WO2021026995A1 - 一种新型的血管光纤导丝 - Google Patents

一种新型的血管光纤导丝 Download PDF

Info

Publication number
WO2021026995A1
WO2021026995A1 PCT/CN2019/105112 CN2019105112W WO2021026995A1 WO 2021026995 A1 WO2021026995 A1 WO 2021026995A1 CN 2019105112 W CN2019105112 W CN 2019105112W WO 2021026995 A1 WO2021026995 A1 WO 2021026995A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical fiber
light
guide wire
wire
formula
Prior art date
Application number
PCT/CN2019/105112
Other languages
English (en)
French (fr)
Inventor
尚华
Original Assignee
尚华
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 尚华 filed Critical 尚华
Priority to US16/755,876 priority Critical patent/US20220000353A1/en
Priority to US16/853,507 priority patent/US10987520B2/en
Publication of WO2021026995A1 publication Critical patent/WO2021026995A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/14Mode converters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/0623Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements for off-axis illumination
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/063Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements for monochromatic or narrow-band illumination
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/07Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements using light-conductive means, e.g. optical fibres
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • A61M25/09Guide wires
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N5/0601Apparatus for use inside the body
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0005Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being of the fibre type
    • G02B6/001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being of the fibre type the light being emitted along at least a portion of the lateral surface of the fibre
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4401Optical cables
    • G02B6/4415Cables for special applications
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/20Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
    • A61B18/22Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser the beam being directed along or through a flexible conduit, e.g. an optical fibre; Couplings or hand-pieces therefor
    • A61B2018/2205Characteristics of fibres
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/20Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
    • A61B18/22Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser the beam being directed along or through a flexible conduit, e.g. an optical fibre; Couplings or hand-pieces therefor
    • A61B2018/2205Characteristics of fibres
    • A61B2018/2222Fibre material or composition
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • A61M25/09Guide wires
    • A61M2025/09058Basic structures of guide wires
    • A61M2025/09075Basic structures of guide wires having a core without a coil possibly combined with a sheath
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/02General characteristics of the apparatus characterised by a particular materials
    • A61M2205/0238General characteristics of the apparatus characterised by a particular materials the material being a coating or protective layer
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/02General characteristics of the apparatus characterised by a particular materials
    • A61M2205/0266Shape memory materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/58Means for facilitating use, e.g. by people with impaired vision
    • A61M2205/587Lighting arrangements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N5/0601Apparatus for use inside the body
    • A61N2005/0602Apparatus for use inside the body for treatment of blood vessels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N2005/063Radiation therapy using light comprising light transmitting means, e.g. optical fibres
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N2005/0632Constructional aspects of the apparatus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N5/067Radiation therapy using light using laser light
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/3616Holders, macro size fixtures for mechanically holding or positioning fibres, e.g. on an optical bench
    • G02B6/3624Fibre head, e.g. fibre probe termination

Definitions

  • the invention belongs to the medical and optical fields, and relates to a new type of blood vessel optical fiber guide wire, in particular to a side luminous blood vessel optical fiber guide wire.
  • tumor photodynamic therapy has many advantages such as less trauma, low toxicity, good targeting, and good applicability.
  • the light mode is limited to the body surface or thicker pores.
  • Optical fibers are used in the medical field to guide light from the light source to the lesion, and are widely used in photodynamic therapy, surgical hemostasis, and tumor laser hyperthermia. Since the end face of the optical fiber is generally only on the order of a few microns to a hundred microns, the emitted laser light irradiates the tissue with a small area, and a homogenizing device is needed to evenly distribute the laser light on the lesion. Generally speaking, the requirement for the homogenization device is to emit light along the side, the uniform light emission length is about 5mm-50mm, and it should be thin enough to facilitate use in devices such as puncture needles and endoscopes.
  • U.S. Pat No. 5207669 proposes a method of gradually thinning the outer coating of a multimode fiber along the length of the fiber. Due to the thinning of the outer cladding, part of the light transmitted in the optical core filament is coupled to the side by means of evanescent waves, and the rest continues to be transmitted in the core and continuously coupled out of the optical fiber.
  • the above methods of forming a beam homogenizer have some shortcomings, including the production of scatterers with special doping concentration and fiber gratings with gradual specifications, which require a higher processing technology, which inevitably leads to an increase in cost; part of the scatterer structure is in the light intensity When it is strong, it is easy to cause damage caused by heat absorption, thereby destroying the function of the homogenizer; the diameter of these scatterers is generally large and cannot be guided in human blood vessels and guided by catheters.
  • the purpose of the present invention is to provide a new type of vascular optical fiber guide wire.
  • the present invention can enter the blood vessel through percutaneous puncture technology, guide the blood vessel through medical imaging equipment, and perform side-lighting optical fiber guide wire on the head.
  • the invention provides a side-illuminated blood vessel optical fiber guide wire.
  • the optical fiber guide wire includes a light conducting part and a light emitting part; the two are connected to each other.
  • the light-emitting part includes a metal shaft wire and an optical fiber surrounding the metal shaft wire; the optical fiber includes a core wire and a cladding covering the core wire.
  • the position of the light-emitting part may be 50 mm from the tip in the fiber guide wire.
  • the cladding cannot constrain the light transmitted in the core wire, resulting in light leakage from the sidewall through the cladding If the bending radius of the optical fiber surrounding the metal shaft wire is greater than the critical bending radius, the light is transmitted in the core wire and cannot leak out from the sidewall through the cladding.
  • the length of the light-conducting part of the optical fiber guide wire described in an example is 1.6 m, and the position 50 mm from the top end is a side light-emitting structure, that is, a light-emitting part.
  • the optical fiber is a light transmission device that constrains the light transmitted in the core wire through the contrast of the refractive index of the core wire and the cladding;
  • the bend radius of the fiber contains the value of the critical bending radius R c of the critical bending radius R c is light confinement cladding the core wire can be exactly transmitted, resulting in the minimum radius of not leaked light from the sidewall.
  • the rotating pitch of the optical fiber is large, so that the bending radius is much larger than R c , and the light is constrained to transmit in the cladding; and when the light needs to be scattered
  • the exiting area such as the head of the optical fiber guide wire (that is, the light-emitting part) reduces the pitch of the optical fiber to reduce the bending radius of the optical fiber to be smaller than R c , and light leaks from the cladding And spread out into the space from the outside.
  • the pitch of the optical fiber surrounding the metal shaft wire is a variable amount. When the variable amount changes with the radial direction of the shaft wire to have an appropriate value, the intensity of the scattered light from the side remains unchanged, achieving the effect of uniform light emission from
  • the bending loss of the transmission power of the optical fiber due to the bending around the metal shaft wire is the optical power of the light emitted from the curved side;
  • ⁇ c represents the power loss per unit length of the single-mode fiber, in dB; R represents the bending radius of the fiber, in mm; and Ac represents the fiber structure related Parameter, unit is ⁇ represents the core wire radius of the optical fiber, in ⁇ m; ⁇ c represents the cutoff wavelength of optical fiber transmission, in nm; ⁇ n represents the refractive index difference between the core wire and the cladding;
  • the bending radius of the optical fiber is related to the angle between the optical fiber helix and the side line of the cylinder with the helix radius r, which is calculated according to the following formula II:
  • R represents the bending radius of the optical fiber
  • represents the angle between the helix and the side line of the cylinder
  • r represents the spiral winding radius of the optical fiber
  • z represents the longitudinal length of the optical fiber along the metal axis
  • represents the angle between the helix and the side line of the cylinder
  • ⁇ c represents the power loss per unit length of the single-mode fiber, in dB
  • s 1 represents the initial power
  • S 0 represents the rate of power attenuation.
  • ⁇ (z) calculated according to formula III is taken into the following formula IV to calculate the optical power emitted from the side of the optical fiber;
  • P(z) represents the optical power emitted from the side of the optical fiber, that is, the distribution of the emitted optical power and the longitudinal length of the optical fiber along the metal axis; z represents the longitudinal length of the optical fiber along the metal axis; ⁇ represents the clamp between the helix and the side line of the cylinder Angle; ⁇ c represents the power loss per unit length of a single-mode fiber, in dB.
  • the pitch setting distance of the optical fiber is calculated according to the angle between the helix and the side line of the cylinder calculated according to formula II or formula III, and then calculated by formula V;
  • h represents the pitch of the optical fiber
  • r represents the spiral winding radius of the optical fiber
  • represents the angle between the helix and the side line of the cylinder.
  • the diameter of the metal shaft wire may be 50 ⁇ m to 1 mm;
  • a spiral groove is provided on the metal shaft wire, and the optical fiber is embedded in the spiral groove;
  • vascular optical fiber guide wire in order to increase the flexibility of the metal shaft wire, a hole-like structure is provided on the metal shaft wire to reduce the hardness of the metal shaft wire;
  • the outer layer of the optical fiber guide wire is also wrapped with a polymer material sleeve to increase the stability and safety of the overall structure.
  • the polymer material used in the polymer material sleeve is selected from at least one of polyethylene, polyvinyl chloride, epoxy resin, aliphatic polyester, chitin and polylactic acid.
  • the metal shaft wire is provided with a longitudinal structure spiral groove on the side opposite to the spiral groove to reduce the hardness of the metal shaft wire;
  • a hydrophilic and/or hydrophobic coating is arranged outside the polymer material sleeve to reduce the resistance of the vascular optical fiber guide wire in the blood and improve its biocompatibility.
  • the material of the optical fiber is selected from at least one of silica optical fiber, polymer optical fiber and glass optical fiber;
  • the metal shaft wire material is selected from at least one of stainless steel, aluminum alloy, titanium alloy, nickel titanium alloy, carbon fiber and polymer materials.
  • the polymer material used for the metal shaft filament material is selected from at least one of polyethylene, polyvinyl chloride, epoxy resin, aliphatic polyester, chitin and polylactic acid.
  • one end of the light-conducting part is connected with the light-emitting part, and the other end is connected with a plug that can be connected to a laser or other optical fibers, and the plug is preferably a memory alloy plug.
  • the pitch of the optical fiber surrounding the metal shaft wire of the present invention is a variable amount.
  • this variable amount is set to an appropriate value with the change in the radial direction z of the shaft wire, the intensity of the scattered light from the side remains unchanged, achieving the effect of uniform light emission from the side.
  • the pitch is set to a value much larger than the critical bending radius R c ; and at the top of the optical fiber guide wire, such as 50mm from the top At the position, the pitch is set to gradually decrease, and the changing value is in accordance with the relationship shown in Figure 4, and the top end will emit constant intensity scattered light along the side wall.
  • the setting of spiral groove can increase the firmness of fiber winding.
  • the setting of the hole-like structure can increase the flexibility of the shaft wire.
  • the longitudinal structure of the spiral groove reduces the hardness of the shaft wire.
  • the polymer tube can increase the stability and safety of the overall structure.
  • the hydrophilic/hydrophobic coating provided on the outside of the polymer tube can reduce the resistance of the vascular fiber guide wire in the blood and improve its biological phase. Capacitive.
  • the vascular fiber guide wire of the present invention is connected to a laser or other equipment through a memory alloy plug, so that the vascular fiber guide wire can be extended to achieve in vivo treatment, or it can be connected with a laser to introduce the laser into the vascular fiber guide wire to achieve treatment.
  • the memory alloy plug is connected with other jack kits, it is easy to insert and pull out, and the optical fiber can be rotated after insertion without affecting the coupling efficiency.
  • Fig. 1 is a schematic diagram showing the structure of a side-illuminated vascular optical fiber guide wire.
  • Figure 2 shows the development of the helix according to the side of the cylinder.
  • Figure 3 shows the relationship between fiber bending loss ⁇ c and ⁇ .
  • Figure 4 shows the relationship between ⁇ and z.
  • Figure 5 shows the power attenuation with z in the fiber.
  • Figure 6 shows the constant pitch and variable pitch optical fiber guide wire.
  • Figure 7a is a schematic diagram of the structure of the shaft filament.
  • Figure 7b is another schematic diagram of the structure of the shaft filament.
  • Figure 8 is a schematic cross-sectional view of an optical fiber guide wire.
  • Fig. 9 is a schematic structural diagram of a blood vessel optical fiber guide wire with a shape memory alloy plug according to the present invention.
  • FIG. 10 is a schematic diagram of the structure of the vascular fiber guide wire in FIG. 9.
  • FIG. 11 is a schematic diagram of the structure of the memory alloy plug in FIG. 9.
  • Fig. 12 is a cross-sectional view of the memory alloy plug in Fig. 9.
  • Figure 13 is a schematic diagram of the structure of the jack kit.
  • Figure 14 is a cross-sectional view of the memory alloy plug inserted into the jack kit.
  • Figure 15 is a cross-sectional view of the memory alloy plug inserted into the jack kit.
  • the side-illuminated blood vessel optical fiber guide wire of the present invention includes a light-conducting part for delivering laser light, one end of the light-conducting part (that is, the end that enters the human body) is connected with a light-emitting part capable of emitting light; the two are connected
  • a light-conducting part for delivering laser light
  • one end of the light-conducting part that is, the end that enters the human body
  • a light-emitting part capable of emitting light
  • the two are connected
  • the optical fiber in the light transmission part and the optical fiber in the light-emitting part are paired together to make All light energy is transmitted to the optical fiber of the light-emitting part, and the optical fiber is preferably integrally formed with high light transmission efficiency, which can be determined according to actual conditions.
  • the light-emitting part includes a metal shaft wire 2 and an optical fiber 1 surrounding the metal shaft wire.
  • the optical fiber 1 includes a core wire and a cladding that wraps the core wire.
  • the light conductivity of the cladding is lower than that of the core wire. Under normal circumstances, light can only be transmitted from the core wire and cannot be scattered through the cladding.
  • a light transmission device that confines the light transmitted in the core filament by comparing the refractive index of the core filament and the cladding (such as the core filament refractive index 1.5, the cladding refractive index 1.3).
  • the bending radius of the optical fiber 1 surrounding the metal shaft wire is smaller than the critical bending radius, the cladding cannot constrain the light transmitted in the core wire, resulting in light leakage from the side wall through the cladding When it comes out, it means side light emission; if the bending radius of the optical fiber surrounding the metal shaft wire is greater than the critical bending radius, the light is transmitted in the core wire and cannot leak out from the side wall through the cladding.
  • the bending radius can be different in different places. For example, the bending radius is smaller than the critical bending radius only where the side light is needed, and the other side is not needed. Where the light is emitted, the bending radius is greater than the critical bending radius.
  • light can be emitted from multiple places on the optical fiber, and even light can be emitted from every place on the optical fiber.
  • the length of the light-conducting part can be 0.1-2m, such as 1.6m, and the length of the light-emitting part can be 10-100mm, such as 50mm, depending on actual needs.
  • the bending radius R of the optical fiber comprises a value of the critical bending radius R C
  • the critical bending radius R c is light confinement cladding the core wire can be exactly transmitted, resulting in no light leaked from the sidewall The minimum radius.
  • the spiral pitch of the optical fiber is reduced, and the bending radius R of the optical fiber is reduced to be smaller than R c .
  • the pitch of the optical fiber surrounding the metal shaft wire is a variable amount. When the variable amount changes with the radial direction of the shaft wire to have an appropriate value, the intensity of the scattered light from the side remains unchanged, achieving the effect of uniform light emission from the side.
  • the bending loss at the bend of the optical fiber is the optical power of the light emitted from the curved side.
  • the relationship between the bending loss and the bending radius of the optical fiber please refer to formula I in the content of the invention.
  • the bending radius of the optical fiber is related to the angle between the helix of the optical fiber and the side of the cylinder with a radius of r, which is calculated according to formula II;
  • optical power emitted from the side of the optical fiber is calculated according to formula IV;
  • the specific light output (such as optical power, bending loss, etc.), bending radius, etc. can be calculated through different parameters, and the corresponding formula can be selected according to the parameters that need to be understood or calculated, which is convenient and quick.
  • the optical fiber 1 in this embodiment, it can be set to emit light only on one side of the light-emitting part, that is, when the optical fiber 1 is on the light-emitting side, its bending radius is smaller than the critical bending radius, then in each spiral coil, the light-emitting place is connected Together, a straight line parallel to the axis z of the optical fiber guide wire is formed, which is equivalent to that the light is distributed along the axis z of the optical fiber guide wire.
  • the light is emitted at the top of each spiral, that is, the position indicated by the light scattering point 3.
  • it is usually set to emit light along the axis z only on one or both sides of the optical fiber guide wire.
  • the structure of the light-conducting part of the optical fiber guide wire includes but is not limited to any one of 1)-5): 1)
  • the structure of the light-emitting part is the same, that is, it includes a conductive metal shaft wire and a surrounding conductive part
  • the conducting part of the metal shaft fiber, the conducting part of the fiber also includes the conducting part of the fiber core filament and the fiber cladding wrapped around the fiber core filament, but the bending radius of the conducting part of the fiber is larger than the critical bending radius, so that the light can only be confined in It is transmitted in the core of the optical fiber and cannot be scattered outside the cladding of the optical fiber, because the main function of the light transmission part is to transmit light. 2) Only the optical fiber of the conducting section is included.
  • the conducting section optical fiber includes an optical fiber core wire and an optical fiber cladding wrapped around the fiber core wire. Light can only be transmitted in the optical fiber core wire and scattered light from the end, and cannot emit light from the side. 3) Including the conductive fiber and the polymer layer or metal layer wrapped around the conductive fiber. 4) Including the conducting fiber and the metal wire spirally wound on the conducting fiber. Of course, the metal wire can be coated with a polymer layer. 5) It can be similar to any optical fiber structure involved in other patent technologies previously applied by the applicant.
  • Example 1 On the basis of Example 1, when the optical fiber 1 is bent, if the bending radius at the bend is less than a certain value R c (critical bending radius, the cladding can just constrain the light transmitted in the core wire, resulting in light not leaking from the side wall The cladding will not be able to constrain the light transmitted in the core wire, resulting in light leakage from the sidewall.
  • the present invention uses this principle to construct the structure of the optical fiber surrounding the metal shaft wire, and the light transmission part of the optical fiber guide wire does not require the side light emitting part.
  • the rotating pitch of the optical fiber is large, so that the bending radius is much larger than R c .
  • the light cannot be emitted from the cladding, but is constrained to be transmitted in the cladding; and in areas where light needs to be scattered, such as the head of an optical fiber guide wire, reduce the pitch of the optical fiber and reduce the bending radius of the optical fiber. Making it smaller than R c , light leaks from the cladding and radiates into the space from the outer side.
  • the pitch of the optical fiber surrounding the metal shaft wire is a variable. When this variable has an appropriate value with the change of the radial z of the shaft wire (see Figure 2), the intensity of the scattered light from the side remains unchanged, achieving the effect of uniform light emission from the side. .
  • the bending of the optical fiber causes light to escape from the cladding, and the escaped light reduces the optical power transmitted in the core wire, resulting in bending loss of the transmission power.
  • the loss per unit length is:
  • a and ⁇ n are the core filament radius and the refractive index difference between the core filament and the cladding, and u, W and V are the radial normalized phase constant, the radial normalized attenuation constant, and the normalized frequency, respectively.
  • the expressions are:
  • V ak 0 (n 1 -n 2 ) 1/2 ⁇ ak 0 (2n 2 ⁇ n) 1/2
  • ⁇ z is the propagation constant in the z direction.
  • the fiber wrap length L and the longitudinal length z are no longer in a linear relationship.
  • Our ultimate goal is to make light emission as uniform as possible along z, rather than uniform light emission along the fiber circumference L, so we need to transform the relationship between L and z.
  • the helix spirals around a cylinder with a radius of r, and the pitch is h. If the side of the cylinder is expanded into a plane, as shown in Figure 2b, the angle between the helix and the side of the cylinder is ⁇ . When this angle ⁇ changes, the pitch of the helix changes, and the radius of curvature R also changes.
  • the power attenuates linearly at a constant rate with the increase of z.
  • the attenuated light exits from the side of the fiber, and the emitted light power is a constant ratio to the distribution along the length z.
  • the output power at the exit end is 0W (all scattered)
  • the metal axis length of the spiral fiber is 50mm (0.05m)
  • the core fiber radius of the single-mode fiber is 4.5 ⁇ m
  • the cladding diameter is 125 ⁇ m
  • n 2 1.444687
  • the radius of the fiber surrounding the cylinder is 200 ⁇ m
  • the transmission wavelength is 652 nm.
  • the bending loss of the transmission power caused by the bending of the optical fiber around the metal shaft is the optical power of the light emitted from the curved side;
  • ⁇ c represents the power loss per unit length of the fiber, in dB; R represents the bending radius of the fiber, in mm; and A c represents and Parameters related to fiber structure, in units of ⁇ represents the core wire radius of the optical fiber, in ⁇ m; ⁇ c represents the cutoff wavelength of optical fiber transmission, in nm; ⁇ n represents the refractive index difference between the core wire and the cladding;
  • the bending radius of the optical fiber is related to the angle between the helix of the optical fiber and the side of the cylinder with a radius of r, which is calculated according to the following formula:
  • R represents the bending radius of the optical fiber
  • represents the angle between the helix and the side line of the cylinder
  • r represents the spiral winding radius of the optical fiber
  • z represents the longitudinal length of the optical fiber along the metal axis
  • represents the angle between the helix and the side line of the cylinder
  • ⁇ c represents the power loss per unit length of the single-mode fiber, in dB
  • s 1 represents the initial power
  • S 0 represents the rate of power attenuation.
  • P(z) represents the optical power emitted from the side of the optical fiber, that is, the distribution of the emitted optical power and the longitudinal length of the optical fiber along the metal axis; z represents the longitudinal length of the optical fiber along the metal axis; ⁇ represents the clamp between the helix and the side line of the cylinder Angle; ⁇ c represents the power loss per unit length of a single-mode fiber, in dB.
  • the pitch setting distance of the optical fiber is calculated according to the angle between the helix and the side line of the cylinder calculated according to formula II or formula III, and then calculated by formula V;
  • h represents the pitch of the optical fiber
  • r represents the radius of the helix of the optical fiber
  • represents the angle between the helix and the side line of the cylinder.
  • the length of the light-conducting part of the optical fiber guide wire is 1.6m
  • the distance from the top 50mm is the beginning of the side light-emitting structure
  • Fig. 5 shows the power attenuation in the optical fiber 1 caused by the light exiting from the cladding due to the above-mentioned variable-pitch spiral fiber design, making the fiber bend radius gradually smaller. This shows that the exit rate of light along z is constant.
  • the pitch is set to a value much larger than the critical bending radius R c ;
  • the pitch is set to gradually decrease, and the changing value is in accordance with the relationship shown in Figure 4.
  • the top will emit constant intensity scattered light along the sidewall.
  • the diameter of the metal shaft wire 2 can be 50 ⁇ m-1mm thick.
  • a spiral groove 5 as shown in Figure 7 can be processed on the metal shaft wire 2, and the optical fiber 1 can be embedded in the spiral shape. In the groove 5.
  • a hole-like structure as shown in FIG. 7 (specifically, the hole 6) can be processed on the side of the metal shaft wire 2 to reduce the hardness of the metal shaft wire 2.
  • the longitudinal structure spiral groove 7 as shown in FIG. 7 can also be processed to reduce the hardness of the metal shaft wire 2.
  • the outer layer of the optical fiber guide wire can be wrapped with a polymer sleeve to increase the stability and safety of the overall structure, and the polymer sleeve can also have a hydrophilic and/or hydrophobic coating 8 to reduce the vascular fiber
  • the resistance of the guide wire in the blood improves its biocompatibility.
  • the polymer material used in the polymer material sleeve is selected from at least one of polyethylene, polyvinyl chloride, epoxy resin, aliphatic polyester, chitin and polylactic acid
  • the material of the optical fiber 1 in the present invention can be a quartz optical fiber, a polymer optical fiber or a glass optical fiber.
  • the material of the cladding can also be quartz, etc., as long as the refractive index is lower than that of the optical fiber, so that the light can only be transmitted in the optical fiber and will not be emitted from the cladding.
  • the material of the metal shaft wire 2 in the present invention can be stainless steel, aluminum alloy, titanium alloy or nickel-titanium alloy, and can also be carbon fiber, polymer material and the like.
  • the polymer material used is selected from at least one of polyethylene, polyvinyl chloride, epoxy resin, aliphatic polyester, chitin and polylactic acid.
  • the other end (that is, the end outside the body) of the light conducting portion 21 is connected to a memory alloy plug 22.
  • the arrangement of the memory metal plug 22 allows the blood vessel fiber guide wire to be connected with other optical fibers to achieve extension, or to facilitate the connection of the blood light fiber guide wire with the laser to realize the laser introduction into the light conducting portion 21.
  • FIG. 9 it is a schematic diagram of the vascular fiber guide wire with a memory alloy plug according to the present invention.
  • One end of the light-conducting part 21 is connected with the light-emitting part 20, and the other end is connected with a memory alloy plug 22, and the overall shape of the light-conducting part 21 may be cylindrical or similar.
  • the structure of the light conducting portion 21 is shown in FIG. 10, and the memory alloy plug 12 is shown in FIG. 11.
  • the light conducting part 21 includes a conducting part optical fiber 210, and the conducting part optical fiber 210 includes an optical fiber core wire 23 and an optical fiber cladding 24.
  • the memory alloy plug 22 is composed of a handle 27, a fixing groove 28 and a sleeve 29.
  • the handle 27 is a hand-held operating part.
  • the radius of the connecting section between the fixing groove 28 and the handle 27 is larger than the radius of the connecting section with the sleeve 29, that is, the fixing groove 28 is from one end (that is, the end connected with the handle 27) to the other end ( That is, the end connected to the sleeve 29) has a truncated cone-shaped structure with successively reduced outer diameters.
  • the end connected to the handle 27 has a large diameter, and the end connected to the sleeve 29 has a small diameter.
  • the fixing groove 28 is used to cooperate with the external plug-in. To the locking effect.
  • the sleeve 29 is provided with an elastically deformable spiral structure 9 which can be set in the middle of the sleeve 29, that is, the sleeve 29 is divided into two parts, and the elastically deformable spiral structure 9 is just set between the two parts.
  • the spiral structure 9 is a spiral structure composed of multiple spiral turns, which is made by spirally cutting memory alloy materials, such as nickel-titanium alloy or copper-zinc alloy. The use of memory alloy makes its elastic shape change large and can be reused More times.
  • the conducting portion optical fiber 210 penetrates the memory metal plug 22, that is, the memory metal plug 22 is wrapped around the conducting portion optical fiber 210. As shown in FIG. 12, it is preferable that there is a distance between the conducting portion optical fiber 210 or the periphery of the light conducting portion 21 and the sleeve 29. With a small gap, when the sleeve 29 is compressed and stretched, the sleeve 29 shell slides longitudinally along the optical fiber guide wire 21 or the optical fiber of the conducting part.
  • the memory alloy plug 22 can be inserted into the jack kit.
  • the jack kit includes a main body 10; along the axial direction of the main body 10, a connecting optical fiber 14 is provided at the inner axis of one end of the main body 10, and the main body
  • the other end of 10 is a cavity 12 capable of accommodating the memory metal plug 22, so that when the memory alloy plug 22 extends into the cavity, the conducting part optical fiber wrapped at the axis of the memory alloy plug 22 coincides with the connecting optical fiber 14 , So that the optical fiber of the conducting part is in contact with or close to the connecting optical fiber 14, light can be transmitted from the connecting optical fiber 14 to the optical fiber of the conducting part, and the transmission efficiency is high.
  • An elastic pin 11 is sleeved on the main body 10. When the memory alloy plug 22 extends into the cavity 12 of the main body 10, the elastic pin 11 can be clamped on the fixing groove 28 to be fixed with the memory metal plug 22.
  • the elastic pin 11 includes a connecting portion 110 that can be connected to the main body 10, both ends of the connecting portion 110 are symmetrically connected with elastic portions 111, and the ends of the two elastic portions 111 are inward.
  • a fixing portion 112 is provided, the fixing portion 112 is parallel to the connecting portion 110, and the two elastic portions 111 are inward in order from the rear end (that is, the end connected to the connecting portion) to the front end (that is, the end connected to the fixing portion) Inclined to form an elastic pin 11 with a small diameter at one end of the fixing part and a large diameter at one end of the connecting part 110.
  • the main body 10 penetrates the elastic pin from the connecting portion 110 and passes out between the two fixed portions 112 at the small-diameter end of the elastic pin, and the main body 10 in the elastic pin is sleeved with a rolling ring 13 to roll
  • the ring 13 can roll or slide along the main body 10, and the rolling ring 13 moves on the main body 10 to deform the elastic pin 11 to insert or release the memory alloy plug 22.
  • the main body 10 is provided with two opposite openings 16 penetrating the inner and outer sides of the cavity, and the two openings 16 are respectively provided corresponding to the two fixing portions 112,
  • the two fixing portions 112 are respectively located in the openings 16 on both sides of the main body 10, and the rolling ring 13 is located at the large diameter end of the elastic pin.
  • the inner diameter of the large diameter end of the elastic pin 11 is the same. Since the elastic pin 11 is a flat cone structure or a flat truncated cone-shaped structure, its inner diameter is also small at the front end and large at the rear end.
  • the end surface of the fixing portion 112 is an inclined surface that matches the fixing groove 28, that is, it is inclined inward from front to back to form a structure with a large front end and a small rear diameter.
  • the inclined surfaces (that is, the end surfaces) of the two fixing parts 112 are exactly located in the fixing groove 28, and the fitting is good and the fixing is stable.
  • the internal axis of the main body 10 has a connecting optical fiber 14.
  • the memory alloy plug 22 is inserted into the cavity 12 of the jack kit, when the sleeve 29 passes through the opening 16, the The fixing portion 112 is pushed up, and the fixing portion 112 drives the elastic portion 111 to bounce up. That is, the elastic pin 11 is pushed by the sleeve 29 to expand, and the sleeve 29 of the memory alloy plug 22 enters the socket 12.
  • the pitch of the elastically deformable spiral structure 9 on the memory alloy plug 22 shrinks under pressure, and the fixing groove 28 is exactly located at the opening 16, and the fixing portion 112 is just larger than the clamping In the fixing groove 28, the elastic pin 11 is clamped to the fixing groove 28 on the memory metal plug 22, so that the optical fiber of the conducting part inside the optical fiber guide wire and the connecting optical fiber 14 in the jack kit are connected to achieve coupling.
  • the inclined surface of the fixing portion 112 is inclined inward sequentially from front to back, which also facilitates the sleeve 29 to smoothly pass through the opening and lift the fixing portion 112 up.
  • the connecting optical fiber 14 is connected to the laser.
  • one end of the light-emitting part of the optical fiber guide wire enters the body, usually through the blood vessel into the affected part of the human body, such as liver tumor tissue; then the laser emits laser light, which is transmitted to the conducting fiber through the connecting optical fiber 14. , And then transmit the light from the optical fiber of the conductive part to the optical fiber of the light-emitting part, and the optical fiber of the light-emitting part emits light to the affected part of the human body to realize treatment.
  • the laser When the laser treatment is completed, the laser is turned off and the rolling ring 13 is pushed toward the fixed portion 112 to force the elastic pin 11 to open, and the memory alloy plug 22 is ejected from the cavity 12 under the action of the elastic deformation spiral elastic force.
  • the memory alloy plug compared to ordinary metal plugs, the memory alloy plug has a larger elastic shape change, more repeated uses, and the same accuracy.
  • the fit structure composed of the spiral and the elastic pin in the elastically deformable spiral structure 9 has elasticity to ensure the strength of the precise fit of the optical fiber, and it will not be fatigued and broken under multiple use conditions. The overall effect is good.
  • a metal tube 25 is provided in the center of the memory alloy plug 22.
  • the metal tube 25 extends in the direction of the light-conducting part and is wrapped around the optical fiber of the conducting part.
  • the guide wire 21 protects and supports.
  • the spiral tube 30 has a polymer coating 26 on the outside, which increases the lubricity and biocompatibility of the light conducting portion 21 in the blood and reduces resistance.
  • the metal tube 25 can be wrapped outside the entire conductive fiber (or the light conductive part 21) that penetrates inside the memory metal plug. At this time, a small gap is provided between the sleeve 29 and the metal tube 25. So that when the sleeve 29 is compressed and stretched, the sleeve 29 shell slides along the metal pipe 25.
  • the blood vessel optical fiber guide wire is connected to a laser or other optical fiber or equipment through a shape memory alloy plug.
  • the operation of inserting and pulling out the elastic pin 11 of the shape memory alloy plug is convenient, and the optical fiber can be rotated after insertion without affecting the coupling efficiency.
  • the metal tube is spirally cut to form a spiral tube, which protects and supports the optical fiber in the conducting part.
  • both the bending radius R and the critical bending radius R c are concepts in the prior art, R c belongs to or included in R, and R c is a special value in R.
  • the bending radius is the radius of curvature. In layman's terms, a very small section of the curve is replaced by a circular arc. The radius of this circle is the bending radius.
  • the critical bending radius R c in the present invention can be widely understood as the minimum bending radius at which the cladding can restrain the light transmitted in the core wire and cause light not to leak from the side wall. As long as it is smaller than this radius, the light will leak out. .

Abstract

本发明公开了一种新型的血管光纤导丝。它包括金属轴丝和环绕所述金属轴丝的光纤;所述光纤包括芯丝和包裹所述芯丝的包层。上述的血管光纤导丝中,在所述的光纤导丝进行光传导的部分,所述光纤环绕所述金属轴丝的弯曲半径大于临界弯曲半径;在所述的光纤导丝进行光散射出来的区域,所述光纤环绕所述金属轴丝的弯曲半径小于临界弯曲半径。本发明能够通过经皮穿刺技术进入血管,在血管中通过医学影像设备引导,并在头部进行侧面发光的光纤导丝。

Description

一种新型的血管光纤导丝 技术领域
本发明属于医疗和光学领域,其涉及一种新型的血管光纤导丝,尤其涉及一种侧面发光的血管光纤导丝。
背景技术
目前,Seldinger动脉插管技术已经非常成熟。该技术在临床影像医学(X-ray、CT、MR、B-us等)引导下,通过经皮穿刺血管途径或人体原有孔道,将特制的导管、导丝等细微器械插至病变部位进行诊断性造影和治疗。该技术采用金属导丝经皮穿刺血管途径进入血管抵达病变部位,该方法操作简单、损伤小、无需缝合血管,完全替代了以往手术切开暴露血管的方法,成为现代介入放射学的基本操作技术,在肿瘤的供血栓塞与药物灌注、动脉内照射、放射性损伤的预防、化疗、术前栓塞肿瘤血管、血管作用性药物及酒精等灌注取得了较好的效果。但是,由于受限于治疗方式的局限性,基本上以栓塞造成组织缺血缺氧坏死或灌注药物抑止细胞生长或释放植入医疗器械改变器官组织形态为主,无法将光引入血管及体内或引出血管及体外。
肿瘤光动力疗法与手术、化疗、放疗等常规治疗手段相比,具有创伤小、毒性低微、靶向性好、适用性好的诸多优点,但是光照方式局限于体表或较粗的孔道,由于受到激光发射机制和光敏剂药物性能的限制,其光动力仅有几毫米作用范围,大大限制了其在医学领域的应用。
光纤在医疗领域用于将光从光源引导至病灶部位,广泛应用于光动力治疗、外科手术止血和肿瘤激光热疗。由于光纤端面一般仅有几微米至百微米量级,出射的激光对组织的照射面积很小,需要一种匀光装置将激光均匀分布在病灶部位。一般来说,对匀光装置的要求为沿侧面出光,均匀发光长度为5mm-50mm左右,并且要足够细以利于在穿刺针、内窥镜等装置中使用。
目前已有多种散射型侧面发光匀光装置,通过光芯丝中的散射体(例如粉末、小球、光栅等)将光散射出光纤侧面。例如美国专利U.S.Pat Nos.5196005和5330465在光纤尾部的二氧化硅芯层中埋入了散射体粉末,并且散射体粉末的浓度随着长度增加而增加。U.S.Pat Nos.5269777中的散射体粉末选择在光纤的外包层中掺入,而不是掺杂在光芯丝层中。U.S.PatNo.4986628采用了聚合物中掺入散射体的办法。美国专利U.S.Pat Nos.6398778B1采用了在光纤中制作光纤光栅对光进行散射,光纤光栅是type II型布拉格光栅,通过光栅引起折射率调制将光沿光纤侧向散出。U.S.Pat No.5207669提出了将多模光纤的外包层沿光纤长度方向逐渐减薄的方式构成。由于外包 层的减薄,光芯丝中传输的部分光通过疏逝波的方式向侧面耦合发出,剩下的继续在芯层中传输并持续耦合出光纤。
以上种种构成匀束器的办法具有一些不足点,包括制作特殊掺杂浓度的散射体和渐变规格的光纤光栅需要较高的加工工艺,不可避免的造成造价的上升;部分散射体结构在光强较强的时候容易产生热吸收导致的破损,从而破坏匀光器功能;这些散射体的直径一般较大,不能够进行人体血管之中并通过导管进行引导。
发明内容
本发明的目的是提供一种新型的血管光纤导丝,本发明能够通过经皮穿刺技术进入血管,在血管中通过医学影像设备引导,并在头部进行侧面发光的光纤导丝。
本发明提供的一种侧面发光的血管光纤导丝,该光纤导丝包括光传导部和发光部;二者相互连接。
所述发光部包括金属轴丝和环绕所述金属轴丝的光纤;所述光纤包括芯丝和包裹所述芯丝的包层。
上述的血管光纤导丝中,所述发光部的位置可为光纤导丝中,距离顶端50mm处。
在所述发光部中,若所述光纤环绕所述金属轴丝的弯曲半径小于临界弯曲半径时,包层便不能够约束芯丝中传输的光,导致光从侧壁穿过包层泄露出来;若所述光纤环绕所述金属轴丝的弯曲半径大于临界弯曲半径时,光在芯丝中传输,无法穿过包层从侧壁泄露出来。
本发明中,具体地一个例子中所述的光纤导丝的光传导部长度为1.6m,距离顶端50mm处是侧面发光结构,即发光部。
本发明中,所述光纤是一种通过芯丝和包层的折射率对比对传输于芯丝中的光进行约束的光传导器件;
所述光纤的弯曲半径中包含所述临界弯曲半径R c的值,所述临界弯曲半径R c为包层恰好能够约束芯丝中传输的光,导致光不从侧壁泄露出来的最小半径。具体地,在所述光纤导丝的光传导部,所述光纤的旋转螺距较大,使其弯曲半径远远大于R c,光被约束于所述包层中传输;而在需要将光散射出来的区域,例如光纤导丝的头部(即所述发光部),将所述光纤环绕的螺距减小,减小光纤的弯曲半径,使其小于R c,光从所述包层中泄漏并从外部侧面散发到空间中。光纤环绕金属轴丝的螺距是一个可变量,当这个可变量随轴丝径向的改变具有合适数值时,从侧面散射光的强度保持不变,达到侧面均匀发光的效果。
上述的血管光纤导丝中,所述光纤由于环绕所述金属轴丝的弯曲造成传输功率的弯曲损耗为光从弯曲侧面出射的光功率;
单模光纤的弯曲损耗与所述光纤的弯曲半径的关系,按照如下式Ⅰ计算:
α c=A cR -1/2ex p(-UR)     式Ⅰ
其中,
Figure PCTCN2019105112-appb-000001
Figure PCTCN2019105112-appb-000002
式Ⅰ、式Ⅰ-1、式Ⅰ-2中,α c表示单模光纤每单位长度的损耗功率,单位为dB;R表示光纤的弯曲半径,单位为mm;A c表示与光纤结构有关的参数,单位为
Figure PCTCN2019105112-appb-000003
α表示光纤的芯丝半径,单位为μm;λ c表示光纤传输的截止波长,单位为nm;Δn表示芯丝-包层的折射率差;
式Ⅰ-1中,
Figure PCTCN2019105112-appb-000004
k 0为真空波数,λ表示光纤的传输波长;
Figure PCTCN2019105112-appb-000005
n 1、n 2分别表示光纤的芯丝、包层的折射率;V c表示截止频率,V c=2.40483。
上述的血管光纤导丝中,所述光纤的弯曲半径和所述光纤螺旋线与螺旋线旋绕半径为r的圆柱体侧边线的夹角有关,按照如下式Ⅱ计算:
Figure PCTCN2019105112-appb-000006
式Ⅱ中,R表示所述光纤的弯曲半径,θ表示螺旋线与圆柱体侧边线的夹角,r表示所述光纤的螺旋线旋绕半径;
所述光纤环绕的纵向长度和所述光纤螺旋线与螺旋线旋绕半径为r的圆柱体侧边线的夹角关系,按照如下式Ⅲ计算:
Figure PCTCN2019105112-appb-000007
式Ⅲ中,z表示光纤沿金属轴的纵向长度,θ表示螺旋线与圆柱体侧边线的夹角;α c表示单模光纤每单位长度的损耗功率,单位为dB;s 1表示初始功率,s 0表示功率衰减的速率。
上述的血管光纤导丝中,根据式Ⅲ计算得到的θ(z),带入如下式Ⅳ计算所述光纤侧面出射的光功率;
Figure PCTCN2019105112-appb-000008
P(z)表示光纤侧面出射的光功率,即出射的光功率与光纤沿金属轴的纵向长度的 分布;z表示光纤沿金属轴的纵向长度;θ表示螺旋线与圆柱体侧边线的夹角;α c表示单模光纤每单位长度的损耗功率,单位为dB。
上述的血管光纤导丝中,所述光纤的螺距设定距离,根据式Ⅱ或式Ⅲ计算得到的螺旋线与圆柱体侧边线的夹角,带入式Ⅴ计算得到;
h=2πr·cot(θ)   式Ⅴ
式Ⅴ中,h表示所述光纤的螺距,r表示所述光纤的螺旋线旋绕半径;θ表示螺旋线与圆柱体侧边线的夹角。
上述的血管光纤导丝中,所述金属轴丝的直径可为50μm~1mm;
为了增加所述光纤缠绕的牢固程度,所述金属轴丝上设置螺旋形凹槽,将所述光纤嵌入所述螺旋形凹槽中;
上述的血管光纤导丝中,为了增加所述金属轴丝的柔韧性,所述金属轴丝上设置孔状结构,降低所述金属轴丝的硬度;
所述的光纤导丝外层还包裹一层聚合物材料套管,增加整体结构的稳定性和安全性。
本发明中,所述聚合物材料套管采用的聚合物材料选自聚乙烯、聚氯乙烯、环氧树脂、脂肪族聚酯、甲壳素和聚乳酸中的至少一种。
上述的血管光纤导丝中,所述金属轴丝于设置螺旋形凹槽相对的侧面上设置纵向结构螺旋凹槽,以降低所述金属轴丝的硬度;
在所述聚合物材料套管外设置具有亲水和/或疏水涂层,减小血管光纤导丝在血液中的阻力,提高其生物相容性。
上述的血管光纤导丝中,所述光纤的材料选自石英光纤、聚合物光纤和玻璃光纤中的至少一种;
所述金属轴丝材料选自不锈钢、铝合金、钛合金、镍钛合金、碳纤维和聚合物材料中的至少一种。
本发明中,所述金属轴丝材料采用的聚合物材料选自聚乙烯、聚氯乙烯、环氧树脂、脂肪族聚酯、甲壳素和聚乳酸中的至少一种。
本发明中,所述光传导部的一端和发光部连接,另一端连接有能够与激光器或其它光纤连接的插头,该插头优选为记忆合金插头。
本发明具有以下优点:
1、本发明光纤环绕金属轴丝的螺距是一个可变量,当这个可变量随轴丝径向z的改变设置合适数值时,从侧面散射光的强度保持不变,达到侧面均匀发光的效果。
2、在光纤导丝的主体光传导部分,不需要将光从包层中泄漏出来,将螺距设定为 远大于临界弯曲半径R c的值;而在光纤导丝的顶部,比如距离顶端50mm处,将螺距设定为逐渐减小,变化的数值按照如图4所示的关系,顶端将沿侧壁出射恒定强度的散射光。
3、螺旋形凹槽的设置能增加光纤缠绕的牢固程度。
4、孔状结构的设置能增加轴丝的柔韧性。
5、纵向结构螺旋凹槽降低轴丝的硬度。
6、聚合物材料套管,增加整体结构的稳定性和安全性,在聚合物套管外设置的亲水/疏水涂层,能减小血管光纤导丝在血液中的阻力,提高其生物相容性。
7、本发明血管光纤导丝通过记忆合金插头与激光器或其他设备相连,从而可将血管光纤导丝延长能够实现体内治疗,或者与激光器等连接从而将激光引入血管光纤导丝中实现治疗,采用记忆合金插头与其它插孔套件连接时,插入和拔出操作方便,在插入后还可进行光纤旋转操作而不影响耦合效率。
附图说明
图1为侧面发光的血管光纤导丝结构示意图。
图2为螺旋线按照圆柱体侧面的展开。
图3为光纤弯曲损耗α c与θ的关系。
图4为θ与z的关系。
图5为功率在光纤中随z的衰减。
图6为恒定螺距和变化螺距的光纤导丝。
图7a为轴丝的结构示意图。
图7b为轴丝的另一个结构示意图。
图8为光纤导丝的横截面示意图。
图9为本发明带有记忆合金插头的血管光纤导丝的结构示意图。
图10为图9中血管光纤导丝的结构示意图。
图11为图9中记忆合金插头的结构示意图。
图12为图9中记忆合金插头剖面图。
图13为插孔套件的结构示意图。
图14为记忆合金插头插入插孔套件插入时的剖面图。
图15为记忆合金插头插入插孔套件完成后的剖面图。
图1-15中的附图标记如下:
1、光纤;2、金属轴丝;3、光散射点;4、螺距;5、螺旋形凹槽;6、孔;7、结构螺旋凹槽;8、聚合物和/或疏水涂层;9、弹性形变螺旋结构;10、主体;11、弹性 销;12、空腔;13、滚环;14、连接光纤;16、开孔。20、发光部;21、光传导部;22、记忆合金插头;23、光纤芯丝;24、光纤包层;25、金属管;26、聚合物涂层;27、手柄;28、固定凹槽;29、套管;30、螺旋管;110、连接部;111、弹性部;112、固定部;210、传导部光纤。
具体实施方式
下述实施例中所使用的实验方法如无特殊说明,均为常规方法。
下述实施例中所用的材料、试剂等,如无特殊说明,均可从商业途径得到。
实施例1
如图1所示,为本发明的基本原理结构图。本发明侧面发光的血管光纤导丝,其包括用于输送激光的光传导部,所述光传导部的一端(即进入人体内部的一端)连接有能够将光发射出来的发光部;二者连接的方式很多,如焊接、一体成型、可拆装连接等等均可,现有技术中的常用连接方式均可,且光传导部中的光纤和发光部的光纤是对合在一起的以使光能全部传输至发光部的光纤中,光纤优选一体成型,光传导效率高,具体可根据实际情况而定。
发光部包括金属轴丝2和环绕所述金属轴丝的光纤1。光纤1包括芯丝和包裹芯丝的包层,包层的光传导率小于芯丝,则正常情况下,光只能从芯丝中传导,而无法穿过包层散射出去,这是一种通过芯丝和包层的折射率(如芯丝折射率1.5,包层折射率1.3)对比对传输于芯丝中的光进行约束的光传导器件。
在所述发光部中,若所述光纤1环绕所述金属轴丝的弯曲半径小于临界弯曲半径时,包层便不能够约束芯丝中传输的光,导致光从侧壁穿过包层泄露出来,即为侧面发光;若所述光纤环绕所述金属轴丝的弯曲半径大于临界弯曲半径时,光在芯丝中传输,无法穿过包层从侧壁泄露出来。在实际应用中,发光部中的光纤在金属轴丝外围螺旋缠绕时,其不同地方的弯曲半径可以不同,如,只在需要侧出光的地方使其弯曲半径小于临界弯曲半径,其它不需要侧出光的地方,其弯曲半径均大于临界弯曲半径。当然,也可以根据需要,使得在光纤的多处地方均可出光,甚至是光纤的每个地方均可出光。
光传导部的长度可为0.1~2m,如1.6m,发光部的长度可为10-100mm,如50mm,具体根据实际需要而定。
在本实施例中,光纤的弯曲半径R中包含所述临界弯曲半径R c的值,临界弯曲半径R c为包层恰好能够约束芯丝中传输的光,导致光不从侧壁泄露出来的最小半径。具体地,在发光部中,将所述光纤环绕的螺距减小,减小光纤的弯曲半径R,使其小于R c,光从所述包层中泄漏并从外部侧面散发到空间中。光纤环绕金属轴丝的螺距是一个可变量,当这个可变量随轴丝径向的改变具有合适数值时,从侧面散射光的强度保 持不变,达到侧面均匀发光的效果。
在本实施例中,光纤弯曲处的弯曲损耗为光从弯曲侧面出射的光功率,弯曲损耗与所述光纤的弯曲半径的关系参见发明内容中的公式Ⅰ;
光纤的弯曲半径和光纤螺旋线与螺旋线旋绕半径为r的圆柱体侧边线的夹角有关,按照公式Ⅱ计算;
光纤环绕的纵向长度和光纤螺旋线与螺旋线旋绕半径为r的圆柱体侧边线的夹角关系,按照公式Ⅲ计算:
光纤侧面出射的光功率按照公式Ⅳ计算;
式Ⅰ~Ⅳ参见发明内容中的具体公式。通过这些公式,能够通过不同的参数计算具体的出光(如光功率、弯曲耗损等)、弯曲半径等等,具体根据所需要了解或计算的参数来选择对应的公式便可,方便快捷。
另外,在本实施例中,可设置为只在发光部的一侧出光,即光纤1在出光的这一侧时,其弯曲半径小于临界弯曲半径,则每个螺旋圈中,出光的地方连接在一起形成了一个与光纤导丝的轴线z平行的直线,相当于出光是沿着光纤导丝的轴线z分布。参见图1,出光的地方均在每个螺旋圈的顶部,即光散射点3指示的位置。在实际应用中,通常设置为只在光纤导丝的一侧或两侧沿着轴线z出光。
在本实施例中,光纤导丝的光传导部的结构包括但不限于1)-5)中的任一种:1)与发光部的结构一样,即包括传导部金属轴丝和环绕传导部金属轴丝的传导部光纤,传导部光纤同样包括传导部光纤芯丝和包裹在光纤芯丝外围的光纤包层,但传导部光纤的弯曲半径都大于临界弯曲半径,使得光只能被约束在光纤芯丝中传输,而无法散射出光纤包层外,因为光传导部的主要作用是传导光。2)仅包括传导部光纤,该传导部光纤包括光纤芯丝和包裹在光纤芯丝外围的光纤包层,光只能在光纤芯丝中传输,并从端头散射出光,不能侧面发光。3)包括传导部光纤及包裹在传导部光纤外的聚合物层或金属层。4)包括传导部光纤及螺旋缠绕在传导部光纤外的金属丝,当然,金属丝外还可涂覆聚合物层等。5)可与本申请人在先申请的其它专利技术中涉及到的任意一种光纤结构类似。为了与发光部中的光纤、芯丝、包层等名词区别开来,在本段关于光传导部的结构中,采用了传导部光纤、光纤芯丝、光纤包层等词来限定光传导部中的光纤结构,以免混淆。
实施例2
在实施例1的基础上,当光纤1弯曲时,如果弯曲处的弯曲半径小于一定值R c(临界弯曲半径,包层恰好能够约束芯丝中传输的光,导致光不从侧壁泄露出来的最小半径),包层将不能够约束芯丝中传输的光,导致光从侧壁泄露出来。本发明利用此原理构成光纤环绕金属轴丝的结构,则在光纤导丝进行光传导的部分,既不需要侧面出光 的部分,光纤的旋转螺距较大,使其弯曲半径远远大于R c,光无法从包层中射出,而被约束于包层中传输;而在需要将光散射出来的区域,例如光纤导丝的头部,将光纤环绕的螺距减小,减小光纤的弯曲半径,使其小于R c,光从包层中泄漏并从外部侧面散发到空间中。光纤环绕金属轴丝的螺距是一个可变量,当这个可变量随轴丝径向z(参见图2)的改变具有合适数值时,从侧面散射光的强度保持不变,达到侧面均匀发光的效果。
光纤由于弯曲造成光从包层中逸出,逸出光减小了芯丝中传输的光功率,造成传输功率的弯曲损耗。
根据单模光纤的弯曲损耗计算公式(1),每单位长度的损耗为:
α c=A cR -1/2exp(-UR)     (1)
其中,
Figure PCTCN2019105112-appb-000009
Figure PCTCN2019105112-appb-000010
a和Δn分别是芯丝半径和芯丝-包层的折射率差,u、W和V分别为径向归一化相位常数、径向归一化衰减常数、归一化频率。其表达式分别为:
Figure PCTCN2019105112-appb-000011
Figure PCTCN2019105112-appb-000012
V=ak 0(n 1-n 2) 1/2≈ak 0(2n 2Δn) 1/2
其中k 0为真空波数:
Figure PCTCN2019105112-appb-000013
β z是z方向的传播常数。
根据光纤的传输方程,可以得到光纤传输的一些特征参数:
截止频率V c=2.40483
截止波长:
Figure PCTCN2019105112-appb-000014
将V和W采用上述特征参数表示为:
Figure PCTCN2019105112-appb-000015
Figure PCTCN2019105112-appb-000016
从而得到U的近似表达式:
Figure PCTCN2019105112-appb-000017
其单位为m -1
另外,
Figure PCTCN2019105112-appb-000018
可以简化为
Figure PCTCN2019105112-appb-000019
Figure PCTCN2019105112-appb-000020
其单位为
Figure PCTCN2019105112-appb-000021
这样就获得了单模光纤的弯曲损耗公式与弯曲半径R的关系。
假设光纤的长度为L,由于弯曲损耗,出射功率与入射功率的关系为:
Figure PCTCN2019105112-appb-000022
这里将以10为底的对数log变换为自然对数ln。其中P(0)为入射光功率,P(L)为出射光功率。于是有:
Figure PCTCN2019105112-appb-000023
当α c由于螺距改变而随着长度L变化时,上式的微分形式为:
Figure PCTCN2019105112-appb-000024
另外,由于螺距的变化,光纤环绕长度L与纵向长度z不再是线性关系。我们的最终目的是使得沿z发光尽量均匀,而不是沿光纤环绕长度L发光均匀,因此需要对L和z的关系进行变换。
如图2a所示,螺旋线旋绕半径为r的圆柱体进行螺旋,螺距为h。如果将此圆柱体的侧面展开为平面,如图2b所示,螺旋线与圆柱体侧边线的夹角为θ。当此θ角变化时,螺旋线的螺距变化,并且曲率半径R也发生变化。
螺旋线的曲率半径与螺距h和环绕半径r的关系为:
Figure PCTCN2019105112-appb-000025
由于h=2πr·cot(θ),因此
Figure PCTCN2019105112-appb-000026
这样,光纤的曲率半径R,或者说α c仅与变量角度θ有关,并且L与z有如下关系:
dl=cos(θ)dz
于是有:
Figure PCTCN2019105112-appb-000027
这里将L和θ都最终表示为z的函数。
最终实现的光纤中功率变化的效果为:
Figure PCTCN2019105112-appb-000028
功率随着z的增加而以恒定速率线性衰减,衰减的光从光纤侧面出射,出射的光功率与沿长度z的分布为一个恒定的比率。
将上式进行积分,得到:
P(z)=-s 0·z+s 1
上式的物理意义为:在z=0时,初始功率为s 1,功率衰减的速率为s 0。将(4)式的微分公式变化一下形式:
dP(z)=-s 0dz
并对照(3)式,得到如下等式:
Figure PCTCN2019105112-appb-000029
再将P(z)的表达式带入上式,获得:
Figure PCTCN2019105112-appb-000030
上式是θ(z)函数关于变量z的隐函数的超越公式,通过数值解可获得θ(z)与z的关系。
具体的,以如下参数说明上述设计过程:
假设激光在光纤入射端功率为1W,即P(0)=1,在出射端出射功率为0W(全部散射出来),螺旋光纤的金属轴心长度为50mm(0.05m),P(z=0.05)=0,
可得到s 0=20,s 1=1。
单模光纤的芯丝半径4.5μm,包层直径125μm,折射率分别为n 1=1.445593,n 2=1.444687,光纤环绕圆柱形的半径为200μm,传输波长为652nm。
根据上述参数,如果将光纤螺旋的θ角由0变为8度,如图3所示,则损耗在4度附近出现急剧上升,利用这个损耗的巨大变化,将光线从芯丝中散射出来。
将上述参数带入(6)式中,通过数值算法(例如二分法或迭代法)求得每一个z对应的θ值,如图4所示。
按照图4所计算出来的数据设定光纤沿轴心旋转的角度θ,就可获得一个螺距变化的螺旋形光纤形状。
根据公式(5),获得功率的变化形式:
Figure PCTCN2019105112-appb-000031
将上面计算得到的θ(z)关系带入上式,获得如图5所示功率与z的关系。
通过上述得出:
1、光纤由于环绕金属轴丝的弯曲造成传输功率的弯曲损耗为光从弯曲侧面出射的光功率;
单模光纤的弯曲损耗与光纤的弯曲半径的关系,按照如下式(1)计算:
α c=A cR -1/2exp(-UR)    (1)
其中,
Figure PCTCN2019105112-appb-000032
Figure PCTCN2019105112-appb-000033
式(1)、式(1)-1、式(1)-2中,α c表示光纤每单位长度的损耗功率,单位为dB;R表示光纤的弯曲半径,单位为mm;A c表示与光纤结构有关的参数,单位为
Figure PCTCN2019105112-appb-000034
α表示光纤的芯丝半径,单位为μm;λ c表示光纤传输的截止波长,单位为nm;Δn表示芯丝-包层的折射率差;
式(1)-1中,
Figure PCTCN2019105112-appb-000035
k 0为真空波数,λ表示光纤的传输波长;
Figure PCTCN2019105112-appb-000036
n 1、n 2分别表示光纤的芯丝、包层的折射率;V c表示截止频率,V c=2.40483。
2、光纤的弯曲半径和光纤螺旋线与螺旋线旋绕半径为r的圆柱体侧边线的夹角有关,按照如下式计算:
Figure PCTCN2019105112-appb-000037
上式中,R表示光纤的弯曲半径,θ表示螺旋线与圆柱体侧边线的夹角,r表示光纤的螺旋线旋绕半径;
3、光纤环绕的纵向长度和光纤螺旋线与螺旋线旋绕半径为r的圆柱体侧边线的夹角关系,按照如下式Ⅲ计算:
Figure PCTCN2019105112-appb-000038
式Ⅲ中,z表示光纤沿金属轴的纵向长度,θ表示螺旋线与圆柱体侧边线的夹角;α c表示单模光纤每单位长度的损耗功率,单位为dB;s 1表示初始功率,s 0表示功率衰减的速率。
4、根据式Ⅲ计算得到的θ(z),带入如下式Ⅳ计算光纤侧面出射的光功率;
Figure PCTCN2019105112-appb-000039
P(z)表示光纤侧面出射的光功率,即出射的光功率与光纤沿金属轴的纵向长度的分布;z表示光纤沿金属轴的纵向长度;θ表示螺旋线与圆柱体侧边线的夹角;α c表示单模光纤每单位长度的损耗功率,单位为dB。
上述的血管光纤导丝中,光纤的螺距设定距离,根据式Ⅱ或式Ⅲ计算得到的螺旋 线与圆柱体侧边线的夹角,带入式Ⅴ计算得到;
h=2πr·cot(θ)  式Ⅴ
式Ⅴ中,h表示光纤的螺距,r表示光纤的螺旋线旋绕半径;θ表示螺旋线与圆柱体侧边线的夹角。
具体的一个例子中,光纤导丝的光传导部长度为1.6m,距离顶端50mm处(即发光部,公式中z的长度)是侧面发光结构开始,环绕半径r=200微米。根据上述公式,求出的螺旋线与圆柱体侧边线的夹角θ与z的关系为图4所示。如果需要知道h和R,根据h=2πr·cot(θ),和
Figure PCTCN2019105112-appb-000040
可进行计算。
图5是由于上述变螺距的螺旋光纤设计,使得光纤弯曲半径逐步变小,光从包层中出射导致的光纤1中的功率衰减,这说明光沿着z的出射速率是恒定的。
进一步的,如图6所示,在光纤导丝的主体光传导部分,不需要将光从包层中泄漏出来,将螺距设定为远大于临界弯曲半径R c的值;而在光纤导丝的顶部,比如距离顶端50mm处,将螺距设定为逐渐减小,变化的数值按照如图4所示的关系,顶端将沿侧壁出射恒定强度的散射光。
进一步,金属轴丝2的直径可为50μm-1mm粗细,为了增加光纤1缠绕的牢固程度,可在金属轴丝2上加工如图7所示的螺旋形凹槽5,将光纤1嵌入螺旋形凹槽5中。为了增加金属轴丝2的柔韧性,可以在金属轴丝2侧面加工如图7所示的孔状结构(具体如孔6),降低金属轴丝2的硬度。还可加工如图7所示的纵向结构螺旋凹槽7降低金属轴丝2的硬度。
进一步,光纤导丝外层可以包裹一层聚合物材料套管,增加整体结构的稳定性和安全性,在聚合物套管外还可以具有亲水和/或疏水涂层8,减小血管光纤导丝在血液中的阻力,提高其生物相容性。聚合物材料套管采用的聚合物材料选自聚乙烯、聚氯乙烯、环氧树脂、脂肪族聚酯、甲壳素和聚乳酸中的至少一种
本发明中的光纤1材料可以是石英光纤、聚合物光纤活或玻璃光纤。包层的材料也可为石英等,只要折射率低于光纤便可,使得光只能在光纤中传输而不会从包层射出。
本发明中的金属轴丝2材料可以是不锈钢、铝合金、钛合金或镍钛合金,还可以是碳纤维、聚合物材料等。采用的聚合物材料选自聚乙烯、聚氯乙烯、环氧树脂、脂肪族聚酯、甲壳素和聚乳酸中的至少一种。
实施例3
在实施例1或2的基础上,所述光传导部21的另一端(即位于体外的一端)连接记忆合金插头22。记忆金属插头22的设置使得血管光纤导丝可与其它光纤连接实现延 长,或者使得血光光纤导丝方便与激光器连接实现激光引入光传导部21中。
如图9所示,为本发明带有记忆合金插头的血管光纤导丝的结构示意图。光传导部21的一端连接有发光部20,另一端连接记忆合金插头22,其整体形状可为圆柱形或类似圆柱形。
其中光传导部21的结构如图10所示,记忆合金插头12如图11所示。光传导部21包括传导部光纤210,传导部光纤210包括光纤芯丝23和光纤包层24。
记忆合金插头22由手柄27、固定凹槽28和套管29组成。手柄27是手持操作部分,固定凹槽28与手柄27连接段的半径较与套管29连接段的半径大,即固定凹槽28为由一端(即与手柄27连接的一端)至另一端(即与套管29连接的一端)外径依次减小的圆台型结构,其与手柄27连接的一端直径大,与套管29连接的一端直径小,固定凹槽28用于与外部插件配合起到锁定作用。套管29上设置弹性形变螺旋结构9,该弹性形变螺旋结构9可设置在套管29中间位置,即将套管29分割成两部分,两部分之间恰好设置有弹性形变螺旋结构9,弹性形变螺旋结构9为由多个螺旋圈构成的螺旋结构,其是通过螺旋切割记忆合金材料制得,记忆合金材料例如镍钛合金或铜锌合金,采用记忆合金使得其弹性形变更大,能重复使用的次数更多。
传导部光纤210贯穿记忆金属插头22,即记忆金属插头22包裹在传导部光纤210外围,如图12所示,优选传导部光纤210或光传导部21的外围和套管29之间具有一个很小的缝隙,当套管29受到压力伸缩时,套管29壳沿光纤导丝21或传导部光纤纵向滑动。
记忆合金插头22可插入插孔套件之中,插孔套件如图13所示,该插孔套件包括一个主体10;沿主体10轴向,主体10一端的内部轴心处设置连接光纤14,主体10的另一端为能够容纳记忆金属插头22的空腔12,以使记忆合金插头22伸入空腔内时,记忆合金插头22轴心处包裹的传导部光纤恰好与连接光纤14对合在一起,使得传导部光纤与连接光纤14接触或靠近,光可以从连接光纤14中传递到传导部光纤中,且传导效率高。主体10上套设一个弹性销11,当记忆合金插头22伸入至主体10的空腔12中时,弹性销11能够卡接在固定凹槽28上从而与记忆金属插头22固定。
参见图13-15,弹性销11包括能够与主体10连接的连接部110,连接部110的两端均对称连接有具有弹性的弹性部111,两个所述弹性部111的端头均向内设置有固定部112,固定部112与连接部110平行,两个所述弹性部111均为由后端(即与连接部连接的一端)至前端(即与固定部连接的一端)依次向内倾斜,形成了固定部一端的直径小、连接部110的一端直径大的弹性销11。所述主体10从连接部110穿入弹性销中,并从弹性销小直径端的两个固定部112之间穿出,且在弹性销内的所述主体10上套合有滚环13,滚环13可沿着主体10滚动或滑动,滚环13在主体10上移动使得 弹性销11产生形变,以插入或释放记忆合金插头22。
如图13-15所示,所述主体10上设置两个相对的、贯穿所述空腔内外两侧的开孔16,两个所述开孔16分别对应两个所述固定部112设置,弹性销的自然状态下,即弹性销闭合时,两个固定部112分别位于主体10两侧的开孔16内,且滚环13位于弹性销内的大直径一端,滚环13的外径与弹性销11大直径一端的内径一致。由于弹性销11为一个平面锥形结构或平面的圆台型结构,其内径也为前端小后端大,因此,当滚环13向弹性销的小直径端(即向固定部112所在方向)移动时,滚环13外径会逐渐给弹性部111向外的力,从而使弹性部111打开,固定部112从开孔16出来,当滚环13向后端移动时,抵在弹性部111上的力消失,弹性部111回弹至原始位置,固定部112又回到开孔16中,即相当于弹性销11闭合。
优选地,所述固定部112的端面为与固定凹槽28相配合的斜面,即由前至后依次向内倾斜,形成前端直径大后端直径小的结构,则当记忆金属插头22中的套管29插入空腔12内时,两个固定部112的斜面(即端面)恰好位于固定凹槽28中,配合好,固定稳固。
如图14-15所示,主体10内部轴心具有连接光纤14,当记忆合金插头22插入插孔套件的空腔12中时,套管29经过开孔16处时,将开孔16处的固定部112顶起,而固定部112带动弹性部111弹起,即弹性销11在套管29的推动下张开,记忆合金插头22的套管29进入插孔12之中。当记忆合金插头22插入到充满插孔深度,在压力之下记忆合金插头22上的弹性形变螺旋结构9中的螺距收缩,固定凹槽28恰好位于开孔16处,固定部112恰好比卡接在固定凹槽28中,使得弹性销11卡住记忆金属插头22上的固定凹槽28,使光纤导丝内部的传导部光纤与插孔套件中的连接光纤14进行对接,实现耦合。固定部112的斜面为由前至后依次向内倾斜,其也有利于套管29顺利穿过开孔并将固定部112顶起。
如图15所示。而连接光纤14与激光器连接,使用时,光纤导丝中发光部的一端进入体内,一般是通过血管进入人体患处,如肝脏肿瘤组织处;然后激光器发出激光,通过连接光纤14传递给传导部光纤,再从传导部光纤传递给发光部的光纤,发光部的光纤将光发射至人体患处,实现治疗。当完成激光治疗工作后,关掉激光器,将滚环13向固定部112方向推动,迫使弹性销11张开,记忆合金插头22在弹性形变螺旋弹力的作用下从空腔12中弹出。在本实施例中,采用记忆合金插头相对于普通金属插头而言,其弹性形变更大,重复使用次数多,且精确性不变。而且弹性形变螺旋结构9中的螺旋和弹性销组成的配合结构,其弹性保证了光纤精密配合的力度,并且在多次使用情况下不会疲劳断裂。综合效果好。
优选地,记忆合金插头22中心设有金属管25,金属管25向光传导部方向延伸并 包裹在传导部光纤外围,位于传导部光纤外围的金属管经过螺旋切割形成螺旋管30,能够对光纤导丝21进行保护和支撑。螺旋管30外具有聚合物涂层26,增加光传导部21在血液中的润滑度和生物相容性,降低阻力。
需要说明的是,金属管25可包裹在记忆金属插头内部所贯穿的整个传导部光纤(或光传导部21)外,此时,管套29便与金属管25之间设有一个小缝隙,以便在套管29受到压力伸缩时,套管29壳沿金属管25滑动。
在本实施例中,血管光纤导丝通过记忆合金插头与激光器或其他光纤、设备相连,记忆合金插头插入和拔出弹性销11操作方便,在插入后还可进行光纤旋转操作而不影响耦合效率。金属管经过螺旋切割形成螺旋管,对传导部光纤进行保护和支撑。
本发明中的“传导部光纤210”、“光纤1”、“连接光纤14”等,其名称叫法虽然不一样,但其截面结构等都一样,均包括传递光的纤芯和约束光的包层。
在本发明中,弯曲半径R与临界弯曲半径R c均为现有技术中的概念,R c属于或包含于R,R c为R中的一个特殊的值。弯曲半径是曲率半径,通俗地说,是把曲线上一个极小的段用一段圆弧代替,这个圆的半径即为弯曲半径。本发明中的临界弯曲半径R c可通俗的理解为:包层恰好能够约束芯丝中传输的光,导致光不从侧壁泄露出来的最小弯曲半径,只要小于这个半径,光就会泄露出来。
以上所述仅是本发明的优选实施方式,应当指出:对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (10)

  1. 一种侧面发光的光纤导丝,该光纤导丝包括光传导部,其特征在于:光传导部的一端和发光部连接;
    所述发光部包括金属轴丝和环绕所述金属轴丝的光纤;所述光纤包括芯丝和包裹所述芯丝的包层。
  2. 根据权利要求1所述的血管光纤导丝,其特征在于:在所述发光部中,当所述光纤环绕所述金属轴丝的弯曲半径小于临界弯曲半径时,所述芯丝中的光能够从侧壁散射出来实现出光。
  3. 根据权利要求2所述的血管光纤导丝,其特征在于:所述光纤由于环绕所述金属轴丝的弯曲造成传输功率的弯曲损耗为光从弯曲侧面出射的光功率;
    单模光纤的弯曲损耗与所述光纤的弯曲半径的关系,按照如下式Ⅰ计算:
    α c=A cR -1/2exp(-UR)        式Ⅰ
    其中,
    Figure PCTCN2019105112-appb-100001
    Figure PCTCN2019105112-appb-100002
    式Ⅰ、式Ⅰ-1、式Ⅰ-2中,α c表示光纤每单位长度的损耗功率,单位为dB;R表示光纤的弯曲半径,单位为mm;A c表示与光纤结构有关的参数,单位为
    Figure PCTCN2019105112-appb-100003
    a表示光纤的芯丝半径,单位为μm;λ c表示光纤传输的截止波长,单位为nm;Δn表示芯丝-包层的折射率差;
    式Ⅰ-1中,
    Figure PCTCN2019105112-appb-100004
    k 0为真空波数,λ表示光纤的传输波长;
    Figure PCTCN2019105112-appb-100005
    n 1、n 2分别表示光纤的芯丝、包层的折射率;V c表示截止频率,V c=2.40483。
  4. 根据权利要求3所述的血管光纤导丝,其特征在于:所述光纤的弯曲半径和所述光纤螺旋线与螺旋线旋绕半径为r的圆柱体侧边线的夹角有关,按照如下式Ⅱ计算:
    Figure PCTCN2019105112-appb-100006
    式Ⅱ中,R表示所述光纤的弯曲半径,θ表示螺旋线与圆柱体侧边线的夹角,r表示所述光纤的螺旋线旋绕半径;
    所述光纤环绕的纵向长度和所述光纤螺旋线与螺旋线旋绕半径为r的圆柱体侧边线的夹角关系,按照如下式Ⅲ计算:
    Figure PCTCN2019105112-appb-100007
    式Ⅲ中,z表示光纤沿金属轴的纵向长度,θ表示螺旋线与圆柱体侧边线的夹角;α c表示单模光纤每单位长度的损耗功率,单位为dB;s 1表示初始功率,s 0表示功率衰减的速率。
  5. 根据权利要求4所述的血管光纤导丝,其特征在于:根据式Ⅲ计算得到的θ(z),带入如下式Ⅳ计算所述光纤侧面出射的光功率;
    Figure PCTCN2019105112-appb-100008
    P(z)表示光纤侧面出射的光功率,即出射的光功率与光纤沿金属轴的纵向长度的分布;z表示光纤沿金属轴的纵向长度;θ表示螺旋线与圆柱体侧边线的夹角;α c表示单模光纤每单位长度的损耗功率,单位为dB。
  6. 根据权利要求4或5所述的光纤导丝,其特征在于:所述光纤的螺距设定距离,根据式Ⅱ或式Ⅲ计算得到的螺旋线与圆柱体侧边线的夹角,带入式Ⅴ计算得到;
    h=2πr·cot(θ)  式Ⅴ
    式Ⅴ中,h表示所述光纤的螺距,r表示所述光纤的螺旋线旋绕半径;θ表示螺旋线与圆柱体侧边线的夹角。
  7. 根据权利要求1所述的血管光纤导丝,其特征在于:所述金属轴丝的直径为50μm~1mm;
    所述金属轴丝上设置螺旋形凹槽。
  8. 根据权利要求1所述的血管光纤导丝,其特征在于:所述金属轴丝上设置孔状结构;
    所述的光纤导丝外层还包裹一层聚合物材料套管。
  9. 根据权利要求8所述的血管光纤导丝,其特征在于:所述金属轴丝于设置螺旋形凹槽相对的侧面上设置纵向结构螺旋凹槽;
    在所述聚合物材料套管外设置具有亲水和/或疏水涂层。
  10. 根据权利要求1-9中任一项所述的血管光纤导丝,其特征在于:所述光传导部的一端和发光部连接,另一端连接有能够与激光器或其它光纤连接的插头。
PCT/CN2019/105112 2019-08-09 2019-09-10 一种新型的血管光纤导丝 WO2021026995A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/755,876 US20220000353A1 (en) 2019-08-09 2019-09-10 Novel vascular optical fiber guidewire
US16/853,507 US10987520B2 (en) 2019-08-09 2020-04-20 Vascular optical fiber guidewire

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910735040.3A CN110339489B (zh) 2019-08-09 2019-08-09 一种新型的血管光纤导丝
CN201910735040.3 2019-08-09

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/853,507 Continuation US10987520B2 (en) 2019-08-09 2020-04-20 Vascular optical fiber guidewire

Publications (1)

Publication Number Publication Date
WO2021026995A1 true WO2021026995A1 (zh) 2021-02-18

Family

ID=68184538

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/105112 WO2021026995A1 (zh) 2019-08-09 2019-09-10 一种新型的血管光纤导丝

Country Status (3)

Country Link
US (2) US20220000353A1 (zh)
CN (1) CN110339489B (zh)
WO (1) WO2021026995A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110339489B (zh) * 2019-08-09 2020-07-21 尚华 一种新型的血管光纤导丝
WO2022104055A1 (en) * 2020-11-13 2022-05-19 Kester Julian Batchelor Ultrahydrophobic laser coating and method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012168855A1 (en) * 2011-06-10 2012-12-13 Koninklijke Philips Electronics N.V. Optical fiber sensing for determining real time changes in applicator geometry for interventional therapy
CN104220908A (zh) * 2012-01-31 2014-12-17 阿西梅特里克医疗有限公司 通过弯曲将光纤配置成发射辐射
CN106955423A (zh) * 2017-03-22 2017-07-18 尚华 一种血管光纤导管
WO2018120451A1 (zh) * 2016-12-28 2018-07-05 尚华 一种血管光纤导丝
CN108778413A (zh) * 2015-12-18 2018-11-09 光治疗Asa公司 光动力治疗装置
CN110339490A (zh) * 2019-08-09 2019-10-18 尚华 一种带有插头的血管光纤导丝
CN110339489A (zh) * 2019-08-09 2019-10-18 尚华 一种新型的血管光纤导丝

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1990002353A1 (en) 1988-08-23 1990-03-08 Radiotekhnichesky Institut Imeni Akademika A.L.Mintsa Akademii Nauk Sssr Light-guiding device for medical treatment
US5207669A (en) 1989-05-26 1993-05-04 C. R. Bard, Inc. Optical fiber diffusion tip for uniform illumination
US5042980A (en) * 1989-05-26 1991-08-27 C. R. Bard, Inc. Optical fiber diffusion tip for uniform illumination
US5269777A (en) 1990-11-01 1993-12-14 Pdt Systems, Inc. Diffusion tip for optical fibers
US5196005A (en) 1991-11-26 1993-03-23 Pdt Systems, Inc. Continuous gradient cylindrical diffusion tip for optical fibers and method for making
US5838860A (en) * 1993-05-21 1998-11-17 Super Vision International, Inc. Fiber optic light source apparatus and method
US6137928A (en) * 1999-01-29 2000-10-24 Albrecht; Richard E. Optical fiber light distribution system and method of manufacture and illumination
US6398778B1 (en) 1999-06-18 2002-06-04 Photonics Research Ontario Optical fiber diffuser
CA2490970A1 (en) * 2003-12-23 2005-06-23 Douglas R. Dykaar Apparatus and method for emitting light to a desired target location
JP5113400B2 (ja) * 2007-02-08 2013-01-09 株式会社フジクラ 光ファイバ、光ファイバ装置及びバンドルファイバ
CN101888812B (zh) * 2007-12-06 2013-07-24 皇家飞利浦电子股份有限公司 用于向目标施加能量的设备
US9149333B2 (en) * 2008-02-28 2015-10-06 Biolitec Pharma Marketing Ltd Endoluminal laser ablation device and improved method for treating veins
DE202009002331U1 (de) * 2009-02-18 2009-04-23 CCS Technology, Inc., Wilmington Vorrichtung zur Umwandlung von Licht in ein elektrisches Signal
US20140288541A1 (en) * 2011-12-04 2014-09-25 Asymmetric Medical Ltd. Lesion treatment device and methods for treating lesions
US8620123B2 (en) * 2012-02-13 2013-12-31 Corning Cable Systems Llc Visual tracer system for fiber optic cable
US20140160392A1 (en) * 2012-12-12 2014-06-12 Shenzhen China Star Optoelectronics Technology Co. Ltd. Optical fiber for backlight module, backlight module and liquid crystal display device
EP2871708B1 (en) * 2013-11-07 2021-06-16 Swisscom AG Communication cable with illumination
US9285086B2 (en) * 2013-11-08 2016-03-15 Corning Incorporated Light diffusing optical fibers and light emitting apparatuses including light diffusing optical fibers
US9753203B2 (en) * 2014-03-27 2017-09-05 Te Connectivity Corporation Light assembly with light pipe holder
RU2695939C2 (ru) * 2014-12-16 2019-07-29 Конинклейке Филипс Н.В. Морское кабельное устройство, выполненное с возможностью предотвращения обрастания
US20190133687A1 (en) * 2016-04-19 2019-05-09 Asymmetric Medical Ltd. Fiberoptic for medical applications
JP6498654B2 (ja) * 2016-11-17 2019-04-10 一般財団法人バイオダイナミックス研究所 内視鏡による光照射治療用光照射プローブ
US10695578B1 (en) * 2019-08-09 2020-06-30 Hua Shang Vascular optical fiber guidewire with plug

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012168855A1 (en) * 2011-06-10 2012-12-13 Koninklijke Philips Electronics N.V. Optical fiber sensing for determining real time changes in applicator geometry for interventional therapy
CN104220908A (zh) * 2012-01-31 2014-12-17 阿西梅特里克医疗有限公司 通过弯曲将光纤配置成发射辐射
CN108778413A (zh) * 2015-12-18 2018-11-09 光治疗Asa公司 光动力治疗装置
WO2018120451A1 (zh) * 2016-12-28 2018-07-05 尚华 一种血管光纤导丝
CN106955423A (zh) * 2017-03-22 2017-07-18 尚华 一种血管光纤导管
CN110339490A (zh) * 2019-08-09 2019-10-18 尚华 一种带有插头的血管光纤导丝
CN110339489A (zh) * 2019-08-09 2019-10-18 尚华 一种新型的血管光纤导丝

Also Published As

Publication number Publication date
US20220000353A1 (en) 2022-01-06
CN110339489B (zh) 2020-07-21
CN110339489A (zh) 2019-10-18
US20210060349A1 (en) 2021-03-04
US10987520B2 (en) 2021-04-27

Similar Documents

Publication Publication Date Title
WO2018120451A1 (zh) 一种血管光纤导丝
AU725320B2 (en) Phototherapeutic apparatus
US5643253A (en) Phototherapy apparatus with integral stopper device
JP3648555B2 (ja) カラム状環境を照射する改良された光線治療用装置
CN106955423B (zh) 一种血管光纤导管
US20080015560A1 (en) Light diffusing tip
CN106963992B (zh) 一种形状记忆合金海波管以及其在血管光纤导丝中的应用
CN107376132B (zh) 一种新型光纤导管及其制备方法
KR20000011161A (ko) 광역학 요법용 벌룬 카테테르
US20080195085A1 (en) Economical, two component, thermal energy delivery and surface cooling apparatus and its method of use
JP2013505771A (ja) ツイスターファイバー光学システムおよび医療用途におけるその使用
WO2018170787A1 (zh) 一种形状记忆合金海波管以及其在血管光纤导丝中的应用
WO2021026995A1 (zh) 一种新型的血管光纤导丝
Lee et al. An interstitial light assembly for photodynamic therapy in prostatic carcinoma
US10695578B1 (en) Vascular optical fiber guidewire with plug
CN109283688B (zh) 一种反射型匀光器以及其制备和应用
WO2021026994A1 (zh) 一种带有插头的血管光纤导丝
CN112107801A (zh) 激光治疗光纤探头
US11813368B2 (en) Anti-microbial blue light systems and methods
CN207679870U (zh) 一种血管光纤导管
Roche et al. Photodynamic therapy (PDT) of gastrointestinal tumours: a new light delivery system
WO2022181133A1 (ja) 内視鏡用光照射装置
EP1527798A2 (en) Diffusive tip assembly
CN109331347B (zh) 一种光纤穿刺针管
WO2018170789A1 (zh) 一种血管光纤导管

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19941463

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19941463

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 14/11/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 19941463

Country of ref document: EP

Kind code of ref document: A1