験を行った。
鉛筆硬度試験の結果を表3に示す。
(実施例6)
焼成時間を10分とし、基材をPET基板に変更した以外は実施例1と同様にし、アルミニウム酸化物物品を取得した。
アルミニウム酸化物物品の特性を評価するために鉛筆硬度試験を行った。
鉛筆硬度試験の結果を表3に示す。
焼成時間を10分とし、基材をPET基板に変更した以外は実施例1と同様にし、アルミニウム酸化物物品を取得した。
アルミニウム酸化物物品の特性を評価するために鉛筆硬度試験を行った。
鉛筆硬度試験の結果を表3に示す。
(実施例7)
焼成温度を75℃、焼成時間を10分とし、基材をPET基板に変更した以外は実施例1と同様にし、アルミニウム酸化物物品を取得した。
アルミニウム酸化物物品の特性を評価するために鉛筆硬度試験を行った。
鉛筆硬度試験の結果を表3に示す。
焼成温度を75℃、焼成時間を10分とし、基材をPET基板に変更した以外は実施例1と同様にし、アルミニウム酸化物物品を取得した。
アルミニウム酸化物物品の特性を評価するために鉛筆硬度試験を行った。
鉛筆硬度試験の結果を表3に示す。
(実施例8)
コバルト酸リチウム(Aldrich製、99.8%trace metals basis、以下、LiCoO2と略記)は1000℃、5kPaで約3時間乾燥したものを用いた。窒素気流下、前処理した20gのLiCoO2にNMP、9.3gを加え、スラリー状に撹拌した。このスラリー溶液に合成例1で合成した溶液A(アルミ濃度6.2wt%)を0.6g(アルミナ換算でLiCoO2、100質量部に対して0.5質量部)加え、一晩撹拌した。次にエバポレーターを用いて溶媒を留去したあと、大気中でるつぼに移し、200℃の温度条件下、2時間焼成処理を行った。ICP発行分光分析装置を用いて、得られたアルミニウム酸化物被覆LiCoO2中のアルミ濃度を測定した結果、アルミ濃度は0.15wt%とほぼ理論値通りのアルミ濃度である事が確認された。
コバルト酸リチウム(Aldrich製、99.8%trace metals basis、以下、LiCoO2と略記)は1000℃、5kPaで約3時間乾燥したものを用いた。窒素気流下、前処理した20gのLiCoO2にNMP、9.3gを加え、スラリー状に撹拌した。このスラリー溶液に合成例1で合成した溶液A(アルミ濃度6.2wt%)を0.6g(アルミナ換算でLiCoO2、100質量部に対して0.5質量部)加え、一晩撹拌した。次にエバポレーターを用いて溶媒を留去したあと、大気中でるつぼに移し、200℃の温度条件下、2時間焼成処理を行った。ICP発行分光分析装置を用いて、得られたアルミニウム酸化物被覆LiCoO2中のアルミ濃度を測定した結果、アルミ濃度は0.15wt%とほぼ理論値通りのアルミ濃度である事が確認された。
TEMによりアルミニウム酸化物物品表面から内面に向かう深さ方向において、アルミニウム酸化物物品全体が観察できる且つ、海島構造を確認できるTEM画像を取得した。TEM画像から海部と島部を有する海島構造をしていることが確認された。次にTEMの観察倍率を150万倍に上げて観察したTEM画像より、島部は粒の周辺が結晶化していることが分かった。粒周辺の濃淡が明らかであり、その濃淡の差異により粒と識別できる場所を島部と識別した。TEM画像から島部が一様に点在している状態であることが分かった。
得られたアルミニウム酸化物物品被覆LiCoO2に導電助剤としてアセチレンブラック、バインダーとしてポリフッ化ビニリデン(PVDF)をアルミニウム酸化物被覆LiCoO2:アセチレンブラック:PVDF=94:3:3となるように配合し、NMPを用いてスラリー化したものをアルミ製集電体上に一定の膜厚で塗布し、乾燥させて正極シートを得た。
電解液溶媒としてエチレンカーボネート(以下ECと略す)、エチルメチルカーボネート(以下EMCと略す)を体積比3:7の割合で混合した溶媒(キシダ化学製電池グレード)を用い、混合溶媒に電解質として六フッ化リン酸リチウム(LiPF6)を1.0mol/L溶解させたものを電解液として用いた。
負極活物質に金属リチウム箔(本荘ケミカル製、0.5mm厚)、セパレータに無機フィラー含有ポリオレフィン多孔質膜を用いて、図11に示した構造のコイン型セルを用いたリチウム二次電池を作成した。リチウム二次電池はセパレータ6を挟んで正極1、負極4を対向配置し、負極ステンレス製キャップ3にステンレス製板バネ5を設置し、負極4、セパレータ6および正極1からなる積層体をコイン型セル内に収納した。この積層体に本発明の電解液を注入した後、ガスケット7を配置後、正極ステンレス製キャップ2をかぶせ、コイン型セルケースを加締めることで作成した。
このアルミニウム酸化物被覆LiCoO2正極と金属リチウムによって作成したコインセル型リチウム二次電池(ハーフセル)を25℃の恒温条件下、0.1CmAの充電電流で上限電圧を4.2Vとして充電し、続いて0.1CmAの放電電流で3.0Vとなるまで放電した。この操作を3回行った後に50℃の恒温条件下、1CmAの充電電流で4.5Vまで定電流‐低電圧充電を行い、1CmAの放電電流で終止電圧3.0Vまで定電流放電を行った。このときの放電容量を初期放電容量とし、この操作を100回繰り返した際の放電容量を測定し、100サイクル後の放電容量/初期放電容量比をサイクル維持率として比較を行った。その結果、100サイクル後の放電容量維持率は96%であった。
(比較例4)
LiCoO2の被覆処理を行わなかったこと以外は、実施例9と同様の方法で正極シートおよびコインセル型リチウム二次電池を作製し、充放電試験を行った。その結果、100サイクル後の放電容量維持率は14%であった。
LiCoO2の被覆処理を行わなかったこと以外は、実施例9と同様の方法で正極シートおよびコインセル型リチウム二次電池を作製し、充放電試験を行った。その結果、100サイクル後の放電容量維持率は14%であった。
(実施例9)
LiCoO2(Aldrich製)10gにNMP4.6gを混合し、窒素雰囲気下、合成例1と同様の方法で合成した溶液A(アルミ濃度6.2wt%)0.42gを混合した。この混合した溶液に還流装置を取り付け、窒素気流下、50℃に加熱し、6時間継続して撹拌した。この溶液を冷却後、アセチレンブラック(AB)、PVdFをLiCoO2:AB:PVdF=94:3:3の重量比で配合し、NMPを用いてスラリー化したものをアルミ集電体に一定の膜厚で塗布し、乾燥させて正極シートを得た。得られた正極シートを用いて、作成例1と同様の方法でコインセル型リチウム二次電池を作成した。
LiCoO2(Aldrich製)10gにNMP4.6gを混合し、窒素雰囲気下、合成例1と同様の方法で合成した溶液A(アルミ濃度6.2wt%)0.42gを混合した。この混合した溶液に還流装置を取り付け、窒素気流下、50℃に加熱し、6時間継続して撹拌した。この溶液を冷却後、アセチレンブラック(AB)、PVdFをLiCoO2:AB:PVdF=94:3:3の重量比で配合し、NMPを用いてスラリー化したものをアルミ集電体に一定の膜厚で塗布し、乾燥させて正極シートを得た。得られた正極シートを用いて、作成例1と同様の方法でコインセル型リチウム二次電池を作成した。
作成したアルミニウム酸化物物品被覆LiCoO2正極と金属リチウムによって作成したコインセル型リチウム二次電池(ハーフセル)を25℃の恒温条件下、0.1CmAの充電電流で上限電圧を4.2Vとして充電し、続いて0.1CmAの放電電流で3.0Vとなるまで放電した。この操作を3回行った後に25℃の恒温条件下、1CmAの充電電流で4.5Vまで定電流‐低電圧充電を行い、1CmAの放電電流で終止電圧3.0Vまで定電流放電を行った。このときの放電容量を初期放電容量とし、この操作を100回繰り返した際の放電容量を測定し、100サイクル後の放電容量/初期放電容量比をサイクル維持率として比較を行った。その結果、100サイクル後の放電世横領維持率は27%であった。
本発明は、電極用被膜、硬化膜、ガス遮蔽膜などとして有用なアルミニウム酸化物物品に関する分野に有用である。
1 正極
2 正極ステンレス製キャップ
3 負極ステンレス製キャップ
4 負極
5 ステンレス製板バネ
6 無機フィラー含有ポリオレフィン多孔質セパレータ
7 ガスケット
2 正極ステンレス製キャップ
3 負極ステンレス製キャップ
4 負極
5 ステンレス製板バネ
6 無機フィラー含有ポリオレフィン多孔質セパレータ
7 ガスケット
Claims (13)
- 少なくともアルミニウム原子と酸素原子から構成されたアルミニウム酸化物物品であって、
透過電子顕微鏡観察での前記アルミニウム酸化物物品の断面は、結晶格子像が確認できる結晶化部分と結晶格子像が確認できない非結晶部分を含み、
前記結晶化部分を含む孤立した部分と連続した非結晶部分とを含む海島構造を有し(但し、前記孤立した部分が海島構造の島部に相当し、前記連続した非結晶部分が海島構造の海部に相当する)、かつ
複数の前記島部が前記海部に一様に点在する、前記アルミニウム酸化物物品。 - 前記島部は、中心部に結晶格子像が確認できない構造であり、周辺部が前記結晶化部分である請求項1に記載のアルミニウム酸化物物品。
- 前記島部の複数が海に一様に点在する海島構造が、前記断面の画像中の少なくとも100nm×100nmの領域において観察される請求項1又は2に記載のアルミニウム酸化物物品。
- 前記物品は、基材上に設けられた薄膜、独立膜、又は独立塊である請求項1~3のいずれか1項に記載のアルミニウム酸化物物品。
- 請求項1~4のいずれか1項に記載のアルミニウム酸化物物品であって、アルミニウム酸化物物品の断面の透過電子顕微鏡観察画像を物品表面から深さ方向に均等に3分割し、かつ最表領域に存在する島部の粒径の平均値をA、中間領域に存在する島部の粒径の平均値をB、最深領域に存在する島部の粒径の平均値をC、物品断面の全体に存在する島部の粒径の平均値をXとしたときに、0.9<A/X、B/X、C/X<1.1の関係を満たす、アルミニウム酸化物物品。
- 請求項1~5のいずれか1項に記載のアルミニウム酸化物物品であって、アルミニウム酸化物物品の断面の透過電子顕微鏡観察画像を物品表面から深さ方向に均等に3分割し、かつ最表領域の島部の数をa、中間領域の島部の数をb、最深層の島部の数をc、全体の島の数をYとしたときに、0.27<a/Y、b/Y、c/Y<0.40の関係を満たす、アルミニウム酸化物物品。
- 鉛筆硬度がFであるか、またはFより硬い、請求項1~6のいずれか1項に記載のアルミニウム酸化物物品。
- アルキルアルミニウムの部分加水分解物を含有する溶液から、アルキルアルミニウムの部分加水分解物を含有する乾燥物を調製する工程、及び
前記乾燥物を70℃以上の温度で加熱して、少なくともアルミニウム原子と酸素原子から構成されたアルミニウム酸化物物品を得る工程、を含み、
但し、前記加熱は、下記(1)~(3)を満足する構造を有するアルミニウム酸化物物品が得られるまで実施する、アルミニウム酸化物物品の製造方法。
(1)透過電子顕微鏡観察での前記アルミニウム酸化物物品の断面が、結晶格子像が確認できる結晶化部分と結晶格子像が確認できない非結晶部分を含み、
(2)前記結晶化部分を含む孤立した部分と連続した非結晶部分とを含む海島構造を有し(但し、前記孤立した部分が海島構造の島部に相当し、前記連続した非結晶部分が海島構造の海部に相当する)、及び
(3)前記島部の複数が前記海部に一様に点在する。 - 前記加熱の条件は、温度100℃においては焼成時間10分以上であり、400℃においては焼成時間2分以上である、請求項8に記載の製造方法。
- アルキルアルミニウムの部分加水分解物は、一般式(1)のアルキルアルミニウムに対するモル比が1.3以下の水を用いて得られる、請求項8~10のいずれか1項に記載の製造方法。
- 前記乾燥物を基材上に調製する、請求項8~11のいずれか1項に記載の製造方法。
- 前記アルミニウム酸化物物品の表面から最深部までの厚さは、5nm~5μmの範囲である、請求項8~12のいずれか1項に記載の製造方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/495,961 US11482709B2 (en) | 2017-03-22 | 2018-03-14 | Aluminum oxide article |
KR1020197029810A KR102418925B1 (ko) | 2017-03-22 | 2018-03-14 | 알루미늄 산화물 물품 |
CN201880019986.3A CN110520383B (zh) | 2017-03-22 | 2018-03-14 | 铝氧化物物品 |
EP18771673.3A EP3604224B1 (en) | 2017-03-22 | 2018-03-14 | Aluminum oxide article |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017-056166 | 2017-03-22 | ||
JP2017056166A JP6887276B2 (ja) | 2017-03-22 | 2017-03-22 | アルミニウム酸化物物品 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018174114A1 true WO2018174114A1 (ja) | 2018-09-27 |
Family
ID=63585812
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/011242 WO2018174114A1 (ja) | 2017-03-22 | 2018-03-14 | アルミニウム酸化物物品 |
Country Status (7)
Country | Link |
---|---|
US (1) | US11482709B2 (ja) |
EP (1) | EP3604224B1 (ja) |
JP (1) | JP6887276B2 (ja) |
KR (1) | KR102418925B1 (ja) |
CN (1) | CN110520383B (ja) |
TW (1) | TWI743337B (ja) |
WO (1) | WO2018174114A1 (ja) |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08183139A (ja) | 1994-12-28 | 1996-07-16 | Tokyo Seishi Kk | 紙容器 |
JP2000071396A (ja) | 1998-05-26 | 2000-03-07 | Nakato Kenkyusho:Kk | ガスバリアー性積層フィルム及びその製造方法 |
JP2001139888A (ja) | 1999-11-11 | 2001-05-22 | Sumitomo Osaka Cement Co Ltd | ハードコート性コーティング組成物、その製造方法及びハードコート性物品 |
JP2001143703A (ja) | 1999-11-11 | 2001-05-25 | Nichia Chem Ind Ltd | リチウム二次電池用正極活物質 |
JP2002151077A (ja) | 2000-11-14 | 2002-05-24 | Toda Kogyo Corp | 非水電解質二次電池用正極活物質及びその製造法 |
JP2002187738A (ja) | 2000-12-20 | 2002-07-05 | Nihon University | ハードコート膜形成方法 |
JP2010140737A (ja) | 2008-12-11 | 2010-06-24 | Sanyo Electric Co Ltd | 非水電解質二次電池 |
WO2012053433A1 (ja) * | 2010-10-22 | 2012-04-26 | Jsr株式会社 | アルミナ膜形成方法 |
JP2013216760A (ja) | 2012-04-06 | 2013-10-24 | Kawaken Fine Chem Co Ltd | コーティング組成物及びアルミナ薄膜の製造方法 |
JP2016043298A (ja) * | 2014-08-21 | 2016-04-04 | 東ソー・ファインケム株式会社 | アルミニウム酸化物膜塗布形成用組成物、アルミニウム酸化物膜を有する物品の製造方法、及びアルミニウム酸化物膜を有する物品 |
JP2016108313A (ja) * | 2014-11-26 | 2016-06-20 | 東ソー・ファインケム株式会社 | 化学的に安定なアルキルアルミニウム溶液、アルキルアルミニウム加水分解組成物溶液及び酸化アルミニウム薄膜の製造方法 |
JP2016143490A (ja) | 2015-01-30 | 2016-08-08 | 住友金属鉱山株式会社 | 被膜形成剤とその製造方法及び非水系電解質二次電池用正極活物質とその製造方法 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2847569B1 (fr) * | 2002-11-21 | 2005-01-21 | Commissariat Energie Atomique | Procede de preparation d'alumines hydratees monolithiques, d'alumines amorphes ou cristallisees, d'aluminates et de materiaux composites par oxydation d'aluminium metallique ou d'alliage d'aluminium |
EP2644661B1 (en) * | 2012-03-29 | 2018-12-05 | Canon Kabushiki Kaisha | Precursor sol of aluminum oxide and method for manufacturing the same, method for manufacturing optical member, optical member, and optical system |
JP6237221B2 (ja) * | 2013-12-26 | 2017-11-29 | 旭硝子株式会社 | 非晶質酸化物およびそのエレクトライドの薄膜の製造方法 |
JP5667724B1 (ja) * | 2014-08-20 | 2015-02-12 | 巴工業株式会社 | デカンタ型遠心分離機及びデカンタ型遠心分離機の運転方法 |
KR102619467B1 (ko) | 2014-08-21 | 2023-12-29 | 토소 화인켐 가부시키가이샤 | 화학적으로 안정한 알킬 알루미늄 용액, 알킬 알루미늄 가수분해 조성물 용액, 알루미늄 산화물막 도포형성용 조성물, 알루미늄 산화물막을 구비하는 물품, 그의 제조 방법, 산화알루미늄 박막의 제조 방법, 부동태막의 제조 방법, 부동태막, 그리고 그것을 이용한 태양 전지 소자 |
-
2017
- 2017-03-22 JP JP2017056166A patent/JP6887276B2/ja active Active
-
2018
- 2018-03-14 US US16/495,961 patent/US11482709B2/en active Active
- 2018-03-14 CN CN201880019986.3A patent/CN110520383B/zh active Active
- 2018-03-14 EP EP18771673.3A patent/EP3604224B1/en active Active
- 2018-03-14 KR KR1020197029810A patent/KR102418925B1/ko active IP Right Grant
- 2018-03-14 WO PCT/JP2018/011242 patent/WO2018174114A1/ja active Search and Examination
- 2018-03-21 TW TW107109597A patent/TWI743337B/zh active
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08183139A (ja) | 1994-12-28 | 1996-07-16 | Tokyo Seishi Kk | 紙容器 |
JP2000071396A (ja) | 1998-05-26 | 2000-03-07 | Nakato Kenkyusho:Kk | ガスバリアー性積層フィルム及びその製造方法 |
JP2001139888A (ja) | 1999-11-11 | 2001-05-22 | Sumitomo Osaka Cement Co Ltd | ハードコート性コーティング組成物、その製造方法及びハードコート性物品 |
JP2001143703A (ja) | 1999-11-11 | 2001-05-25 | Nichia Chem Ind Ltd | リチウム二次電池用正極活物質 |
JP2002151077A (ja) | 2000-11-14 | 2002-05-24 | Toda Kogyo Corp | 非水電解質二次電池用正極活物質及びその製造法 |
JP2002187738A (ja) | 2000-12-20 | 2002-07-05 | Nihon University | ハードコート膜形成方法 |
JP2010140737A (ja) | 2008-12-11 | 2010-06-24 | Sanyo Electric Co Ltd | 非水電解質二次電池 |
WO2012053433A1 (ja) * | 2010-10-22 | 2012-04-26 | Jsr株式会社 | アルミナ膜形成方法 |
JP2013216760A (ja) | 2012-04-06 | 2013-10-24 | Kawaken Fine Chem Co Ltd | コーティング組成物及びアルミナ薄膜の製造方法 |
JP2016043298A (ja) * | 2014-08-21 | 2016-04-04 | 東ソー・ファインケム株式会社 | アルミニウム酸化物膜塗布形成用組成物、アルミニウム酸化物膜を有する物品の製造方法、及びアルミニウム酸化物膜を有する物品 |
JP2016108313A (ja) * | 2014-11-26 | 2016-06-20 | 東ソー・ファインケム株式会社 | 化学的に安定なアルキルアルミニウム溶液、アルキルアルミニウム加水分解組成物溶液及び酸化アルミニウム薄膜の製造方法 |
JP2016143490A (ja) | 2015-01-30 | 2016-08-08 | 住友金属鉱山株式会社 | 被膜形成剤とその製造方法及び非水系電解質二次電池用正極活物質とその製造方法 |
Non-Patent Citations (3)
Title |
---|
"Oxides and Hydroxides of Aluminum", 1987, ALCOA LABORATORIES |
BOLT P. H. ET AL., SURF. SCI., vol. 329, 1995, pages 227 |
SARAPATKA T. J., J. PHYS. CHEM., vol. 97, 1993, pages 11274 |
Also Published As
Publication number | Publication date |
---|---|
EP3604224B1 (en) | 2023-10-11 |
KR20190127813A (ko) | 2019-11-13 |
EP3604224A1 (en) | 2020-02-05 |
US20200144623A1 (en) | 2020-05-07 |
EP3604224A4 (en) | 2021-01-06 |
TW201840480A (zh) | 2018-11-16 |
KR102418925B1 (ko) | 2022-07-08 |
CN110520383A (zh) | 2019-11-29 |
CN110520383B (zh) | 2023-02-17 |
TWI743337B (zh) | 2021-10-21 |
US11482709B2 (en) | 2022-10-25 |
JP2018158864A (ja) | 2018-10-11 |
JP6887276B2 (ja) | 2021-06-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Cheema et al. | Phase-controlled synthesis of ZrO 2 nanoparticles for highly transparent dielectric thin films | |
Brezesinski et al. | Generation of Self‐Assembled 3D Mesostructured SnO2 Thin Films with Highly Crystalline Frameworks | |
CN110785380B (zh) | 包括镍酸锂复合氧化物的正电极活性物质颗粒和非水性电解质二次电池 | |
Barreca et al. | CVD of nanosized ZnS and CdS thin films from single-source precursors | |
CN112074918A (zh) | Lgps类固体电解质和制造方法 | |
KR20140052015A (ko) | 규소 분말을 포함하는 조성물 및 규소 분말의 결정성의 제어 방법 | |
JP7397409B2 (ja) | Li-Ni複合酸化物粒子粉末及び非水電解質二次電池 | |
KR20120007472A (ko) | 높은 광추출 성능을 갖는 무기 산란막 | |
US20240140805A1 (en) | Graphene monoxide compositions of matter and electrodes comprising them | |
Deki et al. | α-Ni (OH) 2 thin films fabricated by liquid phase deposition method | |
Nguyen et al. | Dual protective mechanism of AlPO4 coating on high-nickel cathode material for high energy density and long cycle life lithium-ion batteries | |
Makvandi et al. | Al-doped ZnO-coated LiCoO2 thin-film electrode: Understanding the impact of a coating layer on the degradation mechanism | |
JP2016014128A (ja) | 二次電池及びそれに用いる構造体 | |
WO2018174114A1 (ja) | アルミニウム酸化物物品 | |
Hussein et al. | Atomic-scale investigation of the reversible α-to ω-phase lithium ion charge–discharge characteristics of electrodeposited vanadium pentoxide nanobelts | |
Pärna et al. | Effect of different annealing temperatures and SiO2/Si (100) substrate on the properties of nickel containing titania thin sol–gel films | |
Oyedotun et al. | Metal-organic chemical vapour deposition of lithium manganese oxide thin films via single solid source precursor | |
JP5713257B2 (ja) | 合成スメクタイトペースト、合成スメクタイト自立膜、合成スメクタイト膜及び合成スメクタイト膜の製造方法 | |
Ayoub et al. | Enhancements of Structural and Optical Properties of MgO: SnO2 Nanostructure Films | |
Petersen et al. | Atmospheric plasma polymer films as templates for inorganic synthesis to yield functional hybrid coatings | |
WO2011054787A1 (en) | Process for preparing mesoporous materials | |
Bouraoui et al. | Microstructural, functional group and electrical properties of nano-structured ITO-NiO layer via sol-gel process | |
Prepelita et al. | Growth of ZnO: Al thin films onto different substrates | |
Zegadi et al. | Influence of iron doping on morphological, structural and optical properties of zinc oxide thin films prepared by dip-coating method | |
Panžić et al. | Structural and electrical point of view on addressing the organisation of the constituting domains in DC magnetron sputtered AZO films |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18771673 Country of ref document: EP Kind code of ref document: A1 |
|
DPE1 | Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101) | ||
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20197029810 Country of ref document: KR Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2018771673 Country of ref document: EP Effective date: 20191022 |