WO2018164124A1 - 非水電解液用添加剤、非水電解液、及び、蓄電デバイス - Google Patents

非水電解液用添加剤、非水電解液、及び、蓄電デバイス Download PDF

Info

Publication number
WO2018164124A1
WO2018164124A1 PCT/JP2018/008581 JP2018008581W WO2018164124A1 WO 2018164124 A1 WO2018164124 A1 WO 2018164124A1 JP 2018008581 W JP2018008581 W JP 2018008581W WO 2018164124 A1 WO2018164124 A1 WO 2018164124A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
carbon atoms
optionally substituted
aqueous electrolyte
substituted
Prior art date
Application number
PCT/JP2018/008581
Other languages
English (en)
French (fr)
Inventor
佑軌 河野
翔平 藤本
恭幸 高井
藤田 浩司
Original Assignee
住友精化株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友精化株式会社 filed Critical 住友精化株式会社
Priority to CN201880016293.9A priority Critical patent/CN110383565B/zh
Priority to KR1020197026896A priority patent/KR102535602B1/ko
Priority to EP18763482.9A priority patent/EP3595071A4/en
Priority to JP2019504606A priority patent/JP7059250B2/ja
Priority to US16/491,519 priority patent/US11387490B2/en
Publication of WO2018164124A1 publication Critical patent/WO2018164124A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/62Liquid electrolytes characterised by the solute, e.g. salts, anions or cations therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/64Liquid electrolytes characterised by additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/04Hybrid capacitors
    • H01G11/06Hybrid capacitors with one of the electrodes allowing ions to be reversibly doped thereinto, e.g. lithium ion capacitors [LIC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/60Liquid electrolytes characterised by the solvent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers

Definitions

  • the present invention relates to an additive for non-aqueous electrolyte.
  • the present invention also relates to a non-aqueous electrolyte containing the non-aqueous electrolyte additive and an electricity storage device using the non-aqueous electrolyte.
  • lithium ion batteries have high working voltage and energy density, and are therefore used as power sources for notebook computers, mobile phones, and the like.
  • Lithium ion batteries are expected to be a new power source because they have higher energy density and higher capacity than lead batteries and nickel cadmium batteries.
  • the lithium ion battery has a problem that the capacity of the battery decreases with the progress of the charge / discharge cycle.
  • a method of adding various additives to an electrolytic solution has been studied as a method for suppressing a decrease in battery capacity with the progress of a charge / discharge cycle.
  • the additive is decomposed during the first charge and discharge to form a film called a solid electrolyte interface (SEI) on the electrode surface.
  • SEI solid electrolyte interface
  • Patent Document 1 discloses the charge / discharge cycle characteristics of a lithium secondary battery by including 1,3-propane sultone (PS) in the electrolyte. Is disclosed to improve.
  • Patent Document 2 discloses that the capacity of a non-aqueous electrolyte secondary battery after storage and storage after storage by adding 1,3,2-dioxaphosphorane-2-oxide derivative or PS in the electrolytic solution. It is disclosed that the recovery capacity is increased.
  • Patent Document 3 discloses that the cycle characteristics and the like of a lithium secondary battery are improved by adding a vinylene carbonate (VC) derivative to an electrolytic solution.
  • VC vinylene carbonate
  • JP 63-102173 A Japanese Patent Laid-Open No. 10-50342 Japanese Patent Laid-Open No. 5-74486
  • the electrolytic solution using the VC derivative described in Patent Document 3 as an additive generates a gas such as carbon dioxide when the VC derivative is decomposed on the electrode, leading to a decrease in battery performance. There was a problem such as. The gas generation is particularly remarkable when a charge / discharge cycle is repeated at a high temperature or for a long time.
  • the present invention provides a non-aqueous solution that can improve battery characteristics such as initial resistance, discharge capacity retention rate, and long-term resistance increase suppression, and suppress gas generation when used in power storage devices such as non-aqueous electrolyte secondary batteries. It aims at providing the additive for electrolyte solutions. Another object of the present invention is to provide a non-aqueous electrolyte containing the non-aqueous electrolyte additive and an electricity storage device using the non-aqueous electrolyte.
  • This invention provides the additive for non-aqueous electrolyte containing the compound represented by following formula (1).
  • Q represents an optionally substituted alkenylene group having 4 to 7 carbon atoms which forms a cyclic group together with the sulfur atom of the sulfonyl group
  • X represents a sulfonyl group, a phosphoryl group or a carbonyl group
  • R 1 represents an optionally substituted alkyl group having 1 to 4 carbon atoms, an optionally substituted alkenyl group having 2 to 4 carbon atoms, or a substituted group.
  • an additive for non-aqueous electrolyte when used for an electricity storage device, an additive for non-aqueous electrolyte that enables improvement of battery characteristics such as initial resistance, discharge capacity retention rate, long-term resistance increase suppression, and suppression of gas generation is provided.
  • the additive for non-aqueous electrolyte according to the present invention forms a stable SEI (solid electrolyte interface) on the electrode surface when used in power storage devices such as non-aqueous electrolyte secondary batteries and electric double layer capacitors.
  • SEI solid electrolyte interface
  • the additive for non-aqueous electrolyte according to the present embodiment includes a compound represented by the following formula (1).
  • Q represents an optionally substituted alkenylene group which forms a cyclic group together with the sulfur atom of the sulfonyl group
  • X is a sulfonyl group, phosphoryl group or carbonyl group
  • R 1 represents an optionally substituted alkyl group having 1 to 4 carbon atoms, an optionally substituted alkenyl group having 2 to 4 carbon atoms, or an optionally substituted alkyl group having 2 to 4 carbon atoms.
  • An alkynyloxy group of 2 to 4 or an aryloxy group which may be substituted is represented, and n represents 1 or 2.
  • an alkyl group having 1 to 4 carbon atoms an alkenyl group having 2 to 4 carbon atoms, an alkynyl group having 2 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, an alkenyloxy group having 2 to 4 carbon atoms, or
  • the substituent is, for example, a halogen atom, an aryl group, a halogenated aryl group (for example, 2-fluorophenyl group, 3-fluorophenyl group, 4- Fluorinated aryl groups such as fluorophenyl groups and perfluorophenyl groups), alkoxy groups, halogenated alkoxy groups, or combinations thereof.
  • the substituent is, for example, a halogen atom, an alkyl group, a halogenated alkyl group (for example, a trifluoromethyl group, 2,2,2-trifluoro).
  • a fluorinated alkyl group such as an ethyl group
  • an alkoxy group such as an alkoxy group
  • a halogenated alkoxy group or a combination thereof.
  • “may be substituted with a halogen atom” means that one or more hydrogen atoms contained in each R 1 group may be substituted with a halogen atom.
  • halogen atom examples include an iodine atom, a bromine atom, and a fluorine atom. From the viewpoint of lowering the battery resistance, a fluorine atom can be selected as the halogen atom.
  • X in the formula (1) represents a sulfonyl group, a phosphoryl group, or a carbonyl group.
  • X is a sulfonyl group (—S ( ⁇ O) 2 —) or a carbonyl group (—C ( ⁇ O) —)
  • n is 1
  • X is a phosphoryl group (—P ( ⁇ O) ⁇ )
  • N is 2.
  • n 2
  • two R 1 may be the same or different.
  • X may be a sulfonyl group.
  • R 1 in the formula (1) is an alkyl group having 1 to 4 carbon atoms which may be substituted with a halogen atom or a halogenated aryl group, a halogen atom, an aryl group, or It may be an alkoxy group having 1 to 4 carbon atoms which may be substituted with a halogenated aryl group.
  • R 1 in the formula (1) in view of forming a strong SEI, may be a group having an unsaturated bond.
  • R 1 is an alkenyl group having 2 to 4 carbon atoms which may be substituted with a halogen atom, an alkynyl group having 2 to 4 carbon atoms which may be substituted with a halogen atom, a halogen atom, an alkyl group or a halogenated group.
  • R 1 in the formula (1) is an alkenyl having 2 to 4 carbon atoms which may be substituted with a halogen atom from the viewpoint that the compound represented by the formula (1) exhibits better ionic conductivity.
  • alkyl group having 1 to 4 carbon atoms which may be substituted with a halogen atom or a halogenated aryl group include, for example, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, tert group -Butyl group, trifluoromethyl group, 1-fluoroethyl group, 2-fluoroethyl group, 1,1-difluoroethyl group, 1,2-difluoroethyl group, 2,2-difluoroethyl group, 2,2,2 -Trifluoroethyl group, perfluoroethyl group, 1-fluoro-n-propyl group, 2-fluoro-n-propyl group, 3-fluoro-n-propyl group, 1,1-difluoro-n-propyl group, 1 , 2-difluoro-n-propyl group,
  • alkenyl group having 2 to 4 carbon atoms which may be substituted with a halogen atom
  • examples of the alkenyl group having 2 to 4 carbon atoms which may be substituted with a halogen atom include a vinyl group, allyl group, isopropenyl group, 1-butenyl group, 2-butenyl group, 3-butenyl group, isobutenyl group, 1-fluorovinyl group, 2-fluorovinyl group, 1,2-difluorovinyl group, 2,2-difluorovinyl group, perfluorovinyl group, 1-fluoroallyl group, 2-fluoroallyl group, 3-fluoroallyl group , And perfluoroallyl groups.
  • an allyl group optionally substituted with a halogen atom can be selected.
  • alkynyl group having 2 to 4 carbon atoms which may be substituted with a halogen atom
  • examples of the alkynyl group having 2 to 4 carbon atoms which may be substituted with a halogen atom include 1-propynyl group, 2-propynyl group, 1-butynyl group, 2-butynyl group, 3-butynyl group and 3-fluoro -1-propynyl group, 3,3-difluoro-1-propynyl group, perfluoro-1-propynyl group, 1-fluoro-2-propynyl group, 1,1-difluoro-2-propynyl group, 3-fluoro-1 -Butynyl group, 4-fluoro-1-butynyl group, 3,4-difluoro-1-butynyl group, 4,4-difluoro-1-butynyl group, perfluoro-1-butynyl group and the like.
  • Examples of the aryl group which may be substituted with a halogen atom, an alkyl group or a halogenated alkyl group include, for example, a phenyl group, a tolyl group, a xylyl group, a naphthyl group, a 2-fluorophenyl group, a 3-fluorophenyl group, 4- Fluorophenyl group, 2,3-difluorophenyl group, 2,4-difluorophenyl group, 3,5-difluorophenyl group, 2,4,6-trifluorophenyl group, perfluorophenyl group, 3-fluoro-2- Methylphenyl group, 4-fluoro-2-methylphenyl group, 5-fluoro-2-methylphenyl group, 6-fluoro-2-methylphenyl group, 2-fluoro-3-methylphenyl group, 4-fluoro-3- Methylphenyl group, 5-fluoro-3-methylphenyl
  • alkoxy group having 1 to 4 carbon atoms which may be substituted with a halogen atom, an aryl group or a halogenated aryl group include a methoxy group, an ethoxy group, an n-propoxy group, an isopropoxy group, an n-butoxy group, tert-butoxy group, isobutoxy group, benzyloxy group, fluoromethoxy group, difluoromethoxy group, trifluoromethoxy group, 1-fluoroethoxy group, 2-fluoroethoxy group, 1,1-difluoroethoxy group, 1,2-difluoro Ethoxy group, 2,2-difluoroethoxy group, 2,2,2-trifluoroethoxy group, perfluoroethoxy group, 1-fluoro-n-propoxy group, 2-fluoro-n-propoxy group, 3-fluoro-n -Propoxy group, 1,1-difluoro-n-propoxy group, 1,2-
  • alkenyloxy group having 2 to 4 carbon atoms which may be substituted with a halogen atom examples include a vinyloxy group, isopropenyloxy group, 2-propenyloxy group, 1-methyl-2-propenyloxy group, 2-methyl -2-propenyloxy group, 1-butenyloxy group, 2-butenyloxy group, 3-butenyloxy group, 1-fluorovinyloxy group, 2-fluorovinyloxy group, 1,2-difluorovinyloxy group, 2,2-difluoro Examples thereof include a vinyloxy group, a perfluorovinyloxy group, a 1-fluoroallyloxy group, a 2-fluoroallyloxy group, a 3-fluoroallyloxy group, and a perfluoroallyloxy group.
  • alkynyloxy group having 2 to 4 carbon atoms which may be substituted with a halogen atom examples include, for example, ethynyloxy group, 1-propynyloxy group, 2-propynyloxy group, 1-methyl-2-propynyloxy group, 1 -Butynyloxy group, 2-butynyloxy group, 3-butynyloxy group, 3-fluoro-1-propynyloxy group, 3,3-difluoro-1-propynyloxy group, perfluoro-1-propynyloxy group, 1-fluoro-2 -Propynyloxy group, 1,1-difluoro-2-propynyloxy group, 3-fluoro-1-butynyloxy group, 4-fluoro-1-butynyloxy group, 3,4-difluoro-1-butynyloxy group, 4,4- Examples thereof include a difluoro-1-butynyloxy group and a
  • Examples of the aryloxy group which may be substituted with a halogen atom, an alkyl group, a halogenated alkyl group or an alkoxy group include, for example, a phenoxy group, a 2-methylphenoxy group, a 3-methylphenoxy group, a 4-methylphenoxy group, 2 -Ethylphenoxy group, 3-ethylphenoxy group, 4-ethylphenoxy group, 2-methoxyphenoxy group, 3-methoxyphenoxy group, 4-methoxyphenoxy group, 2-fluorophenoxy group, 3-fluorophenoxy group, 4-fluoro Phenoxy group, 2,3-difluorophenoxy group, 2,4-difluorophenoxy group, 3,5-difluorophenoxy group, 2,4,6-trifluorophenoxy group, perfluorophenoxy group, 3-fluoro-2-methyl Phenoxy group, 4-fluoro-2-methylphenoxy 5-fluoro-2-methylphenoxy group, 6-fluoro-2-methylphenoxy
  • Q in the formula (1) is an alkenylene group having 4 to 7 carbon atoms that forms a cyclic group together with the sulfur atom of the sulfonyl group, and is optional depending on the group represented by —O—X— (R 1 ) n Is replaced at the position of. Q may be further substituted with a substituent other than —O—X— (R 1 ) n . —O—X— (R 1 ) The substituent other than n may be, for example, a halogen atom.
  • the alkenylene group as Q in Formula (1) may have a double bond formed by a carbon atom bonded to the sulfur atom of the sulfonyl group and a carbon atom adjacent thereto.
  • a group represented by —O—X— (R 1 ) n may be bonded to the 3-position of the cyclic sulfone, such as a compound represented by the following formula (1 ′). .
  • This compound tends to exhibit particularly low LUMO energy and better ionic conductivity.
  • C 2 and C 3 represent a carbon atom
  • Q ′ represents the number of carbon atoms that may be substituted, forming a cyclic group with the sulfur atom of the sulfonyl group, C 2 and C 3. 2 to 5 alkenylene groups
  • each of R 2 , R 3 and R 4 independently represents a hydrogen atom or a halogen atom.
  • X, R 1 and n have the same meanings as X, R 1 and n in formula (1).
  • the alkenylene group as Q ′ in the formula (1 ′) may have a double bond formed by a carbon atom bonded to the sulfur atom of the sulfonyl group and a carbon atom adjacent thereto.
  • the compound of the formula (1) may be a compound represented by the following formula (2).
  • X in formula (2), R 1 and n are the X in each formula (1), and R 1 and n synonymous.
  • Examples of the compound represented by the formula (2) include 4-methylsulfonyloxytetrahydrothiophene-1,1-dioxide-2-ene, 4-ethylsulfonyloxytetrahydrothiophene-1,1-dioxide-2- Ene, 4-phenylsulfonyloxytetrahydrothiophene-1,1-dioxide-2-ene, 4- (p-fluorophenyl) sulfonyloxytetrahydrothiophene-1,1-dioxide-2-ene, 4- (pentafluoro Phenyl) sulfonyloxytetrahydrothiophene-1,1-dioxide-2-ene, 4- (pentafluorophenyl) sulfonyloxytetrahydrothiophene-1,1-dioxide-2-ene, 4- (p-trifluoromethylphenyl) ) Sulfony
  • the compound of the formula (1), (1 ′) or (2) is synthesized by combining ordinary reactions using available raw materials.
  • a synthesis method for example, there is a method of reacting 3-hydroxy-2-sulfolene with a halide.
  • the additive for non-aqueous electrolyte according to this embodiment may contain the compound represented by the formula (1) alone or may contain two or more kinds.
  • the additive for non-aqueous electrolyte includes, as necessary, a negative electrode protective agent, a positive electrode protective agent, a flame retardant, an overcharge inhibitor, a cyclic carbonate compound, a nitrile compound, an isocyanate compound, and a C ⁇ C group.
  • cyclic carbonate compound examples include 4-fluoro-1,3-dioxolan-2-one (FEC), trans or cis-4,5-difluoro-1,3-dioxolan-2-one (DFEC), vinylene carbonate ( VC), vinyl ethylene carbonate (VEC), 4-ethynyl-1,3-dioxolan-2-one (EEC), and the like.
  • FEC 4-fluoro-1,3-dioxolan-2-one
  • DFEC trans or cis-4,5-difluoro-1,3-dioxolan-2-one
  • VC vinylene carbonate
  • VEC vinyl ethylene carbonate
  • EEC 4-ethynyl-1,3-dioxolan-2-one
  • nitrile compound examples include acetonitrile, propionitrile, succinonitrile, glutaronitrile, adiponitrile, pimelonitrile, suberonitrile, and sebaconitrile.
  • succinonitrile, adiponitrile, or a combination thereof may be used.
  • isocyanate compound examples include methyl isocyanate, ethyl isocyanate, butyl isocyanate, phenyl isocyanate, tetramethylene diisocyanate, hexamethylene diisocyanate, octamethylene diisocyanate, 1,4-phenylene diisocyanate, 2-isocyanatoethyl acrylate, and 2-isocyanatoethyl. And methacrylate.
  • Examples of the C ⁇ C group-containing compound include 2-propynyl methyl carbonate, 2-propynyl acetate, 2-propynyl formate, 2-propynyl methacrylate, 2-propynyl methanesulfonate, and 2-propynyl vinyl sulfonate.
  • Examples include 2-butyne-1,4-diyldimethanesulfonate, 2-butyne-1,4-diyldiformate, and 2,4-hexadiyne-1,6-diyldimethanesulfonate.
  • SO group-containing compound examples include 1,3-propane sultone (PS), 1,3-butane sultone, 2,4-butane sultone, 1,4-butane sultone, 1,3-propene sultone, 2,2-dioxide-1 , 2-oxathiolan-4-yl acetate, 5,5-dimethyl-1,2-oxathiolan-4-one 2,2-dioxide, etc., sultone, ethylene sulfite, ethylene sulfate, hexahydrobenzo [1,3 , 2] dioxathiolane-2-oxide (also referred to as 1,2-cyclohexanediol cyclic sulfite) and cyclic sulfites such as 5-vinyl-hexahydro-1,3,2-benzodioxathiol-2-oxide, Butane-2,3-diyldimethanesulfonate, butan
  • Examples of the phosphorus-containing compound include trimethyl phosphate, tributyl phosphate, and trioctyl phosphate, tris (2,2,2-trifluoroethyl) phosphate, bis (2,2,2-trifluoroethyl) methyl phosphate, Bis (2,2,2-trifluoroethyl) phosphate, bis (2,2,2-trifluoroethyl) phosphate, 2,2-difluoroethyl phosphate, bis (2,2,2-trifluoroethyl phosphate) ) 2,2,3,3-tetrafluoropropyl, bis (2,2-difluoroethyl) phosphate 2,2,2-trifluoroethyl, bis (2,2,3,3-tetrafluoropropyl) phosphate 2,2,2-trifluoroethyl and phosphoric acid (2,2,2-trifluoroethyl) (2,2,3,3-tetrafluoropropyl)
  • acid anhydride examples include acetic anhydride, propionic anhydride, succinic anhydride, maleic anhydride, 3-allyl succinic anhydride, glutaric anhydride, itaconic anhydride, and 3-sulfo-propionic anhydride.
  • Examples of the cyclic phosphazene compound include methoxypentafluorocyclotriphosphazene, ethoxypentafluorocyclotriphosphazene, phenoxypentafluorocyclotriphosphazene, and ethoxyheptafluorocyclotetraphosphazene.
  • Examples of the compound having a silicon atom include hexamethylcyclotrisiloxane, hexaethylcyclotrisiloxane, hexaphenylcyclotrisiloxane, 1,3,5-trimethyl-1,3,5-trivinylcyclotrisiloxane, octamethylcyclotrisiloxane.
  • Tetrasiloxane decamethylcyclopentasiloxane, trimethylfluorosilane, triethylfluorosilane, tripropylfluorosilane, phenyldimethylfluorosilane, triphenylfluorosilane, vinyldimethylfluorosilane, vinyldiethylfluorosilane, vinyldiphenylfluorosilane, trimethoxyfluoro Silane, triethoxyfluorosilane, dimethyldifluorosilane, diethyldifluorosilane, divinyldifluorosilane, ethylvinyldiflu Borosilane, Methyltrifluorosilane, Ethyltrifluorosilane, Hexamethyldisiloxane, 1,3-Diethyltetramethyldisiloxane, Hexaethyldisiloxane, Octamethyltrisiloxane, Methoxytrimethylsi
  • Examples of the compound having a boron atom include boroxine, trimethylboroxine, trimethoxyboroxine, triethylboroxine, triethoxyboroxine, triisopropylboroxine, triisopropoxyboroxine, tri-n-propylboroxine, tri-n- Examples include propoxyboroxine, tri-n-butylboroxine, tri-n-butyloxyboroxine, triphenylboroxine, triphenoxyboroxine, tricyclohexylboroxine, and tricyclohexoxyboroxine.
  • the non-aqueous electrolyte according to the present embodiment contains the additive for non-aqueous electrolyte, a non-aqueous solvent, and an electrolyte.
  • the content of the non-aqueous electrolyte additive (or the compound represented by the formula (1)) in the non-aqueous electrolyte is 0.005 to 10% by mass in total based on the total mass of the non-aqueous electrolyte. It may be.
  • the content of the additive for non-aqueous electrolyte is 0.005% by mass or more, more excellent battery characteristics can be obtained, and when the content is 10% by mass or less, the viscosity of the non-aqueous electrolyte increases. Since it is difficult, sufficient ion mobility can be secured.
  • the content of the additive for non-aqueous electrolyte (or the compound represented by formula (1)) is 0.01 to 10% by mass in total based on the total mass of the non-aqueous electrolyte. It may be a range.
  • the content of the cyclic carbonate compound is 0.001 to 10% by mass based on the total mass of the non-aqueous electrolyte. May be. When the content of the cyclic carbonate compound is within this range, the SEI does not become too thick, and the stability of the SEI at a higher temperature increases.
  • the content of the cyclic carbonate compound may be 0.01% by mass or more, or 0.5% by mass or more based on the total mass of the nonaqueous electrolytic solution.
  • the content of the nitrile compound may be 0.001 to 10% by mass based on the total mass of the non-aqueous electrolyte. Good. When the content of the nitrile compound is within this range, the SEI does not become too thick, and the stability of the SEI at a higher temperature increases.
  • the content of the nitrile compound may be 0.01% by mass or more, or 0.5% by mass or more based on the total mass of the nonaqueous electrolytic solution.
  • the content of the isocyanate compound may be 0.01 to 5% by mass based on the total mass of the non-aqueous electrolyte. Good. When the content of the isocyanate compound is within this range, the SEI does not become too thick, and the stability of the SEI at higher temperatures increases.
  • the content of the isocyanate compound may be 0.5% by mass or more or 3% by mass or less based on the total mass of the nonaqueous electrolytic solution.
  • the content of the C ⁇ C group-containing compound is 0.01 based on the total mass of the non-aqueous electrolyte. It may be up to 5% by weight. When the content of the C ⁇ C group-containing compound is within this range, the SEI does not become too thick, and the stability of the SEI at higher temperatures increases.
  • the content of the C ⁇ C group-containing compound may be 0.1% by mass or more based on the total mass of the nonaqueous electrolytic solution.
  • the content of the SO group-containing compound is 0.001 to 5% by mass based on the total mass of the non-aqueous electrolyte. It may be. When the content of the SO group-containing compound is within this range, the SEI does not become too thick, and the stability of the SEI at higher temperatures increases.
  • the content of the SO group-containing compound may be 0.01% by mass or more, or 0.1% by mass or more based on the total mass of the non-aqueous electrolyte.
  • the content of the phosphorus-containing compound is 0.001 to 5% by mass based on the total mass of the nonaqueous electrolytic solution. May be. When the content of the phosphorus-containing compound is within this range, the SEI does not become too thick, and the stability of the SEI at higher temperatures increases.
  • the content of the phosphorus-containing compound may be 0.01% by mass or more, or 0.1% by mass or more based on the total mass of the nonaqueous electrolytic solution.
  • the content of the cyclic phosphazene compound is 0.001 to 5% by mass based on the total mass of the non-aqueous electrolyte. May be.
  • the content of the cyclic phosphazene compound is within this range, the SEI does not become too thick, and the stability of the SEI at a higher temperature increases.
  • the content of the cyclic phosphazene compound may be 0.01% by mass or more, or 0.1% by mass or more based on the total mass of the nonaqueous electrolytic solution.
  • the content of the acid anhydride is 0.001 to 5% by mass based on the total mass of the non-aqueous electrolyte. May be. When the content of the acid anhydride is within this range, the SEI does not become too thick, and the stability of the SEI at higher temperatures increases.
  • the content of the acid anhydride may be 0.01% by mass or more, or 0.5% by mass or more based on the total mass of the nonaqueous electrolytic solution.
  • the content of the boron-containing compound is 0.001 to 5% by mass based on the total mass of the non-aqueous electrolyte. May be. In this range, the SEI does not become too thick and the stability of the SEI at higher temperatures is increased.
  • the content of the boron-containing compound may be 0.01% by mass or more, or 0.1% by mass or more based on the total mass of the nonaqueous electrolytic solution.
  • the content of the silicon-containing compound is 0.01 to 5% by mass based on the total mass of the non-aqueous electrolyte. May be. When the content of the silicon-containing compound is within this range, the SEI does not become too thick, and the stability of the SEI at higher temperatures increases.
  • the content of the silicon-containing compound may be 0.1% by mass or more, or 0.5% by mass or more based on the total mass of the nonaqueous electrolytic solution.
  • an aprotic solvent can be selected from the viewpoint of keeping the viscosity of the obtained non-aqueous electrolyte low.
  • the aprotic solvent is at least one selected from the group consisting of cyclic carbonate, chain carbonate, aliphatic carboxylic acid ester, lactone, lactam, cyclic ether, chain ether, sulfone, nitrile, and halogen derivatives thereof. May be.
  • a cyclic carbonate or a chain carbonate can be selected, and a combination of a cyclic carbonate and a chain carbonate can also be selected.
  • Examples of the cyclic carbonate include ethylene carbonate, propylene carbonate, butylene carbonate, and FEC.
  • Examples of the chain carbonate include dimethyl carbonate, diethyl carbonate, and ethyl methyl carbonate.
  • Examples of the aliphatic carboxylic acid ester include methyl acetate, ethyl acetate, methyl propionate, ethyl propionate, methyl butyrate, methyl isobutyrate, and methyl trimethyl acetate.
  • Examples of the lactone include ⁇ -butyrolactone.
  • Examples of the lactam include ⁇ -caprolactam and N-methylpyrrolidone.
  • Examples of the cyclic ether include tetrahydrofuran, 2-methyltetrahydrofuran, tetrahydropyran, 1,3-dioxolane and the like.
  • Examples of the chain ether include 1,2-diethoxyethane, ethoxymethoxyethane, and the like.
  • Examples of the sulfone include sulfolane.
  • Examples of the nitrile include acetonitrile.
  • Examples of the halogen derivative include 4-fluoro-1,3-dioxolane-2-one, 4-chloro-1,3-dioxolan-2-one, 4,5-difluoro-1,3-dioxolane-2- ON etc. are mentioned. These non-aqueous solvents may be used alone or in combination of two or more.
  • the electrolyte may be a lithium salt that serves as a source of lithium ions.
  • Electrolyte LiAlCl 4, LiBF 4, LiPF 6, LiClO 4, LiAsF 6 and may be at least one selected from the group consisting of LiSbF 6. From the viewpoint of having a high degree of dissociation and an ability to increase the ionic conductivity of the electrolytic solution and further suppressing the performance deterioration of the electricity storage device due to long-term use due to the oxidation-reduction characteristics, LiBF 4 and / or LiPF are used as the electrolyte. 6 may be selected. These electrolytes may be used alone or in combination of two or more.
  • LiBF 4 and / or LiPF 6 When the electrolyte is LiBF 4 and / or LiPF 6 , one or more cyclic carbonates and chain carbonates may be combined as the non-aqueous solvent. In particular, LiBF 4 and / or LiPF 6 may be combined with ethylene carbonate and diethyl carbonate.
  • the concentration of the electrolyte in the non-aqueous electrolyte may be 0.1 to 2.0 mol / L based on the volume of the non-aqueous electrolyte.
  • concentration of the electrolyte is 0.1 mol / L or more, more excellent discharge characteristics or charge characteristics can be obtained.
  • concentration of the electrolyte is 2.5 mol / L or less, the viscosity of the nonaqueous electrolytic solution is difficult to increase, so that ion mobility can be sufficiently ensured.
  • the concentration of the electrolyte may be 0.3 to 2.0 mol / L, or may be 0.5 mol / L to 1.6 mol / L.
  • the electrolyte (first lithium salt) and a second lithium salt different from the electrolyte may be used in combination.
  • the second lithium salt include lithium difluorophosphate, lithium bisoxalatoborate (LiBOB), lithium tetrafluoro (oxalato) phosphate (LiTFOP), lithium difluorooxalatoborate (LiDFOB), and lithium difluorobisoxalatophosphate.
  • LiDFOP lithium tetrafluoroborate
  • lithium bisfluorosulfonylimide lithium bisfluorosulfonylimide
  • lithium tetrafluoro (oxalato) phosphate lithium salt having a phosphate skeleton such as Li 2 PO 3 F
  • lithium trifluoro ((methanesulfonyl) Oxy) borate lithium pentafluoro ((methanesulfonyl) oxy) phosphate, lithium methyl sulfate, lithium ethyl sulfate, lithium 2,2,
  • Examples thereof include lithium salts having an S ( ⁇ O) group such as 2-trifluoroethyl sulfate and lithium fluorosulfonate.
  • the second lithium salt is lithium difluorophosphate, lithium bisoxalatoborate, lithium tetrafluoro (oxalato) phosphate, lithium difluorooxalatoborate, lithium difluorobisoxalate phosphate, lithium methyl sulfate, lithium ethyl sulfate, and fluorosulfone
  • One or more lithium salts selected from the group consisting of lithium acid may be included.
  • the concentration of the second lithium salt in the non-aqueous electrolyte may be 0.001 to 1.0 mol / L based on the volume of the non-aqueous electrolyte.
  • concentration of the second lithium salt is 0.001 mol / L or more, more excellent charge / discharge characteristics can be obtained under high temperature conditions.
  • concentration of the second lithium salt is 1.0 mol / L or less, the viscosity of the non-aqueous electrolyte is difficult to increase, and thus ion mobility can be sufficiently ensured.
  • the concentration of the second lithium salt may be 0.01 to 0.8 mol / L or 0.01 to 0.5 mol / L.
  • an additive for a non-aqueous electrolyte containing the compound represented by the formula (1) is dissolved in an electrolyte and a general additive that is added as necessary. Prepared by adding to aqueous solvent.
  • the nonaqueous electrolytic solution according to the present embodiment can be used as an electrolytic solution for an electricity storage device including a positive electrode and a negative electrode. More specifically, the non-aqueous electrolyte prepared using the non-aqueous electrolyte additive according to the present embodiment is a non-aqueous electrolyte secondary battery such as a lithium ion battery or an electric battery such as a lithium ion capacitor. When used in a power storage device such as a multilayer capacitor, battery characteristics such as initial resistance, discharge capacity retention rate, and long-term resistance increase suppression can be improved.
  • the additive for non-aqueous electrolyte according to the present embodiment is stable in the non-aqueous electrolyte, it suppresses gas generation such as carbon dioxide due to decomposition on the positive electrode accompanying charging, and battery performance In addition, safety can be improved.
  • the electricity storage device is mainly composed of the non-aqueous electrolyte, a positive electrode, and a negative electrode.
  • Specific examples of the electricity storage device include a non-aqueous electrolyte secondary battery (such as a lithium ion battery) and an electric double layer capacitor (such as a lithium ion capacitor).
  • the nonaqueous electrolytic solution according to the present embodiment is particularly useful in applications of lithium ion batteries and lithium ion capacitors.
  • FIG. 1 is a cross-sectional view schematically showing an example of a non-aqueous electrolyte secondary battery as an electricity storage device according to the present embodiment.
  • a non-aqueous electrolyte secondary battery 1 includes a positive electrode plate 4 (positive electrode) and a negative electrode plate 7 (negative electrode), a non-aqueous electrolyte solution 8 disposed between the positive electrode plate 4 and the negative electrode plate 7, And a separator 9 provided in the nonaqueous electrolytic solution 8.
  • the positive electrode plate 4 includes a positive electrode current collector 2 and a positive electrode active material layer 3 provided on the nonaqueous electrolyte solution 8 side.
  • the negative electrode plate 7 includes a negative electrode current collector 5 and a negative electrode active material layer 6 provided on the nonaqueous electrolyte solution 8 side.
  • the nonaqueous electrolytic solution 8 the nonaqueous electrolytic solution according to the above-described embodiment can be used.
  • FIG. 1 a non-aqueous electrolyte secondary battery is shown as the electricity storage device, but the electricity storage device to which the non-aqueous electrolyte can be applied is not limited to this, and other electricity storage devices such as an electric double layer capacitor. It may be.
  • the positive electrode current collector 2 and the negative electrode current collector 5 for example, a metal foil made of a metal such as aluminum, copper, nickel, and stainless steel can be used.
  • the positive electrode active material layer 3 contains a positive electrode active material.
  • the positive electrode active material may be a lithium-containing composite oxide.
  • Examples include lithium-containing composite oxides such as LiFePO 4 .
  • the negative electrode active material layer 6 contains a negative electrode active material.
  • a negative electrode active material the material which can occlude and discharge
  • Such materials include carbon materials such as crystalline carbon (natural graphite and artificial graphite), amorphous carbon, carbon-coated graphite and resin-coated graphite, indium oxide, silicon oxide, tin oxide, lithium titanate, oxidation Examples thereof include oxide materials such as zinc and lithium oxide, metal materials such as lithium metal, and metals that can form an alloy with lithium.
  • the metal capable of forming an alloy with lithium include Cu, Sn, Si, Co, Mn, Fe, Sb, Ag, and the like. From the binary or ternary containing these metals and lithium Such an alloy can also be used as the negative electrode active material.
  • These negative electrode active materials may be used alone or in combination of two or more.
  • a carbon material such as graphite and a Si-based active material such as Si, Si alloy, or Si oxide may be combined as the negative electrode active material.
  • graphite and a Si-based active material may be combined as the negative electrode active material.
  • the ratio of the mass of the Si-based active material to the total mass of the carbon material and the Si-based active material is 0.5% by mass to 95% by mass, 1% by mass to 50% by mass, or 2 It may be not less than 40% by mass.
  • the positive electrode active material layer 3 and the negative electrode active material layer 6 may further contain a binder.
  • the binder include polyvinylidene fluoride (PVdF), vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-tetrafluoroethylene copolymer, styrene-butadiene copolymer rubber, carboxymethyl cellulose, polytetrafluoro Examples thereof include ethylene, polypropylene, polyethylene, polyimide, polyamideimide, polyacrylic acid, polyvinyl alcohol, acrylic acid-polyacrylonitrile, polyacrylamide, polymethacrylic acid, and copolymers thereof.
  • the binder may be the same or different between the positive electrode active material layer and the negative electrode active material layer.
  • the positive electrode active material layer 3 and the negative electrode active material layer 6 may further include a conductive auxiliary material for the purpose of reducing resistance.
  • a conductive auxiliary material include carbonaceous fine particles such as graphite, carbon black, acetylene black, and ketjen black, and carbon fibers.
  • separator 9 for example, a single layer or laminated microporous film, woven fabric, or non-woven porous film made of polyethylene, polypropylene, fluororesin, or the like can be used.
  • each member constituting the electricity storage device can be appropriately set by those skilled in the art.
  • the configuration of the power storage device is not limited to the embodiment of FIG. 1 and can be changed as appropriate.
  • Example 1 Synthesis of 4-methylsulfonyloxytetrahydrothiophene-1,1-dioxide-2-ene (Compound 1) 50 mL of water was added to a 300 mL four-necked flask equipped with a stirrer, condenser, thermometer and dropping funnel. While charging and cooling in an ice bath, 3-sulfolene (11.8 g, 100 mmol) and N-bromosuccinimide (18.0 g, 100 mmol) were added. Next, the temperature of the reaction liquid in the flask was raised to 80 ° C., and then stirred for 5 hours while maintaining the same temperature.
  • LiPF 6 as an electrolyte was dissolved in the obtained mixed non-aqueous solvent so as to have a concentration of 1.0 mol / L.
  • Compound 1 (4-methylsulfonyloxytetrahydrothiophene-1,1-dioxide-2-ene) was added as an additive for nonaqueous electrolyte solution to prepare a nonaqueous electrolyte solution.
  • the content ratio of the additive for non-aqueous electrolyte (Compound 1) was 1.0% by mass based on the total mass of the non-aqueous electrolyte.
  • Example 2 Synthesis of 4-methoxycarbonyloxytetrahydrothiophene-1,1-dioxide-2-ene (Compound 2) Example except that mesyl chloride in Example 1 was changed to methyl chloroformate (4.7 g, 50 mmol) The reaction was carried out in the same manner as in Example 1 to obtain Compound 2 shown in Table 1 (6.2 g, 65% yield based on 4-hydroxy-2-sulfolene). The molecular weight of the product was confirmed to be 192 by LC / MS spectrum.
  • Example 2 Preparation of electrolyte 2 of Example 1 above.
  • a nonaqueous electrolytic solution was prepared in the same manner as in Example 1 except that Compound 2 was used instead of Compound 1.
  • Example 3 Synthesis of 4-diethoxyphosphinyloxytetrahydrothiophene-1,1-dioxide-2-ene (Compound 3) Except for changing mesyl chloride in Example 1 to diethyl phosphoryl chloride (8.6 g, 50 mmol) The reaction was conducted in the same manner as in Example 1 to obtain the compound 3 shown in Table 1 (5.7 g, 42% yield based on 4-hydroxy-2-sulfolene). The molecular weight of the product was confirmed to be 270 by LC / MS spectrum.
  • Example 2 Preparation of electrolyte 2 of Example 1 above.
  • a nonaqueous electrolytic solution was prepared in the same manner as in Example 1 except that Compound 3 was used instead of Compound 1.
  • Example 4 Synthesis of 4-phenylsulfonyloxytetrahydrothiophene-1,1-dioxide-2-ene (Compound 4) Similarly except that mesyl chloride in Example 1 was changed to phenylsulfonyl chloride (8.8 g, 50 mmol). The reaction was carried out to obtain Compound 4 shown in Table 1 (8.0 g, yield 58% based on 4-hydroxy-2-sulfolene). The molecular weight of the product was confirmed to be 274 by LC / MS spectrum.
  • Example 2 Preparation of electrolyte 2 of Example 1 above.
  • a nonaqueous electrolytic solution was prepared in the same manner as in Example 1 except that Compound 4 was used instead of Compound 1.
  • Example 5 Synthesis of 4-trifluoromethylsulfonyloxytetrahydrothiophene-1,1-dioxide-2-ene (Compound 5) Except that mesyl chloride in Example 1 was changed to trifluoromethanesulfonyl chloride (8.4 g, 50 mmol) The reaction was conducted in the same manner as in Example 1 to obtain the compound 5 shown in Table 1 (6.2 g, yield 65% based on 4-hydroxy-2-sulfolene). The molecular weight of the product was confirmed to be 266 by LC / MS spectrum.
  • Example 2 Preparation of electrolyte 2 of Example 1 above.
  • a nonaqueous electrolytic solution was prepared in the same manner as in Example 1 except that Compound 5 was used instead of Compound 1.
  • Example 6 Synthesis of 1.4-allylsulfonyloxytetrahydrothiophene-1,1-dioxide-2-ene (Compound 6) Example except that mesyl chloride in Example 1 was changed to allylsulfonyl chloride (7.0 g, 50 mmol) The reaction was carried out in the same manner as in Example 1 to obtain Compound 6 shown in Table 1 (4.7 g, 40% yield based on 4-hydroxy-2-sulfolene). The molecular weight of the product was confirmed to be 236 by LC / MS spectrum.
  • Example 2 Preparation of electrolyte 2 of Example 1 above.
  • a nonaqueous electrolytic solution was prepared in the same manner as in Example 1 except that Compound 6 was used instead of Compound 1.
  • Example 2 Example 2 above.
  • a nonaqueous electrolytic solution was prepared in the same manner as in Example 1 except that Compound 1 was not used.
  • Example 2 Example 2 above.
  • a nonaqueous electrolytic solution was prepared in the same manner as in Example 1, except that 1,3-propane sultone (PS, manufactured by Tokyo Chemical Industry Co., Ltd.) was used instead of Compound 1.
  • PS 1,3-propane sultone
  • Example 3 Example 2 above.
  • a nonaqueous electrolytic solution was prepared in the same manner as in Example 1 except that vinylene carbonate (VC, manufactured by Tokyo Chemical Industry Co., Ltd.) was used instead of Compound 1.
  • VC vinylene carbonate
  • Comparative Example 4 A nonaqueous electrolytic solution was prepared in the same manner as in Comparative Example 3 except that the content of vinylene carbonate (VC) was 2.0% by mass.
  • Example 5 Example 2 above.
  • a nonaqueous electrolytic solution was prepared in the same manner as in Example 1 except that fluoroethylene carbonate (FEC, manufactured by Tokyo Chemical Industry Co., Ltd.) was used instead of Compound 1.
  • FEC fluoroethylene carbonate
  • Comparative Example 6 A nonaqueous electrolytic solution was prepared in the same manner as in Comparative Example 5 except that the content ratio of fluoroethylene carbonate (FEC) was 2.0% by mass.
  • FEC fluoroethylene carbonate
  • a graphite powder as a negative electrode active material and carbon black as a conductivity imparting agent were dry mixed.
  • the obtained mixture, styrene butadiene rubber (SBR) as a binder, and carboxymethyl cellulose (CMC) as a thickener were uniformly dispersed in water to prepare a slurry.
  • the obtained slurry was applied to one side of a copper foil (square shape, thickness 10 ⁇ m). After removing water from the coating film by drying, the whole was pressed to obtain a negative electrode sheet having a copper foil as a negative electrode current collector and a negative electrode active material layer formed on one surface thereof.
  • a negative electrode sheet, a separator made of polyethylene, a positive electrode sheet, a separator made of polyethylene, and a negative electrode sheet were laminated in this order to produce a battery element.
  • This battery element was inserted into a bag formed of a laminate film having aluminum (thickness: 40 ⁇ m) and a resin layer covering both sides of the battery element so that the ends of the positive electrode sheet and the negative electrode sheet protrude from the bag.
  • each nonaqueous electrolyte solution obtained in the Examples and Comparative Examples was injected into the bag.
  • the bag was vacuum-sealed to obtain a sheet-like nonaqueous electrolyte secondary battery.
  • a sheet-like nonaqueous electrolyte secondary battery was sandwiched between glass plates and pressurized to produce a nonaqueous electrolyte secondary battery (sheet type secondary battery).
  • the AC impedance was measured at 25 ° C., and the obtained value was defined as the initial resistance ( ⁇ ).
  • Table 2 shows the initial resistance ratio in each battery.
  • the “initial resistance ratio” is a relative value of the resistance of each non-aqueous electrolyte secondary battery when the initial resistance ( ⁇ ) of Comparative Example 1 is 1.
  • the AC impedance was measured in a 25 ° C. environment for a non-aqueous electrolyte secondary battery charged with 50% of the post-cycle capacity, and the obtained value was taken as the post-cycle resistance ( ⁇ ). It was.
  • Table 2 shows the discharge capacity maintenance rate and the resistance increase rate in each battery. In Table 1, “discharge capacity maintenance ratio” is calculated by (capacity after cycle) / (initial capacity), and “resistance increase ratio” is calculated by (resistance after cycle) / (initial resistance).
  • non-aqueous electrolyte secondary batteries having the same configuration including the electrolytes of Examples and Comparative Examples were prepared.
  • This non-aqueous electrolyte secondary battery was charged to 4.2 V at a current corresponding to 0.2 C in an environment at 25 ° C., and then subjected to aging for 24 hours in an environment at 45 ° C. Thereafter, the battery was discharged to 3 V at a current corresponding to 0.2 C in an environment of 25 ° C.
  • the battery was stabilized by performing an initial charge / discharge of 3 cycles of charging to 4.2 V with a current corresponding to 0.2 C and discharging to 3 V with a current corresponding to 0.2 C.
  • the volume of the battery was measured by the Archimedes method, and this was defined as “the initial volume of the battery (cm 3 )”.
  • the non-aqueous electrolyte secondary battery was charged to 4.2 V with a current corresponding to 1 C in an environment at 25 ° C., and then held in an environment at 60 ° C. for 168 hours. Then, it cooled to 25 degreeC and discharged to 3V with the electric current equivalent to 1C.
  • the volume of the battery was measured by the Archimedes method, and the obtained value was made into the volume (cm ⁇ 3 >) after high temperature preservation
  • Nonaqueous electrolyte secondary battery (electric storage device), 2 ... Positive electrode collector, 3 ... Positive electrode active material layer, 4 ... Positive electrode plate, 5 ... Negative electrode collector, 6 ... Negative electrode active material layer, 7 ... Negative electrode Plate, 8 ... non-aqueous electrolyte, 9 ... separator.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Inorganic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Primary Cells (AREA)

Abstract

下記式(1)で表される化合物を含む、非水電解液用添加剤が開示される。 式(1)中、Qは、スルホニル基の硫黄原子とともに環状基を形成している、置換されていてもよい炭素数4~7のアルケニレン基を示し、Xは、スルホニル基、ホスホリル基又はカルボニル基を示し、R1は、置換されていてもよい炭素数1~4のアルキル基等を示し、nは1又は2を示す。

Description

非水電解液用添加剤、非水電解液、及び、蓄電デバイス
 本発明は、非水電解液用添加剤に関する。また、本発明は、該非水電解液用添加剤を含有する非水電解液および該非水電解液を用いた蓄電デバイスに関する。
 近年、環境問題の解決、持続可能な循環型社会の実現に対する関心が高まるにつれ、リチウムイオン電池に代表される非水電解液二次電池、及び電気二重層キャパシタ等の蓄電デバイスの研究が広範囲に行われている。なかでもリチウムイオン電池は高い使用電圧とエネルギー密度を有していることから、ノート型パソコン、携帯電話等の電源として用いられている。リチウムイオン電池は、鉛電池やニッケルカドミウム電池と比較してエネルギー密度が高く、高容量化が実現されることから、新たな電源として期待されている。しかしながら、リチウムイオン電池には、充放電サイクルの経過に伴って電池の容量が低下するという問題がある。
 充放電サイクルの経過に伴う電池の容量の低下を抑制する方法として、電解液に各種添加剤を加える方法が検討されている。添加剤は、最初の充放電時に分解され、電極表面上に固体電解質界面(SEI)と呼ばれる被膜を形成する。SEIは、充放電サイクルの最初のサイクルにおいて形成されるため、リチウムイオンはSEIを介して電極を行き来することができ、電解液中の溶媒等の分解に電気が消費されることがない。すなわち、SEIの形成は充放電サイクルを繰り返した場合の非水電解液二次電池等の蓄電デバイスの劣化を防ぎ、電池特性、保存特性又は負荷特性等を向上させることに寄与する。
 SEIを形成させ電池特性等を向上させる技術として、例えば、特許文献1には、電解液中に1,3-プロパンスルトン(PS)を含有させることにより、リチウム二次電池の充放電のサイクル特性が向上することが開示されている。また、特許文献2には、電解液中に1,3,2-ジオキサフォスフォラン-2-オキサイド誘導体またはPSを含有させることにより、非水電解質二次電池の保存後の容量、保存後の回復容量が増加することが開示されている。特許文献3には、電解液中にビニレンカーボネート(VC)の誘導体を添加することにより、リチウム二次電池のサイクル特性等が向上することが開示されている。
特開昭63-102173号公報 特開平10-50342号公報 特開平5-74486号公報
 しかしながら、これらの添加剤を用いても充分な性能が得られず、蓄電デバイスの電池特性を更に向上させる新規な添加剤の開発が求められていた。また、特許文献3に記載されるVCの誘導体を添加剤として用いた電解液は、VCの誘導体が電極上で分解された際に、二酸化炭素等のガスを発生し、電池性能の低下につながるといった問題を有していた。ガス発生は、高温、又は長期に亘る充放電サイクルを繰り返したときに特に顕著である。
 本発明は、非水電解液二次電池等の蓄電デバイスに用いた場合に、初期抵抗、放電容量維持率、長期の抵抗上昇抑制といった電池特性の改善及びガス発生の抑制を可能とする非水電解液用添加剤を提供することを目的とする。また、本発明は、該非水電解液用添加剤を含有する非水電解液及び該非水電解液を用いた蓄電デバイス、を提供することを目的とする。
 本発明は、下記式(1)で表される化合物を含む、非水電解液用添加剤を提供する。
Figure JPOXMLDOC01-appb-C000003
 式(1)中、Qは、スルホニル基の硫黄原子とともに環状基を形成している、置換されていてもよい炭素数4~7のアルケニレン基を示し、
 Xは、スルホニル基、ホスホリル基又はカルボニル基を示し、Rは、置換されていてもよい炭素数1~4のアルキル基、置換されていてもよい炭素数2~4のアルケニル基、置換されていてもよい炭素数2~4のアルキニル基、置換されていてもよいアリール基、置換されていてもよい炭素数1~4のアルコキシ基、置換されていてもよい炭素数2~4のアルケニルオキシ基、置換されていてもよい炭素数2~4のアルキニルオキシ基、又は置換されていてもよいアリールオキシ基を示し、nは1又は2を示す。
 本発明によれば、蓄電デバイスに用いた場合に、初期抵抗、放電容量維持率、長期の抵抗上昇抑制といった電池特性の改善及びガス発生の抑制を可能とする、非水電解液用添加剤が提供される。また、本発明による該非水電解液用添加剤は、非水電解液二次電池、電気二重層キャパシタ等の蓄電デバイスに用いた場合に、電極表面上に安定なSEI(固体電解質界面)を形成してサイクル特性、充放電容量、内部抵抗等の電池特性を改善することができる。
一実施形態に係る蓄電デバイスとしての非水電解液二次電池の一例を模式的に示した断面図である。
以下、本発明の好適な実施形態について詳細に説明する。
 本実施形態に係る非水電解液用添加剤は、下記式(1)で表される化合物を含む。
Figure JPOXMLDOC01-appb-C000004
 式(1)中、Qは、スルホニル基の硫黄原子とともに環状基を形成している、置換されていてもよい炭素数4~7のアルケニレン基を示し、Xは、スルホニル基、ホスホリル基又はカルボニル基を示し、Rは、置換されていてもよい炭素数1~4のアルキル基、置換されていてもよい炭素数2~4のアルケニル基、置換されていてもよい炭素数2~4のアルキニル基、置換されていてもよいアリール基、置換されていてもよい炭素数1~4のアルコキシ基、置換されていてもよい炭素数2~4のアルケニルオキシ基、置換されていてもよい炭素数2~4のアルキニルオキシ基、又は置換されていてもよいアリールオキシ基を示し、nは1又は2を示す。
 Rに関して、炭素数1~4のアルキル基、炭素数2~4のアルケニル基、炭素数2~4のアルキニル基、炭素数1~4のアルコキシ基、炭素数2~4のアルケニルオキシ基又は炭素数2~4のアルキニルオキシ基が置換されている場合、その置換基は、例えば、ハロゲン原子、アリール基、ハロゲン化アリール基(例えば、2-フルオロフェニル基、3-フルオロフェニル基、4-フルオロフェニル基、パーフルオロフェニル基等のフッ素化アリール基)、アルコキシ基、ハロゲン化アルコキシ基又はこれらの組み合わせであってもよい。Rに関して、アリール基又はアリールオキシ基が置換されている場合、その置換基は、例えば、ハロゲン原子、アルキル基、ハロゲン化アルキル基(例えば、トリフルオロメチル基、2,2,2-トリフルオロエチル基等のフッ素化アルキル基)、アルコキシ基、ハロゲン化アルコキシ基又はこれらの組み合わせであってもよい。本明細書において「ハロゲン原子で置換されていてもよい」とは、各R基に含まれる1個以上の水素原子がハロゲン原子で置換されていてもよいことを示す。この場合の前記ハロゲン原子としては、例えば、ヨウ素原子、臭素原子、フッ素原子が挙げられる。電池抵抗がより低くなるという観点から、ハロゲン原子としては、フッ素原子を選択できる。
 前記式(1)中のXは、スルホニル基、ホスホリル基、又はカルボニル基を示す。通常、Xがスルホニル基(-S(=O)-)又はカルボニル基(-C(=O)-)であるとき、nは1であり、Xがホスホリル基(-P(=O)<)であるとき、nは2である。n=2の場合は、2つのRは同一でも異なっていてもよい。よりガス発生を抑制するという観点から、Xはスルホニル基であってもよい。
 前記式(1)中のRは、電池抵抗がより低くなるという観点から、ハロゲン原子若しくはハロゲン化アリール基で置換されていてもよい炭素数1~4のアルキル基又はハロゲン原子、アリール基若しくはハロゲン化アリール基で置換されていてもよい炭素数1~4のアルコキシ基であってもよい。
 前記式(1)中のRは、強固なSEIを形成するという観点から、不飽和結合を有する基であってもよい。例えば、Rは、ハロゲン原子で置換されていてもよい炭素数2~4のアルケニル基、ハロゲン原子で置換されていてもよい炭素数2~4のアルキニル基、ハロゲン原子、アルキル基若しくはハロゲン化アルキル基で置換されていてもよいアリール基、ハロゲン原子で置換されていてもよい炭素数2~4のアルケニルオキシ基、ハロゲン原子で置換されていてもよい炭素数2~4のアルキニルオキシ基、又はハロゲン原子、アルキル基、ハロゲン化アルキル基若しくはアルコキシ基で置換されていてもよいアリールオキシ基であってもよい。
 前記式(1)中のRは、式(1)で表される化合物がより優れたイオン伝導度を発揮するという観点から、ハロゲン原子で置換されていてもよい炭素数2~4のアルケニルオキシ基、ハロゲン原子で置換されていてもよい炭素数2~4のアルキニルオキシ基、又はハロゲン原子、アルキル基、ハロゲン化アルキル基若しくはアルコキシ基で置換されていてもよいアリールオキシ基であってもよい。
 ハロゲン原子又はハロゲン化アリール基で置換されていてもよい炭素数1~4のアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基、トリフルオロメチル基、1-フルオロエチル基、2-フルオロエチル基、1,1-ジフルオロエチル基、1,2-ジフルオロエチル基、2,2-ジフルオロエチル基、2,2,2-トリフルオロエチル基、パーフルオロエチル基、1-フルオロ-n-プロピル基、2-フルオロ-n-プロピル基、3-フルオロ-n-プロピル基、1,1-ジフルオロ-n-プロピル基、1,2-ジフルオロ-n-プロピル基、1,3-ジフルオロ-n-プロピル基、2,2-ジフルオロ-n-プロピル基、2,3-ジフルオロ-n-プロピル基、3,3-ジフルオロ-n-プロピル基、3,3,3-トリフルオロ-n-プロピル基、2,2,3,3,3-ペンタフルオロ-n-プロピル基、パーフルオロ-n-プロピル基、1-フルオロイソプロピル基、2-フルオロイソプロピル基、1,2-ジフルオロイソプロピル基、2,2-ジフルオロイソプロピル基、2,2’-ジフルオロイソプロピル基、2,2,2,2’,2’,2’-ヘキサフルオロイソプロピル基、1-フルオロ-n-ブチル基、2-フルオロ-n-ブチル基、3-フルオロ-n-ブチル基、4-フルオロ-n-ブチル基、4,4,4-トリフルオロ-n-ブチル基、パーフルオロ-n-ブチル基、2-フルオロ-tert-ブチル基、パーフルオロ-tert-ブチル基、(2-フルオロフェニル)メチル基、(3-フルオロフェニル)メチル基、(4-フルオロフェニル)メチル基、及び(パーフルオロフェニル)メチル基等が挙げられる。前記アルキル基としては、ハロゲン原子で置換されていてもよいメチル基を選択できる。
 ハロゲン原子で置換されていてもよい炭素数2~4のアルケニル基としては、例えば、ビニル基、アリル基、イソプロペニル基、1-ブテニル基、2-ブテニル基、3-ブテニル基、イソブテニル基、1-フルオロビニル基、2-フルオロビニル基、1,2-ジフルオロビニル基、2,2-ジフルオロビニル基、パーフルオロビニル基、1-フルオロアリル基、2-フルオロアリル基、3-フルオロアリル基、及びパーフルオロアリル基等が挙げられる。前記アルケニル基としては、ハロゲン原子で置換されていてもよいアリル基を選択できる。
 ハロゲン原子で置換されていてもよい炭素数2~4のアルキニル基としては、例えば、1-プロピニル基、2-プロピニル基、1-ブチニル基、2-ブチニル基、3-ブチニル基、3-フルオロ-1-プロピニル基、3,3-ジフルオロ-1-プロピニル基、パーフルオロ-1-プロピニル基、1-フルオロ-2-プロピニル基、1,1-ジフルオロ-2-プロピニル基、3-フルオロ-1-ブチニル基、4-フルオロ-1-ブチニル基、3,4-ジフルオロ-1-ブチニル基、4,4-ジフルオロ-1-ブチニル基、及びパーフルオロ-1-ブチニル基等が挙げられる。前記アルキニル基としては、ハロゲン原子で置換されていてもよい2-プロピニル基を選択できる。
 ハロゲン原子、アルキル基又はハロゲン化アルキル基で置換されていてもよいアリール基としては、例えば、フェニル基、トリル基、キシリル基、ナフチル基、2-フルオロフェニル基、3-フルオロフェニル基、4-フルオロフェニル基、2,3-ジフルオロフェニル基、2,4-ジフルオロフェニル基、3,5-ジフルオロフェニル基、2,4,6-トリフルオロフェニル基、パーフルオロフェニル基、3-フルオロ-2-メチルフェニル基、4-フルオロ-2-メチルフェニル基、5-フルオロ-2-メチルフェニル基、6-フルオロ-2-メチルフェニル基、2-フルオロ-3-メチルフェニル基、4-フルオロ-3-メチルフェニル基、5-フルオロ-3-メチルフェニル基、6-フルオロ-3-メチルフェニル基、2-フルオロ-4-メチルフェニル基、3-フルオロ-4-メチルフェニル基、2-トリフルオロメチルフェニル基、3-トリフルオロメチルフェニル基、4-トリフルオロメチルフェニル基、2-(2,2,2-トリフルオロエチル)フェニル基、3-(2,2,2-トリフルオロエチル)フェニル基、4-(2,2,2-トリフルオロエチル)フェニル基、パーフルオロトリル基、2-フルオロナフタレン-1-イル基、3-フルオロナフタレン-1-イル基、4-フルオロナフタレン-1-イル基、5-フルオロナフタレン-1-イル基、6-フルオロナフタレン-1-イル基、7-フルオロナフタレン-1-イル基、8-フルオロナフタレン-1-イル基、1-フルオロナフタレン-2-イル基、3-フルオロナフタレン-2-イル基、4-フルオロナフタレン-2-イル基、5-フルオロナフタレン-2-イル基、6-フルオロナフタレン-2-イル基、7-フルオロナフタレン-2-イル基、8-フルオロナフタレン-2-イル基、及びパーフルオロナフチル基等が挙げられる。前記アリール基としては、ハロゲン原子で置換されていてもよいフェニル基を選択できる。
 ハロゲン原子、アリール基又はハロゲン化アリール基で置換されていてもよい炭素数1~4のアルコキシ基としては、例えば、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、tert-ブトキシ基、イソブトキシ基、ベンジルオキシ基、フルオロメトキシ基、ジフルオロメトキシ基、トリフルオロメトキシ基、1-フルオロエトキシ基、2-フルオロエトキシ基、1,1-ジフルオロエトキシ基、1,2-ジフルオロエトキシ基、2,2-ジフルオロエトキシ基、2,2,2-トリフルオロエトキシ基、パーフルオロエトキシ基、1-フルオロ-n-プロポキシ基、2-フルオロ-n-プロポキシ基、3-フルオロ-n-プロポキシ基、1,1-ジフルオロ-n-プロポキシ基、1,2-ジフルオロ-n-プロポキシ基、1,3-ジフルオロ-n-プロポキシ基、2,2-ジフルオロ-n-プロポキシ基、2,3-ジフルオロ-n-プロポキシ基、3,3-ジフルオロ-n-プロポキシ基、3,3,3-トリフルオロ-n-プロポキシ基、2,2,3,3,3-ペンタフルオロ-n-プロポキシ基、パーフルオロ-n-プロポキシ基、1-フルオロイソプロポキシ基、2-フルオロイソプロポキシ基、1,2-ジフルオロイソプロポキシ基、2,2-ジフルオロイソプロポキシ基、2,2’-ジフルオロイソプロポキシ基、2,2,2,2’,2’,2’ -ヘキサフルオロイソプロポキシ基、1-フルオロ-n-ブトキシ基、2-フルオロ-n-ブトキシ基、3-フルオロ-n-ブトキシ基、4-フルオロ-n-ブトキシ基、4,4,4-トリフルオロ-n-ブトキシ基、パーフルオロ-n-ブトキシ基、2-フルオロ-tert-ブトキシ基、パーフルオロ-tert-ブトキシ基、(2-フルオロフェニル)メトキシ基、(3-フルオロフェニル)メトキシ基、(4-フルオロフェニル)メトキシ基、及び(パーフルオロフェニル)メトキシ基等が挙げられる。前記アルコキシ基としては、ハロゲン原子で置換されていてもよいメトキシ基及びハロゲン原子で置換されていてもよいエトキシ基を選択できる。
 ハロゲン原子で置換されていてもよい炭素数2~4のアルケニルオキシ基としては、例えば、ビニルオキシ基、イソプロペニルオキシ基、2-プロペニルオキシ基、1-メチル-2-プロペニルオキシ基、2-メチル-2-プロペニルオキシ基、1-ブテニルオキシ基、2-ブテニルオキシ基、3-ブテニルオキシ基、1-フルオロビニルオキシ基、2-フルオロビニルオキシ基、1,2-ジフルオロビニルオキシ基、2,2-ジフルオロビニルオキシ基、パーフルオロビニルオキシ基、1-フルオロアリルオキシ基、2-フルオロアリルオキシ基、3-フルオロアリルオキシ基、及びパーフルオロアリルオキシ基等が挙げられる。
 ハロゲン原子で置換されていてもよい炭素数2~4のアルキニルオキシ基としては、例えば、エチニルオキシ基、1-プロピニルオキシ基、2-プロピニルオキシ基、1-メチル-2-プロピニルオキシ基、1-ブチニルオキシ基、2-ブチニルオキシ基、3-ブチニルオキシ基、3-フルオロ-1-プロピニルオキシ基、3,3-ジフルオロ-1-プロピニルオキシ基、パーフルオロ-1-プロピニルオキシ基、1-フルオロ-2-プロピニルオキシ基、1,1-ジフルオロ-2-プロピニルオキシ基、3-フルオロ-1-ブチニルオキシ基、4-フルオロ-1-ブチニルオキシ基、3,4-ジフルオロ-1-ブチニルオキシ基、4,4-ジフルオロ-1-ブチニルオキシ基、及びパーフルオロ-1-ブチニルオキシ基等が挙げられる。
 ハロゲン原子、アルキル基、ハロゲン化アルキル基又はアルコキシ基で置換されていてもよいアリールオキシ基としては、例えば、フェノキシ基、2-メチルフェノキシ基、3-メチルフェノキシ基、4-メチルフェノキシ基、2-エチルフェノキシ基、3-エチルフェノキシ基、4-エチルフェノキシ基、2-メトキシフェノキシ基、3-メトキシフェノキシ基、4-メトキシフェノキシ基、2-フルオロフェノキシ基、3-フルオロフェノキシ基、4-フルオロフェノキシ基、2,3-ジフルオロフェノキシ基、2,4-ジフルオロフェノキシ基、3,5-ジフルオロフェノキシ基、2,4,6-トリフルオロフェノキシ基、パーフルオロフェノキシ基、3-フルオロ-2-メチルフェノキシ基、4-フルオロ-2-メチルフェノキシ基、5-フルオロ-2-メチルフェノキシ基、6-フルオロ-2-メチルフェノキシ基、2-フルオロ-3-メチルフェノキシ基、4-フルオロ-3-メチルフェノキシ基、5-フルオロ-3-メチルフェノキシ基、6-フルオロ-3-メチルフェノキシ基、2-フルオロ-4-メチルフェノキシ基、3-フルオロ-4-メチルフェノキシ基、2-トリフルオロメチルフェノキシ基、3-トリフルオロメチルフェノキシ基、4-トリフルオロメチルフェノキシ基等が挙げられる。
 式(1)中のQは、スルホニル基の硫黄原子とともに環状基を形成している炭素数4~7のアルケニレン基であり、-O-X-(Rで表される基によって任意の位置で置換されている。Qは、-O-X-(R以外の置換基で更に置換されていてもよい。-O-X-(R以外の置換基は、例えばハロゲン原子であってもよい。式(1)中のQとしてのアルケニレン基は、スルホニル基の硫黄原子に結合した炭素原子とこれに隣接する炭素原子とで形成された二重結合を有していてもよい。
 式(1)中のRの具体例としては、-CH=CHCHCH-、-CHCH=CHCH-、-CH=CHCFCH-、-CHCH=CHCF-、-CF=CHCHCH-、-CH=CFCHCH-、-CF=CFCHCH-、-CH=CH-CHFCH-、-CH=CHCHCHF-、-CF=CFCHFCF-、-CH=CHCHCHCH-、-CH=CHCHCH=CH-、-CF=CHCHCH=CH-、-CH=CFCHCH=CH-、-CF=CFCHCH=CH-、-CH=CH-CHF-CH=CH-、-CH=CH-CH-CF=CH-、-CH=CHCHCH=CF-、-CF=CFCHFCF=CF-、-CH=CHCHCHCHCH-、-CH=CHCHCHCH=CH-、-CF=CHCHCH=CHCH-、-CH=CHCHCHCHCHCH-、-CF=CHCHCH=CHCHCH-、又は-CF=CHCHCHCHCH=CH-等から1個以上の水素原子を除いた基が挙げられる。これらの基において、末端の二重結合を形成している炭素原子が、式(1)中のスルホニル基の硫黄原子に結合していてもよい。
 式(1)において、例えば下記式(1’)で表される化合物のように、-O-X-(Rで表される基が環状スルホンの三位に結合していてもよい。この化合物は、特に低いLUMOエネルギーを示し、より優れたイオン伝導度を発揮する傾向にある。式(1’)中、C及びCは炭素原子を示し、Q’は、スルホニル基の硫黄原子、C及びCとともに環状基を形成している、置換されていてもよい炭素数2~5のアルケニレン基を示し、R、R及びRはそれぞれ独立に、水素原子又はハロゲン原子を示す。X、R及びnは式(1)中のX、R及びnと同義である。式(1’)中のQ’としてのアルケニレン基は、スルホニル基の硫黄原子に結合した炭素原子とこれに隣接する炭素原子とで形成された二重結合を有していてもよい。
Figure JPOXMLDOC01-appb-C000005
 よりサイクル特性を向上させるという観点から、式(1)の化合物が下記式(2)で表される化合物であってもよい。式(2)中のX、R及びnは、それぞれ式(1)におけるX、R及びnと同義である。
Figure JPOXMLDOC01-appb-C000006
 式(2)で表される化合物としては、例えば、4-メチルスルホニルオキシテトラヒドロチオフェン-1,1-ジオキサイド-2-エン、4-エチルスルホニルオキシテトラヒドロチオフェン-1,1-ジオキサイド-2-エン、4-フェニルスルホニルオキシテトラヒドロチオフェン-1,1-ジオキサイド-2-エン、4-(p-フルオロフェニル)スルホニルオキシテトラヒドロチオフェン-1,1-ジオキサイド-2-エン、4-(ペンタフルオロフェニル)スルホニルオキシテトラヒドロチオフェン-1,1-ジオキサイド-2-エン、4-(ペンタフルオロフェニル)スルホニルオキシテトラヒドロチオフェン-1,1-ジオキサイド-2-エン、4-(p-トリフルオロメチルフェニル)スルホニルオキシテトラヒドロチオフェン-1,1-ジオキサイド-2-エン、4-[p-(2,2,2-トリフルオロエチル)フェニル]スルホニルオキシテトラヒドロチオフェン-1,1-ジオキサイド-2-エン、4-トリフルオロメチルスルホニルオキシテトラヒドロチオフェン-1,1-ジオキサイド-2-エン、4-tert-ブチルスルホニルオキシテトラヒドロチオフェン-1,1-ジオキサイド-2-エン、4-メトキシスルホニルオキシテトラヒドロチオフェン-1,1-ジオキサイド-2-エン、4-トリフルオロエトキシスルホニルオキシテトラヒドロチオフェン-1,1-ジオキサイド-2-エン、4-アリルスルホニルオキシテトラヒドロチオフェン-1,1-ジオキサイド-2-エン、4-メチルカルボニルオキシテトラヒドロチオフェン-1,1-ジオキサイド-2-エン、4-エチルカルボニルオキシテトラヒドロチオフェン-1,1-ジオキサイド-2-エン、4-フェニルカルボニルオキシテトラヒドロチオフェン-1,1-ジオキサイド-2-エン、4-トリフルオロメチルカルボニルオキシテトラヒドロチオフェン-1,1-ジオキサイド-2-エン、4-tert-ブチルカルボニルオキシテトラヒドロチオフェン-1,1-ジオキサイド-2-エン、4-メトキシカルボニルオキシテトラヒドロチオフェン-1,1-ジオキサイド-2-エン、4-トリフルオロエトキシカルボニルオキシテトラヒドロチオフェン-1,1-ジオキサイド-2-エン、4-ジメチルホスフィニルオキシテトラヒドロチオフェン-1,1-ジオキサイド-2-エン、4-ジエチルホスフィニルオキシテトラヒドロチオフェン-1,1-ジオキサイド-2-エン、4-ビス-トリフルオロメチルホスフィニルオキシテトラヒドロチオフェン-1,1-ジオキサイド-2-エン、4-ジフェニルホスフィニルオキシテトラヒドロチオフェン-1,1-ジオキサイド-2-エン、4-ジアリルホスフィニルオキシテトラヒドロチオフェン-1,1-ジオキサイド-2-エン、4-ジビニルホスフィニルオキシテトラヒドロチオフェン-1,1-ジオキサイド-2-エン、4-ジプロパルギルホスフィニルオキシテトラヒドロチオフェン-1,1-ジオキサイド-2-エン、4-ジメトキシホスフィニルオキシテトラヒドロチオフェン-1,1-ジオキサイド-2-エン、4-ジエトキシホスフィニルオキシテトラヒドロチオフェン-1,1-ジオキサイド-2-エン、4-ジフェノキシホスフィニルオキシテトラヒドロチオフェン-1,1-ジオキサイド-2-エン、4-ビス-トリフルオロメトキシホスフィニルオキシテトラヒドロチオフェン-1,1-ジオキサイド-2-エン、4-ビス-アリルオキシホスフィニルオキシテトラヒドロチオフェン-1,1-ジオキサイド-2-エン、及び4-ビス-シクロヘキシルオキシホスフィニルオキシテトラヒドロチオフェン-1,1-ジオキサイド-2-エン等が挙げられる。
 式(1)、(1’)又は(2)の化合物は、入手可能な原料を用い、通常の反応を組み合わせて合成される。合成方法としては、例えば、3-ヒドロキシ-2-スルホレンにハロゲン化物を反応させる方法がある。
 本実施形態に係る非水電解液用添加剤は、前記式(1)で表される化合物を単独で含んでいてもよいし、2種以上を含んでいてもよい。
 本実施形態に係る非水電解液用添加剤は、必要に応じて、負極保護剤、正極保護剤、難燃剤、過充電防止剤、環状カーボネート化合物、ニトリル化合物、イソシアネート化合物、C≡C基含有化合物、SO基含有化合物、リン含有化合物、酸無水物、環状ホスファゼン化合物、ホウ素含有化合物、ケイ素含有化合物等の添加剤と併用してもよい。
 前記環状カーボネート化合物としては、4-フルオロ-1,3-ジオキソラン-2-オン(FEC)、トランス若しくはシス-4,5-ジフルオロ-1,3-ジオキソラン-2-オン(DFEC)、ビニレンカーボネート(VC)、ビニルエチレンカーボネート(VEC)、及び4-エチニル-1,3-ジオキソラン-2-オン(EEC)等が挙げられる。前記環状カーボネート化合物としてVC、FEC、VEC又はこれらの組み合わせを用いてもよい。
 前記ニトリル化合物としては、アセトニトリル、プロピオニトリル、スクシノニトリル、グルタロニトリル、アジポニトリル、ピメロニトリル、スベロニトリル、及びセバコニトリル等が挙げられる。前記ニトリル化合物として、スクシノニトリル、アジポニトリル又はこれらの組み合わせを用いてもよい。
 前記イソシアネート化合物としては、メチルイソシアネート、エチルイソシアネート、ブチルイソシアネート、フェニルイソシアネート、テトラメチレンジイソシアネート、ヘキサメチレンジイソシアネート、オクタメチレンジイソシアネート、1,4-フェニレンジイソシアネート、2-イソシアナトエチルアクリレート、及び2-イソシアナトエチルメタクリレート等が挙げられる。
 前記C≡C基含有化合物としては、2-プロピニルメチルカーボネート、酢酸-2-プロピニル、ギ酸-2-プロピニル、メタクリル酸-2-プロピニル、メタンスルホン酸-2-プロピニル、ビニルスルホン酸-2-プロピニル、2-(メタンスルホニルオキシ)プロピオン酸-2-プロピニル、ジ(2-プロピニル)オギザレート、メチル-2-プロピニルオギザレート、エチル-2-プロピニルオギザレート、グルタル酸ジ(2-プロピニル)、2-ブチン-1,4-ジイルジメタンスルホネート、2-ブチン-1,4-ジイルジホルメート、及び2,4-ヘキサジイン-1,6-ジイルジメタンスルホネート等が挙げられる。
 前記SO基含有化合物としては、1,3-プロパンスルトン(PS)、1,3-ブタンスルトン、2,4-ブタンスルトン、1,4-ブタンスルトン、1,3-プロペンスルトン、2,2-ジオキシド-1,2-オキサチオラン-4-イルアセテート、又は5,5-ジメチル-1,2-オキサチオラン-4-オン2,2-ジオキシド等のスルトン、エチレンサルファイト、エチレンスルフェート、ヘキサヒドロベンゾ[1,3,2]ジオキサチオラン-2-オキシド(1,2-シクロヘキサンジオールサイクリックサルファイトともいう)、及び5-ビニル-ヘキサヒドロ-1,3,2-ベンゾジオキサチオール-2-オキシド等の環状サルファイト、ブタン-2,3-ジイルジメタンスルホネート、ブタン-1,4-ジイルジメタンスルホネート、メチレンメタンジスルホネート、及び1,3-プロパンジスルホン酸無水物等のスルホン酸エステル、ジビニルスルホン、1,2-ビス(ビニルスルホニル)エタン、並びにビス(2-ビニルスルホニルエチル)エーテル等が挙げられる。
 前記リン含有化合物としてはリン酸トリメチル、リン酸トリブチル、及びリン酸トリオクチル、リン酸トリス(2,2,2-トリフルオロエチル)、リン酸ビス(2,2,2-トリフルオロエチル)メチル、リン酸ビス(2,2,2-トリフルオロエチル)エチル、リン酸ビス(2,2,2-トリフルオロエチル)2,2-ジフルオロエチル、リン酸ビス(2,2,2-トリフルオロエチル)2,2,3,3-テトラフルオロプロピル、リン酸ビス(2,2-ジフルオロエチル)2,2,2-トリフルオロエチル、リン酸ビス(2,2,3,3-テトラフルオロプロピル)2,2,2-トリフルオロエチル及びリン酸(2,2,2-トリフルオロエチル)(2,2,3,3-テトラフルオロプロピル)メチル、リン酸トリス(1,1,1,3,3,3-ヘキサフルオロプロパン-2-イル)、メチレンビスホスホン酸メチル、メチレンビスホスホン酸エチル、エチレンビスホスホン酸メチル、エチレンビスホスホン酸エチル、ブチレンビスホスホン酸メチル、ブチレンビスホスホン酸エチル、メチル2-(ジメチルホスホリル)アセテート、エチル2-(ジメチルホスホリル)アセテート、メチル2-(ジエチルホスホリル)アセテート、エチル2-(ジエチルホスホリル)アセテート、2-プロピニル2-(ジメチルホスホリル)アセテート、2-プロピニル2-(ジエチルホスホリル)アセテート、メチル2-(ジメトキシホスホリル)アセテート、エチル2-(ジメトキシホスホリル)アセテート、メチル2-(ジエトキシホスホリル)アセテート、エチル2-(ジエトキシホスホリル)アセテート、2-プロピニル2-(ジメトキシホスホリル)アセテート、2-プロピニル2-(ジエトキシホスホリル)アセテート、ピロリン酸メチル、及びピロリン酸エチル等が挙げられる。
 前記酸無水物としては、無水酢酸、無水プロピオン酸、無水コハク酸、無水マレイン酸、3-アリル無水コハク酸、無水グルタル酸、無水イタコン酸、及び3-スルホ-プロピオン酸無水物等が挙げられる。
 前記環状ホスファゼン化合物としては、メトキシペンタフルオロシクロトリホスファゼン、エトキシペンタフルオロシクロトリホスファゼン、フェノキシペンタフルオロシクロトリホスファゼン、及びエトキシヘプタフルオロシクロテトラホスファゼンが挙げられる。
 前記ケイ素原子を有する化合物としては、ヘキサメチルシクロトリシロキサン、ヘキサエチルシクロトリシロキサン、ヘキサフェニルシクロトリシロキサン、1,3,5-トリメチル-1,3,5-トリビニルシクロトリシロキサン、オクタメチルシクロテトラシロキサン、デカメチルシクロペンタシロキサン、トリメチルフルオロシラン、トリエチルフルオロシラン、トリプロピルフルオロシラン、フェニルジメチルフルオロシラン、トリフェニルフルオロシラン、ビニルジメチルフルオロシラン、ビニルジエチルフルオロシラン、ビニルジフェニルフルオロシラン、トリメトキシフルオロシラン、トリエトキシフルオロシラン、ジメチルジフルオロシラン、ジエチルジフルオロシラン、ジビニルジフルオロシラン、エチルビニルジフルオロシラン、メチルトリフルオロシラン、エチルトリフルオロシラン、ヘキサメチルジシロキサン、1,3-ジエチルテトラメチルジシロキサン、ヘキサエチルジシロキサン、オクタメチルトリシロキサン、メトキシトリメチルシラン、エトキシトリメチルシラン、ジメトキシジメチルシラン、トリメトキシメチルシラン、テトラメトキシシラン、ビス(トリメチルシリル)パーオキサイド、酢酸トリメチルシリル、酢酸トリエチルシリル、プロピオン酸トリメチルシリル、メタクリル酸トリメチルシリル、トリフルオロ酢酸トリメチルシリル、メタンスルホン酸トリメチルシリル、エタンスルホン酸トリメチルシリル、メタンスルホン酸トリエチルシリル、フルオロメタンスルホン酸トリメチルシリル、ビス(トリメチルシリル)スルフェート、トリス(トリメチルシロキシ)ボロン、トリス(トリメチルシリル)ホスフェート、及びトリス(トリメチルシリル)ホスファイト等が挙げられる。
 前記ホウ素原子を有する化合物としては、ボロキシン、トリメチルボロキシン、トリメトキシボロキシン、トリエチルボロキシン、トリエトキシボロキシン、トリイソプロピルボロキシン、トリイソプロポキシボロキシン、トリn-プロピルボロキシン、トリn-プロポキシボロキシン、トリn-ブチルボロキシン、トリn-ブチロキシボロキシン、トリフェニルボロキシン、トリフェノキシボロキシン、トリシクロヘキシルボロキシン、及びトリシクロヘキソキシボロキシン等が挙げられる。
 本実施形態に係る非水電解液は、前記非水電解液用添加剤、非水溶媒、及び電解質を含有する。この非水電解液における非水電解液用添加剤(又は式(1)で表される化合物)の含有量は、非水電解液の全質量を基準として、総量で0.005~10質量%であってよい。非水電解液用添加剤の含有量が0.005質量%以上であると、より優れた電池特性を得られ、含有量が10質量%以下であると、非水電解液の粘度が上昇しにくいため、イオンの移動度を充分に確保できる。同様の観点から、非水電解液用添加剤(又は式(1)で表される化合物)の含有量は、非水電解液の全質量を基準として、総量で0.01~10質量%の範囲であってもよい。
 前記式(1)で表される化合物と前記環状カーボネート化合物とを併用する場合、当該環状カーボネート化合物の含有量は、非水電解液の全質量を基準として、0.001~10質量%であってもよい。当該環状カーボネート化合物の含有量がこの範囲にあると、SEIが厚くなり過ぎずに、より高温下のSEIの安定性が高まる。当該環状カーボネート化合物の含有量は、非水電解液の全質量を基準として、0.01質量%以上、又は0.5質量%以上であってもよい。
 前記式(1)で表される化合物と前記ニトリル化合物とを併用する場合、当該ニトリル化合物の含有量は、非水電解液の全質量を基準として、0.001~10質量%であってもよい。当該ニトリル化合物の含有量がこの範囲であると、SEIが厚くなり過ぎずに、より高温下のSEIの安定性が高まる。当該ニトリル化合物の含有量は、非水電解液の全質量を基準として、0.01質量%以上、又は0.5質量%以上であってもよい。
 前記式(1)で表される化合物と前記イソシアネート化合物とを併用する場合、当該イソシアネート化合物の含有量は、非水電解液の全質量を基準として、0.01~5質量%であってもよい。当該イソシアネート化合物の含有量がこの範囲であると、SEIが厚くなり過ぎずに、より高温下のSEIの安定性が高まる。当該イソシアネート化合物の含有量は、非水電解液の全質量を基準として、0.5質量%以上であってもよく、3質量%以下であってもよい。
 前記式(1)で表される化合物と前記C≡C基含有化合物とを併用する場合、当該C≡C基含有化合物の含有量は、非水電解液の全質量を基準として、0.01~5質量%であってもよい。当該C≡C基含有化合物の含有量がこの範囲であると、SEIが厚くなり過ぎずに、より高温下のSEIの安定性が高まる。当該C≡C基含有化合物の含有量は、非水電解液の全質量を基準として、0.1質量%以上であってもよい。
 前記式(1)で表される化合物と前記SO基含有化合物とを併用する場合、当該SO基含有化合物の含有量は、非水電解液の全質量を基準として、0.001~5質量%であってもよい。当該SO基含有化合物の含有量がこの範囲であると、SEIが厚くなり過ぎずに、より高温下のSEIの安定性が高まる。当該SO基含有化合物の含有量は、非水電解液の全質量を基準として、0.01質量%以上、又は0.1 質量%以上であってもよい。
 前記式(1)で表される化合物と前記リン含有化合物とを併用する場合、当該リン含有化合物の含有量は、非水電解液の全質量を基準として、0.001~5質量%であってもよい。当該リン含有化合物の含有量がこの範囲であると、SEIが厚くなり過ぎずに、より高温下のSEIの安定性が高まる。当該リン含有化合物の含有量は、非水電解液の全質量を基準として、0.01質量%以上、又は0.1質量%以上であってもよい。
 前記式(1)で表される化合物と前記環状ホスファゼン化合物とを併用する場合、当該環状ホスファゼン化合物の含有量は、非水電解液の全質量を基準として、0.001~5質量%であってもよい。当該環状ホスファゼン化合物の含有量がこの範囲であると、SEIが厚くなり過ぎずに、より高温下のSEIの安定性が高まる。当該環状ホスファゼン化合物の含有量は、非水電解液の全質量を基準として、0.01質量%以上、又は0.1質量%以上であってもよい。
 前記式(1)で表される化合物と前記酸無水物とを併用する場合、当該酸無水物の含有量は、非水電解液の全質量を基準として、0.001~5質量%であってもよい。当該酸無水物の含有量がこの範囲であると、SEIが厚くなり過ぎずに、より高温下のSEIの安定性が高まる。当該酸無水物の含有量は、非水電解液の全質量を基準として、0.01質量%以上、又は0.5質量%以上であってもよい。
 前記式(1)で表される化合物と前記ホウ素含有化合物とを併用する場合、当該ホウ素含有化合物の含有量は、非水電解液の全質量を基準として、0.001~5質量%であってもよい。この範囲では、SEIが厚くなり過ぎずに、より高温下のSEIの安定性が高まる。当該ホウ素含有化合物の含有量は、非水電解液の全質量を基準として、0.01質量%以上、又は0.1質量%以上であってもよい。
 前記式(1)で表される化合物と前記ケイ素含有化合物とを併用する場合、当該ケイ素含有化合物の含有量は、非水電解液の全質量を基準として、0.01~5質量%であってもよい。当該ケイ素含有化合物の含有量がこの範囲であると、SEIが厚くなり過ぎずに、より高温下のSEIの安定性が高まる。当該ケイ素含有化合物の含有量は、非水電解液の全質量を基準として、0.1質量%以上、又は0.5質量%以上であってもよい。
 前記非水溶媒としては、得られる非水電解液の粘度を低く抑える観点から、非プロトン性溶媒を選択できる。非プロトン性溶媒は、環状カーボネート、鎖状カーボネート、脂肪族カルボン酸エステル、ラクトン、ラクタム、環状エーテル、鎖状エーテル、スルホン、ニトリル及びこれらのハロゲン誘導体からなる群より選択される少なくとも1種であってもよい。非プロトン性溶媒としては、環状カーボネート又は鎖状カーボネートを選択でき、環状カーボネート及び鎖状カーボネートの組み合わせを選択することもできる。
 前記環状カーボネートとしては、例えば、炭酸エチレン、炭酸プロピレン、炭酸ブチレン、FEC等が挙げられる。前記鎖状カーボネートとしては、例えば、炭酸ジメチル、炭酸ジエチル、炭酸エチルメチル等が挙げられる。前記脂肪族カルボン酸エステルとしては、例えば、酢酸メチル、酢酸エチル、プロピオン酸メチル、プロピオン酸エチル、酪酸メチル、イソ酪酸メチル、トリメチル酢酸メチル等が挙げられる。前記ラクトンとしては、例えば、γ-ブチロラクトン等が挙げられる。前記ラクタムとしては、例えば、ε-カプロラクタム、N-メチルピロリドン等が挙げられる。前記環状エーテルとしては、例えば、テトラヒドロフラン、2-メチルテトラヒドロフラン、テトラヒドロピラン、1,3-ジオキソラン等が挙げられる。前記鎖状エーテルとしては、例えば、1,2-ジエトキシエタン、エトキシメトキシエタン等が挙げられる。前記スルホンとしては、例えば、スルホラン等が挙げられる。前記ニトリルとしては、例えば、アセトニトリル等が挙げられる。前記ハロゲン誘導体としては、例えば、4-フルオロ-1,3-ジオキソラン-2-オン、4-クロロ-1,3-ジオキソラン-2-オン、4,5-ジフルオロ-1,3-ジオキソラン-2-オン等が挙げられる。これらの非水溶媒は、単独で用いてもよいし、複数種を混合して用いてもよい。
 前記電解質は、リチウムイオンのイオン源となるリチウム塩であってもよい。電解質は、LiAlCl、LiBF、LiPF、LiClO、LiAsF及びLiSbFからなる群より選択される少なくとも1種であってもよい。解離度が高く電解液のイオン伝導度を高めることができ、更に耐酸化還元特性により長期間の使用による蓄電デバイスの性能劣化を抑制する作用がある観点から、電解質として、LiBF及び/又はLiPFを選択してもよい。これらの電解質は、単独で使用してもよいし、2種以上を併用してもよい。
 前記電解質がLiBF及び/又はLiPFである場合、非水溶媒として、環状カーボネート及び鎖状カーボネートをそれぞれ1種以上組み合わせてもよい。特に、LiBF及び/又はLiPFと、炭酸エチレン及び炭酸ジエチルとを組み合わせてもよい。
 非水電解液における前記電解質の濃度は、非水電解液の体積を基準として、0.1~2.0mol/Lであってもよい。前記電解質の濃度が0.1mol/L以上であると、より優れた放電特性または充電特性等が得られる。前記電解質の濃度が2.5mol/L以下であると、非水電解液の粘度が上昇しにくいため、イオンの移動度を充分に確保できる。同様の観点から、電解質の濃度は0.3~2.0 mol/Lであってもよく、0.5mol/L~1.6mol/Lであってよい。
 本実施形態に係る非水電解液において、上記電解質(第1のリチウム塩)と、これとは異なる第2のリチウム塩とを併用してもよい。第2のリチウム塩としては、例えば、ジフルオロリン酸リチウム、リチウムビスオキサラトボレート(LiBOB)、リチウムテトラフルオロ(オキサラト)ホスフェート(LiTFOP)、リチウムジフルオロオキサラトボレート(LiDFOB)、リチウムジフルオロビスオキサラトホスフェート(LiDFOP)、テトラフルオロホウ酸リチウム、リチウムビスフルオロスルホニルイミド、リチウムテトラフルオロ(オキサラト)ホスフェート、及びLiPOF等のリン酸骨格を有するリチウム塩、並びに、リチウムトリフルオロ((メタンスルホニル)オキシ)ボレート、リチウムペンタフルオロ((メタンスルホニル)オキシ)ホスフェート、リチウムメチルサルフェート、リチウムエチルサルフェート、リチウム2,2,2-トリフルオロエチルサルフェート、及びフルオロスルホン酸リチウム等のS(=O)基を有するリチウム塩が挙げられる。第2のリチウム塩は、ジフルオロリン酸リチウム、リチウムビスオキサラトボレート、リチウムテトラフルオロ(オキサラト)ホスフェート、リチウムジフルオロオキサラトボレート、リチウムジフルオロビスオキサラトホスフェート、リチウムメチルサルフェート、リチウムエチルサルフェート、及びフルオロスルホン酸リチウムからなる群より選ばれるリチウム塩を一種以上含んでいてもよい。
 非水電解液における前記第2のリチウム塩の濃度は、非水電解液の体積を基準として、0.001~1.0mol/Lであってもよい。前記第2のリチウム塩の濃度が0.001mol/L以上であると、高温条件においてより優れた充放電特性が得られる。前記第2のリチウム塩の濃度が1.0mol/L以下であると、非水電解液の粘度が上昇しにくいため、イオンの移動度を充分に確保できる。同様の観点から、第2のリチウム塩の濃度は0.01~0.8mol/Lであってもよく、0.01~0.5mol/Lでもよい。
 本実施形態に係る非水電解液は、前記式(1)で表される化合物を含む非水電解液用添加剤を、電解質および必要により添加される一般的な添加物が溶解されている非水溶媒に添加することにより調製される。
 本実施形態に係る非水電解液は、正極および負極を備えた蓄電デバイスの電解液として使用され得る。より具体的には、本実施形態に係る非水電解液用添加剤を用いて調整される非水電解液を、リチウムイオン電池等の非水電解液二次電池やリチウムイオンキャパシタ等の電気二重層キャパシタなどの蓄電デバイスに用いた場合、初期抵抗、放電容量維持率、長期の抵抗上昇抑制といった電池特性を改善させることができる。さらには、本実施形態に係る非水電解液用添加剤は、非水電解液中で安定であることから、充電に伴う正極上での分解による二酸化炭素等のガス発生を抑制し、電池性能及び安全性を向上させることもできる。
 本実施形態に係る蓄電デバイスは、主として上記非水電解液と、正極及び負極とから構成される。蓄電デバイスの具体例は、非水電解液二次電池(リチウムイオン電池等)及び電気二重層キャパシタ(リチウムイオンキャパシタ等)を含む。本実施形態に係る非水電解液は、リチウムイオン電池、及びリチウムイオンキャパシタの用途において特に有用である。
 図1は、本実施形態に係る蓄電デバイスとしての非水電解液二次電池の一例を模式的に示した断面図である。図1において、非水電解液二次電池1は、正極板4(正極)及び負極板7(負極)と、正極板4と負極板7との間に配置された非水電解液8と、非水電解液8中に設けられたセパレータ9と、を備える。正極板4は、正極集電体2と非水電解液8側に設けられた正極活物質層3とを有する。負極板7は、負極集電体5と非水電解液8側に設けられた負極活物質層6とを有する。非水電解液8として、上述の実施形態に係る非水電解液を用いることができる。図1では、蓄電デバイスとして非水電解液二次電池を示したが、当該非水電解液が適用され得る蓄電デバイスはこれに限定されることはなく、電気二重層キャパシタ等のその他の蓄電デバイスであってもよい。
 正極集電体2および負極集電体5としては、例えば、アルミニウム、銅、ニッケル、ステンレス等の金属からなる金属箔を用いることができる。
 正極活物質層3は正極活物質を含む。正極活物質は、リチウム含有複合酸化物であってもよい。リチウム含有複合酸化物は、例えば、LiMnO、LiFeO、LiCoO、LiMn、LiFeSiO、LiNi1/3Co1/3Mn1/3、LiNi0.5Co0.2Mn0.3、LiNi0.6Co0.2Mn0.2、LiNi0.8Co0.1Mn0.1、LiNiCo(但し、0.01<x<1、0≦y≦1、0≦z≦1、x+y+z=1であり、MはMn、V、Mg、Mo、Nb、Fe、Cu及びAlからなる群より選ばれる少なくとも1種の元素である。)、LiFePO等のリチウム含有複合酸化物が挙げられる。
 負極活物質層6は負極活物質を含む。負極活物質としては、例えば、リチウムを吸蔵、放出することができる材料が挙げられる。このような材料としては、結晶性炭素(天然黒鉛及び人造黒鉛等)、非晶質炭素、炭素被覆黒鉛及び樹脂被覆黒鉛等の炭素材料、酸化インジウム、酸化シリコン、酸化スズ、チタン酸リチウム、酸化亜鉛及び酸化リチウム等の酸化物材料、リチウム金属、及びリチウムと合金を形成することができる金属等の金属材料等が挙げられる。前記リチウムと合金を形成することができる金属としては、例えば、Cu、Sn、Si、Co、Mn、Fe、Sb、Ag等が挙げられ、これらの金属とリチウムとを含む2元又は3元からなる合金を負極活物質として用いることもできる。これらの負極活物質は単独で用いてもよいし、2種以上を混合して用いてもよい。
 高エネルギー密度化の観点から、前記負極活物質として、黒鉛などの炭素材料と、Si、Si合金、Si酸化物などのSi系の活物質とを組み合わせてもよい。サイクル特性と高エネルギー密度化の両立という観点から、前記負極活物質として、黒鉛と、Si系の活物質とを組み合わせてもよい。係る組み合わせに関して、炭素材料とSi系の活物質との合計質量に対するSi系の活物質の質量の比は、0.5質量%以上95質量%以下、1質量%以上50質量%以下、又は2質量%以上40質量%以下であってもよい。
 正極活物質層3及び負極活物質層6は、結着剤を更に含んでいてもよい。結着剤としては、例えば、ポリフッ化ビニリデン(PVdF)、ビニリデンフルオライド-ヘキサフルオロプロピレン共重合体、ビニリデンフルオライド-テトラフルオロエチレン共重合体、スチレン-ブタジエン共重合ゴム、カルボキシメチルセルロース、ポリテトラフルオロエチレン、ポリプロピレン、ポリエチレン、ポリイミド、ポリアミドイミド、ポリアクリル酸、ポリビニルアルコール、アクリル酸-ポリアクリロニトリル、ポリアクリルアミド、ポリメタクリル酸、及びこれらの共重合体等が挙げられる。前記結着剤は正極活物質層と負極活物質層で同一であってもよく異なっていてもよい。
 正極活物質層3及び負極活物質層6は、抵抗を低下させる目的で、導電補助材を更に含んでいてもよい。導電補助材としては、グラファイト、カーボンブラック、アセチレンブラック、ケッチェンブラック等の炭素質微粒子及び炭素繊維が挙げられる。
 セパレータ9としては、例えば、ポリエチレン、ポリプロピレン、フッ素樹脂等からなる単層又は積層の微多孔性フィルム、織布、又は不織布多孔質フィルムを用いることができる。
 蓄電デバイスを構成する各部材の形状、厚み等の具体的な形態は、当業者であれば適宜設定することができる。蓄電デバイスの構成は、図1の実施形態に限られず、適宜変更が可能である。
 以下に実施例を掲げて本発明を更に詳しく説明する。
[非水電解液の調製]
(実施例1)
1.4-メチルスルホニルオキシテトラヒドロチオフェン-1,1-ジオキサイド-2-エン(化合物1)の合成
 撹拌機、冷却管、温度計及び滴下ロートを備え付けた300mLの4つ口フラスコに水50mLを仕込み、氷浴冷却下、3-スルホレン(11.8g、100mmol)およびN-ブロモスクシンイミド(18.0g、100mmol)を添加した。次いで、フラスコ内の反応液を80℃に昇温してから、同温度を維持しながら5時間攪拌した。その後、氷浴にてフラスコを冷却してからテトラヒドロフラン(THF)50mLを添加し、引き続きピリジン(11.1g,110mol)を滴下した。滴下終了後、氷浴冷却下、反応液を2時間攪拌し、析出した固体をろ別した。ろ液より溶媒を留去し、4-ヒドロキシ-2-スルホレン(6.8g、3-スルホレンに対する収率51%)を得た。生成物の分子量はLC/MSスペクトルによって134と確認した。
 次に、氷浴冷却下、撹拌機、冷却管、温度計及び滴下ロートを備え付けた300mLの4つ口フラスコにアセトニトリル50mLを仕込み、得られた4-ヒドロキシ-2-スルホレン(6.8g、50mmol)を添加した。氷浴冷却下、メシルクロリド(50mmol、5.7g)を滴下し、氷浴冷却下で反応液を12時間攪拌した。その後、水を添加し、析出物をろ過後、メチル-tert-ブチルエーテル(MTBE)でリパルプを行った後、ろ物を減圧乾燥することで、表1に示した化合物1を得た(5.3g、4-ヒドロキシ-2-スルホレンに対する収率50%)。生成物の分子量はLC/MSスペクトルによって212と確認した。
2.電解液の調製
 炭酸エチレン(EC)と炭酸ジエチル(DEC)とを、EC:DEC=30:70の体積組成比で混合して混合非水溶媒を得た。得られた混合非水溶媒に、電解質としてLiPFを1.0mol/Lの濃度となるように溶解した。得られた溶液に、化合物1(4-メチルスルホニルオキシテトラヒドロチオフェン-1,1-ジオキサイド-2-エン)を非水電解液用添加剤として添加し、非水電解液を調製した。非水電解液用添加剤(化合物1)の含有割合は、非水電解液の全質量を基準として1.0質量%とした。
(実施例2)
1.4-メトキシカルボニルオキシテトラヒドロチオフェン-1,1-ジオキサイド-2-エン(化合物2)の合成
 実施例1におけるメシルクロリドをクロロギ酸メチル(4.7g、50mmol)に変更した以外は実施例1と同様に反応を実施し、表1に示した化合物2を得た(6.2g、4-ヒドロキシ-2-スルホレンに対する収率65%)。生成物の分子量はLC/MSスペクトルによって192と確認した。
2.電解液の調製
 上記実施例1の2.において、化合物1に代えて化合物2を用いたこと以外は、実施例1と同様にして非水電解液を調製した。
(実施例3)
1.4-ジエトキシホスフィニルオキシテトラヒドロチオフェン-1,1-ジオキサイド-2-エン(化合物3)の合成
 実施例1におけるメシルクロリドをジエチルホスホリルクロリド(8.6g、50mmol)に変更した以外は実施例1と同様に反応を実施し、表1に示した化合物3を得た(5.7g、4-ヒドロキシ-2-スルホレンに対する収率42%)。生成物の分子量はLC/MSスペクトルによって270と確認した。
2.電解液の調製
 上記実施例1の2.において、化合物1に代えて化合物3を用いたこと以外は、実施例1と同様にして非水電解液を調製した。
(実施例4)
1.4-フェニルスルホニルオキシテトラヒドロチオフェン-1,1-ジオキサイド-2-エン(化合物4)の合成
 実施例1におけるメシルクロリドをフェニルスルホニルクロリド(8.8g、50mmol)に変更した以外は同様に反応を実施し、表1に示した化合物4を得た(8.0g、4-ヒドロキシ-2-スルホレンに対する収率58%)。生成物の分子量はLC/MSスペクトルによって274と確認した。
2.電解液の調製
 上記実施例1の2.において、化合物1に代えて化合物4を用いたこと以外は、実施例1と同様にして非水電解液を調製した。
(実施例5)
1.4-トリフルオロメチルスルホニルオキシテトラヒドロチオフェン-1,1-ジオキサイド-2-エン(化合物5)の合成
 実施例1におけるメシルクロリドをトリフルオロメタンスルホニルクロリド(8.4g、50mmol)に変更した以外は実施例1と同様に反応を実施し、表1に示した化合物5を得た(6.2g、4-ヒドロキシ-2-スルホレンに対する収率65%)。生成物の分子量はLC/MSスペクトルによって266と確認した。
2.電解液の調製
 上記実施例1の2.において、化合物1に代えて化合物5を用いたこと以外は、実施例1と同様にして非水電解液を調製した。
(実施例6)
1.4-アリルスルホニルオキシテトラヒドロチオフェン-1,1-ジオキサイド-2-エン(化合物6)の合成
 実施例1におけるメシルクロリドをアリルスルホニルクロリド(7.0g、50mmol)に変更した以外は実施例1と同様に反応を実施し、表1に示した化合物6を得た(4.7g、4-ヒドロキシ-2-スルホレンに対する収率40%)。生成物の分子量はLC/MSスペクトルによって236と確認した。
2.電解液の調製
 上記実施例1の2.において、化合物1に代えて化合物6を用いたこと以外は、実施例1と同様にして非水電解液を調製した。
(比較例1)
 上記実施例1の2.において、化合物1を用いなかったこと以外は、実施例1と同様にして非水電解液を調製した。
(比較例2)
 上記実施例1の2.において、化合物1に代えて1,3-プロパンスルトン(PS、東京化成工業株式会社製)を用いたこと以外は、実施例1と同様にして非水電解液を調製した。
(比較例3)
 上記実施例1の2.において、化合物1に代えてビニレンカーボネート(VC、東京化成工業株式会社製)を用いたこと以外は、実施例1と同様にして非水電解液を調製した。
(比較例4)
 ビニレンカーボネート(VC)の含有割合を2.0質量%としたこと以外は、比較例3と同様にして非水電解液を調製した。
(比較例5)
 上記実施例1の2.において、化合物1に代えてフルオロエチレンカーボネート(FEC、東京化成工業株式会社製)を用いたこと以外は、実施例1と同様にして非水電解液を調製した。
(比較例6)
 フルオロエチレンカーボネート(FEC)の含有割合を2.0質量%としたこと以外は、比較例5と同様にして非水電解液を調製した。
Figure JPOXMLDOC01-appb-T000007
[評価]
(非水電解液二次電池の作製)
 正極活物質としてのLiNi0.5Co0.2Mn0.3と、導電性付与剤としてのカーボンブラックを乾式混合した。得られた混合物を、バインダーとしてのポリフッ化ビニリデン(PVDF)を溶解させたN-メチル-2-ピロリドン(NMP)中に均一に分散させ、スラリーを作製した。得られたスラリーをアルミ金属箔(角型、厚さ20μm)の両面に塗布した。塗膜を乾燥させてNMPを除去した後、全体をプレスして、正極集電体としてのアルミ金属箔と、その両面上に形成された正極活物質層とを有する正極シートを作製した。得られた正極シート中の固形分比率は、質量比で、正極活物質:導電性付与剤:PVDF=92:5:3とした。
 負極活物質としてのグラファイト粉末と、導電性付与剤としてのカーボンブラックとを乾式混合した。得られた混合物と、バインダーとしてのスチレンブタジエンゴム(SBR)及び増粘剤としてのカルボキシメチルセルロース(CMC)を水中に均一に分散させ、スラリーを作製した。得られたスラリーを銅箔(角型、厚さ10μm)の片面に塗布した。塗膜から乾燥により水を除去した後、全体をプレスして、負極集電体としての銅箔と、その片面上に形成された負極活物質層とを有する負極シートを得た。得られた負極シートの固形分比率は、質量比で、負極活物質:CMC:SBR=98:1:1とした。
 負極シート、ポリエチレンからなるセパレータ、正極シート、ポリエチレンからなるセパレータ、負極シートをこの順に積層して、電池要素を作製した。この電池要素を、アルミニウム(厚さ40μm)とその両面を被覆する樹脂層とを有するラミネートフィルムから形成された袋に、正極シート及び負極シートの端部が袋から突き出るように挿入した。次いで、実施例及び比較例で得られた各非水電解液を袋内に注入した。袋を真空封止し、シート状の非水電解液二次電池を得た。さらに、電極間の密着性を高めるために、ガラス板でシート状非水電解液二次電池を挟んで加圧し、非水電解液二次電池(シート型二次電池)を作製した。
(初期抵抗比の評価)
 得られた各非水電解液二次電池に対して、25℃の環境下において、0.2Cに相当する電流により4.2Vまで充電を行った後、45℃の環境下で24時間保持しエージングを実施した。その後、25℃の環境下において、0.2Cに相当する電流で3Vまで放電した。続いて、0.2Cに相当する電流で4.2Vまで充電し、0.2Cに相当する電流で3Vまで放電する操作を3サイクル繰り返し、電池を安定させた。その後、1Cに相当する電流で充放電を行う初期充放電を行い、その放電容量を測定した。得られた値を「初期容量」とした。
 さらに、前記の初期充放電後に、初期容量の50%の容量を充電した非水電解液二次電池について、25℃において交流インピーダンスを測定し、得られた値を初期抵抗(Ω)とした。表2に、各電池における初期抵抗比を示す。「初期抵抗比」とは、比較例1の初期抵抗(Ω)を1としたときの、各非水電解液二次電池の抵抗の相対値である。
(放電容量維持率及び抵抗増加率の評価)
 初期充放電後の各非水電解液二次電池について、充電レートを1C、放電レートを1C、充電終止電圧を4.2V、及び放電終止電圧を3Vとして充放電サイクル試験を200サイクル行った。その後、1Cに相当する電流で充放電を行って、その放電容量を測定した。得られた値を「サイクル後容量」とした。
 さらに、前記のサイクル試験後に、サイクル後容量の50%容量を充電した非水電解液二次電池について、25℃の環境下で交流インピーダンスを測定し、得られた値をサイクル後抵抗(Ω)とした。表2に、各電池における放電容量維持率および抵抗増加率を示す。表1における「放電容量維持率」とは、(サイクル後容量)/(初期容量)で算出され、「抵抗増加率」とは、(サイクル後抵抗)/(初期抵抗)で算出される。
(ガス発生の評価)
 初期抵抗の評価、放電容量維持率及び抵抗増加率の評価に用いた電池とは別に、実施例及び比較例の各電解液を含む同様の構成の非水電解液二次電池を準備した。この非水電解液二次電池を、25℃の環境下で、0.2Cに相当する電流で4.2Vまで充電を行った後、45℃の環境下で24時間のエージングを実施した。その後、25℃の環境下で、0.2Cに相当する電流で3Vまで放電した。引き続き、0.2Cに相当する電流で4.2Vまで充電し、0.2Cに相当する電流で3Vまで放電する操作を3サイクル繰り返す初期充放電を行い、電池を安定させた。初期充放電後の非水電解液二次電池について、アルキメデス法により電池の体積を測定し、これを「電池の初期体積(cm)」とした。
 さらに、前記非水電解液二次電池について、25℃の環境下において1Cに相当する電流で4.2Vまで充電した後、60℃の環境下で168時間保持した。その後、25℃まで冷却し、1Cに相当する電流で3Vまで放電した。前記非水電解液二次電池について、アルキメデス法により電池の体積を測定し、得られた値を電池の高温保存後体積(cm)とした。そして、(高温保存後体積)-(初期体積)を計算することにより、「ガス発生量」を求めた。表2に、各電池におけるガス発生量を示す。
Figure JPOXMLDOC01-appb-T000008
 1…非水電解液二次電池(蓄電デバイス)、2…正極集電体、3…正極活物質層、4…正極板、5…負極集電体、6…負極活物質層、7…負極板、8…非水電解液、9…セパレータ。

Claims (10)

  1.  下記式(1)で表される化合物を含む、非水電解液用添加剤。
    Figure JPOXMLDOC01-appb-C000001
    [式(1)中、
     Qは、スルホニル基の硫黄原子とともに環状基を形成している、置換されていてもよい炭素数4~7のアルケニレン基を示し、
     Xは、スルホニル基、ホスホリル基又はカルボニル基を示し、
     Rは、置換されていてもよい炭素数1~4のアルキル基、置換されていてもよい炭素数2~4のアルケニル基、置換されていてもよい炭素数2~4のアルキニル基、置換されていてもよいアリール基、置換されていてもよい炭素数1~4のアルコキシ基、置換されていてもよい炭素数2~4のアルケニルオキシ基、置換されていてもよい炭素数2~4のアルキニルオキシ基、又は置換されていてもよいアリールオキシ基を示し、
     nは1又は2を示す。]
  2.  前記式(1)で表される化合物が、下記式(2)で表される化合物である、請求項1に記載の非水電解液用添加剤。
    Figure JPOXMLDOC01-appb-C000002
    [式(2)中、X、R及びnは、それぞれ式(1)中のX、R及びnと同義である。]
  3.  Xがスルホニル基である、請求項1又は2に記載の非水電解液用添加剤。
  4.  Rが、ハロゲン原子、アリール基若しくはハロゲン化アリール基で置換されていてもよい炭素数1~4のアルキル基、ハロゲン原子で置換されていてもよい炭素数2~4のアルケニル基、ハロゲン原子で置換されていてもよい炭素数2~4のアルキニル基、ハロゲン原子、アルキル基若しくはハロゲン化アルキル基で置換されていてもよいアリール基、ハロゲン原子、アリール基若しくはハロゲン化アリール基で置換されていてもよい炭素数1~4のアルコキシ基、ハロゲン原子で置換されていてもよい炭素数2~4のアルケニルオキシ基、ハロゲン原子で置換されていてもよい炭素数2~4のアルキニルオキシ基、又はハロゲン原子、アルキル基、ハロゲン化アルキル基若しくはアルコキシ基で置換されていてもよいアリールオキシ基である、請求項1~3のいずれか一項に記載の非水電解液用添加剤。
  5.  請求項1~4のいずれか一項に記載の非水電解液用添加剤、非水溶媒、及び電解質を含有する、非水電解液。
  6.  前記非水溶媒が環状カーボネート及び/又は鎖状カーボネートを含む、請求項5に記載の非水電解液。
  7.  前記電解質がリチウム塩を含む、請求項5又は6に記載の非水電解液。
  8.  請求項5~7のいずれか一項に記載の非水電解液と、正極及び負極と、を備える、蓄電デバイス。
  9.  請求項5~7のいずれか一項に記載の非水電解液と、正極及び負極と、を備える、リチウムイオン電池。
  10.  請求項5~7のいずれか一項に記載の非水電解液と、正極及び負極と、を備える、リチウムイオンキャパシタ。
PCT/JP2018/008581 2017-03-07 2018-03-06 非水電解液用添加剤、非水電解液、及び、蓄電デバイス WO2018164124A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201880016293.9A CN110383565B (zh) 2017-03-07 2018-03-06 非水电解液用添加剂、非水电解液及蓄电装置
KR1020197026896A KR102535602B1 (ko) 2017-03-07 2018-03-06 비수 전해액용 첨가제, 비수 전해액, 및 축전 디바이스
EP18763482.9A EP3595071A4 (en) 2017-03-07 2018-03-06 ADDITIVE FOR WATER-FREE ELECTROLYTE SOLUTIONS, WATER-FREE ELECTROLYTE SOLUTION AND ELECTRICITY STORAGE DEVICE
JP2019504606A JP7059250B2 (ja) 2017-03-07 2018-03-06 非水電解液用添加剤、非水電解液、及び、蓄電デバイス
US16/491,519 US11387490B2 (en) 2017-03-07 2018-03-06 Additive for nonaqueous electrolyte solutions, nonaqueous electrolyte solution, and electricity storage device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-043206 2017-03-07
JP2017043206 2017-03-07

Publications (1)

Publication Number Publication Date
WO2018164124A1 true WO2018164124A1 (ja) 2018-09-13

Family

ID=63448845

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/008581 WO2018164124A1 (ja) 2017-03-07 2018-03-06 非水電解液用添加剤、非水電解液、及び、蓄電デバイス

Country Status (7)

Country Link
US (1) US11387490B2 (ja)
EP (1) EP3595071A4 (ja)
JP (1) JP7059250B2 (ja)
KR (1) KR102535602B1 (ja)
CN (1) CN110383565B (ja)
TW (1) TWI774736B (ja)
WO (1) WO2018164124A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110970621A (zh) * 2018-09-30 2020-04-07 宁德时代新能源科技股份有限公司 一种锂离子电池
CN112117490A (zh) * 2019-06-20 2020-12-22 宁德时代新能源科技股份有限公司 一种锂离子电池电解液及锂离子二次电池
WO2022025002A1 (ja) 2020-07-31 2022-02-03 住友精化株式会社 非水電解液用添加剤、非水電解液及び蓄電デバイス
JP2022550421A (ja) * 2019-12-24 2022-12-01 寧徳時代新能源科技股▲分▼有限公司 二次電池、及び該二次電池を備えた装置
WO2024034522A1 (ja) * 2022-08-08 2024-02-15 住友精化株式会社 非水電解液用添加剤、非水電解液及び蓄電デバイス

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10978752B2 (en) * 2018-03-19 2021-04-13 Kabushiki Kaisha Toshiba Secondary battery, battery pack, and vehicle
KR20200114267A (ko) * 2019-03-28 2020-10-07 현대자동차주식회사 리튬 이차전지
CN111370764B (zh) * 2020-03-05 2022-09-09 珠海市赛纬电子材料股份有限公司 非水电解液及含有该非水电解液的锂离子电池
CN111477961B (zh) * 2020-05-29 2022-10-28 珠海市赛纬电子材料股份有限公司 一种锂离子电池非水电解液及含该非水电解液的锂离子电池
CN112186245A (zh) * 2020-09-16 2021-01-05 合肥国轩高科动力能源有限公司 一种防过充电解液及含有该电解液的锂离子电池
CN112054240A (zh) * 2020-09-17 2020-12-08 欣旺达电动汽车电池有限公司 电解液和锂离子二次电池
CN112670577B (zh) * 2020-12-23 2022-07-12 惠州亿纬锂能股份有限公司 一种电解液及其制备方法和锂离子电池
CN113659202A (zh) * 2021-07-21 2021-11-16 厦门海辰新能源科技有限公司 一种锂电池电解液添加剂、电解液及电化学装置
KR20230161427A (ko) * 2022-05-16 2023-11-27 컨템포러리 엠퍼렉스 테크놀로지 씨오., 리미티드 이차전지 및 그 배터리모듈, 배터리팩 및 전기기기
CN115275349A (zh) * 2022-08-25 2022-11-01 珠海冠宇电池股份有限公司 电池电解液、电池电解液的配置方法及电池

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63102173A (ja) 1986-10-16 1988-05-07 Hitachi Maxell Ltd リチウム二次電池
JPH0574486A (ja) 1991-09-10 1993-03-26 Sanyo Electric Co Ltd 非水系電解液電池
JPH1050342A (ja) 1996-08-01 1998-02-20 Sony Corp 非水電解質二次電池
JP2010092698A (ja) * 2008-10-07 2010-04-22 Gs Yuasa Corporation 非水電解質二次電池
WO2015147000A1 (ja) * 2014-03-27 2015-10-01 ダイキン工業株式会社 電解液及び電気化学デバイス
JP2017208322A (ja) * 2016-05-16 2017-11-24 宇部興産株式会社 非水電解液及びそれを用いた蓄電デバイス
WO2018016195A1 (ja) * 2016-07-19 2018-01-25 住友精化株式会社 非水電解液用添加剤、非水電解液、及び、蓄電デバイス

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4167458A (en) * 1978-03-28 1979-09-11 Union Carbide Corporation Lithium ion-containing organic electrolyte
JP5037243B2 (ja) 2007-07-06 2012-09-26 富士フイルム株式会社 界面結合剤、該界面結合剤を含有するレジスト組成物、及び該界面結合剤からなる層を有する磁気記録媒体形成用積層体、並びに該界面結合剤を用いた磁気記録媒体の製造方法、及び該製造方法により製造された磁気記録媒体
CN104112870A (zh) * 2009-08-31 2014-10-22 三菱化学株式会社 非水电解液及使用该非水电解液的非水电解质电池
JP5674390B2 (ja) 2010-09-13 2015-02-25 住友精化株式会社 スルホン化合物及びそれを用いた非水電解液
WO2012105404A1 (ja) * 2011-01-31 2012-08-09 三菱化学株式会社 非水系電解液及びそれを用いた非水系電解液二次電池
JP6036687B2 (ja) * 2011-04-26 2016-11-30 宇部興産株式会社 非水電解液、それを用いた蓄電デバイス、及び環状スルホン酸エステル化合物
JP6145449B2 (ja) * 2012-03-29 2017-06-14 住友精化株式会社 電気化学デバイス用電解液、アルミニウム電解コンデンサ及び電気二重層コンデンサ
JP6024387B2 (ja) * 2012-10-26 2016-11-16 三菱化学株式会社 非水系電解液及びそれを用いた非水系電解液電池
US9905887B2 (en) 2012-06-05 2018-02-27 Nec Corporation Lithium secondary battery
US9115122B2 (en) 2012-12-20 2015-08-25 University Of Maryland, Baltimore Non-ATP dependent inhibitors of extracellular signal-regulated kinase (ERK)
JP6126878B2 (ja) 2013-03-15 2017-05-10 富士フイルム株式会社 パターン形成方法、感活性光線性又は感放射線性樹脂組成物、感活性光線性又は感放射線性膜及び電子デバイスの製造方法
WO2015093532A1 (ja) * 2013-12-19 2015-06-25 宇部興産株式会社 非水電解液、それを用いた蓄電デバイス、及びそれに用いられるカルボン酸エステル化合物
EP3349290B1 (en) 2015-09-09 2023-10-11 Sumitomo Seika Chemicals Co., Ltd. Additive for nonaqueous electrolyte solutions, nonaqueous electrolyte solution, and electricity storage device
KR102547064B1 (ko) 2016-03-18 2023-06-23 삼성에스디아이 주식회사 유기전해액 및 상기 전해액을 채용한 리튬 전지
US11342587B2 (en) * 2017-03-08 2022-05-24 Sumitomo Seika Chemicals Co., Ltd. Additive for non-aqueous electrolytic solutions, non-aqueous electrolytic solution, and electrical storage device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63102173A (ja) 1986-10-16 1988-05-07 Hitachi Maxell Ltd リチウム二次電池
JPH0574486A (ja) 1991-09-10 1993-03-26 Sanyo Electric Co Ltd 非水系電解液電池
JPH1050342A (ja) 1996-08-01 1998-02-20 Sony Corp 非水電解質二次電池
JP2010092698A (ja) * 2008-10-07 2010-04-22 Gs Yuasa Corporation 非水電解質二次電池
WO2015147000A1 (ja) * 2014-03-27 2015-10-01 ダイキン工業株式会社 電解液及び電気化学デバイス
JP2017208322A (ja) * 2016-05-16 2017-11-24 宇部興産株式会社 非水電解液及びそれを用いた蓄電デバイス
WO2018016195A1 (ja) * 2016-07-19 2018-01-25 住友精化株式会社 非水電解液用添加剤、非水電解液、及び、蓄電デバイス

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3595071A4

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110970621A (zh) * 2018-09-30 2020-04-07 宁德时代新能源科技股份有限公司 一种锂离子电池
CN112117490A (zh) * 2019-06-20 2020-12-22 宁德时代新能源科技股份有限公司 一种锂离子电池电解液及锂离子二次电池
CN112117490B (zh) * 2019-06-20 2021-07-23 宁德时代新能源科技股份有限公司 一种锂离子电池电解液及锂离子二次电池
JP2022550421A (ja) * 2019-12-24 2022-12-01 寧徳時代新能源科技股▲分▼有限公司 二次電池、及び該二次電池を備えた装置
JP7337267B2 (ja) 2019-12-24 2023-09-01 寧徳時代新能源科技股▲分▼有限公司 二次電池、及び該二次電池を備えた装置
WO2022025002A1 (ja) 2020-07-31 2022-02-03 住友精化株式会社 非水電解液用添加剤、非水電解液及び蓄電デバイス
KR20230044180A (ko) 2020-07-31 2023-04-03 스미토모 세이카 가부시키가이샤 비수 전해액용 첨가제, 비수 전해액 및 축전 디바이스
WO2024034522A1 (ja) * 2022-08-08 2024-02-15 住友精化株式会社 非水電解液用添加剤、非水電解液及び蓄電デバイス

Also Published As

Publication number Publication date
CN110383565B (zh) 2022-08-23
KR20190125345A (ko) 2019-11-06
TWI774736B (zh) 2022-08-21
KR102535602B1 (ko) 2023-05-22
US20190393552A1 (en) 2019-12-26
EP3595071A1 (en) 2020-01-15
EP3595071A4 (en) 2020-12-23
CN110383565A (zh) 2019-10-25
JPWO2018164124A1 (ja) 2020-01-09
US11387490B2 (en) 2022-07-12
TW201836203A (zh) 2018-10-01
JP7059250B2 (ja) 2022-04-25

Similar Documents

Publication Publication Date Title
JP7059250B2 (ja) 非水電解液用添加剤、非水電解液、及び、蓄電デバイス
KR102573627B1 (ko) 비수 전해액용 첨가제, 비수 전해액 및 축전 디바이스
JP7045240B2 (ja) 非水電解液用添加剤、非水電解液及び蓄電デバイス
WO2018016195A1 (ja) 非水電解液用添加剤、非水電解液、及び、蓄電デバイス
KR20190057337A (ko) 전해액 첨가제로서의 실릴 에스터 포스피네이트
JP2019537195A (ja) 二官能性ホスホン酸シリルエステルを含む電気化学セル
JP7258012B2 (ja) 非水電解液用添加剤、非水電解液及び蓄電デバイス
WO2024034520A1 (ja) 二次電池用非水電解液、並びに、リチウムイオン電池及びリチウムイオンキャパシタ
WO2022158400A1 (ja) 非水電解液及び非水電解液電池
EP4283738A1 (en) Nonaqueous electrolyte solution, nonaqueous electrolyte battery and compound
WO2018164130A1 (ja) 非水電解液用添加剤、非水電解液、及び、蓄電デバイス
WO2024034521A1 (ja) 二次電池用非水電解液、並びに、リチウムイオン電池及びリチウムイオンキャパシタ
JP2023117850A (ja) 非水電解液用添加剤、非水電解液及び蓄電デバイス
WO2024034522A1 (ja) 非水電解液用添加剤、非水電解液及び蓄電デバイス
WO2022158399A1 (ja) 非水電解液、非水電解液電池、及び化合物
JP2023054904A (ja) 非水電解液用添加剤、非水電解液及び蓄電デバイス
WO2022158398A1 (ja) 非水電解液及び非水電解液電池
JP2023176984A (ja) リチウムイオン電池用電極及びリチウムイオン電池
JP2023176985A (ja) リチウムイオン電池用電極及びリチウムイオン電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18763482

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019504606

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197026896

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018763482

Country of ref document: EP

Effective date: 20191007