WO2018159713A1 - 溶射皮膜、溶射用粉、溶射用粉の製造方法、及び溶射皮膜の製造方法 - Google Patents

溶射皮膜、溶射用粉、溶射用粉の製造方法、及び溶射皮膜の製造方法 Download PDF

Info

Publication number
WO2018159713A1
WO2018159713A1 PCT/JP2018/007624 JP2018007624W WO2018159713A1 WO 2018159713 A1 WO2018159713 A1 WO 2018159713A1 JP 2018007624 W JP2018007624 W JP 2018007624W WO 2018159713 A1 WO2018159713 A1 WO 2018159713A1
Authority
WO
WIPO (PCT)
Prior art keywords
rare earth
powder
thermal spraying
earth elements
mass
Prior art date
Application number
PCT/JP2018/007624
Other languages
English (en)
French (fr)
Inventor
典明 濱谷
一郎 植原
Original Assignee
信越化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越化学工業株式会社 filed Critical 信越化学工業株式会社
Priority to US16/489,070 priority Critical patent/US20200002799A1/en
Priority to CN201880014710.6A priority patent/CN110382730B/zh
Priority to KR1020237016849A priority patent/KR102664599B1/ko
Priority to JP2018533839A priority patent/JP6436270B1/ja
Priority to CN202211112737.3A priority patent/CN115354269A/zh
Priority to KR1020197028210A priority patent/KR102536087B1/ko
Publication of WO2018159713A1 publication Critical patent/WO2018159713A1/ja
Priority to US18/517,251 priority patent/US20240102142A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/10Oxides, borides, carbides, nitrides or silicides; Mixtures thereof
    • C23C4/11Oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • B32B9/005Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising one layer of ceramic material, e.g. porcelain, ceramic tile
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/10Preparation or treatment, e.g. separation or purification
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/20Compounds containing only rare earth metals as the metal element
    • C01F17/206Compounds containing only rare earth metals as the metal element oxide or hydroxide being the only anion
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/20Compounds containing only rare earth metals as the metal element
    • C01F17/253Halides
    • C01F17/259Oxyhalides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/20Compounds containing only rare earth metals as the metal element
    • C01F17/253Halides
    • C01F17/265Fluorides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/50Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/5156Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on rare earth compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D1/00Coating compositions, e.g. paints, varnishes or lacquers, based on inorganic substances
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/03Powdery paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/03Powdery paints
    • C09D5/033Powdery paints characterised by the additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/10Oxides, borides, carbides, nitrides or silicides; Mixtures thereof
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/134Plasma spraying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32458Vessel
    • H01J37/32477Vessel characterised by the means for protecting vessels or internal parts, e.g. coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/60Optical properties, e.g. expressed in CIELAB-values
    • C01P2006/62L* (lightness axis)
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/60Optical properties, e.g. expressed in CIELAB-values
    • C01P2006/63Optical properties, e.g. expressed in CIELAB-values a* (red-green axis)
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/60Optical properties, e.g. expressed in CIELAB-values
    • C01P2006/64Optical properties, e.g. expressed in CIELAB-values b* (yellow-blue axis)
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/36Non-oxidic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/221Oxides; Hydroxides of metals of rare earth metal
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/014Additives containing two or more different additives of the same subgroup in C08K
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/16Halogen-containing compounds

Definitions

  • the present invention relates to a thermal spray coating containing a rare earth element fluoride or a fluoride of the rare earth element and an oxyfluoride of the rare earth element, a thermal spray powder for obtaining the thermal spray coating, a method for producing the thermal spray powder, and the The present invention relates to a method for producing a thermal spray coating.
  • rare earth fluorides are relatively stable at high temperatures.
  • rare earth fluoride spray coatings are used.
  • the formed member is being developed. For example, a member for a plasma etching apparatus using a halogen gas.
  • the present invention has been made in view of the above circumstances, and is a thermal spray coating with little partial color change after use of a thermal spray member, thermal spraying powder for obtaining the thermal spray coating, thermal spraying powder, and thermal spraying. It aims at providing the manufacturing method of a membrane
  • the present inventors have reached the present invention. That is, the above-mentioned problem is that rare earth fluorides including rare earth fluorides and oxyfluorides basically exhibit white color. From this point, other elements are used to color these rare earth fluorides gray or black. It is possible to add. However, since the plasma-resistant member is mainly used in the semiconductor manufacturing process, it is necessary to consider the point of contamination prevention, and it is necessary to suppress the amount of addition, so a small amount of additive elements It was required to form a spray coating of a rare earth fluoride containing a rare earth fluoride or an oxyfluoride having a predetermined chromaticity of white or gray to black.
  • the content of carbon or titanium or molybdenum, in particular in the case of carbon is preferably 0.01 to 2% by mass, and in the case of titanium or molybdenum, 1 to 1000 ppm.
  • Thermal spray coating comprising the following (1) and / or (2), or a mixture of the following (1) and / or (2) and one or more selected from the following (3) to (5) And (1)
  • One or more rare earth element fluorides selected from Group 3A rare earth elements containing yttrium (2)
  • Oxide fluorides of the rare earth elements (3)
  • Oxides of the rare earth elements (4)
  • L * a * b * chromaticity display L * is 25 to 64, a * is -3.0 to +5.0, and b * is -6.0 to Shows
  • the characteristic thermal spraying powder [6] The thermal spraying powder according to [5], wherein the rare earth element is at least one selected from Y, Gd, Yb, and La. [7] The thermal spraying powder according to [5] or [6], wherein the oxygen content is 0.01 to 13.5% by mass. [8] The thermal spraying powder according to any one of [5] to [7], which is a fired thermal spraying powder and has a carbon content of 0.004 to 0.15% by mass. [9] The thermal spraying powder according to any one of [5] to [7], which is an unfired thermal spraying powder and has a carbon content of 0.004 to 1.5 mass%.
  • the slurry is dried, baked and fired, and L * a * b * chromaticity is displayed, L * is 25 or more and less than 91, a * is ⁇ 3.0 to +5.0, and b * is ⁇ 6.0 to +8.
  • a thermal spraying powder exhibiting 0.0 white or gray to black is obtained.
  • Manufacturing method of use powder [11] The method for producing a thermal spraying powder according to [10], wherein the culturing is performed at 500 to 800 ° C. in nitrogen gas, and then the baked powder is baked at 800 to 1000 ° C. in a vacuum or an inert gas atmosphere.
  • a white color comprising a mixture of the above (1) and / or (2), or the above (1) and / or (2) and one or more selected from the above (3) to (6)
  • the present inventors have found that the surface of the film can be made gray or black by a color center by plasma light and a reactive gas even if there is no carbon, titanium or molybdenum in the film.
  • the present inventors have found that the surface of the coating is gray or black so that the object of the present invention can be achieved without causing discoloration when used as a sprayed coating of a member for a plasma etching apparatus.
  • Thermal spray coating comprising the following (1) and / or (2), or a mixture of the following (1) and / or (2) and one or more selected from the following (3) to (5) And (1)
  • Composite of the rare earth element and one or more metals selected from Al, Si, Zr and In L * a * b * chromaticity display on the fluoride surface is gray or black with L * of 25 to 64, a * of -3.0 to +5.0, and b * of -6.0 to +8.0.
  • a thermal spray coating having a gray or black layer having a gray or black layer.
  • a white powder comprising a mixture of the following (1) and / or (2), or the following (1) and / or (2) and one or more selected from the following (3) to (6): , (1) One or more rare earth element fluorides selected from Group 3A rare earth elements containing yttrium (2) Oxide fluorides of the rare earth elements (3) Oxides of the rare earth elements (4) The rare earth elements and Al Composite oxide of one or more metals selected from Si, Zr and In (5) Composite of the rare earth element and one or more metals selected from Al, Si, Zr and In Fluoride (6) Thermally sprayed on the surface of an oxide base material of one or more metals selected from Al, Si, Zr, and In, and L * is 81 or more in terms of L * a * b * chromaticity, A sprayed coating having a white color with a * of ⁇ 3.0 to +3.0 and b * of ⁇ 3.0 to +3.0 was
  • a method for producing a thermal spray coating comprising forming a gray or black layer exhibiting gray color to black of ⁇ 8.0. [21] The method for producing a thermal spray coating according to [20], wherein the depth of the gray or black layer is within 2 ⁇ m from the coating surface. [22] A white color comprising a mixture of the above (1) and / or (2), or the above (1) and / or (2) and one or more selected from the above (3) to (6) The method for producing a thermal spraying powder according to [20] or [21], wherein the oxygen content of the presented powder is 0.01 to 13.5% by mass.
  • a spray coating of a rare earth fluoride containing a rare earth fluoride or oxyfluoride having a predetermined chromaticity of white or gray or black can be formed by atmospheric plasma spraying, the cost can be reduced.
  • a member having a thermal spray coating sprayed with a rare earth fluoride exhibiting white or gray or black having a predetermined chromaticity is used as a plasma-resistant member in halogen gas, there is little change in color, and it is taken out. Even during cleaning, it is not necessary to perform excessive cleaning partially, and the member can surely realize the original long life.
  • the thermal spray coating of the present invention is the following (1) and / or (2), or one of the following (1) and / or (2) and the following (3) to (5) Or it is a sprayed coating consisting of a mixture of two or more.
  • the thermal spraying powder of the present invention may be one or two selected from the following (1) and / or (2), or the following (1) and / or (2) and the following (3) to (6): It is a powder for thermal spraying consisting of a mixture with seeds or more.
  • the rare earth element includes, as described above, a group 3A rare earth containing yttrium (Y)
  • Y yttrium
  • One or more elements can be used from among the elements, but one or more heavy rare earth elements selected from Y, Gd, Yb and La are particularly preferable.
  • the rare earth element oxyfluoride of the above (2) those having various crystal structures can be used.
  • Y oxyfluoride Y 5 O 4 F 7 , Y 6 O 5 F 8 .
  • Various crystal structures such as YOF can be used.
  • the average particle size of the particles of the thermal spraying powder in the present invention is preferably 1 to 100 ⁇ m. If the average particle size is less than 1 ⁇ m, the particles are evaporated and scattered in the plasma flame during the thermal spraying. There is a risk of loss. On the other hand, if the average particle size exceeds 100 ⁇ m, the melt is not completely melted in a plasma flame or the like during spraying and remains unmelted, which may lead to a decrease in adhesion strength. In addition, the said average particle diameter is the value of D50 of the particle size distribution measured by the laser diffraction method.
  • the thermal spray coating and thermal spraying powder of the present invention are usually rare earth fluoride powders that exhibit white color (for example, L * : 91 or more, a * : ⁇ 3.0 to +3.0, b * : ⁇ 3.0 to +3. 0) yttrium fluoride powder, etc.) or rare earth fluoride powder containing oxyfluoride, containing a material imparting gray or black color, L * is 25 or more and less than 91, a * is -3.0 to +5.0 , B * is prepared so as to display L * a * b * chromaticity of ⁇ 6.0 to +8.0.
  • L * is 25 or more and less than 91
  • a * is -3.0 to +5.0
  • B * is prepared so as to display L * a * b * chromaticity of ⁇ 6.0 to +8.0.
  • L * value when a coating containing no acid fluorides of rare earth elements in the (2), L *: are 25 to 64.
  • carbon, titanium, or molybdenum is used as the material imparting gray to black, and in the case of carbon, 0.004 to 2% by mass, particularly 0.05 to 1.8% by mass in the film or powder.
  • titanium or molybdenum it is preferable to contain 1 to 1000 ppm, particularly 1 to 800 ppm.
  • the oxygen content of the thermal spray coating and the thermal spraying powder is not particularly limited, but is preferably 0.01 to 13.5% by mass, and 0.05 to 8% by mass. It is more preferable.
  • the carbon content may affect the hardness of the film, and as the carbon content increases, the hardness of the film may decrease.
  • the carbon content is preferably 0.15% by mass or less, particularly preferably 0.1% by mass or less.
  • the lower limit of carbon content is 0.004 mass%, Preferably it is 0.01 mass%, More preferably, it is 0.02 mass%.
  • the carbon content is 0.004 to 0.15 mass% in the case of the fired thermal spraying powder, and the carbon content is 0.004 in the case of the unfired thermal spraying powder.
  • the thermal spray coating having the above-mentioned good hardness with a carbon content of 0.15% by mass or less can be obtained by spraying such a thermal spraying powder.
  • the means for containing the carbon is not particularly limited.
  • a slurry is prepared using a solution containing white powder consisting of a mixture of one or more selected from the above and a carbon source, mixed for 5 to 60 minutes, dried, granulated, and fired. Can do.
  • carbon, aliphatic hydrocarbons, aromatic hydrocarbons, etc. can be used as the carbon source, and can be dissolved and mixed in water or an organic solvent if necessary.
  • phenol is diluted with alcohol.
  • water-soluble organic substances for example, acrylic binder, carboxymethyl cellulose (CMC), polyvinyl alcohol (PVA), sucrose
  • CMC carboxymethyl cellulose
  • PVA polyvinyl alcohol
  • sucrose sucrose
  • Carbon may be added by any of direct mixing, dipping, coating, spraying, and the like. After mixing and drying the carbon source and the above powder, it is preferably fired at 500 to 1000 ° C. in nitrogen gas. After firing, sieving is performed to obtain a thermal spraying powder exhibiting white or gray or black having the predetermined chromaticity. Further, after mixing, drying, and granulating the carbon source and the powder, the mixed dry powder can be directly used as a thermal spraying powder without firing. Furthermore, when using a finely sprayed powder (1-10 ⁇ m) as the SPS (suspension plasma spray) slurry, drying and granulation are unnecessary.
  • SPS suspension plasma spray
  • the carbon source phenol, acrylic binder, CMC, PVA, sucrose so that the carbon concentration in the thermal spraying powder is 0.004 to 2% by mass. It is important to control the concentration of additions. If the carbon content is less than 0.004% by mass, the intended colored film cannot be obtained, and the powder strength may be weakened during high-temperature firing or thermal spraying, resulting in uneven powder performance. On the other hand, when the carbon content exceeds 2% by mass, the carbon is excessively high and becomes an excessive substance, which often leads to contamination and a decrease in the hardness of the sprayed coating.
  • the carbon content of the thermal spray powder is 0.004 to 0.15 mass. %, Particularly 0.01 to 0.1% by mass, the carbon source addition concentration is preferably controlled. In the case of unfired thermal spraying powder, the carbon content is 0.004 to 1.%. It is preferable to control the addition concentration of the carbon source so as to be 5% by mass.
  • the means for containing titanium or molybdenum is not particularly limited.
  • White powder consisting of one or a mixture of two or more selected, polyvinyl alcohol (PVA), water, and a water-soluble salt of titanium or molybdenum, for example, titanium chloride, titanium ammonium, molybdenum chloride, molybdenum ammonium
  • PVA polyvinyl alcohol
  • a water-soluble salt of titanium or molybdenum for example, titanium chloride, titanium ammonium, molybdenum chloride, molybdenum ammonium
  • or black can be obtained by baking the powder at 800 to 1000 degreeC in a vacuum or inert gas atmosphere.
  • the content of titanium or molybdenum is set to 1 to 1000 ppm. If the content of titanium or molybdenum is less than 1 ppm, the desired colored film cannot be obtained, and if it exceeds 1000 ppm, there is a possibility of causing contamination particularly when used in a semiconductor manufacturing apparatus.
  • the thermal spray coating of the present invention can be formed into a film by spraying the thermal spraying powder of the present invention on a substrate such as a member of a plasma etching apparatus.
  • the substrate is not particularly limited, and is a metal, alloy, ceramics ⁇ metal nitride, metal carbide, metal oxide (for example, Al, Fe, Si, Cr, Zn, Zr or Ni) (for example, Alumina, aluminum nitride, silicon nitride, silicon carbide, etc.) ⁇ , glass (quartz glass, etc.) and the like can be used.
  • the thickness of the thermal spray coating of the present invention can be appropriately set according to the use and the like, and is not particularly limited.
  • a film is formed as a corrosion resistant coating on a corrosion resistant member such as a plasma etching apparatus.
  • the thickness is preferably 50 to 500 ⁇ m, more preferably 150 to 300 ⁇ m. If the thickness of the film is less than 50 ⁇ m, it may be necessary to replace it with slight corrosion. On the other hand, if the thickness of the film exceeds 500 ⁇ m, the film may be too thick to easily cause peeling.
  • the thermal sprayed coating of the present invention can be formed by spraying the thermal spraying powder of the present invention on the surface of the base material by an appropriate thermal spraying method such as plasma spraying, reduced pressure plasma spraying, SPS spraying or the like.
  • the plasma gas is not particularly limited, and nitrogen / hydrogen, argon / hydrogen, argon / helium, argon / nitrogen, argon / hydrogen / nitrogen, or the like can be used.
  • the spraying conditions and the like are not particularly limited, and may be set as appropriate according to the specific material such as the base material, the rare earth fluoride spray powder, the use of the obtained sprayed member, and the like.
  • L * is 25 to 64 in terms of L * a * b * chromaticity.
  • a * is -3.0 to +5.0
  • b * is gray to black with -6.0 to +8.0.
  • L * a * b * chromaticity indicated by L * is less than 25 or more 91, preferably 25-85, more preferably 25 ⁇ 80, a * Indicates white or gray to black with -3.0 to +5.0 and b * of -6.0 to +8.0.
  • L * a * b * chromaticity can be measured according to JIS Z 8729 using, for example, a Minolta color difference meter (CHOROMA METER) CR-200.
  • the thermal spray coating of the present invention is sprayed with the sprayed powder consisting only of the rare earth element fluoride of the above (1), for example, YF 3 sprayed powder, a gray or black thermal spray coating having a crystal structure of YF 3 alone is obtained.
  • a spraying powder in which the rare earth element fluoride (1) is mixed with the rare earth element oxyfluoride (2) or the rare earth element oxide (3) for example, YF 3 and Y oxyfluoride
  • YF 3 and Y oxyfluoride When spraying powder for spraying mixed with Y 5 O 4 F 7 , Y 6 O 5 F 8 ) or Y oxide (Y 2 O 3 ), YF 3 + Y 5 O 4 F 7 or YF 3 + Y 6 O
  • a thermal spray coating of white or gray or black having a predetermined chromaticity containing a multiphase Y oxyfluoride crystal phase in addition to YF 3 such as 5 F 8 is obtained.
  • sprayed fluoride (6) metal oxide mixed thermal spraying powder of a rare earth element for example a thermal spraying powder Al oxide is mixed in YF 3 above (1), YOF + Y 3 Al 5 O 12 + Y 7 O 6 F 9 , YF 3 + Y 5 O 4 F 7 + Y 3 Al 5 O 12 , Y 6 O 5 F 8 + Y 3 Al 5 O 12, such as fluoride, oxyfluoride and YAG
  • a thermal sprayed coating containing multiple phases of is obtained.
  • the crystal structure of such a sprayed coating can be measured by an X-ray diffraction method.
  • the oxygen content of the thermal spray coating and the thermal spraying powder is determined based on the rare earth element oxide or oxyfluoride (for example, Y 2 O 3 or Y 5 O 4 F 7 ) contained in the raw material powder. It is determined by the amount of oxygen.
  • the amount of oxygen in the thermal spray coating is small, it has a YF 3 + Y 5 O 4 F 7 crystal structure, and when the amount of oxygen increases, it shifts to the YF 3 + YOF crystal structure. Further, when the amount of oxygen increases, a Y 2 O 3 crystal structure may be observed in addition to YF 3 + YOF. These can be confirmed by an XRD chart.
  • the oxygen content of the thermal spray coating and the thermal spraying powder is preferably 0.01 to 13.5% by mass, and more preferably 0.05 to 8% by mass. Furthermore, when the oxygen content is 6% by mass or less, particularly 2 to 4% by mass, the film hardness is as high as 300 HV or more, L * is 25 to less than 91, and a * is ⁇ 3.0 to 3.0- It is possible to provide a thermal spray coating exhibiting white or gray to black having +5.0 and b * of ⁇ 6.0 to +8.0.
  • the upper limit of L * is 64 as described above. In this way, by setting the L * value further lower, it is possible to extend the life by cleaning.
  • L * is white. If the value is less than 91, it can be arbitrarily controlled. Thus, the white or gray or black thermal spraying powder or thermal spray coating having the predetermined chromaticity of the present invention can be provided.
  • the following (1) and / or (2), or one or two selected from the following (1) and / or (2) and the following (3) to (6) A white powder composed of the above mixture is sprayed on a base material, and L * a * b * chromaticity display is L * of 91 or more, a * is ⁇ 3.0 to +3.0, and b * is ⁇ A sprayed coating having a white color of 3.0 to +3.0 is formed.
  • One or more rare earth element fluorides selected from Group 3A rare earth elements containing yttrium (2) Oxide fluorides of the rare earth elements (3) Oxides of the rare earth elements (4) The rare earth elements and Al Composite oxide of one or more metals selected from Si, Zr and In (5) Composite of the rare earth element and one or more metals selected from Al, Si, Zr and In Fluoride (6) Oxide of one or more metals selected from Al, Si, Zr, In Next, this sprayed coating is subjected to a plasma exposure treatment, and the surface of the sprayed coating is subjected to L * a * b *.
  • a gray or black layer is formed that exhibits gray or black color with L * of 25 to 64, a * of ⁇ 3.0 to +5.0, and b * of ⁇ 6.0 to +8.0 in chromaticity display.
  • the depth (thickness) of the gray or black layer from the coating surface is not particularly limited, but is preferably within 2 ⁇ m, particularly about 1 ⁇ m.
  • the thermal spray coating comprising the following (1) and / or (2), or a mixture of the following (1) and / or (2) and one or more selected from the following (3) to (5): And (1) One or more rare earth element fluorides selected from Group 3A rare earth elements containing yttrium (2) Oxide fluorides of the rare earth elements (3) Oxides of the rare earth elements (4) The rare earth elements and Al Composite oxide of one or more metals selected from Si, Zr and In (5) Composite of the rare earth element and one or more metals selected from Al, Si, Zr and In L * a * b * chromaticity display on the fluoride surface is gray or black with L * of 25 to 64, a * of -3.0 to +5.0, and b * of -6.0 to +8.0. A thermal spray coating characterized by having a gray or black layer is obtained.
  • the plasma exposure treatment is not limited as long as the surface of the coating can be made gray or black with the above chromaticity by using plasma light and a reactive gas.
  • the plasma frequency and output, the type of reactive gas, the flow rate, the gas pressure, etc. And the like may be set as appropriate so as to obtain the above chromaticity.
  • Other matters are the same as in the first invention.
  • the thermal spraying powder used for thermal spraying is not particularly limited, but for the same reason as in the first invention, the oxygen content is preferably 0.01 to 13.5% by mass, It is more preferably 0.05 to 8% by mass.
  • Example 1 Add 1 liter of phenol solution diluted to 3% with ethanol to 1 kg of ytterbium fluoride powder with an oxygen concentration of 3.4% (average particle size 40 ⁇ m), mix for 5 minutes, and after drying, flow at 800 ° C. with nitrogen flow for 2 hours. Baked. Further, this granulated powder was fired at 1000 ° C. for 2 hours under reduced pressure (1 ⁇ 10 ⁇ 2 torr or less) to obtain a thermal spraying powder. L In this thermal spraying powder L * a * b * chromaticity Display *: 42.3, a *: -0.30 , b *: -0.65 a black, carbon concentration in the powder 1 3%. The oxygen concentration was 2.9%.
  • a film was formed on the aluminum alloy member by plasma spraying using argon gas and hydrogen gas so as to form a film having a thickness of about 200 ⁇ m.
  • L * a * b * chromaticity of this sprayed coating was measured, it was L * : 45.2, a * : -0.53, b * : -0.62, and the carbon concentration was 1.1%. there were.
  • the oxygen concentration was 3.6%.
  • This thermal spray member is set in a reactive ion plasma test apparatus together with a silicon wafer coated with a resist, under the conditions of frequency 13.56 MHz, plasma output 1000 W, gas type CF 4 + O 2 (20 vol%), flow rate 50 sccm, gas pressure 50 mtorr. A plasma exposure test was performed. There was no change in the color of the sprayed coating taken out.
  • This thermal spray member is set in a reactive ion plasma test apparatus together with a silicon wafer coated with a resist, under the conditions of frequency 13.56 MHz, plasma output 1000 W, gas type CF 4 + O 2 (20 vol%), flow rate 50 sccm, gas pressure 50 mtorr.
  • a plasma exposure test was conducted in the same manner as in Example 1. The part which discolored to brown and black was seen in the taken-out sprayed coating.
  • Example 2 An yttrium fluoride (average particle size 40 ⁇ m) powder having an oxygen concentration of 0.2% was immersed in a 30% aqueous solution of sucrose and stirred for 10 minutes, followed by filtration and drying. This yttrium fluoride powder was baked for 2 hours at a nitrogen flow of 800 ° C. and sieved with # 100 to obtain a thermal spraying powder.
  • This thermal spraying powder is gray with L * a * b * chromaticity indication of L * : 72.23, a * : -0.02, b * : 3.12, and the carbon concentration in the powder is 0.2. 235%.
  • the oxygen concentration was 0.75%.
  • a film was formed on the aluminum alloy member by plasma spraying using argon gas and hydrogen gas so as to form a film having a thickness of about 200 ⁇ m.
  • L * a * b * chromaticity of this sprayed coating was measured, it was L * : 76.18, a * : 0.04, b * : 3.77, and the carbon concentration was 0.015%. .
  • the oxygen concentration was 1.1%.
  • This thermal spray member is set in a reactive ion plasma test apparatus together with a silicon wafer coated with a resist, under the conditions of frequency 13.56 MHz, plasma output 1000 W, gas type CF 4 + O 2 (20 vol%), flow rate 50 sccm, gas pressure 50 mtorr. A plasma exposure test was performed. There was no change in the color of the sprayed coating taken out.
  • Example 3 150 g of white yttrium oxide (average particle size 1.1 ⁇ m) powder and 850 g of yttrium fluoride (average particle size 3 ⁇ m) powder are mixed with 4 liters of a 2% aqueous solution of an acrylic binder to prepare a slurry, which is spray drier After being granulated and dried, a # 100 sieve was used to obtain an yttrium fluoride (average particle size 36 ⁇ m) powder to obtain a thermal spraying powder.
  • This thermal spraying powder is gray of L * a * b * chromaticity display L * : 88.46, a * : 3.63, b * : -2.85, and the carbon concentration in the powder is 1.
  • the oxygen concentration was 46% and the oxygen concentration was 3.37%. Further, as a result of X-ray diffraction of the powder, peaks of YF 3 and Y 2 O 3 were observed.
  • This thermal spray member is set in a reactive ion plasma test apparatus together with a silicon wafer coated with a resist, under the conditions of frequency 13.56 MHz, plasma output 1000 W, gas type CF 4 + O 2 (20 vol%), flow rate 50 sccm, gas pressure 50 mtorr. A plasma exposure test was performed. There was no change in the color of the sprayed coating taken out.
  • This thermal spray member is set in a reactive ion plasma test apparatus together with a silicon wafer coated with a resist, under the conditions of frequency 13.56 MHz, plasma output 1000 W, gas type CF 4 + O 2 (20 vol%), flow rate 50 sccm, gas pressure 50 mtorr.
  • a plasma exposure test was conducted in the same manner as in Example 2. The part which discolored to brown and black was seen in the taken-out sprayed coating.
  • Example 4 A slurry was prepared by adding 4 liters of a 1% aqueous solution of carboxymethyl cellulose (CMC) binder to 100 g of white yttrium oxide (average particle size 0.2 ⁇ m) powder and 900 g of yttrium fluoride (average particle size 3 ⁇ m) powder, After granulating and drying this with a spray dryer, this powder was baked for 2 hours in a nitrogen flow at 800 ° C., and sieved with # 100 to obtain yttrium fluoride (average particle size 37 ⁇ m) powder for thermal spraying. I got a powder.
  • CMC carboxymethyl cellulose
  • This thermal spraying powder is L * a * b * chromaticity display, L * : 58.46, a * : 3.63, b * : 2.85 gray, and the carbon concentration in the powder is 1 34%.
  • the oxygen concentration was 2.0%.
  • peaks of YF 3 and Y 5 O 4 F 7 were observed.
  • This thermal spray member is set in a reactive ion plasma test apparatus together with a silicon wafer coated with a resist, under the conditions of frequency 13.56 MHz, plasma output 1000 W, gas type CF 4 + O 2 (20 vol%), flow rate 50 sccm, gas pressure 50 mtorr. A plasma exposure test was performed. There was no change in the color of the sprayed coating taken out.
  • a slurry is prepared by adding 4 liters of a 3% aqueous solution of an acrylic binder to 100 g of white aluminum oxide (average particle size 3 ⁇ m) powder and 900 g of yttrium fluoride (average particle size 3 ⁇ m) powder and mixing them with a spray dryer. After granulating and drying, a # 100 sieve was used to obtain a yttrium fluoride (average particle size 30 ⁇ m) powder, and a thermal spraying powder having an oxygen concentration of 4.7% was obtained.
  • This thermal spraying powder is L * a * b * chromaticity display, L * : 90.24, a * : 4.60, b * : -5.55 white, and the carbon concentration in the powder is It was 1.46%.
  • peaks of YF 3 and Al 2 O 3 were observed.
  • This thermal spray member is set in a reactive ion plasma test apparatus together with a silicon wafer coated with a resist, under the conditions of frequency 13.56 MHz, plasma output 1000 W, gas type CF 4 + O 2 (20 vol%), flow rate 50 sccm, gas pressure 50 mtorr. A plasma exposure test was performed. There was no change in the color of the sprayed coating taken out.
  • Example 6 50 g of white yttrium oxide (average particle size 0.2 ⁇ m) powder, 50 g of white aluminum oxide (average particle size 3 ⁇ m) powder and 900 g of yttrium fluoride (average particle size 3 ⁇ m) powder 4% CMC binder 0.2% aqueous solution 4 Add a liter and mix to prepare a slurry. After granulating and drying this with a spray dryer, this powder is fired in a nitrogen flow at 1000 ° C. for 2 hours, sieved with # 100 and fluorinated. A powder for thermal spraying with an yttrium (average particle size of 30 ⁇ m) powder and an oxygen concentration of 3.4% was obtained.
  • This thermal spraying powder is L * a * b * chromaticity display, L * : 89.52, a * : -0.07, b * : 1.92 white, and the carbon concentration in the powder is It was 0.004%.
  • a Y 7 O 6 F 9 + Y 3 Al 5 O 12 (YAG) peak was observed.
  • This thermal spray member is set in a reactive ion plasma test apparatus together with a silicon wafer coated with a resist, under the conditions of frequency 13.56 MHz, plasma output 1000 W, gas type CF 4 + O 2 (20 vol%), flow rate 50 sccm, gas pressure 50 mtorr. A plasma exposure test was performed. There was no change in the color of the sprayed coating taken out.
  • This thermal spray member is set in a reactive ion plasma test apparatus together with a silicon wafer coated with a resist, under the conditions of frequency 13.56 MHz, plasma output 1000 W, gas type CF 4 + O 2 (20 vol%), flow rate 50 sccm, gas pressure 50 mtorr.
  • a plasma exposure test was conducted in the same manner as in Example 3. The part which discolored to brown and black was seen in the taken-out sprayed coating.
  • Example 7 Add 1.5 liters of polyvinyl alcohol (PVA) 3% aqueous solution and 1.5 g of titanium chloride (TiCl 3 ) to 1 kg of yttrium fluoride powder with an oxygen concentration of 12.8%. The granulated powder was obtained by granulating and drying. The granulated powder was baked at 1000 ° C. for 1 hour while flowing argon gas. The obtained thermal spraying powder was passed through a # 200 sieve to obtain thermal spraying powder.
  • PVA polyvinyl alcohol
  • TiCl 3 titanium chloride
  • a film was formed on the aluminum alloy member by plasma spraying using argon gas and hydrogen gas so as to form a film having a thickness of about 200 ⁇ m.
  • L * a * b * chromaticity of this film was measured, they were L * : 41.02, a * : ⁇ 0.56, and b * : 4.31.
  • the film had a titanium concentration of 670 ppm and an oxygen concentration of 13.5%.
  • This thermal spray member is set in a reactive ion plasma test apparatus together with a silicon wafer coated with a resist, under the conditions of frequency 13.56 MHz, plasma output 1000 W, gas type CF 4 + O 2 (20 vol%), flow rate 50 sccm, gas pressure 50 mtorr. A plasma exposure test was performed. There was no change in the color of the sprayed coating taken out.
  • Example 8 To 1 kg of yttrium fluoride powder with an oxygen concentration of 2%, 1.5 liter of 2% aqueous solution of polyvinyl alcohol (PVA) and 2.0 g of molybdenum chloride (MoCl 5 ) are added, mixed, slurried and granulated with a spray dryer. And dried to obtain granulated powder. The granulated powder was baked at 1000 ° C. for 1 hour while flowing argon gas. The obtained thermal spraying powder was passed through a # 200 sieve to obtain thermal spraying powder.
  • PVA polyvinyl alcohol
  • MoCl 5 molybdenum chloride
  • a film was formed on the aluminum alloy member by plasma spraying using argon gas and hydrogen gas so as to form a film having a thickness of about 200 ⁇ m.
  • the L * a * b * chromaticity of this coating was measured and found to be L * : 63.82, a * : ⁇ 0.47, b * : 0.75.
  • the film had a molybdenum concentration of 890 ppm and an oxygen concentration of 2.5%.
  • This thermal spray member is set in a reactive ion plasma test apparatus together with a silicon wafer coated with a resist, under the conditions of frequency 13.56 MHz, plasma output 1000 W, gas type CF 4 + O 2 (20 vol%), flow rate 50 sccm, gas pressure 50 mtorr. A plasma exposure test was performed. There was no change in the color of the sprayed coating taken out.
  • the 10-mm square test piece was produced by the cutting process.
  • the hardness was measured with a Vickers hardness meter (AVK-C1 manufactured by Akashi) at a load of 300 gf and a load time of 10 seconds, and three surface hardness and three cross-sectional hardness were measured, and the average value was evaluated.
  • the carbon content exceeds 0.15% by mass, the hardness of the film decreases, and the carbon content is 0.15% by mass or less, particularly 0.1% by mass or less. Then, it is recognized that a good film hardness exceeding 300 HV can be obtained. Therefore, when high film hardness is required, the carbon content is preferably 0.15% by mass or less, particularly 0.1% by mass or less.
  • Example 11 to 14 Using each powder of ytterbium fluoride, yttrium fluoride, and gadolinium fluoride shown in Table 3, plasma spraying was performed on the aluminum alloy member in the same manner as in Example 1 to form a sprayed coating shown in Table 3.
  • the obtained thermal spray coating was subjected to plasma exposure treatment under the conditions of frequency 13.56 MHz, plasma output 1000 W, gas type CF 4 + O 2 (20 vol%), flow rate 50 sccm, gas pressure 50 mtorr, and the chromaticities shown in Table 3 A thermal sprayed coating having was obtained.
  • the member surface ball was polished to form a crater having a diameter of 1650 ⁇ m, and the thickness of the black layer was measured and calculated by the calculation formula shown in FIG. It was estimated to be 1000 nm.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Inorganic Chemistry (AREA)
  • Geology (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • Ceramic Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Manufacturing & Machinery (AREA)
  • Analytical Chemistry (AREA)
  • Structural Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)

Abstract

希土類フッ化物及び/又は希土類酸フッ化物を含む溶射皮膜であり、カーボンを0.01~2質量%、あるいはチタン又はモリブデンを1~1000ppm含有し、かつ、酸フッ化物を含まない場合、L*a*b*色度表示でL*が25~64、a*が-3.0~+5.0、b*が-4.0~+8.0の灰色乃至黒色を呈し、酸フッ化物を含む場合、L*a*b*色度表示でL*が25以上91未満、a*が-3.0~+5.0、b*が-6.0~+8.0の白色又は灰色乃至黒色を呈する溶射皮膜を提供する。この皮膜を耐プラズマ部材に形成すれば、部分的な色の変化が少なく、取り出し洗浄のときも部分的に無理な洗浄を施すこともなくなり、本来の長寿命を確実に実現できる部材となる。

Description

溶射皮膜、溶射用粉、溶射用粉の製造方法、及び溶射皮膜の製造方法
 本発明は、希土類元素のフッ化物、又は該希土類元素のフッ化物と希土類元素の酸フッ化物とを含む溶射皮膜、該溶射皮膜を得るための溶射用粉、該溶射用粉の製造方法及び該溶射皮膜の製造方法に関する。
 近年、希土類フッ化物は高温で比較的安定であることから、耐プラズマ部材用途に希土類フッ化物を用いることにより初期パーティクル低減や部材の長寿命化を図ることを目的として、希土類フッ化物溶射皮膜を形成した部材の開発が行われている。例えば、ハロゲンガスを使用したプラズマエッチング装置用部材である。
 しかしながら、通常、希土類フッ化物の代表とされるフッ化イットリウムは白色を呈し、このためハロゲンガスを用いたプラズマエッチング装置部材では、使用後、レジスト分解物の残渣が付着し、茶色に変色する部分が生じる。また、プラズマエッチングの影響で部分的に白色から黒色に変色する現象(カラーセンターによるホール欠損等)が発生するため、その部分を重点的に洗浄する結果、本来、耐プラズマ性をもって長寿命化できるところを洗浄によって寿命を低下させてしまう問題があった。なお、先行技術文献としては下記特許文献1~6が挙げられる。
特開2004-100039号公報 特開2012-238894号公報 特許第3894313号公報 特開2014-010638号公報 特許第5396672号公報 特開2016-079258号公報
 本発明は、上記事情に鑑みなされたもので、溶射部材の使用後等において部分的な色の変化の少ない溶射皮膜、該溶射皮膜を得るための溶射用粉、及び該溶射用粉や該溶射皮膜の製造方法を提供することを目的とする。
 本発明者らは、上記目的を達成するため鋭意検討を行った結果、本発明に到達した。即ち、上述した問題点は、希土類フッ化物や酸フッ化物を含む希土類フッ化物が基本的に白色を呈することにあり、この点からこれら希土類フッ化物を灰色または黒色に着色するために他の元素を添加したりすることが考えられる。但し、耐プラズマ部材では、主に半導体製造プロセスで使用されるため、コンタミネーション防止の点を考慮する必要があり、その添加量も抑制することが必要になってくることから、少量の添加元素を用いて所定色度の白色又は灰色乃至黒色を呈する希土類フッ化物や酸フッ化物を含む希土類フッ化物の溶射皮膜を形成することが求められた。そこで、この要望に鑑み、検討を続けた結果、特にカーボン、あるいはチタン又はモリブデンの含有、とりわけカーボンの場合は、0.01~2質量%、チタンやモリブデンの場合は1~1000ppm含有させることが有効であることを知見し、更にL***色度表示を種々検討した結果、L****色度表示でL*が25以上91未満、場合によっては25~64、a*が-3.0~+5.0、b*が-6.0~+8.0の白色又は灰色乃至は黒色を呈する希土類フッ化物又は酸フッ化物を含む希土類フッ化物の溶射用粉を用いることで、本発明の目的を達成し得る白色又は灰色乃至黒色を呈する溶射皮膜が得られることを見出し、本発明を完成したものである。
 従って、第一の発明として、下記溶射皮膜、溶射用粉及び該溶射用粉の製造方法を提供する。
[1] 下記(1)及び/又は(2)、あるいは下記(1)及び/又は(2)と下記(3)~(5)から選ばれる1種又は2種以上との混合物からなる溶射皮膜であり、
(1)イットリウムを含む3A族の希土類元素から選ばれる1種以上の希土類元素のフッ化物
(2)上記希土類元素の酸フッ化物
(3)上記希土類元素の酸化物
(4)上記希土類元素とAl、Si、Zr、Inから選ばれる1種又は2種以上の金属との複合酸化物
(5)上記希土類元素とAl、Si、Zr、Inから選ばれる1種又は2種以上の金属との複合フッ化物
カーボンを0.004~2質量%、あるいはチタン又はモリブデンを1~1000ppm含有し、かつ、
上記(2)の酸フッ化物を含まない場合、L***色度表示でL*が25~64、a*が-3.0~+5.0、b*が-6.0~+8.0の灰色乃至黒色を呈し、
上記(2)の酸フッ化物を含む場合、L***色度表示でL*が25以上91未満、a*が-3.0~+5.0、b*が-6.0~+8.0の白色又は灰色乃至黒色を呈することを特徴とする溶射皮膜。
[2] 希土類元素が、Y、Gd、Yb、Laから選ばれる1種以上である[1]の溶射皮膜。
[3] 酸素含有量が0.01~13.5質量%である[1]又は[2]の溶射皮膜。
[4] カーボン含有量が0.004~0.15質量%である[1]~[3]のいずれか
溶射皮膜。
[5] 下記(1)及び/又は(2)、あるいは下記(1)及び/又は(2)と下記(3)~(6)から選ばれる1種又は2種以上との混合物からなる溶射用粉であり、
(1)イットリウムを含む3A族の希土類元素から選ばれる1種以上の希土類元素のフッ化物
(2)上記希土類元素の酸フッ化物
(3)上記希土類元素の酸化物
(4)上記希土類元素とAl、Si、Zr、Inから選ばれる1種又は2種以上の金属との複合酸化物
(5)上記希土類元素とAl、Si、Zr、Inから選ばれる1種又は2種以上の金属との複合フッ化物
(6)Al、Si、Zr、Inから選ばれる1種又は2種以上の金属の酸化物
カーボンを0.004~2質量%、あるいはチタン又はモリブデンを1~1000ppm含有し、かつ、L***色度表示でL*が25以上91未満、a*が-3.0~+5.0、b*が-6.0~+8.0の白色又は灰色乃至黒色を呈することを特徴とする溶射用粉。
[6] 希土類元素が、Y、Gd、Yb、Laから選ばれる1種以上である[5]の溶射用粉。
[7] 酸素含有量が0.01~13.5質量%である[5]又は[6]の溶射用粉。
[8] 焼成された溶射用粉であり、カーボン含有量が0.004~0.15質量%である[5]~[7]のいずれかの溶射用粉。
[9] 未焼成の溶射用粉であり、カーボン含有量が0.004~1.5質量%である[5]~[7]のいずれかの溶射用粉。
[10] [5]~[8]のいずれかの溶射用粉を製造する方法であって、
下記(1)及び/又は(2)、あるいは下記(1)及び/又は(2)と下記(3)~(6)から選ばれる1種又は2種以上との混合物からなる白色を呈する粉と、
(1)イットリウムを含む3A族の希土類元素から選ばれる1種以上の希土類元素のフッ化物
(2)上記希土類元素の酸フッ化物
(3)上記希土類元素の酸化物
(4)上記希土類元素とAl、Si、Zr、Inから選ばれる1種又は2種以上の金属との複合酸化物
(5)上記希土類元素とAl、Si、Zr、Inから選ばれる1種又は2種以上の金属との複合フッ化物
(6)Al、Si、Zr、Inから選ばれる1種又は2種以上の金属の酸化物
溶射用粉のカーボン濃度が0.004~2質量%になるように用いたカーボン源とのスラリーを乾燥、培焼、焼成させて、L***色度表示でL*が25以上91未満、a*が-3.0~+5.0、b*が-6.0~+8.0の白色又は灰色乃至黒色を呈する溶射用粉を得ることを特徴とする溶射用粉の製造方法。
[11] 培焼を窒素ガス中500~800℃で行った後、培焼した粉を真空または不活性ガス雰囲気中で800~1000℃で焼成する[10]の溶射用粉の製造方法。
[12] 上記(1)及び/又は(2)、あるいは上記(1)及び/又は(2)と上記(3)~(6)から選ばれる1種又は2種以上との混合物からなる白色を呈する粉の酸素含有量が0.01~13.5質量%である[10]又は[11]の溶射用粉の製造方法。
[13] 溶射粉のカーボン濃度が0.004~0.15質量%になるようにカーボン源を用いる[10]~[12]のいずれかの製造方法。
[14] [5]~[8]のいずれかの溶射用粉を製造する方法であって、
下記(1)及び/又は(2)、あるいは下記(1)及び/又は(2)と下記(3)~(6)から選ばれる1種又は2種以上との混合物からなる白色を呈する粉と、
(1)イットリウムを含む3A族の希土類元素から選ばれる1種以上の希土類元素のフッ化物
(2)上記希土類元素の酸フッ化物
(3)上記希土類元素の酸化物
(4)上記希土類元素とAl、Si、Zr、Inから選ばれる1種又は2種以上の金属との複合酸化物
(5)上記希土類元素とAl、Si、Zr、Inから選ばれる1種又は2種以上の金属との複合フッ化物
(6)Al、Si、Zr、Inから選ばれる1種又は2種以上の金属の酸化物
ポリビニルアルコールと、溶射用粉のチタン又はモリブデンの濃度が1~1000ppmになるように用いたチタン又はモリブデンの水溶性塩とのスラリーを造粒乾燥、焼成させて、L***色度表示でL*が25以上91未満、a*が-3.0~+5.0、b*が-6.0~+8.0の白色又は灰色乃至黒色を呈する溶射用粉を得ることを特徴とする溶射用粉の製造方法。
[15] 造粒乾燥させた粉を真空または不活性ガス雰囲気中で800~1000℃で焼成する[14]の溶射用粉の製造方法。
[16] 上記(1)及び/又は(2)、あるいは上記(1)及び/又は(2)と上記(3)~(6)から選ばれる1種又は2種以上との混合物からなる混合物からなる白色を呈する粉の酸素含有量が0.01~13.5質量%である[14]又は[15]の溶射用粉の製造方法。
 また、本発明者らは更に検討を行なった結果、皮膜中カーボンやチタン又はモリブデンがなくてもプラズマ光と反応ガスにより皮膜表面がカラーセンターにより灰色乃至黒色化させることができ、予めプラズマ暴露処理によって皮膜表面を灰色乃至黒色化しておくことにより、プラズマエッチング装置用の部材の溶射膜とした場合に使用による変色が生じることがなく、上記本発明の目的を達成し得ることを見出した。
 従って、第二の発明として、下記溶射皮膜、及び該溶射皮膜の製造方法を提供する。
[17] 下記(1)及び/又は(2)、あるいは下記(1)及び/又は(2)と下記(3)~(5)から選ばれる1種又は2種以上との混合物からなる溶射皮膜であり、
(1)イットリウムを含む3A族の希土類元素から選ばれる1種以上の希土類元素のフッ化物
(2)上記希土類元素の酸フッ化物
(3)上記希土類元素の酸化物
(4)上記希土類元素とAl、Si、Zr、Inから選ばれる1種又は2種以上の金属との複合酸化物
(5)上記希土類元素とAl、Si、Zr、Inから選ばれる1種又は2種以上の金属との複合フッ化物
表面にL***色度表示でL*が25~64、a*が-3.0~+5.0、b*が-6.0~+8.0の灰色乃至黒色を呈する灰色乃至黒色層を有することを特徴とする溶射皮膜。
[18] 灰色乃至黒色層の深さが皮膜表面から2μm以内である[17]の溶射皮膜。
[19] 酸素含有量が0.01~13.5質量%である[17]又は[18]の溶射皮膜。
[20] [17]~[19]のいずれかの溶射皮膜の製造方法であって、
下記(1)及び/又は(2)、あるいは下記(1)及び/又は(2)と下記(3)~(6)から選ばれる1種又は2種以上との混合物からなる白色を呈する粉を、
(1)イットリウムを含む3A族の希土類元素から選ばれる1種以上の希土類元素のフッ化物
(2)上記希土類元素の酸フッ化物
(3)上記希土類元素の酸化物
(4)上記希土類元素とAl、Si、Zr、Inから選ばれる1種又は2種以上の金属との複合酸化物
(5)上記希土類元素とAl、Si、Zr、Inから選ばれる1種又は2種以上の金属との複合フッ化物
(6)Al、Si、Zr、Inから選ばれる1種又は2種以上の金属の酸化物
基材表面に溶射して、L***色度表示でL*が81以上、a*が-3.0~+3.0、b*が-3.0~+3.0の白色を呈する溶射皮膜を得、この溶射皮膜にプラズマ暴露処理を施して、該溶射皮膜表面にL***色度表示でL*が25~64、a*が-3.0~+5.0、b*が-6.0~+8.0の灰色乃至黒色を呈する灰色乃至黒色層を形成することを特徴とする溶射皮膜の製造方法。
[21] 灰色乃至黒色層の深さを皮膜表面から2μm以内とする[20]の溶射皮膜の製造方法。
[22] 上記(1)及び/又は(2)、あるいは上記(1)及び/又は(2)と上記(3)~(6)から選ばれる1種又は2種以上との混合物からなる白色を呈する粉の酸素含有量が0.01~13.5質量%である[20]又は[21]の溶射用粉の製造方法。
 本発明によれば、所定色度の白色又は灰色乃至黒色を呈する希土類フッ化物又は酸フッ化物を含む希土類フッ化物の溶射皮膜を大気プラズマ溶射により成膜できるので低コスト化が可能となる。また、この所定色度の白色又は灰色乃至黒色を呈する希土類フッ化物で溶射された溶射皮膜をもつ部材をハロゲンガス中での耐プラズマ部材として使用した場合、部分的な色の変化が少なく、取り出し洗浄のときも部分的に無理な洗浄を施すこともなくなり、本来の長寿命を確実に実現できる部材となる。
溶射皮膜の黒色層の厚みの測定法を説明する説明図である。 実験例おける溶射皮膜のカーボン含有量と硬度との関係を示すグラフである。
 以下、本発明につき更に詳しく説明する。
 上記第一の発明において、本発明の溶射皮膜は、下記(1)及び/又は(2)、あるいは下記(1)及び/又は(2)と下記(3)~(5)から選ばれる1種又は2種以上との混合物からなる溶射皮膜である。
(1)イットリウムを含む3A族の希土類元素から選ばれる1種以上の希土類元素のフッ化物
(2)上記希土類元素の酸フッ化物
(3)上記希土類元素の酸化物
(4)上記希土類元素とAl、Si、Zr、Inから選ばれる1種又は2種以上の金属との複合酸化物
(5)上記希土類元素とAl、Si、Zr、Inから選ばれる1種又は2種以上の金属との複合フッ化物
 また、本発明の溶射用粉は、下記(1)及び/又は(2)、あるいは下記(1)及び/又は(2)と下記(3)~(6)から選ばれる1種又は2種以上との混合物からなる溶射用粉である。
(1)イットリウムを含む3A族の希土類元素から選ばれる1種以上の希土類元素のフッ化物
(2)上記希土類元素の酸フッ化物
(3)上記希土類元素の酸化物
(4)上記希土類元素とAl、Si、Zr、Inから選ばれる1種又は2種以上の金属との複合酸化物
(5)上記希土類元素とAl、Si、Zr、Inから選ばれる1種又は2種以上の金属との複合フッ化物
(6)Al、Si、Zr、Inから選ばれる1種又は2種以上の金属の酸化物
 この場合、上記希土類元素としては、上記のように、イットリウム(Y)を含む3A族の希土類元素のうちから1種以上を用いることができるが、特に、Y、Gd、YbおよびLaから選ばれる1種または2種以上の重希土類元素であることが好ましい。ここで、上記(2)の希土類元素の酸フッ化物としては、種々の結晶構造のものを用いることでき、例えばYの酸フッ化物の場合Y547、Y658、YOF、など種々の結晶構造のものを用いることができる。
 本発明における溶射用粉の粒子の平均粒径は、1~100μmであることが好ましく、平均粒径が1μm未満では、溶射時のプラズマ炎等の中で蒸発、飛散してしまい、その分だけロスが生じるおそれがある。一方、平均粒径が100μmを超えると、溶射時のプラズマ炎等の中で完全に溶融されずに溶け残り、それが未溶融粉となって、密着強度の低下を招くおそれがある。なお、上記平均粒径とは、レーザー回折法で測定した粒度分布のD50の値である。
 本発明の溶射皮膜及び溶射用粉は、通常白色を呈する希土類フッ化物粉(たとえば、L*:91以上、a*:-3.0~+3.0、b*:-3.0~+3.0のフッ化イットリウム粉等)や酸フッ化物を含む希土類フッ化物粉に灰色乃至黒色を付与する材料を含有せしめて、L*が25以上91未満、a*が-3.0~+5.0、b*が-6.0~+8.0のL***色度表示になるように調製したものである。ただし、上記L*の値については、上記(2)の希土類元素の酸フッ化物を含まない皮膜である場合には、L*:25~64とされる。上記灰色乃至黒色を付与する材料としては、例えばカーボン、チタン、モリブデンが用いられ、特にカーボンの場合は、皮膜又は粉中に0.004~2質量%、特に0.05~1.8質量%となるように含有させることが好ましく、またチタンやモリブデンの場合は1~1000ppm、特に1~800ppmとなるように含有させることが好ましい。また、本発明では、溶射皮膜及び溶射用粉の酸素含有量は、特に制限されるものではないが0.01~13.5質量%であることが好ましく、0.05~8質量%であることがより好ましい。
 ここで、本発明者らの知見によれば、上記カーボン含有量は皮膜の硬度に影響する場合があり、カーボン含有量が多くなると皮膜の硬度が低下する場合がある。このため高い皮膜硬度が必要な場合には、カーボン含有量を0.15質量%以下、特に0.1質量%以下とすることが好ましい。なお、カーボン含有量の下限値は、上記のとおり、0.004質量%であり、好ましくは0.01質量%、更に好ましくは0.02質量%である。これにより、300HV以上、特に400HV以上の硬度を有する皮膜を得ることができる。このような高硬度の皮膜を得るには、焼成した溶射用粉の場合はカーボン含有量を0.004~0.15質量%、未焼成の溶射用粉の場合はカーボン含有量を0.004~1.5質量%とすればよく、このような溶射用粉を溶射することにより、カーボン含有量0.15質量%以下の上記良好な硬度を有する溶射皮膜を得ることができる。
 上記カーボンを含有させる手段としては、特に制限されるものではないが、例えば上記(1)及び/又は(2)、あるいは上記(1)及び/又は(2)と上記(3)~(6)から選ばれる1種又は2種以上との混合物からなる白色を呈する粉とカーボン源とを含む溶液を用いてスラリーを調製し、5~60分混合後、乾燥、造粒、焼成させる方法を採用し得る。この場合、カーボン源としては、カーボン、脂肪族炭化水素、芳香族炭化水素等を用いることが可能であり、必要により水、有機溶剤に溶解させて混合させることができ、例えばフェノールをアルコールで希釈したものや、水溶性有機物(例えば、アクリル系バインダー、カルボキシメチルセルロース(CMC)、ポリビニルアルコール(PVA)、スクロース)を用いることができるが、焼成してカーボン源となるものであればこれに限定されるものではない。カーボン添加は、直接混合、浸漬、塗布、噴射等のいずれを用いてもよい。カーボン源と上記粉とを混合、乾燥した後は、窒素ガス中500~1000℃で焼成させることが好ましい。焼成後、篩掛けを行うことにより、上記所定色度の白色又は灰色乃至黒色を呈する溶射用粉が得られる。また、上記カーボン源と上記粉とを混合、乾燥、造粒した後、焼成せずに混合乾燥粉をそのまま溶射用粉とすることも可能である。更には、SPS(サスペンションプラズマスプレイ)スラリーとして粒子径の細かな溶射用粉(1~10μm)を用いる場合には、乾燥、造粒は不要である。
 このようにして溶射用粉を得る際、本発明においては、溶射用粉中のカーボン濃度が0.004~2質量%になるようにカーボン源となるフェノールやアクリル系バインダー、CMC、PVA、スクロース等の添加濃度をコントロールすることが重要である。カーボン含有量が0.004質量%未満では目的とする着色膜が得られず、高温焼成時や溶射時に粉強度が弱くなり粉体性能にムラが発生する場合がある。一方、カーボン含有量が2質量%を超えると、炭素が高濃度すぎて余剰物質となり、汚染や溶射皮膜の硬度低下につながる場合が多い。なお、上述したように、例えば300HV以上、特に400HV以上の高い硬度を有する皮膜とするためには、焼成した溶射粉の場合は、溶射用粉のカーボン含有量が0.004~0.15質量%、特に0.01~0.1質量%となるように、カーボン源の添加濃度をコントロールすることが好ましく、未焼成の溶射用粉の場合には、カーボン含有量が0.004~1.5質量%となるように、カーボン源の添加濃度をコントロールすることが好ましい。
 また、チタンやモリブデンを含有させる手段としては、特に制限されないが、例えば上記(1)及び/又は(2)、あるいは上記(1)及び/又は(2)と上記(3)~(6)から選ばれる1種又は2種以上との混合物からなる白色を呈する粉と、ポリビニルアルコール(PVA)と、水と、チタンまたはモリブデンの水溶性の塩、例えば塩化チタン、チタンアンモニウム、塩化モリブデン、モリブデンアンモニウムなどとを混合、スラリー化し、スプレードライヤーで造粒乾燥させる方法を例示することできる。更に、その粉を真空または不活性ガス雰囲気中800℃以上1000℃以下で焼成することにより、灰色乃至黒色の溶射用粉を得ることができる。その際、チタン又はモリブデンの含有量は、1~1000ppmとされる。チタンまたはモリブデンの含有量が1ppm未満では、目的の着色膜が得られず、また1000ppmを超えると、特に半導体製造装置に使用された場合に汚染の原因になるおそれがある。
 本発明の溶射皮膜は、例えばプラズマエッチング装置の部材などの基材に上記本発明の溶射用粉を溶射することにより、成膜形成することができる。ここで、基材としては、特に限定はなく、Al,Fe,Si,Cr,Zn,ZrもしくはNiを主成分とする金属、合金、セラミックス{金属窒化物、金属炭化物、金属酸化物(例えば、アルミナ、窒化アルミニウム、窒化珪素、炭化珪素等)}、ガラス(石英ガラス等)などを用いることができる。
 本発明の溶射皮膜の厚さは、用途等に応じて適宜設定することができ、特に制限されるものではないが、耐食性付与の目的でプラズマエッチング装置等の耐食性部材に耐食被膜として成膜する場合には、50~500μmであることが好ましく、より好ましくは150~300μmである。皮膜の厚さが50μm未満であると、わずかの腐食で交換する必要が生じるおそれがある。一方、皮膜の厚さが500μmを超えると、厚すぎて剥離が生じやすくなるおそれがある。
 本発明の溶射皮膜は、上記基材表面に上記本発明の溶射用粉をプラズマ溶射、減圧プラズマ溶射、SPS溶射等の適宜な溶射方式により溶射することにより形成することができる。この場合、プラズマガスとしては、特に限定されるものではなく、窒素/水素、アルゴン/水素、アルゴン/ヘリウム、アルゴン/窒素、アルゴン/水素/窒素等を用いることができる。なお、溶射条件等については、特に限定はなく、基材、希土類フッ化物溶射用粉等の具体的材質、得られる溶射部材の用途等に応じて適宜設定すればよい。
 このようにして得られる本発明の溶射皮膜は、上述のように、上記(2)の希土類元素の酸フッ化物を含まない場合、L***色度表示でL*が25~64、a*が-3.0~+5.0、b*が-6.0~+8.0の灰色乃至黒色を呈するものである。また、上記(2)の希土類元素の酸フッ化物を含む場合、L***色度表示でL*が25以上91未満、好ましくは25~85、より好ましくは25~80で、a*が-3.0~+5.0、b*が-6.0~+8.0の白色又は灰色乃至黒色を呈するものである。このようにL***色度表示で明確に規定される白色又は灰色乃至黒色の溶射皮膜とすることにより、被処理物の取り出し洗浄のときの部分的な無理な洗浄を施すこともなくなり、本来の長寿命を実現できる部材となる。なお、本発明において、L***色度は、例えばミノルタ製色差計(CHOROMA METER)CR-200を使用し、JIS Z 8729に準じて測定することができる。
 本発明の溶射皮膜において、上記(1)の希土類元素のフッ化物のみからなる溶射粉、例えばYF3溶射粉を溶射した場合、YF3のみの結晶構造の灰色乃至黒色の溶射皮膜が得られる。一方、上記(1)の希土類元素のフッ化物に上記(2)の希土類元素の酸フッ化物や(3)の希土類元素の酸化物が混合された溶射用粉、例えばYF3にYオキシフッ化物(Y547やY658)やY酸化物(Y23)が混合された溶射用粉を溶射した場合、YF3+Y547やYF3+Y658などのYF3以外にYオキシフッ化物結晶相を多相含む所定色度の白色又は灰色乃至黒色の溶射皮膜が得られる。更に、上記(1)の希土類元素のフッ化物に上記(6)の金属酸化物が混合された溶射用粉、例えばYF3にAl系酸化物が混合された溶射用粉を溶射した場合、YOF+Y3Al512+Y769、YF3+Y547+Y3Al512、Y658+Y3Al512など、フッ化物や酸フッ化物とYAGとの多相を含む溶射皮膜が得られる。このような溶射皮膜の結晶構造についてはX線回折法により測定できる。
 また、溶射皮膜及び溶射用粉の酸素含有量は、この酸素含有量は、原料粉中に含まれる希土類元素の酸化物や酸フッ化物(例えば、Y23やY547)などの酸素量により決定される。溶射皮膜中の酸素量が少ない場合は、YF3+Y547結晶構造を有し、酸素量が多くなるとYF3+YOF結晶構造に移行する。さらに酸素量が多くなるとYF3+YOF以外にY23結晶構造が観測される場合がある。これらはXRDチャートにより確認できる。本発明では、上述のように、溶射皮膜及び溶射用粉の酸素含有量は、0.01~13.5質量%であることが好ましく、0.05~8質量%であることがより好ましいが、更に酸素含有量が6質量%以下、特に2~4質量%の場合、皮膜硬度が300HV以上と高く、耐プラズマ性能に優れたL*が25以上91未満、a*が-3.0~+5.0、b*が-6.0~+8.0の白色又は灰色乃至黒色を呈する溶射皮膜を提供することができる。
 ここで、本発明の溶射皮膜及び溶射用粉において、上記(2)の希土類元素の酸フッ化物を含まない場合、上記のように、L*の上限は64とされる。このように、L*値を更に低く設定することで、より洗浄による長寿命化を図ることができる。なお、上記(2),(3)の希土類元素の酸フッ化物や酸化物を含む溶射用粉及び溶射皮膜の色については、カーボン含有量により色彩値L*を制御できるため、L*は白色値91未満であれば任意にコントロールが可能である。こうして、本発明の所定色度の白色又は灰色乃至黒色溶射用粉や溶射皮膜を提供することができる。
 次に、第二の発明においては、まず下記(1)及び/又は(2)、あるいは下記(1)及び/又は(2)と下記(3)~(6)から選ばれる1種又は2種以上との混合物からなる白色を呈する粉を基材に溶射して、L***色度表示でL*が91以上、a*が-3.0~+3.0、b*が-3.0~+3.0の白色を呈する溶射皮膜を形成する。
(1)イットリウムを含む3A族の希土類元素から選ばれる1種以上の希土類元素のフッ化物
(2)上記希土類元素の酸フッ化物
(3)上記希土類元素の酸化物
(4)上記希土類元素とAl、Si、Zr、Inから選ばれる1種又は2種以上の金属との複合酸化物
(5)上記希土類元素とAl、Si、Zr、Inから選ばれる1種又は2種以上の金属との複合フッ化物
(6)Al、Si、Zr、Inから選ばれる1種又は2種以上の金属の酸化物
 次いで、この溶射皮膜にプラズマ暴露処理を施して、該溶射皮膜表面にL***色度表示でL*が25~64、a*が-3.0~+5.0、b*が-6.0~+8.0の灰色乃至黒色を呈する灰色乃至黒色層を形成するものである。この場合、上記灰色乃至黒色層の皮膜表面からの深さ(厚さ)は、特に制限されるものではないが、2μm以内、特に1μm程度であることが好ましい。
 これにより、下記(1)及び/又は(2)、あるいは下記(1)及び/又は(2)と下記(3)~(5)から選ばれる1種又は2種以上との混合物からなる溶射皮膜であり、
(1)イットリウムを含む3A族の希土類元素から選ばれる1種以上の希土類元素のフッ化物
(2)上記希土類元素の酸フッ化物
(3)上記希土類元素の酸化物
(4)上記希土類元素とAl、Si、Zr、Inから選ばれる1種又は2種以上の金属との複合酸化物
(5)上記希土類元素とAl、Si、Zr、Inから選ばれる1種又は2種以上の金属との複合フッ化物
表面にL***色度表示でL*が25~64、a*が-3.0~+5.0、b*が-6.0~+8.0の灰色乃至黒色を呈する灰色乃至黒色層を有することを特徴とする溶射皮膜が得られる。
 上記プラズマ暴露処理としては、プラズマ光と反応ガスにより、皮膜表面を上記色度に灰色乃至黒色化することができるものであればよく、プラズマの周波数や出力、反応ガスの種類、流量、ガス圧などは上記色度が得られるように適宜設定すればよい。その他の事項は上記第一発明と同様である。なお、溶射に用いられる上記溶射用粉は、特に制限されるものではないが、上記第一発明と同様の理由から、酸素含有量が0.01~13.5質量%であることが好ましく、0.05~8質量%であることがより好ましい。
 以下、実施例と比較例を示し、本発明を具体的に説明するが、本発明は下記の実施例に制限されるものではない。なお、以下の例において%は質量%示す。
[実施例1]
 酸素濃度が3.4%のフッ化イッテルビウム(平均粒径40μm)粉末1kgにエタノールで3%に希釈したフェノール溶液1リットルを加えて5分間混合し、乾燥後、800℃の窒素フローで2時間培焼した。更に、この造粒粉を減圧(1×10-2torr以下)下に1000℃で2時間焼成し、溶射用粉とした。この溶射用粉はL***色度表示でL*:42.3、a*:-0.30、b*:-0.65の黒色であり、粉体中のカーボン濃度は1.3%であった。また、酸素濃度は2.9%であった。
 この溶射用粉を用いて、アルミ二ウム合金部材に約200μm厚の皮膜となるようアルゴンガス、水素ガスを用いてプラズマ溶射にて膜をつけた。この溶射皮膜のL***色度を測定したところ、L*:45.2、a*:-0.53、b*:-0.62であり、カーボン濃度は1.1%であった。また、酸素濃度は3.6%であった。
 この溶射部材をリアクティブイオンプラズマ試験装置にレジストを塗布したシリコンウエハーとともにセットし、周波数13.56MHz、プラズマ出力1000W、ガス種CF4+O2(20vol%)、流量50sccm、ガス圧50mtorrの条件でプラズマ暴露試験を行った。取り出した溶射皮膜の色に変化はなかった。
[比較例1]
 フッ化イッテルビウム(平均粒径40μm)粉末を用いて、アルミ二ウム合金部材に約200μm厚の皮膜となるようアルゴンガス、水素ガスを用いてプラズマ溶射にて膜をつけた。この溶射皮膜のL***色度を測定したところ、L*:91.46、a*:-0.47、b*:0.75であり、カーボン濃度は0.003%であった。
 この溶射部材をリアクティブイオンプラズマ試験装置にレジストを塗布したシリコンウエハーとともにセットし、周波数13.56MHz、プラズマ出力1000W、ガス種CF4+O2(20vol%)、流量50sccm、ガス圧50mtorrの条件で、実施例1と同様にプラズマ暴露試験を行った。取り出した溶射皮膜には部分的に茶色と黒色に変色した部分が見られた。
[実施例2]
 酸素濃度が0.2%のフッ化イットリウム(平均粒径40μm)粉末をスクロース30%水溶液に浸漬して10分攪拌した後、ろ過し、乾燥させた。このフッ化イットリウム粉末を800℃の窒素フローで2時間焼成し、#100の篩がけをして溶射用粉を得た。この溶射用粉はL***色度表示でL*:72.23、a*:-0.02、b*:3.12の灰色であり、粉体中のカーボン濃度は0.235%であった。また、酸素濃度は0.75%であった。
 この溶射用粉を用いて、アルミ二ウム合金部材に約200μm厚の皮膜となるようアルゴンガス、水素ガスを用いてプラズマ溶射にて膜をつけた。この溶射皮膜のL***色度を測定したところ、L*:76.18、a*:0.04、b*:3.77であり、カーボン濃度は0.015%であった。また、酸素濃度は1.1%であった。
 この溶射部材をリアクティブイオンプラズマ試験装置にレジストを塗布したシリコンウエハーとともにセットし、周波数13.56MHz、プラズマ出力1000W、ガス種CF4+O2(20vol%)、流量50sccm、ガス圧50mtorrの条件でプラズマ暴露試験を行った。取り出した溶射皮膜の色に変化はなかった。
[実施例3]
 白色を呈する酸化イットリウム(平均粒径1.1μm)粉末150g及びフッ化イットリウム(平均粒径3μm)粉末850gにアクリル系バインダー2%水溶液4リットルを加え混合してスラリーを調製し、これをスプレードライヤーにて造粒、乾燥させた後、#100の篩がけをしてフッ化イットリウム(平均粒径36μm)粉末とし、溶射用粉を得た。この溶射用粉はL***色度表示でL*:88.46、a*:3.63、b*:-2.85の灰色であり、粉体中のカーボン濃度は1.46%、酸素濃度は3.37%であった。また、粉体のX線回折を行った結果、YF3とY23のピークが観測された。
 この溶射用粉を用いて、アルミ二ウム合金部材に約200μm厚の皮膜となるようアルゴンガス、水素ガスを用いてプラズマ溶射にて膜をつけた。この溶射皮膜のL***色度を測定したところ、L*:43.18、a*:0.87、b*:3.78であり、カーボン濃度は0.068質量%、酸素濃度は3.73%であった。また、皮膜のX線回折を行った結果、Y658とY547、Y23ピークが観測された。
 この溶射部材をリアクティブイオンプラズマ試験装置にレジストを塗布したシリコンウエハーとともにセットし、周波数13.56MHz、プラズマ出力1000W、ガス種CF4+O2(20vol%)、流量50sccm、ガス圧50mtorrの条件でプラズマ暴露試験を行った。取り出した溶射皮膜の色に変化はなかった。
[比較例2]
 酸化イットリウム(平均粒径40μm)粉末を用いて、アルミ二ウム合金部材に約200μm厚の皮膜となるようアルゴンガス、水素ガスを用いてプラズマ溶射にて膜をつけた。この溶射皮膜のL***色度を測定したところ、L*:92.75、a*:-0.23、b*:0.73であり、カーボン濃度は0.002%であった。
 この溶射部材をリアクティブイオンプラズマ試験装置にレジストを塗布したシリコンウエハーとともにセットし、周波数13.56MHz、プラズマ出力1000W、ガス種CF4+O2(20vol%)、流量50sccm、ガス圧50mtorrの条件で、実施例2と同様にプラズマ暴露試験を行った。取り出した溶射皮膜には部分的に茶色と黒色に変色した部分が見られた。
[実施例4]
 白色を呈する酸化イットリウム(平均粒径0.2μm)粉末100g及びフッ化イットリウム(平均粒径3μm)粉末900gにカルボキシメチルセルロース(CMC)バインダー1%水溶液4リットルを加えて混合してスラリーを調製し、これをスプレードライヤーにて造粒、乾燥させた後、この粉末を800℃の窒素フローで2時間焼成し、#100の篩がけをしてフッ化イットリウム(平均粒径37μm)粉末とし、溶射用粉を得た。この溶射用粉は、L***色度表示で、L*:58.46、a*:3.63、b*:2.85の灰色であり、粉体中のカーボン濃度は1.34%であった。また、酸素濃度は2.0%であった。粉体のX線回折を行った結果、YF3とY547のピークが観測された。
 この溶射用粉を用いて、アルミ二ウム合金部材に約200μm厚の皮膜となるようアルゴンガス、水素ガスを用いてプラズマ溶射にて膜をつけた。この溶射皮膜のL***色度を測定したところ、L*:37.78、a*:-0.06、b*:5.76であり、カーボン濃度は0.098%であった。また、酸素濃度は3.26%であった。皮膜のX線回折を行った結果、YF3とY547のピークが観測された。
 この溶射部材をリアクティブイオンプラズマ試験装置にレジストを塗布したシリコンウエハーとともにセットし、周波数13.56MHz、プラズマ出力1000W、ガス種CF4+O2(20vol%)、流量50sccm、ガス圧50mtorrの条件でプラズマ暴露試験を行った。取り出した溶射皮膜の色に変化はなかった。
[実施例5]
 白色を呈する酸化アルミニウム(平均粒径3μm)粉末100g及びフッ化イットリウム(平均粒径3μm)粉末900gにアクリル系バインダー3%水溶液4リットルを加えて混合してスラリーを調製し、これをスプレードライヤーにて造粒、乾燥させた後、#100の篩がけをしてフッ化イットリウム(平均粒径30μm)粉末とし、酸素濃度が4.7%の溶射用粉を得た。この溶射用粉は、L***色度表示で、L*:90.24、a*:4.60、b*:-5.55の白であり、粉体中のカーボン濃度は1.46%であった。また、粉体のX線回折を行った結果、YF3とAl23のピークが観測された。
 この溶射用粉を用いて、アルミ二ウム合金部材に約200μm厚の皮膜となるようアルゴンガス、水素ガスを用いてプラズマ溶射にて膜をつけた。この溶射皮膜のL***色度を測定したところ、L*:27.75、a*:2.96、b*:0.64であり、カーボン濃度は0.13質量%、酸素濃度は4.9%であった。また、皮膜のX線回折を行った結果、Y658とY3Al512(YAG)のピークが観測された。
 この溶射部材をリアクティブイオンプラズマ試験装置にレジストを塗布したシリコンウエハーとともにセットし、周波数13.56MHz、プラズマ出力1000W、ガス種CF4+O2(20vol%)、流量50sccm、ガス圧50mtorrの条件でプラズマ暴露試験を行った。取り出した溶射皮膜の色に変化はなかった。
[実施例6]
 白色を呈する酸化イットリウム(平均粒径0.2μm)粉末50g、白色を呈する酸化アルミニウム(平均粒径3μm)粉末50g及びフッ化イットリウム(平均粒径3μm)粉末900gにCMCバインダー0.2%水溶液4リットルを加えて混合してスラリーを調製し、これをスプレードライヤーにて造粒、乾燥させた後、この粉末を1000℃の窒素フローで2時間焼成し、#100の篩がけをしてフッ化イットリウム(平均粒径30μm)粉末とし、酸素濃度が3.4%の溶射用粉を得た。この溶射用粉は、L***色度表示で、L*:89.52、a*:-0.07、b*:1.92の白色であり、粉体中のカーボン濃度は0.004%であった。粉体のX線回折を行った結果、Y769+Y3Al512(YAG)ピークが観測された。
 この溶射用粉を用いて、アルミ二ウム合金部材に約200μm厚の皮膜となるようアルゴンガス、水素ガスを用いてプラズマ溶射にて膜をつけた。この溶射皮膜のL***色度を測定したところ、L*:89.75、a*:-0.23、b*:0.73であり、カーボン濃度は0.009質量%、酸素濃度は3.8%であった。また、皮膜のX線回折を行った結果、Y658とY3Al512(YAG)のピークが観測された。
 この溶射部材をリアクティブイオンプラズマ試験装置にレジストを塗布したシリコンウエハーとともにセットし、周波数13.56MHz、プラズマ出力1000W、ガス種CF4+O2(20vol%)、流量50sccm、ガス圧50mtorrの条件でプラズマ暴露試験を行った。取り出した溶射皮膜の色に変化はなかった。
[比較例3]
 3%の酸素を含んだフッ化イットリウム(平均粒径30μm)粉末を用いて、アルミ二ウム合金部材に約200μm厚の皮膜となるようアルゴンガス、水素ガスを用いてプラズマ溶射にて膜をつけた。この溶射皮膜のL***色度を測定したところ、L*:87.83、a*:-0.07、b*:1.92であり、カーボン濃度は0.003%以下であった。
 この溶射部材をリアクティブイオンプラズマ試験装置にレジストを塗布したシリコンウエハーとともにセットし、周波数13.56MHz、プラズマ出力1000W、ガス種CF4+O2(20vol%)、流量50sccm、ガス圧50mtorrの条件で、実施例3と同様にプラズマ暴露試験を行った。取り出した溶射皮膜には部分的に茶色と黒色に変色した部分が見られた。
[実施例7]
 酸素濃度が12.8%のフッ化イットリウム粉末1kgにポリビニルアルコール(PVA)3%水溶液1.5リットル、塩化チタン(TiCl3)1.5gを添加し、混合し、スラリー化し、スプレードライヤーにて造粒、乾燥させて造粒粉を得た。その造粒粉をアルゴンガスをフローさせながら1000℃で1時間焼成した。得られた溶射用粉を#200の篩にかけ、溶射用粉とした。この溶射用粉のL***色度を測定したところ、L*:38.21、a*:0.12、b*:0.23の黒色粉であり、粉体中のチタン濃度は680ppmであった。また、酸素濃度は13.1%であった。
 この溶射用粉を用いて、アルミ二ウム合金部材に約200μm厚の皮膜となるようアルゴンガス、水素ガスを用いてプラズマ溶射にて膜をつけた。この皮膜のL***色度を測定したところ、L*:41.02、a*:-0.56、b*:4.31であった。なお、皮膜のチタン濃度は670ppm、酸素濃度は13.5%であった。
 この溶射部材をリアクティブイオンプラズマ試験装置にレジストを塗布したシリコンウエハーとともにセットし、周波数13.56MHz、プラズマ出力1000W、ガス種CF4+O2(20vol%)、流量50sccm、ガス圧50mtorrの条件でプラズマ暴露試験を行った。取り出した溶射皮膜の色に変化はなかった。
[実施例8]
 酸素濃度が2%のフッ化イットリウム粉末1kgにポリビニルアルコール(PVA)2%水溶液1.5リットル、塩化モリブデン(MoCl5)2.0gを添加し、混合し、スラリー化し、スプレードライヤーにて造粒、乾燥させて造粒粉を得た。その造粒粉をアルゴンガスをフローさせながら1000℃で1時間焼成した。得られた溶射用粉を#200の篩にかけ、溶射用粉とした。この溶射用粉のL***色度を測定したところ、L*:45.23、a*:-0.08、b*:-0.21の黒色粉であり、粉体中のモリブデン濃度は920ppmであった。また、酸素濃度は1.8%であった。
 この溶射用粉を用いて、アルミニウム合金部材に約200μm厚の皮膜となるようアルゴンガス、水素ガスを用いてプラズマ溶射にて膜をつけた。この被膜のL***色度を測定したところ、L*:63.82、a*:-0.47、b*:0.75であった。なお、皮膜のモリブデン濃度は890ppm、酸素濃度は2.5%であった。
 この溶射部材をリアクティブイオンプラズマ試験装置にレジストを塗布したシリコンウエハーとともにセットし、周波数13.56MHz、プラズマ出力1000W、ガス種CF4+O2(20vol%)、流量50sccm、ガス圧50mtorrの条件でプラズマ暴露試験を行った。取り出した溶射被膜の色に変化はなかった。
[実施例9,10、比較例4,5]
 酸素濃度が0.48%のフッ化ガドリニウム(平均粒径27.8μm)と酸素濃度が0.148%のフッ化ランタン(平均粒径30.9μm)を用いて表1に示した造粒粉を調製し、表1に示した焼成条件で2時間焼成して同表に示したカーボン含量、酸素含量及び色度を有する溶射用粉を得た。次いで、得られた溶射用粉を用いて実施例1と同様にアルミニウム合金部材表面に溶射皮膜を成膜し、表1に示したカーボン含量、酸素含量及び色度を有する溶射皮膜を得、実施例1と同様にプラズマ暴露試験を行ない、皮膜の色度を測定した。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1のとおり、不活性雰囲気において焼成を実施(実施例9,10)することにより、カーボン量の減少を抑制して0.01%以上に保持することができる。一方、大気中で焼成を行なうと(比較例4,5)、カーボンが酸化により0.01%未満に減少してしまい、溶射した場合、皮膜の色は白色になった。
[実験例]
 白色を呈する酸化イットリウム(平均粒径0.2μm)粉末100g及びフッ化イットリウム(平均粒径3μm)粉末900g、及びカーボン源としてCMCを用い、表2に示したカーボン濃度の異なる7種類の溶射用粉を得た。この場合、サンプル6の溶射用粉は実施例3に準じた方法により調製した未焼成粉であり、その他のサンプルの溶射用粉は上記実施例4に準じた方法により調製した焼成粉である。次いで、各溶射用粉を用いてアルミ二ウム合金部材に表2に示した約200μm厚の皮膜を成形した。得られた各溶射皮膜の表面硬度(HV)及び断面硬度(HV)を下記方法により測定し、カーボン含有量と皮膜硬度との関係を調べた。結果を表2及び図2のグラフに示す。
(硬度の測定方法)
 得られた各部材について、切断加工により10mm角のテストピースを作製した。表面、断面を鏡面仕上げ(Ra=0.1μm)して、ビッカース硬度計により皮膜表面と断面の硬度測定を実施した。ビッカース硬度計(Akashi製 AVK-C1)で負荷荷重300gf、負荷時間10秒時の硬度測定を行い、表面硬度3点と断面硬度3点を測定しその平均値を評価した。
Figure JPOXMLDOC01-appb-T000002
 表2及び図2に示されているように、カーボン含有量が0.15質量%を超えると皮膜の硬度が低下し、カーボン含有量が0.15質量%以下、特に0.1質量%以下であれば、300HVを超える良好な皮膜硬度が得られることが認められる。よって、高い皮膜硬度が必要な場合には、カーボン含有量を0.15質量%以下、特に0.1質量%以下とすることが好ましい。
[実施例11~14]
 表3に示したフッ化イッテルビウム、フッ化イットリウム、フッ化ガドリニウムの各粉末を用い、実施例1と同様にしてアルミニウム合金部材にプラズマ溶射を行い、表3に示した溶射皮膜を成膜した。得られた溶射皮膜に対し、周波数13.56MHz、プラズマ出力1000W、ガス種CF4+O2(20vol%)、流量50sccm、ガス圧50mtorrの条件でプラズマ暴露処理を施し、表3に示した色度を有する溶射皮膜を得た。
Figure JPOXMLDOC01-appb-T000003
 表3のとおり、通常の白色を呈する希土類フッ化物溶射皮膜に、プラズマ光とエッチングガスを利用してプラズマ暴露処理を行なうことにより、均一な黒色を呈する溶射皮膜を得ることができる。そして、この黒色溶射皮膜を形成した部材をハロゲンガス中での耐プラズマ部材として使用した場合、部分的な色の変化が少なく、取り出し洗浄のときも部分的に無理な洗浄を施すこともなくなり、本来の長寿命を確実に実現できる。
 実施例12で得られた黒色溶射皮膜について、部材表面ボール研磨して直径1650μmのクレーターを形成し、図1に示した計算式により黒色層の厚みを測定、算出したところ、2μm以下で、おおよそ1000nmであると推定された。

Claims (22)

  1.  下記(1)及び/又は(2)、あるいは下記(1)及び/又は(2)と下記(3)~(5)から選ばれる1種又は2種以上との混合物からなる溶射皮膜であり、
    (1)イットリウムを含む3A族の希土類元素から選ばれる1種以上の希土類元素のフッ化物
    (2)上記希土類元素の酸フッ化物
    (3)上記希土類元素の酸化物
    (4)上記希土類元素とAl、Si、Zr、Inから選ばれる1種又は2種以上の金属との複合酸化物
    (5)上記希土類元素とAl、Si、Zr、Inから選ばれる1種又は2種以上の金属との複合フッ化物
    カーボンを0.004~2質量%、あるいはチタン又はモリブデンを1~1000ppm含有し、かつ、
    上記(2)の酸フッ化物を含まない場合、L***色度表示でL*が25~64、a*が-3.0~+5.0、b*が-6.0~+8.0の灰色乃至黒色を呈し、
    上記(2)の酸フッ化物を含む場合、L***色度表示でL*が25以上91未満、a*が-3.0~+5.0、b*が-6.0~+8.0の白色又は灰色乃至黒色を呈することを特徴とする溶射皮膜。
  2.  希土類元素が、Y、Gd、Yb、Laから選ばれる1種以上である請求項1記載の溶射皮膜。
  3.  酸素含有量が0.01~13.5質量%である請求項1又は2記載の溶射皮膜。
  4.  カーボン含有量が0.004~0.15質量%である請求項1~3のいずれか1項に記載の溶射皮膜。
  5.  下記(1)及び/又は(2)、あるいは下記(1)及び/又は(2)と下記(3)~(6)から選ばれる1種又は2種以上との混合物からなる溶射用粉であり、
    (1)イットリウムを含む3A族の希土類元素から選ばれる1種以上の希土類元素のフッ化物
    (2)上記希土類元素の酸フッ化物
    (3)上記希土類元素の酸化物
    (4)上記希土類元素とAl、Si、Zr、Inから選ばれる1種又は2種以上の金属との複合酸化物
    (5)上記希土類元素とAl、Si、Zr、Inから選ばれる1種又は2種以上の金属との複合フッ化物
    (6)Al、Si、Zr、Inから選ばれる1種又は2種以上の金属の酸化物
    カーボンを0.004~2質量%、あるいはチタン又はモリブデンを1~1000ppm含有し、かつ、L***色度表示でL*が25以上91未満、a*が-3.0~+5.0、b*が-6.0~+8.0の白色又は灰色乃至黒色を呈することを特徴とする溶射用粉。
  6.  希土類元素が、Y、Gd、Yb、Laから選ばれる1種以上である請求項5記載の溶射用粉。
  7.  酸素含有量が0.01~13.5質量%である請求項5又は6記載の溶射用粉。
  8.  焼成された溶射用粉であり、カーボン含有量が0.004~0.15質量%である請求項5~7のいずれか1項に記載の溶射用粉。
  9.  未焼成の溶射用粉であり、カーボン含有量が0.004~1.5質量%である請求項5~7のいずれか1項に記載の溶射用粉。
  10.  請求項5~8のいずれか1項に記載の溶射用粉を製造する方法であって、
    下記(1)及び/又は(2)、あるいは下記(1)及び/又は(2)と下記(3)~(6)から選ばれる1種又は2種以上との混合物からなる白色を呈する粉と、
    (1)イットリウムを含む3A族の希土類元素から選ばれる1種以上の希土類元素のフッ化物
    (2)上記希土類元素の酸フッ化物
    (3)上記希土類元素の酸化物
    (4)上記希土類元素とAl、Si、Zr、Inから選ばれる1種又は2種以上の金属との複合酸化物
    (5)上記希土類元素とAl、Si、Zr、Inから選ばれる1種又は2種以上の金属との複合フッ化物
    (6)Al、Si、Zr、Inから選ばれる1種又は2種以上の金属の酸化物
    溶射用粉のカーボン濃度が0.004~2質量%になるように用いたカーボン源とのスラリーを乾燥、培焼、焼成させて、L***色度表示でL*が25以上91未満、a*が-3.0~+5.0、b*が-6.0~+8.0の白色又は灰色乃至黒色を呈する溶射用粉を得ることを特徴とする溶射用粉の製造方法。
  11.  培焼を窒素ガス中500~800℃で行った後、培焼した粉を真空または不活性ガス雰囲気中で800~1000℃で焼成する請求項10記載の溶射用粉の製造方法。
  12.  上記(1)及び/又は(2)、あるいは上記(1)及び/又は(2)と上記(3)~(6)から選ばれる1種又は2種以上との混合物からなる白色を呈する粉の酸素含有量が0.01~13.5質量%である請求項10又は11記載の溶射用粉の製造方法。
  13.  溶射粉のカーボン濃度が0.004~0.15質量%になるようにカーボン源を用いる請求項10~12のいずれか1項に記載の溶射用粉の製造方法。
  14.  請求項5~8のいずれか1項に記載の溶射用粉を製造する方法であって、
    下記(1)及び/又は(2)、あるいは下記(1)及び/又は(2)と下記(3)~(6)から選ばれる1種又は2種以上との混合物からなる白色を呈する粉と、
    (1)イットリウムを含む3A族の希土類元素から選ばれる1種以上の希土類元素のフッ化物
    (2)上記希土類元素の酸フッ化物
    (3)上記希土類元素の酸化物
    (4)上記希土類元素とAl、Si、Zr、Inから選ばれる1種又は2種以上の金属との複合酸化物
    (5)上記希土類元素とAl、Si、Zr、Inから選ばれる1種又は2種以上の金属との複合フッ化物
    (6)Al、Si、Zr、Inから選ばれる1種又は2種以上の金属の酸化物
    ポリビニルアルコールと、溶射用粉のチタン又はモリブデンの濃度が1~1000ppmになるように用いたチタン又はモリブデンの水溶性塩とのスラリーを造粒乾燥、焼成させて、L***色度表示でL*が25以上91未満、a*が-3.0~+5.0、b*が-6.0~+8.0の白色又は灰色乃至黒色を呈する溶射用粉を得ることを特徴とする溶射用粉の製造方法。
  15.  造粒乾燥させた粉を真空または不活性ガス雰囲気中で800~1000℃で焼成する請求項14記載の溶射用粉の製造方法。
  16.  上記(1)及び/又は(2)、あるいは上記(1)及び/又は(2)と上記(3)~(6)から選ばれる1種又は2種以上との混合物からなる混合物からなる白色を呈する粉の酸素含有量が0.01~13.5質量%である請求項14又は15記載の溶射用粉の製造方法。
  17.  下記(1)及び/又は(2)、あるいは下記(1)及び/又は(2)と下記(3)~(5)から選ばれる1種又は2種以上との混合物からなる溶射皮膜であり、
    (1)イットリウムを含む3A族の希土類元素から選ばれる1種以上の希土類元素のフッ化物
    (2)上記希土類元素の酸フッ化物
    (3)上記希土類元素の酸化物
    (4)上記希土類元素とAl、Si、Zr、Inから選ばれる1種又は2種以上の金属との複合酸化物
    (5)上記希土類元素とAl、Si、Zr、Inから選ばれる1種又は2種以上の金属との複合フッ化物
    表面にL***色度表示でL*が25~64、a*が-3.0~+5.0、b*が-6.0~+8.0の灰色乃至黒色を呈する灰色乃至黒色層を有することを特徴とする溶射皮膜。
  18.  灰色乃至黒色層の深さが皮膜表面から2μm以内である請求項17記載の溶射皮膜。
  19.  酸素含有量が0.01~13.5質量%である請求項17又は18記載の溶射皮膜。
  20.  請求項17~19のいずれか1項に記載の溶射皮膜の製造方法であって、
    下記(1)及び/又は(2)、あるいは下記(1)及び/又は(2)と下記(3)~(6)から選ばれる1種又は2種以上との混合物からなる白色を呈する粉を、
    (1)イットリウムを含む3A族の希土類元素から選ばれる1種以上の希土類元素のフッ化物
    (2)上記希土類元素の酸フッ化物
    (3)上記希土類元素の酸化物
    (4)上記希土類元素とAl、Si、Zr、Inから選ばれる1種又は2種以上の金属との複合酸化物
    (5)上記希土類元素とAl、Si、Zr、Inから選ばれる1種又は2種以上の金属との複合フッ化物
    (6)Al、Si、Zr、Inから選ばれる1種又は2種以上の金属の酸化物
    基材表面に溶射して、L***色度表示でL*が81以上、a*が-3.0~+3.0、b*が-3.0~+3.0の白色を呈する溶射皮膜を得、この溶射皮膜にプラズマ暴露処理を施して、該溶射皮膜表面にL***色度表示でL*が25~64、a*が-3.0~+5.0、b*が-6.0~+8.0の灰色乃至黒色を呈する灰色乃至黒色層を形成することを特徴とする溶射皮膜の製造方法。
  21.  灰色乃至黒色層の深さを皮膜表面から2μm以内とする請求項20記載の溶射皮膜の製造方法。
  22.  上記(1)及び/又は(2)、あるいは上記(1)及び/又は(2)と上記(3)~(6)から選ばれる1種又は2種以上との混合物からなる白色を呈する粉の酸素含有量が0.01~13.5質量%である請求項20又は21記載の溶射用粉の製造方法。
PCT/JP2018/007624 2017-03-01 2018-02-28 溶射皮膜、溶射用粉、溶射用粉の製造方法、及び溶射皮膜の製造方法 WO2018159713A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US16/489,070 US20200002799A1 (en) 2017-03-01 2018-02-28 Spray coating, sraying powder, spraying powder manufacturing method and spray coating manufacturing method
CN201880014710.6A CN110382730B (zh) 2017-03-01 2018-02-28 喷镀被膜、喷镀用粉、喷镀用粉的制造方法和喷镀被膜的制造方法
KR1020237016849A KR102664599B1 (ko) 2017-03-01 2018-02-28 용사 피막, 용사용 분말, 용사용 분말의 제조 방법, 및 용사 피막의 제조 방법
JP2018533839A JP6436270B1 (ja) 2017-03-01 2018-02-28 溶射皮膜、溶射用粉、溶射用粉の製造方法、及び溶射皮膜の製造方法
CN202211112737.3A CN115354269A (zh) 2017-03-01 2018-02-28 喷镀被膜、喷镀用粉、喷镀用粉的制造方法和喷镀被膜的制造方法
KR1020197028210A KR102536087B1 (ko) 2017-03-01 2018-02-28 용사 피막, 용사용 분말, 용사용 분말의 제조 방법, 및 용사 피막의 제조 방법
US18/517,251 US20240102142A1 (en) 2017-03-01 2023-11-22 Spray coating, sraying powder, spraying powder manufacturing method and spray coating manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-038174 2017-03-01
JP2017038174 2017-03-01

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/489,070 A-371-Of-International US20200002799A1 (en) 2017-03-01 2018-02-28 Spray coating, sraying powder, spraying powder manufacturing method and spray coating manufacturing method
US18/517,251 Division US20240102142A1 (en) 2017-03-01 2023-11-22 Spray coating, sraying powder, spraying powder manufacturing method and spray coating manufacturing method

Publications (1)

Publication Number Publication Date
WO2018159713A1 true WO2018159713A1 (ja) 2018-09-07

Family

ID=63371093

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/007624 WO2018159713A1 (ja) 2017-03-01 2018-02-28 溶射皮膜、溶射用粉、溶射用粉の製造方法、及び溶射皮膜の製造方法

Country Status (6)

Country Link
US (2) US20200002799A1 (ja)
JP (1) JP6436270B1 (ja)
KR (2) KR102536087B1 (ja)
CN (2) CN110382730B (ja)
TW (2) TWI807631B (ja)
WO (1) WO2018159713A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220072725A (ko) 2020-11-25 2022-06-02 삼성전자주식회사 소결체, 소결체의 제조방법, 반도체 제조장치 및 반도체 제조장치의 제조방법
US11851768B2 (en) * 2018-07-17 2023-12-26 Shin-Etsu Chemical Co., Ltd. Film-forming powder, film forming method, and film-forming powder preparing method

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021155784A (ja) * 2020-03-26 2021-10-07 トヨタ紡織株式会社 金属ナノ粒子の製造方法、膜電極接合体の製造方法、及び固体高分子形燃料電池の製造方法
KR20240030718A (ko) 2022-08-31 2024-03-07 (주)코미코 용사용 이트륨계 분말 및 이를 이용한 이트륨계 용사 피막
CN115926496A (zh) * 2022-11-09 2023-04-07 三明宝氟新材料科技有限公司 一种氟化钇喷涂材料
CN115861721B (zh) * 2023-02-28 2023-05-05 山东大佳机械有限公司 基于图像数据的畜禽养殖喷雾设备状态识别方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016138309A (ja) * 2015-01-27 2016-08-04 日本イットリウム株式会社 溶射用粉末及び溶射材料
JP2017031457A (ja) * 2015-07-31 2017-02-09 信越化学工業株式会社 イットリウム系溶射皮膜、及びその製造方法

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4006596B2 (ja) 2002-07-19 2007-11-14 信越化学工業株式会社 希土類酸化物溶射部材および溶射用粉
US6852433B2 (en) 2002-07-19 2005-02-08 Shin-Etsu Chemical Co., Ltd. Rare-earth oxide thermal spray coated articles and powders for thermal spraying
JP3894313B2 (ja) 2002-12-19 2007-03-22 信越化学工業株式会社 フッ化物含有膜、被覆部材及びフッ化物含有膜の形成方法
JP2007217782A (ja) * 2006-02-20 2007-08-30 Showa Denko Kk 希土類元素のフッ化物皮膜を有する耐食性皮膜およびその製造方法
JP4740932B2 (ja) * 2007-12-06 2011-08-03 トーカロ株式会社 黒色酸化イットリウム溶射皮膜の形成方法および黒色酸化イットリウム溶射皮膜被覆部材
KR20140072110A (ko) * 2011-09-26 2014-06-12 가부시키가이샤 후지미인코퍼레이티드 희토류 원소를 포함한 용사용 분말 및 피막 및 상기 피막을 구비한 부재
JP5861612B2 (ja) * 2011-11-10 2016-02-16 信越化学工業株式会社 希土類元素フッ化物粉末溶射材料及び希土類元素フッ化物溶射部材
US9238863B2 (en) * 2012-02-03 2016-01-19 Tocalo Co., Ltd. Method for blackening white fluoride spray coating, and fluoride spray coating covered member having a blackened layer on its surface
US9421570B2 (en) * 2012-02-09 2016-08-23 Tocalo Co., Ltd. Method for forming fluoride spray coating and fluoride spray coating covered member
JP5396672B2 (ja) 2012-06-27 2014-01-22 日本イットリウム株式会社 溶射材料及びその製造方法
JP5649230B2 (ja) 2012-06-29 2015-01-07 シャープ株式会社 情報検索システム、情報処理装置、情報検索方法、および情報検索プログラム
JP5399542B2 (ja) 2012-08-08 2014-01-29 富士通株式会社 半導体装置の製造方法
JP5939084B2 (ja) * 2012-08-22 2016-06-22 信越化学工業株式会社 希土類元素オキシフッ化物粉末溶射材料の製造方法
US9790581B2 (en) * 2014-06-25 2017-10-17 Fm Industries, Inc. Emissivity controlled coatings for semiconductor chamber components
JP6543829B2 (ja) 2014-10-14 2019-07-17 ナルコジャパン合同会社 コークス炉ガス精製におけるタール汚れの抑制方法及びそのための組成物
JP6124100B2 (ja) * 2015-03-05 2017-05-10 日本イットリウム株式会社 焼結用材料及び焼結用材料を製造するための粉末
US10106466B2 (en) * 2015-05-08 2018-10-23 Tokyo Electron Limited Thermal spray material, thermal spray coating and thermal spray coated article
CN108463345B (zh) 2015-11-16 2021-04-09 阔斯泰公司 耐腐蚀组件和制造方法
JP6443380B2 (ja) * 2016-04-12 2018-12-26 信越化学工業株式会社 イットリウム系フッ化物溶射皮膜、及び該溶射皮膜を含む耐食性皮膜
KR102405679B1 (ko) * 2016-09-16 2022-06-07 가부시키가이샤 후지미인코퍼레이티드 용사용 재료

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016138309A (ja) * 2015-01-27 2016-08-04 日本イットリウム株式会社 溶射用粉末及び溶射材料
JP2017031457A (ja) * 2015-07-31 2017-02-09 信越化学工業株式会社 イットリウム系溶射皮膜、及びその製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11851768B2 (en) * 2018-07-17 2023-12-26 Shin-Etsu Chemical Co., Ltd. Film-forming powder, film forming method, and film-forming powder preparing method
KR20220072725A (ko) 2020-11-25 2022-06-02 삼성전자주식회사 소결체, 소결체의 제조방법, 반도체 제조장치 및 반도체 제조장치의 제조방법

Also Published As

Publication number Publication date
TWI807631B (zh) 2023-07-01
CN110382730A (zh) 2019-10-25
CN115354269A (zh) 2022-11-18
KR102536087B1 (ko) 2023-05-24
TWI756374B (zh) 2022-03-01
US20200002799A1 (en) 2020-01-02
KR20190122753A (ko) 2019-10-30
TW201842210A (zh) 2018-12-01
TW202218872A (zh) 2022-05-16
CN110382730B (zh) 2022-09-23
JP6436270B1 (ja) 2018-12-12
KR102664599B1 (ko) 2024-05-14
JPWO2018159713A1 (ja) 2019-03-07
US20240102142A1 (en) 2024-03-28
KR20230076868A (ko) 2023-05-31

Similar Documents

Publication Publication Date Title
JP6436270B1 (ja) 溶射皮膜、溶射用粉、溶射用粉の製造方法、及び溶射皮膜の製造方法
US6852433B2 (en) Rare-earth oxide thermal spray coated articles and powders for thermal spraying
JP5939084B2 (ja) 希土類元素オキシフッ化物粉末溶射材料の製造方法
US9388485B2 (en) Thermal spray material and process for preparing same
JP5861612B2 (ja) 希土類元素フッ化物粉末溶射材料及び希土類元素フッ化物溶射部材
US10138167B2 (en) Thermal spray material, thermal spray coating and thermal spray coated article
US10106879B2 (en) Thermal spray material, thermal spray coating and thermal spray coated article
TW202204650A (zh) 氧氟化釔成膜零件
JP7147675B2 (ja) 溶射材料、及び溶射部材の製造方法
JP2012508683A (ja) プラズマに曝露されるセラミックス部品を接合するための耐食性接合剤
TWI625422B (zh) 含有稀土類元素之熔射用粉末及皮膜、以及具備前述皮膜之構件
JP4006596B2 (ja) 希土類酸化物溶射部材および溶射用粉
JP6281507B2 (ja) 希土類元素オキシフッ化物粉末溶射材料及び希土類元素オキシフッ化物溶射部材の製造方法
JP2013076142A (ja) 耐食性部材及びその製造方法
KR20240067976A (ko) 용사 피막, 용사용 분말, 용사용 분말의 제조 방법, 및 용사 피막의 제조 방법
JP6620793B2 (ja) 希土類元素オキシフッ化物粉末溶射材料、及び希土類元素オキシフッ化物溶射部材の製造方法
TWI834664B (zh) 噴塗材料、噴塗構件及製造方法
JP6844654B2 (ja) イットリウムオキシフッ化物粉末溶射材料、及びイットリウムオキシフッ化物溶射部材の製造方法
JP2019026902A (ja) 溶射材料及びその製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018533839

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18760810

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197028210

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18760810

Country of ref document: EP

Kind code of ref document: A1