WO2018159821A1 - 連続鋳造方法および連続鋳造装置 - Google Patents

連続鋳造方法および連続鋳造装置 Download PDF

Info

Publication number
WO2018159821A1
WO2018159821A1 PCT/JP2018/008066 JP2018008066W WO2018159821A1 WO 2018159821 A1 WO2018159821 A1 WO 2018159821A1 JP 2018008066 W JP2018008066 W JP 2018008066W WO 2018159821 A1 WO2018159821 A1 WO 2018159821A1
Authority
WO
WIPO (PCT)
Prior art keywords
molten steel
stirring
continuous casting
discharge hole
mold
Prior art date
Application number
PCT/JP2018/008066
Other languages
English (en)
French (fr)
Inventor
裕樹 本田
森川 広
泰宏 鈴木
Original Assignee
日新製鋼株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=63370093&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2018159821(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 日新製鋼株式会社 filed Critical 日新製鋼株式会社
Priority to JP2018513683A priority Critical patent/JP7044699B2/ja
Priority to US16/490,251 priority patent/US20200009650A1/en
Priority to ES18760588T priority patent/ES2920053T3/es
Priority to MYPI2019005021A priority patent/MY196682A/en
Priority to KR1020197028892A priority patent/KR102265880B1/ko
Priority to CN201880015434.5A priority patent/CN110382137B/zh
Priority to EP18760588.6A priority patent/EP3590628B1/en
Publication of WO2018159821A1 publication Critical patent/WO2018159821A1/ja
Priority to ZA2019/06308A priority patent/ZA201906308B/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D41/00Casting melt-holding vessels, e.g. ladles, tundishes, cups or the like
    • B22D41/50Pouring-nozzles
    • B22D41/62Pouring-nozzles with stirring or vibrating means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • B22D11/11Treating the molten metal
    • B22D11/114Treating the molten metal by using agitating or vibrating means
    • B22D11/115Treating the molten metal by using agitating or vibrating means by using magnetic fields
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D41/00Casting melt-holding vessels, e.g. ladles, tundishes, cups or the like
    • B22D41/50Pouring-nozzles

Definitions

  • the present invention relates to a continuous casting method and continuous casting apparatus for steel using electromagnetic stirring.
  • an immersion nozzle having two discharge holes whose discharge angle is in the range of 5 ° to 30 ° in the upward direction is used, and the two discharge holes are directed toward the mold short side.
  • Molten metal is discharged.
  • it is the structure which gives a driving force to the direction orthogonal to a casting direction to the molten metal near the meniscus of two long side surfaces of a casting_mold
  • the temperature of the molten metal in the vicinity of the molten metal surface is kept high and a uniform flow of molten metal perpendicular to the casting direction is formed.
  • JP 10-166120 A (published on June 23, 1998)”
  • Patent Document 1 does not specify a method for forming a stirring flow for enhancing the cleaning of foreign matter, and the technique described in Patent Literature 1 has an effect of suppressing foreign matter from being captured by the solidified shell. There was a problem that it was not enough.
  • An object of one embodiment of the present invention is to effectively suppress foreign matter from being captured by the solidified shell.
  • a continuous casting method discharges molten steel, a mold having a surrounding structure including a first surface and a second surface intersecting the first surface.
  • a continuous casting method using a continuous casting apparatus comprising: an immersion nozzle having discharge holes; and a stirrer that forms a stirring region by stirring molten steel in the mold, wherein the discharge holes disposed in the mold
  • a discharge step of discharging the molten steel in a direction along the first surface and upward from the horizontal direction, and a position where the molten steel reaches in the case where the molten steel discharged in the discharge step goes straight is the molten steel in the mold
  • the flow rate of the molten steel in the stirring region is in the range of 0.20 to 0.40 m / s.
  • the reaching position may be the molten metal surface.
  • the impulse that the molten steel discharged from the immersion nozzle receives before reaching the molten metal surface is 0.4 ⁇ 10 7 G 2 / ⁇ -m to 2.5 ⁇ . It is preferably 10 7 G 2 / ⁇ -m.
  • a continuous casting apparatus includes a mold having a surrounding structure including a first surface and a second surface intersecting the first surface, and a discharge hole disposed in the mold.
  • a continuous casting apparatus comprising: an immersion nozzle that discharges molten steel in a direction along the first surface from the discharge hole; and a stirring device that forms a stirring region by stirring the molten steel in the mold.
  • a hole is included in the stirring region, the discharge hole discharges the molten steel upward, and the stirring device has an arrival position of the molten steel when the molten steel discharged from the discharge hole goes straight
  • the molten steel in the mold is the molten steel surface or the second surface, and the molten steel is stirred so that the entire line segment connecting the discharge hole and the reaching position is included in the stirring region.
  • the flow rate of the molten steel in the stirring region is in the range of 0.20 to 0.40 m / s.
  • the molten steel is discharged 5 ° to 30 ° upward from a horizontal plane.
  • the impulse that the molten steel discharged from the immersion nozzle receives before reaching the molten metal surface is 0.4 ⁇ 10 7 G 2 / ⁇ -m to 2.5 ⁇ . It is preferably 10 7 G 2 / ⁇ -m.
  • a to B means “A or more and B or less”.
  • FIG. 1 is a schematic diagram showing a configuration of a continuous casting apparatus 1A.
  • a continuous casting apparatus 1A includes a ladle 2 that receives molten steel supplied from a converter, a tundish 3, a mold 10, an immersion nozzle (discharge nozzle) 40A, and an electromagnetic stirring device (stirring). Apparatus) 50A and 50B.
  • the tundish 3 is a member for storing molten steel poured from the ladle 2 and removing foreign substances such as oxides. Molten steel stored in the tundish 3 is poured into the mold 10 through an immersion nozzle 40A described later.
  • the mold 10 is a mold for cooling the poured molten steel to form a solidified shell C on the inner surface and delivering it from the bottom of the mold 10.
  • FIG. 2 is a cross-sectional view of the continuous casting apparatus 1 ⁇ / b> A cut along a horizontal plane at the molten steel level in the mold 10. As shown in FIG. 2, the contour of the inner surface of the mold 10 cut along a horizontal plane is a rectangle.
  • the mold 10 includes a pair of long side molds 11A and 11B facing each other and a pair of short side molds 12A and 12B facing each other.
  • the long side molds 11A and 11B include long side surfaces (first surfaces) 11Aa and 11Ba that constitute the inner surface of the mold 10, respectively.
  • the short-side molds 12A and 12B include short-side surfaces (second surfaces) 12Aa and 12Ba that constitute the inner surface of the mold 10, respectively. That is, the surrounding structure is formed by the long side surfaces 11Aa and 11Ba and the short side surfaces 12Aa and 12Ba intersecting the long side surfaces 11Aa and 11Ba.
  • the horizontal direction parallel to the long side molds 11A and 11B is referred to as “long side direction LD”
  • the horizontal direction parallel to the short side molds 12A and 12B is referred to as “short side direction SD”. Call it.
  • the immersion nozzle 40 ⁇ / b> A is a member for pouring molten steel stored in the tundish 3 into the mold 10.
  • the immersion nozzle 40A has an upper end connected to the tundish 3 and a lower end substantially at the center of the mold 10 (that is, a rectangular shape formed by the long side surfaces 11Aa and 11Ba and the short side surfaces 12Aa and 12Ba in FIG. 2). (Center).
  • FIG. 3 is a cross-sectional view of the vicinity of the molten metal surface S of the continuous casting apparatus 1A cut through a plane parallel to the long side molds 11A and 11B of the mold 10 through the center of the mold 10.
  • FIG. 3 shows an enlarged region including the immersion nozzle 40A and the short-side mold 12B.
  • the immersion nozzle 40 ⁇ / b> A includes two discharge holes 41 ⁇ / b> A.
  • the discharge hole 41A is disposed in the mold 10 and is a hole for discharging molten steel supplied from the tundish 3 and passing through the inside of the immersion nozzle 40A.
  • the discharge holes 41A are respectively formed on both sides of the long side direction LD of the immersion nozzle 40A, and discharge molten steel in a direction along the long side surfaces 11Aa and 11Ba.
  • the discharge holes 41A are formed such that the discharge direction 60 of the discharge flow is upward with respect to the horizontal plane.
  • an angle formed by the discharge direction 60 of the discharge hole 41A and the horizontal plane is referred to as a discharge angle ⁇ .
  • molten steel is continuously supplied to the mold 10 from the discharge hole 41A of the immersion nozzle 40A, and a molten steel surface S (also referred to as a meniscus) is formed at a predetermined height position in the mold 10.
  • a molten steel surface S also referred to as a meniscus
  • the molten metal surface S slightly fluctuates, but in this specification, the average molten metal surface height is the position of the molten metal surface S.
  • mold powder (not shown) for supplementing foreign matters such as bubbles and oxides is added on the hot water surface S.
  • the electromagnetic stirring devices 50A and 50B are devices for generating a stirring flow (swirl flow) with respect to the molten steel in the vicinity of the molten metal surface S of the mold 10 by electromagnetic force.
  • FIG. 4 is a cross-sectional view of the vicinity of the molten metal surface S of the continuous casting apparatus 1 ⁇ / b> A cut through a plane passing through the center of the mold 10 and parallel to the short-side molds 12 ⁇ / b> A and 12 ⁇ / b> B of the mold 10.
  • the electromagnetic stirring devices 50 ⁇ / b> A and 50 ⁇ / b> B are respectively installed on the back surfaces of the long side molds 11 ⁇ / b> A and 11 ⁇ / b> B.
  • the electromagnetic stirring devices 50A and 50B are respectively provided with stirring coil cores 51A and 51B, and apply electromagnetic force to the molten steel in the mold 10 at the height at which the stirring coil cores 51A and 51B are installed.
  • the stirring coil core 51A of the electromagnetic stirring device 50A applies an electromagnetic force parallel to the long side direction LD to the molten steel near the long side mold 11A.
  • the stirring coil core 51B of the electromagnetic stirring device 50B applies an electromagnetic force parallel to the long side direction LD to the molten steel near the long side mold 11B.
  • the electromagnetic force applied by the stirring coil core 51A and the electromagnetic force applied by the stirring coil core 51B are set so as to apply opposite electromagnetic forces to the molten steel.
  • a stirring flow is formed in the horizontal direction in the vicinity of the hot water surface S in the mold 10.
  • the electromagnetic stirring devices 50A and 50B are placed such that the upper ends of the stirring coil cores 51A and 51B are located at a predetermined distance downward from the hot water surface S.
  • FIG. 4 a region between the upper end and the lower end of the discharge hole 41A in the vertical direction is represented by a region A1.
  • the stirring coil cores 51 ⁇ / b> A and 51 ⁇ / b> B are installed so as to include the entire discharge hole 41 ⁇ / b> A in the vertical direction.
  • the electromagnetic force from stirring coil core 51A * 51B is given to the molten steel discharged from discharge hole 41A from the time of discharge.
  • the stirring flow is formed in the molten steel in the mold 10 by the electromagnetic stirring devices 50A and 50B, the stirring flow is not formed only in the height region where the stirring coil core 51A and the stirring coil core 51B are installed. That is, when a stirring flow is formed in the region A2 where the stirring coil core 51A and the stirring coil core 51B are installed, the molten steel existing in a region within a certain distance in the vertical direction from the region A2 also swirls in the mold 10, A stirred stream is formed.
  • the region including the region A2 and the above-mentioned “region within a certain distance range from the region A2 in the vertical direction” is formed by the electromagnetic stirring devices 50A and 50B. Let it be stirring region A3.
  • the stirring region A3 in this specification means a region where the flow rate of the molten steel is in the range of 0.20 to 0.40 m / s. It is known that both surface defects and internal defects of steel to be produced can be reduced when the flow velocity of the molten steel in the vicinity of the molten metal surface S is in the range of 0.20 to 0.40 m / s.
  • the stirring coil cores 51A and 51B are installed so that the stirring region A3 includes the molten metal surface S.
  • the continuous casting apparatus 1A the upper ends of the stirring coil cores 51A and 51B are placed so as to be spaced apart from the molten metal surface S by a predetermined distance.
  • the continuous casting apparatus of the present invention is configured as follows. It is not restricted to this, You may comprise so that the upper end of stirring coil core 51A * 51B may become the height of the hot_water
  • the length of 11Ba in the horizontal direction) is appropriately set, so that substantially the entire amount of molten steel discharged from the discharge hole 41A of the immersion nozzle 40A reaches the molten metal surface S.
  • the “arrival position” at which the discharge flow caused by the molten steel discharged from the discharge hole 41A reaches the molten metal surface S will be described with reference to FIG.
  • the center of the opening of the discharge hole 41 ⁇ / b> A is a starting point
  • the intersection of the half line extending in the discharge direction 60 from the starting point and the hot water surface S is a point P.
  • the point P is a point where the molten steel discharged from the discharge hole 41A reaches the molten metal surface S when the molten steel discharged from the discharge hole 41A goes straight.
  • the discharge flow discharged from the discharge hole 41A travels through the molten steel inside the mold 10 while spreading to some extent.
  • the discharge speed of the molten steel from the discharge hole 41A By setting the discharge speed of the molten steel from the discharge hole 41A to be larger than a predetermined speed, the discharge flow is discharged from the discharge hole 41A. Almost all of the molten steel thus obtained can be directly reached at the point P and the molten metal surface S in the vicinity thereof.
  • the vicinity of the point P is referred to as an “arrival position”.
  • the entire line segment connecting the center of the opening of the discharge hole 41A and the point P is included in the stirring region A3.
  • the discharge angle ⁇ is preferably 30 ° or less, and when the speed of the discharge flow is 300 to 1150 mm / s, the distance L is preferably 180 mm or more.
  • the distance L is preferably 230 mm or less.
  • the discharge angle ⁇ is 30 °
  • the distance L is 150 mm (for example, the vertical width of the discharge hole 41A is 58 mm
  • the distance W is greater than 520 mm
  • the discharge angle ⁇ is 30 °
  • the distance L is 150 mm (for example, the vertical width of the discharge hole 41A is 58 mm)
  • the continuous casting method using the continuous casting apparatus 1A includes a discharge step of discharging molten steel from the discharge holes 41A arranged in the mold 10 in the direction along the long side molds 11A and 11B and upward in the horizontal direction. And a stirring step of stirring the molten steel so that the entire line segment connecting the center of the opening of the discharge hole 41A and the point P is included in the stirring region A3.
  • the discharge flow reaches the hot water surface S before the flow velocity of the discharge flow decreases. Therefore, foreign matter such as bubbles and inclusions in the molten steel is easily floated by the discharge flow having a high flow velocity, and the foreign matter is easily captured by the mold powder.
  • the distance from the discharge hole 41A to the hot water surface S is short, it is possible to suppress the diffusion of the discharge flow in the flow path until the discharge flow reaches the hot water surface S, and avoid hindering the stirring flow. Can do.
  • the discharge flow that has reached the hot water surface S is divided into the short-side molds 12A and 12B and the immersion nozzle 40A (that is, the center of the mold 10).
  • the molten steel temperature in the vicinity of the molten metal surface S can be made uniform.
  • the structure of the immersion nozzle 40B is different from the structure of the immersion nozzle 40A in the first embodiment.
  • FIG. 5 is a cross-sectional view of the vicinity of the molten metal surface S of the continuous casting apparatus 1B cut along a plane parallel to the long side molds 11A and 11B of the mold 10 through the center of the mold 10.
  • the continuous casting apparatus 1B in the present embodiment includes an immersion nozzle 40B instead of the immersion nozzle 40A in Embodiment 1, as shown in FIG.
  • the immersion nozzle 40B includes two discharge holes 41B as shown in FIG.
  • the discharge hole 41B is formed so that the discharge direction 60 of the molten steel is upward with respect to the horizontal plane.
  • an angle formed by the discharge direction 70 of the discharge hole 41B and the horizontal plane is referred to as a discharge angle ⁇ .
  • the discharge angle ⁇ , the distance L between the center of the discharge hole 41B and the molten metal surface S, and the distance W on the molten metal surface S between the short side mold 12A and the short side mold 12B are appropriately set. Thereby, it is comprised so that the substantially whole quantity of the molten steel discharged from the discharge hole 41B may arrive at the short side molds 12A and 12B (more specifically, the solidified shell C formed on the surface of the short side molds 12A and 12B). ing.
  • the “arrival position” at which the discharge flow generated by the molten steel discharged from the discharge hole 41B reaches the short-side molds 12A and 12B will be described with reference to FIG.
  • the center of the opening of the discharge hole 41B is set as a starting point
  • the intersection of the half line extending in the discharging direction 70 from the starting point and the short side mold 12B is set as a point Q.
  • the point Q is a point where the molten steel discharged from the discharge hole 41B reaches the short side mold 12B when the molten steel discharged from the discharge hole 41B goes straight.
  • the discharge flow generated by the molten steel discharged from the discharge hole 41B travels through the molten steel inside the mold 10 while spreading to some extent, but by setting the discharge speed of the molten steel from the discharge hole 41A to be larger than a predetermined speed, the discharge hole Substantially the entire amount of molten steel discharged from 41B can reach the short side mold 12B directly.
  • the vicinity of the point Q is referred to as an “arrival position”.
  • the point Q is located in the vicinity of the hot water surface S.
  • the stirring region formed by the electromagnetic stirring devices 50A and 50B includes at least the “arrival position” (near the point Q) and the lower end of the discharge hole 41B in the vertical direction. It is configured as follows. Thereby, the whole line segment which connects the center of the opening part of the discharge hole 41B and the point Q is included in the stirring area formed by the electromagnetic stirring devices 50A and 50B.
  • the discharge angle ⁇ is 5 ° and the distance L is 125 mm (for example, discharge)
  • the vertical width of the hole 41B to 50 mm and the distance from the molten metal surface S to the discharge hole 41A to 100 mm
  • substantially the entire amount of molten steel discharged from the discharge hole 41B of the immersion nozzle 40B reaches the “arrival position”.
  • the continuous casting method using the continuous casting apparatus 1B includes a discharge step of discharging molten steel from the discharge holes 41B arranged in the mold 10 in a direction along the long side molds 11A and 11B and upward in the horizontal direction. And a stirring step of stirring the molten steel so that the entire line segment connecting the center of the opening of the discharge hole 41B and the point Q is included in the stirring region formed by the electromagnetic stirring devices 50A and 50B.
  • the discharge flow discharged from the discharge hole 41B receives a downward force. Therefore, when the discharge angle ⁇ is small in the continuous casting apparatus 1B, the discharge flow discharged from the discharge hole 41B may be discharged outside the stirring region. Therefore, it is preferable to discharge molten steel at an angle of 5 ° or more as the discharge angle ⁇ . Thereby, the discharge flow discharged from the discharge hole 41B can be reliably included in the stirring region.
  • Discharge angle [°] of the discharge hole 41A or the discharge hole 41B
  • A Discharge area [m 2 ] of the discharge hole 41A or the discharge hole 41B
  • W Casting width [m] (horizontal distance between short side surfaces 12Aa and 12Ba)
  • T Casting thickness [m] (horizontal distance of long side surfaces 11Aa and 11Ba)
  • V Discharge speed from discharge hole 41A or discharge hole 41B [m / s]
  • Vc Casting speed [m / s]
  • L immersion depth [m] of the immersion nozzle 40A or the immersion nozzle 40B (distance between the center of the discharge hole 41A or the discharge hole 41B and the hot water surface S)
  • B Magnetic flux density [G] at a position 15 mm in the horizontal direction in the molten steel from the long side surfaces 11Aa and 11Ba.
  • the discharge angle ⁇ of the discharge hole 41A 30 °
  • the vertical width of the discharge hole 41A 58 mm
  • Vertical distance L from the hot water surface S to the center of the discharge hole 41A 180 mm
  • Distance W between short side molds 12A and 12B 1042mm
  • Casting speed 1.30 m / min
  • Discharge speed 865mm / s
  • Slab thickness 200mm
  • Magnetic flux density in the thickness direction of 15 mm from the long side surfaces 11Aa and 11Ba: 1150G The above condition is that, when stirring is performed by the electromagnetic stirrer 50A / 50B, almost all of the molten steel discharged from the discharge hole 41A reaches the molten metal surface S directly and is discharged from the discharge hole 41A.
  • slab example 1 a slab produced by stirring with electromagnetic stirrers 50A and 50B (the slab of SUH409L is referred to as slab example 1, and the slab of SUS439 is referred to as slab example 2), and an electromagnetic stirrer Evaluation was performed with cast slabs prepared without stirring by 50A and 50B (the cast slab of SUH409L is referred to as slab comparative example 1, and the slab of SUS439 is referred to as slab comparative example 2).
  • the slab examples 1 and 2 were able to significantly suppress the formation of surface defects compared to the slab comparative examples 1 and 2. This is because in the slab embodiments 1 and 2, almost the entire amount of molten steel discharged from the discharge hole 41A directly reaches the molten metal surface S and from the time when the molten steel is discharged from the discharge hole 41A to the molten metal surface S. In the meantime, it is considered that the molten steel was able to be stirred more effectively by casting in the state of being included in the stirring region formed by the electromagnetic stirring devices 50A and 50B.
  • SUS304 was continuously cast under the following conditions.
  • Discharge angle of discharge hole 41B ⁇ 5 ° Vertical width of the discharge hole 41B: 50 mm Vertical distance L from the hot water surface S to the center of the discharge hole 41B: 220 mm Distance W between short side molds 12A and 12B: 1038mm Casting speed: 1.40 m / min Discharge speed: 932 mm / s Slab thickness: 200mm Magnetic flux density in the thickness direction of 15 mm from the long side surfaces 11Aa and 11Ba: 1150G
  • the above-described conditions are such that substantially the entire amount of molten steel discharged from the discharge hole 41B reaches the short side surfaces 12Aa and 12Ba of the mold 10 directly, and from the discharge hole 41B. This is a condition included in the stirring region formed by the electromagnetic stirring devices 50A and 50B from the time it is discharged until the short side surfaces 12Aa and 12Ba of the mold 10 are reached.
  • the number of ground (cracks due to mixing of mold powder into the solidified shell) was measured at a position of 2 mm and 3 mm from the surface layer by radiographic inspection. .
  • the measurement was performed on the central portion of the upper surface of the slab at points 800, 1000, 1200, 1500, 2000, 2500, and 3000 mm from the casting start position. In this evaluation, the number of grounds having a diameter of 0.15 mm or more was measured.
  • FIG. 6 shows the number of ground per 1 mm 2 in the slab example 3 and the slab comparative example 3, and (a) is a graph showing the number of ground at a position of 2 mm from the surface layer. Yes, (b) is a graph showing the number of ground at a position of 3 mm from the surface layer.
  • the number of ground at the positions of 2 mm and 3 mm from the surface layer in the slab example 3 was smaller than the number of ground in the slab comparative example 3. .
  • the short side surface is obtained after substantially the entire amount of molten steel discharged from the discharge hole 41B reaches the short side surfaces 12Aa and 12Ba of the mold 10 and is discharged from the discharge hole 41B. It is because it was able to perform stirring of molten steel more effectively by having cast in the state contained in the stirring area formed by electromagnetic stirring device 50A * 50B until it reached 12Aa * 12Ba. Conceivable.
  • the number of earthenware increased from 1000 to 2000 mm from the start of casting, whereas in the slab example 3, the number of earthenware was reduced from 1000 to 2000 mm. I was able to. From these results, it was found that the yield in grinding of the produced slab can be improved from 96.8% to 97.5%.
  • SUS304 was continuously cast under the following conditions.
  • the impulse I was calculated using the above equations 1 to 6 with the magnetic flux density B being 1150 G and the frequency being 2.7 Hz, and the following equation 7 was obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

凝固シェルに異物が捕捉されることを効果的に抑制する。連続鋳造装置を用いる連続鋳造方法であって、吐出孔(41A)から溶鋼を吐出する吐出工程と、吐出工程において吐出された溶鋼が直進した場合の溶鋼の到達位置(P)がモールド内の溶鋼の湯面(S)であり、吐出孔(41A)と到達位置(P)とを結ぶ線分の全体が、撹拌領域に含まれるように溶鋼を撹拌する撹拌工程とを含む。

Description

連続鋳造方法および連続鋳造装置
 本発明は、本発明は、電磁撹拌を利用した鋼の連続鋳造方法および連続鋳造装置に関する。
 鋼の連続鋳造では、モールド(鋳型)内の溶鋼中に不可避的に混入する気泡や酸化物などの異物が凝固シェルに捕捉されることにより、熱間圧延や冷間圧延の工程を経た鋼板(スラブ)の表面に欠陥(疵)が形成されてしまうという問題があった。この問題を解決する方法として、溶鋼中の異物を浮上させ、溶鋼表面に添加されているモールドパウダーに捕捉させるために、モールド内の溶鋼の流動を制御する電磁撹拌を利用する方法が広く行われており、その一例が、特許文献1に開示されている。
 特許文献1に開示されている技術では、吐出角度が上向き方向に5°~30°の範囲にある2つの吐出孔を有する浸漬ノズルを使用し、上記2つの吐出孔から鋳型短辺へ向けて溶融金属を吐出させている。そして、電磁撹拌により鋳型の2つの長辺面のメニスカス近傍の溶融金属に鋳造方向に対し直角の方向に駆動力を付与する構成である。これにより、湯面近傍の溶融金属の温度を高く保つともに鋳造方向に直角な溶融金属の均一流を形成させている。
日本国公開特許公報「特開平10-166120号公報(1998年6月23日公開)」
 しかしながら、特許文献1には、異物の洗浄を高めるための撹拌流の形成方法について明記されておらず、特許文献1に記載の技術では、凝固シェルに異物が捕捉されることを抑制する効果が十分ではないという問題があった。
 本発明の一態様は、凝固シェルに異物が捕捉されることを効果的に抑制することを目的とする。
 上記の課題を解決するために、本発明の一態様に係る連続鋳造方法は、第1面と、前記第1面と交差する第2面とを含む囲繞構造を有するモールドと、溶鋼を吐出する吐出孔を有する浸漬ノズルと、前記モールド内の溶鋼を撹拌することにより撹拌領域を形成する攪拌装置と、を備える連続鋳造装置を用いる連続鋳造方法であって、前記モールド内に配置した前記吐出孔から前記第1面に沿う方向かつ水平方向よりも上向きに溶鋼を吐出する吐出工程と、前記吐出工程において吐出された溶鋼が直進した場合の前記溶鋼の到達位置が、前記モールド内の溶鋼の湯面、または前記第2面であり、前記吐出孔と前記到達位置とを結ぶ線分の全体が、前記撹拌領域に含まれるように前記溶鋼を撹拌する撹拌工程とを含むことを特徴とする。
 本発明の一態様における連続鋳造方法において、前記撹拌領域における溶鋼の流速が0.20~0.40m/sの範囲である。
 本発明の一態様における連続鋳造方法において、前記到達位置が前記湯面である構成であってもよい。
 本発明の一態様における連続鋳造方法において、前記浸漬ノズルから吐出された溶鋼が前記湯面に到達するまでに受ける力積は、0.4×10/μΩ-m~2.5×10/μΩ-mであることが好ましい。
 本発明の一態様に係る連続鋳造装置は、第1面と、前記第1面と交差する第2面とを含む囲繞構造を有するモールドと、前記モールド内に配置される吐出孔を有し、前記吐出孔から前記第1面に沿う方向に溶鋼を吐出する浸漬ノズルと、前記モールド内の溶鋼を撹拌することにより撹拌領域を形成する撹拌装置と、を備える連続鋳造装置であって、前記吐出孔は、前記撹拌領域に含まれているとともに、前記吐出孔は、前記溶鋼を上向きに吐出し、前記攪拌装置は、前記吐出孔から吐出された溶鋼が直進した場合の前記溶鋼の到達位置が、前記モールド内の溶鋼の湯面、または前記第2面であり、前記吐出孔と前記到達位置とを結ぶ線分の全体が、前記撹拌領域に含まれるように前記溶鋼を撹拌することを特徴とする。
 本発明の一態様における連続鋳造装置において、前記撹拌領域における溶鋼の流速が0.20~0.40m/sの範囲である。
 本発明の一態様における連続鋳造装置において、水平面から5°~30°上向きに溶鋼を吐出する構成であることが好ましい。
 本発明の一態様における連続鋳造装置において、前記浸漬ノズルから吐出された溶鋼が前記湯面に到達するまでに受ける力積は、0.4×10/μΩ-m~2.5×10/μΩ-mであることが好ましい。
 本発明の一態様によれば、凝固シェルに異物が捕捉されることを効果的に抑制できる。
本発明の実施形態1に係る連続鋳造装置の構成を示す概略図である。 上記連続鋳造装置が備えるモールド内の溶鋼の湯面高さにおける水平面で切断した上記連続鋳造装置の断面図である。 上記モールドの中心を通り、上記モールドが備える長辺モールドに平行な平面で切断した上記連続鋳造装置の湯面付近の断面図である。 上記モールドの中心を通り、上記モールドが備える短辺モールドに平行な平面で切断した上記連続鋳造装置の湯面付近の断面図である。 本発明の実施形態2に係る連続鋳造装置の断面図であって、連続鋳造装置が備えるモールドの中心を通り、モールドが備える長辺モールドに平行な平面で切断した連続鋳造装置の湯面付近の断面図である。 本発明の鋳片実施例および鋳片比較例における、1mmあたりの地疵の個数を示すものであり、(a)は、表層から2mmの位置における地疵の個数を示すグラフであり、(b)は、表層から3mmの位置における地疵の個数を示すグラフである。
 以下、本発明の実施形態1における連続鋳造装置1Aおよび連続鋳造方法について、図1~4に基づいて説明する。なお、本明細書中の「A~B」は「A以上、B以下」を意味する。
 図1は、連続鋳造装置1Aの構成を示す概略図である。図1に示すように、連続鋳造装置1Aは、転炉から供給された溶鋼を受け取る取鍋2と、タンディッシュ3と、モールド10と、浸漬ノズル(吐出ノズル)40Aと、電磁撹拌装置(撹拌装置)50A・50Bとを備えている。
 タンディッシュ3は、取鍋2から注湯された溶鋼を貯留し、酸化物などの異物を取り除くための部材である。タンディッシュ3に貯留された溶鋼は、後述する浸漬ノズル40Aを介して、モールド10内に注湯される。
 モールド10は、注湯された溶鋼を冷却して内表面に凝固シェルCを形成し、モールド10の底部から送出するための鋳型である。図2は、モールド10内の溶鋼の湯面高さにおける水平面で切断した連続鋳造装置1Aの断面図である。モールド10は、図2に示すように、水平面で切断した内面の輪郭形状が長方形となっている。モールド10は、互いに対向する1組の長辺モールド11A・11Bと、互いに対向する1組の短辺モールド12A・12Bとを備えている。長辺モールド11A・11Bは、それぞれモールド10の内面を構成する長辺面(第1面)11Aa・11Baを備えている。短辺モールド12A・12Bは、それぞれモールド10の内面を構成する短辺面(第2面)12Aa・12Baを備えている。すなわち、長辺面11Aa・11Baと、該長辺面11Aa・11Baと交差する短辺面12Aa・12Baによって囲繞構造が形成されている。以降の説明では、図2に示すように、長辺モールド11A・11Bに平行な水平方向を「長辺方向LD」、短辺モールド12A・12Bに平行な水平方向を「短辺方向SD」と呼称する。
 浸漬ノズル40Aは、タンディッシュ3に貯留された溶鋼をモールド10に注湯するための部材である。浸漬ノズル40Aは、上端がタンディッシュ3に接続されており、下端がモールド10の略中心(すなわち、図2において、長辺面11Aa・11Baおよび短辺面12Aa・12Baによって形成される長方形の略中心)に位置するように載置されている。
 図3は、モールド10の中心を通り、モールド10の長辺モールド11A・11Bに平行な平面で切断した連続鋳造装置1Aの湯面S付近の断面図である。なお、連続鋳造装置1Aは、浸漬ノズル40Aに関して対称な構造となっているため、図3では、浸漬ノズル40Aと、短辺モールド12Bとを含む領域を拡大して図示している。浸漬ノズル40Aは、図3に示すように、2つ吐出孔41Aを備えている。吐出孔41Aは、モールド10内に配置されており、タンディッシュ3から供給され、浸漬ノズル40Aの内部を通過した溶鋼を吐出するための孔である。吐出孔41Aは、浸漬ノズル40Aの長辺方向LDの両側にそれぞれ形成されており、長辺面11Aa・11Baに沿う方向に溶鋼を吐出する。吐出孔41Aは、吐出流の吐出方向60が水平面に対して上向きとなるように形成されている。以降では、吐出孔41Aの吐出方向60と水平面とのなす角度を吐出角度θと呼称する。
 連続鋳造装置1Aでは、浸漬ノズル40Aの吐出孔41Aからモールド10に溶鋼が連続供給され、モールド10内の所定の高さ位置に溶鋼の湯面S(メニスカスとも呼称される)が形成される。なお、連続鋳造中には、湯面Sは多少揺れ動くが、本明細書では平均湯面高さを湯面Sの位置とする。また、湯面S上には、気泡や酸化物などの異物を補足するためのモールドパウダー(不図示)が添加されている。
 電磁撹拌装置50A・50Bは、電磁力によってモールド10の湯面S近傍の溶鋼に対して撹拌流(旋回流)を発生させるための装置である。図4は、モールド10の中心を通り、モールド10の短辺モールド12A・12Bに平行な平面で切断した連続鋳造装置1Aの湯面S付近の断面図である。電磁撹拌装置50A・50Bは、図4に示すように、長辺モールド11A・11Bの背面にそれぞれ設置されている。電磁撹拌装置50A・50Bは、撹拌コイルコア51A・51Bをそれぞれ備えており、撹拌コイルコア51A・51Bが設置されている高さにおいて、モールド10内の溶鋼に対して電磁力を付与する。具体的には、電磁撹拌装置50Aの撹拌コイルコア51Aは、長辺モールド11Aの近傍の溶鋼に対して、長辺方向LDに平行な電磁力を付与する。同様に、電磁撹拌装置50Bの撹拌コイルコア51Bは、長辺モールド11Bの近傍の溶鋼に対して、長辺方向LDに平行な電磁力を付与する。ただし、連続鋳造装置1Aでは、撹拌コイルコア51Aが付与する電磁力と、撹拌コイルコア51Bが付与する電磁力とは、逆向きの電磁力を溶鋼に対して付与するように設定されている。これにより、図2において黒矢印に示すように、モールド10内の湯面Sの近傍の水平方向において撹拌流が形成される。本実施形態では、電磁撹拌装置50A・50Bは、撹拌コイルコア51A・51Bの上端が湯面Sから下方に所定の距離離れた位置になるように載置されている。
 図4において、鉛直方向における吐出孔41Aの上端と下端との間の領域を領域A1で表している。図4に示すように、撹拌コイルコア51A・51Bは、鉛直方向において吐出孔41A全体を含むように設置されている。これにより、吐出孔41Aから吐出された溶鋼は、吐出された時点から撹拌コイルコア51A・51Bからの電磁力が付与されるようになっている。
 電磁撹拌装置50A・50Bによってモールド10内の溶鋼に撹拌流が形成されるが、撹拌流は、撹拌コイルコア51Aおよび撹拌コイルコア51Bが設置されている高さの領域のみに形成されるものではない。すなわち、撹拌コイルコア51Aと撹拌コイルコア51Bが設置されている領域A2に撹拌流が形成されると、領域A2から上下方向に一定の距離の範囲の領域に存在する溶鋼もモールド10内を旋回し、撹拌流を形成する。本明細書では、図4に示すように、領域A2と、上記の「領域A2から上下方向に一定の距離の範囲の領域」とを含めた領域を、電磁撹拌装置50A・50Bによって形成される撹拌領域A3とする。具体的には、本明細書における撹拌領域A3は、溶鋼の流速が0.20~0.40m/sの範囲である領域のことを意味する。湯面S近傍の溶鋼の流速が0.20~0.40m/sの範囲である場合、製造する鋼の表面欠陥および内部欠陥をともに低減させることができることが知られている。本実施形態における連続鋳造装置1Aでは、撹拌領域A3が、湯面Sを含むように撹拌コイルコア51A・51Bが設置されている。
 なお、連続鋳造装置1Aでは、撹拌コイルコア51A・51Bの上端が湯面Sから下方に所定の距離離れた位置になるように載置されている構成であったが、本発明の連続鋳造装置はこれに限られず、撹拌コイルコア51A・51Bの上端が湯面Sの高さ、または湯面Sよりも上方の位置になるように構成してもよい。このような場合においても、撹拌領域が湯面Sを含むように連続鋳造装置を構成することができる。
 本実施形態における連続鋳造装置1Aでは、吐出角度θ、吐出孔41Aの中心と湯面Sとの距離L、および短辺モールド12Aと短辺モールド12Bとの距離W(すなわち、長辺面11Aa・11Baの水平方向の長さ)を適宜設定することにより、浸漬ノズル40Aの吐出孔41Aから吐出された溶鋼の略全量が湯面Sに到達するように構成されている。
 ここで、吐出孔41Aから吐出された溶鋼によって生じる吐出流が湯面Sに到達する「到達位置」について、図3を参照しながら説明する。図3に示すように、吐出孔41Aの開口部の中央を出発点とし、該出発点から吐出方向60に延びる半直線と、湯面Sとの交点を点Pとする。換言すれば、点Pは、吐出孔41Aから吐出された溶鋼が直進した場合に、吐出孔41Aから吐出された溶鋼が湯面Sに到達する点である。吐出孔41Aから吐出された吐出流は、ある程度広がりながらモールド10内部の溶鋼中を進むが、吐出孔41Aからの溶鋼の吐出速度を所定の速度よりも大きく設定することにより、吐出孔41Aから吐出された溶鋼の略全量を点Pおよびその近傍である湯面Sに直接到達させることができる。本実施形態では、点P近傍を「到達位置」と称する。本実施形態では、吐出孔41Aの開口部の中央と点Pとを結ぶ線分の全体が、撹拌領域A3に含まれている。
 なお、吐出角度θが大きすぎる場合、または、距離Lが小さすぎる場合には、吐出孔41Aから吐出された吐出流が直接湯面S(到達位置)に到達することに起因する湯面Sの波立ちが過大となり、湯面S上に存在するモールドパウダーを凝固シェルC中に異物として巻き込む可能性が高くなる。このため、吐出角度θが30°以下であることが好ましく、吐出流の速度が300~1150mm/sである場合、距離Lは180mm以上であることが好ましい。
 その一方で、距離Lが大きすぎる場合には、湯面S(到達位置)に吐出流が届くまでの時間が長くなる、その結果、短辺モールド12A・12B近傍の湯面Sに高温の吐出流が届くまでの時間が長くなり、短辺モールド12A・12B近傍の湯面Sの溶鋼温度が低下する。溶鋼温度の低下は、爪状の断面を有する不均一な初期凝固シェルの生成を招き、凝固シェルCへの異物の巻き込みを増大させる要因となる。そのため、吐出流の速度が300~1150mm/sである場合、距離Lは230mm以下であることが好ましい。
 連続鋳造装置1Aの構成の一例として、距離Wが520mmよりも大きい場合、吐出角度θを30°、距離Lを150mm(例えば、吐出孔41Aの上下方向の幅が58mm、湯面Sから吐出孔41Aの上端までの距離が121mm)とすることにより、浸漬ノズル40Aの吐出孔41Aから吐出された溶鋼の略全量が湯面S(到達位置)に到達するように構成することができる。
 以上のように、連続鋳造装置1Aを用いた連続鋳造方法は、モールド10内に配置した吐出孔41Aから長辺モールド11A・11Bに沿う方向かつ水平方向よりも上向きに溶鋼を吐出する吐出工程と、吐出孔41Aの開口部の中央と点Pとを結ぶ線分の全体が撹拌領域A3に含まれるように溶鋼を撹拌する撹拌工程とを含んでいる。
 この構成により、吐出孔41Aから吐出された高温の溶鋼の大半が湯面Sに到達するようになり、湯面S近傍での溶鋼の凝固を遅らせることができる。そのため、湯面S近傍での電磁撹拌装置50A・50Bによる撹拌の効果が増大され、溶鋼中の異物が凝固シェルCに捕捉されることを効果的に抑制することができる。
 また、吐出孔41Aから湯面Sまでの距離が短いため、吐出流の流速が低下しないうちに吐出流が湯面Sに到達する。そのため、流速の速い吐出流によって、溶鋼中の気泡や介在物などの異物を浮上させやすくなり、当該異物をモールドパウダーに捕捉させやすくなる。また、吐出孔41Aから湯面Sまでの距離が短いため、吐出流が湯面Sに到達するまでの流路における吐出流の拡散を抑制することができ、撹拌流を阻害することを避けることができる。
 また、湯面Sに到達した吐出流は、図3に示すように、短辺モールド12A・12B側と、浸漬ノズル40A側(すなわち、モールド10の中心側)とに分流する。その結果、湯面S近傍の溶鋼温度を均一化することができる。
 〔実施形態2〕
 本発明の他の実施形態について、図5に基づいて説明すれば、以下のとおりである。なお、説明の便宜上、前記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
 本実施形態の連続鋳造装置1Bは、浸漬ノズル40Bの構造が、実施形態1における浸漬ノズル40Aの構造と異なっている。
 図5は、モールド10の中心を通り、モールド10の長辺モールド11A・11Bに平行な平面で切断した連続鋳造装置1Bの湯面S付近の断面図である。
 本実施形態における連続鋳造装置1Bは、図5に示すように、実施形態1における浸漬ノズル40Aに代えて、浸漬ノズル40Bを備えている。
 浸漬ノズル40Bは、図5に示すように、2つの吐出孔41Bを備えている。吐出孔41Bは、溶鋼の吐出方向60が水平面に対して上向きとなるように形成されている。以降では、吐出孔41Bの吐出方向70と水平面とのなす角度を吐出角度φと呼称する。
 本実施形態における連続鋳造装置1Bでは、吐出角度φ、吐出孔41Bの中心と湯面Sとの距離L、および短辺モールド12Aと短辺モールド12Bとの湯面Sにおける距離Wを適宜設定することにより、吐出孔41Bから吐出された溶鋼の略全量が短辺モールド12A・12B(より詳細には、短辺モールド12A・12Bの表面に形成された凝固シェルC)に到達するように構成されている。
 ここで、吐出孔41Bから吐出された溶鋼によって生じる吐出流が短辺モールド12A・12Bに到達する「到達位置」について、図5を参照しながら説明する。図5に示すように、吐出孔41Bの開口部の中央を出発点とし、該出発点から吐出方向70に延びる半直線と、短辺モールド12Bとの交点を点Qとする。換言すれば、点Qは、吐出孔41Bから吐出された溶鋼が直進した場合に、吐出孔41Bから吐出された溶鋼が短辺モールド12Bに到達する点である。吐出孔41Bから吐出された溶鋼によって生じる吐出流は、ある程度広がりながらモールド10内部の溶鋼中を進むが、吐出孔41Aからの溶鋼の吐出速度を所定の速度よりも大きく設定することにより、吐出孔41Bから吐出された溶鋼の略全量を短辺モールド12Bに直接到達させることができる。本実施形態では、点Q近傍を「到達位置」と称する。点Qは、湯面S近傍に位置している。
 本実施形態では、連続鋳造装置1Bでは、電磁撹拌装置50A・50Bによって形成される撹拌領域が、鉛直方向において、少なくとも、「到達位置」(点Qの近傍)から吐出孔41Bの下端までを含むように構成されている。これにより、吐出孔41Bの開口部の中央と点Qとを結ぶ線分の全体が、電磁撹拌装置50A・50Bによって形成される撹拌領域に含まれる。
 連続鋳造装置1Bの構成の一例として、距離Wが1430~1650mmであり、かつ、吐出流の速度が300~1150mm/sである場合、吐出角度φを5°、距離Lを125mm(例えば、吐出孔41Bの上下方向の幅が50mm、湯面Sから吐出孔41Aまでの距離が100mm)とすることにより、浸漬ノズル40Bの吐出孔41Bから吐出された溶鋼の略全量が「到達位置」に到達するように構成することができる。
 以上のように、連続鋳造装置1Bを用いた連続鋳造方法は、モールド10内に配置した吐出孔41Bから長辺モールド11A・11Bに沿う方向かつ水平方向よりも上向きに溶鋼を吐出する吐出工程と、吐出孔41Bの開口部の中央と点Qとを結ぶ線分の全体が電磁撹拌装置50A・50Bによって形成される撹拌領域に含まれるように溶鋼を撹拌する撹拌工程とを含んでいる。
 この構成により、吐出孔41Aから吐出された高温の溶鋼の大半が湯面Sの近傍に到達するようになり、湯面S近傍での溶鋼の凝固を遅らせることができる。そのため、湯面S近傍での電磁撹拌装置50A・50Bによる撹拌の効果が増大され、溶鋼中の異物が凝固シェルCに捕捉されることを効果的に抑制することができる。
 連続鋳造装置1Aおよび1Bでは、溶鋼の一部および凝固シェルCをモールド10の下端部から引き抜く構造となっているため、吐出孔41Bから吐出された吐出流は、下向きの力を受けることになる。そのため、連続鋳造装置1Bにおいて吐出角度φが小さい場合には、吐出孔41Bから吐出された吐出流が撹拌領域外に吐出する可能性がある。そのため、吐出角度φとして、5°以上の角度で溶鋼を吐出することが好ましい。これにより、吐出孔41Bから吐出された吐出流を撹拌領域に確実に含まれるようにすることができる。
 〔実施形態3〕
 本実施形態では、連続鋳造における電磁攪拌装置の好ましい設定について説明する。
 本実施形態の連続鋳造におけるパラメータを下記に示す。なお、[]内は、それぞれの単位である。
α:吐出孔41Aまたは吐出孔41Bの吐出角度[°]
A:吐出孔41Aまたは吐出孔41Bの吐出面積[m]
W:鋳造幅[m](短辺面12Aa・12Baの水平距離)
T:鋳造厚[m](長辺面11Aa・11Baの水平距離)
V:吐出孔41Aまたは吐出孔41Bからの吐出速度[m/s]
Vc:鋳造速度[m/s]
L:浸漬ノズル40Aまたは浸漬ノズル40Bの浸漬深さ[m](吐出孔41Aまたは吐出孔41Bの中心と湯面Sとの距離)
B:長辺面11Aa・11Baから溶鋼内水平方向15mmの位置における磁束密度[G]
f:電磁撹拌装置50Aまたは電磁撹拌装置50Bの周波数[Hz]
σ:二次伝導体(1500℃における溶鋼)の電気伝導度[1/μΩ-m]
 まず、吐出孔41Aまたは吐出孔41Bから吐出される溶鋼の体積と、鋳造体積が同じである条件から下記の式1が成立する。
 (A×2)×V=W×T×Vc・・・(式1)
 式1から下記の式2に示されるように吐出速度Vが求まる。
V=W×T×Vc/2A・・・(式2)
 したがって、吐出孔41Aまたは吐出孔41Aから吐出された溶鋼の鉛直方向の速度Vyは、下記の式3となる。
Vy=V×sinα=W×T×Vc×sinα/2A・・・(式3)
 これより、溶鋼が吐出孔41Aまたは吐出孔41Aから吐出されたから湯面Sに到達するまでの時間t(湯面到達時間t)は、下記の式4となる。
t=L/Vy=L×W×T×Vc×sinα/2A・・・(式4)
 溶鋼に印加される撹拌水力Hは、下記の式5となる。
H=B×f×σ
 したがって、吐出孔41Aまたは吐出孔41Aから吐出された溶鋼が湯面Sに到達するまでに受ける力積Iは、下記の式6となる。
I=H×t=B×f×σ×L×W×T×Vc×sinα/2A・・・(式6)
 本実施形態における連続鋳造方法では、吐出角度α、吐出面積A、鋳造幅、鋳造厚T、および浸漬深さLが所定の値である場合において、上記力積Iが、0.4×10/μΩ-m~2.5×10/μΩ-mとなるように、磁束密度B、周波数f、および鋳造速度Vcを設定することが好ましい。これにより、溶鋼の種類が変化した場合においても、異物の洗浄効果が高い撹拌流を形成することができる。
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。
 本発明の一実施例について、説明すれば以下のとおりである。
 本実施例では、下記の条件の下で、フェライト系の鋼種である、SUH409LおよびSUS439の連続鋳造を行った。
 (連続鋳造条件)
吐出孔41Aの吐出角度θ:30°
吐出孔41Aの鉛直方向の幅:58mm
湯面Sから吐出孔41Aの中心までの鉛直方向の距離L:180mm
短辺モールド12A・12B間の距離W:1042mm
鋳造速度:1.30m/min
吐出速度:865mm/s
鋳片厚み:200mm
長辺面11Aa・11Baから厚み方向15mmにおける磁束密度:1150G
 上記の条件は、電磁撹拌装置50A・50Bによる撹拌を行った場合、吐出孔41Aから吐出された溶鋼の略全量が湯面Sに直接到達し、かつ、吐出孔41Aから吐出されてから湯面Sに到達するまでの間、電磁撹拌装置50A・50Bによって形成される撹拌領域に含まれる条件である。
 本実施例では、電磁撹拌装置50A・50Bによる撹拌を行って作製した鋳片(SUH409Lの鋳片を鋳片実施例1、SUS439の鋳片を鋳片実施例2とする)と、電磁撹拌装置50A・50Bによる撹拌を行わないで作製した鋳片(SUH409Lの鋳片を鋳片比較例1、SUS439の鋳片を鋳片比較例2とする)との評価を行った。
 鋳片実施例1、2および鋳片比較例1、2に対して、X線透過法を用いて、表層から10mm以内における、表面欠陥(気泡または介在物が凝固セルに捕捉されることによって形成される欠陥)の個数を計測した。なお、本評価では、表面欠陥の直径が0.4mm以上である表面欠陥の個数を計測した。計測結果を下記の表1に示す。表1では、1cmあたりの欠陥個数を示している。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、鋳片実施例1、2は、鋳片比較例1、2と比べて、表面欠陥の形成を顕著に抑制することができた。これは、鋳片実施例1、2では、吐出孔41Aから吐出された溶鋼の略全量が湯面Sに直接到達し、かつ、吐出孔41Aから吐出されてから湯面Sに到達するまでの間、電磁撹拌装置50A・50Bによって形成される撹拌領域に含まれている状態において鋳造したことにより、溶鋼の撹拌をより効果的に行うことができたためであると考えられる。
 作製した鋳片実施例1、2および鋳片比較例1、2を用いて、一般的なフェライト系ステンレス鋼板の製造工程(熱間圧延、焼鈍、酸洗、冷間圧延、焼鈍、酸洗)に進め、板厚1mmの冷延焼鈍鋼板をそれぞれ複数製造した。製造した鋼板の表面検査を行い、製品としての品質を有しているかどうかについて判定した。その結果、鋳片比較例1、2を用いて作成した鋼板では、スラブの表面を研削したにも関わらず数%(SUH409Lでは3.9%、SUS439では2.2%)の鋼板が製品としての品質を有していなかった。これに対して、鋳片実施例1、2を用いて作成した鋼板では、表面研削していないにも関わらずすべての鋼板が製品としての品質を有していた。
 本発明の他の実施例について、説明すれば以下のとおりである。
 本実施例では、下記の条件の下で、SUS304の連続鋳造を行った。
 (連続鋳造条件)
吐出孔41Bの吐出角度φ:5°
吐出孔41Bの鉛直方向の幅:50mm
湯面Sから吐出孔41Bの中心までの鉛直方向の距離L:220mm
短辺モールド12A・12B間の距離W:1038mm
鋳造速度:1.40m/min
吐出速度:932mm/s
鋳片厚み:200mm
長辺面11Aa・11Baから厚み方向15mmにおける磁束密度:1150G
 上記の条件は、電磁撹拌装置50A・50Bによる撹拌を行った場合、吐出孔41Bから吐出された溶鋼の略全量がモールド10の短辺面12Aa・12Baに直接到達し、かつ、吐出孔41Bから吐出されてからモールド10の短辺面12Aa・12Baに到達するまでの間、電磁撹拌装置50A・50Bによって形成される撹拌領域に含まれる条件である。
 本実施例では、電磁撹拌装置50A・50Bによる撹拌を行って作製した鋳片実施例3と、電磁撹拌装置50A・50Bによる撹拌を行わないで作製した鋳片比較例3との評価を行った。なお、鋳片実施例3は、モールド10から鋳片を900mm引き抜いた時点から電磁撹拌装置50A・50Bによる撹拌を行って作製した。
 鋳片実施例3および鋳片比較例3に対して、放射線透過検査により、表層から2mmおよび3mmの位置における、地疵(凝固シェルへのモールドパウダーの混入に起因する割れ)の個数を計測した。計測は、鋳造開始位置から800、1000、1200、1500、2000、2500および3000mmの地点における、鋳片上面の中央部に対して行った。なお、本評価では、地疵の直径が0.15mm以上である地疵の個数を計測した。計測結果を下記の図6に示す。図6は、鋳片実施例3および鋳片比較例3における、1mmあたりの地疵の個数を示すものであり、(a)は、表層から2mmの位置における地疵の個数を示すグラフであり、(b)は、表層から3mmの位置における地疵の個数を示すグラフである。
 図6の(a)および(b)に示すように、鋳片実施例3における表層から2mmおよび3mmの位置における地疵の数は、鋳片比較例3における地疵の数に比べて少なかった。これは、鋳片実施例3では、吐出孔41Bから吐出された溶鋼の略全量が、モールド10の短辺面12Aa・12Baに直接到達し、かつ、吐出孔41Bから吐出されてから短辺面12Aa・12Baに到達するまでの間、電磁撹拌装置50A・50Bによって形成される撹拌領域に含まれている状態において鋳造したことにより、溶鋼の撹拌をより効果的に行うことができたためであると考えられる。特に、鋳片比較例3のように従来では鋳造開始から1000~2000mmにおいて地疵の個数が多くなるのに対して、鋳片実施例3では、1000~2000mmにおいも地疵の個数を少なくすることができた。これらの結果から、作製した鋳片の研削における歩留まりを96.8%から97.5%に改善できることがわかった。
 本発明のさらなる他の実施例について、説明すれば以下のとおりである。
 本実施例では、下記の条件の下で、SUS304の連続鋳造を行った。
吐出孔41の吐出角度α:5°
吐出孔41の吐出面積A:0.0026m
鋳造幅W:1260mm
鋳造厚T:200mm
吐出速度V:0.70m/min
鋳造速度Vc:0.7~1.2m/min
浸漬深さL:0.25m
二次伝導体の電気伝導度σ:1/ρ=1/1.3(ρはSUS304の比電気抵抗、ステンレス鋼便覧を参照、単位:μΩ-m)
 本実施例において、磁束密度Bを1150G、周波数を2.7Hzとして上記式1~式6を用いて、力積Iを算出したところ下記式7を得た。
0.4×10(G/μΩ-m)<I<2.5×10(G/μΩ-m)・・・(式7)
 式7で示される範囲の力積を溶鋼に印加した本実施例では、異物の洗浄効果が高い撹拌流を形成することができ、溶鋼中の異物が凝固シェルに捕捉されることを効果的に抑制することができた。
 1A、1B     連続鋳造装置
 10        モールド
 11Aa、11Ba 長辺面(第1面)
 12Aa、12Ba 短辺面(第2面)
 40A、40B   浸漬ノズル
 41A、41B   吐出孔
 50A、50B   電磁撹拌装置(撹拌装置)
 A3        撹拌領域
 S         湯面

Claims (8)

  1.  第1面と、前記第1面と交差する第2面とを含む囲繞構造を有するモールドと、
     溶鋼を吐出する吐出孔を有する浸漬ノズルと、
     前記モールド内の溶鋼を撹拌することにより撹拌領域を形成する撹拌装置と、を備える連続鋳造装置を用いる連続鋳造方法であって、
     前記モールド内に配置した前記吐出孔から前記第1面に沿う方向かつ水平方向よりも上向きに溶鋼を吐出する吐出工程と、
     前記吐出工程において吐出された溶鋼が直進した場合の前記溶鋼の到達位置が、前記モールド内の溶鋼の湯面、または前記第2面であり、前記吐出孔と前記到達位置とを結ぶ線分の全体が、前記撹拌領域に含まれるように前記溶鋼を撹拌する撹拌工程とを含むことを特徴とする連続鋳造方法。
  2.  前記撹拌領域における溶鋼の流速が0.20~0.40m/sの範囲であることを特徴とする請求項1に記載の連続鋳造方法。
  3.  前記到達位置が前記湯面であることを特徴とする請求項1または2に記載の連続鋳造方法。
  4.  前記浸漬ノズルから吐出された溶鋼が前記湯面に到達するまでに受ける力積は、0.4×10/μΩ-m~2.5×10/μΩ-mであることを特徴とする請求項1~3のいずれか1項に記載の連続鋳造方法。
  5.  第1面と、前記第1面と交差する第2面とを含む囲繞構造を有するモールドと、
     前記モールド内に配置される吐出孔を有し、前記吐出孔から前記第1面に沿う方向に溶鋼を吐出する浸漬ノズルと、
     前記モールド内の溶鋼を撹拌することにより撹拌領域を形成する撹拌装置と、を備える連続鋳造装置であって、
     前記吐出孔は、前記撹拌領域に含まれているとともに、前記吐出孔は、前記溶鋼を水平方向よりも上向きに吐出し、
     前記撹拌装置は、前記吐出孔から吐出された溶鋼が直進した場合の前記溶鋼の到達位置が、前記モールド内の溶鋼の湯面、または前記第2面であり、前記吐出孔と前記到達位置とを結ぶ線分の全体が、前記撹拌領域に含まれるように前記溶鋼を撹拌することを特徴とする連続鋳造装置。
  6.  前記撹拌領域における溶鋼の流速が0.20~0.40m/sの範囲であることを特徴とする請求項5に記載の連続鋳造装置。
  7.  前記吐出孔は、水平面から5°~30°上向きに溶鋼を吐出することを特徴とする請求項5または6に記載の連続鋳造装置。
  8.  前記浸漬ノズルから吐出された溶鋼が前記湯面に到達するまでに受ける力積は、0.4×10/μΩ-m~2.5×10/μΩ-mであることを特徴とする請求項5~7のいずれか1項に記載の連続鋳造装置。
PCT/JP2018/008066 2017-03-03 2018-03-02 連続鋳造方法および連続鋳造装置 WO2018159821A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2018513683A JP7044699B2 (ja) 2017-03-03 2018-03-02 連続鋳造方法および連続鋳造装置
US16/490,251 US20200009650A1 (en) 2017-03-03 2018-03-02 Continuous casting method and continuous casting device
ES18760588T ES2920053T3 (es) 2017-03-03 2018-03-02 Método de colada continua
MYPI2019005021A MY196682A (en) 2017-03-03 2018-03-02 Continuous casting method and continuous casting device
KR1020197028892A KR102265880B1 (ko) 2017-03-03 2018-03-02 연속 주조 방법 및 연속 주조 장치
CN201880015434.5A CN110382137B (zh) 2017-03-03 2018-03-02 连续铸造方法及连续铸造装置
EP18760588.6A EP3590628B1 (en) 2017-03-03 2018-03-02 Continuous casting method
ZA2019/06308A ZA201906308B (en) 2017-03-03 2019-09-25 Continuous casting method and continuous casting device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017-040658 2017-03-03
JP2017040658 2017-03-03
JPPCT/JP2017/024528 2017-07-04
JP2017024528 2017-07-04

Publications (1)

Publication Number Publication Date
WO2018159821A1 true WO2018159821A1 (ja) 2018-09-07

Family

ID=63370093

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/008066 WO2018159821A1 (ja) 2017-03-03 2018-03-02 連続鋳造方法および連続鋳造装置

Country Status (10)

Country Link
US (1) US20200009650A1 (ja)
EP (1) EP3590628B1 (ja)
JP (1) JP7044699B2 (ja)
KR (1) KR102265880B1 (ja)
CN (1) CN110382137B (ja)
ES (1) ES2920053T3 (ja)
MY (1) MY196682A (ja)
TW (1) TWI679072B (ja)
WO (1) WO2018159821A1 (ja)
ZA (1) ZA201906308B (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50145324A (ja) * 1974-05-14 1975-11-21
JPH10166120A (ja) 1996-12-06 1998-06-23 Sumitomo Metal Ind Ltd 溶融金属の連続鋳造方法
JP2000280050A (ja) * 1999-03-30 2000-10-10 Furukawa Electric Co Ltd:The 竪型連続鋳造用注湯ノズルおよび前記注湯ノズルを用いた竪型連続鋳造方法
JP2008137056A (ja) * 2006-12-05 2008-06-19 Nippon Steel Corp 溶融金属の連続鋳造方法
JP6129435B1 (ja) * 2016-09-16 2017-05-17 日新製鋼株式会社 連続鋳造法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4042007A (en) * 1975-04-22 1977-08-16 Republic Steel Corporation Continuous casting of metal using electromagnetic stirring
JP2868174B2 (ja) * 1993-03-09 1999-03-10 川崎製鉄株式会社 ステンレス鋼の連続鋳造方法
JP3817209B2 (ja) * 2002-09-10 2006-09-06 新日本製鐵株式会社 表面及び内部欠陥の発生を防止するステンレス鋳片の連続鋳造方法
SE0301049A0 (en) * 2002-11-29 2004-05-30 Abb Ab Control system, computer program product, device and method
EP1567296B1 (en) * 2002-11-29 2011-04-27 Abb Ab CONTROL SYSTEM, DEVICE AND METHOD for regulating the flow of liquid metal in a device for casting a metal
JP4348334B2 (ja) * 2003-03-03 2009-10-21 新日本製鐵株式会社 連続鋳造用鋳型
US7493936B2 (en) * 2005-11-30 2009-02-24 Kobe Steel, Ltd. Continuous casting method
JP4724606B2 (ja) * 2006-06-05 2011-07-13 新日本製鐵株式会社 溶鋼の連続鋳造方法
ES2480466T3 (es) * 2006-07-06 2014-07-28 Abb Ab Método y aparato para controlar el flujo de acero fundido en un molde
JP5040999B2 (ja) * 2007-06-06 2012-10-03 住友金属工業株式会社 鋼の連続鋳造方法及び鋳型内溶鋼の流動制御装置
JP5245800B2 (ja) * 2008-06-30 2013-07-24 Jfeスチール株式会社 連続鋳造用鋳型及び鋼の連続鋳造方法
JP5791234B2 (ja) * 2010-03-31 2015-10-07 Jfeスチール株式会社 鋼鋳片の連続鋳造方法
CA2844450C (en) * 2011-11-09 2017-08-15 Nippon Steel & Sumitomo Metal Corporation Continuous casting apparatus for steel
JP6330542B2 (ja) * 2014-07-17 2018-05-30 新日鐵住金株式会社 連鋳鋳片の製造方法
KR20190016613A (ko) * 2015-03-31 2019-02-18 신닛테츠스미킨 카부시키카이샤 강의 연속 주조 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50145324A (ja) * 1974-05-14 1975-11-21
JPH10166120A (ja) 1996-12-06 1998-06-23 Sumitomo Metal Ind Ltd 溶融金属の連続鋳造方法
JP2000280050A (ja) * 1999-03-30 2000-10-10 Furukawa Electric Co Ltd:The 竪型連続鋳造用注湯ノズルおよび前記注湯ノズルを用いた竪型連続鋳造方法
JP2008137056A (ja) * 2006-12-05 2008-06-19 Nippon Steel Corp 溶融金属の連続鋳造方法
JP6129435B1 (ja) * 2016-09-16 2017-05-17 日新製鋼株式会社 連続鋳造法

Also Published As

Publication number Publication date
ES2920053T3 (es) 2022-08-01
MY196682A (en) 2023-04-30
EP3590628A4 (en) 2020-01-08
CN110382137A (zh) 2019-10-25
KR102265880B1 (ko) 2021-06-15
JP7044699B2 (ja) 2022-03-30
TW201834765A (zh) 2018-10-01
TWI679072B (zh) 2019-12-11
EP3590628A1 (en) 2020-01-08
CN110382137B (zh) 2021-09-10
JPWO2018159821A1 (ja) 2019-12-26
EP3590628B1 (en) 2022-05-18
US20200009650A1 (en) 2020-01-09
KR20190122799A (ko) 2019-10-30
ZA201906308B (en) 2021-05-26

Similar Documents

Publication Publication Date Title
EP2500120A1 (en) Method of continuous casting of steel
JP5014934B2 (ja) 鋼の連続鋳造方法
KR102490142B1 (ko) 연속 주조법
JP5321528B2 (ja) 鋼の連続鋳造用装置
CN107107175B (zh) 钢的连续铸造方法
WO2018159821A1 (ja) 連続鋳造方法および連続鋳造装置
TW202003134A (zh) 用於鋼之薄板鑄造的連續鑄造用設備及連續鑄造方法
JP3583955B2 (ja) 連続鋳造方法
JP5413277B2 (ja) 鋼鋳片の連続鋳造方法
JP3583954B2 (ja) 連続鋳造方法
JP5772767B2 (ja) 鋼の連続鋳造方法
JP4203167B2 (ja) 溶鋼の連続鋳造方法
JP4407260B2 (ja) 鋼の連続鋳造方法
JP5440933B2 (ja) 浸漬ノズル及びこれを用いた連続鋳造方法
JP2013035001A (ja) 連続鋳造による高清浄度鋼鋳片の製造方法
JP2019177409A (ja) 鋳塊、その製造方法および鋼板の製造方法
JP6107436B2 (ja) 鋼の連続鋳造方法
JP4492333B2 (ja) 鋼の連続鋳造方法
JP2003080354A (ja) 鋼の連続鋳造方法及び装置
JPH0455045A (ja) 水平連続鋳造方法
JPH08332553A (ja) 連続鋳造方法
JP2006231396A (ja) 極低炭素鋼スラブ鋳片の連続鋳造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018513683

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18760588

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197028892

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018760588

Country of ref document: EP

Effective date: 20191004