WO2016039026A1 - 弾性表面波装置 - Google Patents

弾性表面波装置 Download PDF

Info

Publication number
WO2016039026A1
WO2016039026A1 PCT/JP2015/071104 JP2015071104W WO2016039026A1 WO 2016039026 A1 WO2016039026 A1 WO 2016039026A1 JP 2015071104 W JP2015071104 W JP 2015071104W WO 2016039026 A1 WO2016039026 A1 WO 2016039026A1
Authority
WO
WIPO (PCT)
Prior art keywords
surface acoustic
acoustic wave
wave device
electrode
protrusion
Prior art date
Application number
PCT/JP2015/071104
Other languages
English (en)
French (fr)
Inventor
茂幸 藤田
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2016039026A1 publication Critical patent/WO2016039026A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/125Driving means, e.g. electrodes, coils
    • H03H9/145Driving means, e.g. electrodes, coils for networks using surface acoustic waves
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/25Constructional features of resonators using surface acoustic waves

Definitions

  • the present invention relates to a surface acoustic wave device.
  • Patent Document 1 discloses an example of a surface acoustic wave device in which an IDT electrode made of aluminum or the like is provided on a piezoelectric substrate.
  • a floating electrode that is not electrically connected anywhere is disposed between a plurality of electrode fingers.
  • An object of the present invention is to provide a surface acoustic wave device in which the insertion loss is much smaller and the out-of-band attenuation is sufficiently large.
  • a surface acoustic wave device includes a piezoelectric substrate and an IDT electrode provided on the piezoelectric substrate.
  • the IDT electrode includes first and second bus bars, and a plurality of first electrode fingers and a plurality of second electrode fingers each having one end connected to the first and second bus bars. Have.
  • the plurality of first electrode fingers and the plurality of second electrode fingers are interleaved with each other.
  • the first electrode finger and the second electrode finger are adjacent to each other with a gap in a first direction which is a surface acoustic wave propagation direction.
  • a plurality of the gaps exist in the first direction.
  • the surface acoustic wave device of the present invention is provided in at least one of the plurality of gaps, and is in contact with the plurality of first and second electrode fingers and the first and second bus bars. And a protrusion made of an insulator.
  • the protrusion extends in a second direction that is parallel to the direction in which the plurality of first and second electrode fingers extend. If the portion where the plurality of first electrode fingers and the plurality of second electrode fingers of the IDT electrode overlap with each other when viewed from the first direction is an electrode finger crossing portion, the first of the protrusions
  • the dimension along the direction 2 is greater than or equal to the dimension along the second direction of the electrode finger intersection.
  • the dimension of the protrusion along the second direction is equal to the dimension of the electrode finger crossing portion of the IDT electrode along the second direction.
  • the protrusion does not reach the outside of the electrode finger crossing portion.
  • the width of the protrusion is the first. 1, smaller than the width of the second electrode finger.
  • one end is connected to the first bus bar, and the plurality of second electrode fingers are opposed to each other in the second direction. And one end is connected to the plurality of first dummy electrodes not in contact with the plurality of second electrode fingers and the second bus bar, and the plurality of the plurality of first dummy electrodes are connected in the second direction.
  • the IDT electrode further includes a plurality of second dummy electrodes facing the first electrode fingers and not in contact with the plurality of first electrode fingers.
  • the portion where the plurality of first electrode fingers and the plurality of first dummy electrodes overlap when the IDT electrode is viewed in the first direction is a first offset portion
  • a portion where the plurality of second electrode fingers and the plurality of second dummy electrodes overlap is a second offset portion.
  • the protrusions reach the first and second offset portions.
  • the width of the protrusion in the first and second offset portions of the IDT electrode is larger than the width of the protrusion in the other portion.
  • a dielectric film is further provided on the piezoelectric substrate so as to cover the IDT electrode.
  • the dielectric film is provided so as to cover the protrusion.
  • the protrusion is provided on the dielectric film.
  • the shape of the cross section of the protrusion along the second direction is a rectangle.
  • the protrusions are periodically provided in the plurality of gaps.
  • the protrusions are provided in all the gaps.
  • the piezoelectric substrate is made of LiTaO 3 and uses a leaky wave.
  • FIG. 1 is a schematic plan view of a surface acoustic wave device according to a first embodiment of the present invention.
  • FIG. 2 is a front sectional view of the surface acoustic wave device according to the first embodiment of the present invention.
  • FIG. 3 is a front sectional view of the surface acoustic wave device of the first comparative example.
  • FIG. 4 is a front sectional view of the surface acoustic wave device of the second comparative example.
  • FIG. 5 is a diagram showing impedance frequency characteristics of the surface acoustic wave devices of the first and second comparative examples.
  • FIG. 6A is a diagram showing impedance frequency characteristics of the surface acoustic wave devices of the first embodiment and the first comparative example of the present invention, and FIG.
  • FIG. 6B is an impedance frequency characteristic in the vicinity of the resonance frequency.
  • FIG. 6C is a diagram showing impedance frequency characteristics in the vicinity of the antiresonance frequency.
  • FIG. 7 is a front sectional view of a first modification of the surface acoustic wave device according to the first embodiment of the present invention.
  • FIG. 8 is a front sectional view of a second modification of the surface acoustic wave device according to the first embodiment of the present invention.
  • FIG. 9 is a front sectional view of a third modification of the surface acoustic wave device according to the first embodiment of the present invention.
  • FIG. 10 is a schematic plan view of a fourth modification of the surface acoustic wave device according to the first embodiment of the present invention.
  • FIG. 11 is a front sectional view of a surface acoustic wave device according to a second embodiment of the present invention.
  • FIG. 12 is a front sectional view of a surface acoustic wave device according to a third embodiment of the present invention.
  • FIG. 13 is a schematic plan view of a surface acoustic wave device according to a fourth embodiment of the present invention.
  • FIG. 14 is a schematic plan view of a surface acoustic wave device according to a fifth embodiment of the present invention.
  • FIG. 1 is a schematic plan view of a surface acoustic wave device according to a first embodiment of the present invention.
  • FIG. 2 is a front sectional view of the surface acoustic wave device according to the first embodiment.
  • the surface acoustic wave device 1 has a piezoelectric substrate 2.
  • the piezoelectric substrate 2 is made of LiTaO 3 .
  • the piezoelectric substrate 2 may be made of an appropriate piezoelectric single crystal other than LiTaO 3 . Alternatively, it may be made of an appropriate piezoelectric ceramic.
  • the surface acoustic wave device 1 is a surface acoustic wave device using a leaky wave. Further, surface acoustic waves other than leaky waves may be used.
  • the IDT electrode 3 is provided on the piezoelectric substrate 2.
  • the IDT electrode 3 includes first and second bus bars 3a1 and 3b1 and a plurality of first and second electrode fingers 3a2 and 3b2.
  • One end of a plurality of first electrode fingers 3a2 is connected to the first bus bar 3a1.
  • One end of a plurality of second electrode fingers 3b2 is connected to the second bus bar 3b1.
  • the plurality of first electrode fingers 3a2 and the plurality of second electrode fingers 3b2 are interleaved with each other.
  • a surface acoustic wave is excited by applying an AC voltage to the IDT electrode 3.
  • the surface acoustic wave propagation direction is defined as a first direction X.
  • reflectors 6 are provided on both sides of the IDT electrode 3 in the first direction X.
  • the IDT electrode 3 and the reflector 6 are made of aluminum.
  • the IDT electrode 3 and the reflector 6 may be made of an aluminum alloy or an appropriate metal or alloy other than the above.
  • the IDT electrode 3 and the reflector 6 may be composed of a laminate in which a plurality of metal films or alloy films are laminated.
  • a resist pattern is formed by a photolithography method or the like, and a metal film is formed on the piezoelectric substrate 2 by a vapor deposition method or the like. Next, the resist pattern is removed and removed, and the metal film is patterned.
  • the reflector 6 can be formed simultaneously with the IDT electrode 3.
  • the first electrode finger 3a2 and the second electrode finger 3b2 are adjacent to each other with a gap A in the first direction X.
  • the gap A extends in the second direction Y.
  • a plurality of gaps A are arranged along the first direction X.
  • a protrusion 4 is provided in each gap A.
  • the protrusion 4 is disposed between the first electrode finger 3a2 and the second electrode finger 3b2 at a predetermined distance from the first electrode finger 3a2 and the second electrode finger 3b2.
  • Projection 4 is made of SiO 2.
  • the protrusion 4 may be made of an insulator other than SiO 2 .
  • a dielectric film is formed as an insulator on the piezoelectric substrate 2 by a CVD method or the like.
  • a resist pattern is formed by a photolithography method or the like.
  • the dielectric film is etched by a milling method or the like, and then the resist pattern is peeled and removed to form the protrusions 4.
  • a resin such as a photosensitive resin may be used as the insulator for forming the protrusions 4.
  • a resin film is formed by a photolithography method or the like.
  • the protrusion 4 extends in the second direction Y, which is a direction parallel to the direction in which the plurality of first and second electrode fingers 3a2 and 3b2 extend.
  • a portion where the plurality of first electrode fingers 3a2 and the plurality of second electrode fingers 3b2 overlap as viewed from the first direction X is defined as an electrode finger crossing portion B.
  • the dimension along the second direction Y of the protrusion 4 is equal to the dimension along the second direction Y of the electrode finger crossing portion B.
  • the protrusion 4 does not reach the outside of the electrode finger intersection B.
  • the dimension along the first direction X of the protrusion 4 and the first and second electrode fingers 3a2 and 3b2 is defined as the width.
  • the width of the protrusion 4 is smaller than the width of the first and second electrode fingers 3a2 and 3b2.
  • the protrusion 4 is not in contact with any of the plurality of first and second electrode fingers 3a2 and 3b2.
  • the feature of this embodiment is that the protrusion 4 is provided in the gap A. Thereby, the insertion loss can be reduced and the out-of-band attenuation can be increased. This will be specifically described below with reference to the drawings.
  • FIG. 3 is a front sectional view of the surface acoustic wave device of the first comparative example.
  • FIG. 4 is a front sectional view of the surface acoustic wave device of the second comparative example.
  • the surface acoustic wave device 101 of the first comparative example is not provided with the protrusion 4 in the first embodiment. Except for the above, the surface acoustic wave device 101 has the same structure as that of the first embodiment.
  • the surface acoustic wave device 111 of the second comparative example is not provided with the protrusion 4 that is an insulator in the first embodiment.
  • a floating electrode 114 is provided between the first electrode finger 113a2 and the second electrode finger 113b2 of the IDT electrode. The floating electrode 114 is not electrically connected anywhere.
  • the widths of the first and second electrode fingers 113a2 and 113b2 are smaller than the widths of the first and second electrode fingers 3a2 and 3b2 of the first embodiment.
  • the surface acoustic wave device 111 has the same structure as that of the first embodiment.
  • the design parameters of the surface acoustic wave devices of the first embodiment and the first and second comparative examples are as shown in Table 1 below.
  • FIG. 5 is a diagram showing impedance frequency characteristics of the surface acoustic wave devices of the first and second comparative examples.
  • the broken line indicates the result of the first comparative example, and the alternate long and short dash line indicates the result of the second comparative example.
  • FIG. 6A is a diagram showing impedance frequency characteristics of the surface acoustic wave devices of the first embodiment and the first comparative example of the present invention
  • FIG. 6B is an impedance frequency characteristic in the vicinity of the resonance frequency.
  • FIG. 6C is a diagram showing impedance frequency characteristics in the vicinity of the antiresonance frequency.
  • a solid line shows the result of the first embodiment, and a broken line shows the result of the first comparative example.
  • the anti-resonance resistance value of the second comparative example is larger than the anti-resonance resistance value of the first comparative example.
  • the resonance resistance value of the second comparative example is also significantly larger than the resonance resistance value of the first comparative example. Therefore, when the surface acoustic wave device of the second comparative example is used, the insertion loss is remarkably increased.
  • a floating electrode 114 having conductivity is provided. If the distance between the first and second electrode fingers 113a2 and 113b2 of the IDT electrode and the floating electrode 114 is small, the surge resistance is deteriorated. Therefore, the widths of the first and second electrode fingers 113a2 and 113b2 are reduced so that the distance between the first and second electrode fingers 113a2 and 113b2 and the floating electrode 114 is increased. Therefore, as shown in FIG. 5, the resonance resistance value was large in the second comparative example.
  • the protrusion 4 shown in FIG. 2 is made of an insulating dielectric, the surge resistance is not deteriorated. Therefore, the characteristics can be improved without reducing the width of the first and second electrode fingers 3a2 and 3b2.
  • the resonance resistance value of the present embodiment is ⁇ 1.0 dB, and the resonance resistance value of the first comparative example is ⁇ 0. 4 dB.
  • the resonance resistance value of this embodiment is 0.6 dB smaller than the resonance resistance value of the first comparative example.
  • the anti-resonance resistance value of the present embodiment is 72.6 dB, and the anti-resonance resistance value of the first comparative example is 70.0 dB.
  • the anti-resonance resistance value of this embodiment is 2.6 dB larger than the anti-resonance resistance value of the first comparative example.
  • the impedance ratio of the present embodiment when comparing the impedance ratio which is the ratio of the anti-resonance resistance value to the resonance resistance value, the impedance ratio of the present embodiment is 3.2 dB larger than the impedance ratio of the first comparative example. Therefore, it can be seen that the present embodiment can effectively reduce the insertion loss and effectively increase the out-of-band attenuation.
  • the protrusion 4 is disposed at a position including the center line CC between the first electrode finger 3a2 and the second electrode finger 3b2. Thereby, the insertion loss can be effectively reduced and the out-of-band attenuation can be effectively increased. More preferably, the protrusion 4 is desirably located in the center of the gap A. Thereby, the insertion loss can be further reduced and the out-of-band attenuation can be further increased.
  • the shape of the cross section of the protrusion 4 along the first direction X is rectangular, but the shape of the cross section of the protrusion 4 along the first direction X is not limited to a rectangle.
  • the shape of the cross section of the protrusion 54 may be trapezoidal.
  • the cross-sectional shape of the protrusion 64 may be a convex shape.
  • the shape of the cross section of the protrusion 74 may be a concave shape.
  • a part of the gap A where the protrusions 4 are not provided may be provided.
  • the protrusions 4 may be periodically provided in the plurality of gaps A.
  • FIG. 11 is a front sectional view of a surface acoustic wave device according to a second embodiment of the present invention.
  • a dielectric film 15 is provided on the piezoelectric substrate 2 of the surface acoustic wave device 11 so as to cover the IDT electrodes 3 and the protrusions 4.
  • the dielectric film 15 is a protective film and a frequency adjusting film. Therefore, the durability of the surface acoustic wave device 11 can be improved, and the frequency of the surface acoustic wave device 11 can be adjusted to a desired frequency by adjusting the film thickness of the dielectric film 15.
  • FIG. 12 is a front sectional view of the surface acoustic wave device according to the third embodiment.
  • a dielectric film 15 is provided on the piezoelectric substrate 2 of the surface acoustic wave device 21 so as to cover the IDT electrode 3.
  • a protrusion 4 is provided on a portion of the dielectric film 15 located in the gap A. Also in the present embodiment, the provision of the dielectric film 15 can enhance the durability of the surface acoustic wave device 21 and enhance the frequency-temperature characteristics.
  • SiO 2 or the like can be used.
  • the protrusion 4 is not covered with the dielectric film 15. Therefore, since the thickness of the dielectric film 15 is not added to the width of the protrusion 4, it is not necessary to pattern the protrusion 4 with a small width. Therefore, in addition to the above effects, the formation accuracy of the protrusions 4 can be effectively increased.
  • FIG. 13 is a schematic plan view of the surface acoustic wave device according to the fourth embodiment.
  • the IDT electrode 33 of the surface acoustic wave device 31 has a plurality of first and second dummy electrodes 33a3 and 33b3.
  • One end of the plurality of first dummy electrodes 33a3 is connected to the first bus bar 33a1.
  • the plurality of first dummy electrodes 33a3 are opposed to the plurality of second electrode fingers 33b2 in the second direction Y.
  • the plurality of first dummy electrodes 33a3 are not in contact with the plurality of second electrode fingers 33b2.
  • One end of the plurality of second dummy electrodes 33b3 is connected to the second bus bar 33b1.
  • the plurality of second dummy electrodes 33b3 are opposed to the plurality of first electrode fingers 33a2 in the second direction Y.
  • the plurality of second dummy electrodes 33b3 are not in contact with the plurality of first electrode fingers 33a2.
  • a portion where the plurality of first electrode fingers 33a2 and the plurality of first dummy electrodes 33a3 overlap is defined as a first offset portion D.
  • a portion where the plurality of second electrode fingers 33b2 and the plurality of second dummy electrodes 33b3 overlap is referred to as a second offset portion E.
  • the protrusion 34 reaches the first and second offset portions D and E.
  • FIG. 14 is a schematic plan view of a surface acoustic wave device according to a fifth embodiment.
  • the protrusion 44 of the surface acoustic wave device 41 has a first portion 44 a located at the first and second offset portions D and E.
  • the width of the first portion 44 a is larger than the width of other portions of the protrusion 44.
  • the surface acoustic wave device 1 shown in FIG. 1 can be used as a series arm resonator and a parallel arm resonator in a ladder type filter.
  • the anti-resonance resistance value of the surface acoustic wave device 1 is large. Therefore, the insertion loss of the ladder type filter can be effectively reduced by using the surface acoustic wave device 1 as the parallel arm resonator. Furthermore, the resonance resistance value of the surface acoustic wave device 1 is small. Therefore, by using the surface acoustic wave device 1 as a series arm resonator, the insertion loss can be reduced near the end of the pass band of the ladder filter, and the out-of-band attenuation can be increased. Therefore, when using the surface acoustic wave device 1 in a ladder type filter, it is preferable to use it for both a series arm resonator and a parallel arm resonator.
  • the surface acoustic wave devices 11, 21, 31, and 41 can also be used as series arm resonators and parallel arm resonators in ladder filters.
  • SYMBOLS 1 Surface acoustic wave apparatus 2 ... Piezoelectric substrate 3 ... IDT electrode 3a1, 3b1 ... 1st, 2nd bus bar 3a2, 3b2 ... 1st, 2nd electrode finger 4 ... Protrusion 6 ... Reflector 11 ... Surface acoustic wave apparatus DESCRIPTION OF SYMBOLS 15 ... Dielectric film 21 ... Surface acoustic wave device 31 ... Surface acoustic wave device 33 ... IDT electrode 33a1, 33b1 ... 1st, 2nd bus-bar 33a2, 33b2 ... 1st, 2nd electrode finger 33a3, 33b3 ... 1st , Second dummy electrode 34 ...
  • protrusion 41 ... surface acoustic wave device 44 ; protrusion 44a ... first portion 51 ... surface acoustic wave device 54 ... projection 61 ... surface acoustic wave device 64 ... protrusion 71 ... surface acoustic wave device 74 ... Projection 81 ... Surface acoustic wave device 101 ... Surface acoustic wave device 111 ... Surface acoustic wave device 113a2, 113b2 ... First and second electrode fingers 114 ... Floating electrode

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

 挿入損失がより一層小さく、かつ帯域外減衰量が充分に大きい、弾性表面波装置を提供する。 弾性表面波装置1は、圧電基板2と、圧電基板2上に設けられているIDT電極3とを備える。IDT電極3は、第1,第2のバスバー3a1,3b1と、第1,第2のバスバー3a1,3b1に一方端がそれぞれ接続されている複数本の第1,第2の電極指3a2,3b2とを有する。IDT電極3は、IDT電極3の弾性表面波伝搬方向にそれぞれ隣接している第1の電極指3a2と第2の電極指3b2との間に位置するギャップAをさらに有する。弾性表面波装置1は、複数のギャップAのうちの少なくとも1つに設けられており、複数本の第1,第2の電極指3a2,3b2及び第1,第2のバスバー3a1,3b1に接触しておらず、かつ絶縁体からなる突起4をさらに備える。

Description

弾性表面波装置
 本発明は、弾性表面波装置に関する。
 近年、弾性表面波装置が携帯電話機の帯域通過型フィルタとして広く用いられている。
 例えば、下記の特許文献1では、圧電基板上にアルミニウムなどからなるIDT電極が設けられている弾性表面波装置の一例が開示されている。
 下記の特許文献2に記載の弾性表面波装置のIDT電極では、複数本の電極指同士の間に、電気的にどこにも接続されていない浮き電極が配置されている。
特許第3414384号公報 特開昭62-210713号公報
 近年、弾性表面波装置の帯域外減衰量の増大及び挿入損失の低減がより一層求められている。
 しかしながら、特許文献1に記載の弾性表面波装置では、このような要求を満たすことはできなかった。
 特許文献2に記載の弾性表面波装置では、電極指間に上記浮き電極が配置されていたため、該浮き電極と電極指との距離が小さかった。よって、耐サージ性が劣化していた。耐サージ性の劣化を避けるために、電極指の線幅を小さくすると、電極指の抵抗が大きくなった。よって、共振抵抗値が大きくなった。従って、挿入損失を低減することや帯域外減衰量を充分に大きくすることができなかった。
 本発明の目的は、挿入損失がより一層小さく、かつ帯域外減衰量が充分に大きい、弾性表面波装置を提供することにある。
 本発明に係る弾性表面波装置は、圧電基板と、上記圧電基板上に設けられているIDT電極とを備える。上記IDT電極は、第1,第2のバスバーと、上記第1,第2のバスバーに一方端がそれぞれ接続されている複数本の第1の電極指及び複数本の第2の電極指とを有する。上記複数本の第1の電極指と上記複数本の第2の電極指とは互いに間挿し合っている。上記IDT電極において、弾性表面波伝搬方向である第1の方向に上記第1の電極指と上記第2の電極指とはギャップを隔てて互いに隣りあっている。上記ギャップは上記第1の方向に複数存在している。本発明の弾性表面波装置は、複数の上記ギャップのうちの少なくとも1つに設けられており、上記複数本の第1,第2の電極指及び上記第1,第2のバスバーに接触しておらず、かつ絶縁体からなる突起をさらに備える。
 本発明に係る弾性表面波装置のある特定の局面では、上記複数本の第1,第2の電極指が延びる方向と平行な方向である第2の方向に上記突起が延びている。上記IDT電極の上記複数本の第1の電極指と上記複数本の第2の電極指とが上記第1の方向から見て重なり合っている部分を電極指交叉部とすると、上記突起の上記第2の方向に沿う寸法は上記電極指交叉部の上記第2の方向に沿う寸法以上である。
 本発明に係る弾性表面波装置の他の特定の局面では、上記突起の上記第2の方向に沿う寸法は、上記IDT電極の上記電極指交叉部の上記第2の方向に沿う寸法と等しい。上記突起は上記電極指交叉部の外側に至っていない。
 本発明に係る弾性表面波装置のさらに他の特定の局面では、上記突起及び上記第1,第2の電極指の上記第1の方向に沿う寸法を幅とすると、上記突起の幅は上記第1,第2の電極指の幅よりも小さい。
 本発明に係る弾性表面波装置の別の特定の局面では、上記第1のバスバーに一方端が接続されており、上記第2の方向において上記複数本の第2の電極指と対向しており、かつ上記複数本の第2の電極指と接触していない複数本の第1のダミー電極と、上記第2のバスバーに一方端が接続されており、上記第2の方向において上記複数本の第1の電極指と対向しており、かつ上記複数本の第1の電極指と接触していない複数本の第2のダミー電極とを上記IDT電極がさらに有する。上記IDT電極を上記第1の方向に見たときに上記複数本の第1の電極指と上記複数本の第1のダミー電極とが重なり合っている部分が第1のオフセット部とされており、上記複数本の第2の電極指と上記複数本の第2のダミー電極とが重なり合っている部分が第2のオフセット部とされている。上記第1,第2のオフセット部に上記突起が至っている。
 本発明に係る弾性表面波装置のさらに別の特定の局面では、上記IDT電極の上記第1,第2のオフセット部における上記突起の幅は、他の部分における上記突起の幅よりも大きい。
 本発明に係る弾性表面波装置のさらに別の特定の局面では、上記圧電基板上に上記IDT電極を覆うように設けられている誘電体膜がさらに備えられている。
 本発明に係る弾性表面波装置のさらに別の特定の局面では、上記誘電体膜は上記突起を覆うように設けられている。
 本発明に係る弾性表面波装置のさらに別の特定の局面では、上記突起は上記誘電体膜上に設けられている。
 本発明に係る弾性表面波装置のさらに別の特定の局面では、上記第2の方向に沿う上記突起の断面の形状は矩形である。
 本発明に係る弾性表面波装置のさらに別の特定の局面では、上記突起は複数の上記ギャップに周期的に設けられている。
 本発明に係る弾性表面波装置のさらに別の特定の局面では、上記突起は全ての上記ギャップに設けられている。
 本発明に係る弾性表面波装置のさらに別の特定の局面では、上記圧電基板はLiTaOからなり、リーキー波を利用している。
 本発明によれば、挿入損失がより一層小さく、かつ帯域外減衰量が充分に大きい、弾性表面波装置を提供することができる。
図1は、本発明の第1の実施形態に係る弾性表面波装置の模式的平面図である。 図2は、本発明の第1の実施形態に係る弾性表面波装置の正面断面図である。 図3は、第1の比較例の弾性表面波装置の正面断面図である。 図4は、第2の比較例の弾性表面波装置の正面断面図である。 図5は、第1,第2の比較例の弾性表面波装置のインピーダンス周波数特性を示す図である。 図6(a)は、本発明の第1の実施形態及び第1の比較例の弾性表面波装置のインピーダンス周波数特性を示す図であり、図6(b)は、共振周波数付近におけるインピーダンス周波数特性を示す図であり、図6(c)は、反共振周波数付近におけるインピーダンス周波数特性を示す図である。 図7は、本発明の第1の実施形態に係る弾性表面波装置の第1の変形例の正面断面図である。 図8は、本発明の第1の実施形態に係る弾性表面波装置の第2の変形例の正面断面図である。 図9は、本発明の第1の実施形態に係る弾性表面波装置の第3の変形例の正面断面図である。 図10は、本発明の第1の実施形態に係る弾性表面波装置の第4の変形例の模式的平面図である。 図11は、本発明の第2の実施形態に係る弾性表面波装置の正面断面図である。 図12は、本発明の第3の実施形態に係る弾性表面波装置の正面断面図である。 図13は、本発明の第4の実施形態に係る弾性表面波装置の模式的平面図である。 図14は、本発明の第5の実施形態に係る弾性表面波装置の模式的平面図である。
 以下、図面を参照しつつ、本発明の具体的な実施形態を説明することにより、本発明を明らかにする。
 なお、本明細書に記載の各実施形態は、例示的なものであり、異なる実施形態間において、構成の部分的な置換または組み合わせが可能であることを指摘しておく。
 図1は、本発明の第1の実施形態に係る弾性表面波装置の模式的平面図である。図2は、第1の実施形態に係る弾性表面波装置の正面断面図である。
 弾性表面波装置1は、圧電基板2を有する。圧電基板2はLiTaOからなる。なお、圧電基板2はLiTaO以外の適宜の圧電単結晶からなっていてもよい。あるいは、適宜の圧電セラミックスからなっていてもよい。弾性表面波装置1は、リーキー波を利用している弾性表面波装置である。また、リーキー波以外の弾性表面波を利用してもよい。
 圧電基板2上には、IDT電極3が設けられている。IDT電極3は、第1,第2のバスバー3a1,3b1及び複数本の第1,第2の電極指3a2,3b2を有する。第1のバスバー3a1には、複数本の第1の電極指3a2の一方端が接続されている。第2のバスバー3b1には、複数本の第2の電極指3b2の一方端が接続されている。複数本の第1の電極指3a2と複数本の第2の電極指3b2とは、互いに間挿し合っている。
 弾性表面波装置1では、IDT電極3に交流電圧を印加することにより、弾性表面波が励振される。弾性表面波伝搬方向を第1の方向Xとする。第1の方向XにおけるIDT電極3の両側には、反射器6が設けられている。
 IDT電極3及び反射器6は、アルミニウムからなる。なお、IDT電極3及び反射器6は、アルミニウム合金または上記以外の適宜の金属または合金からなっていてもよい。IDT電極3及び反射器6は、複数の金属膜または合金膜が積層された積層体からなっていてもよい。
 IDT電極3を形成するに際しては、例えば、フォトリソグラフィー法などにより、レジストパターンを形成して、蒸着法などにより、圧電基板2上に金属膜を形成する。次に、レジストパターンを剥離、除去して、上記金属膜をパターニングする。反射器6は、IDT電極3と同時に形成することができる。
 第1の電極指3a2と第2の電極指3b2とは、第1の方向XにおいてギャップAを隔てて互いに隣りあっている。ギャップAは第2の方向Yに延びている。IDT電極3においては、複数のギャップAが第1の方向Xに沿って配置されている。各ギャップA内には、突起4が設けられている。詳細には、第1の電極指3a2と第2の電極指3b2との間に、第1の電極指3a2と第2の電極指3b2とから所定の距離を隔てて突起4が配置されている。突起4は、SiOからなる。なお、突起4は、SiO以外の他の絶縁体からなっていてもよい。
 突起4を形成するに際しては、例えば、CVD法などにより圧電基板2上に、絶縁体として誘電体膜を形成する。次に、フォトリソグラフィー法などにより、レジストパターンを形成して、次に、ミリング法などにより、上記誘電体膜をエッチングし、その後レジストパターンを剥離、除去して突起4を形成する。
 なお、突起4を形成する絶縁体としては、感光性樹脂などの樹脂を用いてもよい。その場合、フォトリソグラフィー法などによって樹脂膜を形成する。
 複数本の第1,第2の電極指3a2,3b2が延びる方向に平行な方向である第2の方向Yに突起4は延びている。第1の方向Xから見て複数本の第1の電極指3a2と複数本の第2の電極指3b2とが重なり合っている部分を電極指交叉部Bとする。突起4の第2の方向Yに沿う寸法と電極指交叉部Bの第2の方向Yに沿う寸法とは等しい。突起4は、電極指交叉部Bの外側には至っていない。突起4及び第1,第2の電極指3a2,3b2の第1の方向Xに沿う寸法を幅とする。突起4の幅は第1,第2の電極指3a2,3b2の幅よりも小さい。突起4は、複数本の第1,第2の電極指3a2,3b2のいずれにも接触していない。
 本実施形態の特徴は、ギャップA内に突起4が設けられていることにある。それによって、挿入損失を低減し、かつ帯域外減衰量を大きくすることができる。これを、図面を参照しつつ、以下において具体的に説明する。
 図3は、第1の比較例の弾性表面波装置の正面断面図である。図4は、第2の比較例の弾性表面波装置の正面断面図である。
 図3に示すように、第1の比較例の弾性表面波装置101では、第1の実施形態における突起4が設けられていない。上記以外においては、弾性表面波装置101は第1の実施形態と同様の構造を有する。
 図4に示すように、第2の比較例の弾性表面波装置111では、第1の実施形態における絶縁体である突起4は設けられていない。IDT電極の第1の電極指113a2と第2の電極指113b2との間に浮き電極114が設けられている。浮き電極114は、電気的にどこにも接続されていない。第1,第2の電極指113a2,113b2の幅は、第1の実施形態の第1,第2の電極指3a2,3b2の幅よりも小さい。上記以外においては、弾性表面波装置111は第1の実施形態と同様の構造を有する。
 第1の実施形態及び第1,第2の比較例の弾性表面波装置の設計パラメータは、下記の表1の通りとした。
Figure JPOXMLDOC01-appb-T000001
 図5は、第1,第2の比較例の弾性表面波装置のインピーダンス周波数特性を示す図である。破線は第1の比較例の結果を示し、一点鎖線は第2の比較例の結果を示す。図6(a)は、本発明の第1の実施形態及び第1の比較例の弾性表面波装置のインピーダンス周波数特性を示す図であり、図6(b)は、共振周波数付近におけるインピーダンス周波数特性を示す図であり、図6(c)は、反共振周波数付近におけるインピーダンス周波数特性を示す図である。実線は第1の実施形態の結果を示し、破線は第1の比較例の結果を示す。
 図5に示すように、第2の比較例の反共振抵抗値は第1の比較例の反共振抵抗値よりも大きい。しかしながら、第2の比較例の共振抵抗値も第1の比較例の共振抵抗値よりも著しく大きくなっている。よって、第2の比較例の弾性表面波装置を用いると、挿入損失が著しく高くなる。
 図4に示すように、第2の比較例では、導電性を有する浮き電極114が設けられている。IDT電極の第1,第2の電極指113a2,113b2と浮き電極114との距離が小さければ、耐サージ性が劣化する。よって、第1,第2の電極指113a2,113b2と浮き電極114との距離を大きくするように、第1,第2の電極指113a2,113b2の幅を小さくしている。そのため、図5に示したように、第2の比較例では共振抵抗値が大きくなっていた。
 これに対して、本実施形態では、図2に示した突起4は絶縁性を有する誘電体からなるため、耐サージ性は劣化しない。よって、第1,第2の電極指3a2,3b2の幅を小さくせずに、特性を向上させることができる。
 より具体的には、図6(a)及び図6(b)に示すように、本実施形態の共振抵抗値は-1.0dBであり、第1の比較例の共振抵抗値は-0.4dBである。本実施形態の共振抵抗値は第1の比較例の共振抵抗値よりも0.6dB小さい。さらに、図6(a)及び図6(c)に示すように、本実施形態の反共振抵抗値は72.6dBであり、第1の比較例の反共振抵抗値は70.0dBである。本実施形態の反共振抵抗値は第1の比較例の反共振抵抗値よりも2.6dB大きい。ここで、反共振抵抗値の共振抵抗値に対する比であるインピーダンス比を比較すると、本実施形態のインピーダンス比は、第1の比較例のインピーダンス比よりも3.2dB大きい。従って、本実施形態により、挿入損失を効果的に低減し、かつ帯域外減衰量を効果的に大きくし得ることがわかる。
 図1に示すように、好ましくは、突起4は、第1の電極指3a2と第2の電極指3b2との中心線C-Cを含む位置に配置されていることが望ましい。それによって、挿入損失を効果的に低減し、かつ帯域外減衰量を効果的に大きくすることができる。より好ましくは、突起4は、ギャップAの中心に位置していることが望ましい。それによって、挿入損失をより一層低減し、かつ帯域外減衰量をより一層大きくすることができる。
 本実施形態では、突起4の第1の方向Xに沿う断面の形状は矩形だが、突起4の第1の方向Xに沿う断面の形状は矩形に限られない。例えば、図7に示す第1の変形例の弾性表面波装置51のように、突起54の断面の形状は台形でもよい。図8に示す第2の変形例の弾性表面波装置61のように、突起64の断面の形状は凸型形状でもよい。図9に示す第3の変形例の弾性表面波装置71のように、突起74の断面の形状は凹型形状でもよい。
 図10に示す第4の変形例の弾性表面波装置81のように、突起4が設けられていないギャップAを一部有していてもよい。例えば、突起4は、複数のギャップA内に周期的に設けられていてもよい。もっとも、本実施形態のように、突起4は全てのギャップA内に設けられていることが望ましい。それによって、挿入損失を効果的に低減し、かつ帯域外減衰量を効果的に大きくすることができる。
 図11は、本発明の第2の実施形態に係る弾性表面波装置の正面断面図である。
 弾性表面波装置11の圧電基板2上には、IDT電極3及び突起4を覆うように誘電体膜15が設けられている。誘電体膜15は保護膜であり、かつ周波数調整膜である。従って、弾性表面波装置11の耐久性を高めることができ、誘電体膜15の膜厚を調整することで、弾性表面波装置11の周波数を所望の周波数に調整することができる。
 図12は、第3の実施形態に係る弾性表面波装置の正面断面図である。
 弾性表面波装置21の圧電基板2上には、IDT電極3を覆うように誘電体膜15が設けられている。誘電体膜15のギャップA内に位置している部分上に突起4が設けられている。本実施形態においても、誘電体膜15が設けられていることにより、弾性表面波装置21の耐久性を高めることができ、かつ周波数温度特性などを高めることができる。
 誘電体膜15には、SiOなどを用いることができる。
 本実施形態では、突起4は誘電体膜15に覆われていない。よって、突起4の幅に誘電体膜15の厚みが加わらないため、突起4の幅を小さくパターニングする必要がない。従って、上記の効果に加えて、突起4の形成精度を効果的に高めることができる。
 図13は、第4の実施形態に係る弾性表面波装置の模式的平面図である。
 弾性表面波装置31のIDT電極33は、複数本の第1,第2のダミー電極33a3,33b3を有する。複数本の第1のダミー電極33a3の一方端は、第1のバスバー33a1に接続されている。複数本の第1のダミー電極33a3は、第2の方向Yにおいて複数本の第2の電極指33b2と対向している。複数本の第1のダミー電極33a3は、複数本の第2の電極指33b2に接触していない。複数本の第2のダミー電極33b3の一方端は、第2のバスバー33b1に接続されている。複数本の第2のダミー電極33b3は、第2の方向Yにおいて複数本の第1の電極指33a2と対向している。複数本の第2のダミー電極33b3は、複数本の第1の電極指33a2に接触していない。
 IDT電極33を第1の方向Xに見たときに、複数本の第1の電極指33a2と複数本の第1のダミー電極33a3とが重なり合っている部分を第1のオフセット部Dとする。複数本の第2の電極指33b2と複数本の第2のダミー電極33b3とが重なり合っている部分を第2のオフセット部Eとする。突起34は第1,第2のオフセット部D,Eに至っている。それによって、電極指交叉部Bにおける音速と第1,第2のオフセット部D,Eにおける音速との不均衡を抑制することができる。よって、共振抵抗値をより一層低減することができ、かつ反共振抵抗値をより一層高めることができる。従って、挿入損失をより一層低減することができ、帯域外減衰量をより一層大きくすることができる。
 図14は、第5の実施形態に係る弾性表面波装置の模式的平面図である。
 弾性表面波装置41の突起44は、第1,第2のオフセット部D,Eに位置する第1の部分44aを有する。第1の部分44aの幅は、突起44の他の部分における幅よりも大きい。それによって、第1,第2のオフセット部D,Eにおける音速をより一層遅くすることができるため、弾性表面波の閉じ込め効果をより一層高めることができる。よって、共振抵抗値をより一層低減することができ、かつ反共振抵抗値をより一層高めることができる。従って、挿入損失をより一層低減することができ、帯域外減衰量をより一層大きくすることができる。
 図1に示す弾性表面波装置1は、ラダー型フィルタにおける直列腕共振子及び並列腕共振子として用いることができる。弾性表面波装置1の反共振抵抗値は大きい。よって、弾性表面波装置1を並列腕共振子に用いることにより、ラダー型フィルタの挿入損失を効果的に低減することができる。さらに、弾性表面波装置1の共振抵抗値は小さい。よって、弾性表面波装置1を直列腕共振子に用いることにより、ラダー型フィルタの通過帯域の端部付近では挿入損失を低減することができ、帯域外減衰量を大きくすることができる。従って、ラダー型フィルタにおいて弾性表面波装置1を用いるに際しては、好ましくは、直列腕共振子及び並列腕共振子の双方に用いることが望ましい。
 弾性表面波装置1と同様に、第2~第5の実施形態に係る弾性表面波装置11,21,31,41もラダー型フィルタにおける直列腕共振子及び並列腕共振子として用いることができる。
 1…弾性表面波装置
 2…圧電基板
 3…IDT電極
 3a1,3b1…第1,第2のバスバー
 3a2,3b2…第1,第2の電極指
 4…突起
 6…反射器
 11…弾性表面波装置
 15…誘電体膜
 21…弾性表面波装置
 31…弾性表面波装置
 33…IDT電極
 33a1,33b1…第1,第2のバスバー
 33a2,33b2…第1,第2の電極指
 33a3,33b3…第1,第2のダミー電極
 34…突起
 41…弾性表面波装置
 44…突起
 44a…第1の部分
 51…弾性表面波装置
 54…突起
 61…弾性表面波装置
 64…突起
 71…弾性表面波装置
 74…突起
 81…弾性表面波装置
 101…弾性表面波装置
 111…弾性表面波装置
 113a2,113b2…第1,第2の電極指
 114…浮き電極

Claims (13)

  1.  圧電基板と、
     前記圧電基板上に設けられているIDT電極とを備え、
     前記IDT電極が、第1,第2のバスバーと、前記第1,第2のバスバーに一方端がそれぞれ接続されている複数本の第1の電極指及び複数本の第2の電極指とを有し、前記複数本の第1の電極指と前記複数本の第2の電極指とが互いに間挿し合っており、前記IDT電極において、弾性表面波伝搬方向である第1の方向に前記第1の電極指と前記第2の電極指とがギャップを隔てて互いに隣りあっており、前記ギャップは前記第1の方向に複数存在しており、
     複数の前記ギャップのうちの少なくとも1つに設けられており、前記複数本の第1,第2の電極指及び前記第1,第2のバスバーに接触しておらず、かつ絶縁体からなる突起をさらに備える、弾性表面波装置。
  2.  前記複数本の第1,第2の電極指が延びる方向と平行な方向である第2の方向に前記突起が延びており、前記IDT電極の前記複数本の第1の電極指と前記複数本の第2の電極指とが前記第1の方向から見て重なり合っている部分を電極指交叉部とすると、前記突起の前記第2の方向に沿う寸法が前記電極指交叉部の前記第2の方向に沿う寸法以上である、請求項1に記載の弾性表面波装置。
  3.  前記突起の前記第2の方向に沿う寸法が、前記IDT電極の前記電極指交叉部の前記第2の方向に沿う寸法と等しく、前記突起が前記電極指交叉部の外側に至っていない、請求項2に記載の弾性表面波装置。
  4.  前記突起及び前記第1,第2の電極指の前記第1の方向に沿う寸法を幅とすると、前記突起の幅が前記第1,第2の電極指の幅よりも小さい、請求項1~3のいずれか1項に記載の弾性表面波装置。
  5.  前記第1のバスバーに一方端が接続されており、前記第2の方向において前記複数本の第2の電極指と対向しており、かつ前記複数本の第2の電極指と接触していない複数本の第1のダミー電極と、前記第2のバスバーに一方端が接続されており、前記第2の方向において前記複数本の第1の電極指と対向しており、かつ前記複数本の第1の電極指と接触していない複数本の第2のダミー電極とを前記IDT電極がさらに有し、前記IDT電極を前記第1の方向に見たときに前記複数本の第1の電極指と前記複数本の第1のダミー電極とが重なり合っている部分が第1のオフセット部とされており、前記複数本の第2の電極指と前記複数本の第2のダミー電極とが重なり合っている部分が第2のオフセット部とされており、前記第1,第2のオフセット部に前記突起が至っている、請求項2に記載の弾性表面波装置。
  6.  前記IDT電極の前記第1,第2のオフセット部における前記突起の幅が、他の部分における前記突起の幅よりも大きい、請求項5に記載の弾性表面波装置。
  7.  前記圧電基板上に前記IDT電極を覆うように設けられている誘電体膜をさらに備える、請求項1~6のいずれか1項に記載の弾性表面波装置。
  8.  前記誘電体膜が前記突起を覆うように設けられている、請求項7に記載の弾性表面波装置。
  9.  前記突起が前記誘電体膜上に設けられている、請求項7に記載の弾性表面波装置。
  10.  前記第2の方向に沿う前記突起の断面の形状が矩形である、請求項2または3に記載の弾性表面波装置。
  11.  前記突起が複数の前記ギャップに周期的に設けられている、請求項1~10のいずれか1項に記載の弾性表面波装置。
  12.  前記突起が全ての前記ギャップに設けられている、請求項1~11のいずれか1項に記載の弾性表面波装置。
  13.  前記圧電基板がLiTaOからなり、リーキー波を利用している、請求項1~12のいずれか1項に記載の弾性表面波装置。
PCT/JP2015/071104 2014-09-09 2015-07-24 弾性表面波装置 WO2016039026A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014183204 2014-09-09
JP2014-183204 2014-09-09

Publications (1)

Publication Number Publication Date
WO2016039026A1 true WO2016039026A1 (ja) 2016-03-17

Family

ID=55458787

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/071104 WO2016039026A1 (ja) 2014-09-09 2015-07-24 弾性表面波装置

Country Status (1)

Country Link
WO (1) WO2016039026A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019131530A1 (ja) * 2017-12-27 2019-07-04 株式会社村田製作所 弾性波フィルタ

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08204492A (ja) * 1995-01-23 1996-08-09 Kazuhiko Yamanouchi 弾性表面波トランスデューサ
JPH11186866A (ja) * 1997-12-22 1999-07-09 Kyocera Corp 弾性表面波装置及びその製造方法
JP2003309452A (ja) * 2000-04-18 2003-10-31 Murata Mfg Co Ltd 縦結合共振子型弾性表面波フィルタ
JP2005080202A (ja) * 2003-09-03 2005-03-24 Murata Mfg Co Ltd 弾性表面波素子
WO2008065834A1 (fr) * 2006-11-29 2008-06-05 Murata Manufacturing Co., Ltd. Résonateur à ondes élastiques de surface et dispositif à ondes élastiques de surface
JP2008236588A (ja) * 2007-03-23 2008-10-02 Murata Mfg Co Ltd 弾性境界波装置及びその製造方法
WO2009147787A1 (ja) * 2008-06-06 2009-12-10 パナソニック株式会社 弾性波共用器
JP2009290472A (ja) * 2008-05-28 2009-12-10 Fujitsu Ltd 弾性波デバイス、フィルタ、通信モジュール、および通信装置
WO2011161987A1 (ja) * 2010-06-22 2011-12-29 株式会社村田製作所 ラダー型弾性波フィルタ装置及び分波器
JP2013518455A (ja) * 2010-01-25 2013-05-20 エプコス アーゲー 横方向放射損失を低減させ,横方向モードの抑制により性能を高めた電気音響変換器
JP2013138333A (ja) * 2011-12-28 2013-07-11 Panasonic Corp 弾性波素子

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08204492A (ja) * 1995-01-23 1996-08-09 Kazuhiko Yamanouchi 弾性表面波トランスデューサ
JPH11186866A (ja) * 1997-12-22 1999-07-09 Kyocera Corp 弾性表面波装置及びその製造方法
JP2003309452A (ja) * 2000-04-18 2003-10-31 Murata Mfg Co Ltd 縦結合共振子型弾性表面波フィルタ
JP2005080202A (ja) * 2003-09-03 2005-03-24 Murata Mfg Co Ltd 弾性表面波素子
WO2008065834A1 (fr) * 2006-11-29 2008-06-05 Murata Manufacturing Co., Ltd. Résonateur à ondes élastiques de surface et dispositif à ondes élastiques de surface
JP2008236588A (ja) * 2007-03-23 2008-10-02 Murata Mfg Co Ltd 弾性境界波装置及びその製造方法
JP2009290472A (ja) * 2008-05-28 2009-12-10 Fujitsu Ltd 弾性波デバイス、フィルタ、通信モジュール、および通信装置
WO2009147787A1 (ja) * 2008-06-06 2009-12-10 パナソニック株式会社 弾性波共用器
JP2013518455A (ja) * 2010-01-25 2013-05-20 エプコス アーゲー 横方向放射損失を低減させ,横方向モードの抑制により性能を高めた電気音響変換器
WO2011161987A1 (ja) * 2010-06-22 2011-12-29 株式会社村田製作所 ラダー型弾性波フィルタ装置及び分波器
JP2013138333A (ja) * 2011-12-28 2013-07-11 Panasonic Corp 弾性波素子

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019131530A1 (ja) * 2017-12-27 2019-07-04 株式会社村田製作所 弾性波フィルタ
US10958246B2 (en) 2017-12-27 2021-03-23 Murata Manufacturing Co., Ltd. Acoustic wave filter

Similar Documents

Publication Publication Date Title
JP6711377B2 (ja) 弾性波装置
US9035725B2 (en) Acoustic wave device
JP6380558B2 (ja) 弾性波装置
JP6107947B2 (ja) 弾性波フィルタ装置
JP6741082B2 (ja) 弾性波装置
US10840878B2 (en) Elastic wave device
WO2015156232A1 (ja) 弾性波フィルタ装置
JP6284800B2 (ja) 弾性表面波デバイス及びフィルタ
WO2015182521A1 (ja) 弾性波装置及びラダー型フィルタ
JP6717389B2 (ja) 縦結合共振子型弾性波フィルタ
WO2018123882A1 (ja) 弾性波装置
KR20210025663A (ko) 탄성파 장치 및 래더형 필터
JPWO2019003909A1 (ja) 弾性波装置及び複合フィルタ装置
JP6777221B2 (ja) 弾性波装置
WO2017077892A1 (ja) 弾性波装置
US11374550B2 (en) Elastic wave device
JP5176863B2 (ja) 弾性波装置
WO2016039026A1 (ja) 弾性表面波装置
JP2011041082A (ja) 一ポート型弾性波共振子及び弾性波フィルタ装置
WO2023048256A1 (ja) 弾性波装置
US11811387B2 (en) Elastic wave device
WO2022071062A1 (ja) 弾性波装置
JP2009218761A (ja) 弾性境界波デバイス

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15840557

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 15840557

Country of ref document: EP

Kind code of ref document: A1