WO2018170787A1 - 一种形状记忆合金海波管以及其在血管光纤导丝中的应用 - Google Patents

一种形状记忆合金海波管以及其在血管光纤导丝中的应用 Download PDF

Info

Publication number
WO2018170787A1
WO2018170787A1 PCT/CN2017/077676 CN2017077676W WO2018170787A1 WO 2018170787 A1 WO2018170787 A1 WO 2018170787A1 CN 2017077676 W CN2017077676 W CN 2017077676W WO 2018170787 A1 WO2018170787 A1 WO 2018170787A1
Authority
WO
WIPO (PCT)
Prior art keywords
hypotube
shape memory
memory alloy
temperature
optical fiber
Prior art date
Application number
PCT/CN2017/077676
Other languages
English (en)
French (fr)
Inventor
尚华
Original Assignee
尚华
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 尚华 filed Critical 尚华
Priority to KR1020197028699A priority Critical patent/KR102372611B1/ko
Priority to PCT/CN2017/077676 priority patent/WO2018170787A1/zh
Priority to JP2020500939A priority patent/JP6880523B2/ja
Priority to EP17902179.5A priority patent/EP3610896B1/en
Priority to US15/605,546 priority patent/US9925389B1/en
Publication of WO2018170787A1 publication Critical patent/WO2018170787A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N5/0613Apparatus adapted for a specific treatment
    • A61N5/062Photodynamic therapy, i.e. excitation of an agent
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L29/00Materials for catheters, medical tubing, cannulae, or endoscopes or for coating catheters
    • A61L29/02Inorganic materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • A61M25/09Guide wires
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N5/0601Apparatus for use inside the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/20Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
    • A61B18/22Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser the beam being directed along or through a flexible conduit, e.g. an optical fibre; Couplings or hand-pieces therefor
    • A61B2018/2244Features of optical fibre cables, e.g. claddings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • A61M25/09Guide wires
    • A61M2025/09108Methods for making a guide wire
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N5/0601Apparatus for use inside the body
    • A61N2005/0602Apparatus for use inside the body for treatment of blood vessels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N5/0601Apparatus for use inside the body
    • A61N2005/0612Apparatus for use inside the body using probes penetrating tissue; interstitial probes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N2005/063Radiation therapy using light comprising light transmitting means, e.g. optical fibres
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N2005/0632Constructional aspects of the apparatus
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4401Optical cables
    • G02B6/4415Cables for special applications
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4401Optical cables
    • G02B6/4429Means specially adapted for strengthening or protecting the cables
    • G02B6/443Protective covering

Definitions

  • the present invention relates to the field of interventional radiology, and in particular to a shape memory alloy hypotube and its use in a vascular fiber guidewire.
  • Interventional radiology also known as interventional therapy
  • interventional therapy is an emerging discipline that has been rapidly developed in recent years, combining imaging diagnosis and clinical treatment. It is guided and monitored by digital subtraction angiography, CT, ultrasound and magnetic resonance imaging equipment, using puncture needles, catheters and other interventional devices to introduce specific instruments into human lesions through natural human orifices or tiny wounds.
  • the common catheter is a plastic tube having a length at one end, the front end is tapered to facilitate insertion into the blood vessel; the tail is the same as the end of the injection needle to facilitate connection with the syringe.
  • the front end of the common catheter has various shapes, such as single arc, reverse arc, double arc, enhanced double arc, positive view of liver arc, side view of liver arc, three arcs, etc., to facilitate insertion of blood vessels in different parts.
  • the specification of the catheter is usually expressed by the F number (French No), such as 6F or 7F, etc., and the F number is equal to the number of millimeters of the outer circumference of the catheter.
  • the shape and configuration of the special catheter is relatively complicated, and the medical functions performed are various, for example, a double-cavity single balloon catheter, a balloon catheter for coronary angioplasty, and the like.
  • guiding catheters coaxial catheters, micro catheters, controlled directional catheters, atrial septal incision catheters, clot capture catheters, atherectomy catheters ( Rotablator), plaque catheter, mapping catheter, radiofrequency ablation catheter (also known as large catheter), pacing lead, etc.
  • coronary artery angioplasty (PTCA) catheters are an important class of catheters, including PTCA guiding catheters, PTCA dilatation catheters, and guide wires.
  • the wall of the guiding catheter is divided into three layers: the outer layer is polyurethane or polyethylene, the middle layer is epoxy-fiber mesh or metal mesh, and the inner layer is smooth Teflon.
  • the metal mesh or spiral structure of the middle layer of the catheter is usually called a hypotube, which is to ensure that the catheter has a An important component of constant strength and flexibility, produced by laser precision cutting process.
  • the guidewire has the function of transcutaneously introducing a catheter into a blood vessel or other lumen, and is an important tool to assist in the selective entry of a catheter into a small vessel branch or other diseased cavity, as well as to replace the catheter during operation.
  • the catheter After the guidewire enters the body, under the guidance of the guidewire, the catheter passes through the guidewire to a specific location, and the catheter delivers the drug or a specific device (eg, a heart stent, etc.).
  • the basic structure of the guide wire consists of an internal hard core and a tightly wound wire around the outside.
  • the internal axial guide wire is called the axial wire, which ensures the hardness of the guide wire, which tapers to the tip and makes the tip softer.
  • the outer part of the wire is wound by a stainless steel coil around the wire.
  • Shape memory alloy (SMA, ShapeMemoryAlloy) has special properties such as shape memory and superelasticity.
  • the martensitic transformation process of shape memory alloy can be controlled by the temperature and stress inside the material, so that the special mechanical properties of the material can be realized, so it can be used for structure.
  • Shape memory alloy spring is one of the effective active and passive vibration control components, and has a wide range of applications in aerospace, industrial control, and medical.
  • the hypotube is a hypotube having a plurality of spiral coils which are made of a shape memory alloy so that they are different in diameter at different temperatures so as to be able to be tightly wrapped outside the shaft provided therein.
  • the shape memory alloy for preparing the hypotube is a nickel titanium alloy (NiTi) or a copper zinc alloy (CuZn).
  • the axial wire is an optical fiber core wire capable of inserting light into a lesion portion of a human body.
  • An application of the shape memory alloy hypotube in a vascular fiber guidewire comprising an optical fiber core disposed at an axial center and a hypotube disposed at a periphery of the optical fiber core
  • the application method is as follows:
  • the martensite transformation temperature is Ms
  • the reverse phase transformation temperature is As
  • the shape memory alloy material is made into a hypotube (including a spiral tube) containing a plurality of spiral coils
  • step 1 the metal made of the shape memory alloy material is used first.
  • the thin tube is then processed into a hypotube containing a plurality of spiral coils by laser cutting.
  • the shape memory alloy material is nickel titanium alloy (NiTi) or copper zinc alloy (CuZn).
  • the shape memory alloy material is selected from the group consisting of nickel-titanium alloy 51Ni-Ti, the martensite transformation temperature Ms is -20 ° C, and the reverse phase transformation temperature As is -12 ° C.
  • the cooling method is to soak the hypotube in a dry ice-alcohol solution to a temperature of T0, which is lower than the temperature Ms.
  • D is the diameter of the spiral
  • N is the number of turns
  • H is the height of the helix.
  • the vascular fiber guidewire includes at least one optical fiber core wire for conducting light, a hypotube, and a hydrophilic coating capable of improving body fluid compatibility and reducing resistance;
  • the optical fiber core wire is disposed on the a core of the fiber guide wire;
  • the hypotube is spirally wrapped around the periphery of the fiber core;
  • the hydrophilic coating is applied to the periphery of the hypotube;
  • the material of the hydrophilic coating layer includes at least one of polytetrafluoroethylene, silicone rubber, polyethylene, polyvinyl chloride, fluorocarbon polymer, and polyurethane.
  • the optical fiber core wire includes a core and a cladding layer coated on a periphery of each of the cores, the cladding layer having a light conductivity lower than the core;
  • one or more metal wires or polymer wires may be added to the core in parallel with the core to increase the strength thereof.
  • the end of the optical fiber guide wire that is introduced into one end of the blood vessel is provided with a light guiding portion
  • the light guiding portion includes a light transmitting portion and a microlens disposed at a top end of the light transmitting portion and capable of coupling light out/into the core; the light transmitting portion is provided with a plurality of penetrating through the hydrophilic coating and the sea wave a tube and a light guiding hole of the optical fiber core.
  • the invention provides a shape memory alloy hypotube which is made of a shape memory alloy.
  • the characteristics of the shape memory alloy at different temperatures cause the diameter of the hypotube to change, and it is skillfully applied to the fiber guide wire at the diameter.
  • the fiber core wire can be passed through, and then the temperature is changed to shrink and tighten, so that the wire and the wire (ie, the hypotube) are tightly tightened, and the strength, safety and reliability of the fiber guide wire are improved. It makes it easier to enter the human blood vessels and greatly simplifies the traditional wire winding process.
  • FIG. 1 is a schematic structural view of a shape of a hypotube at a T0 temperature according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram showing the relationship between the inner diameter of the hypotube and the number of turns according to the embodiment of the present invention
  • FIG. 3 is a schematic structural view of a shape of a hypotube at a T1 temperature according to an embodiment of the present invention
  • FIG. 4 is a schematic structural view of a hypotube wrapped optical fiber guide wire at a T1 temperature according to an embodiment of the present invention
  • FIG. 5 is a schematic structural view showing a part of an optical fiber guide wire according to an embodiment of the present invention.
  • FIG. 6 is a schematic cross-sectional structural view of an optical fiber guide wire according to an embodiment of the present invention.
  • Figure 7 is a cross-sectional view of the inner portion of the dotted circle of Figure 5;
  • FIG. 8 is a schematic cross-sectional structural view of an optical fiber guide wire according to another embodiment of the present invention.
  • a shape memory alloy hypotube As shown in FIG. 1 and FIG. 3 to FIG. 4, a shape memory alloy hypotube, the hypotube 1 is disposed at a periphery of an optical fiber guide, and the hypotube 1 is a hypotube having a plurality of spiral coils.
  • the through hole 3 in the middle of the hypotube 1 can be inserted through the optical fiber core 2, which is made of a shape memory alloy, and the hypotube 1 is different in diameter at different temperatures so as to be tightly wrapped. It is disposed outside the optical fiber core 2 in the hypotube.
  • the shape memory alloy for preparing the hypotube 1 is nickel titanium alloy (NiTi) or copper zinc alloy (CuZn), preferably nickel titanium alloy 51Ni-Ti, and its martensite transformation temperature Ms is -20 ° C, reverse phase
  • the variable temperature As is -12 °C.
  • the adjacent spiral coils of the hypotube 1 are closely spaced together, as shown in FIG. 3 or 4, to prevent the fiber from being exposed and affecting the conduction of light.
  • the material of the shape memory alloy is Nitinol 51Ni-Ti, the martensite transformation temperature Ms is -20 ° C, and the reverse phase transformation temperature As is -12 ° C.
  • the shape memory alloy material is first used to make the metal. Thin tube, then the metal thin tube is laser cut to make a hypotube (multiple spiral tube) with multiple spiral coils, if the inner diameter of the hypotube is 300 ⁇ m, the length H is 5cm, and the number of turns is 10 ;
  • the optical fiber core wire 2 is inserted into the hypotube 1 and then the temperature of the hypotube 1 into which the optical fiber core 2 is inserted is returned to room temperature, at which time the inner diameter of the hypotube 1 is reduced, due to the inner diameter of the hypotube 1 at the T1 temperature.
  • d is identical to the outer diameter Di of the optical fiber core 2, so that the hypotube 1 is tightly bound to the periphery of the optical fiber core 2.
  • the length L of the spiral can be calculated as:
  • Figure 2 is the relationship between N and D. It can be seen from the figure that when a torque is applied across the hypotube 1 When the number of turns is reduced, the diameter is increased.
  • the inner diameter is reduced by applying a reverse torque across the hypotube 1 as in the above step 4, and a sufficient torque margin and duration are applied thereto.
  • the shape memory function is generated at the T1 temperature, as shown in FIG.
  • the shape memory alloy hypotube After the shape memory alloy hypotube is completed, its temperature is adjusted to T0 point, at which time the inner diameter of the hypotube is enlarged, allowing the wire or other device to pass through; then the temperature is adjusted to the point T1, at which time the hypotube The inner diameter is reduced, and tightly wrapped around the shaft due to the elastic action, forming a tight bond, as shown in FIG.
  • a hypotube is formed using a shape memory alloy (e.g., nickel titanium alloy, NiTi) material.
  • shape memory alloy e.g., nickel titanium alloy, NiTi
  • the physical properties and mechanical properties of the NiTi shape memory alloy are shown in the following table.
  • the shape memory effect and superelasticity of NiTi alloy are related to thermoelastic martensitic transformation.
  • the shape memory effect can be expressed as follows: When a certain shape of the parent phase sample is cooled by As (temperature of reverse phase transformation) to Ms (horse After the martensite is formed below the temperature at which the phase transformation of the solid phase is completed, the martensite is deformed below Ms. After heating to above As, with the reverse phase change, the material will automatically return to its shape in the parent phase, the essence of which is the thermoelastic martensitic transformation. Part of the NiTi alloy and its transition temperature are shown in the table below.
  • the specific structure of the optical fiber guide wire is as follows.
  • the optical fiber guide wire 10 includes a fiber core wire, a spiral wave wrapped around the periphery of the fiber core wire, and a pro-coating applied to the periphery of the hypotube 1.
  • An optical fiber core wire is disposed at an axial center of the optical fiber guide wire 10, the optical fiber core wire including a core 11 (ie, an optical fiber) for conducting light, and a cladding 12 coated on a periphery of the core 11, the core 11 It is a single-mode core or a multi-mode core.
  • the core 11 is made of at least one of a quartz core, a polymer core, and a metal hollow core.
  • the cladding 12 has a lower optical conductivity than the core 11, and therefore, the cladding 12 has a certain binding force to the light in the core 11.
  • Hypotube 1 can greatly improve the toughness and strength of the fiber guide wire.
  • the hydrophilic coating 14 is configured to increase humoral compatibility and reduce resistance of the fiber guidewire 10 in the body, such as improving blood compatibility and reducing resistance in the blood.
  • the hydrophilic coating 14 is chemically stable. Made of materials.
  • the material of the hydrophilic coating 14 includes, but is not limited to, polytetrafluoroethylene, silicone rubber, polyethylene, polyvinyl chloride, fluorocarbon polymer and polyurethane, and the hydrophilic coating 14 may be composed of any of the above materials or two. The above mixture is composed.
  • the hydrophilic coating 14 may be disposed outside the wound layer 13 by coating, coating or heat shrinking.
  • the end of the optical fiber guide wire 10 that is introduced into one end of the human blood vessel is provided with a light guiding portion 20
  • the light guiding portion 20 includes a light transmitting portion and is disposed at a top end of the light transmitting portion (ie, a fiber guide)
  • the top end of the wire 10) and capable of coupling light out/into the microlens 15 of the core 11, the fiber core wire extending from the main body portion of the fiber guide wire 10 to the light transmitting portion, and then the light transmitted from the fiber core wire is microscopically
  • the optical fiber guide wire 10 is collected and emitted, and is irradiated at a portion where light is required.
  • the light transmitting portion is provided with a plurality of light guiding holes 16 penetrating the hydrophilic coating layer 14 and the hypotube 1 and perpendicular to the fiber core wire, through which the optical fiber core wires can be exposed, that is, through the holes Hole can be seen directly
  • the core of the optical fiber, a small portion of the light in the core 11 will pass through the cladding 12 and exit from the light guiding apertures 16.
  • the length of the light transmitting portion is generally from 1 to 4 cm, preferably from 2 to 3 cm, which contributes to the treatment and advancement of the optical fiber guide wire 10.
  • the light guiding hole 16 at the above-mentioned light transmitting portion can be realized by the gap between the spiral coils on the hypotube 1 , that is, the gap between the spiral coils of the hypotube adjacent to the light guiding portion 20 can be left during the processing. To a suitable size, it is formed into a light guiding hole 16 capable of guiding light out.
  • the spiral coils in the hypotube 1 are closely abutted at a normal temperature, that is, a state of being tightly wound, and the optical fiber guide wire 10 is ensured.
  • the intensity also makes the light not leak.
  • the microlens 15 is a circular, hemispherical or the like structure, and it is easy to concentrate light or heat, and the arrangement of the microlens 15 further reduces the resistance of the optical fiber guide wire 10 to travel through the blood vessel.
  • the microlens 15 can also be of other construction types.
  • one or more metal/polymer guide wires can be added to the core 11 in parallel with the core 11 to increase the strength thereof.
  • the number of the optical fiber core wires may be two or more and arranged side by side at the axial center of the optical fiber guide wire 10, the optical fiber core wire including the core 11 and coated on each
  • the cladding 12 around the core 11 is wrapped around the periphery of all the fiber cores to improve its toughness and strength.
  • the cladding 12 has a lower optical conductivity than the core 11, and therefore, the cladding 12 has a certain binding force to the light in the core 11.
  • the core 11 can include both a first core capable of introducing light and a second core capable of deriving light, that is, in the case of a plurality of cores 11
  • the light can be introduced by one or more cores, and the light is derived by using one or more cores, and the core of the derived light can be derived by using a computer or the like by deriving the light after the action in the blood vessel. Analysis of the spectrum of light, etc., can help to understand the treatment situation or condition, and take appropriate treatments for diagnosis and treatment.
  • the optical fiber guide wire 10 in this embodiment has a diameter of only one hundred micrometers, and generally has a maximum diameter of about 2 mm and a minimum diameter of only about 100 ⁇ m. Therefore, it can be inserted into a human body through a blood vessel or the like for interventional treatment.
  • the length of the fiber guide wire 10 is generally 1.5 to 2 m, which can be almost any in the human body.
  • the lesion is delivered to the light source, and 0.4 to 1 m is generally reserved in vitro.
  • the interventional treatment is a liver tumor
  • the fiber guide wire is connected to the laser emitter through a coupler, and then one end of the fiber guide wire is punctured into the blood vessel, and under the guidance of the clinical image, the hand end is rotated to gradually screw the fiber guide wire into the lesion of the blood vessel for illumination. , that is, screw into the blood vessel of the liver tumor and insert it into the lesion.
  • the laser emitter is turned on, and the light is guided through the fiber guide wire to irradiate the tumor tumor body which has been injected with the photosensitive drug, so that the photochemical reaction of the photosensitive drug in the tumor produces singlet oxygen, which in turn causes necrosis and apoptosis of the tumor tumor body, thereby achieving The purpose of treating tumors. .
  • the ratio of dry ice to alcohol can be referred to the prior art as long as the temperature of the present invention can be attained.
  • the cooling method of the present invention can also select other methods of the prior art.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pathology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Hematology (AREA)
  • Pulmonology (AREA)
  • Anesthesiology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Epidemiology (AREA)
  • Laser Surgery Devices (AREA)
  • Radiation-Therapy Devices (AREA)
  • Media Introduction/Drainage Providing Device (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials For Medical Uses (AREA)

Abstract

一种形状记忆合金海波管(1)以及其在光纤导丝(10)中的应用,海波管(1)为含有多个螺旋圈的海波管(1),该海波管(1)为采用形状记忆合金制成以使其在不同温度下直径不同从而能够紧密的裹覆在设置于其内的轴丝外。通过记忆合金的相变特性及形状记忆特性,使海波管(1)在不同温度下内径发生改变,使海波管(1)对其内部包裹物产生扩张通过与紧束缚固定两种功能。形状记忆合金海波管(1)能够提高光纤导丝(10)的强度、安全可靠性能,使其更容易进入人体血管,并使传统绕丝工艺大为简化。

Description

一种形状记忆合金海波管以及其在血管光纤导丝中的应用 技术领域
本发明涉及介入放射学领域,具体涉及一种形状记忆合金海波管以及其在血管光纤导丝中的应用。
背景技术
介入放射学又称介入治疗学,是近年迅速发展起来的一门融合了影像诊断和临床治疗于一体的新兴学科。它是在数字减影血管造影机、CT、超声和磁共振等影像设备的引导和监视下,利用穿刺针、导管及其他介入器材,通过人体自然孔道或微小的创口将特定的器械导入人体病变部位进行微创治疗的一系列技术的总称。普通导管为一端具有一定长度的塑料管,前端渐细以便于插入血管;尾部与注射针头尾端相同,以便于与注射器相连接。普通导管的前端有多种形状,如单弧、反弧、双弧、强化双弧、肝弧正面观、肝弧侧面观、三弧等,以利于插入不同部位的血管。导管的规格常用F数(French No)来表示,如6F或7F等,F数等于导管外周长的毫米数。特殊导管的形状和构造相对比较复杂,所完成的医疗功能也是多种多样,例如、双腔单球囊导管、冠状动脉成形术用球囊导管等。其他一些常用的导管有:引导导管(guiding catheters)、同轴导管(coaxial catheter)、微导管(micro catheter)、可控方向导管、房间隔切开导管、血块捕捉导管、斑块旋磨导管(rotablator)、斑块旋切导管、标测电极导管、射频消融导管(又称大头导管)、起搏电极导管等。其中冠状动脉成形(PTCA)导管是一类重要的导管,包括PTCA引导导管(PTCA guiding catheter)、PTCA扩张导管(PTCA dilatation catheter)、导丝。引导导管的管壁分为三层:外层为聚氨基甲酸酯或聚乙烯,中层为环氧树脂-纤维网或金属网,内层为光滑的特富龙(Teflon)。导管中层的金属网状或螺旋状结构通常称为海波管,是保证导管具有一 定强度同时又具有柔韧性的重要组成部分,通过激光精密切割工艺制作而成。
导丝具有将导管经皮引入血管或其他管腔的作用,而且是协助导管选择性进入细小血管分支或其他病变腔隙,以及操作中更换导管的重要工具。在导丝进入人体后,在导丝的引导下,导管经由导丝穿过到达特定位置,再由导管输送药物或特定装置(例如心脏支架等)。导丝的基本结构包括内部的坚硬轴心和外部紧紧缠绕的绕丝组成。内部轴心导丝称为轴丝,保证了导丝的硬度,其向尖端逐渐变细,使尖端较柔软。轴丝外部由不锈钢弹簧圈绕丝缠绕而成。
形状记忆合金(SMA,ShapeMemoryAlloy)具有形状记忆、超弹性等特殊性能,通过材料内部的温度和应力可以控制形状记忆合金的马氏体相变过程,从而实现材料的特殊力学性能,因此可用于结构的主被动控制等智能控制场合。形状记忆合金弹簧是其中一种有效的主被动振动控制构件,在航天、工业控制、医疗中具有广泛的应用。
肿瘤光动力疗法与手术、化疗、放疗等常规治疗手段相比,具有创伤小、毒性低微、靶向性好、适用性好的诸多优点。但目前的难点是如何将光通过人体血管输送至体内。申请人已申请专利201611234625X和2016214560291,其内记载了通过极其纤细的光纤导丝通过人体血管输送至体内的病变部位,光纤导丝的直径仅有百微米量级,一般最大直径约为2mm,最小直径只有100μm左右,但其长度一般为1.5~2m,故想要将如此纤细如此长的光纤导丝插入人体,对光纤导丝本身的结构要求极高,因此,如何使光纤芯丝与提高光纤导丝的强度、安全性尤为重要。
发明内容
有鉴于此,本发明的目的是提供一种形状记忆合金海波管以及其在血管光纤导丝中的应用,以解决了现有技术中的不足。
本发明的目的是通过以下技术方案来实现:
一种形状记忆合金海波管,所述海波管设置于光纤导丝外围,所述 海波管为含有多个螺旋圈的海波管,该海波管为采用形状记忆合金制成以使其在不同温度下直径不同从而能够紧密的裹覆在设置于其内的轴丝外。
进一步地,制备所述海波管的形状记忆合金为镍钛合金(NiTi)或铜锌合金(CuZn)。
进一步地,所述轴丝为能够将光插入人体病变部位的光纤芯丝。
进一步地,在常温下,所述海波管中的螺旋圈之间紧密靠合。
一种所述形状记忆合金海波管在血管光纤导丝中的应用,所述血管光纤导丝包括设置于轴心处的光纤芯丝以及设置于所述光纤芯丝外围的海波管,所述应用方法如下:
①选择形状记忆合金材料,其马氏体相变温度为Ms,逆相变温度为As,并将该形状记忆合金材料制成含有多个螺旋圈的海波管(即螺旋管);
②将步骤①所制得的含有多个螺旋圈的海波管冷却到温度为T0,该温度低于Ms;
③温度降至低于Ms时,在海波管两端施加相反的力矩以使海波管的螺旋圈的圈数减少且直径增加,此时直径为D,则由于金属记忆效应,海波管在该低于Ms的温度下的此形状在T0温度下得以保存;
④将海波管恢复为室温T1,此时温度高于As,通过在海波管两端施加相反的力矩以使海波管内径缩小到d,则由于金属记忆效应,海波管在该T1温度下的形状得以保存;
⑤选择直径为Di的光纤芯丝,其中D>Di≥d,并将步骤④得到的已输入形状记忆功能的海波管冷却到T0温度,其内径扩张为D,则将光纤芯丝插入海波管内,然后将插入了光纤芯丝的海波管的温度恢复为室温,此时海波管内径缩小,由于T1温度下海波管的内径d不大于光纤芯丝的外径Di,因此海波管紧密束缚于所述光纤芯丝的外围。
进一步地,步骤①中,先采用所述的形状记忆合金材料制成的金属 薄管,然后将该的金属薄管采用激光切割方式加工成含有多个螺旋圈的海波管。
进一步地,步骤①中,所述形状记忆合金材料为镍钛合金(NiTi)或铜锌合金(CuZn)。
进一步地,步骤①中,所述形状记忆合金材料选用镍钛合金51Ni-Ti,其马氏体相变温度Ms为-20℃,逆相变温度As为-12℃。
进一步地,步骤②和⑤中,冷却方式为将海波管浸泡在干冰--酒精溶液中冷却到温度为T0,该低于温度Ms。
进一步地,步骤③和④中,螺旋直径与螺旋圈数的关系为:
Figure PCTCN2017077676-appb-000001
其中D为螺旋直径,N为螺旋圈数,H为螺旋线高度,则当在海波管两端施加力矩时,螺旋圈数N减小,直径D增大,螺旋圈数N增加,直径D减小。
进一步地,所述血管光纤导丝包括用于传导光的至少一根光纤芯丝、海波管和能够提高体液相容性并减少阻力的亲水涂层;所述光纤芯丝设置于所述光纤导丝的轴心处;所述海波管呈螺旋状包裹环绕于所述光纤芯丝外围;所述亲水涂层涂覆于所述海波管的外围;
所述亲水涂层的材料包括聚四氟乙烯、硅橡胶、聚乙烯、聚氯乙烯、氟碳聚合物和聚氨酯中的至少一种。
进一步地,所述光纤芯丝包括纤芯以及涂覆于每根所述纤芯外围的包层,所述包层的光传导率小于所述纤芯;
进一步地,所述纤芯中还能够加入一根或多根金属导丝或聚合物导丝与所述纤芯并行排列以提高其强度。
进一步地,所述光纤导丝上导入血管一端的端头设有导光部,所述 导光部包括透光部以及设置于所述透光部顶端并能够将光耦合出/入纤芯的微透镜;所述透光部上设有多个贯穿所述亲水涂层和海波管、并垂直所述光纤芯丝的导光孔。
本发明至少具有以下有益效果:
本发明提出了一种形状记忆合金海波管,采用形状记忆合金制成,在不同温度下形状记忆合金的特性导致海波管直径变化,并将其巧妙的应用于光纤导丝中,在直径扩大时可使光纤芯丝穿过,再变化温度使其收缩束紧,从而使轴丝与绕丝(即海波管)的紧固方式更加紧密,提高光纤导丝的强度、安全可靠性能,使其更容易进入人体血管,并使传统绕丝工艺大为简化。
附图说明
图1是本发明实施例所述的T0温度下海波管形状的结构示意图;
图2是本发明实施例所述的海波管内径与螺圈数的关系示意图;
图3是本发明实施例所述的T1温度下海波管形状的结构示意图;
图4是本发明实施例所述的T1温度下海波管包裹光纤导丝的结构示意图;
图5是本发明实施例所述的部分光纤导丝剖开的结构示意图;
图6是本发明实施例所述的光纤导丝的横截面结构示意图;
图7是图5中虚线圈内部分的剖面图;
图8是本发明另一个实施例所述的光纤导丝的横截面结构示意图。
1、海波管,2、光纤芯丝,3、通孔,10、光纤导丝,11、纤芯,12、包层,14、亲水涂层,15、微透镜,16、导光孔,20、导光部。
具体实施方式
下面对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。以下提供的本发明的实施例的详细描述并非旨在限制要求保护的本发明的范围,而是仅仅表示本发明的选定实施例。基于本发明中的实施例,本领域普通方法人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
如图1、图3~4所示,一种形状记忆合金海波管,所述海波管1设置于光纤导丝外围,所述海波管1为含有多个螺旋圈的海波管,所述海波管1中间处的通孔3可穿插光纤芯丝2,该海波管1为采用形状记忆合金制成,则海波管1在不同温度下直径不同从而能够紧密的裹覆在设置于海波管内的光纤芯丝2外。
制备所述海波管1的形状记忆合金为镍钛合金(NiTi)或铜锌合金(CuZn),优选为镍钛合金51Ni-Ti,其马氏体相变温度Ms为-20℃,逆相变温度As为-12℃。
在常温下,所述海波管1中相邻的螺旋圈之间紧密靠合,如图3或4所示,避免光纤外露,影响光的传导。
实施例2
一种所述形状记忆合金海波管在血管光纤导丝中的应用,所述血管光纤导丝包括设置于轴心处的光纤芯丝2以及设置于所述光纤芯丝2外围的海波管1,所述应用方法如下:
①选择形状记忆合金的材料为镍钛合金51Ni-Ti,其马氏体相变温度Ms为-20℃,逆相变温度As为-12℃,先采用所述的形状记忆合金材料制成金属薄管,然后将该金属薄管采用激光切割方式制成含有多个螺旋圈的海波管(即螺旋管),假如海波管内径为300μm,长度H为5cm,螺旋圈圈数为10圈;
②将步骤①所制得的含有多个螺旋圈的海波管1浸泡在干冰-酒精溶液中冷却到T0=-40℃,此时温度低于Ms;
③当海波管1的温度降至T0=-40℃,即低于Ms时,在海波管1两端施加相反的力矩旋转以使海波管1的螺旋圈的圈数减少且直径增加,如施加力矩旋转使海波管1旋转4圈后(即剩余6圈螺旋),此时直径D扩大到500μm,则由于金属记忆效应,海波管1在该低于Ms的温度下的此形状在T0温度下得以保存;
④将海波管1恢复为室温T1,此时温度高于As,通过在海波管1两端施加相反的力矩以使海波管1内径d缩小到300μm,则由于金属记忆效应,海波管1在该T1温度下的形状得以保存;
⑤选择外径Di为300μm的光纤芯丝2,在室温下轴丝不能穿过内径为300μm的海波管1中;将步骤④得到的已输入形状记忆功能的海波管1浸泡在干冰-酒精溶液中冷却到T0=-40℃,则其内径D扩张为500μm,光纤芯丝2便可轻易穿过。
则将光纤芯丝2插入海波管1内,然后将插入了光纤芯丝2的海波管1的温度恢复为室温,此时海波管1内径缩小,由于T1温度下海波管1的内径d与光纤芯丝2的外径Di一致,因此海波管1紧密束缚于所述光纤芯丝2的外围。
在上述步骤③中,当在海波管1两端施加反向的力矩时,其直径会扩大,这是由于:海波管1可简化为螺旋线结构,假设螺旋线高度为H,螺旋直径为D,螺旋圈数为N,则将其所在的圆柱面展开后为一条直线,根据勾股定理可计算螺旋线的长度L为:
Figure PCTCN2017077676-appb-000002
将上式中的直径表达为螺旋圈数N的函数:
Figure PCTCN2017077676-appb-000003
图2是N与D的关系,从图中可看到,当在海波管1两端施加力矩 时,螺旋圈数减小,直径增大。
在逆相变温度As上的T1点,与上述方式一致,通过在海波管1两端施加反向力矩方式使其内径缩小,如上述步骤④,并施加足够力矩余量及持续时间使其在T1温度产生形状记忆功能,如图3所示。
在完成形状记忆合金海波管制作之后,将其温度调整至T0点,此时海波管内径扩大,允许轴丝或其他装置穿过;然后将其温度调整至T1点,此时海波管内径缩小,由于弹性作用紧紧包覆于轴丝周围,形成紧密束缚,如图4所示。
在本发明中,采用形状记忆合金(例如镍钛合金,NiTi)材料构成海波管。NiTi形状记忆合金的物理性能及力学性能如下表。
性能 NiTi合金 316L不锈钢
密度(g/cm3) 6.45 8.03
抗拉强度(MPa) >980 552
疲劳强度(MPa) 558 343
弹性模量(MPa) 61740 176400
生物相容性 很好 较好
磁性
NiTi合金的形状记忆效应和超弹性与热弹性马氏体相变有关,形状记忆效应可具体表现为:当一定形状的母相样品由As(逆相变完成的温度)以上冷却至Ms(马氏体相变完成的温度)以下形成马氏体后,将马氏体在Ms以下变形。经加热至As以上,伴随逆相变,材料会自动回复其在母相时的形状,其实质就是热弹性马氏体相变。部分NiTi合金及其转变温度如下表所示。
Figure PCTCN2017077676-appb-000004
Figure PCTCN2017077676-appb-000005
实施例3
在实施例2的基础上,所述光纤导丝的具体结构如下所示。
如图5~6所示,所述光纤导丝10包括一根光纤芯丝、螺旋包裹环绕于所述光纤芯丝外围的海波管1以及涂覆于所述海波管1的外围的亲水涂层14;
光纤芯丝设置于所述光纤导丝10的轴心处,所述光纤芯丝包括用于传导光的纤芯11(即光纤)以及涂覆于纤芯11外围的包层12,纤芯11为单模纤芯或多模纤芯。所述纤芯11的材质为石英纤芯、聚合物纤芯或和金属空心纤芯中的至少一种。所述包层12的光传导率小于所述纤芯11,因此,该包层12对纤芯11中的光有一定的约束力。
海波管1可极大的提高光纤导丝的韧性和强度。
亲水涂层14的设置能够提高体液相容性并减少光纤导丝10在体内穿行的阻力,如提高血液相容性并减少在血液中的阻力,该亲水涂层14为采用化学稳定的材料制成。
亲水涂层14的材料包括但不限于聚四氟乙烯、硅橡胶、聚乙烯、聚氯乙烯、氟碳聚合物和聚氨酯,亲水涂层14可采用上述任何一种材料构成也可以为两种以上的混合物构成。亲水涂层14可由镀膜、涂敷或热缩等方式设置于绕丝层13外。
如图7所示,所述光纤导丝10上导入人体血管一端的端头设有导光部20,所述导光部20包括透光部以及设置于所述透光部顶端(即光纤导丝10的顶端)并能够将光耦合出/入纤芯11的微透镜15,则光纤芯丝从光纤导丝10的主体部分一直延伸至透光部,然后光纤芯丝中传导的光从微透镜15处汇聚传出光纤导丝10,并照射在需要光的部位。所述透光部上设有多个贯穿所述亲水涂层14和海波管1、并垂直所述光纤芯丝的导光孔16,通过这些孔可以将光纤芯丝暴露,即通过这些孔可直接看到 光纤芯丝,纤芯11中的光有一小部分会穿过包层12并从这些导光孔16传出。所述透光部的长度一般为1~4cm,优选2~3cm,则有助于治疗以及光纤导丝10的前行。
上述透光部处的导光孔16可以通过海波管1上螺旋圈之间的缝隙实现,即在加工过程中,可将导光部20附近的海波管的螺旋圈之间的缝隙留至合适的大小,使其形成能够将光导出的导光孔16。
除了透光部之外的其他光纤导丝10部分,优选在常温下,所述海波管1中的螺旋圈之间紧密靠合,即看起来是紧密缠绕的状态,保证光纤导丝10的强度的同时也使光不泄露。
所述微透镜15为向圆型、半球形等结构,容易汇聚光线或热量,且该微透镜15的设置也进一步减小光纤导丝10在血管内穿行的阻力。当然,微透镜15也可以为其他结构类型。
作为进一步优选的实施方式,所述纤芯11中还能够加入一根或多根金属/聚合物导丝与所述纤芯11并行排列以提高其强度。
作为进一步优选的实施方式,如图8所示,光纤芯丝的数量可以为两根或两根以上并排设置于光纤导丝10的轴心处,光纤芯丝包括纤芯11以及涂覆于每根纤芯11外围的包层12,海波管1缠绕于所有光纤芯丝的外围以提高其韧性和强度。所述包层12的光传导率小于所述纤芯11,因此,该包层12对纤芯11中的光有一定的约束力。
若光纤导丝10中含有多根纤芯11,则所述纤芯11中可同时包括能够导入光的第一纤芯和能导出光的第二纤芯,即在多根纤芯11情况下,可采用一根/多根纤芯导入光,同时采用一根/多根纤芯导出光,则导出光的纤芯通过将在血管内发生作用后的光导出,便可采用计算机等对导出光的光谱等进行分析,有助于了解治疗情况或病情等,并采取相应的治疗手段进行诊治。
本实施例中的光纤导丝10直径仅有百微米量级,一般最大直径约为2mm,最小直径只有100μm左右,因此,能够通过血管等穿入人体内进行介入治疗。该光纤导丝10的长度一般为1.5~2m,几乎可对人体内任何 的病变部位输送光源,一般体外预留0.4~1m。
在光动力肿瘤治疗中,若介入治疗的是肝脏肿瘤,需要进入肝脏肿瘤内血管。则将光纤导丝与激光发射器通过耦合器连接,然后将光纤导丝的一端经皮穿刺进入血管,并在临床影像引导下,旋转手持一端将光纤导丝逐渐旋入血管的病变部位进行光照,即旋入肝脏肿瘤内血管并插至病变部位。打开激光发射器,将光经光纤导丝引导,照射在已注射光敏药物的肿瘤瘤体,使瘤体内的光敏药物发生光化学反应产生单态氧继而引发肿瘤瘤体的坏死及凋亡,从而达到治疗肿瘤的目的。。
在本发明中,干冰和酒精的比例可参见现有技术,只要能达到本发明的温度便可。当然,本发明的冷却方法还可以选择现有技术的其他方法。
以上所述仅为本发明的优选实施例,并不用于限制本发明,对于本领域技术人员而言,本发明可以有各种改动和变化。凡在本发明的精神和原理之内所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种形状记忆合金海波管,所述海波管设置于光纤导丝外围,其特征在于:所述海波管为含有多个螺旋圈的海波管,该海波管为采用形状记忆合金制成以使其在不同温度下直径不同从而能够紧密的裹覆在轴丝外。
  2. 根据权利要求1所述的形状记忆合金海波管,其特征在于:制备所述海波管的形状记忆合金为镍钛合金或铜锌合金;
    所述轴丝为能够将光通过血管插入人体病变部位的光纤芯丝;在常温下,所述海波管中的螺旋圈之间紧密靠合。
  3. 一种根据权利要求1或2所述的形状记忆合金海波管在血管光纤导丝中的应用,所述血管光纤导丝包括设置于轴心处的光纤芯丝以及设置于所述光纤芯丝外围的海波管,其特征在于:所述应用方法如下:
    ①选择形状记忆合金材料,其马氏体相变温度为Ms,逆相变温度为As,并将该形状记忆合金材料制成含有多个螺旋圈的海波管;
    ②将步骤①所制得的含有多个螺旋圈的海波管冷却到温度为T0,该温度低于Ms;
    ③温度降至低于Ms时,在海波管两端施加相反的力矩以使海波管的螺旋圈的圈数减少且直径增加,此时直径为D,则由于金属记忆效应,海波管在该低于Ms的温度下的此形状在T0温度下得以保存;
    ④将海波管恢复为室温T1,此时温度高于As,通过在海波管两端施加相反的力矩以使海波管内径缩小到d,则由于金属记忆效应,海波管在该T1温度下的形状得以保存;
    ⑤选择直径为Di的光纤芯丝,其中D>Di≥d,并将步骤④得到的已输入形状记忆功能的海波管冷却到T0温度,其内径扩张为D,则将光纤芯丝插入海波管内,然后将插入了光纤芯丝的海波管的温度恢复为室温,此时海波管内径缩小,由于T1温度下海波管的内径d不大于光纤芯丝的外径Di,因此海波管紧密束缚于所述光纤芯丝的外围。
  4. 根据权利要求3所述的形状记忆合金海波管在血管光纤导丝中的应用,其特征在于:步骤①中,先采用所述的形状记忆合金材料制成金属薄管,然后将该金属薄管采用激光切割方式加工成含有多个螺旋圈的海波管。
  5. 根据权利要求4所述的形状记忆合金海波管在血管光纤导丝中的应用,其特征在于:步骤①中,所述形状记忆合金材料为镍钛合金或铜锌合金。
  6. 根据权利要求5所述的形状记忆合金海波管在血管光纤导丝中的应用,其特征在于:步骤①中,所述形状记忆合金材料选用镍钛合金51Ni-Ti,其马氏体相变温度Ms为-20℃,逆相变温度As为-12℃。
    步骤②和⑤中,冷却方式为将海波管浸泡在干冰-酒精溶液中冷却到温度为T0,该低于温度Ms。
  7. 根据权利要求6所述的形状记忆合金海波管在血管光纤导丝中的应用,其特征在于:步骤③和④中,螺旋直径与螺旋圈数的关系为:
    Figure PCTCN2017077676-appb-100001
    其中D为螺旋直径,N为螺旋圈数,H为螺旋线高度,则当在海波管两端施加力矩时,螺旋圈数N减小,直径D增大,螺旋圈数N增加,直径D减小。
  8. 根据权利要求7所述的形状记忆合金海波管在血管光纤导丝中的应用,其特征在于:所述血管光纤导丝包括用于传导光的至少一根光纤芯丝、海波管和能够提高体液相容性并减少阻力的亲水涂层;所述光纤芯丝设置于所述光纤导丝的轴心处;所述海波管呈螺旋状包裹环绕于所述光纤芯丝外围;所述亲水涂层涂覆于所述海波管的外围;
    所述亲水涂层的材料包括聚四氟乙烯、硅橡胶、聚乙烯、聚氯乙烯、氟碳聚合物和聚氨酯中的至少一种。
  9. 根据权利要求8所述的形状记忆合金海波管在血管光纤导丝中的应用,其特征在于:所述光纤芯丝包括纤芯以及涂覆于每根所述纤芯外围的包层,所述包层的光传导率小于所述纤芯;
    所述纤芯中还能够加入一根或多根金属导丝或聚合物导丝与所述纤芯并行排列以提高其强度。
  10. 根据权利要求9所述的形状记忆合金海波管在血管光纤导丝中的应用,其特征在于:所述光纤导丝上导入血管一端的端头设有导光部,所述导光部包括透光部以及设置于所述透光部顶端并能够将光耦合出/入纤芯的微透镜;所述透光部上设有多个贯穿所述亲水涂层和海波管、并垂直所述光纤芯丝的导光孔。
PCT/CN2017/077676 2017-03-22 2017-03-22 一种形状记忆合金海波管以及其在血管光纤导丝中的应用 WO2018170787A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020197028699A KR102372611B1 (ko) 2017-03-22 2017-03-22 형상기억합금 하이포튜브 및 혈관 광섬유 가이드와이어에서의 사용 방법
PCT/CN2017/077676 WO2018170787A1 (zh) 2017-03-22 2017-03-22 一种形状记忆合金海波管以及其在血管光纤导丝中的应用
JP2020500939A JP6880523B2 (ja) 2017-03-22 2017-03-22 形状記憶合金ハイポチューブ及びその血管用光ファイバ・ガイドワイヤでの活用
EP17902179.5A EP3610896B1 (en) 2017-03-22 2017-03-22 Shape memory alloy hypotube and application thereof in blood vessel optical fiber guide wire
US15/605,546 US9925389B1 (en) 2017-03-22 2017-05-25 Shape memory alloy hypotube and use thereof in a blood vessel optical fiber guide wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/077676 WO2018170787A1 (zh) 2017-03-22 2017-03-22 一种形状记忆合金海波管以及其在血管光纤导丝中的应用

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/605,546 Continuation US9925389B1 (en) 2017-03-22 2017-05-25 Shape memory alloy hypotube and use thereof in a blood vessel optical fiber guide wire

Publications (1)

Publication Number Publication Date
WO2018170787A1 true WO2018170787A1 (zh) 2018-09-27

Family

ID=61633036

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/077676 WO2018170787A1 (zh) 2017-03-22 2017-03-22 一种形状记忆合金海波管以及其在血管光纤导丝中的应用

Country Status (5)

Country Link
US (1) US9925389B1 (zh)
EP (1) EP3610896B1 (zh)
JP (1) JP6880523B2 (zh)
KR (1) KR102372611B1 (zh)
WO (1) WO2018170787A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112891711A (zh) * 2021-01-09 2021-06-04 西北工业大学 一种转向可控的医疗介入导丝

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10639496B2 (en) * 2016-12-28 2020-05-05 Hua Shang Blood vessel optical fiber guide wire
WO2020019309A1 (zh) * 2018-07-27 2020-01-30 尚华 一种多功能的血管内组织穿刺针头及其应用方法
WO2020019308A1 (zh) * 2018-07-27 2020-01-30 尚华 一种血管内记忆金属穿刺针及其应用方法
US11684759B2 (en) * 2020-01-22 2023-06-27 Abbott Cardiovascular Systems Inc. Guidewire having varying diameters and method of making
CN111458821B (zh) * 2020-03-31 2022-03-11 烽火通信科技股份有限公司 高弹柔性光缆和用于制备高弹柔性光缆的装置
CN113265889A (zh) * 2021-05-25 2021-08-17 深圳市顺美医疗股份有限公司 一种安全绳及具有该安全绳的导丝
CN114700692B (zh) * 2022-04-02 2024-03-15 莱诺生物材料(苏州)有限公司 一种医疗用海波管的制造方法
CN116774370B (zh) * 2023-06-12 2024-03-26 宏安集团有限公司 一种高抗压、强防水的层绞式光缆

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5330465A (en) * 1991-11-26 1994-07-19 Laser Therapeutics, Inc. Continuous gradient cylindrical diffusion tip for optical fibers and method for using
CN101125099A (zh) * 2006-08-15 2008-02-20 宋世鹏 一种介入式光治疗装置
CN103861195A (zh) * 2012-12-14 2014-06-18 上海微创医疗器械(集团)有限公司 经桡动脉介入超滑导丝
CN104759022A (zh) * 2014-01-08 2015-07-08 柯惠有限合伙公司 导管系统
CN106963992A (zh) * 2017-03-22 2017-07-21 尚华 一种形状记忆合金海波管以及其在血管光纤导丝中的应用

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05232344A (ja) * 1992-02-25 1993-09-10 Yoshinori Miyake 光ファイバー結束子
JPH0924019A (ja) * 1995-07-12 1997-01-28 Piolax Inc 管状器官の検査治療装置
US6080160A (en) * 1996-12-04 2000-06-27 Light Sciences Limited Partnership Use of shape memory alloy for internally fixing light emitting device at treatment site
US6159165A (en) * 1997-12-05 2000-12-12 Micrus Corporation Three dimensional spherical micro-coils manufactured from radiopaque nickel-titanium microstrand
EP1049951A1 (en) * 1997-12-22 2000-11-08 Micrus Corporation Variable stiffness fiber optic shaft
US7460753B2 (en) * 2006-07-06 2008-12-02 Anthony Stephen Kewitsch Shape-retaining fiber optic cables having limited bend radius
US8160678B2 (en) * 2007-06-18 2012-04-17 Ethicon Endo-Surgery, Inc. Methods and devices for repairing damaged or diseased tissue using a scanning beam assembly
US8398789B2 (en) * 2007-11-30 2013-03-19 Abbott Laboratories Fatigue-resistant nickel-titanium alloys and medical devices using same
US8696654B2 (en) * 2007-12-06 2014-04-15 Koninklijke Philips N.V. Apparatus, method and computer program for applying energy to an object
GB201417836D0 (en) * 2014-10-08 2014-11-19 Optasense Holdings Ltd Fibre optic cable with transverse sensitivity

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5330465A (en) * 1991-11-26 1994-07-19 Laser Therapeutics, Inc. Continuous gradient cylindrical diffusion tip for optical fibers and method for using
CN101125099A (zh) * 2006-08-15 2008-02-20 宋世鹏 一种介入式光治疗装置
CN103861195A (zh) * 2012-12-14 2014-06-18 上海微创医疗器械(集团)有限公司 经桡动脉介入超滑导丝
CN104759022A (zh) * 2014-01-08 2015-07-08 柯惠有限合伙公司 导管系统
CN106963992A (zh) * 2017-03-22 2017-07-21 尚华 一种形状记忆合金海波管以及其在血管光纤导丝中的应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3610896A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112891711A (zh) * 2021-01-09 2021-06-04 西北工业大学 一种转向可控的医疗介入导丝
CN112891711B (zh) * 2021-01-09 2022-07-08 西北工业大学 一种转向可控的医疗介入导丝

Also Published As

Publication number Publication date
JP2020515364A (ja) 2020-05-28
EP3610896B1 (en) 2021-09-01
US9925389B1 (en) 2018-03-27
EP3610896A4 (en) 2020-08-05
KR102372611B1 (ko) 2022-03-10
KR20190123767A (ko) 2019-11-01
EP3610896A1 (en) 2020-02-19
JP6880523B2 (ja) 2021-06-02

Similar Documents

Publication Publication Date Title
WO2018170787A1 (zh) 一种形状记忆合金海波管以及其在血管光纤导丝中的应用
US11589854B2 (en) Apparatus and methods to create and maintain an intra-atrial pressure relief opening
CN106963992B (zh) 一种形状记忆合金海波管以及其在血管光纤导丝中的应用
US20090105742A1 (en) Transseptal guidewire
US20150173794A1 (en) Transseptal puncture apparatus and method for using the same
US20140066895A1 (en) Anatomic device delivery and positioning system and method of use
JP2007061181A (ja) 体腔内挿入医療機器
CN110947077B (zh) 一种高柔顺性远端通路导引导管及其制备方法
CN106955423B (zh) 一种血管光纤导管
CN1556719A (zh) 采用电离辐射来治疗心律不齐的方法和设备
WO2018120451A1 (zh) 一种血管光纤导丝
WO2021065912A1 (ja) 医療デバイス
CN107376132A (zh) 一种新型光纤导管及其制备方法
CN111741788B (zh) 导丝及医疗器械
WO2021026995A1 (zh) 一种新型的血管光纤导丝
JPH10286309A (ja) 医療用チューブ
JP2004305250A (ja) 心臓不整脈治療のための装置及び方法
CN207679870U (zh) 一种血管光纤导管
US11819630B2 (en) Catheter and catheter assembly
JP2018537180A (ja) ニードル送達のためのシース
JP2004073570A (ja) 肺静脈電気的隔離用バルーンカテーテル
WO2018170789A1 (zh) 一种血管光纤导管
LU504060B1 (en) Extending guide wire and catheter system
JP2004180892A (ja) アブレーション用カテーテル
WO2023281887A1 (ja) 医療デバイスおよびシャント形成方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17902179

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020500939

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197028699

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017902179

Country of ref document: EP

Effective date: 20191022