WO2018173918A1 - 弾性波装置 - Google Patents

弾性波装置 Download PDF

Info

Publication number
WO2018173918A1
WO2018173918A1 PCT/JP2018/010227 JP2018010227W WO2018173918A1 WO 2018173918 A1 WO2018173918 A1 WO 2018173918A1 JP 2018010227 W JP2018010227 W JP 2018010227W WO 2018173918 A1 WO2018173918 A1 WO 2018173918A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
film
idt electrode
region
elastic wave
Prior art date
Application number
PCT/JP2018/010227
Other languages
English (en)
French (fr)
Inventor
克也 大門
康政 谷口
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2019507612A priority Critical patent/JP6777221B2/ja
Priority to KR1020197027057A priority patent/KR102306238B1/ko
Priority to CN201880017679.1A priority patent/CN110419161B/zh
Publication of WO2018173918A1 publication Critical patent/WO2018173918A1/ja
Priority to US16/566,987 priority patent/US11621687B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/125Driving means, e.g. electrodes, coils
    • H03H9/145Driving means, e.g. electrodes, coils for networks using surface acoustic waves
    • H03H9/14538Formation
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/0004Impedance-matching networks
    • H03H9/0009Impedance-matching networks using surface acoustic wave devices
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02543Characteristics of substrate, e.g. cutting angles
    • H03H9/02574Characteristics of substrate, e.g. cutting angles of combined substrates, multilayered substrates, piezoelectrical layers on not-piezoelectrical substrate
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02818Means for compensation or elimination of undesirable effects
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02818Means for compensation or elimination of undesirable effects
    • H03H9/02858Means for compensation or elimination of undesirable effects of wave front distortion
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02818Means for compensation or elimination of undesirable effects
    • H03H9/02881Means for compensation or elimination of undesirable effects of diffraction of wave beam
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/125Driving means, e.g. electrodes, coils
    • H03H9/145Driving means, e.g. electrodes, coils for networks using surface acoustic waves
    • H03H9/14544Transducers of particular shape or position
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/64Filters using surface acoustic waves
    • H03H9/6489Compensation of undesirable effects
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/25Constructional features of resonators using surface acoustic waves

Definitions

  • the present invention relates to an elastic wave device using Rayleigh waves.
  • the transverse mode ripple is suppressed by reducing the sound speed in the edge region. More specifically, edge regions are provided at both ends of the electrode fingers in the extending direction in a region where the first and second electrode fingers overlap in the elastic wave propagation direction.
  • the film thickness of the dielectric film in the edge region is set larger than the film thickness of the dielectric film on the central region sandwiched between the edge regions. Thereby, the sound speed in the edge region is lowered.
  • the mass applied to the IDT electrode has been increased by increasing the thickness of the laminated dielectric film. As a result, it was thought that the speed of sound could be lowered.
  • the inventors of the present application have found that when the thickness of the IDT electrode is large, the sound velocity is increased when the thickness of the dielectric film in the edge region is increased. If the sound speed in the edge region becomes relatively high, the transverse mode cannot be suppressed.
  • an object of the present invention is to provide an elastic wave device that can sufficiently reduce the sound speed in the edge region even when the thickness of the IDT electrode is large.
  • the elastic wave device is provided on the piezoelectric substrate so as to cover the piezoelectric substrate having an elliptical reverse velocity surface, an IDT electrode provided on the piezoelectric substrate, and the IDT electrode.
  • the direction orthogonal to the extending direction of the first and second electrode fingers is an elastic wave propagation direction, and the first electrode finger and the second electrode finger propagate through the elastic wave.
  • a region overlapping when viewed from the direction is an intersecting region, an extending direction of the first and second electrode fingers is an intersecting width direction, an electrode density (%) in the IDT electrode is y (%), and the IDT electrode Wavelength normalized film thickness of 100 h / ⁇ (%) (h is thickness, ⁇ is electrode finger of IDT electrode)
  • the crossing region of the IDT electrode is provided in a central region in the center of the crossing width direction, and on the first and first outer sides in the crossing width direction of the central region.
  • the thickness of the dielectric film on the first and second edge regions is smaller than the thickness of the dielectric film in the central region.
  • the IDT electrode is made of Pt, W, Mo, Ta, Au, or Cu, and the wavelength normalized film thickness x (%) of the IDT electrode is the IDT.
  • the value shown in Table 1 below is set. In this case, the transverse mode can be more effectively suppressed.
  • the IDT electrode includes a laminated metal film in which a plurality of metal films are laminated, and y is a density of the laminated metal film. In this case, even when an IDT electrode made of a laminated metal film is used, ripple due to the transverse mode can be effectively suppressed.
  • first electrode finger or the second electrode finger exists outside the first and second edge regions in the cross width direction.
  • First and second gap regions are provided.
  • a first dummy electrode finger whose tip is opposed to the tip of the first electrode finger across the second gap region, 2 electrode fingers and a second dummy electrode finger facing the tip across the first gap region, on the outer side in the cross width direction of the first and second gap regions, First and second dummy regions are provided, respectively.
  • the piezoelectric substrate is made of lithium niobate.
  • the piezoelectric substrate is laminated directly or indirectly on the piezoelectric film and the piezoelectric film, and propagates more than the elastic wave propagating through the piezoelectric film.
  • a high sound velocity material layer made of a high sound velocity material having a high sound velocity of the bulk wave.
  • the acoustic wave is laminated between the piezoelectric film and the high-sonic material layer, and the acoustic velocity of the propagating bulk wave propagates through the piezoelectric film. And a low sound velocity material layer that is slower than the sound velocity.
  • the speed of sound in the edge region can be reliably lowered even when the IDT electrode is thick. Therefore, transverse mode ripple can be effectively suppressed.
  • FIG. 1 is a cross-sectional view of the elastic wave device according to the first embodiment of the present invention along the cross width direction.
  • FIG. 2 is a schematic plan view showing an electrode structure of the acoustic wave device according to the first embodiment of the present invention.
  • FIG. 3 is a diagram showing the relationship between the wavelength normalized film thickness 100 h / ⁇ (%) of the SiO 2 film and the acoustic wave velocity (m / sec) when the IDT electrode is made of Pt.
  • FIG. 4 is a front cross-sectional view for explaining an acoustic wave device according to a second embodiment of the present invention.
  • FIG. 5 is a cross-sectional view taken along the cross width direction in the elastic wave device according to the second embodiment.
  • FIG. 6 is a diagram showing the relationship between the wavelength normalized film thickness 100 h / ⁇ (%) of the SiO 2 film and the acoustic wave velocity (m / sec) when the IDT electrode is made of Au.
  • FIG. 7 is a diagram showing the relationship between the wavelength normalized film thickness 100 h / ⁇ (%) of the SiO 2 film and the acoustic wave velocity (m / second) when the IDT electrode is made of W.
  • FIG. 8 is a diagram showing the relationship between the wavelength normalized film thickness 100 h / ⁇ (%) of the SiO 2 film and the acoustic wave velocity (m / sec) when the IDT electrode is made of Ta.
  • FIG. 9 is a diagram showing the relationship between the wavelength normalized film thickness 100 h / ⁇ (%) of the SiO 2 film and the acoustic wave velocity (m / sec) when the IDT electrode is made of Mo.
  • FIG. 10 is a diagram showing the relationship between the wavelength normalized film thickness 100 h / ⁇ (%) of the SiO 2 film and the acoustic wave velocity (m / sec) when the IDT electrode is made of Cu.
  • FIG. 11 shows the wavelength normalized film thickness 100 h / ⁇ (%) of the SiO 2 film and the acoustic wave velocity (m / second) when the IDT electrode is composed of a laminated metal film of Mo film and Al film. It is a figure which shows the relationship.
  • FIG. 10 is a diagram showing the relationship between the wavelength normalized film thickness 100 h / ⁇ (%) of the SiO 2 film and the acoustic wave velocity (m / sec) when the IDT electrode is made of Cu.
  • FIG. 11 shows
  • FIG. 12 shows the wavelength normalized film thickness 100 h / ⁇ (%) of the SiO 2 film and the acoustic wave velocity (m / second) when the IDT electrode is made of a laminated metal film of a Pt film and an Al film. It is a figure which shows the relationship.
  • FIG. 13 is a diagram showing the relationship between the electrode normalized density (%) and the wavelength normalized film thickness 100 h / ⁇ (%) of the lower limit electrode at which the sound speed decreases as the film thickness of the SiO 2 film increases. is there.
  • FIG. 1 is a cross-sectional view of the elastic wave device according to the first embodiment of the present invention along the cross width direction
  • FIG. 2 is a schematic plan view showing the electrode structure of the elastic wave device of the first embodiment. is there.
  • the dielectric film described later is not shown.
  • the acoustic wave device 1 has a piezoelectric substrate 2.
  • the piezoelectric substrate 2 is made of lithium niobate (LiNbO 3 ).
  • kx is the vertical component of the wave vector
  • ky is the horizontal component of the wave vector
  • k0 is the wave vector in the main propagation direction.
  • An IDT electrode 3 and reflectors 4 and 5 are provided on the piezoelectric substrate 2. Thereby, a 1-port elastic wave resonator is formed.
  • the IDT electrode 3 has first and second bus bars 6 and 7. One end of a plurality of first electrode fingers 8 is connected to the first bus bar 6. One end of a plurality of second electrode fingers 9 is connected to the second bus bar 7. The plurality of first electrode fingers 8 and the plurality of second electrode fingers 9 are interleaved with each other.
  • the IDT electrode 3 includes first and second dummy electrode fingers 10 and 11.
  • One end of the first dummy electrode finger 10 is connected to the second bus bar 7.
  • the tip of the first dummy electrode finger 10 is opposed to the tip of the first electrode finger 8 with a gap in the cross width direction. This gap portion corresponds to a second gap region described later.
  • One end of the second dummy electrode finger 11 is connected to the first bus bar 6.
  • the tip which is the other end is opposed to the tip of the second electrode finger 9 with a gap therebetween.
  • the direction in which the elastic wave propagates is a direction orthogonal to the extending direction of the first and second electrode fingers 8 and 9.
  • the region where the first electrode finger 8 and the second electrode finger 9 overlap is an intersecting region.
  • the dimension of the intersecting region in the extending direction of the first and second electrode fingers 8 and 9 is the intersecting width. Therefore, hereinafter, the direction in which the first and second electrode fingers 8 and 9 extend is referred to as a cross width direction.
  • the cross width direction is orthogonal to the elastic wave propagation direction.
  • FIG. 1 is a cross-sectional view of a portion along the line AA in FIG. 2, that is, a cross-sectional view along the above-described cross width direction. In this cross section, a portion where the first electrode finger 8 and the first dummy electrode finger 10 are opposed to each other with a gap is illustrated.
  • a dielectric film 13 is laminated so as to cover the IDT electrode 3.
  • the dielectric film 13 is a SiO 2 film as a silicon oxide film.
  • the dielectric film 13 may be made of another dielectric material such as SiON.
  • X in silicon oxide SiO X may be other than 2.
  • the film thicknesses of the dielectric film portions 13b and 13c located on both sides in the cross width direction are thinner than the film thickness of the dielectric film portion 13a located in the center of the cross width direction. ing.
  • each region along the cross width direction of the IDT electrode 3 is defined as follows.
  • the intersecting region B is a region where the first electrode finger 8 and the second electrode finger 9 overlap when viewed from the elastic wave propagation direction.
  • the intersecting region B has a central region M and first and second edge regions X1 and X2.
  • the first edge region X1 is located in one outer direction of the central region M in the cross width direction
  • the second edge region X2 is located in the other outer direction of the central region M in the cross width direction.
  • a first gap region C1 is provided on one outer side of the crossing region B in the cross width direction, and a second gap region C2 is provided on the other outer side.
  • a portion where the first gap region C2 is provided is illustrated.
  • the first dummy region D1 is located outside the first gap region C1 in the intersecting width direction
  • the second dummy region D2 is located outside the second gap region C2 in the intersecting width direction.
  • the first and second dummy regions D1 and D2 correspond to portions where the second dummy electrode finger 11 and the first dummy electrode finger 10 exist, respectively.
  • the outer side in the cross width direction of the first dummy region D1 is a first bus bar region E1.
  • the second bus bar region E2 is located outside the second dummy region D2 in the cross width direction.
  • the dielectric film portion 13a is located on the central region M.
  • the dielectric film portion 13b is located above the portion from the first edge region X1 to the first bus bar region E1.
  • the dielectric film portion 13c is provided so as to extend from the second edge region X2 to the second bus bar region E2.
  • the dielectric film portion 13a is located on the central region M, and relatively thin dielectric film portions 13b and 13c are located on the first and second edge regions X1 and X2. is doing.
  • the inventors of the present invention have found for the first time that when the film thickness of the IDT electrode exceeds a certain value, the sound speed increases as the thickness of the dielectric film increases.
  • the acoustic wave device 1 of the present embodiment is characterized in that the electrode density of the IDT electrode 3 is y (%) and the wavelength normalized film thickness 100h / ⁇ (%) of the IDT electrode 3 is x (%).
  • the sound speeds of the first and second edge regions X1 and X2 are lower than the sound speed of the central region M. Therefore, the transverse mode can be effectively suppressed by the sound speed difference, and the transverse mode ripple can be suppressed.
  • this will be described in more detail.
  • FIG. 3 is a diagram showing the relationship between the wavelength normalized film thickness 100 h / ⁇ (%) of the SiO 2 film and the acoustic wave velocity (m / sec) when the IDT electrode is made of Pt.
  • the SiO 2 film covered the entire IDT electrode, and the upper surface of the SiO 2 film was flat.
  • the wavelength normalized film thickness of the IDT electrode 3 is 1.5%, 2%, 2.5%, 3%, 3.5%, 4%, 4% at 100 h / ⁇ (%). The results for each of 5%, 5%, 5.5% and 6% cases are shown.
  • the wavelength normalized thickness of the IDT electrode 3 is less than 3
  • the acoustic velocity is reduced as the wavelength normalized thickness of the SiO 2 film is increased is doing. That is, it is the same as the conventional knowledge.
  • the speed of sound increases as the wavelength normalized film thickness of the SiO 2 film increases.
  • the wavelength normalized film thickness x of the IDT electrode 3 is set to x or more that satisfies the above formula (1).
  • the wavelength normalized film thickness of the IDT electrode 3 shown in FIG. 3 is 3, the above formula (1) is satisfied. Therefore, when the IDT electrode 3 is made of Pt, x satisfying the expression (1) is 3.
  • the thickness of the dielectric film portions 13b and 13c in the first and second edge regions X1 and X2 is larger than the thickness of the dielectric film portion 13a on the central region M. Therefore, the sound speed of the first and second edge regions X1 and X2 is lower than the sound speed of the central region M. That is, the first and second edge regions X1 and X2 are regions of lower sonic velocity than the central region M, and the transverse mode can be suppressed by using the piston mode.
  • the sound speed of the first and second gap regions C1 and C2 is higher than that of the first and second edge regions X1 and X2.
  • the sound speed of the first and second dummy regions D1 and D2 is the first and second edge regions X1 and X2 because the second dummy electrode finger 11 and the first dummy electrode finger 10 are provided. Becomes the same sound speed.
  • the sound velocity is lower than that of the first and second dummy areas D1 and D2 because the entire area is metallized. It becomes the speed of sound.
  • FIG. 4 is a front sectional view of an acoustic wave device according to a second embodiment of the present invention
  • FIG. 5 is a sectional view along the cross width direction.
  • the piezoelectric substrate 22 has a structure in which a high acoustic velocity material layer 22b, a low acoustic velocity material layer 22c, and a piezoelectric film 22d are laminated in this order on a support substrate 22a.
  • the piezoelectric film 22d is made of lithium tantalate (LiTaO 3 ).
  • the low acoustic velocity material layer 22c is made of a material in which the acoustic velocity of the propagating bulk wave is lower than the acoustic velocity of the elastic wave propagating through the piezoelectric film 22d.
  • the high sound velocity material layer 22b is made of a material in which the sound velocity of the propagating bulk wave is higher than the sound velocity of the elastic wave propagating through the piezoelectric film 22d.
  • the material constituting the low sound velocity material layer 22c and the high sound velocity material layer 22b there are no particular limitations on the material constituting the low sound velocity material layer 22c and the high sound velocity material layer 22b, and various materials such as ceramics such as alumina, silicon oxide, silicon oxynitride, and silicon nitride, and DLC are used. Can do. That is, as long as the above sound velocity relationship is satisfied, the high sound velocity material layer 22b and the low sound velocity material layer 22c can be formed using an appropriate material.
  • the support substrate 22a is made of an appropriate material such as silicon or alumina. It should be noted that the high sound velocity material layer 22b may be omitted by configuring the support substrate 22a with a high sound velocity material. Further, the low acoustic velocity material layer 22c is not essential and may be omitted.
  • the piezoelectric film 22d may be laminated on the support substrate 22a and the high sound velocity material layer 22b. Further, a structure in which the piezoelectric film 22d is laminated on a support substrate made of a high sound velocity material may be used.
  • the piezoelectric film 22d is made of lithium tantalate, if the high sound velocity material layer 22b is laminated at least directly or indirectly on the piezoelectric film 22d as in the piezoelectric substrate 22, the piezoelectric film 22d is piezoelectric.
  • the reverse velocity surface of the conductive substrate 22 has an elliptical shape. Therefore, also in this case, as in the case of the first embodiment, if the wavelength normalized film thickness of the IDT electrode 3 becomes a certain value or more according to the electrode density, the thickness of the dielectric film increases. The sound velocity of elastic waves will be high.
  • the dielectric film 23 has relatively thick dielectric film portions 23a, 23d, and 23e and relatively thin dielectric film portions 23b and 23c.
  • the dielectric film portions 23b and 23c are located in regions corresponding to the first and second edge regions X1 and X2 shown in FIG. Therefore, also in the elastic wave device 21 of the second embodiment, the transverse mode can be effectively suppressed by the difference in sound speed between the central region M and the first and second edge regions X1 and X2.
  • the thickness of the dielectric film portions 23d and 23e above the first and second dummy regions and the first and second bus bar regions is the same as the thickness of the dielectric film portion 23a in the central region. May be equal. That is, the thickness of the dielectric film in the outer region in the cross width direction than the first and second edge regions may be larger than the thickness of the dielectric film on the first and second edge regions. Good.
  • the film thickness of the dielectric film portions 23d and 23e may be different from the film thickness of the dielectric film portion 23a.
  • the manufacturing process can be simplified.
  • the one-port type elastic wave resonator is shown in the elastic wave devices 1 and 21 of the first and second embodiments.
  • the elastic wave device of the present invention is not limited to other types such as a longitudinally coupled resonator type elastic wave filter. An elastic wave device may be used.
  • the IDT electrode 3 is made of various metals or a laminated metal film, the effect of the present invention can be obtained as described above if the electrode film thickness is x or more satisfying the formula (1). This will be described with reference to FIGS.
  • FIG. 6 to 10 show the wavelength normalized film thickness 100 h / ⁇ (%) of the SiO 2 film when the IDT electrode is made of Au, W, Ta, Mo, or Cu, and the acoustic wave velocity (m / second).
  • the SiO 2 film covers the whole IDT electrode, and the upper surface of the SiO 2 film is flat.
  • x satisfying the formula (1) may be 3.5% or more.
  • x may be 3.5% or more.
  • x may be 4% or more.
  • FIG. 9 shows that in the case of Mo, x may be 8% or more.
  • FIG. 10 shows that in the case of Cu, x may be 9% or more. That is, when the IDT electrode is Pt, W, Mo, Ta, Au, or Cu, as shown in Table 2 below, it is understood that x should be equal to or larger than the value shown in Table 2 depending on the electrode material. .
  • FIG. 13 is a diagram showing the relationship between the lower limit value of x and the electrode density of the IDT electrode 3.
  • the curve shown in FIG. 13 is a curve represented by the above-described equation (1). Therefore, in the case of an IDT electrode having a certain electrode density in FIG. 13, if the point on the right side from the point including this curve, that is, if the electrode film thickness is equal to or greater than the point on the curve, the dielectric film according to the present invention is used. By adjusting the thickness, the transverse mode ripple can be suppressed.
  • the IDT electrode 3 may be a laminated metal film formed by laminating a plurality of metal films.
  • An example in the case of a laminated metal film is shown in FIGS.
  • FIG. 11 shows an example in which the laminated metal film is composed of a Mo metal film and an Al film.
  • FIG. 11 is a diagram showing the relationship between the wavelength normalized film thickness 100 h / ⁇ (%) of the SiO 2 film and the acoustic velocity of the elastic wave.
  • the overall wavelength normalized film thickness of the laminated metal film is 1.5, 2.5, 3.5, 4.5, 5.5, 6.5, 7.5, 8.5, 9. 5, 11.5, 12.5, 13.5, 14.5%
  • the electrode density as the laminated metal film is 25, 27.5, 30, 32.5, 35, 37.5, 40, 42. It was set to 5, 45, 47.5 or 50%.
  • the thickness of the Al film was kept constant, the thickness of the Mo film was changed, and the electrode density was changed.
  • FIG. 12 shows an example in which the laminated metal film is a Pt film and an Al film.
  • FIG. 12 is a diagram showing the relationship between the wavelength normalized film thickness (%) of the SiO 2 film and the acoustic velocity of the elastic wave.
  • the overall wavelength normalized film thickness of the laminated metal film was 1.5, 2.5, 3.5, 4.5, 5.5, or 6.5%.
  • the electrode density was adjusted to 25, 27.5, 30, 32.5, 35, 37.5, 40, 42.5, 45, 47.5, and 50% by adjusting the film thickness ratio, respectively. . That is, the thickness of the Al film was made constant, the thickness of the Pt film was changed, and the electrode density was changed.
  • x (%) may be 7.5 or more.
  • FIG. 12 shows that in the case of a laminated metal film of a Pt film and an Al film, x (%) may be 2.5 or more. That is, the lower limit value coincides with x (%) that satisfies the above formula (1).
  • the overall density of the laminated metal film is obtained from the density and film thickness of the electrode material constituting the laminated metal film. Based on the obtained density, the lower limit value x (%) of the wavelength normalized film thickness of the IDT electrode 3 made of a laminated metal film may be obtained.

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

IDT電極の厚みが大きい場合であっても、エッジ領域の音速を十分に低めることができる、弾性波装置を提供する。 逆速度面が楕円形である圧電性基板2上に、IDT電極3が設けられており、IDT電極3を覆うように誘電体膜13が設けられており、IDT電極3における電極密度(%)をy(%)、IDT電極3の波長規格化膜厚100h/λ(%)をx(%)とした場合、IDT電極3の電極密度yに応じて、IDT電極3の波長規格化膜厚xがy=0.3452x2-6.0964x+36.262…式(1)を満たすx以上とされており、IDT電極3の交差領域が、交差幅方向中央の中央領域と、中央領域の交差幅方向一方外側及び他方外側に設けられた第1,第2のエッジ領域とを有し、第1,第2のエッジ領域上における誘電体膜13の膜厚が、中央領域における誘電体膜13の膜厚に比べて薄くされている、弾性波装置1。

Description

弾性波装置
 本発明は、レイリー波を利用した弾性波装置に関する。
 従来、レイリー波を利用した弾性波装置において、横モードによるリップルの抑圧が求められている。例えば、下記の特許文献1に記載の弾性波装置においては、エッジ領域の音速を低めることにより、横モードリップルの抑圧が図られている。より詳細には、第1,第2の電極指が弾性波伝搬方向において重なり合っている領域内において、電極指の延伸方向両端にエッジ領域が設けられている。このエッジ領域における誘電体膜の膜厚が、エッジ領域間に挟まれた中央領域上における誘電体膜の膜厚よりも厚くされている。それによって、エッジ領域の音速が低められている。
特開2015-111923号公報
 従来、積層されている誘電体膜の厚みを増加させることなどによりIDT電極に加えられる質量を増加させていた。それによって、音速を低めることができると考えられていた。
 しかしながら、本願発明者らは、IDT電極の厚みが大きい場合に、エッジ領域における誘電体膜の膜厚を大きくすると、逆に音速が高くなることを見出した。エッジ領域における音速が相対的に高くなると、横モードを抑圧することができなくなる。
 本発明は、本願発明者らにより見出された上記新たな課題を解決すべくなされたものである。すなわち、本発明の目的は、IDT電極の厚みが大きい場合であっても、エッジ領域における音速を十分に低くすることができる、弾性波装置を提供することにある。
 本発明に係る弾性波装置は、逆速度面が楕円形である圧電性基板と、前記圧電性基板上に設けられたIDT電極と、前記IDT電極を覆うように前記圧電性基板上に設けられた誘電体膜とを備え、レイリー波を利用しており、前記IDT電極が、複数本の第1の電極指と、前記複数本の第1の電極指と間挿し合っている複数本の第2の電極指とを有し、前記第1及び第2の電極指の延伸方向と直交する方向が弾性波伝搬方向であり、前記第1の電極指と前記第2の電極指を弾性波伝搬方向からみたときに重なり合っている領域を交差領域とし、前記第1,第2の電極指の延伸方向を交差幅方向とし、前記IDT電極における電極密度(%)をy(%)、前記IDT電極の波長規格化膜厚100h/λ(%)(hは厚み、λはIDT電極の電極指ピッチで定まる波長)をx(%)とした場合、前記IDT電極の電極密度yに応じて前記IDT電極の波長規格化膜厚xがy=0.3452x-6.0964x+36.262…式(1)を満たすx以上とされており、前記IDT電極の前記交差領域が、前記交差幅方向中央の中央領域と、前記中央領域の交差幅方向一方外側及び他方外側に設けられた第1,第2のエッジ領域とを有し、前記第1,第2のエッジ領域上における前記誘電体膜の膜厚が、前記中央領域における前記誘電体膜の膜厚に比べて薄くされている。
 本発明に係る弾性波装置のある特定の局面では、前記IDT電極が、Pt、W、Mo、Ta、AuまたはCuからなり、前記IDT電極の波長規格化膜厚x(%)が、前記IDT電極の材料に応じて下記の表1に示す値以上とされている。この場合には、横モードをより効果的に抑制することができる。
Figure JPOXMLDOC01-appb-T000002
 本発明に係る弾性波装置の他の特定の局面では、前記IDT電極が、複数の金属膜が積層されている積層金属膜からなり、前記yが、前記積層金属膜の密度である。この場合には、積層金属膜からなるIDT電極を用いた場合であっても、横モードによるリップルを効果的に抑制することができる。
 本発明に係る弾性波装置のさらに他の特定の局面では、前記IDT電極の前記第1,第2のエッジ領域の前記交差幅方向外側に、前記第1,第2のエッジ領域における前記誘電体膜の膜厚よりも、前記誘電体膜の膜厚が厚い領域が設けられている。
 本発明に係る弾性波装置の別の特定の局面では、前記第1,第2のエッジ領域の前記交差幅方向外側に、前記第1の電極指または前記第2の電極指の一方のみが存在する第1,第2のギャップ領域が設けられている。
 本発明に係る弾性波装置のさらに他の特定の局面では、前記第1の電極指の先端と前記第2のギャップ領域を隔てて先端が対向している第1のダミー電極指と、前記第2の電極指の先端と前記第1のギャップ領域を隔てて先端が対向している第2のダミー電極指とをさらに備え、前記第1,第2のギャップ領域の前記交差幅方向外側に、それぞれ、第1,第2のダミー領域が設けられている。
 本発明に係る弾性波装置の別の特定の局面では、前記圧電性基板がニオブ酸リチウムからなる。
 本発明に係る弾性波装置のさらに他の特定の局面では、前記圧電性基板が、圧電膜と、前記圧電膜に直接または間接に積層されており、前記圧電膜を伝搬する弾性波よりも伝搬するバルク波の音速が高速である、高音速材料からなる高音速材料層とを備える。
 本発明に係る弾性波装置のさらに別の特定の局面では、前記圧電膜と前記高音速材料層との間に積層されており、伝搬するバルク波の音速が、前記圧電膜を伝搬する弾性波の音速よりも低速である、低音速材料層がさらに備えられている。
 本発明に係る弾性波装置によれば、IDT電極の厚みが大きい場合であってもエッジ領域の音速を確実に低めることができる。従って、横モードリップルを効果的に抑制することができる。
図1は、本発明の第1の実施形態に係る弾性波装置の交差幅方向に沿う断面図である。 図2は、本発明の第1の実施形態に係る弾性波装置の電極構造を示す模式的平面図である。 図3は、IDT電極がPtからなる場合のSiO膜の波長規格化膜厚100h/λ(%)と、弾性波の音速(m/秒)との関係を示す図である。 図4は、本発明の第2の実施形態に係る弾性波装置を説明するための正面断面図である。 図5は、第2の実施形態の弾性波装置における、交差幅方向に沿う断面図である。 図6は、IDT電極がAuからなる場合のSiO膜の波長規格化膜厚100h/λ(%)と、弾性波の音速(m/秒)との関係を示す図である。 図7は、IDT電極がWからなる場合のSiO膜の波長規格化膜厚100h/λ(%)と、弾性波の音速(m/秒)との関係を示す図である。 図8は、IDT電極がTaからなる場合のSiO膜の波長規格化膜厚100h/λ(%)と、弾性波の音速(m/秒)との関係を示す図である。 図9は、IDT電極がMoからなる場合のSiO膜の波長規格化膜厚100h/λ(%)と、弾性波の音速(m/秒)との関係を示す図である。 図10は、IDT電極がCuからなる場合のSiO膜の波長規格化膜厚100h/λ(%)と、弾性波の音速(m/秒)との関係を示す図である。 図11は、IDT電極が、Mo膜と、Al膜との積層金属膜からなる場合のSiO膜の波長規格化膜厚100h/λ(%)と、弾性波の音速(m/秒)との関係を示す図である。 図12は、IDT電極が、Pt膜と、Al膜との積層金属膜からなる場合のSiO膜の波長規格化膜厚100h/λ(%)と、弾性波の音速(m/秒)との関係を示す図である。 図13は、SiO膜の膜厚の増加に対して、音速が低下する下限値の電極の波長規格化膜厚100h/λ(%)と、電極密度(%)との関係を示す図である。
 以下、図面を参照しつつ、本発明の具体的な実施形態を説明することにより、本発明を明らかにする。
 なお、本明細書に記載の各実施形態は、例示的なものであり、異なる実施形態間において、構成の部分的な置換または組み合わせが可能であることを指摘しておく。
 図1は、本発明の第1の実施形態に係る弾性波装置の交差幅方向に沿う断面図であり、図2は第1の実施形態の弾性波装置の電極構造を示す模式的平面図である。なお、図2では、後述の誘電体膜の図示は省略されている。図1及び図2に示すように、弾性波装置1は、圧電性基板2を有する。本実施形態では、圧電性基板2は、ニオブ酸リチウム(LiNbO)からなる。本発明においては、圧電性基板2は、逆速度面が楕円の形状を有する材料からなる。より具体的には、kx+(1+Γ)×ky=k0及びΓ>-1を満たす。ここで、kxは波数ベクトルの縦方向成分、kyは波数ベクトルの横方向成分、k0は主伝搬方向の波数ベクトルである。
 圧電性基板2上に、IDT電極3及び反射器4,5が設けられている。それによって、1ポート型の弾性波共振子が構成されている。
 IDT電極3は、第1,第2のバスバー6,7を有する。第1のバスバー6に、複数本の第1の電極指8の一端が接続されている。第2のバスバー7に、複数本の第2の電極指9の一端が接続されている。複数本の第1の電極指8と、複数本の第2の電極指9とは互いに間挿している。
 また、必須ではないが、IDT電極3は、第1,第2のダミー電極指10,11を有する。第1のダミー電極指10は、一端が第2のバスバー7に接続されている。第1のダミー電極指10の先端は、交差幅方向においてギャップを隔てて第1の電極指8の先端と対向されている。このギャップ部分が、後述の第2のギャップ領域に相当する。
 第2のダミー電極指11の一端が第1のバスバー6に接続されている。他端である先端は、ギャップを隔てて、第2の電極指9の先端と対向されている。
 弾性波装置1において、弾性波が伝搬する方向は、第1,第2の電極指8,9の延びる方向と直交する方向である。そして、第1の電極指8と第2の電極指9とを弾性波伝搬方向からみた場合に、第1の電極指8と第2の電極指9が重なり合っている領域が交差領域である。この交差領域の第1,第2の電極指8,9の延びる方向の寸法が、交差幅である。従って、以下、第1,第2の電極指8,9が延びる方向を交差幅方向とする。交差幅方向は、弾性波伝搬方向と直交している。
 図1は、図2の矢印A-A線に沿う部分の断面図、すなわち、上述した交差幅方向に沿う断面図である。この断面では、第1の電極指8と第1のダミー電極指10とがギャップを隔てて対向している部分が図示されている。
 弾性波装置1では、IDT電極3を覆うように、誘電体膜13が積層されている。本実施形態では、誘電体膜13は、酸化ケイ素膜としてのSiO膜である。もっとも、誘電体膜13を構成する材料としては、SiONなど他の誘電体であってもよい。また、酸化ケイ素SiOにおけるXは2以外でもよい。
 図1に示すように、交差幅方向中央に位置している誘電体膜部分13aの膜厚に比べ、交差幅方向において両側に位置している誘電体膜部分13b,13cの膜厚が薄くなっている。
 ここで、図2に示すように、IDT電極3の交差幅方向に沿う各領域を、以下のように規定する。交差領域Bは前述したように、第1の電極指8と第2の電極指9とが弾性波伝搬方向からみたときに重なり合っている領域である。交差領域Bは、中央領域Mと、第1,第2のエッジ領域X1,X2とを有する。第1のエッジ領域X1は、中央領域Mの交差幅方向一方の外側方向に位置しており、第2のエッジ領域X2は、中央領域Mの交差幅方向他方の外側方向に位置している。
 交差領域Bの交差幅方向の一方の外側に、第1のギャップ領域C1が、他方の外側に第2のギャップ領域C2が設けられる。図1では、第1のギャップ領域C2が設けられている部分が図示されている。図2に示すように、第1のギャップ領域C1の交差幅方向外側に、第1のダミー領域D1が、第2のギャップ領域C2の交差幅方向外側に第2のダミー領域D2が位置している。第1,第2のダミー領域D1,D2は、それぞれ、第2のダミー電極指11及び第1のダミー電極指10が存在している部分に相当する。第1のダミー領域D1の交差幅方向外側は、第1のバスバー領域E1である。第2のダミー領域D2の交差幅方向外側には、第2のバスバー領域E2が位置している。
 他方、誘電体膜部分13aは、上記中央領域M上に位置している。そして、誘電体膜部分13bは、第1のエッジ領域X1上から第1のバスバー領域E1までの部分の上方に位置している。他方、誘電体膜部分13cは、第2のエッジ領域X2上から、第2のバスバー領域E2上に至るように設けられている。
 従って、交差領域Bにおいては、中央領域M上に誘電体膜部分13aが位置しており、第1,第2のエッジ領域X1,X2上に相対的に薄い誘電体膜部分13b,13cが位置している。
 従来、IDT電極上に積層されている誘電体膜の厚みが厚くなると、質量付加効果により音速が低くなると考えられていた。しかしながら、前述したように、本願発明者らは、IDT電極の膜厚がある値以上の場合には、逆に、誘電体膜の厚みが大きくなると音速が高くなることを初めて見出した。
 本実施形態の弾性波装置1の特徴は、IDT電極3の電極密度をy(%)とし、IDT電極3の波長規格化膜厚100h/λ(%)をx(%)とした場合、IDT電極3の電極密度yに応じてIDT電極3の波長規格化膜厚xが、y=0.3452x-6.0964x+36.262…式(1)を満たすx以上とされていることにある。それによって、中央領域Mの音速に比べ、第1,第2のエッジ領域X1,X2の音速が低くなっている。従って、音速差により横モードを効果的に抑制することができ、横モードリップルを抑制することができる。以下、これをより詳細に説明する。
 図3は、IDT電極がPtからなる場合のSiO膜の波長規格化膜厚100h/λ(%)と、弾性波の音速(m/秒)との関係を示す図である。なお、SiO膜は、IDT電極の全体を覆い、SiO膜の上面は平坦とした。また、SiO膜の波長規格化膜厚100h/λ(%)における、hはSiO膜の厚みであり、λはIDT電極の電極指ピッチで定まる波長である。図3においては、IDT電極3の波長規格化膜厚が、100h/λ(%)で、1.5%、2%、2.5%、3%、3.5%、4%、4.5%、5%、5.5%及び6%の各場合についての結果が示されている。
 図3から明らかなように、IDT電極3がPtからなる場合には、IDT電極3の波長規格化膜厚が、3未満では、SiO膜の波長規格化膜厚が増加するにつれ音速は低下している。すなわち、従来の知見と同じである。
 しかしながら、IDT電極3の波長規格化膜厚が3以上の場合には、SiO膜の波長規格化膜厚が増加するにつれ、音速は高くなっている。
 弾性波装置1では、IDT電極3の波長規格化膜厚xは、上記式(1)を満たすx以上とされている。ここで、図3に示すIDT電極3の波長規格化膜厚が3の場合、上記式(1)を満たす。従って、IDT電極3がPtからなる場合、式(1)を満たすxは、3となる。
 よって、図1及び図2に示すように、第1,第2のエッジ領域X1,X2における誘電体膜部分13b,13cの膜厚は、中央領域M上の誘電体膜部分13aの膜厚よりも薄くなっているため、第1,第2のエッジ領域X1,X2の音速が、中央領域Mの音速よりも低くなっている。すなわち、第1,第2のエッジ領域X1,X2が中央領域Mよりも低音速の領域となりピストンモードを利用することにより、横モードを抑制することが可能とされている。
 なお、第1,第2のギャップ領域C1,C2では、弾性波伝搬方向において、第1の電極指8または第2の電極指9の一方のみが存在する。従って、第1,第2のギャップ領域C1,C2の音速は、第1,第2のエッジ領域X1,X2よりも高速となる。そして、第1,第2のダミー領域D1,D2の音速は、第2のダミー電極指11及び第1のダミー電極指10が設けられているため、第1,第2のエッジ領域X1,X2と同じ音速となる。そして、交差幅方向において最も外側に位置している第1,第2のバスバー領域E1,E2では、全域においてメタライズされているため、音速は第1,第2のダミー領域D1,D2よりも低音速となる。
 図4は、本発明の第2の実施形態に係る弾性波装置の正面断面図であり、図5はその交差幅方向に沿う断面図である。第2の実施形態の弾性波装置21では、圧電性基板22が、支持基板22a上に、高音速材料層22b、低音速材料層22c及び圧電膜22dをこの順序で積層した構造を有する。
 圧電膜22dは、タンタル酸リチウム(LiTaO)からなる。低音速材料層22cは、伝搬するバルク波の音速が、圧電膜22dを伝搬する弾性波の音速よりも低い材料からなる。高音速材料層22bは、伝搬するバルク波の音速が、圧電膜22dを伝搬する弾性波の音速よりも高い材料からなる。このような低音速材料層22c及び高音速材料層22bを構成する材料については特に限定されず、アルミナ、酸化ケイ素、酸窒化ケイ素、窒化ケイ素などの適宜セラミックスやDLCなどの様々な材料を用いることができる。すなわち、上記音速関係を満たす限り、適宜の材料を用いて高音速材料層22b及び低音速材料層22cを形成することができる。
 支持基板22aは、シリコンやアルミナなどの適宜の材料からなる。なお、支持基板22aを高音速材料で構成することにより、高音速材料層22bを省略してもよい。また、低音速材料層22cは、必須ではなく、省略されてもよい。
 従って、支持基板22a及び高音速材料層22b上に圧電膜22dが積層されていてもよい。また、高音速材料からなる支持基板上に圧電膜22dが積層されている構造であってもよい。
 上記のように、圧電膜22dがタンタル酸リチウムからなる場合であっても、圧電性基板22のように、高音速材料層22bが少なくとも圧電膜22dに直接または間接に積層されておれば、圧電性基板22の逆速度面は、楕円の形状となる。従って、この場合においても、第1の実施形態の場合と同様に、IDT電極3の波長規格化膜厚が、電極密度に応じてある値以上になれば、誘電体膜の厚みが増加するにつれ、弾性波の音速は高くなることになる。
 第2の実施形態の弾性波装置21では、誘電体膜23が、相対的に厚い誘電体膜部分23a,23d,23eと、相対的に薄い誘電体膜部分23b,23cとを有する。誘電体膜部分23b,23cは図1に示した第1,第2のエッジ領域X1,X2に相当する領域に位置している。従って、第2の実施形態の弾性波装置21においても、中央領域Mと、第1,第2のエッジ領域X1,X2との音速差により、横モードを効果的に抑制することができる。
 なお、図5に示すように、第1,第2のダミー領域及び第1,第2のバスバー領域の上方の誘電体膜部分23d,23eの厚みは、中央領域における誘電体膜部分23aの厚みと等しくしてもよい。すなわち、第1,第2のエッジ領域よりも交差幅方向において、外側の領域においては、誘電体膜の厚みは、第1,第2のエッジ領域上の誘電体膜の厚みよりも厚くてもよい。
 また、誘電体膜部分23d,23eの膜厚は、誘電体膜部分23aの膜厚と異なっていてもよい。もっとも、誘電体膜部分23aと誘電体膜部分23d,23eの膜厚が等しい場合、製造工程の簡略化を果たし得る。
 第1,第2の実施形態の弾性波装置1,21では、1ポート型の弾性波共振子につき示したが、本発明の弾性波装置は、縦結合共振子型弾性波フィルタなどの他の弾性波装置であってもよい。
 次に、IDT電極3が様々な金属からなる場合、あるいは積層金属膜からなる場合に、式(1)を満たすx以上の電極膜厚であれば、上記のように、本発明の効果が得られることを、図6~図13を参照して説明する。
 図6~図10は、IDT電極がそれぞれ、Au、W、Ta、MoまたはCuからなる場合のSiO膜の波長規格化膜厚100h/λ(%)と、弾性波の音速(m/秒)との関係を示す図である。図6~図10においても、SiO膜が、IDT電極全体を覆い、SiO膜の上面は平坦とした。
 図6から明らかなように、Auの場合、xが3.5%以上であれば、SiO膜の波長規格化膜厚(%)が増加するにつれ、音速が高くなることがわかる。よって、式(1)を満たすxが3.5%以上であればよいことがわかる。同様に、図7より、Wの場合には、xが3.5%以上であればよい。また、図8より、Taの場合は、xが4%以上であればよい。
 図9より、Moの場合は、xが8%以上であればよいことがわかる。図10より、Cuの場合には、xが9%以上であればよいことがわかる。すなわち、IDT電極がPt、W、Mo、Ta、AuまたはCuの場合、下記の表2に示すように、電極の材料に応じて、xが表2に示す値以上であればよいことがわかる。
Figure JPOXMLDOC01-appb-T000003
 図13は、上記xの下限値と、IDT電極3の電極密度との関係を示す図である。図13に示す曲線が、上述した式(1)で示される曲線である。よって、図13において、ある電極密度のIDT電極の場合、この曲線を含む点から右側の点、すなわち、電極膜厚が上記曲線上の点以上であれば、本発明に従って、誘電体膜の膜厚の調整により、横モードリップルを抑制することができる。
 なお、IDT電極3は、複数の金属膜を積層してなる積層金属膜からなるものであってもよい。積層金属膜の場合の例を、図11及び図12に示す。図11は、積層金属膜がMo膜とAl膜の積層金属膜からなる場合の例である。図11は、SiO膜の波長規格化膜厚100h/λ(%)と、弾性波の音速との関係を示す図である。
 なお、ここでは積層金属膜の全体の波長規格化膜厚が1.5、2.5、3.5、4.5、5.5、6.5、7.5、8.5、9.5、11.5、12.5、13.5、14.5%とし、積層金属膜としての電極密度は25、27.5、30、32.5、35、37.5、40、42.5、45、47.5または50%とした。なお、Al膜の膜厚を一定とし、Mo膜の厚みを変化させ、電極密度を変化させた。
 図12は、積層金属膜が、Pt膜とAl膜の場合の例である。図12は、SiO膜の波長規格化膜厚(%)と、弾性波の音速との関係を示す図である。ここでは、積層金属膜の全体の波長規格化膜厚は、1.5、2.5、3.5、4.5、5.5または6.5%とした。電極密度は、膜厚比を調整することにより、それぞれ、25、27.5、30、32.5、35、37.5、40、42.5、45、47.5、及び50%とした。すなわち、Al膜の膜厚を一定とし、Pt膜の膜厚を変化させ、電極密度を変化させた。
 図11から明らかなように、Mo膜と、Al膜との積層金属膜の場合、x(%)が7.5以上であればよい。図12より、Pt膜と、Al膜との積層金属膜の場合には、x(%)が2.5以上であればよいことがわかる。すなわち、下限値は、上記式(1)を満たすx(%)と一致している。
 従って、積層金属膜の場合、その積層金属膜を構成している電極材料の密度及び膜厚より、積層金属膜の全体の密度を求める。求められた密度に基づき、積層金属膜からなるIDT電極3の波長規格化膜厚の下限値x(%)を求めればよい。
1,21…弾性波装置
2…圧電性基板
3…IDT電極
4,5…反射器
6,7…第1,第2のバスバー
8,9…第1,第2の電極指
10,11…第1,第2のダミー電極指
13…誘電体膜
13a~13c…誘電体膜部分
22…圧電性基板
22a…支持基板
22b…高音速材料層
22c…低音速材料層
22d…圧電膜
23…誘電体膜
23a~23e…誘電体膜部分

Claims (9)

  1.  逆速度面が楕円形である圧電性基板と、
     前記圧電性基板上に設けられたIDT電極と、
     前記IDT電極を覆うように前記圧電性基板上に設けられた誘電体膜とを備え、レイリー波を利用しており、
     前記IDT電極が、複数本の第1の電極指と、前記複数本の第1の電極指と間挿し合っている複数本の第2の電極指とを有し、前記第1及び第2の電極指の延伸方向と直交する方向が弾性波伝搬方向であり、前記第1の電極指と前記第2の電極指を弾性波伝搬方向からみたときに重なり合っている領域を交差領域とし、前記第1,第2の電極指の延伸方向を交差幅方向とし、前記IDT電極における電極密度(%)をy(%)、前記IDT電極の波長規格化膜厚100h/λ(%)(hは厚み、λはIDT電極の電極指ピッチで定まる波長)をx(%)とした場合、前記IDT電極の電極密度yに応じて前記IDT電極の波長規格化膜厚xがy=0.3452x-6.0964x+36.262…式(1)を満たすx以上とされており、前記IDT電極の前記交差領域が、前記交差幅方向中央の中央領域と、前記中央領域の交差幅方向一方外側及び他方外側に設けられた第1,第2のエッジ領域とを有し、前記第1,第2のエッジ領域上における前記誘電体膜の膜厚が、前記中央領域における前記誘電体膜の膜厚に比べて薄くされている、弾性波装置。
  2.  前記IDT電極が、Pt、W、Mo、Ta、AuまたはCuからなり、前記IDT電極の波長規格化膜厚x(%)が、前記IDT電極の材料に応じて下記の表1に示す値以上とされている、請求項1に記載の弾性波装置。
    Figure JPOXMLDOC01-appb-T000001
  3.  前記IDT電極が、複数の金属膜が積層されている積層金属膜からなり、前記yが、前記積層金属膜の密度である、請求項1に記載の弾性波装置。
  4.  前記IDT電極の前記第1,第2のエッジ領域の前記交差幅方向外側に、前記第1,第2のエッジ領域における前記誘電体膜の膜厚よりも、前記誘電体膜の膜厚が厚い領域が設けられている、請求項1~3のいずれか1項に記載の弾性波装置。
  5.  前記第1,第2のエッジ領域の前記交差幅方向外側に、前記第1の電極指または前記第2の電極指の一方のみが存在する第1,第2のギャップ領域が設けられている、請求項1~4のいずれか1項に記載の弾性波装置。
  6.  前記第1の電極指の先端と前記第2のギャップ領域を隔てて先端が対向している第1のダミー電極指と、前記第2の電極指の先端と前記第1のギャップ領域を隔てて先端が対向している第2のダミー電極指とをさらに備え、前記第1,第2のギャップ領域の前記交差幅方向外側に、それぞれ、第1,第2のダミー領域が設けられている、請求項5に記載の弾性波装置。
  7.  前記圧電性基板がニオブ酸リチウムからなる、請求項1~6のいずれか1項に記載の弾性波装置。
  8.  前記圧電性基板が、圧電膜と、前記圧電膜に直接または間接に積層されており、前記圧電膜を伝搬する弾性波よりも伝搬するバルク波の音速が高速である、高音速材料からなる高音速材料層とを備える、請求項1~7のいずれか1項に記載の弾性波装置。
  9.  前記圧電膜と前記高音速材料層との間に積層されており、伝搬するバルク波の音速が、前記圧電膜を伝搬する弾性波の音速よりも低速である、低音速材料層をさらに備える、請求項8に記載の弾性波装置。
PCT/JP2018/010227 2017-03-23 2018-03-15 弾性波装置 WO2018173918A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2019507612A JP6777221B2 (ja) 2017-03-23 2018-03-15 弾性波装置
KR1020197027057A KR102306238B1 (ko) 2017-03-23 2018-03-15 탄성파 장치
CN201880017679.1A CN110419161B (zh) 2017-03-23 2018-03-15 弹性波装置
US16/566,987 US11621687B2 (en) 2017-03-23 2019-09-11 Acoustic wave device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017057275 2017-03-23
JP2017-057275 2017-03-23

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/566,987 Continuation US11621687B2 (en) 2017-03-23 2019-09-11 Acoustic wave device

Publications (1)

Publication Number Publication Date
WO2018173918A1 true WO2018173918A1 (ja) 2018-09-27

Family

ID=63586453

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/010227 WO2018173918A1 (ja) 2017-03-23 2018-03-15 弾性波装置

Country Status (5)

Country Link
US (1) US11621687B2 (ja)
JP (1) JP6777221B2 (ja)
KR (1) KR102306238B1 (ja)
CN (1) CN110419161B (ja)
WO (1) WO2018173918A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021241117A1 (ja) * 2020-05-27 2021-12-02 株式会社村田製作所 弾性波装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020145567A (ja) * 2019-03-06 2020-09-10 株式会社村田製作所 弾性波装置
DE102019119239A1 (de) * 2019-07-16 2021-01-21 RF360 Europe GmbH Multiplexer
CN115242206B (zh) * 2022-09-22 2023-02-07 杭州左蓝微电子技术有限公司 叉指换能器指条成型工艺以及声表滤波器
CN115642895B (zh) * 2022-11-10 2024-05-28 锐石创芯(重庆)科技有限公司 声表面波器件、滤波器及电子设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013518455A (ja) * 2010-01-25 2013-05-20 エプコス アーゲー 横方向放射損失を低減させ,横方向モードの抑制により性能を高めた電気音響変換器
JP2013544041A (ja) * 2011-03-25 2013-12-09 パナソニック株式会社 高次横モード波を抑制した弾性波デバイス
WO2013191122A1 (ja) * 2012-06-22 2013-12-27 株式会社村田製作所 弾性波装置
JP2014187568A (ja) * 2013-03-25 2014-10-02 Panasonic Corp 弾性波装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5115184B2 (ja) 2007-12-25 2013-01-09 パナソニック株式会社 弾性境界波デバイス、及びそれを用いたフィルタ、アンテナ共用器
WO2010137279A1 (ja) * 2009-05-27 2010-12-02 パナソニック株式会社 弾性波共振器と、これを用いたアンテナ共用器
DE102010053674B4 (de) * 2010-12-07 2017-08-24 Snaptrack Inc. Elektroakustischer Wandler
KR101623099B1 (ko) * 2010-12-24 2016-05-20 가부시키가이샤 무라타 세이사쿠쇼 탄성파 장치 및 그 제조 방법
JPWO2012127793A1 (ja) * 2011-03-22 2014-07-24 パナソニック株式会社 弾性波素子
CN106464229B (zh) * 2014-05-26 2019-03-08 株式会社村田制作所 弹性波装置
US10355668B2 (en) * 2015-01-20 2019-07-16 Taiyo Yuden Co., Ltd. Acoustic wave device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013518455A (ja) * 2010-01-25 2013-05-20 エプコス アーゲー 横方向放射損失を低減させ,横方向モードの抑制により性能を高めた電気音響変換器
JP2013544041A (ja) * 2011-03-25 2013-12-09 パナソニック株式会社 高次横モード波を抑制した弾性波デバイス
WO2013191122A1 (ja) * 2012-06-22 2013-12-27 株式会社村田製作所 弾性波装置
JP2014187568A (ja) * 2013-03-25 2014-10-02 Panasonic Corp 弾性波装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021241117A1 (ja) * 2020-05-27 2021-12-02 株式会社村田製作所 弾性波装置

Also Published As

Publication number Publication date
KR102306238B1 (ko) 2021-09-30
CN110419161B (zh) 2023-03-03
JP6777221B2 (ja) 2020-10-28
US11621687B2 (en) 2023-04-04
US20200007107A1 (en) 2020-01-02
JPWO2018173918A1 (ja) 2020-01-16
CN110419161A (zh) 2019-11-05
KR20190115081A (ko) 2019-10-10

Similar Documents

Publication Publication Date Title
WO2018173918A1 (ja) 弾性波装置
JP5861809B1 (ja) 弾性波装置
JP6819834B1 (ja) 弾性波装置
JP6354839B2 (ja) 弾性波フィルタ装置
JP2019080093A (ja) 弾性波装置
JP6281639B2 (ja) 弾性波装置
JP2022126852A5 (ja)
JP6680358B2 (ja) 弾性波装置
JP2014187568A (ja) 弾性波装置
WO2006109591A1 (ja) 弾性波素子
JP6447624B2 (ja) 弾性波装置
WO2020250572A1 (ja) 弾性波装置
WO2015182521A1 (ja) 弾性波装置及びラダー型フィルタ
KR20190077551A (ko) 탄성파 장치
WO2017077892A1 (ja) 弾性波装置
JP6798621B2 (ja) 弾性波装置
JP2023123880A (ja) 弾性波装置
JP2015056746A (ja) 弾性波装置
WO2022202917A1 (ja) 弾性波装置
WO2022039210A1 (ja) 弾性波装置
JP2011041082A (ja) 一ポート型弾性波共振子及び弾性波フィルタ装置
WO2023002824A1 (ja) 弾性波装置
WO2016039026A1 (ja) 弾性表面波装置
WO2023048256A1 (ja) 弾性波装置
JP2024047202A (ja) 弾性波装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18770455

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197027057

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019507612

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18770455

Country of ref document: EP

Kind code of ref document: A1