WO2018173170A1 - 窒化アルミニウム粒子 - Google Patents
窒化アルミニウム粒子 Download PDFInfo
- Publication number
- WO2018173170A1 WO2018173170A1 PCT/JP2017/011537 JP2017011537W WO2018173170A1 WO 2018173170 A1 WO2018173170 A1 WO 2018173170A1 JP 2017011537 W JP2017011537 W JP 2017011537W WO 2018173170 A1 WO2018173170 A1 WO 2018173170A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- aluminum nitride
- nitride particles
- sintered body
- particles
- aluminum
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/58—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
- C04B35/581—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on aluminium nitride
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B21/00—Nitrogen; Compounds thereof
- C01B21/06—Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
- C01B21/072—Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with aluminium
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B21/00—Nitrogen; Compounds thereof
- C01B21/06—Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
- C01B21/072—Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with aluminium
- C01B21/0726—Preparation by carboreductive nitridation
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/62605—Treating the starting powders individually or as mixtures
- C04B35/62625—Wet mixtures
- C04B35/62635—Mixing details
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/62605—Treating the starting powders individually or as mixtures
- C04B35/62625—Wet mixtures
- C04B35/6264—Mixing media, e.g. organic solvents
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/63—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
- C04B35/6303—Inorganic additives
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/63—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
- C04B35/638—Removal thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/64—Burning or sintering processes
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/20—Particle morphology extending in two dimensions, e.g. plate-like
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/54—Particles characterised by their aspect ratio, i.e. the ratio of sizes in the longest to the shortest dimension
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/60—Particles characterised by their size
- C01P2004/61—Micrometer sized, i.e. from 1-100 micrometer
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/60—Particles characterised by their size
- C01P2004/62—Submicrometer sized, i.e. from 0.1-1 micrometer
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/12—Surface area
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/80—Compositional purity
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3205—Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
- C04B2235/3208—Calcium oxide or oxide-forming salts thereof, e.g. lime
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3217—Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
- C04B2235/3222—Aluminates other than alumino-silicates, e.g. spinel (MgAl2O4)
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/38—Non-oxide ceramic constituents or additives
- C04B2235/3852—Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
- C04B2235/3865—Aluminium nitrides
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/52—Constituents or additives characterised by their shapes
- C04B2235/5292—Flakes, platelets or plates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/52—Constituents or additives characterised by their shapes
- C04B2235/5296—Constituents or additives characterised by their shapes with a defined aspect ratio, e.g. indicating sphericity
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/54—Particle size related information
- C04B2235/5409—Particle size related information expressed by specific surface values
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/54—Particle size related information
- C04B2235/5418—Particle size related information expressed by the size of the particles or aggregates thereof
- C04B2235/5436—Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/54—Particle size related information
- C04B2235/5418—Particle size related information expressed by the size of the particles or aggregates thereof
- C04B2235/5445—Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/60—Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
- C04B2235/602—Making the green bodies or pre-forms by moulding
- C04B2235/6025—Tape casting, e.g. with a doctor blade
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/60—Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
- C04B2235/606—Drying
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
- C04B2235/6562—Heating rate
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
- C04B2235/6567—Treatment time
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/658—Atmosphere during thermal treatment
- C04B2235/6586—Processes characterised by the flow of gas
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/66—Specific sintering techniques, e.g. centrifugal sintering
- C04B2235/661—Multi-step sintering
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/72—Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/72—Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
- C04B2235/723—Oxygen content
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/74—Physical characteristics
- C04B2235/78—Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
- C04B2235/787—Oriented grains
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/96—Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
- C04B2235/9646—Optical properties
- C04B2235/9653—Translucent or transparent ceramics other than alumina
Definitions
- This specification discloses a technique related to aluminum nitride particles.
- the present specification discloses a technique related to aluminum nitride particles used as a raw material for an aluminum nitride sintered body.
- Patent Document 1 discloses aluminum nitride particles having a high aspect ratio (surface direction length L / thickness direction length D) are disclosed in International Publication WO2014 / 123247A1 (hereinafter referred to as Patent Document 1).
- Patent Document 1 discloses aluminum nitride particles having a surface direction length L of 3 to 110 ⁇ m and a thickness direction length D of 2 to 45 ⁇ m, and an aspect ratio L / D of 1.25 to 20.
- the length in the plane direction is defined as “D”
- the length in the thickness direction is defined as “L”
- the aspect ratio (L / D) is less than 1 (0.05 to 0.8). It is.
- the aluminum nitride particles of Patent Document 1 are used as a heat conductive filler added to a resin or a raw material for a high-strength aluminum nitride sintered body.
- the aluminum nitride particles of Patent Document 1 are used as a heat conductive filler added to a resin or a raw material for a high-strength aluminum nitride sintered body. Therefore, the aluminum nitride particles of Patent Document 1 have a high aspect ratio and a large particle size.
- the inventors of the present invention have started research on manufacturing parts that require high transparency using aluminum nitride particles. In other words, we started research to produce a highly transparent aluminum nitride sintered body. However, as a result of studies by the present inventors, it has been found that it is difficult to produce a highly transparent aluminum nitride sintered body with conventional aluminum nitride particles.
- the aluminum nitride particles used as a raw material for an aluminum nitride sintered body.
- the aluminum nitride particles have a uniform crystal orientation in the particles, have an aspect ratio (L / D) of 3 or more, have a plate shape, and have a surface length (L) of 0.6 ⁇ m or more and 20 ⁇ m or less.
- the length (D) in the thickness direction may be 0.05 ⁇ m or more and 2 ⁇ m or less.
- the “surface length” means the longest length on the surface of the plate-like aluminum nitride particles.
- the “length in the thickness direction” means the distance between the front and back surfaces of the plate-like aluminum nitride particles.
- crystal orientation In order to increase the transparency of the aluminum nitride sintered body, it is necessary to align the crystal axis direction (crystal orientation). For this purpose, it is necessary to align the crystal orientation of the aluminum nitride particles that are the raw material of the aluminum nitride sintered body in one direction. However, even when the crystal orientation is uniform in each aluminum nitride particle, when the pre-firing molded body having a predetermined shape is formed using the aluminum nitride particles, the aluminum nitride particles are randomly arranged in the pre-firing molded body. And the crystal orientation of the obtained aluminum nitride sintered body is also disturbed, and the transparency of the aluminum nitride sintered body is lowered.
- each aluminum nitride particle 2 is aligned, and each aluminum nitride particle 2 is aligned in crystal orientation. If they are arranged regularly (orientated so that the surfaces face each other), the crystal orientation in the aluminum nitride sintered body 100 is uniform after firing as in the aluminum nitride sintered body 100 shown in FIG. Becomes higher.
- the broken line which divides the inside of the aluminum nitride sintered compact 100 does not mean a crystal grain boundary.
- the aluminum nitride sintered body 100 is constituted by the grain growth of the aluminum nitride particles 2 (FIG. 1), and therefore, the inside of the aluminum nitride sintered body 100 is only partitioned by a broken line. .
- gaps 4 between the aluminum nitride particles 2 in the pre-fired molded body 10.
- this gap 4 there are auxiliary agents, pores and the like necessary for sintering. Even if the crystal orientations are aligned and regularly arranged, if the auxiliary agent or pores remain in the sintered aluminum nitride, the transparency of the aluminum nitride sintered body decreases. If pores remain in the aluminum nitride sintered body, the density (relative density with respect to the theoretical density) of the aluminum nitride sintered body is lowered, and the thermal conductivity may be lowered.
- the aluminum nitride particles 2 and 2a have the same crystal orientation as in the pre-fired compact 10a shown in FIG. 3, the aluminum nitride particles 2 and 2a are not regularly arranged (the aluminum nitride particles 2 and 2a In the case where the surfaces do not face each other), the crystal orientation of the sintered aluminum nitride after firing is also disturbed, and the transparency is lowered.
- the aluminum nitride particles disclosed in the present specification have the same crystal orientation in the particles, they do not become like the pre-firing molded body 10b. Moreover, since the aspect ratio is 3 or more, it is possible to prevent the aluminum nitride particles from being irregularly arranged like the molded body 10a before firing.
- the aluminum nitride particles disclosed in the present specification are plate-shaped, have a surface direction length of 0.6 ⁇ m to 20 ⁇ m, and a thickness direction length of 0.05 ⁇ m to 2 ⁇ m. Therefore, sintering is likely to occur when the green body is fired, and a high-density (not having pores) aluminum nitride sintered body can be obtained. When the aluminum nitride particles are used, a high-density aluminum nitride sintered body having a uniform crystal orientation, that is, a highly transparent aluminum nitride sintered body can be obtained.
- the surface area of the aluminum nitride particles may be 0.4 m 2 / g or more and 16 m 2 / g or less. By setting the surface area to 0.4 m 2 / g or more, the aluminum nitride particles can be easily sintered during firing. Moreover, when the surface area of the aluminum nitride particles is 16 m 2 / g or less, aggregation of the aluminum nitride particles is suppressed, and the aluminum nitride particles are easily oriented in the pre-fired molded body.
- the impurity metal concentration contained in the aluminum nitride particles may be 0.2% by mass or less. If the aluminum nitride particles contain a large amount of impurity metal, the impurity metal concentration in the resulting aluminum nitride sintered body also increases. The transparency of an aluminum nitride sintered body containing a large amount of impurity metals is lowered. If the impurity metal concentration in the aluminum nitride particles is 0.2% by mass or less, the transparency of the aluminum nitride sintered body can be kept high.
- the oxygen concentration contained in the aluminum nitride particles may be 2% by mass or less. If the aluminum nitride particles contain a large amount of oxygen, the oxygen concentration in the resulting aluminum nitride sintered body also increases. The transparency of the aluminum nitride sintered body containing a large amount of oxygen also decreases. If the oxygen concentration in the aluminum nitride particles is 2% by mass or less, the transparency of the aluminum nitride sintered body can be kept high.
- the figure for demonstrating the crystal orientation in the molded object before baking is shown.
- the figure for demonstrating the crystal orientation in an aluminum nitride sintered compact is shown.
- the figure for demonstrating the crystal orientation in the molded object before baking is shown.
- the figure for demonstrating the crystal orientation in the molded object before baking is shown.
- the summary of an Example is shown.
- grains utilized as a raw material of an aluminum nitride sintered compact are disclosed.
- a pre-firing molded body having a predetermined size is formed using aluminum nitride particles.
- the pre-firing molded body is formed by, for example, applying and drying a slurry containing aluminum nitride particles on a film, laminating the molded body peeled off from the film so as to have a predetermined thickness, and then performing isostatic pressing.
- the nitrided body After degreasing the molding aid added when molding the molded body, the nitrided body is sintered and particle-grown by firing at a predetermined temperature while pressing the molded body before firing, resulting in high density (low porosity) )
- An aluminum nitride primary sintered body is formed. Thereafter, the aluminum nitride primary sintered body is subjected to secondary firing in a non-pressurized state, the sintering aid is removed, and an aluminum nitride sintered body is obtained.
- the aluminum nitride particles can be produced by heating a raw material containing aluminum oxide and a carbon source in an atmosphere containing a nitrogen source. Specifically, the aluminum nitride particles are produced by a reaction represented by the following formula (1). Al 2 O 3 + 3C + N 2 ⁇ 2AlN + 3CO (1)
- the raw material containing aluminum oxide only needs to contain aluminum oxide in the raw material, and may be a single aluminum oxide (excluding inevitable impurities) that does not contain other substances, or it may contain other substances in the raw material. May be.
- the raw material containing aluminum oxide may contain 70% by mass or more of aluminum oxide, may contain 80% by mass or more of aluminum oxide, and contains 90% by mass or more of aluminum oxide. In addition, 95% by mass or more of aluminum oxide may be included.
- the crystal structure of aluminum oxide may be ⁇ -type, ⁇ -type, ⁇ -type, ⁇ -type, ⁇ -type, etc., and in particular, ⁇ -type and ⁇ -type. In particular, good reactivity can be obtained by using ⁇ alumina, ⁇ alumina, boehmite or the like as aluminum oxide.
- a raw material containing aluminum oxide is simply referred to as an aluminum oxide raw material.
- the shape of the aluminum oxide raw material may be a plate shape and may have a high aspect ratio.
- the aspect ratio may be 3 or more, 5 or more, 10 or more, 30 or more, 50 or more, 70 or more, 100 or more. It may be 120 or more.
- high aspect ratio aluminum nitride particles can be obtained by using an aluminum oxide raw material having a high aspect ratio (aspect ratio of 3 or more).
- Plate-like, high-aspect-ratio aluminum nitride particles can be oriented by using a doctor blade or the like, and products that require control of the crystal axis direction (crystal orientation) (for example, highly transparent aluminum nitride sintered body) ) Can be suitably used as a raw material.
- crystal orientation for example, highly transparent aluminum nitride sintered body
- the size of the aluminum oxide raw material may be such that the length L in the plane direction may be 0.2 ⁇ m or more, 0.6 ⁇ m or more, 2 ⁇ m or more, 5 ⁇ m or more, 10 ⁇ m or more. It may be 15 ⁇ m or more. Further, the length L in the surface direction may be 50 ⁇ m or less, 20 ⁇ m or less, 18 ⁇ m or less, or 15 ⁇ m or less.
- the length D in the thickness direction may be 0.05 ⁇ m or more, may be 0.1 ⁇ m or more, may be 0.3 ⁇ m or more, may be 0.5 ⁇ m or more, and may be 0.8 ⁇ m or more. May be.
- the length D in the thickness direction may be 2 ⁇ m or less, 1.5 ⁇ m or less, or 1.0 ⁇ m or less.
- the size of the aluminum oxide raw material is reflected in the size of the synthesized aluminum nitride particles. Therefore, the size of the aluminum oxide raw material can be appropriately selected according to the intended use of the aluminum nitride particles.
- the aspect ratio is represented by (surface direction length L / thickness direction length D).
- the carbon source is used as a reducing agent for aluminum oxide. Any carbon source may be used as long as it can come into contact with the aluminum oxide raw material in an environment where aluminum nitride particles are synthesized (heating aluminum oxide).
- the carbon source may be a solid mixed with the aluminum oxide raw material.
- the carbon source may be a carbide gas supplied in an environment (in a synthesis atmosphere) for synthesizing aluminum nitride particles.
- the carbon source may be a carbon-made component that comes into contact with the aluminum oxide raw material in a synthetic atmosphere, such as a container containing the aluminum oxide raw material, a jig disposed in the container.
- Carbon black, graphite or the like can be used as a solid carbon source to be mixed with the aluminum oxide raw material.
- Carbon black, acetylene black, etc. which are obtained by a furnace method, a channel method, etc. can be used for carbon black.
- the particle size of the carbon black is not particularly limited, but may be 0.001 to 200 ⁇ m.
- synthetic resin condensates such as phenol resin, melamine resin, epoxy resin, and furan phenol resin, hydrocarbon compounds such as pitch and tar, and organic compounds such as cellulose, sucrose, polyvinylidene chloride, and polyphenylene are used. May be.
- carbon black is particularly useful from the viewpoint of good reactivity.
- the aluminum oxide raw material and the solid carbon source When mixing the aluminum oxide raw material and the solid carbon source, a mixture of water, methanol, ethanol, isopropyl alcohol, acetone, toluene, xylene, or the like may be used. The contact state between the aluminum oxide raw material and the carbon source can be improved. Note that after mixing, the mixed raw material may be dried using an evaporator or the like.
- hydrocarbon gas linear hydrocarbons such as methane, ethane, propane, butane, and ethylene, alcohols such as methanol, ethanol, and propanol, aromatic hydrocarbons such as benzene and naphthalene, and the like can be used.
- Straight chain hydrocarbons are particularly useful because of their ease of thermal decomposition.
- hydrocarbon gas as a carbon source, the aluminum oxide raw material and the carbon source can be in good contact with each other, and the production time of the aluminum nitride particles can be shortened.
- carbide gas fluorides such as fluorocarbon (CF 4 ) and fluorohydrocarbon (CH 3 F 4 ) can be used.
- nitrogen source nitrogen gas, ammonia gas, and a mixed gas thereof can be used.
- Ammonia gas is particularly useful as a nitrogen source because it is inexpensive and easy to handle. Further, by using ammonia gas as a nitrogen source, the reactivity is improved and the production time of aluminum nitride particles can be shortened.
- the nitriding temperature (holding temperature) may be 1200 ° C. or higher, 1300 ° C. or higher, 1400 ° C. or higher, 1500 ° C. or higher, or 1600 ° C. or higher. Prolongation of production time and remaining of unreacted aluminum oxide can be prevented.
- the nitriding temperature may be 1900 ° C. or lower, may be 1800 ° C. or lower, and may be 1700 ° C. or lower. Mismatch of crystal orientation (that is, polycrystallization of aluminum nitride particles) can be prevented.
- the nitriding time (holding time) may be 3 hours or longer, 5 hours or longer, or 8 hours or longer from the viewpoint of preventing the remaining unreacted aluminum oxide from remaining.
- the nitriding time may be 20 hours or less, 15 hours or less, or 10 hours or less from an industrial viewpoint.
- the temperature increase rate from the temperature at which the reduction nitriding reaction of aluminum oxide starts (900 ° C.) to the nitriding temperature may be 150 ° C./hr or less.
- the temperature at which the reduction nitriding reaction of aluminum oxide starts (900 ° C.) may be 150 ° C./hr or less.
- the temperature at which the reduction nitriding reaction of aluminum oxide starts (900 ° C.) may be 150 ° C./hr or less.
- the temperature is raised from 900 ° C. to 1600 ° C. at 150 ° C./hr or less, and then maintained at 1600 ° C. for a predetermined time.
- the temperature increase rate to 900 degreeC may be faster than 150 degreeC / hr.
- the temperature is increased at a first temperature increase rate (over 150 ° C./hr), and from 900 ° C. to nitriding time, the temperature is increased at a second temperature increase rate (150 ° C./hr or less) Good.
- a first temperature increase rate over 150 ° C./hr
- a second temperature increase rate 150 ° C./hr or less
- the carbon remaining in the obtained aluminum nitride particles may be removed by heating (heat treatment) in air or an oxygen atmosphere.
- This heat treatment is particularly useful when the carbon source is a solid that is mixed with the aluminum oxide raw material.
- the post heat treatment temperature may be 500 ° C. or higher, 600 ° C. or higher, or 700 ° C. or higher from the viewpoint of reliably removing residual carbon. Further, the post-heat treatment temperature may be 900 ° C. or less and may be 800 ° C. or less from the viewpoint of suppressing oxidation of the surface of the aluminum nitride particles.
- the post heat treatment time can be appropriately selected according to the post heat treatment temperature, and may be, for example, 3 hours or more.
- the aluminum nitride particles may have a uniform crystal orientation. If the crystal orientation of the aluminum nitride particles is uniform, the crystal orientation of the aluminum nitride sintered body can be aligned by regularly arranging the aluminum nitride particles in the pre-fired molded body. By aligning the crystal orientation of the aluminum nitride sintered body, a highly transparent aluminum nitride sintered body can be obtained.
- the crystal orientation of the aluminum nitride particles is not uniform, even if the aluminum nitride particles are regularly arranged in the pre-fired molded body, the crystal orientation of the aluminum nitride sintered body is not uniform and the transparency is lowered (see FIG. 3). reference).
- the c-axis of the aluminum nitride crystal may appear on the particle surface (the surface having the largest area among the surfaces constituting the particle). That is, the c-axis may extend in the thickness direction of the aluminum nitride particles (direction approximately perpendicular to the particle surface). Whether the crystal orientation is aligned or not is determined by mapping an electron image obtained by a scanning electron microscope (SEM) for each crystal orientation by backscatter diffraction (EBSD). It may be determined based on the proportion of a specific crystal orientation in
- the aluminum nitride particles may have a plate shape and an aspect ratio (L / D) of 3 or more. That is, the ratio of the plate-like aluminum nitride particles in the surface direction length (maximum length of the front and back surfaces) L and the thickness direction length (length in the direction connecting the front and back surfaces) D may be 3 or more.
- the thickness direction length D may be the length (that is, the thickness) of the portion where the distance between the planes is minimized when the aluminum nitride particles are sandwiched between a pair of parallel planes.
- the shape of front and back may be polygons, such as a hexagon, for example. If the aspect ratio is 3 or more, as shown in FIG. 1, the aluminum nitride particles are regularly arranged in the molded body before firing (the aluminum nitride particles are oriented), and the crystal orientation of the sintered aluminum nitride after firing is uniform. It becomes easy.
- the length in the surface direction (longitudinal size) L of the aluminum nitride particles may be 0.6 ⁇ m or more, 1 ⁇ m or more, 1.5 ⁇ m or more, or 2 ⁇ m or more. If the length L in the plane direction of the aluminum nitride particles is too small, the particles may aggregate and a highly oriented (high degree of crystal axis orientation) aluminum nitride sintered body may not be obtained. Further, the length L in the plane direction of the aluminum nitride particles may be 20 ⁇ m or less, 15 ⁇ m or less, 10 ⁇ m or less, or 5 ⁇ m or less.
- the length L in the plane direction of the aluminum nitride particles is too large, it is difficult to cause sintering when the aluminum nitride sintered body is manufactured, and the density of the aluminum nitride sintered body (relative density with respect to the theoretical density) may be low. is there.
- the density of the aluminum nitride sintered body decreases, pores remain inside the aluminum nitride sintered body, and the transparency of the aluminum nitride sintered body decreases.
- the length L in the surface direction of the aluminum nitride particles is within the above range (0.6 to 20 ⁇ m), a highly oriented and highly transparent aluminum nitride sintered body can be produced.
- the transparency of the aluminum nitride sintered body can be evaluated by irradiating the aluminum nitride sintered body with light (laser) having a specific wavelength and measuring the linear transmittance of the light.
- the thickness direction length (short direction size) D of the aluminum nitride particles may be 0.05 ⁇ m or more.
- the shape of the aluminum nitride particles may be broken, for example, in the raw material mixing step when the aluminum nitride sintered body is manufactured.
- the degree of orientation of the aluminum nitride particles may decrease when the pre-fired shaped body is formed.
- the length D in the thickness direction of the aluminum nitride particles may be 0.1 ⁇ m or more, 0.3 ⁇ m or more, 0.5 ⁇ m or more, or 0.8 ⁇ m or more.
- the length D in the thickness direction of the aluminum nitride particles may be 2 ⁇ m or less, 1.5 ⁇ m or less, 1 ⁇ m or less, or 0.5 ⁇ m or less. If the length D in the thickness direction of the aluminum nitride particles is too large, for example, when adjusting the thickness of the green body before firing using a doctor blade or the like, the shear stress applied to the aluminum nitride particles from the blade is adjusted to the particle side surface (parallel to the thickness direction). In other words, the ratio of the aluminum nitride particles may be disturbed (see FIG. 2).
- the length D in the thickness direction of the aluminum nitride particles is too large, the aspect ratio is lowered as a result, and the aluminum nitride particles are hardly arranged regularly. If the length D in the thickness direction of the aluminum nitride particles is within the above range (0.05 to 2 ⁇ m), a highly oriented and highly transparent aluminum nitride sintered body can be produced.
- the specific surface area of the aluminum nitride particles may be 0.4 m 2 / g or more, 1 m 2 / g or more, 2 m 2 / g or more, 3.5 m 2 / g or more, Alternatively, it may be 5 m 2 / g or more, or 8 m 2 / g or more. If the specific surface area is too small, the aluminum nitride particles are difficult to sinter during firing, and a high-density aluminum nitride sintered body may not be obtained.
- the specific surface area may be 16 m 2 / g or less, 13 m 2 / g or less, or 10 m 2 / g or less.
- the specific surface area is too large, the aluminum nitride particles tend to aggregate, the aluminum nitride particles cannot be arranged in a high orientation in the molded body before firing, and an aluminum nitride sintered body with a uniform crystal orientation cannot be obtained. There is. If the specific surface area is too large, for example, when a pre-fired molded body is formed using a doctor blade or the like, the shear stress applied to the aluminum nitride particles from the blade may be reduced, and the arrangement of the aluminum nitride particles may be disturbed. . If the specific surface area of the aluminum nitride particles is within the above range (0.4 to 16 ⁇ m), a highly oriented pre-fired shaped body can be formed. By firing the pre-fired shaped body, high density and transparency can be obtained. A high aluminum nitride sintered body can be produced.
- the impurities (impurity metal, oxygen, etc.) contained in the aluminum nitride particles are preferably small.
- the impurity metal may be 0.2 wt% or less, 0.1 wt% or less, 0.07 wt% or less, or 0.05 wt% or less.
- the oxygen content may be 2 wt% or less, 1.5 wt% or less, 1 wt% or less, or 0.9 wt% or less.
- the transparency of the aluminum nitride sintered body may decrease (decrease in linear transmittance) or the thermal conductivity may decrease. If the impurity concentration in the aluminum nitride particles is within the above range (impurity metal 0.2 wt% or less, oxygen content 2 wt% or less), a highly transparent aluminum nitride sintered body can be produced.
- the degree of c-plane orientation of the aluminum nitride sintered body (the degree of c-axis orientation of the aluminum nitride crystal constituting the aluminum nitride sintered body) may be 95% or more, may be 97% or more, and 100 %. Further, the relative density of the aluminum nitride sintered body may be 99% or more, 99.8% or more, or 100%.
- the impurity metal concentration contained in the aluminum nitride particles may be 0.04 wt% or less.
- the oxygen concentration contained in the aluminum nitride particles may be 0.6 wt% or less.
- the linear transmittance of the aluminum nitride sintered body may be 30% or more, 60% or more, or 65% or more when using light having a wavelength of 450 nm.
- Examples of aluminum nitride sintered bodies produced using aluminum nitride particles and aluminum nitride particles are shown below.
- the Example shown below is for demonstrating the indication of this specification, and does not limit the indication of this specification.
- Example 1 Production of aluminum nitride particles
- plate-like aluminum oxide Karl Co., Ltd.
- carbon black Mitsubishi Chemical Co., Ltd.
- alumina cobblestone ⁇ 2 mm
- IPA isopropyl alcohol: Tokuyama Co., Ltd., Tokuso IPA
- Aluminum oxide having an average particle size (length in the plane direction) of 5 ⁇ m, an average thickness (length in the thickness direction) of 0.07 ⁇ m, and an aspect ratio of 71 was used.
- the alumina cobblestone was removed from the resulting mixture, and the mixture was dried using a rotary evaporator. Thereafter, the remaining mixture was lightly crushed in a mortar (with a relatively weak force, the aggregated particles were separated), and 100 g was filled in a carbon crucible. Thereafter, the crucible filled with the mixture was placed in a heating furnace, heated to 1600 ° C. at a heating rate of 150 ° C./hr under a nitrogen gas flow of 3 L / min, and held at 1600 ° C. for 20 hours. After the heating, the sample was naturally cooled, the sample was taken out from the crucible, and heat-treated (post-heated) at 650 ° C. for 10 hours in an oxidizing atmosphere using a muffle furnace to obtain plate-like aluminum nitride particles. The post heat treatment was performed to remove carbon remaining in the sample.
- the shape of the aluminum nitride particles was obtained by photographing the obtained aluminum nitride particles with a SEM (manufactured by JEOL Ltd., JSM-6390) at a magnification of 1000 to 2000 times, and randomly collecting 30 particles from the photographed image.
- the surface direction length (particle diameter) and the thickness direction length were measured.
- the aspect ratio was calculated from the length in the surface direction and the length in the thickness direction.
- the shape of the obtained aluminum nitride particles was almost the same as that of the raw material (aluminum oxide).
- the specific surface area of the aluminum nitride particles was measured by a BET method described in JIS (Japanese Industrial Standard) R1626 using a specific surface area measuring device (manufactured by Shimadzu Corporation, Flowsorb 2300). Nitrogen was used as the adsorption gas. The results are shown in FIG. The specific surface area was 9.0 m 2 / g.
- the impurity metal concentration was measured by the pressure sulfuric acid decomposition method described in JIS R1649 using an ICP (inductively coupled plasma) emission spectrometer (PS3520UV-DD, manufactured by Hitachi High-Tech Science Co., Ltd.). In addition, it measured about Si, Fe, Ti, Ca, Mg, K, Na, P, Cr, Mn, Ni, Zn, Ga, Y, Zr as an impurity metal.
- the oxygen concentration was measured by an inert gas melting-infrared absorption method described in JIS R1675 using an oxygen analyzer (manufactured by Horiba, Ltd., EMGA-6500). As shown in FIG. 5, the impurity metal concentration was 0.043 wt%, and the oxygen concentration was 0.85 wt%.
- Crystal orientation The crystal orientation was measured using an EBSD (Aztec HKL manufactured by Oxford Instruments Co., Ltd.) attached to the SEM. The crystal orientation was evaluated on the front or back surface of the aluminum nitride particles. That is, the crystal form was evaluated for the surface (surface or back surface) orthogonal to the thickness direction of the aluminum nitride particles and having the largest area among the surfaces constituting the aluminum nitride particles. Specifically, the front surface (or back surface) of the aluminum nitride particles is mapped for each crystal orientation, the ratio (area ratio) of the (001) plane in the whole is calculated, and it is determined whether or not the crystal orientation is aligned. .
- EBSD Aztec HKL manufactured by Oxford Instruments Co., Ltd.
- the crystal orientation was assumed to be uniform, and when it was less than 80%, it was determined that the crystal orientation was not uniform.
- “ ⁇ ” is attached when the crystal orientation is aligned
- “X” is attached when the crystal orientation is not aligned.
- the crystal orientation of the obtained aluminum nitride particles was uniform.
- the surface of the aluminum nitride particles was observed with the SEM, and it was determined whether the crystal was single crystal (without unevenness) or polycrystalline (with unevenness) depending on the uneven state of the surface.
- the obtained aluminum nitride particles were single crystals.
- a method for producing an aluminum nitride sintered body using the obtained aluminum nitride particles will be described.
- a method for synthesizing an auxiliary agent (Ca—Al—O-based firing auxiliary agent) used when sintering an aluminum nitride sintered body will be described.
- the auxiliary is mixed with the aluminum nitride particles and fired together with the aluminum nitride particles.
- the crucible filled with the mixture was placed in a heating furnace, heated to 1250 ° C. at a heating rate of 200 ° C./hr in the atmosphere, and held at 1250 ° C. for 3 hours. After heating, the mixture was naturally cooled, and the mixture (auxiliary agent) was taken out from the crucible.
- the amount of dispersion medium added was adjusted so that the slurry viscosity was 20000 cP.
- the obtained raw material slurry was formed on a PET film by a doctor blade method. By using the doctor blade method, the raw material slurry is formed on the PET film so that the plate surface (c-plane) of the aluminum nitride particles is aligned with the surface of the PET film.
- the slurry thickness was adjusted so that the thickness after drying was 30 ⁇ m.
- the obtained pre-fired molded body was placed on an aluminum plate having a thickness of 10 mm, and then placed in a vacuum package to evacuate the inside. Thereafter, the vacuum package was hydrostatically pressed at 100 kgf / cm 2 in 85 ° C. warm water to obtain a disk-shaped molded body (firing laminate).
- the compact before firing was placed in a degreasing furnace, and degreased at 600 ° C. for 10 hours. Thereafter, firing was performed at 1900 ° C. for 10 hours under the condition of a surface pressure of 200 kgf / cm 2 , and then the temperature was lowered to room temperature to obtain an aluminum nitride primary sintered body.
- the pressurizing direction at the time of hot pressing was the stacking direction of the pre-fired molded body (direction substantially orthogonal to the surface of the tape molded body). The pressurization was maintained until the temperature was lowered to room temperature.
- the aluminum nitride particles constituting the green body before firing are grown by primary firing and the pores in the green body are eliminated, whereby a primary sintered aluminum nitride body having a high density (relative density) is obtained.
- the surface of the aluminum nitride primary sintered body was ground to prepare a sample having a diameter of 20 mm and a thickness of 1.5 mm. This sample was placed on a plate made of aluminum nitride, the inside of the heating furnace was in a nitrogen atmosphere, and fired at a firing temperature of 1900 ° C. for 75 hours to obtain an aluminum nitride sintered body.
- the auxiliary agent auxiliary used at the time of sintering
- P is a value obtained from XRD measurement of the obtained aluminum nitride sintered body
- P 0 is a value calculated from standard aluminum nitride (JCPDS card No. 076-0567).
- JCPDS card No. 076-0567 As (hkl), (100), (002), (101), (102), (110), (103) were used.
- f ⁇ (P ⁇ P 0 ) / (1 ⁇ P 0 ) ⁇ ⁇ 100 (2)
- P 0 ⁇ I 0 (002) / ⁇ I 0 (hkl) (3)
- P ⁇ I (002) / ⁇ I (hkl) (4)
- the sintered aluminum nitride sintered body is cut into a size of 10 mm ⁇ 10 mm, and four aluminum nitride sintered bodies are arranged at equal intervals on the outer periphery of an alumina surface plate ( ⁇ 68 mm) (adjacent to the center of the surface plate).
- the aluminum nitride sintered body is fixed so that the angle is 90 °), polished by a copper lapping machine onto which a slurry containing diamond abrasive grains having a particle diameter of 9 ⁇ m and 3 ⁇ m is dropped, and a slurry containing colloidal silica is further obtained. Polished with a dropped buffing machine for 300 minutes.
- the polished 10 mm ⁇ 10 mm ⁇ 0.4 mm thick sample was washed with acetone, ethanol, and ion-exchanged water for 3 minutes in this order, and then a straight line at a wavelength of 450 nm using a spectrophotometer (Perkin Elmer, Lambda 900). The transmittance was measured.
- Example 2 to 5 Aluminum nitride particles were produced in the same manner as in Example 1 using aluminum oxides having different sizes (Kinsei Matech Co., Ltd.), and an aluminum nitride sintered body was produced using the obtained aluminum nitride particles. In addition, c-plane orientation degree (relative density and impurity concentration were measured for all of the obtained samples. Further, linear transmittance was measured. In Examples 2 to 5, it was also obtained. The shape of the aluminum nitride particles was almost the same as that of the raw material (aluminum oxide), so the shape of the aluminum nitride particles shown in FIG.
- Example 5 when adjusting the raw material for the synthesis of the aluminum nitride sintered body, 47.6 wt% of the aluminum nitride particles were added to a commercially available spherical aluminum nitride powder (F grade, average particle size 1 manufactured by Tokuyama Corporation). .2 ⁇ m) 47.6 wt% and auxiliary agent 4.8 wt% were mixed, and the mixture was mixed with 300 g of alumina cobblestone ( ⁇ 15 mm) and 60 mL of IPA (Tokuyama Co., Ltd., Tokso IPA) for 240 minutes at 30 rpm. The alumina cobblestone was removed and dried using a rotary evaporator to obtain a raw material for synthesis.
- IPA Tokyoyama Co., Ltd., Tokso IPA
- Example 5 since the aluminum nitride particles of Example 5 have a relatively large particle size, when an aluminum nitride sintered body is produced as it is, the relative density is hardly increased.
- an aluminum nitride powder having a small particle diameter was added to the raw material for synthesis.
- the aluminum nitride powder having a small particle diameter is taken into the aluminum nitride particles when the aluminum nitride particles grow. Therefore, even if an aluminum nitride powder having a small particle size is added to the raw material for synthesis, the crystal orientation of the aluminum nitride sintered body is not affected. This is known as a TGG (Templated grain growth) method.
- Example 6 In order to evaluate aluminum nitride particles of various sizes, for aluminum oxide particles that are raw materials of aluminum nitride particles, for those that are not commercially available, the aluminum oxide particles themselves are synthesized and the synthesized aluminum oxide particles are used. Thus, aluminum nitride particles were produced, and an aluminum nitride sintered body was produced using the aluminum nitride particles.
- the obtained slurry was granulated and dried at a drying temperature of 140 ° C. using a spray dry (Okawara Chemical Co., Ltd., FL-12 type) to make the water content in the raw material less than 1 wt%.
- the obtained powder was made into a 50 wt% aqueous slurry, and then hydrothermal synthesis was performed at a synthesis temperature of 600 ° C. and a pressure of 15 MPa. After the hydrothermal synthesis, white aluminum oxide particles were obtained by washing with water and drying. In addition, it is possible to reduce the particle diameter of the aluminum oxide particles without changing the aspect ratio by adding a part of orthophosphoric acid to the water used for hydrothermal synthesis without adding it when forming the slurry. it can.
- the production of aluminum nitride particles and the production of an aluminum nitride sintered body were carried out in the same manner as in Example 1, and the physical properties were evaluated.
- Example 6 to 16 the shape of the obtained aluminum nitride particles was almost the same as that of the raw material (aluminum oxide).
- the shape of the aluminum nitride particles shown in FIG. 5 is almost the same as the size of the raw aluminum oxide.
- Example 11, 13, and 14, like Example 5 when adjusting the raw material for the synthesis
- the aluminum nitride particles of Examples 1 to 11 and 13 to 16 had a substantially hexagonal surface. That is, the aluminum nitride particles of Examples 1 to 11 and 13 to 16 had a substantially hexagonal column shape.
- the aluminum nitride particles of Example 12 had a circular surface and a cylindrical shape.
- the aluminum nitride sintered body using the aluminum nitride particles obtained in Examples 2 to 16 has a c-plane orientation degree of 97% or more, a relative density of 98.8% or more, and an impurity metal of 0.04 wt%.
- the oxygen content was 0.30% or less
- the linear transmittance was 30% or more.
- the size of the aluminum nitride particles is relatively small compared to the other samples.
- the size of the aluminum nitride particles is relatively large compared to other samples. All samples had good c-plane orientation ratio and linear transmittance.
- Examples 6 to 8 have a relatively small aspect ratio compared to other samples. It was confirmed that samples having an aspect ratio of 3 to 5 also showed good c-plane orientation rate and linear transmittance.
- Example 1 A commercially available aluminum oxide having an average particle size of 10 ⁇ m, an average thickness of 0.3 ⁇ m, and an aspect ratio of 33 is filled in an alumina crucible and heated at a rate of temperature increase of 200 ° C./hr at a flow rate of nitrogen gas of 0.5 L / min at 1600 ° C. The temperature was raised to 1,600 ° C. for 35 hours to obtain plate-like aluminum nitride particles. The other conditions for producing aluminum nitride particles were the same as in Example 1. An aluminum nitride sintered body was produced in the same manner as in Example 1 using the obtained aluminum nitride particles. The results are shown in FIG. As shown in FIG.
- the aluminum nitride particles of Comparative Example 1 were not aligned in crystal orientation and were polycrystalline.
- the aluminum nitride particles of Comparative Example 1 had substantially the same particle shape, specific surface area, and impurity concentration as Example 5, but the aluminum nitride sintered body showed a very low value of 7% for the c-plane orientation, The transmittance was 2%.
- Comparative Examples 2 to 4 Aluminum oxide particles were synthesized in the same manner as in Examples 6 to 16, and using the synthesized aluminum oxide, aluminum nitride particles and an aluminum nitride sintered body were produced.
- the average particle diameter of aluminum hydroxide, the addition amount of orthophosphoric acid, and the addition timing were adjusted to obtain aluminum oxide particles having the particle shape shown in FIG.
- the shape of the aluminum nitride particles shown in FIG. 5 is almost the same as the size of the raw material aluminum oxide.
- Comparative Examples 2 and 3 the crystal orientation of the aluminum nitride particles was uniform, but the c-plane orientation degree of the aluminum nitride sintered body was low. Moreover, relative density was low compared with the other sample.
- Comparative Example 4 the crystal orientations of the aluminum nitride particles are uniform, the c-plane orientation of the aluminum nitride sintered body is better than Comparative Examples 2 and 3, and the relative density is the same level as in Examples 1-16. It was. However, in all of Comparative Examples 2 to 4, the linear transmittance was as low as 7% or less.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Ceramic Products (AREA)
Abstract
窒化アルミニウム焼結体の原料として利用される窒化アルミニウム粒子を開示する。その窒化アルミニウム粒子は、粒子内の結晶方位が揃っており、アスペクト比が3以上であり、板状であり、面方向長さが0.6μm以上20μm以下であるとともに、厚み方向長さが0.05μm以上2μm以下である。
Description
本明細書は、窒化アルミニウム粒子に関する技術を開示する。特に、本明細書は、窒化アルミニウム焼結体の原料として用いる窒化アルミニウム粒子に関する技術を開示する。
アスペクト比(面方向長さL/厚み方向長さD)が高い窒化アルミニウム粒子が国際公開WO2014/123247A1(以下、特許文献1と称する)に開示されている。特許文献1は、面方向長さLが3~110μm、厚み方向長さDが2~45μmの窒化アルミニウム粒子を開示しており、アスペクト比L/Dは1.25~20である。なお、特許文献1は、面方向長さを「D」とし、厚み方向長さを「L」と規定しており、アスペクト比(L/D)は1未満(0.05~0.8)である。特許文献1の窒化アルミニウム粒子は、樹脂に添加する熱伝導フィラー、あるいは、高強度の窒化アルミニウム焼結体の原料として用いられる。
上記したように、特許文献1の窒化アルミニウム粒子は、樹脂に添加する熱伝導フィラー、あるいは、高強度の窒化アルミニウム焼結体の原料として用いられる。そのため、特許文献1の窒化アルミニウム粒子は、アスペクト比が高く、粒子サイズが大きい。本発明者らは、高い透明度が要求される部品を、窒化アルミニウム粒子を用いて製造する研究を開始した。すなわち、透明度の高い窒化アルミニウム焼結体を製造する研究を開始した。しかしながら、本発明者らの研究の結果、従来の窒化アルミニウム粒子では、透明度が高い窒化アルミニウム焼結体を製造することが困難であることが判明した。すなわち、透明度が高い窒化アルミニウム焼結体を得るためには、従来とは異なる新規な窒化アルミニウム粒子が必要であることが判明した。本明細書は、透明度が高い窒化アルミニウム焼結体の原料として好適に利用可能な窒化アルミニウム粒子を提供する。
本明細書は、窒化アルミニウム焼結体の原料として利用される窒化アルミニウム粒子を開示する。その窒化アルミニウム粒子は、粒子内の結晶方位が揃っており、アスペクト比(L/D)が3以上であり、板状であり、面方向長さ(L)が0.6μm以上20μm以下であるとともに、厚み方向長さ(D)が0.05μm以上2μm以下であってよい。なお、「面方向長さ」とは、板状の窒化アルミニウム粒子の表面における最長長さのことを意味している。また、「厚み方向長さ」とは、板状の窒化アルミニウム粒子の表裏面の距離のことを意味している。
窒化アルミニウム焼結体の透明度を高くするためには、結晶軸の方向(結晶方位)を揃えることが必要である。そのためには、窒化アルミニウム焼結体の原料である窒化アルミニウム粒子の結晶方位を一方向に揃えることが必要である。しかしながら、各窒化アルミニウム粒子内で結晶方位が揃っていても、窒化アルミニウム粒子を用いて所定形状の焼成前成形体を成形したときに、焼成前成形体内で窒化アルミニウム粒子がランダムに配置されていると、得られる窒化アルミニウム焼結体の結晶方位も乱れ、窒化アルミニウム焼結体の透明度は低下する。
例えば、図1に示す焼成前成形体10のように、各窒化アルミニウム粒子2内の結晶方位(結晶方位を矢印で示している)が揃っており、各窒化アルミニウム粒子2が結晶方位を揃えて規則正しく(表面同士が対向するように配向して)配置されていれば、図2に示す窒化アルミニウム焼結体100のように、焼成後も窒化アルミニウム焼結体100内の結晶方位も揃い、透明度が高くなる。なお、窒化アルミニウム焼結体100内を区画している破線は、結晶粒界を意味するものではない。図2は、窒化アルミニウム粒子2(図1)が粒成長して窒化アルミニウム焼結体100が構成されていることを示すため、窒化アルミニウム焼結体100内を破線で区画しているに過ぎない。
なお、図1に示すように焼成前成形体10内では、各窒化アルミニウム粒子2の間に隙間4が存在する。この隙間4には、焼結に必要な助剤,気孔等が存在する。結晶方位を揃えて規則正しく配置しても、焼成後の窒化アルミニウム焼結体内に助剤が残存したり、気孔が残存すると、窒化アルミニウム焼結体の透明度が低下する。窒化アルミニウム焼結体内に気孔が残存すると、窒化アルミニウム焼結体の密度(理論密度に対する相対密度)が低下し、熱伝導率が低下することもある。
図3に示す焼成前成形体10aのように、各窒化アルミニウム粒子2,2aの結晶方位は揃っているが、窒化アルミニウム粒子2,2aが規則正しく配置されていない場合(窒化アルミニウム粒子2と2aの表面同士が対向しない状態の場合)、焼成後の窒化アルミニウム焼結体の結晶方位も乱れ、透明度が低下する。
あるいは、図4に示す焼成前成形体10bのように、各窒化アルミニウム粒子2b内で結晶方位が揃っていない場合、焼成後の窒化アルミニウム焼結体の結晶方位も乱れ、窒化アルミニウム焼結体の透明度は低下する。典型的に、多結晶の窒化アルミニウム粒子は、窒化アルミニウム粒子2bのように粒子内で結晶方位が不規則である。そのため、典型的に、窒化アルミニウム粒子2のように粒子内で結晶方位が揃っているものは、単結晶の窒化アルミニウム粒子であることが多い。
本明細書で開示する窒化アルミニウム粒子は、粒子内の結晶方位が揃っているので、焼成前成形体10bのようになることはない。また、アスペクト比が3以上であるため、焼成前成形体10aのように窒化アルミニウム粒子が不規則に配置されることを抑制できる。また、本明細書で開示する窒化アルミニウム粒子は、板状であり、面方向長さが0.6μm以上20μm以下であるとともに厚み方向長さが0.05μm以上2μm以下である。そのため、焼成前成形体を焼成したときに焼結が起こり易く、高密度の(気孔のすくない)窒化アルミニウム焼結体を得ることができる。上記窒化アルミニウム粒子を用いると、結晶方位が揃っており高密度の窒化アルミニウム焼結体、すなわち、透明度の高い窒化アルミニウム焼結体を得ることができる。
窒化アルミニウム粒子の表面積は、0.4m2/g以上16m2/g以下であってよい。表面積を0.4m2/g以上とすることにより、焼成の際、窒化アルミニウム粒子の焼結を起こり易くすることができる。また、窒化アルミニウム粒子の表面積を16m2/g以下とすることにより、窒化アルミニウム粒子が凝集することが抑制され、焼成前成形体内で窒化アルミニウム粒子が配向しやすくなる。
窒化アルミニウム粒子内に含まれる不純物金属濃度は0,2質量%以下であってよい。窒化アルミニウム粒子が不純物金属を多く含んでいると、得られる窒化アルミニウム焼結体内の不純物金属濃度も高くなる。不純物金属を多く含む窒化アルミニウム焼結体は、透明度が低下する。窒化アルミニウム粒子内の不純物金属濃度が0.2質量%以下であれば、窒化アルミニウム焼結体の透明度を高く維持することができる。
窒化アルミニウム粒子内に含まれる酸素濃度は2質量%以下であってよい。窒化アルミニウム粒子が酸素を多く含んでいると、得られる窒化アルミニウム焼結体内の酸素濃度も高くなる。酸素を多く含む窒化アルミニウム焼結体も、透明度が低下する。窒化アルミニウム粒子内の酸素濃度が2質量%以下であれば、窒化アルミニウム焼結体の透明度を高く維持することができる。
以下、本明細書で開示される技術の実施形態を説明する。
本明細書では、窒化アルミニウム焼結体の原料として利用される窒化アルミニウム粒子を開示する。窒化アルミニウム焼結体の製造では、まず、窒化アルミニウム粒子を用いて所定サイズの焼成前成形体を成形する。焼成前成形体は、例えば、窒化アルミニウム粒子を含むスラリーをフィルム上に塗布・乾燥し、所定厚さになるようにフィルムから剥がした成形体を積層し、静水圧プレスすることにより成形する。その成形体について成形する際に添加した成形助剤を脱脂後、焼成前成形体を加圧しながら所定温度で焼成することにより、窒化アルミニウムを焼結・粒子成長させ、高密度の(気孔の少ない)窒化アルミニウム1次焼結体を形成する。その後、窒化アルミニウム1次焼結体を無加圧状態で2次焼成し、焼結助剤を除去し、窒化アルミニウム焼結体が得られる。なお、窒化アルミニウム粒子は、酸化アルミニウムを含む原料と炭素源とを、窒素源を含む雰囲気で加熱することにより製造することができる。具体的には、窒化アルミニウム粒子は、下記式(1)に示す反応により製造される。
Al2O3+3C+N2→2AlN+3CO・・(1)
Al2O3+3C+N2→2AlN+3CO・・(1)
(酸化アルミニウムを含む原料)
酸化アルミニウムを含む原料は、原料中に酸化アルミニウムを含んでいればよく、他の物質を含まない酸化アルミニウム単体(不可避不純物を除く)であってもよいし、原料中に他の物質を含んでいてもよい。例えば、酸化アルミニウムを含む原料は、原料中に、70質量%以上の酸化アルミニウムを含んでいてよく、80質量%以上の酸化アルミニウムを含んでいてよく、90質量%以上の酸化アルミニウムを含んでいてよく、95質量%以上の酸化アルミニウムを含んでいてもよい。また、酸化アルミニウムの結晶構造は、α型、γ型,θ型,η型,κ型,χ型等であってよく、特に、α型,γ型であってよい。特に、酸化アルミニウムとしてαアルミナ,γアルミナ,ベーマイト等を用いることにより、良好な反応性が得られる。以下、「酸化アルミニウムを含む原料」を、単に酸化アルミニウム原料と称する。
酸化アルミニウムを含む原料は、原料中に酸化アルミニウムを含んでいればよく、他の物質を含まない酸化アルミニウム単体(不可避不純物を除く)であってもよいし、原料中に他の物質を含んでいてもよい。例えば、酸化アルミニウムを含む原料は、原料中に、70質量%以上の酸化アルミニウムを含んでいてよく、80質量%以上の酸化アルミニウムを含んでいてよく、90質量%以上の酸化アルミニウムを含んでいてよく、95質量%以上の酸化アルミニウムを含んでいてもよい。また、酸化アルミニウムの結晶構造は、α型、γ型,θ型,η型,κ型,χ型等であってよく、特に、α型,γ型であってよい。特に、酸化アルミニウムとしてαアルミナ,γアルミナ,ベーマイト等を用いることにより、良好な反応性が得られる。以下、「酸化アルミニウムを含む原料」を、単に酸化アルミニウム原料と称する。
(酸化アルミニウム原料の形状)
酸化アルミニウム原料の形状は、板状であってよく、高アスペクト比を有していてよい。アスペクト比は、3以上であってよく、5以上であってよく、10以上であってよく、30以上であってよく、50以上であってよく、70以上であってよく、100以上であってよく、120以上であってもよい。目的とする窒化アルミニウム粒子の用途にも依るが、高アスペクト比(アスペクト比3以上)の酸化アルミニウム原料を用いることにより、高アスペクト比の窒化アルミニウム粒子が得られる。板状で高アスペクト比の窒化アルミニウム粒子は、ドクターブレード等を利用することによって配向させることができ、結晶軸方向(結晶方位)の制御が必要な製品(例えば、透明度の高い窒化アルミニウム焼結体)の原料として好適に使用することができる。
酸化アルミニウム原料の形状は、板状であってよく、高アスペクト比を有していてよい。アスペクト比は、3以上であってよく、5以上であってよく、10以上であってよく、30以上であってよく、50以上であってよく、70以上であってよく、100以上であってよく、120以上であってもよい。目的とする窒化アルミニウム粒子の用途にも依るが、高アスペクト比(アスペクト比3以上)の酸化アルミニウム原料を用いることにより、高アスペクト比の窒化アルミニウム粒子が得られる。板状で高アスペクト比の窒化アルミニウム粒子は、ドクターブレード等を利用することによって配向させることができ、結晶軸方向(結晶方位)の制御が必要な製品(例えば、透明度の高い窒化アルミニウム焼結体)の原料として好適に使用することができる。
酸化アルミニウム原料のサイズは、面方向長さLが0.2μm以上であってよく、0.6μm以上であってよく、2μm以上であってよく、5μm以上であってよく、10μm以上であってよく、15μm以上であってもよい。また、面方向長さLは、50μm以下であってよく、20μm以下であってよく、18μm以下であってよく、15μm以下であってもよい。また、厚み方向長さDは0.05μm以上であってよく、0.1μm以上であってよく、0.3μm以上であってよく、0.5μm以上であってよく、0.8μm以上であってもよい。また、厚み方向長さDは、2μm以下であってよく、1.5μm以下であってよく、1.0μm以下であってもよい。酸化アルミニウム原料のサイズは、合成後の窒化アルミニウム粒子のサイズに反映される。そのため、酸化アルミニウム原料のサイズは、目的とする窒化アルミニウム粒子の用途に応じて、適宜選択することができる。なお、アスペクト比は、(面方向長さL/厚み方向長さD)で示される。
(炭素源)
炭素源は、酸化アルミニウムの還元剤として用いられる。炭素源は、窒化アルミニウム粒子を合成する(酸化アルミニウムを加熱する)環境で、酸化アルミニウム原料と接触し得るものであればよい。例えば、炭素源は、酸化アルミニウム原料に混合される固体であってよい。あるいは、炭素源は、窒化アルミニウム粒子を合成する環境内(合成雰囲気内)に供給される炭化物ガスであってよい。あるいは、炭素源は、酸化アルミニウム原料を収容する容器、その容器内に配置される治具等、合成雰囲気内で酸化アルミニウム原料に接触するカーボン製の部品であってもよい。
炭素源は、酸化アルミニウムの還元剤として用いられる。炭素源は、窒化アルミニウム粒子を合成する(酸化アルミニウムを加熱する)環境で、酸化アルミニウム原料と接触し得るものであればよい。例えば、炭素源は、酸化アルミニウム原料に混合される固体であってよい。あるいは、炭素源は、窒化アルミニウム粒子を合成する環境内(合成雰囲気内)に供給される炭化物ガスであってよい。あるいは、炭素源は、酸化アルミニウム原料を収容する容器、その容器内に配置される治具等、合成雰囲気内で酸化アルミニウム原料に接触するカーボン製の部品であってもよい。
酸化アルミニウム原料に混合する固体の炭素源として、カーボンブラック、黒鉛等を用いることができる。カーボンブラックは、ファーネス法,チャンネル法等で得られるカーボンブラック,アセチレンブラック等を用いることができる。カーボンブラックの粒径は、特に限定されないが、0.001~200μmであってよい。なお、酸化アルミニウム原料に混合する固体の炭素源として、有機化合物を用いてもよい。例えば、炭素源として、フェノール樹脂,メラミン樹脂,エポキシ樹脂,フランフェノール樹脂等の合成樹脂縮合物、ピッチ,タール等の炭化水素化合物、セルロース,ショ糖,ポリ塩化ビニリデン,ポリフェニレン等の有機化合物を用いてもよい。上記した固体の炭素源のうち、カーボンブラックは、反応性が良好であるという観点より、特に有用である。
酸化アルミニウム原料と固体の炭素源を混合するときに、水,メタノール,エタノール,イソプロピルアルコール,アセトン,トルエン,キシレン等の溶媒を用いて混合してもよい。酸化アルミニウム原料と炭素源の接触状態を良好にすることができる。なお、混合後、エバポレータ等を利用して混合原料を乾燥させてもよい。
炭化物ガスとして、メタン,エタン,プロパン,ブタン,エチレン等の直鎖の炭化水素、メタノール,エタノール,プロパノール等のアルコール類、ベンゼン,ナフタレン等の芳香族炭化水素等を用いることができる。直鎖の炭化水素は、熱分解の容易性より、特に有用である。なお、炭素源として炭化水素ガスを用いることにより、酸化アルミニウム原料と炭素源が良好に接触し、窒化アルミニウム粒子の製造時間を短縮することができる。なお、炭化物ガスとして、フッ化炭素(CF4),フッ化炭化水素(CH3F4)等のフッ化物等を用いることもできる。
(窒素源)
窒素源として、窒素ガス、アンモニアガス、及びこれらの混合ガスを用いることができる。アンモニアガスは、安価であり、取扱いが容易なため、窒素源として特に有用である。また、窒素源としてアンモニアガスを用いることにより、反応性が向上し、窒化アルミニウム粒子の製造時間を短縮することができる。
窒素源として、窒素ガス、アンモニアガス、及びこれらの混合ガスを用いることができる。アンモニアガスは、安価であり、取扱いが容易なため、窒素源として特に有用である。また、窒素源としてアンモニアガスを用いることにより、反応性が向上し、窒化アルミニウム粒子の製造時間を短縮することができる。
(窒化温度)
窒化温度(保持温度)は、1200℃以上であってよく、1300℃以上であってよく、1400℃以上であってよく、1500℃以上であってよく、1600℃以上であってもよい。製造時間の長期化、及び、未反応の酸化アルミニウムの残存を防止することができる。また、窒化温度は、1900℃以下であってよく、1800℃以下であってよく、1700℃以下であってもよい。結晶方位の不整合(すなわち、窒化アルミニウム粒子の多結晶化)を防止することができる。窒化時間(保持時間)は、未反応の酸化アルミニウムの残存を防止するという観点より、3時間以上であってよく、5時間以上であってよく、8時間以上であってもよい。また、窒化時間は、工業的な観点より、20時間以下であってよく、15時間以下であってよく、10時間以下であってもよい。
窒化温度(保持温度)は、1200℃以上であってよく、1300℃以上であってよく、1400℃以上であってよく、1500℃以上であってよく、1600℃以上であってもよい。製造時間の長期化、及び、未反応の酸化アルミニウムの残存を防止することができる。また、窒化温度は、1900℃以下であってよく、1800℃以下であってよく、1700℃以下であってもよい。結晶方位の不整合(すなわち、窒化アルミニウム粒子の多結晶化)を防止することができる。窒化時間(保持時間)は、未反応の酸化アルミニウムの残存を防止するという観点より、3時間以上であってよく、5時間以上であってよく、8時間以上であってもよい。また、窒化時間は、工業的な観点より、20時間以下であってよく、15時間以下であってよく、10時間以下であってもよい。
酸化アルミニウムの還元窒化反応が始まる温度(900℃)から窒化温度までの昇温速度は、150℃/hr以下であってよい。例えば、窒化温度が1600℃の場合、900℃から1600℃まで150℃/hr以下で昇温し、その後1600℃で所定時間維持する。窒化初期から窒化温度までの昇温時間を遅くすることにより、結晶方位の揃った単結晶の窒化アルミニウム粒子を製造することができる。なお、900℃までの昇温速度は、150℃/hrより速くてもよい。例えば、室温から900℃までは第1昇温速度(150℃/hr超)で昇温し、900℃から窒化時間までは第2昇温速度(150℃/hr以下)で昇温してもよい。昇温速度を切り替えることにより、窒化アルミニウム粒子の製造に要する時間(具体的には、900℃に達する時間)を短縮することができる。
(後熱処理)
窒化アルミニウム粒子の合成後、大気または酸素雰囲気で加熱(熱処理)し、得られた窒化アルミニウム粒子中に残存している炭素を除去してもよい。この熱処理は、炭素源が酸化アルミニウム原料に混合される固体である場合に特に有用である。後熱処理温度は、残存炭素を確実に除去するという観点より、500℃以上であってよく、600℃以上であってよく、700℃以上であってもよい。また、後熱処理温度は、窒化アルミニウム粒子の表面の酸化を抑制するという観点より、900℃以下であってよく、800℃以下であってもよい。なお、後熱処理時間は、後熱処理温度に応じて適宜選択することができるが、例えば3時間以上であってよい。
窒化アルミニウム粒子の合成後、大気または酸素雰囲気で加熱(熱処理)し、得られた窒化アルミニウム粒子中に残存している炭素を除去してもよい。この熱処理は、炭素源が酸化アルミニウム原料に混合される固体である場合に特に有用である。後熱処理温度は、残存炭素を確実に除去するという観点より、500℃以上であってよく、600℃以上であってよく、700℃以上であってもよい。また、後熱処理温度は、窒化アルミニウム粒子の表面の酸化を抑制するという観点より、900℃以下であってよく、800℃以下であってもよい。なお、後熱処理時間は、後熱処理温度に応じて適宜選択することができるが、例えば3時間以上であってよい。
(窒化アルミニウム粒子の形状)
窒化アルミニウム粒子は、結晶方位が揃っていてよい。窒化アルミニウム粒子の結晶方位が揃っていれば、焼成前成形体内で窒化アルミニウム粒子を規則正しく配置することによって、窒化アルミニウム焼結体の結晶方位を揃えることができる。窒化アルミニウム焼結体の結晶方位を揃えることによって、透明度の高い窒化アルミニウム焼結体が得られる。換言すると、窒化アルミニウム粒子の結晶方位が揃っていないと、焼成前成形体内で窒化アルミニウム粒子を規則正しく配置しても、窒化アルミニウム焼結体の結晶方位が揃わず、透明度が低下する(図3を参照)。なお、窒化アルミニウム結晶のc軸が粒子表面(粒子を構成する面のうちの面積が最も大きい面)に表れていてよい。すなわち、c軸が窒化アルミニウム粒子の厚み方向(粒子表面に略直交する方向)に伸びていてよい。なお、結晶方位が揃っているか否かは、走査型電子顕微鏡(SEM:Scanning Electron Microscope)で得られた電子画像を後方散乱回折法(EBSD:Electron BackScatter Diffraction)で結晶方位毎にマッピングし、全体に占める特定の結晶方位の割合に基づいて決定してよい。
窒化アルミニウム粒子は、結晶方位が揃っていてよい。窒化アルミニウム粒子の結晶方位が揃っていれば、焼成前成形体内で窒化アルミニウム粒子を規則正しく配置することによって、窒化アルミニウム焼結体の結晶方位を揃えることができる。窒化アルミニウム焼結体の結晶方位を揃えることによって、透明度の高い窒化アルミニウム焼結体が得られる。換言すると、窒化アルミニウム粒子の結晶方位が揃っていないと、焼成前成形体内で窒化アルミニウム粒子を規則正しく配置しても、窒化アルミニウム焼結体の結晶方位が揃わず、透明度が低下する(図3を参照)。なお、窒化アルミニウム結晶のc軸が粒子表面(粒子を構成する面のうちの面積が最も大きい面)に表れていてよい。すなわち、c軸が窒化アルミニウム粒子の厚み方向(粒子表面に略直交する方向)に伸びていてよい。なお、結晶方位が揃っているか否かは、走査型電子顕微鏡(SEM:Scanning Electron Microscope)で得られた電子画像を後方散乱回折法(EBSD:Electron BackScatter Diffraction)で結晶方位毎にマッピングし、全体に占める特定の結晶方位の割合に基づいて決定してよい。
窒化アルミニウム粒子は、板状であり、アスペクト比(L/D)が3以上であってよい。すなわち、板状の窒化アルミニウム粒子の面方向長さ(表裏面の最大長さ)Lと厚み方向長さ(表裏面を結ぶ方向の長さ)Dの比が、3以上であってよい。なお、厚み方向長さDは、窒化アルミニウム粒子を一対の平行な平面で挟んだときに、平面間の距離が最小となる部分の長さ(すなわち、厚み)であってよい。また、表裏面の形状は、例えば六角形等の多角形であってよい。アスペクト比が3以上であれば、図1に示すように、焼成前成形体内において窒化アルミニウム粒子が規則正しく配置され(窒化アルミニウム粒子が配向し)、焼成後の窒化アルミニウム焼結体の結晶方位が揃い易くなる。
窒化アルミニウム粒子の面方向長さ(長手方向サイズ)Lは、0.6μm以上であってよく、1μm以上であってよく、1.5μm以上であってよく、2μm以上であってもよい。窒化アルミニウム粒子の面方向長さLが小さすぎると、粒子同士が凝集し、高配向(結晶軸の配向度が高い)窒化アルミニウム焼結体が得られないことがある。また、窒化アルミニウム粒子の面方向長さLは、20μm以下であってよく、15μm以下であってよく、10μm以下であってよく、5μm以下であってもよい。窒化アルミニウム粒子の面方向長さLが大きすぎると、窒化アルミニウム焼結体を製造する際、焼結が起こり難くなり、窒化アルミニウム焼結体の密度(理論密度に対する相対密度)が低くなることがある。窒化アルミニウム焼結体の密度が低下すると、窒化アルミニウム焼結体の内部に気孔が残存し、窒化アルミニウム焼結体の透明度が低下する。窒化アルミニウム粒子の面方向長さLが上記範囲(0.6~20μm)内であれば、高配向で透明度の高い窒化アルミニウム焼結体を製造することができる。なお、窒化アルミニウム焼結体の透明度は、窒化アルミニウム焼結体に特定波長の光(レーザ)を照射し、その光の直線透過率で評価することができる。
窒化アルミニウム粒子の厚み方向長さ(短手方向サイズ)Dは、0.05μm以上であってよい。窒化アルミニウム粒子の厚み方向長さDが0.05μm未満になると、窒化アルミニウム焼結体を製造する際、例えば、原料の混合工程において窒化アルミニウム粒子の形状が崩れることがある。粒子形状が崩れることにより、焼成前成形体を成形する際、窒化アルミニウム粒子の配向度が低下することがある。なお、窒化アルミニウム粒子の厚み方向長さDは、0.1μm以上であってよく、0.3μm以上であってよく、0.5μm以上であってよく、0.8μm以上であってもよい。
また、窒化アルミニウム粒子の厚み方向長さDは、2μm以下であってよく、1.5μm以下であってよく、1μm以下であってよく、0.5μm以下であってもよい。窒化アルミニウム粒子の厚み方向長さDが大きすぎると、例えば、ドクターブレード等を用いて焼成前成形体の厚みを調整する際、ブレードから窒化アルミニウム粒子に加わる剪断応力を粒子側面(厚み方向に平行な面)で受ける割合が増え、窒化アルミニウム粒子の配列が乱れることが起こり得る(図2を参照)。また、窒化アルミニウム粒子の厚み方向長さDが大きすぎると、結果的にアスペクト比が低下し、窒化アルミニウム粒子が規則正しく配列されにくくなる。窒化アルミニウム粒子の厚み方向長さDが上記範囲(0.05~2μm)内であれば、高配向で透明度の高い窒化アルミニウム焼結体を製造することができる。
窒化アルミニウム粒子の比表面積は、0.4m2/g以上であってよく、1m2/g以上であってよく、2m2/g以上であってよく、3.5m2/g以上であってよく、5m2/g以上であってよく、8m2/g以上であってもよい。比表面積が小さすぎると、焼成の際、窒化アルミニウム粒子が焼結しにくくなり、高密度の窒化アルミニウム焼結体が得られないことがある。また、比表面積は、16m2/g以下であってよく、13m2/g以下であってよく、10m2/g以下であってもよい。比表面積が大きすぎると、窒化アルミニウム粒子が凝集し易くなり、焼成前成形体内で窒化アルミニウム粒子を高配向に配置することができず、結晶方位の揃った窒化アルミニウム焼結体が得られないことがある。また、比表面積が大きすぎると、例えば、ドクターブレード等を用いて焼成前成形体を成形する際、ブレードから窒化アルミニウム粒子に加わる剪断応力が小さくなり、窒化アルミニウム粒子の配列が乱れることが起こり得る。窒化アルミニウム粒子の比表面積が上記範囲(0.4~16μm)内であれば、高配向の焼成前成形体を成形することができ、その焼成前成形体を焼成することにより、高密度で透明度の高い窒化アルミニウム焼結体を製造することができる。
(不純物濃度)
窒化アルミニウム粒子に含まれる不純物(不純物金属、酸素等)は、少ないことが好ましい。具体的には、不純物金属は、0.2wt%以下であってよく、0.1wt%以下であってよく、0.07wt%以下であってよく、0.05wt%以下であってもよい。また、酸素含有量は、2wt%以下であってよく、1.5wt%以下であってよく、1wt%以下であってよく、0.9wt%以下であってもよい。窒化アルミニウム粒子内の不純物濃度が高くなると、窒化アルミニウム焼結体に含まれる不純物濃度も高くなる。窒化アルミニウム焼結体内の不純物濃度が高くなると、窒化アルミニウム焼結体の透明度が低下(直線透過率の低下)したり、熱伝導率が低下することが起こり得る。窒化アルミニウム粒子内の不純物濃度が上記範囲(不純物金属0.2wt%以下、酸素含有率2wt%以下)であれば、透明度の高い窒化アルミニウム焼結体を製造することができる。
窒化アルミニウム粒子に含まれる不純物(不純物金属、酸素等)は、少ないことが好ましい。具体的には、不純物金属は、0.2wt%以下であってよく、0.1wt%以下であってよく、0.07wt%以下であってよく、0.05wt%以下であってもよい。また、酸素含有量は、2wt%以下であってよく、1.5wt%以下であってよく、1wt%以下であってよく、0.9wt%以下であってもよい。窒化アルミニウム粒子内の不純物濃度が高くなると、窒化アルミニウム焼結体に含まれる不純物濃度も高くなる。窒化アルミニウム焼結体内の不純物濃度が高くなると、窒化アルミニウム焼結体の透明度が低下(直線透過率の低下)したり、熱伝導率が低下することが起こり得る。窒化アルミニウム粒子内の不純物濃度が上記範囲(不純物金属0.2wt%以下、酸素含有率2wt%以下)であれば、透明度の高い窒化アルミニウム焼結体を製造することができる。
(窒化アルミニウム焼結体の特徴)
窒化アルミニウム焼結体のc面配向度(窒化アルミニウム焼結体を構成している窒化アルミニウム結晶のc軸の配向度)は、95%以上であってよく、97%以上であってよく、100%であってもよい。また、窒化アルミニウム焼結体の相対密度は、99%以上であってよく、99.8%以上であってよく、100%であってもよい。窒化アルミニウム粒子に含まれる不純物金属濃度は、0.04wt%以下であってよい。窒化アルミニウム粒子に含まれる酸素濃度は、0.6wt%以下であってよい。また、窒化アルミニウム焼結体の直線透過率は、波長450nmの光を用いてときに、30%以上であってよく、60%以上であってよく、65%以上であってもよい。
窒化アルミニウム焼結体のc面配向度(窒化アルミニウム焼結体を構成している窒化アルミニウム結晶のc軸の配向度)は、95%以上であってよく、97%以上であってよく、100%であってもよい。また、窒化アルミニウム焼結体の相対密度は、99%以上であってよく、99.8%以上であってよく、100%であってもよい。窒化アルミニウム粒子に含まれる不純物金属濃度は、0.04wt%以下であってよい。窒化アルミニウム粒子に含まれる酸素濃度は、0.6wt%以下であってよい。また、窒化アルミニウム焼結体の直線透過率は、波長450nmの光を用いてときに、30%以上であってよく、60%以上であってよく、65%以上であってもよい。
以下、窒化アルミニウム粒子、窒化アルミニウム粒子を用いて製造した窒化アルミニウム焼結体の実施例を示す。なお、以下に示す実施例は、本明細書の開示を説明するためのものであり、本明細書の開示を限定するものではない。
(実施例1:窒化アルミニウム粒子の製造)
まず、板状の酸化アルミニウム(キンセイマテック(株))100g,カーボンブラック(三菱化学(株))50g,アルミナ玉石(φ2mm)1000g,IPA(イソプロピルアルコール:トクヤマ(株)製、トクソーIPA)350mLを、30rpmで240分間混合し、混合物を得た。なお、酸化アルミニウムは、平均粒径(面方向長さ)5μm、平均厚さ(厚み方向長さ)0.07μm、アスペクト比71のものを用いた。得られた混合物からアルミナ玉石を除去し、その混合物をロータリーエバポレータを用いて乾燥させた。その後、残存した混合物を乳鉢で軽く解砕し(比較的弱い力で、凝集した粒子を分離させ)、カーボン製の坩堝に100g充填した。その後、混合物を充填した坩堝を加熱炉内に配置し、窒素ガス3L/min流通下で昇温速度150℃/hrで1600℃まで昇温し、1600℃で20時間保持した。加熱終了後、自然冷却し、坩堝から試料を取り出し、マッフル炉を用いて酸化雰囲気下で650℃で10hr熱処理(後熱処理)し、板状の窒化アルミニウム粒子を得た。なお、後熱処理は、試料中に残存している炭素を除去するために行った。
まず、板状の酸化アルミニウム(キンセイマテック(株))100g,カーボンブラック(三菱化学(株))50g,アルミナ玉石(φ2mm)1000g,IPA(イソプロピルアルコール:トクヤマ(株)製、トクソーIPA)350mLを、30rpmで240分間混合し、混合物を得た。なお、酸化アルミニウムは、平均粒径(面方向長さ)5μm、平均厚さ(厚み方向長さ)0.07μm、アスペクト比71のものを用いた。得られた混合物からアルミナ玉石を除去し、その混合物をロータリーエバポレータを用いて乾燥させた。その後、残存した混合物を乳鉢で軽く解砕し(比較的弱い力で、凝集した粒子を分離させ)、カーボン製の坩堝に100g充填した。その後、混合物を充填した坩堝を加熱炉内に配置し、窒素ガス3L/min流通下で昇温速度150℃/hrで1600℃まで昇温し、1600℃で20時間保持した。加熱終了後、自然冷却し、坩堝から試料を取り出し、マッフル炉を用いて酸化雰囲気下で650℃で10hr熱処理(後熱処理)し、板状の窒化アルミニウム粒子を得た。なお、後熱処理は、試料中に残存している炭素を除去するために行った。
(窒化アルミニウム粒子の評価)
得られた窒化アルミニウム粒子について、粒子形状、比表面積、不純物濃度、結晶方位の評価を行った。評価結果を図5に示す。
得られた窒化アルミニウム粒子について、粒子形状、比表面積、不純物濃度、結晶方位の評価を行った。評価結果を図5に示す。
(粒子形状)
窒化アルミニウム粒子の形状は、得られた窒化アルミニウム粒子をSEM(日本電子(株)製,JSM-6390)を用いて1000~2000倍で撮影し、撮影した画像から無作為に30個の粒子を選択し、面方向長さ(粒径)及び厚み方向長さの測定を行った。また、面方向長さ、厚み方向長さより、アスペクト比を計算した。図5に示すように、得られた窒化アルミニウム粒子の形状は、原料(酸化アルミニウム)とほぼ同一であった。
窒化アルミニウム粒子の形状は、得られた窒化アルミニウム粒子をSEM(日本電子(株)製,JSM-6390)を用いて1000~2000倍で撮影し、撮影した画像から無作為に30個の粒子を選択し、面方向長さ(粒径)及び厚み方向長さの測定を行った。また、面方向長さ、厚み方向長さより、アスペクト比を計算した。図5に示すように、得られた窒化アルミニウム粒子の形状は、原料(酸化アルミニウム)とほぼ同一であった。
(比表面積)
窒化アルミニウム粒子の比表面積は、比表面積測定装置((株)島津製作所製,フローソーブ2300)を用いて、JIS(日本工業規格)R1626に記載のBET法で測定した。なお、吸着ガスとして、窒素を用いた。結果を図5に示す。比表面積は9.0m2/gであった。
窒化アルミニウム粒子の比表面積は、比表面積測定装置((株)島津製作所製,フローソーブ2300)を用いて、JIS(日本工業規格)R1626に記載のBET法で測定した。なお、吸着ガスとして、窒素を用いた。結果を図5に示す。比表面積は9.0m2/gであった。
(不純物濃度)
不純物金属濃度の測定は、ICP(誘導結合プラズマ)発光分析装置((株)日立ハイテクサイエンス製,PS3520UV-DD)を用いて、JIS R1649に記載の加圧硫酸分解法で測定した。なお、不純物金属として、Si,Fe,Ti,Ca,Mg,K,Na,P,Cr,Mn,Ni,Zn,Ga,Y,Zrについて測定した。また、酸素濃度の測定は、酸素分析装置((株)堀場製作所製,EMGA-6500)を用いて、JIS R1675に記載の不活性ガス融解-赤外線吸収法で測定した。図5に示すように、不純物金属濃度は0.043wt%であり、酸素濃度は0.85wt%であった。
不純物金属濃度の測定は、ICP(誘導結合プラズマ)発光分析装置((株)日立ハイテクサイエンス製,PS3520UV-DD)を用いて、JIS R1649に記載の加圧硫酸分解法で測定した。なお、不純物金属として、Si,Fe,Ti,Ca,Mg,K,Na,P,Cr,Mn,Ni,Zn,Ga,Y,Zrについて測定した。また、酸素濃度の測定は、酸素分析装置((株)堀場製作所製,EMGA-6500)を用いて、JIS R1675に記載の不活性ガス融解-赤外線吸収法で測定した。図5に示すように、不純物金属濃度は0.043wt%であり、酸素濃度は0.85wt%であった。
(結晶方位)
結晶方位の測定は、SEMに取り付けられたEBSD(オックスフォード・インストゥルメンツ(株)製 Aztec HKL)を用いて評価した。なお、結晶方位の評価は、窒化アルミニウム粒子の表面または裏面について行った。すなわち、窒化アルミニウム粒子の厚み方向に直交する面(表面または裏面)であり、窒化アルミニウム粒子を構成する面のうちの面積が最も大きい面について結晶形態の評価を行った。具体的には、窒化アルミニウム粒子の表面(または裏面)を結晶方位毎にマッピングし、全体に占める(001)面の割合(面積比)を算出し、結晶方位が揃っているか否かを判断した。面積比が80%以上の場合は結晶方位が揃っているとし、80%未満の場合は結晶方位が揃っていないと判断した。図5に、結晶方位が揃っている場合「○」、結晶方位が揃っていない場合「×」を付している。図5に示すように、得られた窒化アルミニウム粒子の結晶方位は揃っていた。なお、結晶方位を測定した後、上記SEMで窒化アルミニウム粒子の表面観察を行い、表面の凹凸状態によって単結晶(凹凸なし)か多結晶(凹凸あり)かの判断を行った。得られた窒化アルミニウム粒子は単結晶であった。
結晶方位の測定は、SEMに取り付けられたEBSD(オックスフォード・インストゥルメンツ(株)製 Aztec HKL)を用いて評価した。なお、結晶方位の評価は、窒化アルミニウム粒子の表面または裏面について行った。すなわち、窒化アルミニウム粒子の厚み方向に直交する面(表面または裏面)であり、窒化アルミニウム粒子を構成する面のうちの面積が最も大きい面について結晶形態の評価を行った。具体的には、窒化アルミニウム粒子の表面(または裏面)を結晶方位毎にマッピングし、全体に占める(001)面の割合(面積比)を算出し、結晶方位が揃っているか否かを判断した。面積比が80%以上の場合は結晶方位が揃っているとし、80%未満の場合は結晶方位が揃っていないと判断した。図5に、結晶方位が揃っている場合「○」、結晶方位が揃っていない場合「×」を付している。図5に示すように、得られた窒化アルミニウム粒子の結晶方位は揃っていた。なお、結晶方位を測定した後、上記SEMで窒化アルミニウム粒子の表面観察を行い、表面の凹凸状態によって単結晶(凹凸なし)か多結晶(凹凸あり)かの判断を行った。得られた窒化アルミニウム粒子は単結晶であった。
(窒化アルミニウム焼結体の製造)
得られた窒化アルミニウム粒子を用いて窒化アルミニウム焼結体を製造する方法について説明する。まず、窒化アルミニウム焼結体を焼結する際に用いる助剤(Ca-Al-O系の焼成助剤)の合成方法について説明する。助剤は、窒化アルミニウム粒子に混合し、窒化アルミニウム粒子と共に焼成される。
得られた窒化アルミニウム粒子を用いて窒化アルミニウム焼結体を製造する方法について説明する。まず、窒化アルミニウム焼結体を焼結する際に用いる助剤(Ca-Al-O系の焼成助剤)の合成方法について説明する。助剤は、窒化アルミニウム粒子に混合し、窒化アルミニウム粒子と共に焼成される。
(助剤の合成)
炭酸カルシウム(白石カルシウム(株)製、Shilver-W)47g,γ―アルミナ(大明化学工業(株)製、TM-300D)24g、アルミナ玉石(φ15mm)1000g,IPA(トクヤマ(株)製、トクソーIPA)125mLを、110rpmで120分間粉砕・混合し、混合物を得た。得られた混合物は、ロータリーエバポレータを用いて乾燥させた。その後、混合物からアルミナ玉石を除去し、混合物をアルミナ製の坩堝に70g充填した。その後、混合物を充填した坩堝を加熱炉内に配置し、大気中で昇温速度200℃/hrで1250℃ まで昇温し、1250℃で3時間保持した。加熱終了後、自然冷却し、坩堝から混合物(助剤)を取り出した。
炭酸カルシウム(白石カルシウム(株)製、Shilver-W)47g,γ―アルミナ(大明化学工業(株)製、TM-300D)24g、アルミナ玉石(φ15mm)1000g,IPA(トクヤマ(株)製、トクソーIPA)125mLを、110rpmで120分間粉砕・混合し、混合物を得た。得られた混合物は、ロータリーエバポレータを用いて乾燥させた。その後、混合物からアルミナ玉石を除去し、混合物をアルミナ製の坩堝に70g充填した。その後、混合物を充填した坩堝を加熱炉内に配置し、大気中で昇温速度200℃/hrで1250℃ まで昇温し、1250℃で3時間保持した。加熱終了後、自然冷却し、坩堝から混合物(助剤)を取り出した。
(合成用原料の調整)
次に、上記した助剤を用いて原料を調整する工程について説明する。上記した窒化アルミニウム粒子に対して、助剤(Ca-Al-O系助剤)を4.8質量部添加し、合計20gとなるように秤量した。この混合物とアルミナ玉石(φ15mm)300g,IPA(トクヤマ(株)製、トクソーIPA)60mLを、30rpmで240分間混合した。得られた混合物からアルミナ玉石を除去し、その混合物をロータリーエバポレータを用いて乾燥させ、合成用原料を得た。
次に、上記した助剤を用いて原料を調整する工程について説明する。上記した窒化アルミニウム粒子に対して、助剤(Ca-Al-O系助剤)を4.8質量部添加し、合計20gとなるように秤量した。この混合物とアルミナ玉石(φ15mm)300g,IPA(トクヤマ(株)製、トクソーIPA)60mLを、30rpmで240分間混合した。得られた混合物からアルミナ玉石を除去し、その混合物をロータリーエバポレータを用いて乾燥させ、合成用原料を得た。
(焼成前成形体の作成)
上記合成用原料100質量部に対し、バインダとしてポリビニルブチラール(積水化学工業製、品番BM-2)7.8質量部と、可塑剤としてジ(2-エチルヘキシル)フタレート(黒金化成製)3.9質量部と、分散剤としてトリオレイン酸ソルビタン(花王製、レオドールSP-O30)2質量部と、分散媒として2-エチルヘキサノールを加えて混合し、原料スラリーを調整した。なお、分散媒の添加量は、スラリー粘度が20000cPとなるように調整した。得られた原料スラリーを、ドクターブレード法によってPETフィルム上に成形した。ドクターブレード法を用いることにより、窒化アルミニウム粒子の板面(c面)がPETフィルムの表面に並ぶように、PETフィルム上に原料スラリーが形成される。なお、スラリー厚みは、乾燥後の厚さが30μmとなるように調整した。以上の工程により、シート状のテープ成形体を得た。得られたテープ成形体を直径20mmの円形に切断した後、円形のテープ成形体を120枚積層し、焼成前成形体を得た。得られた焼成前成形体を、厚さ10mmのアルミニウム板上に載置した後、真空パッケージに入れて内部を真空にした。その後、真空パッケージを85℃の温水中で100kgf/cm2で静水圧プレスし、円板状の焼成前成形体(焼成用積層体)を得た。
上記合成用原料100質量部に対し、バインダとしてポリビニルブチラール(積水化学工業製、品番BM-2)7.8質量部と、可塑剤としてジ(2-エチルヘキシル)フタレート(黒金化成製)3.9質量部と、分散剤としてトリオレイン酸ソルビタン(花王製、レオドールSP-O30)2質量部と、分散媒として2-エチルヘキサノールを加えて混合し、原料スラリーを調整した。なお、分散媒の添加量は、スラリー粘度が20000cPとなるように調整した。得られた原料スラリーを、ドクターブレード法によってPETフィルム上に成形した。ドクターブレード法を用いることにより、窒化アルミニウム粒子の板面(c面)がPETフィルムの表面に並ぶように、PETフィルム上に原料スラリーが形成される。なお、スラリー厚みは、乾燥後の厚さが30μmとなるように調整した。以上の工程により、シート状のテープ成形体を得た。得られたテープ成形体を直径20mmの円形に切断した後、円形のテープ成形体を120枚積層し、焼成前成形体を得た。得られた焼成前成形体を、厚さ10mmのアルミニウム板上に載置した後、真空パッケージに入れて内部を真空にした。その後、真空パッケージを85℃の温水中で100kgf/cm2で静水圧プレスし、円板状の焼成前成形体(焼成用積層体)を得た。
(1次焼成)
次に、焼成前成形体を脱脂炉中に配置し、600℃で10時間脱脂を行った。その後、1900℃で10時間、面圧200kgf/cm2の条件下で焼成し、その後室温まで降温させ、窒化アルミニウム1次焼結体を得た。なお、ホットプレスの際の加圧方向は、焼成前成形体の積層方向(テープ成形体の表面に略直交する方向)とした。また、加圧は、室温に降温するまで維持した。1次焼成により焼成前成形体を構成していた窒化アルミニウム粒子が粒成長し、成形体内の気孔がなくなることにより、密度(相対密度)の高い窒化アルミニウム1次焼結体が得られる。
次に、焼成前成形体を脱脂炉中に配置し、600℃で10時間脱脂を行った。その後、1900℃で10時間、面圧200kgf/cm2の条件下で焼成し、その後室温まで降温させ、窒化アルミニウム1次焼結体を得た。なお、ホットプレスの際の加圧方向は、焼成前成形体の積層方向(テープ成形体の表面に略直交する方向)とした。また、加圧は、室温に降温するまで維持した。1次焼成により焼成前成形体を構成していた窒化アルミニウム粒子が粒成長し、成形体内の気孔がなくなることにより、密度(相対密度)の高い窒化アルミニウム1次焼結体が得られる。
(2次焼成)
窒化アルミニウム1次焼結体の表面を研削し、φ20mm、厚さ1.5mmの試料を作製した。この試料を窒化アルミニウム製の板上に配置し、加熱炉内を窒素雰囲気とし、焼成温度1900℃で75時間焼成し、窒化アルミニウム焼結体を得た。2次焼成により、窒化アルミニウム1次焼結体内に残存していた助剤(焼結の際に用いた助剤)が除去され、透明な窒化アルミニウム焼結体が得られる。
窒化アルミニウム1次焼結体の表面を研削し、φ20mm、厚さ1.5mmの試料を作製した。この試料を窒化アルミニウム製の板上に配置し、加熱炉内を窒素雰囲気とし、焼成温度1900℃で75時間焼成し、窒化アルミニウム焼結体を得た。2次焼成により、窒化アルミニウム1次焼結体内に残存していた助剤(焼結の際に用いた助剤)が除去され、透明な窒化アルミニウム焼結体が得られる。
(窒化アルミニウム焼結体の評価)
得られた窒化アルミニウム焼結体について、c面配向度(c軸の配向度)、相対密度、不純物濃度、直線透過率の評価を行った。評価結果を図5に示す。
得られた窒化アルミニウム焼結体について、c面配向度(c軸の配向度)、相対密度、不純物濃度、直線透過率の評価を行った。評価結果を図5に示す。
(c面配向度)
窒化アルミニウム焼結体の表面を研磨した後、研磨面に対してX線を照射し、c面配向度を測定した。具体的には、XRD装置(リガク(株)製、RINT-TTR III)を用い、CuKα線を用いて電圧50kV,電流300mAの条件下、2θ=20~70°の範囲でXRDプロファイルを測定した。なお、c面配向度(f)は、ロットゲーリング法によって算出した。具体的には、以下の式(3),(4)で得られた結果P,P0を、式(2)に代入することにより算出した。なお、式中、Pは得られた窒化アルミニウム焼結体のXRD測定から得られた値であり、P0は標準窒化アルミニウム(JCPDSカードNo.076-0566)から算出した値である。なお、(hkl)として、(100),(002),(101),(102),(110),(103)を使用した。
f={(P-P0)/(1-P0)}×100・・・(2)
P0=ΣI0(002)/ΣI0(hkl)・・・(3)
P=ΣI(002)/ΣI(hkl)・・・(4)
窒化アルミニウム焼結体の表面を研磨した後、研磨面に対してX線を照射し、c面配向度を測定した。具体的には、XRD装置(リガク(株)製、RINT-TTR III)を用い、CuKα線を用いて電圧50kV,電流300mAの条件下、2θ=20~70°の範囲でXRDプロファイルを測定した。なお、c面配向度(f)は、ロットゲーリング法によって算出した。具体的には、以下の式(3),(4)で得られた結果P,P0を、式(2)に代入することにより算出した。なお、式中、Pは得られた窒化アルミニウム焼結体のXRD測定から得られた値であり、P0は標準窒化アルミニウム(JCPDSカードNo.076-0566)から算出した値である。なお、(hkl)として、(100),(002),(101),(102),(110),(103)を使用した。
f={(P-P0)/(1-P0)}×100・・・(2)
P0=ΣI0(002)/ΣI0(hkl)・・・(3)
P=ΣI(002)/ΣI(hkl)・・・(4)
(相対密度、不純物濃度)
相対密度は、JIS R1634に記載の方法でかさ密度を測定し、理論密度(3.260)に対する値を算出した。また不純物濃度は、窒化アルミニウム粒子の不純物濃度の評価と同様の方法で測定した。
相対密度は、JIS R1634に記載の方法でかさ密度を測定し、理論密度(3.260)に対する値を算出した。また不純物濃度は、窒化アルミニウム粒子の不純物濃度の評価と同様の方法で測定した。
(直線透過率)
焼結後の窒化アルミニウム焼結体を10mm×10mmサイズに切断し、4個の窒化アルミニウム焼結体をアルミナ製の定盤(φ68mm)の外周部分に等間隔に(定盤の中心と隣り合う窒化アルミニウム焼結体が成す角度が90°になるように)固定し、粒径が9μm及び3μmのダイヤモンド砥粒を含むスラリーを滴下した銅製ラッピング盤によって研磨し、さらに、コロイダルシリカを含むスラリーを滴下したバフ盤で300分間研磨した。その後、研磨後の10mm×10mm×0.4mm厚の試料をアセトン、エタノール、イオン交換水の順でそれぞれ3分間洗浄した後、分光光度計(Perkin Elmer製、Lambda900)を用いて波長450nmにおける直線透過率を測定した。
焼結後の窒化アルミニウム焼結体を10mm×10mmサイズに切断し、4個の窒化アルミニウム焼結体をアルミナ製の定盤(φ68mm)の外周部分に等間隔に(定盤の中心と隣り合う窒化アルミニウム焼結体が成す角度が90°になるように)固定し、粒径が9μm及び3μmのダイヤモンド砥粒を含むスラリーを滴下した銅製ラッピング盤によって研磨し、さらに、コロイダルシリカを含むスラリーを滴下したバフ盤で300分間研磨した。その後、研磨後の10mm×10mm×0.4mm厚の試料をアセトン、エタノール、イオン交換水の順でそれぞれ3分間洗浄した後、分光光度計(Perkin Elmer製、Lambda900)を用いて波長450nmにおける直線透過率を測定した。
図5に示すように、本実施例で得られた窒化アルミニウム粒子を用いて窒化アルミニウム焼結体を製造した結果、c面配向度100%、相対密度100%、不純物金属0.01wt%、酸素含有量0.04%、直線透過率は67%の窒化アルミニウム焼結体が得られた。
(実施例2~5)
サイズの異なる酸化アルミニウム(キンセイマテック(株))を用いて、実施例1と同様の方法で窒化アルミニウム粒子を製造し、得られた窒化アルミニウム粒子を用いて窒化アルミニウム焼結体を製造した。また、得られた試料の全てについて、c面配向度(、相対密度、不純物濃度の測定を行った。さらに、直線透過率の測定を行った。なお、実施例2~5においても、得られた窒化アルミニウム粒子の形状は、原料(酸化アルミニウム)とほぼ同一であった。そのため、図5に示す窒化アルミニウム粒子の形状は、原料の酸化アルミニウムのサイズとほぼ同一である。
サイズの異なる酸化アルミニウム(キンセイマテック(株))を用いて、実施例1と同様の方法で窒化アルミニウム粒子を製造し、得られた窒化アルミニウム粒子を用いて窒化アルミニウム焼結体を製造した。また、得られた試料の全てについて、c面配向度(、相対密度、不純物濃度の測定を行った。さらに、直線透過率の測定を行った。なお、実施例2~5においても、得られた窒化アルミニウム粒子の形状は、原料(酸化アルミニウム)とほぼ同一であった。そのため、図5に示す窒化アルミニウム粒子の形状は、原料の酸化アルミニウムのサイズとほぼ同一である。
なお、実施例5は、窒化アルミニウム焼結体の合成用原料を調整する際、窒化アルミニウム粒子47.6wt%に、市販の球状窒化アルミニウム粉末(トクヤマ(株)製、Fグレード、平均粒径1.2μm)47.6wt%、助剤4.8wt%を混合し、その混合物とアルミナ玉石(φ15mm)300g,IPA(トクヤマ(株)製、トクソーIPA)60mLを、30rpmで240分間混合した後、アルミナ玉石を除去し、ロータリーエバポレータを用いて乾燥させ、合成用原料を得た。図5に示すように実施例5の窒化アルミニウム粒子は粒径が比較的大きいため、そのまま窒化アルミニウム焼結体を製造すると、相対密度が高くなりにくい。実施例5は、窒化アルミニウム焼結体の相対密度を高くするため、合成用原料に粒径の小さな窒化アルミニウム粉体を添加した。なお、粒径の小さな窒化アルミニウム粉体は、窒化アルミニウム粒子が粒成長する際に、窒化アルミニウム粒子に取り込まれる。そのため、合成用原料に粒径の小さな窒化アルミニウム粉体を添加しても、窒化アルミニウム焼結体の結晶方位に影響を与えることはない。このことは、TGG(Templated grain growth)法として知られている。
(実施例6~16)
様々なサイズの窒化アルミニウム粒子について評価を行うため、窒化アルミニウム粒子の原料である酸化アルミニウム粒子について、市販されていないサイズのものについては、酸化アルミニウム粒子自体を合成し、合成した酸化アルミニウム粒子を用いて窒化アルミニウム粒子を製造し、その窒化アルミニウム粒子を用いて窒化アルミニウム焼結体の製造を行った。
様々なサイズの窒化アルミニウム粒子について評価を行うため、窒化アルミニウム粒子の原料である酸化アルミニウム粒子について、市販されていないサイズのものについては、酸化アルミニウム粒子自体を合成し、合成した酸化アルミニウム粒子を用いて窒化アルミニウム粒子を製造し、その窒化アルミニウム粒子を用いて窒化アルミニウム焼結体の製造を行った。
(酸化アルミニウム粒子の合成)
ギブサイト型の水酸化アルミニウムを湿式粉砕して平均粒径0.4~3μmに調整し、水酸化アルミニウム1モルに対してオルトリン酸を1.0×10-5~1.0×10-2モル添加し、スラリーを形成した。なお、水酸化アルミニウムの平均粒径を大きくすると酸化アルミニウム粒子の平均粒径が大きくなり、オルトリン酸の添加量を増加するとアスペクト比が高くなる。
ギブサイト型の水酸化アルミニウムを湿式粉砕して平均粒径0.4~3μmに調整し、水酸化アルミニウム1モルに対してオルトリン酸を1.0×10-5~1.0×10-2モル添加し、スラリーを形成した。なお、水酸化アルミニウムの平均粒径を大きくすると酸化アルミニウム粒子の平均粒径が大きくなり、オルトリン酸の添加量を増加するとアスペクト比が高くなる。
得られたスラリーを、スプレードライ(大川原化工機(株)、FL-12型)を用いて乾燥温度140℃で造粒乾燥し、原料中の水分を1wt%未満にした。得られた粉末を50wt%の水系スラリーにした後、合成温度600℃,圧力15MPaで水熱合成を行った。水熱合成後、水洗、乾燥することにより、白色の酸化アルミニウム粒子を得た。なお、オルトリン酸の一部をスラリーを形成する際に添加せず、水熱合成を行う際の水に添加することにより、アスペクト比を変えることなく、酸化アルミニウム粒子の粒径を小さくすることができる。得られた酸化アルミニウムを用いて、実施例1と同様の方法で窒化アルミニウム粒子の製造、窒化アルミニウム焼結体の製造を行い、物性評価を行った。
なお、実施例6~16においても、得られた窒化アルミニウム粒子の形状は、原料(酸化アルミニウム)とほぼ同一であった。図5に示す窒化アルミニウム粒子の形状は、原料の酸化アルミニウムのサイズとほぼ同一である。また、実施例11,13及び14については、実施例5と同様、窒化アルミニウム焼結体の合成用原料を調整する際、窒化アルミニウム粒子に市販の球状窒化アルミニウム粉末を加えた。実施例1~11,13~16の窒化アルミニウム粒子は、表面が略六角形であった。すなわち、実施例1~11,13~16の窒化アルミニウム粒子は、略六角柱形状であった。実施例12の窒化アルミニウム粒子は、表面が円形であり、円柱状であった。
実施例2~16で得られた窒化アルミニウム粒子を用いた窒化アルミニウム焼結体は、c面配向度が97%以上であり、相対密度が98.8%以上であり、不純物金属0.04wt%以下、酸素含有量0.30%以下であり、直線透過率30%以上であった。実施例2,6は、他の試料と比較して、窒化アルミニウム粒子のサイズが比較的小さい。一方、実施例11,12,15,16は、他の試料と比較して、窒化アルミニウム粒子のサイズが比較的大きい。いずれの試料も、c面配向率,直線透過率は良好であった。実施例6~8は、他の試料と比較して、アスペクト比が比較的小さい。アスペクト比3~5の試料についても、良好なc面配向率,直線透過率を示すことが確認された。
(比較例1)
平均粒径10μm、平均厚さ0.3μm、アスペクト比33の市販の酸化アルミニウムを、アルミナ製の坩堝に充填し、窒素ガス0.5L/min流通下で昇温速度200℃/hrで1600℃まで昇温し、1600℃で35時間保持して板状の窒化アルミニウム粒子を得た。なお、窒化アルミニウム粒子を製造する際、他の条件は実施例1と同一とした。得られた窒化アルミニウム粒子を用いて、実施例1と同様の方法で窒化アルミニウム焼結体を製造した。結果を図5に示す。図5に示すように、比較例1の窒化アルミニウム粒子は、結晶方位が揃っておらず、多結晶であった。比較例1の窒化アルミニウム粒子は、粒子形状、比表面積、不純物濃度は実施例5とほぼ同様であったが、窒化アルミニウム焼結体はc面配向度が7%と極めて低い値を示し、直線透過率は2%であった。
平均粒径10μm、平均厚さ0.3μm、アスペクト比33の市販の酸化アルミニウムを、アルミナ製の坩堝に充填し、窒素ガス0.5L/min流通下で昇温速度200℃/hrで1600℃まで昇温し、1600℃で35時間保持して板状の窒化アルミニウム粒子を得た。なお、窒化アルミニウム粒子を製造する際、他の条件は実施例1と同一とした。得られた窒化アルミニウム粒子を用いて、実施例1と同様の方法で窒化アルミニウム焼結体を製造した。結果を図5に示す。図5に示すように、比較例1の窒化アルミニウム粒子は、結晶方位が揃っておらず、多結晶であった。比較例1の窒化アルミニウム粒子は、粒子形状、比表面積、不純物濃度は実施例5とほぼ同様であったが、窒化アルミニウム焼結体はc面配向度が7%と極めて低い値を示し、直線透過率は2%であった。
(比較例2~4)
実施例6~16と同様の方法で酸化アルミニウム粒子を合成し、合成した酸化アルミニウム用いて窒化アルミニウム粒子の製造、窒化アルミニウム焼結体の製造を行った。比較例2~4では、水酸化アルミニウムの平均粒径、オルトリン酸の添加量,添加タイミングを調整し、図5に示す粒子形状の酸化アルミニウム粒子を得た。なお、図5に示す窒化アルミニウム粒子の形状は、原料の酸化アルミニウムのサイズとほぼ同一である。比較例2及び3は、窒化アルミニウム粒子の結晶方位は揃っているが、窒化アルミニウム焼結体のc面配向度は低かった。また、相対密度が他の試料と比較して低かった。比較例4は、窒化アルミニウム粒子の結晶方位が揃っており、窒化アルミニウム焼結体のc面配向度が比較例2,3より良好であり、相対密度は実施例1~16と同レベルであった。しかしながら、比較例2~4は、いずれも、直線透過率が7%以下と低かった。
実施例6~16と同様の方法で酸化アルミニウム粒子を合成し、合成した酸化アルミニウム用いて窒化アルミニウム粒子の製造、窒化アルミニウム焼結体の製造を行った。比較例2~4では、水酸化アルミニウムの平均粒径、オルトリン酸の添加量,添加タイミングを調整し、図5に示す粒子形状の酸化アルミニウム粒子を得た。なお、図5に示す窒化アルミニウム粒子の形状は、原料の酸化アルミニウムのサイズとほぼ同一である。比較例2及び3は、窒化アルミニウム粒子の結晶方位は揃っているが、窒化アルミニウム焼結体のc面配向度は低かった。また、相対密度が他の試料と比較して低かった。比較例4は、窒化アルミニウム粒子の結晶方位が揃っており、窒化アルミニウム焼結体のc面配向度が比較例2,3より良好であり、相対密度は実施例1~16と同レベルであった。しかしながら、比較例2~4は、いずれも、直線透過率が7%以下と低かった。
上記実施例の結果をまとめる。実施例1~16の試料を用いて作成した窒化アルミニウム焼結体は、全て、c面配向度が97%以上と高い結果が得られた。また、相対密度も全て98.8%以上と高い結果が得られた。実施例1~16の中で最もc面配向度が低く、最も相対密度が低い実施例12であっても、直線透過率は30%と良好な結果を示した。特に、c面配向度100%,相対密度100%の実施例1,3,7の窒化アルミニウム焼結体は、直線透過率が65%以上であり、極めて良好な結果を示した。
窒化アルミニウム粒子の結晶方位が揃っていない場合、窒化アルミニウム焼結体のc面配向度が著しく低下した(比較例1)。その結果、直線透過率の高い窒化アルミニウム焼結体が得られなかった。
窒化アルミニウム粒子のアスペクト比が小さい(3未満)の場合、窒化アルミニウム焼結体のc面配向度が低下した(比較例2)。また、相対密度は、実施例1~16と比較すると低下した。その結果、直線透過率の高い窒化アルミニウム焼結体が得られなかった。
窒化アルミニウム粒子のサイズ(厚み方向長さD)が大きすぎる場合、窒化アルミニウム焼結体のc面配向度が低下し、相対密度は実施例1~16と比較すると低下した(比較例3)。その結果、直線透過率の高い窒化アルミニウム焼結体が得られなかった。
窒化アルミニウム粒子のサイズ(厚み方向長さD)が小さすぎる場合、窒化アルミニウム焼結体のc面配向度が低下し、直線透過率の高い窒化アルミニウム焼結体が得られなかった(比較例4)。
以上、本発明の実施形態について詳細に説明したが、これらは例示に過ぎず、特許請求の範囲を限定するものではない。特許請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。また、本明細書または図面に説明した技術要素は、単独であるいは各種の組合せによって技術的有用性を発揮するものであり、出願時請求項記載の組合せに限定されるものではない。また、本明細書または図面に例示した技術は複数目的を同時に達成するものであり、そのうちの一つの目的を達成すること自体で技術的有用性を持つものである。
Claims (4)
- 窒化アルミニウム焼結体の原料として利用される窒化アルミニウム粒子であって、
粒子内の結晶方位が揃っており、
アスペクト比が3以上であり、
板状であり、
面方向長さが0.6μm以上20μm以下であるとともに、厚み方向長さが0.05μm以上2μm以下である、窒化アルミニウム粒子。 - 表面積が0.4m2/g以上16m2/g以下である請求項1に記載の窒化アルミニウム粒子。
- 粒子内に含まれる不純物金属濃度が、0.2質量%以下である請求項1又は2に記載の窒化アルミニウム粒子。
- 粒子内に含まれる酸素濃度が、2質量%以下である請求項1から3のいずれか一項に記載の窒化アルミニウム粒子。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018504300A JP6346718B1 (ja) | 2017-03-22 | 2017-03-22 | 窒化アルミニウム粒子 |
PCT/JP2017/011537 WO2018173170A1 (ja) | 2017-03-22 | 2017-03-22 | 窒化アルミニウム粒子 |
EP17901815.5A EP3604214B1 (en) | 2017-03-22 | 2017-03-22 | Aluminum nitride particles |
CN201780086883.4A CN110402234B (zh) | 2017-03-22 | 2017-03-22 | 氮化铝粒子 |
US16/575,768 US11136271B2 (en) | 2017-03-22 | 2019-09-19 | Aluminum nitride particles |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2017/011537 WO2018173170A1 (ja) | 2017-03-22 | 2017-03-22 | 窒化アルミニウム粒子 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/575,768 Continuation US11136271B2 (en) | 2017-03-22 | 2019-09-19 | Aluminum nitride particles |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018173170A1 true WO2018173170A1 (ja) | 2018-09-27 |
Family
ID=62635821
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/011537 WO2018173170A1 (ja) | 2017-03-22 | 2017-03-22 | 窒化アルミニウム粒子 |
Country Status (5)
Country | Link |
---|---|
US (1) | US11136271B2 (ja) |
EP (1) | EP3604214B1 (ja) |
JP (1) | JP6346718B1 (ja) |
CN (1) | CN110402234B (ja) |
WO (1) | WO2018173170A1 (ja) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7027338B2 (ja) * | 2016-12-21 | 2022-03-01 | 日本碍子株式会社 | 透明AlN焼結体及びその製法 |
WO2018117161A1 (ja) * | 2016-12-21 | 2018-06-28 | 日本碍子株式会社 | 配向AlN焼結体及びその製法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02503790A (ja) * | 1987-10-22 | 1990-11-08 | アルフレッド・ユニヴァーシティ・ニューヨーク・ステート・カレッジ・オブ・セラミックス | 焼結可能な窒化物 |
JPH05139709A (ja) * | 1991-11-20 | 1993-06-08 | Tokuyama Soda Co Ltd | 窒化アルミニウム粉末 |
JPH08508460A (ja) * | 1993-04-02 | 1996-09-10 | ザ・ダウ・ケミカル・カンパニー | 燃焼合成で調製した窒化アルミニウム、窒化アルミニウム含有固溶体および窒化アルミニウム複合体 |
JP2010138056A (ja) * | 2008-12-15 | 2010-06-24 | Mitsubishi Chemicals Corp | 高アスペクト比を有する窒化アルミニウム、その製造方法、それを用いた樹脂組成物 |
JP2012041254A (ja) * | 2010-08-23 | 2012-03-01 | Tohoku Univ | 窒化アルミニウムワイヤー、窒化アルミニウムワイヤーの製造方法、及び窒化アルミニウムワイヤーの製造装置 |
WO2014123247A1 (ja) | 2013-02-08 | 2014-08-14 | 株式会社トクヤマ | 窒化アルミニウム粉末 |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60171270A (ja) | 1984-02-13 | 1985-09-04 | 株式会社トクヤマ | 透光性を有する窒化アルミニウム焼結体製造用原料組成物 |
JPH06321511A (ja) * | 1993-03-16 | 1994-11-22 | Takeshi Masumoto | 窒化アルミニウム超微粒子及びその製造方法と超微粒子焼結体 |
FR2715169B1 (fr) * | 1994-01-14 | 1996-04-05 | Atochem Elf Sa | Macrocristaux renfermant du nitrure d'aluminium sous forme de plaquettes, leur procédé de préparation et leurs utilisations. |
US5710382A (en) | 1995-09-26 | 1998-01-20 | The Dow Chemical Company | Aluminum nitride, aluminum nitride containing solid solutions and aluminum nitride composites prepared by combustion synthesis and sintered bodies prepared therefrom |
CN1296932A (zh) * | 2000-12-08 | 2001-05-30 | 黑龙江省锐克复合材料有限公司 | 低含量氮化铝陶瓷粉末制备方法 |
FR2852974A1 (fr) * | 2003-03-31 | 2004-10-01 | Soitec Silicon On Insulator | Procede de fabrication de cristaux monocristallins |
JP4441415B2 (ja) | 2005-02-07 | 2010-03-31 | 国立大学法人東京工業大学 | 窒化アルミニウム単結晶積層基板 |
JP4877712B2 (ja) | 2005-08-04 | 2012-02-15 | 国立大学法人東北大学 | 窒化アルミニウム単結晶積層基板および窒化アルミニウム単結晶膜の製造方法 |
JP6737819B2 (ja) * | 2016-01-29 | 2020-08-12 | 株式会社トクヤマ | 窒化アルミニウム粒子 |
WO2018117161A1 (ja) * | 2016-12-21 | 2018-06-28 | 日本碍子株式会社 | 配向AlN焼結体及びその製法 |
JP7027338B2 (ja) * | 2016-12-21 | 2022-03-01 | 日本碍子株式会社 | 透明AlN焼結体及びその製法 |
JP7033191B2 (ja) * | 2018-03-23 | 2022-03-09 | 日本碍子株式会社 | 窒化アルミニウム粒子 |
WO2019189378A1 (ja) * | 2018-03-27 | 2019-10-03 | 日本碍子株式会社 | 窒化アルミニウム板 |
-
2017
- 2017-03-22 CN CN201780086883.4A patent/CN110402234B/zh active Active
- 2017-03-22 EP EP17901815.5A patent/EP3604214B1/en active Active
- 2017-03-22 WO PCT/JP2017/011537 patent/WO2018173170A1/ja unknown
- 2017-03-22 JP JP2018504300A patent/JP6346718B1/ja active Active
-
2019
- 2019-09-19 US US16/575,768 patent/US11136271B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02503790A (ja) * | 1987-10-22 | 1990-11-08 | アルフレッド・ユニヴァーシティ・ニューヨーク・ステート・カレッジ・オブ・セラミックス | 焼結可能な窒化物 |
JPH05139709A (ja) * | 1991-11-20 | 1993-06-08 | Tokuyama Soda Co Ltd | 窒化アルミニウム粉末 |
JPH08508460A (ja) * | 1993-04-02 | 1996-09-10 | ザ・ダウ・ケミカル・カンパニー | 燃焼合成で調製した窒化アルミニウム、窒化アルミニウム含有固溶体および窒化アルミニウム複合体 |
JP2010138056A (ja) * | 2008-12-15 | 2010-06-24 | Mitsubishi Chemicals Corp | 高アスペクト比を有する窒化アルミニウム、その製造方法、それを用いた樹脂組成物 |
JP2012041254A (ja) * | 2010-08-23 | 2012-03-01 | Tohoku Univ | 窒化アルミニウムワイヤー、窒化アルミニウムワイヤーの製造方法、及び窒化アルミニウムワイヤーの製造装置 |
WO2014123247A1 (ja) | 2013-02-08 | 2014-08-14 | 株式会社トクヤマ | 窒化アルミニウム粉末 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3604214A4 |
Also Published As
Publication number | Publication date |
---|---|
CN110402234B (zh) | 2022-10-14 |
JPWO2018173170A1 (ja) | 2019-03-28 |
EP3604214B1 (en) | 2022-11-16 |
EP3604214A4 (en) | 2020-11-11 |
EP3604214A1 (en) | 2020-02-05 |
US11136271B2 (en) | 2021-10-05 |
US20200010374A1 (en) | 2020-01-09 |
JP6346718B1 (ja) | 2018-06-20 |
CN110402234A (zh) | 2019-11-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6872075B2 (ja) | 窒化アルミニウム板 | |
US20090098365A1 (en) | Nanocrystalline sintered bodies made from alpha aluminum oxide method for production and use thereof | |
JP4122746B2 (ja) | 微粒αアルミナ粉末の製造方法 | |
Suchanek et al. | Hydrothermal synthesis of novel alpha alumina nano-materials with controlled morphologies and high thermal stabilities | |
US11136271B2 (en) | Aluminum nitride particles | |
TWI746750B (zh) | 配向AlN燒結體及其製法 | |
KR20100075742A (ko) | 알루미나의 제조방법 | |
US11014855B2 (en) | Transparent AlN sintered body and method for producing the same | |
JPH1192229A (ja) | 高熱伝導性窒化アルミニウム焼結体の製造方法 | |
WO2019180937A1 (ja) | 窒化アルミニウム粒子 | |
JP2856734B2 (ja) | 高熱伝導性窒化アルミニウム焼結体 | |
JP2018158885A (ja) | 窒化アルミニウム粒子 | |
JP2829247B2 (ja) | 高熱伝導性窒化アルミニウム焼結体の製造方法 | |
KR102510280B1 (ko) | 고순도 및 고밀도 이트륨 알루미늄 가넷 소결체 및 이의 제조방법 | |
WO2021131407A1 (ja) | 窒化アルミニウム粒子 | |
JPH11322434A (ja) | 結晶性乱層構造窒化硼素含有複合セラミックス焼結体 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2018504300 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17901815 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2017901815 Country of ref document: EP Effective date: 20191022 |