WO2018173502A1 - ティルティングパッド軸受用の軸受パッド、ティルティングパッド軸受及び回転機械 - Google Patents
ティルティングパッド軸受用の軸受パッド、ティルティングパッド軸受及び回転機械 Download PDFInfo
- Publication number
- WO2018173502A1 WO2018173502A1 PCT/JP2018/003378 JP2018003378W WO2018173502A1 WO 2018173502 A1 WO2018173502 A1 WO 2018173502A1 JP 2018003378 W JP2018003378 W JP 2018003378W WO 2018173502 A1 WO2018173502 A1 WO 2018173502A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- bearing
- pad
- tilting
- tilting pad
- recess
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C17/00—Sliding-contact bearings for exclusively rotary movement
- F16C17/02—Sliding-contact bearings for exclusively rotary movement for radial load only
- F16C17/03—Sliding-contact bearings for exclusively rotary movement for radial load only with tiltably-supported segments, e.g. Michell bearings
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D25/00—Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
- F01D25/16—Arrangement of bearings; Supporting or mounting bearings in casings
- F01D25/166—Sliding contact bearing
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D25/00—Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
- F01D25/18—Lubricating arrangements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02C—GAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
- F02C7/00—Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
- F02C7/06—Arrangements of bearings; Lubricating
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C17/00—Sliding-contact bearings for exclusively rotary movement
- F16C17/04—Sliding-contact bearings for exclusively rotary movement for axial load only
- F16C17/06—Sliding-contact bearings for exclusively rotary movement for axial load only with tiltably-supported segments, e.g. Michell bearings
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C33/00—Parts of bearings; Special methods for making bearings or parts thereof
- F16C33/02—Parts of sliding-contact bearings
- F16C33/04—Brasses; Bushes; Linings
- F16C33/06—Sliding surface mainly made of metal
- F16C33/10—Construction relative to lubrication
- F16C33/1025—Construction relative to lubrication with liquid, e.g. oil, as lubricant
- F16C33/1045—Details of supply of the liquid to the bearing
- F16C33/105—Conditioning, e.g. metering, cooling, filtering
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C33/00—Parts of bearings; Special methods for making bearings or parts thereof
- F16C33/02—Parts of sliding-contact bearings
- F16C33/04—Brasses; Bushes; Linings
- F16C33/06—Sliding surface mainly made of metal
- F16C33/10—Construction relative to lubrication
- F16C33/1025—Construction relative to lubrication with liquid, e.g. oil, as lubricant
- F16C33/106—Details of distribution or circulation inside the bearings, e.g. details of the bearing surfaces to affect flow or pressure of the liquid
- F16C33/108—Details of distribution or circulation inside the bearings, e.g. details of the bearing surfaces to affect flow or pressure of the liquid with a plurality of elements forming the bearing surfaces, e.g. bearing pads
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C33/00—Parts of bearings; Special methods for making bearings or parts thereof
- F16C33/02—Parts of sliding-contact bearings
- F16C33/04—Brasses; Bushes; Linings
- F16C33/06—Sliding surface mainly made of metal
- F16C33/12—Structural composition; Use of special materials or surface treatments, e.g. for rust-proofing
- F16C33/122—Multilayer structures of sleeves, washers or liners
- F16C33/124—Details of overlays
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2240/00—Components
- F05D2240/50—Bearings
- F05D2240/54—Radial bearings
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2300/00—Materials; Properties thereof
- F05D2300/10—Metals, alloys or intermetallic compounds
- F05D2300/17—Alloys
- F05D2300/171—Steel alloys
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2300/00—Materials; Properties thereof
- F05D2300/10—Metals, alloys or intermetallic compounds
- F05D2300/17—Alloys
- F05D2300/172—Copper alloys
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C2204/00—Metallic materials; Alloys
- F16C2204/10—Alloys based on copper
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C2360/00—Engines or pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C2360/00—Engines or pumps
- F16C2360/23—Gas turbine engines
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C2360/00—Engines or pumps
- F16C2360/23—Gas turbine engines
- F16C2360/24—Turbochargers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C2360/00—Engines or pumps
- F16C2360/31—Wind motors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C2380/00—Electrical apparatus
- F16C2380/26—Dynamo-electric machines or combinations therewith, e.g. electro-motors and generators
Definitions
- rotating machines such as steam turbines and gas turbines include a bearing device for rotatably supporting a rotor shaft.
- this bearing device a configuration is known in which at least the load direction of the rotor load is supported by a tiltable bearing pad from one or a plurality of angular directions in the circumferential direction of the rotor shaft.
- Patent Document 1 describes a bearing device used as a journal bearing.
- lubricating oil is supplied between a rotor shaft and a bearing pad that slidably supports the rotor shaft to form an oil film, and the rotor shaft is supported through the oil film. This prevents direct metal contact between the rotor shaft and the bearing pad.
- a bearing pad for a tilting pad bearing is: A first member having a bearing surface; A second member provided on the back side of the first member, At least one of the back surface of the first member or the surface of the second member facing the back surface of the first member is a recess for forming a cavity between the first member and the second member It is characterized by having.
- a support member that is provided on the back side of the second member and supports the first member and the second member in a tiltable manner;
- the concave portion is formed over at least a part of an installation range of the support member in a plan view of the bearing pad.
- the bearing pad that can be tilted tends to have high local surface pressure in the installation range of the support member whose back surface is supported by the support member.
- the recess is formed so as to cover at least a part of the installation range of the support member in the plan view of the bearing pad, the surface pressure of the bearing surface of the first member is increased. At least a part of the portion that tends to be high can be bent in a direction away from the rotor shaft. For this reason, it is possible to prevent the surface pressure from escaping and generate a portion having a higher local surface pressure than the surroundings on the bearing surface, or even if a portion having a higher local surface pressure is generated, the peak value of the surface pressure is Can be relaxed. Therefore, it is possible to reduce the surface pressure applied to the bearing surface and prevent plastic flow from occurring on the bearing surface.
- the lubricating oil can enter and exit between the inside and the outside of the cavity formed by the recess.
- a damping function can be given to the bearing pad with respect to shaft vibration or the like input to the bearing pad.
- the tilting pad bearing includes a direct lubrication type bearing having a nozzle for supplying lubricating oil to the bearing surface.
- the direct lubrication type tilting pad bearing can enjoy the effect described in (1) above.
- the first member formed of copper or a copper alloy is formed of steel while improving heat dissipation and preventing thermal deformation.
- the pressure deformation can be suppressed by the second member. Therefore, it can suppress that the part whose local surface pressure is higher than the periphery on a bearing surface arises, or when the part where local surface pressure is high arises, the peak value can be eased. Further, since heat dissipation is enhanced by copper, the bearing load that can be loaded with the same oil film thickness at the time of high rotation increases, so that the bearing can be downsized.
- the tilting pad bearing according to at least one embodiment of the present invention is: At least one bearing pad according to any one of (1) to (6) above; A carrier ring provided on an outer peripheral side of the at least one bearing pad and configured to hold the at least one bearing pad; It is characterized by providing.
- the first member formed of copper or a copper alloy improves the heat dissipation of the bearing pad to reduce thermal deformation, and the rigidity of the bearing pad is reduced by the steel second member. It is possible to improve and suppress pressure deformation. Thereby, the local surface pressure which acts on a bearing surface can be reduced, and the plastic flow of the bearing surface at the time of low rotation can be prevented. Further, since the heat dissipation is enhanced by the first member made of copper or copper alloy, the bearing load that can be loaded with the same oil film thickness at the time of high rotation increases, so that the bearing can be downsized.
- a rotating machine includes: The tilting pad bearing according to (7) or (8) above; A rotor shaft rotatably supported by the tilting pad bearing; It is characterized by providing.
- damage to the tilting pad bearing can be prevented.
- FIG. 2 is a sectional view taken along line AA in FIG. 1. It is the elements on larger scale of the tilting pad bearing which concerns on one Embodiment. It is the elements on larger scale of the tilting pad bearing which concerns on other embodiment. It is the elements on larger scale of the tilting pad bearing which concerns on other embodiment. It is the elements on larger scale of the bearing pad which concerns on one Embodiment. It is a figure which shows the modification of the bearing pad which concerns on one Embodiment. It is a figure which shows the modification of the bearing pad which concerns on one Embodiment.
- FIG. 1 is a cross-sectional view along the axial direction of a tilting pad bearing 10 according to an embodiment.
- FIG. 2 is a cross-sectional view taken along the line AA in FIG. 1 and perpendicular to the axial direction.
- the axial direction is the direction of the central axis O of the rotor shaft 2 supported by the tilting pad bearing 10
- the radial direction is the radial direction of the rotor shaft 2
- the circumferential direction is the rotor. This is the circumferential direction of the shaft 2.
- a rotating machine 1 includes a turbine such as a gas turbine or a steam turbine (for example, a steam turbine of a nuclear power plant) or a turbine for driving a machine, a wind machine such as a wind power generator, or a supercharger. It is done.
- a rotating machine 1 according to an embodiment includes a tilting pad bearing (journal bearing) 10 as a bearing device, a rotor shaft 2 rotatably supported by the tilting pad bearing 10, and the rotor shaft 2 and the tilting pad bearing. 10 may be provided.
- the bearing housing 3 may include an upper half bearing housing 4 and a lower half bearing housing 5, and the upper half bearing housing 4 and the lower half bearing housing 5 each have a semicircular arc in cross section perpendicular to the axial direction. You may have an inner peripheral surface which becomes (refer FIG. 2).
- the lubrication method (oil supply method) of the tilting pad bearing 10 is not particularly limited, and for example, a direct lubrication method may be adopted.
- the tilting pad bearing 10 according to another embodiment may be a thrust bearing, and may employ an oil bath method or another lubrication method as a lubrication method.
- one or more bearing pads 30 may be further arranged in the upper half region, or three or more bearing pads 30 may be attached to the lower half region. Good.
- the tilting pad bearing 10 is provided with at least one bearing pad 30 as a bearing portion and an outer peripheral side of the bearing pad 30, and includes at least one bearing pad 30. And a carrier ring 11 configured to hold the bearing pad 30.
- the tilting pad bearing 10 may have a configuration in which two bearing pads 30 are disposed in the lower half region.
- the carrier ring 11 may include an upper half carrier ring 12 and a lower half carrier ring 13.
- the upper half carrier ring 12 and the lower half carrier ring 13 may have inner circumferential surfaces 12A and 13A and outer circumferential surfaces 12B and 13B, respectively, such that the cross section perpendicular to the axial direction is a semicircular arc. (See FIG. 2).
- the carrier ring 11 in other embodiments may be an integral structure.
- a pair of side plates 17 and 18 are disposed along the outer periphery of the rotor shaft 2 on both ends in the axial direction of the carrier ring 11.
- the side plates 17 and 18 are formed in a disk shape, and holes 17A and 18A through which the rotor shaft 2 passes are formed in the center.
- Guide metals (semi-annular bearing portions) 20 and 21 are attached to the inner peripheral surface 12A of the upper half carrier ring 12 in order to mainly suppress the jump of the rotor shaft 2 from above.
- a pair of guide metals 20 and 21 are attached on both axial ends of the upper half carrier ring 12 and on the inner side in the axial direction than the side plates 17 and 18.
- the carrier ring 11 of the tilting pad bearing 10 may be provided with at least one oiling nozzle 25 to 29 for supplying lubricating oil to the bearing surface 30A (see FIG. 2).
- a total of five oil supply nozzles including three oil supply nozzles 27, a fourth oil supply nozzle 28, and a fifth oil supply nozzle 29 are provided.
- the arrangement configuration of the fueling nozzle is not limited to this.
- Lubricating oil supply passage (not shown) may be formed inside the carrier ring 11.
- the lubricating oil supplied to the lubricating oil supply path is sent to each of the oil supply nozzles 25 to 29 and is jetted from the oil supply nozzles 25 to 29 in the vicinity of the bearing pad 30.
- At least one upper key 40 and at least one upper shim 41 may be disposed between the upper half carrier ring 12 and the upper half bearing housing 4.
- at least one lower key 50 and at least one lower shim 51 may be disposed between the lower half carrier ring 13 and the lower half bearing housing 5.
- the bearing pad 30 for the tilting pad bearing 10 includes, for example, a first member 32 having a bearing surface 30A and a second member provided on the back side of the first member 32, as shown in FIG. 34.
- a plurality of bearing pads 30 may be provided at different positions in the rotational direction S of the rotor shaft 2 on the inner peripheral side of the carrier ring 11 so as to support the rotor shaft 2 from below.
- At least one of the back surface of the first member 32 or the surface of the second member 34 facing the back surface of the first member 32 is a cavity between the first member 32 and the second member 34.
- the recess 60 faces the back surface of the first member 32, that is, the second member 34 on the opposite side of the first member 32 from the bearing surface 30A, as shown in FIG. 3, for example. It may be formed on the surface. If the recess 60 is provided in this way, a cavity is formed between the first member 32 and the second member 34, so that when a load is applied to the bearing surface 30 ⁇ / b> A, the cavity is formed in the first member 32.
- the adjacent portion can be bent and deformed on the second member 34 side, that is, in a direction away from the rotor shaft 2. For this reason, it can suppress that the part whose local surface pressure is higher than the periphery on bearing surface 30A arises. Further, even if a portion having a high local surface pressure is generated on the bearing surface 30A of the first member 32, the peak value of the local surface pressure applied to the bearing surface 30A can be reduced. Therefore, it is possible to prevent the plastic flow from occurring on the bearing surface 30A for suppressing the temperature increase due to the friction between the rotor shaft 2 and the first member 32, particularly during low-speed rotation.
- the second member 34 may be configured to be tiltable with respect to the carrier ring 11. Accordingly, the bearing pad 30 including the second member 34 and the first member 32 is supported on the carrier ring 11 so as to be tiltable.
- the curvature of the back surface of the second member 34 corresponding to the outer peripheral surface of the bearing pad 30 may be larger than the curvature of the inner peripheral surface of the carrier ring 11 facing the back surface.
- the bearing pad 30 may further include a support member 70 that is provided on the back side of the second member 34 and supports the first member 32 and the second member 34 in a tiltable manner.
- the contact between the second member 34 and the support member 70 may be such that either one of the opposing surfaces is a curved surface and the other is a flat surface, or both have convex curved surfaces toward the other side. You may do it.
- each curvature center is the same side with respect to a mutual contact part, either one inscribed with respect to the other party may have a larger curvature than the other.
- the back surface of the second member 34 and the support member 70 may be in contact with each other so as to be tiltable.
- the support member 70 is, for example, as shown in FIGS.
- the convex portion 74 may be included.
- the convex portion 74 may be configured to make point contact with the second member 34.
- the convex portion 74 may be a so-called spherical pivot in which the surface facing the second member 34 is a spherical surface.
- the convex portion 74 may have, for example, a shape that makes line contact with the second member 34, or may have a shape that makes surface contact with the second member 34.
- a recess 34A may be formed on the back surface of the second member 34, that is, the surface of the second member 34 facing the outer side in the radial direction on the carrier ring 11 side. At least a part of the convex portion 74 may be accommodated.
- the support member 70 may include a liner 72 disposed between the protrusion 74 and the second member 34.
- the liner 72 may be formed in a substantially flat plate shape, for example.
- the liner 72 is disposed so as to contact the bottom surface of the recessed portion 34A, and the protruding portion 74 is disposed so as to tiltably support the first member 32 and the second member 34 via the liner 72. May be.
- the recess 60 may be formed over at least a part of the installation range of the support member 70 in a plan view of the bearing pad 30. That is, the recess 60 does not necessarily have to be installed so as to cover the entire installation range of the support member 70 in a plan view of the bearing pad 30, and may be formed in a range smaller than the support member 70.
- the recess 60 is defined as “at least part of the installation range of the support member 70”, and the contact between the projection 74 of the support member 70 and the second member 34 (or the liner 72) in a plan view of the bearing pad 30. You may form in the range containing a part (a contact point, a contact line, or a contact surface). Specifically, as shown in FIG.
- the concave portion 60 is an installation range of the support member 70 (specifically, the convex portion 74) in a plan view of the bearing pad 30. Of these, it may be formed in a range including at least a part.
- the tiltable bearing pad 30 is likely to have a high local surface pressure at a portion on the bearing surface 30 ⁇ / b> A whose back surface is supported by the support member 70.
- the surface pressure of the bearing surface 30A in the first member 32 is increased. At least a part of the portion that tends to be high can be bent in a direction away from the rotor shaft 2.
- the recess 60 may be formed over the entire installation range of the support member 70 in a plan view of the bearing pad 30.
- the concave portion 60 includes the entire installation range of the support member 70 (specifically, the convex portion 74) in the plan view of the bearing pad 30. It may be formed in a range.
- the cavity formed by the recess 60 may communicate with the external space of the bearing pad 30.
- the recess 60 may be formed in a groove shape penetrating the bearing pad 30 along the axial direction of the rotor shaft 2. If comprised in this way, lubricating oil can come in and out between the inside of the cavity formed of the recessed part 60, and the exterior. Thereby, for example, the bearing pad 30 can be provided with a damping function against shaft vibrations of the rotor shaft 2 input to the bearing pad 30.
- the recess 60 may be formed in a groove shape penetrating the bearing pad 30 in a direction orthogonal to both the axial direction and the radial direction of the rotor shaft 2.
- the communication part (opening part) between the bearing pad 30 and its external space can be arbitrarily set so that its cross-sectional area has an appropriate size in consideration of damping performance against axial vibration or the like.
- the first member 32 may be formed of copper, copper alloy, or steel.
- the second member 34 may be made of steel.
- the first member 32 is formed on the copper-based metal layer 32A formed of copper or a copper alloy, and on the inner peripheral surface side (the inner side in the radial direction of the rotor shaft 2) of the copper-based metal layer 32A.
- a white metal layer 32B forming 30A see, for example, FIGS. 3 to 5).
- the second member 34 constitutes a steel layer of the bearing pad 30.
- the rotary machine 1 having a configuration in which the rotor shaft 2 is supported by the tilting pad bearing 10 capable of preventing the plastic flow of the bearing surface 30A.
- FIG. 9 is a cross-sectional view of the tilting pad bearing 110 according to the second embodiment viewed from a direction perpendicular to the axial direction.
- FIG. 10 is a cross-sectional view of the tilting pad bearing 110 according to the second embodiment when viewed from the axial direction.
- the tilting pad bearing 110 applied to the rotating machine 100 in the second embodiment is different from the above-described embodiments in that the recess 60 is not provided.
- the tilting pad bearing 110 according to the second embodiment is a journal bearing that employs a direct lubrication method as a lubrication method.
- each bearing pad 130 has a bearing surface 130 ⁇ / b> A, a first member 132 formed of copper, a copper alloy, or steel, and a back surface side of the first member 132. And a second member 134 formed of steel.
- the first member 132 is formed on the copper-based metal layer 132A formed of copper or a copper alloy, and on the inner peripheral surface side (the inner side in the radial direction of the rotor shaft 2) of the copper-based metal layer 132A.
- a white metal layer 132B forming 130A (see FIG. 10).
- the second member 134 constitutes a steel layer of the bearing pad 130.
- the present invention is not limited to the above-described embodiments, and includes forms obtained by modifying the above-described embodiments and forms obtained by appropriately combining these forms.
- expressions representing shapes such as quadrangular shapes and cylindrical shapes represent not only geometrically strict shapes such as quadrangular shapes and cylindrical shapes, but also irregularities and chamfers as long as the same effects can be obtained.
- a shape including a part or the like is also expressed.
- the expression “comprising”, “including”, or “having” one constituent element is not an exclusive expression that excludes the presence of the other constituent elements.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Combustion & Propulsion (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Sliding-Contact Bearings (AREA)
Abstract
ティルティングパッド軸受用の軸受パッドは、軸受面を有する第1部材と、第1部材の背面側に設けられる第2部材と、を備え、第1部材の背面、または、第1部材の背面に対向する第2部材の表面の少なくとも一方は、第1部材と第2部材との間に空洞を形成するための凹部を有する。好ましくは、第2部材の背面側に設けられ、第1部材及び第2部材を傾動可能に支持する支持部材をさらに備え、凹部は、軸受パッドの平面視において、支持部材の設置範囲の少なくとも一部にわたって形成される。
Description
本開示は、ティルティングパッド軸受用の軸受パッド、ティルティングパッド軸受及び回転機械に関する。
一般に、蒸気タービンやガスタービン等の回転機械は、ロータ軸を回転自在に支持するための軸受装置を備えている。この軸受装置として、ロータ軸の周方向における1又は複数の角度方向から、傾動可能な軸受パッドによって少なくともロータ荷重の負荷方向を支持する構成が知られている。
例えば、特許文献1には、ジャーナル軸受として用いられる軸受装置が記載されている。この特許文献1の軸受装置では、ロータ軸と該ロータ軸を摺動可能に支持する軸受パッドとの間に潤滑油を供給して油膜を形成し、該油膜を介してロータ軸を支持することにより、ロータ軸と軸受パッドとの直接的な金属接触を防止している。
ところで、軸受パッドの傾動を、該軸受パッドの背面側(軸受面とは反対側)に配置されたピボットで実現する構成の場合、軸受面に周囲よりも局所的な面圧(局所面圧)の高い部分が出現し得る。このため、軸受面に十分な厚さの油膜が形成されない低速回転時には、当該部位を中心に局所的に高荷重条件で金属接触を生じる部位が出現し、ロータ軸と軸受面との摩擦によって軸受パッドの表面温度が上昇することで、表層金属が溶融する所謂塑性流動を生じてしまう虞があるという問題があった。
上述の事情に鑑みて、本発明の少なくとも一実施形態は、ティルティングパッド軸受の軸受面の塑性流動を防止することを目的とする。
(1)本発明の少なくとも一実施形態に係るティルティングパッド軸受用の軸受パッドは、
軸受面を有する第1部材と、
前記第1部材の背面側に設けられる第2部材と、を備え、
前記第1部材の背面、または、前記第1部材の前記背面に対向する前記第2部材の表面の少なくとも一方は、前記第1部材と前記第2部材との間に空洞を形成するための凹部を有することを特徴とする。
軸受面を有する第1部材と、
前記第1部材の背面側に設けられる第2部材と、を備え、
前記第1部材の背面、または、前記第1部材の前記背面に対向する前記第2部材の表面の少なくとも一方は、前記第1部材と前記第2部材との間に空洞を形成するための凹部を有することを特徴とする。
上記(1)の構成によれば、第1部材と第2部材との間に空洞が形成されることにより、軸受面に荷重が加わった際に、第1部材のうち空洞に隣接する部分が第2部材側に、すなわち、ロータ軸から離れる方向に撓んで変形することができる。このため、軸受面上に周囲よりも局所面圧の高い部分が生じることを抑制することができる。また、仮に、第1部材の軸受面に局所面圧が高い部分が生じる場合でも、軸受面に加わる局所面圧のピーク値を緩和することができる。したがって、特に、低速回転時において、ロータ軸と第1部材との摩擦による温度上昇を抑制できるため、軸受面の塑性流動を防止することができる。
(2)幾つかの実施形態では、上記(1)の構成において、
前記第2部材の背面側に設けられ、前記第1部材及び前記第2部材を傾動可能に支持する支持部材をさらに備え、
前記凹部は、前記軸受パッドの平面視において、前記支持部材の設置範囲の少なくとも一部にわたって形成される。
前記第2部材の背面側に設けられ、前記第1部材及び前記第2部材を傾動可能に支持する支持部材をさらに備え、
前記凹部は、前記軸受パッドの平面視において、前記支持部材の設置範囲の少なくとも一部にわたって形成される。
傾動可能な軸受パッドは、背面を支持部材によって支持されている支持部材の設置範囲において局所面圧が高くなりやすい。この点、上記(2)の構成によれば、軸受パッドの平面視において、支持部材の設置範囲の少なくとも一部にわたるように凹部が形成されるから、第1部材のうち軸受面の面圧が高くなりやすい部分の少なくとも一部が、ロータ軸から離れる方向に撓むことができる。このため、面圧を逃がして、軸受面上に周囲よりも局所面圧が高い部分が生じることを防止したり、或いは、局所面圧の高い部分が生じたとしてもその面圧のピーク値を緩和したりすることができる。したがって、軸受面に加わる面圧を低減して軸受面に塑性流動が生じることを防止することができる。
(3)一実施形態では、上記(2)の構成において、
前記凹部は、前記軸受パッドの平面視において、前記支持部材の前記設置範囲の全体にわたって形成される。
前記凹部は、前記軸受パッドの平面視において、前記支持部材の前記設置範囲の全体にわたって形成される。
上記(3)の構成によれば、軸受パッドの平面視において、支持部材の設置範囲の全体にわたって形成された凹部により、軸受面と支持部材との間に加わる負荷をより確実に逃がして軸受面上に周囲よりも局所面圧の高い部分が生じることを防止することができる。これにより、第1部材の軸受面に塑性流動が生じることをより確実に防止することができる。
(4)幾つかの実施形態では、上記(1)乃至(3)の何れか一つに記載の構成において、
前記空洞は、前記軸受パッドの外部空間に連通している。
前記空洞は、前記軸受パッドの外部空間に連通している。
上記(4)の構成によれば、凹部により形成される空洞の内部と外部との間を潤滑油が出入りすることができる。これにより、例えば、軸受パッドに入力される軸振動等に対して軸受パッドに減衰機能を持たせることができる。
(5)幾つかの実施形態では、上記(1)乃至(4)の何れか一つに記載の構成において、
前記ティルティングパッド軸受は、前記軸受面に潤滑油を供給するためのノズルを備えた直接潤滑方式の軸受を含む。
前記ティルティングパッド軸受は、前記軸受面に潤滑油を供給するためのノズルを備えた直接潤滑方式の軸受を含む。
上記(5)の構成によれば、直接潤滑方式のティルティングパッド軸受において、上記(1)で述べた効果を享受することができる。
(6)幾つかの実施形態では、上記(1)乃至(5)の何れか一つに記載の構成において、
前記第1部材は、銅又は銅合金により形成され、
前記第2部材は、鋼により形成される。
前記第1部材は、銅又は銅合金により形成され、
前記第2部材は、鋼により形成される。
上記(6)の構成によれば、凹部によって局所面圧を低減できることに加えて、銅又は銅合金で形成される第1部材によって放熱性を向上させて熱変形を防止しつつ、鋼で形成される第2部材によって圧力変形を抑制することができる。これにより、軸受面上で周囲よりも局所面圧が高い部分が生じることを抑制したり、或いは、局所面圧が高い部分が生じる場合にそのピーク値を緩和したりすることができる。また、銅により放熱性が高まることで、高回転時において、同じ油膜厚さで負荷可能な軸受荷重が増加するため、軸受の小型化が可能となる。
(7)本発明の少なくとも一実施形態に係るティルティングパッド軸受は、
上記(1)乃至(6)の何れか一項に記載の少なくとも一つの軸受パッドと、
前記少なくとも一つの軸受パッドの外周側に設けられ、前記少なくとも一つの軸受パッドを保持するように構成されたキャリアリングと、
を備えることを特徴とする。
上記(1)乃至(6)の何れか一項に記載の少なくとも一つの軸受パッドと、
前記少なくとも一つの軸受パッドの外周側に設けられ、前記少なくとも一つの軸受パッドを保持するように構成されたキャリアリングと、
を備えることを特徴とする。
上記(7)の構成によれば、塑性流動を抑制可能な軸受パッドをキャリアリングで支持する構成を備えたティルティングパッド軸受を得ることができる。
(8)本発明の少なくとも一実施形態に係るティルティングパッド軸受は、
少なくとも一つの軸受パッドと、
前記少なくとも一つの軸受パッドの外周側に設けられ、前記少なくとも一つの軸受パッドを保持するように構成されたキャリアリングと、を備え、
各々の前記軸受パッドは、
軸受面を有し、銅又は銅合金により形成される第1部材と、
前記第1部材の背面側に設けられ、鋼により形成される第2部材と、
を含み、
前記キャリアリングは、
前記軸受面に潤滑油を供給するための少なくとも一本の給油ノズルを含む
ことを特徴とする。
少なくとも一つの軸受パッドと、
前記少なくとも一つの軸受パッドの外周側に設けられ、前記少なくとも一つの軸受パッドを保持するように構成されたキャリアリングと、を備え、
各々の前記軸受パッドは、
軸受面を有し、銅又は銅合金により形成される第1部材と、
前記第1部材の背面側に設けられ、鋼により形成される第2部材と、
を含み、
前記キャリアリングは、
前記軸受面に潤滑油を供給するための少なくとも一本の給油ノズルを含む
ことを特徴とする。
上記(8)の構成によれば、銅又は銅合金により形成される第1部材により軸受パッドの放熱性を向上させて熱変形を低減しつつ、鋼製の第2部材により軸受パッドの剛性を向上させて圧力変形を抑制することができる。これにより、軸受面に作用する局所面圧を低減でき、また、低回転時における軸受面の塑性流動を防止することができる。また、銅又は銅合金製の第1部材により放熱性が高まることで、高回転時において同じ油膜の厚さで負荷可能な軸受荷重が増加するため、軸受を小型化することが可能となる。
(9)本発明の少なくとも一実施形態に係る回転機械は、
上記(7)又は(8)に記載のティルティングパッド軸受と、
前記ティルティングパッド軸受によって回転自在に支持されるロータ軸と、
を備えることを特徴とする。
上記(7)又は(8)に記載のティルティングパッド軸受と、
前記ティルティングパッド軸受によって回転自在に支持されるロータ軸と、
を備えることを特徴とする。
上記(9)の構成によれば、損傷を防止可能なティルティングパッド軸受によってロータ軸を支持する構成を備えた回転機械を得ることができる。
本発明の少なくとも一実施形態によれば、ティルティングパッド軸受の損傷を防止することができる。
以下、添付図面を参照して本発明の幾つかの実施形態について説明する。ただし、実施形態として記載されている又は図面に示されている構成部品の寸法、材質、形状、その相対的配置等は、本発明の範囲をこれに限定する趣旨ではなく、単なる説明例にすぎない。
[第1実施形態]
図1は、一実施形態に係るティルティングパッド軸受10の軸方向に沿った断面図である。図2は、図1のA-A線断面であって、軸方向に直交する断面図である。また、本実施形態において軸方向とは、ティルティングパッド軸受10に支持されるロータ軸2の中心軸線Oの方向であり、径方向とはロータ軸2の半径方向であり、周方向とはロータ軸2の周方向である。
図1は、一実施形態に係るティルティングパッド軸受10の軸方向に沿った断面図である。図2は、図1のA-A線断面であって、軸方向に直交する断面図である。また、本実施形態において軸方向とは、ティルティングパッド軸受10に支持されるロータ軸2の中心軸線Oの方向であり、径方向とはロータ軸2の半径方向であり、周方向とはロータ軸2の周方向である。
まず、幾つかの実施形態に係るティルティングパッド軸受10が適用される回転機械1の全体構成について説明した後、ティルティングパッド軸受10及び軸受パッド30の構成について詳説する。
幾つかの実施形態に係る回転機械1としては、ガスタービンや蒸気タービン(例えば原子力プラントの蒸気タービン)や機械駆動用タービン等のタービン、風力発電装置等の風力機械、または過給機などが挙げられる。
一実施形態に係る回転機械1は、軸受装置としてのティルティングパッド軸受(ジャーナル軸受)10と、ティルティングパッド軸受10によって回転自在に支持されるロータ軸2と、ロータ軸2とティルティングパッド軸受10とを収容する軸受ハウジング3と、を備えていてもよい。軸受ハウジング3は、上半部軸受ハウジング4及び下半部軸受ハウジング5を含んでもよく、上半部軸受ハウジング4及び下半部軸受ハウジング5は、それぞれ、軸方向に直交する断面が半円弧状となるような内周面を有していてもよい(図2参照)。
幾つかの実施形態に係る回転機械1としては、ガスタービンや蒸気タービン(例えば原子力プラントの蒸気タービン)や機械駆動用タービン等のタービン、風力発電装置等の風力機械、または過給機などが挙げられる。
一実施形態に係る回転機械1は、軸受装置としてのティルティングパッド軸受(ジャーナル軸受)10と、ティルティングパッド軸受10によって回転自在に支持されるロータ軸2と、ロータ軸2とティルティングパッド軸受10とを収容する軸受ハウジング3と、を備えていてもよい。軸受ハウジング3は、上半部軸受ハウジング4及び下半部軸受ハウジング5を含んでもよく、上半部軸受ハウジング4及び下半部軸受ハウジング5は、それぞれ、軸方向に直交する断面が半円弧状となるような内周面を有していてもよい(図2参照)。
ティルティングパッド軸受10の潤滑方式(給油方式)は特に限定されず、例えば、直接潤滑方式を採用してもよい。ただし、他の実施形態に係るティルティングパッド軸受10は、スラスト軸受であってもよいし、潤滑方式として、油浴方式や他の潤滑方式を採用してもよい。また、他の実施形態においては、上半領域にもさらに1個以上の軸受パッド30が配置されてもよいし、下半領域に3個以上の軸受パッド30が取り付けられた構成であってもよい。
図1及び図2に示すように、幾つかの実施形態に係るティルティングパッド軸受10は、軸受部としての少なくとも一つの軸受パッド30と、該軸受パッド30の外周側に設けられ、少なくとも一つの軸受パッド30を保持するように構成されたキャリアリング11と、を備えていてもよい。幾つかの実施形態において、ティルティングパッド軸受10は、下半領域に2つの軸受パッド30が配置された構成を有していてもよい。
図1及び図2に示すように、キャリアリング11は、上半部キャリアリング12及び下半部キャリアリング13を含んでもよい。上半部キャリアリング12及び下半部キャリアリング13は、それぞれ、軸方向に直交する断面が半円弧状となるような内周面12A,13A及び外周面12B,13Bを有していてもよい(図2参照)。なお、他の実施形態におけるキャリアリング11は一体構造であってもよい。
図1に示すように、キャリアリング11の軸方向の両端側には、ロータ軸2の外周に沿って、一対のサイドプレート17,18が配置されている。サイドプレート17,18は、円板状に形成されており、中央にロータ軸2が貫通する穴17A,18Aがそれぞれ形成されている。これらのサイドプレート17,18によって、外部への潤滑油の漏出が適度に抑制されるようになっている。
上半部キャリアリング12の内周面12Aには、主としてロータ軸2の跳ね上がりを上方から押え込むために、ガイドメタル(半円環軸受部)20,21が取り付けられる。例えば、図1に示すように、上半部キャリアリング12の軸方向の両端側で且つサイドプレート17,18よりも軸方向の内側に、一対のガイドメタル20,21が取り付けられる。
幾つかの実施形態において、ティルティングパッド軸受10のキャリアリング11には、軸受面30Aに潤滑油を供給するための少なくとも一本の給油ノズル25~29が設けられてもよい(図2参照)。
図2に示す例では、ロータ軸2が図中矢印Sに示すように時計回りに回転する場合、ロータ軸2の回転方向Sにおいて上流側から第1給油ノズル25、第2給油ノズル26、第3給油ノズル27、第4給油ノズル28、第5給油ノズル29を含む計5本の給油ノズルが設けられている。なお、給油ノズルの配置構成はこれに限定されるものではない。
図2に示す例では、ロータ軸2が図中矢印Sに示すように時計回りに回転する場合、ロータ軸2の回転方向Sにおいて上流側から第1給油ノズル25、第2給油ノズル26、第3給油ノズル27、第4給油ノズル28、第5給油ノズル29を含む計5本の給油ノズルが設けられている。なお、給油ノズルの配置構成はこれに限定されるものではない。
キャリアリング11の内部には、潤滑油供給路(不図示)が形成されてもよい。潤滑油供給路に供給された潤滑油は各給油ノズル25~29に送られて、各給油ノズル25~29から軸受パッド30の近傍に噴出される。
上半部キャリアリング12と上半部軸受ハウジング4との間には、少なくとも一つの上側キー40及び少なくとも一枚の上側シム41が配置されていてもよい。同様に、下半部キャリアリング13と下半部軸受ハウジング5との間には、少なくとも一つの下側キー50及び少なくとも一枚の下側シム51が配置されていてもよい。
キャリアリング11の外周面13Bには、径方向外側へ突出した周り止め用凸部15が設けられてもよい。周り止め用凸部15は、ロータ軸2の回転方向Sにおいて下半部キャリアリング13の上流側端部に設けられる。一方、下半部軸受ハウジング5には、周り止め用凹部5Bが形成されてもよい。周り止め用凹部5Bは、周り止め用凸部15に対応するように、ロータ軸2の回転方向Sにおいて下半部軸受ハウジング5の上流側端部に設けられる。このように、周り止め用凸部15が、周り止め用凹部5Bに係合することにより、ロータ軸2と共にキャリアリング11が回転してしまうことを防止できる。
ここで、第1実施形態に係る軸受パッド30の構成について詳しく説明する。
一実施形態に係るティルティングパッド軸受10用の軸受パッド30は、例えば、図3に示すように、軸受面30Aを有する第1部材32と、第1部材32の背面側に設けられる第2部材34と、を備えている。
幾つかの実施形態において、軸受パッド30は、キャリアリング11の内周側においてロータ軸2の回転方向Sの異なる位置に複数設けられ、ロータ軸2を下方から支えるように構成されてもよい。
一実施形態に係るティルティングパッド軸受10用の軸受パッド30は、例えば、図3に示すように、軸受面30Aを有する第1部材32と、第1部材32の背面側に設けられる第2部材34と、を備えている。
幾つかの実施形態において、軸受パッド30は、キャリアリング11の内周側においてロータ軸2の回転方向Sの異なる位置に複数設けられ、ロータ軸2を下方から支えるように構成されてもよい。
軸受パッド30はまた、ロータ軸2に対向する内周面としての上記軸受面30Aのほか、キャリアリング11に対向する外周面を有する。軸受面30A及び外周面は、それぞれ、周方向においては、ロータ軸2に対応した曲率を有するように湾曲した形状を有している。
幾つかの実施形態において、第1部材32の背面、または、第1部材32の背面に対向する第2部材34の表面の少なくとも一方は、第1部材32と第2部材34との間に空洞を形成するための凹部60を有している。幾つかの実施形態において、凹部60は、例えば、図3に示すように、第1部材32の背面、すなわち、第1部材32のうち軸受面30Aとは反対側である第2部材34に対向する面に形成されてもよい。
このように凹部60を設ければ、第1部材32と第2部材34との間に空洞が形成されることにより、軸受面30Aに荷重が加わった際に、第1部材32のうち空洞に隣接する部分が第2部材34側に、すなわち、ロータ軸2から離れる方向に撓んで変形することができる。このため、軸受面30A上に周囲よりも局所面圧の高い部分が生じることを抑制することができる。また、仮に、第1部材32の軸受面30Aに局所面圧が高い部分が生じる場合でも、軸受面30Aに加わる局所面圧のピーク値を緩和することができる。したがって、特に、低速回転時において、ロータ軸2と第1部材32と摩擦による温度上昇を抑制できるための軸受面30Aに塑性流動が生じることを防止することができる。
このように凹部60を設ければ、第1部材32と第2部材34との間に空洞が形成されることにより、軸受面30Aに荷重が加わった際に、第1部材32のうち空洞に隣接する部分が第2部材34側に、すなわち、ロータ軸2から離れる方向に撓んで変形することができる。このため、軸受面30A上に周囲よりも局所面圧の高い部分が生じることを抑制することができる。また、仮に、第1部材32の軸受面30Aに局所面圧が高い部分が生じる場合でも、軸受面30Aに加わる局所面圧のピーク値を緩和することができる。したがって、特に、低速回転時において、ロータ軸2と第1部材32と摩擦による温度上昇を抑制できるための軸受面30Aに塑性流動が生じることを防止することができる。
他の例では、例えば、図4に示すように、第2部材34の表面、すなわち、第2部材34のうち第1部材32に対向する面に凹部60Aが形成されていてもよい。また、他の例では、例えば、図5に示すように、第1部材32の背面に凹部60が形成されるとともに、第2部材34の表面に凹部60Aが形成されていてもよい。凹部60及び凹部60Aをいずれも設ける構成とした場合は、第1部材32がロータ軸2から離れる方向に撓むためのストローク(逃げストローク)を大きく確保することができる。
幾つかの実施形態では、第2部材34がキャリアリング11に対して傾動可能に構成されていてもよい。これにより、該第2部材34と第1部材32とを含む軸受パッド30がキャリアリング11上で傾動可能に支持される。例えば、軸受パッド30の外周面に相当する第2部材34の背面の曲率が、該背面に対向するキャリアリング11の内周面の曲率より大きくてもよい。
幾つかの実施形態において、軸受パッド30は、第2部材34の背面側に設けられ第1部材32及び第2部材34を傾動可能に支持する支持部材70をさらに備えていてもよい。この場合、第2部材34と支持部材70との接触は、互いの対向面のうち何れか一方が曲面で他方が平面であってもよいし、両者がそれぞれ相手方に向けて凸の曲面を有していてもよい。また、互いの接触部分に対して各々の曲率中心が同じ側である場合は相手方に対して内接する何れか一方が他方より大きな曲率を有していてもよい。このようにして、第2部材34の背面と支持部材70とが傾動可能に接する構成としてもよい。
幾つかの実施形態において、支持部材70は、例えば、図3~5に示すように、第2部材34の背面側に配置され、該第2部材34に向けて凸状に形成された凸部74を含んでもよい。
幾つかの実施形態において、凸部74は、第2部材34と点接触するように構成されていてもよい。この場合、凸部74は、第2部材34に対向する面が球面とされた所謂球面ピボットであってもよい。他の実施形態において、凸部74は、例えば、第2部材34と線接触する形状であってもよいし、或いは、第2部材34と面接触する形状に構成されていてもよい。
幾つかの実施形態において、軸受パッド30は、第2部材34の背面側に設けられ第1部材32及び第2部材34を傾動可能に支持する支持部材70をさらに備えていてもよい。この場合、第2部材34と支持部材70との接触は、互いの対向面のうち何れか一方が曲面で他方が平面であってもよいし、両者がそれぞれ相手方に向けて凸の曲面を有していてもよい。また、互いの接触部分に対して各々の曲率中心が同じ側である場合は相手方に対して内接する何れか一方が他方より大きな曲率を有していてもよい。このようにして、第2部材34の背面と支持部材70とが傾動可能に接する構成としてもよい。
幾つかの実施形態において、支持部材70は、例えば、図3~5に示すように、第2部材34の背面側に配置され、該第2部材34に向けて凸状に形成された凸部74を含んでもよい。
幾つかの実施形態において、凸部74は、第2部材34と点接触するように構成されていてもよい。この場合、凸部74は、第2部材34に対向する面が球面とされた所謂球面ピボットであってもよい。他の実施形態において、凸部74は、例えば、第2部材34と線接触する形状であってもよいし、或いは、第2部材34と面接触する形状に構成されていてもよい。
幾つかの実施形態では、第2部材34の背面、すなわち、第2部材34のうち半径方向の外側に面するキャリアリング11側の面に凹部34Aが形成されていてもよく、この凹部34A内に凸部74の少なくとも一部が収容されていてもよい。
幾つかの実施形態において、支持部材70は、凸部74と第2部材34との間に配置されるライナ72を含んでもよい。ライナ72は、例えば、略平板状に形成されていてもよい。幾つかの実施形態では、凹部34Aの底面に接するようにライナ72が配置され、このライナ72を介して第1部材32及び第2部材34を傾動可能に支持するようにして凸部74を配置してもよい。
幾つかの実施形態において、支持部材70は、凸部74と第2部材34との間に配置されるライナ72を含んでもよい。ライナ72は、例えば、略平板状に形成されていてもよい。幾つかの実施形態では、凹部34Aの底面に接するようにライナ72が配置され、このライナ72を介して第1部材32及び第2部材34を傾動可能に支持するようにして凸部74を配置してもよい。
幾つかの実施形態において、凹部60は、軸受パッド30の平面視において、支持部材70の設置範囲の少なくとも一部にわたって形成されてもよい。つまり、凹部60は、軸受パッド30の平面視において、必ずしも支持部材70の設置範囲の全体を覆うように設置されなくともよく、支持部材70よりも小さな範囲に形成されていてもよい。この場合、凹部60は、「支持部材70の設置範囲の少なくとも一部」として、軸受パッド30の平面視において、支持部材70の凸部74と第2部材34(又は、ライナ72)との接触部分(接触点、接触線又は接触面)を含む範囲に形成されていてもよい。
具体的には、図6に示すように、凸部74が例えば球面ピボットの場合、凹部60は、軸受パッド30の平面視において、支持部材70(具体的には、凸部74)の設置範囲のうち、少なくとも一部を含む範囲に形成されてもよい。
具体的には、図6に示すように、凸部74が例えば球面ピボットの場合、凹部60は、軸受パッド30の平面視において、支持部材70(具体的には、凸部74)の設置範囲のうち、少なくとも一部を含む範囲に形成されてもよい。
ここで、傾動可能な軸受パッド30は、背面を支持部材70によって支持されている軸受面30A上の部分において局所面圧が高くなりやすい。この点、上記のように、軸受パッド30の平面視において、支持部材70の設置範囲の少なくとも一部にわたって凹部60を形成する構成によれば、第1部材32のうち軸受面30Aの面圧が高くなりやすい部分の少なくとも一部が、ロータ軸2から離れる方向に撓むことができる。このため、面圧を逃がして、軸受面30A上に周囲よりも局所面圧が高い部分が生じることを防止したり、或いは、局所面圧の高い部分が生じたとしてもその面圧のピーク値を緩和したりすることができる。したがって、軸受面30Aに加わる面圧を低減して軸受面30Aに塑性流動が生じることを防止することができる。
一実施形態では、軸受パッド30の平面視において、支持部材70の設置範囲の全体にわたって凹部60が形成されてもよい。例えば、図7に示すように、凹部60は、軸受パッド30の平面視において、支持部材70(具体的には、凸部74)の設置範囲を全て含む、該支持部材70の設置範囲以上の範囲に形成されてもよい。
上記の構成によれば、軸受パッド30の平面視において、支持部材70の設置範囲の全体にわたって形成された凹部60により、軸受面30Aと支持部材70との間に加わる負荷をより確実に逃がして軸受面30A上に周囲よりも局所面圧が高い部分が生じることを防止することができる。
幾つかの実施形態において、凹部60により形成される空洞は、軸受パッド30の外部空間に連通していてもよい。例えば、図8に示すように、凹部60は、軸受パッド30をロータ軸2の軸方向に沿って貫通する溝状に形成されてもよい。このように構成すれば、凹部60により形成される空洞の内部と外部との間で潤滑油が出入り可能となる。これにより、例えば、軸受パッド30に入力されるロータ軸2の軸振動等に対して、該軸受パッド30に減衰機能を持たせることができる。
他の実施形態では、凹部60は、ロータ軸2の軸方向及び径方向の何れにも直交する方向に軸受パッド30を貫通する溝状に形成されてもよい。
なお、軸受パッド30とその外部空間との連通部(開口部)は、軸振動等に対する減衰性能を考慮してその断面積が適切な大きさとなるように任意に設定することができる。
他の実施形態では、凹部60は、ロータ軸2の軸方向及び径方向の何れにも直交する方向に軸受パッド30を貫通する溝状に形成されてもよい。
なお、軸受パッド30とその外部空間との連通部(開口部)は、軸振動等に対する減衰性能を考慮してその断面積が適切な大きさとなるように任意に設定することができる。
幾つかの実施形態では、第1部材32が銅、銅合金又は鋼により形成されてもよい。また、幾つかの実施形態では、第2部材34が鋼により形成されてもよい。
第1部材32は、銅又は銅合金により形成された銅系メタル層32Aと、この銅系メタル層32Aの内周面側(ロータ軸2の径方向における内側)に形成され、上述した軸受面30Aをなすホワイトメタル層32Bと、を含む(例えば、図3~5参照)。第2部材34は軸受パッド30の鋼層を構成する。
このように構成すれば、凹部60により、軸受面30A上に周囲よりも局所面圧が高い部分が生じることを抑制できることに加え、銅又は銅合金で形成される第1部材32によって放熱性を向上させて軸受パッド30の熱変形を防止しつつ、鋼で形成される第2部材34によって軸受パッド30の圧力変形を抑制することができる。したがって、より確実に、軸受面30Aに周囲よりも局所面圧が高い部分が生ずることを防止したり、或いは、局所面圧が周囲よりも高い部分が生ずる場合にそのピーク値を緩和したりすることができるため、軸受面30Aの塑性流動を防止することができる。また、銅により放熱性が高まることで、高回転時において、同じ油膜厚さで負荷可能な軸受荷重が増加するため、ティルティングパッド軸受10の小型化が可能となる。
第1部材32は、銅又は銅合金により形成された銅系メタル層32Aと、この銅系メタル層32Aの内周面側(ロータ軸2の径方向における内側)に形成され、上述した軸受面30Aをなすホワイトメタル層32Bと、を含む(例えば、図3~5参照)。第2部材34は軸受パッド30の鋼層を構成する。
このように構成すれば、凹部60により、軸受面30A上に周囲よりも局所面圧が高い部分が生じることを抑制できることに加え、銅又は銅合金で形成される第1部材32によって放熱性を向上させて軸受パッド30の熱変形を防止しつつ、鋼で形成される第2部材34によって軸受パッド30の圧力変形を抑制することができる。したがって、より確実に、軸受面30Aに周囲よりも局所面圧が高い部分が生ずることを防止したり、或いは、局所面圧が周囲よりも高い部分が生ずる場合にそのピーク値を緩和したりすることができるため、軸受面30Aの塑性流動を防止することができる。また、銅により放熱性が高まることで、高回転時において、同じ油膜厚さで負荷可能な軸受荷重が増加するため、ティルティングパッド軸受10の小型化が可能となる。
以上に開示した幾つかの実施形態の構成によれば、軸受面30Aの塑性流動を防止可能なティルティングパッド軸受10によってロータ軸2を支持する構成を備えた回転機械1を得ることができる。
[第2実施形態]
続いて、第2実施形態に係るティルティングパッド軸受110について説明する。なお、上述した幾つかの実施形態に係る回転機械1と同一の構成については同一の符号を付し、重複する説明については説明を省略する。
続いて、第2実施形態に係るティルティングパッド軸受110について説明する。なお、上述した幾つかの実施形態に係る回転機械1と同一の構成については同一の符号を付し、重複する説明については説明を省略する。
図9は、第2実施形態に係るティルティングパッド軸受110を軸方向に垂直な方向から視た断面図である。図10は、第2実施形態に係るティルティングパッド軸受110を軸方向から視た断面図である。
図9及び図10に示すように、第2実施形態において回転機械100に適用されるティルティングパッド軸受110は、凹部60が設けられていない点において上述した幾つかの実施形態と異なっている。また、第2実施形態に係るティルティングパッド軸受110は、潤滑方式として直接潤滑方式を採用したジャーナル軸受である。
図9及び図10に示すように、第2実施形態において回転機械100に適用されるティルティングパッド軸受110は、凹部60が設けられていない点において上述した幾つかの実施形態と異なっている。また、第2実施形態に係るティルティングパッド軸受110は、潤滑方式として直接潤滑方式を採用したジャーナル軸受である。
かかるティルティングパッド軸受110は、少なくとも一つの軸受パッド130と、少なくとも一つの軸受パッド130の外周側に設けられ、少なくとも一つの軸受パッド130を保持するように構成されたキャリアリング11と、を備える。キャリアリング11は、軸受面130Aに潤滑油を供給するための少なくとも一本(本実施形態では5本)の給油ノズル25~29を含む。
各々の軸受パッド130は、例えば、図9及び図10に示すように、軸受面130Aを有し、銅、銅合金又は鋼により形成される第1部材132と、第1部材132の背面側に設けられ、鋼により形成される第2部材134と、を含む。
第1部材132は、銅又は銅合金により形成された銅系メタル層132Aと、この銅系メタル層132Aの内周面側(ロータ軸2の径方向における内側)に形成され、上述した軸受面130Aをなすホワイトメタル層132Bと、を含む(図10参照)。第2部材134は軸受パッド130の鋼層を構成する。
第1部材132は、銅又は銅合金により形成された銅系メタル層132Aと、この銅系メタル層132Aの内周面側(ロータ軸2の径方向における内側)に形成され、上述した軸受面130Aをなすホワイトメタル層132Bと、を含む(図10参照)。第2部材134は軸受パッド130の鋼層を構成する。
上記の構成によれば、銅又は銅合金により形成される第1部材132により軸受パッド130の放熱性を向上させて熱変形を低減しつつ、鋼製の第2部材134により軸受パッド130の剛性を向上させての圧力変形を抑制することができる。これにより、軸受面30Aに作用する局所面圧を低減することができ、また、低回転時における軸受面130Aの塑性流動を防止することができる。また、銅又は銅合金製の第1部材132により放熱性が高まることで、高回転時において同じ油膜の厚さで負荷可能な軸受荷重が増加するため、ティルティングパッド軸受110を小型化することが可能となる。
本発明は上述した実施形態に限定されることはなく、上述した実施形態に変形を加えた形態や、これらの形態を適宜組み合わせた形態も含む。
例えば、「ある方向に」、「ある方向に沿って」、「平行」、「直交」、「中心」、「同心」或いは「同軸」等の相対的或いは絶対的な配置を表す表現は、厳密にそのような配置を表すのみならず、公差、若しくは、同じ機能が得られる程度の角度や距離をもって相対的に変位している状態も表すものとする。
例えば、「同一」、「等しい」及び「均質」等の物事が等しい状態であることを表す表現は、厳密に等しい状態を表すのみならず、公差、若しくは、同じ機能が得られる程度の差が存在している状態も表すものとする。
例えば、四角形状や円筒形状等の形状を表す表現は、幾何学的に厳密な意味での四角形状や円筒形状等の形状を表すのみならず、同じ効果が得られる範囲で、凹凸部や面取り部等を含む形状も表すものとする。
一方、一の構成要素を「備える」、「含む」、又は、「有する」という表現は、他の構成要素の存在を除外する排他的な表現ではない。
例えば、「同一」、「等しい」及び「均質」等の物事が等しい状態であることを表す表現は、厳密に等しい状態を表すのみならず、公差、若しくは、同じ機能が得られる程度の差が存在している状態も表すものとする。
例えば、四角形状や円筒形状等の形状を表す表現は、幾何学的に厳密な意味での四角形状や円筒形状等の形状を表すのみならず、同じ効果が得られる範囲で、凹凸部や面取り部等を含む形状も表すものとする。
一方、一の構成要素を「備える」、「含む」、又は、「有する」という表現は、他の構成要素の存在を除外する排他的な表現ではない。
1,100 回転機械
2 ロータ軸
3 軸受ハウジング
4 上半部軸受ハウジング
5 下半部軸受ハウジング
10,110 ティルティングパッド軸受
11 キャリアリング
12 上半部キャリアリング
13 下半部キャリアリング
17,18 サイドプレート
17A,18A 穴
20,21 ガイドメタル
25~29 給油ノズル
30,130 軸受パッド
30A,130A 軸受面
32,132 第1部材
32A 銅系メタル層
32B ホワイトメタル層
34,134 第2部材
34A 凹部
40 上側キー
41 上側シム
50 下側キー
51 下側シム
60 凹部
70 支持部材
72 ライナ
74 凸部
2 ロータ軸
3 軸受ハウジング
4 上半部軸受ハウジング
5 下半部軸受ハウジング
10,110 ティルティングパッド軸受
11 キャリアリング
12 上半部キャリアリング
13 下半部キャリアリング
17,18 サイドプレート
17A,18A 穴
20,21 ガイドメタル
25~29 給油ノズル
30,130 軸受パッド
30A,130A 軸受面
32,132 第1部材
32A 銅系メタル層
32B ホワイトメタル層
34,134 第2部材
34A 凹部
40 上側キー
41 上側シム
50 下側キー
51 下側シム
60 凹部
70 支持部材
72 ライナ
74 凸部
Claims (9)
- 軸受面を有する第1部材と、
前記第1部材の背面側に設けられる第2部材と、を備え、
前記第1部材の背面、または、前記第1部材の前記背面に対向する前記第2部材の表面の少なくとも一方は、前記第1部材と前記第2部材との間に空洞を形成するための凹部を有する
ことを特徴とするティルティングパッド軸受用の軸受パッド。 - 前記第2部材の背面側に設けられ、前記第1部材及び前記第2部材を傾動可能に支持する支持部材をさらに備え、
前記凹部は、前記軸受パッドの平面視において、前記支持部材の設置範囲の少なくとも一部にわたって形成されることを特徴とする請求項1に記載のティルティングパッド軸受用の軸受パッド。 - 前記凹部は、前記軸受パッドの平面視において、前記支持部材の前記設置範囲の全体にわたって形成されることを特徴とする請求項2に記載のティルティングパッド軸受用の軸受パッド。
- 前記空洞は、前記軸受パッドの外部空間に連通していることを特徴とする請求項1乃至3の何れか一項に記載のティルティングパッド軸受用の軸受パッド。
- 前記ティルティングパッド軸受は、前記軸受面に潤滑油を供給するためのノズルを備えた直接潤滑方式の軸受を含むことを特徴とする請求項1乃至4の何れか一項に記載のティルティングパッド軸受用の軸受パッド。
- 前記第1部材は、銅又は銅合金により形成され、
前記第2部材は、鋼により形成される
ことを特徴とする請求項1乃至5の何れか一項に記載のティルティングパッド軸受用の軸受パッド。 - 請求項1乃至6の何れか一項に記載の少なくとも一つの軸受パッドと、
前記少なくとも一つの軸受パッドの外周側に設けられ、前記少なくとも一つの軸受パッドを保持するように構成されたキャリアリングと、
を備えることを特徴とするティルティングパッド軸受。 - 少なくとも一つの軸受パッドと、
前記少なくとも一つの軸受パッドの外周側に設けられ、前記少なくとも一つの軸受パッドを保持するように構成されたキャリアリングと、を備え、
各々の前記軸受パッドは、
軸受面を有し、銅又は銅合金により形成される第1部材と、
前記第1部材の背面側に設けられ、鋼により形成される第2部材と、
を含み、
前記キャリアリングは、
前記軸受面に潤滑油を供給するための少なくとも一本の給油ノズルを含む
ことを特徴とするティルティングパッド軸受。 - 請求項7又は8に記載のティルティングパッド軸受と、
前記ティルティングパッド軸受によって回転自在に支持されるロータ軸と、
を備えることを特徴とする回転機械。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/494,434 US11193528B2 (en) | 2017-03-24 | 2018-02-01 | Bearing pad for tilting-pad bearing, tilting-pad bearing, and rotary machine |
CN201880019122.1A CN110462229B (zh) | 2017-03-24 | 2018-02-01 | 可倾瓦块轴承用的轴瓦、可倾瓦块轴承及旋转机械 |
DE112018001578.5T DE112018001578T5 (de) | 2017-03-24 | 2018-02-01 | Lagerblock für ein kippblocklager, kippblocklager und rotationsmaschine |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017-058334 | 2017-03-24 | ||
JP2017058334A JP6899235B2 (ja) | 2017-03-24 | 2017-03-24 | ティルティングパッド軸受用の軸受パッド、ティルティングパッド軸受及び回転機械 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018173502A1 true WO2018173502A1 (ja) | 2018-09-27 |
Family
ID=63586072
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/003378 WO2018173502A1 (ja) | 2017-03-24 | 2018-02-01 | ティルティングパッド軸受用の軸受パッド、ティルティングパッド軸受及び回転機械 |
Country Status (5)
Country | Link |
---|---|
US (1) | US11193528B2 (ja) |
JP (1) | JP6899235B2 (ja) |
CN (1) | CN110462229B (ja) |
DE (1) | DE112018001578T5 (ja) |
WO (1) | WO2018173502A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110242666A (zh) * | 2019-06-14 | 2019-09-17 | 中国船舶重工集团公司第七0三研究所 | 一种海洋移动式核电汽轮机自位式可倾瓦轴承结构 |
DE102021124856A1 (de) | 2021-09-27 | 2023-03-30 | Voith Patent Gmbh | Kippsegmentradiallager und Wellenanordnung |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6979332B2 (ja) * | 2017-10-31 | 2021-12-15 | 三菱パワー株式会社 | ティルティングパッド軸受 |
CN110443000B (zh) * | 2019-08-13 | 2023-04-25 | 哈尔滨理工大学 | 一种油垫可倾式双矩形腔静压推力轴承的油膜厚度计算方法 |
JP2021148139A (ja) * | 2020-03-16 | 2021-09-27 | 三菱重工業株式会社 | 軸受装置 |
US11976563B2 (en) * | 2022-04-22 | 2024-05-07 | Ge Infrastructure Technology Llc | Journal bearing with unique oil feed arrangement |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4425364Y1 (ja) * | 1965-12-22 | 1969-10-24 | ||
JPS4917717Y1 (ja) * | 1970-12-19 | 1974-05-09 | ||
JPS5830523A (ja) * | 1981-08-18 | 1983-02-23 | Ebara Corp | 傾斜パッド型制振軸受 |
JPS59180116A (ja) * | 1983-03-28 | 1984-10-13 | Mitsubishi Heavy Ind Ltd | パツド型軸受装置 |
JPS6088119U (ja) * | 1983-11-24 | 1985-06-17 | 三菱重工業株式会社 | パツド型軸受 |
JPH10288220A (ja) * | 1997-04-14 | 1998-10-27 | Ebara Corp | ティルティグパッド軸受 |
JP2016142313A (ja) * | 2015-01-30 | 2016-08-08 | 三菱日立パワーシステムズ株式会社 | ティルティングパッド軸受および回転機械 |
Family Cites Families (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3687510A (en) | 1970-11-12 | 1972-08-29 | Westinghouse Electric Corp | Pivoted pad journal bearing |
JPS5121058B2 (ja) | 1972-04-28 | 1976-06-30 | ||
JPS5334725B2 (ja) | 1972-06-07 | 1978-09-22 | ||
JPS589525A (ja) | 1981-07-10 | 1983-01-19 | 株式会社日立製作所 | 直流電源装置 |
JPS589525U (ja) * | 1981-07-13 | 1983-01-21 | 石川島播磨重工業株式会社 | 軸受 |
JPS59147114A (ja) * | 1983-02-14 | 1984-08-23 | Fuji Electric Co Ltd | 二層式スラスト軸受パツド |
JPS6037698A (ja) | 1983-08-09 | 1985-02-27 | 株式会社三陽電機製作所 | 放電管点灯装置 |
JPS6037698U (ja) * | 1983-08-22 | 1985-03-15 | 富士電機株式会社 | 立軸回転機の推力軸受装置 |
US4533262A (en) * | 1983-09-21 | 1985-08-06 | General Electric Company | Trimetallic bearings |
JPS6088119A (ja) | 1983-10-13 | 1985-05-17 | Toray Ind Inc | 獣毛様ポリエステル繊維用原糸の製造方法 |
CH668811A5 (de) * | 1984-07-19 | 1989-01-31 | Glyco Metall Werke | Hydrodynamisches gleitlager. |
US4686403A (en) * | 1986-11-07 | 1987-08-11 | Westinghouse Electric Corp. | Dynamoelectric machine with rockable bearing supports |
US4765759A (en) * | 1987-06-15 | 1988-08-23 | Westinghouse Electric Corp. | Journal bearing support and alignment device |
JPH07293554A (ja) * | 1994-04-21 | 1995-11-07 | Mitsubishi Heavy Ind Ltd | ティルティングパッド型軸受装置 |
WO1997038899A1 (en) * | 1996-04-18 | 1997-10-23 | Duramax, Inc. | Grooved staved bearing assembly |
JP2001124062A (ja) | 1999-10-21 | 2001-05-08 | Hitachi Ltd | ティルティングパッド軸受装置 |
JP2001165152A (ja) | 1999-12-10 | 2001-06-19 | Mitsubishi Heavy Ind Ltd | 軸受装置 |
JP5069103B2 (ja) * | 2004-06-15 | 2012-11-07 | エル−シャファイ,アリ | 流体膜軸受の不安定性制御方法 |
JP4764486B2 (ja) | 2009-02-27 | 2011-09-07 | 三菱重工業株式会社 | ジャーナル軸受 |
CN101761546A (zh) * | 2009-11-04 | 2010-06-30 | 西安交通大学 | 一种具有可倾瓦块和固定瓦块的组合型径向滑动轴承 |
CN203035746U (zh) * | 2012-04-02 | 2013-07-03 | 珠海格力电器股份有限公司 | 动压轴承及高速流体动力机械、高速离心式压缩机 |
JP6045813B2 (ja) | 2012-05-11 | 2016-12-14 | 株式会社東芝 | ティルティングパッドジャーナル軸受 |
CN203130803U (zh) * | 2012-11-22 | 2013-08-14 | 烟台大丰轴瓦有限责任公司 | 一种新型轴瓦 |
CN103967934A (zh) * | 2014-05-17 | 2014-08-06 | 浙江正盛轴瓦有限责任公司 | 隔振轴承 |
CN105443429A (zh) * | 2014-08-06 | 2016-03-30 | 沈阳透平机械股份有限公司 | 紧凑型无垫板双油膜阻尼轴承及其加工方法 |
CN104533955B (zh) * | 2015-01-13 | 2017-01-25 | 江南大学 | 一种回水槽冷却的水润滑可倾瓦静压轴承结构 |
CN104613094B (zh) * | 2015-01-30 | 2017-04-05 | 江苏科技大学 | 一种带注油腔的多层复合轴瓦滑动轴承 |
-
2017
- 2017-03-24 JP JP2017058334A patent/JP6899235B2/ja active Active
-
2018
- 2018-02-01 US US16/494,434 patent/US11193528B2/en active Active
- 2018-02-01 WO PCT/JP2018/003378 patent/WO2018173502A1/ja active Application Filing
- 2018-02-01 DE DE112018001578.5T patent/DE112018001578T5/de active Pending
- 2018-02-01 CN CN201880019122.1A patent/CN110462229B/zh active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4425364Y1 (ja) * | 1965-12-22 | 1969-10-24 | ||
JPS4917717Y1 (ja) * | 1970-12-19 | 1974-05-09 | ||
JPS5830523A (ja) * | 1981-08-18 | 1983-02-23 | Ebara Corp | 傾斜パッド型制振軸受 |
JPS59180116A (ja) * | 1983-03-28 | 1984-10-13 | Mitsubishi Heavy Ind Ltd | パツド型軸受装置 |
JPS6088119U (ja) * | 1983-11-24 | 1985-06-17 | 三菱重工業株式会社 | パツド型軸受 |
JPH10288220A (ja) * | 1997-04-14 | 1998-10-27 | Ebara Corp | ティルティグパッド軸受 |
JP2016142313A (ja) * | 2015-01-30 | 2016-08-08 | 三菱日立パワーシステムズ株式会社 | ティルティングパッド軸受および回転機械 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110242666A (zh) * | 2019-06-14 | 2019-09-17 | 中国船舶重工集团公司第七0三研究所 | 一种海洋移动式核电汽轮机自位式可倾瓦轴承结构 |
CN110242666B (zh) * | 2019-06-14 | 2024-01-12 | 中国船舶重工集团公司第七0三研究所 | 一种海洋移动式核电汽轮机自位式可倾瓦轴承结构 |
DE102021124856A1 (de) | 2021-09-27 | 2023-03-30 | Voith Patent Gmbh | Kippsegmentradiallager und Wellenanordnung |
WO2023046947A1 (de) | 2021-09-27 | 2023-03-30 | Voith Patent Gmbh | Kippsegmentradiallager und wellenanordnung |
Also Published As
Publication number | Publication date |
---|---|
DE112018001578T5 (de) | 2019-12-19 |
JP6899235B2 (ja) | 2021-07-07 |
CN110462229A (zh) | 2019-11-15 |
US11193528B2 (en) | 2021-12-07 |
CN110462229B (zh) | 2021-03-02 |
US20200392986A1 (en) | 2020-12-17 |
JP2018159462A (ja) | 2018-10-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018173502A1 (ja) | ティルティングパッド軸受用の軸受パッド、ティルティングパッド軸受及び回転機械 | |
US10487871B2 (en) | Air foil journal bearing | |
JP4554583B2 (ja) | スラスト軸受装置 | |
KR101443036B1 (ko) | 에어포일 쓰러스트 베어링 및 메탈메쉬포일 래디얼 베어링을 포함하는 분할형 콤보 베어링 | |
KR20160072801A (ko) | 내연 기관의 크랭크축용 베어링 장치 | |
JP6193317B2 (ja) | 内燃機関のクランク軸用軸受装置 | |
JP5414610B2 (ja) | ジャーナル軸受 | |
JP5922809B1 (ja) | ティルティングパッド軸受および回転機械 | |
JP2002213450A (ja) | 浮動ブッシュ軸受、およびそれを具備したターボチャージャ | |
JP5094833B2 (ja) | ティルティングパッドジャーナル軸受装置 | |
JP2017020571A (ja) | 半割スラスト軸受、及びそれを用いた軸受装置 | |
JP2019002418A (ja) | 半割スラスト軸受 | |
JP2019002417A (ja) | 半割スラスト軸受 | |
JP5911125B2 (ja) | ジャーナル軸受装置 | |
WO2016080000A1 (ja) | ティルティングパッド軸受 | |
WO2019087890A1 (ja) | ティルティングパッド軸受 | |
KR101445063B1 (ko) | 에어포일 쓰러스트 베어링 및 메탈메쉬포일 래디얼 베어링을 포함하는 콤보 베어링 | |
JP5922808B1 (ja) | 軸受装置および軸受装置の据付方法 | |
WO2018154815A1 (ja) | 軸受装置及び回転機械 | |
JP5829397B2 (ja) | ターボチャージャの回転軸の軸受方法及び装置 | |
JP5812973B2 (ja) | ジャーナル軸受及び蒸気タービン | |
JP2018112281A (ja) | 半割スラスト軸受 | |
JP6654081B2 (ja) | フォイル軸受 | |
JP2015124775A (ja) | 軸受装置、回転機械 | |
WO2022249627A1 (ja) | 軸受装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18772570 Country of ref document: EP Kind code of ref document: A1 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18772570 Country of ref document: EP Kind code of ref document: A1 |