WO2018159560A1 - 感放射線性樹脂組成物、レジストパターン形成方法、酸拡散制御剤、カルボン酸塩及びカルボン酸 - Google Patents

感放射線性樹脂組成物、レジストパターン形成方法、酸拡散制御剤、カルボン酸塩及びカルボン酸 Download PDF

Info

Publication number
WO2018159560A1
WO2018159560A1 PCT/JP2018/007043 JP2018007043W WO2018159560A1 WO 2018159560 A1 WO2018159560 A1 WO 2018159560A1 JP 2018007043 W JP2018007043 W JP 2018007043W WO 2018159560 A1 WO2018159560 A1 WO 2018159560A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
carbon atoms
radiation
resin composition
sensitive resin
Prior art date
Application number
PCT/JP2018/007043
Other languages
English (en)
French (fr)
Inventor
克聡 錦織
聡司 岡嵜
Original Assignee
Jsr株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jsr株式会社 filed Critical Jsr株式会社
Priority to JP2019502989A priority Critical patent/JP7140100B2/ja
Priority to KR1020197025221A priority patent/KR102550157B1/ko
Publication of WO2018159560A1 publication Critical patent/WO2018159560A1/ja
Priority to US16/552,339 priority patent/US11320735B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/52Esters of acyclic unsaturated carboxylic acids having the esterified carboxyl group bound to an acyclic carbon atom
    • C07C69/533Monocarboxylic acid esters having only one carbon-to-carbon double bond
    • C07C69/54Acrylic acid esters; Methacrylic acid esters
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C381/00Compounds containing carbon and sulfur and having functional groups not covered by groups C07C301/00 - C07C337/00
    • C07C381/12Sulfonium compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C59/00Compounds having carboxyl groups bound to acyclic carbon atoms and containing any of the groups OH, O—metal, —CHO, keto, ether, groups, groups, or groups
    • C07C59/01Saturated compounds having only one carboxyl group and containing hydroxy or O-metal groups
    • C07C59/10Polyhydroxy carboxylic acids
    • C07C59/105Polyhydroxy carboxylic acids having five or more carbon atoms, e.g. aldonic acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C59/00Compounds having carboxyl groups bound to acyclic carbon atoms and containing any of the groups OH, O—metal, —CHO, keto, ether, groups, groups, or groups
    • C07C59/01Saturated compounds having only one carboxyl group and containing hydroxy or O-metal groups
    • C07C59/11Saturated compounds having only one carboxyl group and containing hydroxy or O-metal groups containing rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C59/00Compounds having carboxyl groups bound to acyclic carbon atoms and containing any of the groups OH, O—metal, —CHO, keto, ether, groups, groups, or groups
    • C07C59/01Saturated compounds having only one carboxyl group and containing hydroxy or O-metal groups
    • C07C59/115Saturated compounds having only one carboxyl group and containing hydroxy or O-metal groups containing halogen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C59/00Compounds having carboxyl groups bound to acyclic carbon atoms and containing any of the groups OH, O—metal, —CHO, keto, ether, groups, groups, or groups
    • C07C59/125Saturated compounds having only one carboxyl group and containing ether groups, groups, groups, or groups
    • C07C59/13Saturated compounds having only one carboxyl group and containing ether groups, groups, groups, or groups containing rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C62/00Compounds having carboxyl groups bound to carbon atoms of rings other than six—membered aromatic rings and containing any of the groups OH, O—metal, —CHO, keto, ether, groups, groups, or groups
    • C07C62/02Saturated compounds containing hydroxy or O-metal groups
    • C07C62/04Saturated compounds containing hydroxy or O-metal groups with a six-membered ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C62/00Compounds having carboxyl groups bound to carbon atoms of rings other than six—membered aromatic rings and containing any of the groups OH, O—metal, —CHO, keto, ether, groups, groups, or groups
    • C07C62/02Saturated compounds containing hydroxy or O-metal groups
    • C07C62/06Saturated compounds containing hydroxy or O-metal groups polycyclic
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/02Esters of acyclic saturated monocarboxylic acids having the carboxyl group bound to an acyclic carbon atom or to hydrogen
    • C07C69/12Acetic acid esters
    • C07C69/14Acetic acid esters of monohydroxylic compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/02Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings
    • C07D307/26Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member
    • C07D307/30Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D307/32Oxygen atoms
    • C07D307/33Oxygen atoms in position 2, the oxygen atom being in its keto or unsubstituted enol form
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/0045Photosensitive materials with organic non-macromolecular light-sensitive compounds not otherwise provided for, e.g. dissolution inhibitors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/038Macromolecular compounds which are rendered insoluble or differentially wettable
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/039Macromolecular compounds which are photodegradable, e.g. positive electron resists
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/039Macromolecular compounds which are photodegradable, e.g. positive electron resists
    • G03F7/0392Macromolecular compounds which are photodegradable, e.g. positive electron resists the macromolecular compound being present in a chemically amplified positive photoresist composition
    • G03F7/0397Macromolecular compounds which are photodegradable, e.g. positive electron resists the macromolecular compound being present in a chemically amplified positive photoresist composition the macromolecular compound having an alicyclic moiety in a side chain
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/12Systems containing only non-condensed rings with a six-membered ring
    • C07C2601/14The ring being saturated
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/02Ortho- or ortho- and peri-condensed systems
    • C07C2603/04Ortho- or ortho- and peri-condensed systems containing three rings
    • C07C2603/06Ortho- or ortho- and peri-condensed systems containing three rings containing at least one ring with less than six ring members
    • C07C2603/10Ortho- or ortho- and peri-condensed systems containing three rings containing at least one ring with less than six ring members containing five-membered rings
    • C07C2603/12Ortho- or ortho- and peri-condensed systems containing three rings containing at least one ring with less than six ring members containing five-membered rings only one five-membered ring
    • C07C2603/18Fluorenes; Hydrogenated fluorenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/56Ring systems containing bridged rings
    • C07C2603/58Ring systems containing bridged rings containing three rings
    • C07C2603/70Ring systems containing bridged rings containing three rings containing only six-membered rings
    • C07C2603/72Ethanonaphthalenes; Hydrogenated ethanonaphthalenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/56Ring systems containing bridged rings
    • C07C2603/58Ring systems containing bridged rings containing three rings
    • C07C2603/70Ring systems containing bridged rings containing three rings containing only six-membered rings
    • C07C2603/74Adamantanes
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/16Coating processes; Apparatus therefor
    • G03F7/162Coating on a rotating support, e.g. using a whirler or a spinner
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/16Coating processes; Apparatus therefor
    • G03F7/168Finishing the coated layer, e.g. drying, baking, soaking
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2002Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image
    • G03F7/2004Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image characterised by the use of a particular light source, e.g. fluorescent lamps or deep UV light
    • G03F7/2006Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image characterised by the use of a particular light source, e.g. fluorescent lamps or deep UV light using coherent light; using polarised light
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2041Exposure; Apparatus therefor in the presence of a fluid, e.g. immersion; using fluid cooling means
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/30Imagewise removal using liquid means
    • G03F7/32Liquid compositions therefor, e.g. developers
    • G03F7/322Aqueous alkaline compositions
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/30Imagewise removal using liquid means
    • G03F7/32Liquid compositions therefor, e.g. developers
    • G03F7/325Non-aqueous compositions
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/38Treatment before imagewise removal, e.g. prebaking

Definitions

  • the present invention relates to a radiation sensitive resin composition, a resist pattern forming method, an acid diffusion controller, a carboxylate and a carboxylic acid.
  • Such a radiation-sensitive resin composition contains a component that generates an acid upon irradiation with exposure light such as far ultraviolet rays such as ArF excimer laser, extreme ultraviolet rays (EUV), and electron beams. By exposing this, an acid is generated in the exposed portion, and the catalytic action of this acid causes a difference in dissolution rate between the exposed portion and the unexposed portion in the developer, thereby forming a resist pattern on the substrate.
  • exposure light such as far ultraviolet rays such as ArF excimer laser, extreme ultraviolet rays (EUV), and electron beams.
  • Such a radiation-sensitive resin composition has excellent resolution and rectangularity of the cross-sectional shape of the resist pattern, excellent LWR (Line Width Roughness) performance, excellent focal depth, and high yield of high-precision patterns. Is required to be obtained.
  • various studies have been made on the structure of the polymer contained in the radiation-sensitive resin composition. For example, it is known that when a polymer has a lactone structure such as a butyrolactone structure or a norbornane lactone structure, the adhesion of the resist pattern to the substrate can be improved and these performances can be improved (Japanese Patent Laid-Open No. 11-212265). JP 2003-5375 A and JP 2008-83370 A).
  • the miniaturization of the resist pattern has progressed to a level of 45 nm or less, the required level of the performance is further increased, and the conventional radiation-sensitive resin composition satisfies these requirements. I can't make it happen.
  • the resist performance described above is required to be further improved, for example, the resist film shrinkage during post-exposure baking (post exposure bake (PEB)) is small and the film shrinkage suppression is required to be excellent. It has been.
  • PEB post exposure bake
  • the present invention has been made based on the above-mentioned circumstances, and its purpose is a radiation-sensitive resin composition that is excellent in LWR performance, resolution, rectangularity of a cross-sectional shape, focal depth, and film shrinkage suppression.
  • Another object of the present invention is to provide a resist pattern forming method, an acid diffusion controller, a carboxylate and a carboxylic acid.
  • the invention made in order to solve the above-mentioned problems is a radiation sensitive composition
  • a radiation sensitive composition comprising a polymer having an acid dissociable group, a radiation sensitive acid generator, a compound represented by the following formula (1), and a solvent. It is a resin composition.
  • X is an oxygen atom or a sulfur atom.
  • R 1 is a hydrogen atom or a monovalent organic group having 1 to 20 carbon atoms.
  • R 2 to R 5 are each independently An alicyclic ring having 3 to 20 ring members which is a hydrogen atom or a monovalent organic group having 1 to 20 carbon atoms, or two or more of these groups are combined with each other and bonded to carbon atoms Represents a structure or an aliphatic heterocyclic structure, Z n + is an n-valent cation, and n is an integer of 1 to 3.)
  • Another invention made to solve the above problems is a process of coating the radiation-sensitive resin composition on one surface of the substrate, a process of exposing a resist film obtained by the coating process, And a step of developing the exposed resist film.
  • an acid diffusion controller represented by the following formula (1 ′).
  • X is an oxygen atom or a sulfur atom.
  • R 1 is a hydrogen atom or a monovalent organic group having 1 to 20 carbon atoms.
  • R 2 to R 5 are each independently selected.
  • a hydrogen atom or a monovalent organic group having 1 to 20 carbon atoms, or two or more of these groups having a ring member number of 3 to 20 composed of carbon atoms to which they are combined and bonded to each other Represents a ring structure or an aliphatic heterocyclic structure, Z n + is an n-valent radiation-sensitive cation, and n is an integer of 1 to 3.
  • X is an oxygen atom or a sulfur atom.
  • R 1 is a hydrogen atom or a monovalent organic group having 1 to 20 carbon atoms.
  • R 2 to R 5 are each independently An alicyclic ring having 3 to 20 ring members which is a hydrogen atom or a monovalent organic group having 1 to 20 carbon atoms, or two or more of these groups are combined with each other and bonded to carbon atoms Represents a structure or an aliphatic heterocyclic structure, Z n + is an n-valent radiation-sensitive cation, and n is an integer of 1 to 3.
  • a carboxylic acid represented by the following formula (i ′).
  • X is an oxygen atom or a sulfur atom
  • R 1 is a hydrogen atom or a monovalent organic group having 1 to 20 carbon atoms
  • R 2 and R 3 are each independently carbon.
  • a monovalent organic group having 1 to 20 and R 4 and R 5 are each independently a hydrogen atom or a monovalent organic group having 1 to 20 carbon atoms, or R 2 to R 5 It represents an alicyclic structure or aliphatic heterocyclic structure having 3 to 20 ring members constituted by two or more carbon atoms bonded to each other and bonded to each other.
  • organic group means a group containing at least one carbon atom.
  • alicyclic structure in which a plurality of groups are combined to each other means that the combined and configured ring is an alicyclic structure.
  • aliphatic heterocyclic structure constituted by combining a plurality of groups with each other means that the combined and constituted ring is an aliphatic heterocyclic structure.
  • Numberer of ring members means the number of atoms constituting the ring of the alicyclic structure, aromatic ring structure, aliphatic heterocyclic structure and aromatic heterocyclic structure, and in the case of polycyclic, the number of atoms constituting this polycyclic ring Say.
  • a resist pattern that exhibits excellent depth of focus and film shrinkage suppression, low LWR, high resolution, and excellent cross-sectional rectangularity. can be formed.
  • the acid diffusion controlling agent of the present invention can be suitably used as an acid diffusion controlling agent component of the radiation sensitive resin composition.
  • the carboxylate and carboxylic acid of the present invention can be suitably used as a raw material for the acid diffusion controller. Accordingly, these can be suitably used for semiconductor device processing processes and the like that are expected to be further miniaturized in the future.
  • the radiation-sensitive resin composition includes a polymer having an acid-dissociable group (hereinafter also referred to as “[A] polymer”) and a radiation-sensitive acid generator (hereinafter referred to as “[B] acid generator”). And a compound represented by the above formula (1) (hereinafter also referred to as “[C] compound”) and a solvent (hereinafter also referred to as “[D] solvent”). It is a thing.
  • the radiation-sensitive resin composition may contain, as a suitable component, a polymer having a larger mass content of fluorine atoms than the [A] polymer (hereinafter also referred to as “[E] polymer”). In the range which does not impair the effect of this invention, you may contain other arbitrary components.
  • the radiation sensitive resin composition contains [A] polymer, [B] acid generator, [C] compound and [D] solvent, so that LWR performance, resolution, rectangularity of cross-sectional shape, It is excellent in depth of focus and film shrinkage suppression (hereinafter, these characteristics are collectively referred to as “LWR performance etc.”).
  • LWR performance etc. LWR performance, resolution, rectangularity of cross-sectional shape, It is excellent in depth of focus and film shrinkage suppression
  • the presence of an oxygen atom or sulfur atom at a specific position with respect to the carboxylate anion allows the [C] compound to be suitable while maintaining stability as a carboxylate anion due to electronic interaction and the like. It can be considered that the diffusion length of the acid generated from the [B] acid generator is controlled to be moderately short, and as a result, the LWR performance and the like are improved.
  • each component will be described.
  • the polymer is a polymer having an acid dissociable group.
  • the “acid-dissociable group” refers to a group that replaces a hydrogen atom such as a carboxy group or a hydroxy group and dissociates by the action of an acid.
  • the polymer usually has an acid dissociable group as a structural unit containing an acid dissociable group (hereinafter also referred to as “structural unit (I)”).
  • the polymer has, in addition to the structural unit (I), a structural unit (II) having a lactone structure, a cyclic carbonate structure, a sultone structure, or a combination thereof and / or a structural unit (III) containing a hydroxy group. And may have other structural units other than the structural units (I) to (III).
  • each structural unit will be described.
  • the structural unit (I) is a structural unit containing an acid dissociable group.
  • structural unit (I) examples include a structural unit represented by the following formula (2) (hereinafter also referred to as “structural unit (I-1)”) and a structural unit containing an acetal structure (hereinafter referred to as “structural unit (I -2) ”)) and the like.
  • the polymer may have one or more structural units (I-1) and (I-2).
  • the polymer may have both the structural unit (I-1) and the structural unit (I-2).
  • the structural unit (I-1) and the structural unit (I-2) will be described.
  • the structural unit (I-1) is a structural unit represented by the following formula (2).
  • a group represented by —CR 15 R 16 R 17 in the following formula (2) is an acid dissociable group.
  • the acid-dissociable group include a polycyclic alicyclic structure, a large protecting group having a sterically bulky structure, and an acid-dissociable group other than the large protecting group, which does not include an alicyclic structure or a simple structure. Examples thereof include a small protective group having a ring-shaped alicyclic structure and a sterically small structure.
  • R 14 is a hydrogen atom, a fluorine atom, a methyl group or a trifluoromethyl group.
  • R 15 is a monovalent hydrocarbon group having 1 to 20 carbon atoms.
  • R 16 and R 17 are each independently a monovalent hydrocarbon group having 1 to 20 carbon atoms, or 3 to 3 carbon atoms composed of these groups combined with the carbon atom to which they are bonded. 20 alicyclic structures are represented.
  • R 14 is preferably a hydrogen atom or a methyl group, more preferably a methyl group, from the viewpoint of the copolymerizability of the monomer that provides the structural unit (I-1).
  • Examples of the monovalent hydrocarbon group having 1 to 20 carbon atoms represented by R 15 , R 16 or R 17 include, for example, a monovalent chain hydrocarbon group having 1 to 20 carbon atoms and 1 to 3 carbon atoms. Valent alicyclic hydrocarbon group, monovalent aromatic hydrocarbon group having 6 to 20 carbon atoms, and the like.
  • Examples of the monovalent chain hydrocarbon group having 1 to 20 carbon atoms include alkyl groups such as a methyl group, an ethyl group, an n-propyl group, and an i-propyl group; An alkenyl group such as an ethenyl group, a propenyl group, a butenyl group; Examples thereof include alkynyl groups such as ethynyl group, propynyl group and butynyl group.
  • Examples of the monovalent alicyclic hydrocarbon group having 3 to 20 carbon atoms include monocyclic alicyclic saturated hydrocarbon groups such as a cyclopentyl group and a cyclohexyl group; Monocyclic alicyclic unsaturated hydrocarbon groups such as cyclopentenyl group and cyclohexenyl group; Polycyclic alicyclic saturated hydrocarbon groups such as norbornyl group, adamantyl group and tricyclodecyl group; Examples thereof include polycyclic alicyclic unsaturated hydrocarbon groups such as a norbornenyl group and a tricyclodecenyl group.
  • Examples of the monovalent aromatic hydrocarbon group having 6 to 20 carbon atoms include aryl groups such as a phenyl group, a tolyl group, a xylyl group, a naphthyl group, and an anthryl group; Examples thereof include aralkyl groups such as benzyl group, phenethyl group, naphthylmethyl group and anthrylmethyl group.
  • Examples of the alicyclic structure having 3 to 20 carbon atoms constituted by the R 16 and R 17 groups combined with the carbon atom to which they are bonded include, for example, a cyclopropane structure, a cyclobutane structure, a cyclopentane structure, a cyclohexane structure, and a cyclopentene structure. And monocyclic alicyclic structures such as a cyclohexene structure; and polycyclic alicyclic structures such as a norbornane structure and an adamantane structure.
  • structural units (I-1) structural units represented by the following formulas (2-1) to (2-5) (hereinafter referred to as “structural units (I-1-1) to (I-1-5)”) are also preferred).
  • R 14 to R 17 have the same meaning as the above formula (2).
  • i and j are each independently an integer of 1 to 4.
  • Examples of the structural unit (I-1) include a structural unit represented by the following formula.
  • R ⁇ 14 > is synonymous with the said Formula (2).
  • structural units (I-1-1) to (I-1-5) are preferable, and structural units derived from 1-alkylcyclopentan-1-yl (meth) acrylate, A structural unit derived from alkylcyclohexane-1-yl (meth) acrylate, a structural unit derived from 2-alkyladamantan-2-yl (meth) acrylate, 2- (adamantan-1-yl) propan-2-yl ( Structural unit derived from (meth) acrylate, structural unit derived from 2- (cyclohexane-1-yl) propan-2-yl (meth) acrylate, or derived from 2-alkyltetracyclododecan-2-yl (meth) acrylate A structural unit is more preferable.
  • the structural unit (I-2) is a structural unit containing an acetal structure.
  • Examples of the group containing an acetal structure include a group represented by the following formula (3) (hereinafter also referred to as “group (X)”).
  • the group (X) is decomposed by the action of an acid to give * —R W —OH, R X R Y C ⁇ O and R Z OH.
  • —C (R X ) (R Y ) (OR Z ) is an acid dissociable group.
  • R X and R Y are each independently a hydrogen atom or a monovalent hydrocarbon group having 1 to 20 carbon atoms.
  • R Z is a monovalent hydrocarbon group having 1 to 20 carbon atoms.
  • R W is a single bond or a divalent hydrocarbon group having 1 to 20 carbon atoms. Two or more of R X , R Y , R Z and R W may be combined with each other to form a ring structure having 3 to 20 ring members together with the carbon atom or atomic chain to which they are bonded.
  • * Represents a binding site with a moiety other than the group (X) in the structural unit (I-2).
  • Examples of the monovalent hydrocarbon group having 1 to 20 carbon atoms represented by R X , R Y or R Z include, for example, the monovalent hydrocarbon group having 1 to 20 carbon atoms of the above R 15 , R 16 or R 17. And the same groups as those exemplified above.
  • R X or R Y is preferably a hydrogen atom or a chain hydrocarbon group.
  • this chain hydrocarbon group an alkyl group is preferable, and a methyl group is more preferable.
  • R Z is preferably an alicyclic hydrocarbon group, more preferably a polycyclic saturated alicyclic hydrocarbon group, and particularly preferably a tetracyclododecan-2-yl group.
  • the R W, a single bond or a chain hydrocarbon group is preferable, more preferably a single bond or a chain hydrocarbon group, a single bond or an alkanediyl group are more preferred, particularly preferably a single bond or a methylene bridge is a single bond Further particularly preferred.
  • Examples of the ring structure having 3 to 20 ring members formed by two or more of R X , R Y , R Z and R W include 1,3-dioxacyclopentane structures such as 1,3-dioxacyclopentane structures. Examples include alkane structures.
  • the group (X) is preferably a 1- (tetracyclododecan-2-yloxy) ethane-1-yloxy group.
  • the lower limit of the content ratio of the structural unit (I) is preferably 10 mol%, more preferably 30 mol%, and even more preferably 40 mol% with respect to all the structural units constituting the [A] polymer.
  • As an upper limit of the said content rate 90 mol% is preferable, 70 mol% is more preferable, and 60 mol% is further more preferable.
  • the structural unit (II) is a structural unit including a lactone structure, a cyclic carbonate structure, a sultone structure, or a combination thereof.
  • the solubility in the developer can be adjusted, and as a result, the LWR performance and the like of the radiation-sensitive resin composition can be further improved. Can do.
  • substrate can be improved.
  • Examples of the structural unit (II) include a structural unit represented by the following formula.
  • R L1 represents a hydrogen atom, a fluorine atom, a methyl group or a trifluoromethyl group.
  • the structural unit (II) is preferably a structural unit containing a norbornane lactone structure, a structural unit containing a ⁇ -butyrolactone structure, a structural unit containing an ethylene carbonate structure, or a structural unit containing a norbornane sultone structure.
  • the lower limit of the content ratio of the structural unit (II) is preferably 10 mol% with respect to all the structural units constituting the [A] polymer. Mole% is more preferable, and 40 mol% is more preferable. As an upper limit of the said content rate, 90 mol% is preferable, 70 mol% is more preferable, and 60 mol% is further more preferable. By making the said content rate into the said range, the LWR performance etc. of the said radiation sensitive resin composition can be improved further. In addition, the adhesion of the resist pattern to the substrate can be further improved.
  • the structural unit (III) is a structural unit containing a hydroxy group.
  • the hydroxy group include alcoholic hydroxy groups and phenolic hydroxy groups.
  • the solubility in the developer can be adjusted, and as a result, the LWR performance and the like of the radiation-sensitive resin composition can be further improved. Can do.
  • substrate can be improved.
  • the structural unit (III) contains a phenolic hydroxy group
  • the radiation-sensitive resin composition can further increase sensitivity in KrF exposure, EUV exposure, electron beam exposure, and the like.
  • Examples of the structural unit (III) include a structural unit represented by the following formula.
  • R L2 represents a hydrogen atom, a fluorine atom, a methyl group or a trifluoromethyl group.
  • the structural unit (III) is preferably a structural unit derived from hydroxystyrene or a structural unit derived from 3-hydroxyadamantan-1-yl (meth) acrylate.
  • the lower limit of the content ratio of the structural unit (III) is preferably 5 mol% with respect to all the structural units constituting the [A] polymer. Mole% is more preferable, and 40 mol% is more preferable. As an upper limit of the said content rate, 80 mol% is preferable, 70 mol% is more preferable, and 60 mol% is further more preferable.
  • the structural unit containing a phenolic hydroxy group can be formed by, for example, hydrolyzing a polymer obtained using a monomer such as acyloxystyrene such as acetoxystyrene in the presence of a base such as triethylamine. it can.
  • the polymer may have other structural units other than the structural units (I) to (III).
  • other structural units include a structural unit containing a carboxy group, a cyano group, a nitro group, a sulfonamide group, or a combination thereof, and a structural unit containing a non-dissociable hydrocarbon group.
  • the upper limit of the content ratio of the structural units is preferably 20 mol%, preferably 10 mol%, based on all structural units constituting the [A] polymer. More preferred.
  • the lower limit of the content of the polymer is preferably 70% by mass and more preferably 80% by mass with respect to the total solid content of the radiation-sensitive resin composition (total of components other than [D] solvent). Preferably, 85 mass% is more preferable. As an upper limit of the said content, 99 mass% is preferable and 95 mass% is more preferable.
  • a polymer can contain 1 type, or 2 or more types.
  • the polymer can be synthesized, for example, by polymerizing monomers that give each structural unit in a solvent using a radical polymerization initiator or the like.
  • the lower limit of the weight average molecular weight (Mw) in terms of polystyrene by gel permeation chromatography (GPC) of the polymer is preferably 1,000, more preferably 3,000, still more preferably 4,000, 000 is particularly preferred.
  • the upper limit of Mw is preferably 50,000, more preferably 30,000, still more preferably 20,000, and particularly preferably 10,000.
  • the upper limit of the ratio (Mw / Mn) of Mw to the number average molecular weight (Mn) in terms of polystyrene by GPC of the polymer is preferably 5, more preferably 3, more preferably 2, and particularly preferably 1.6. .
  • the lower limit of the ratio is usually 1 and preferably 1.1.
  • Mw and Mn of the polymer in this specification are values measured using gel permeation chromatography (GPC) under the following conditions.
  • GPC column 2 "G2000HXL” from Tosoh Corporation, 1 "G3000HXL” and 1 "G4000HXL” Column temperature: 40 ° C
  • Elution solvent Tetrahydrofuran (Wako Pure Chemical Industries)
  • Flow rate 1.0 mL / min
  • Sample concentration 1.0% by mass
  • Sample injection volume 100 ⁇ L
  • Detector Differential refractometer Standard material: Monodisperse polystyrene
  • the acid generator is a substance that generates an acid upon irradiation with radiation. This generated acid dissociates the acid-dissociable group of the [A] polymer and the like to generate a carboxy group, a hydroxy group, and the like, and the solubility of the [A] polymer in the developer changes.
  • a resist pattern can be formed from the conductive resin composition.
  • the [B] acid generator contained in the radiation-sensitive resin composition was incorporated as part of the polymer even in the form of a low molecular compound (hereinafter also referred to as “[B] acid generator”). It may be in the form or both forms.
  • Examples of the acid generated from the acid generator include sulfonic acid and imide acid.
  • Examples of the [B] acid generator include onium salt compounds, N-sulfonyloxyimide compounds, sulfonimide compounds, halogen-containing compounds, diazoketone compounds, and the like.
  • onium salt compounds examples include sulfonium salts, tetrahydrothiophenium salts, iodonium salts, phosphonium salts, diazonium salts, pyridinium salts, and the like.
  • [B] acid generator examples include compounds described in paragraphs [0080] to [0113] of JP2009-134088A.
  • Examples of the acid generator include compounds represented by the following formula (4).
  • a ⁇ represents a monovalent sulfonate anion or a monovalent imido acid anion.
  • T + is a monovalent radiation-sensitive onium cation.
  • Examples of the [B] acid generator that generates sulfonic acid upon irradiation with radiation include a compound represented by the following formula (4-1) (hereinafter also referred to as “compound (4-1)”).
  • compound (4-1) a compound represented by the following formula (4-1)
  • the diffusion length of the acid generated by exposure in the resist film is appropriately shortened by the interaction with the structural unit (I) of the polymer [A].
  • the LWR performance and the like of the radiation sensitive resin composition can be further improved.
  • R p1 is a monovalent group containing a ring structure having 5 or more ring members.
  • R p2 is a divalent linking group.
  • R p3 and R p4 are each independently a hydrogen atom, a fluorine atom, a monovalent hydrocarbon group having 1 to 20 carbon atoms or a monovalent fluorinated hydrocarbon group having 1 to 20 carbon atoms.
  • R p5 and R p6 are each independently a fluorine atom or a monovalent fluorinated hydrocarbon group having 1 to 20 carbon atoms.
  • n p1 is an integer of 0 to 10.
  • n p2 is an integer of 0 to 10.
  • n p3 is an integer of 0 to 10.
  • n p1 + n p2 + n p3 is 1 or more and 30 or less.
  • the plurality of R p2 may be the same or different.
  • the plurality of R p3 may be the same or different, and the plurality of R p4 may be the same or different.
  • the plurality of R p5 may be the same or different, and the plurality of R p6 may be the same or different.
  • T + is a monovalent radiation-sensitive onium cation.
  • Examples of the monovalent group including a ring structure having 5 or more ring members represented by R p1 include a monovalent group including an alicyclic structure having 5 or more ring members and an aliphatic heterocyclic structure having 5 or more ring members.
  • Examples of the alicyclic structure having 5 or more ring members include monocyclic saturated alicyclic structures such as a cyclopentane structure, a cyclohexane structure, a cycloheptane structure, a cyclooctane structure, a cyclononane structure, a cyclodecane structure, and a cyclododecane structure; Monocyclic unsaturated alicyclic structure such as cyclopentene structure, cyclohexene structure, cycloheptene structure, cyclooctene structure, cyclodecene structure; Polycyclic saturated alicyclic structures such as norbornane structure, adamantane structure, tricyclodecane structure and tetracyclododecane structure; Examples thereof include polycyclic unsaturated alicyclic structures such as a norbornene structure and a tricyclodecene structure.
  • Examples of the aliphatic heterocyclic structure having 5 or more ring members include lactone structures such as a hexanolactone structure and a norbornane lactone structure; Sultone structures such as hexanosultone structure and norbornane sultone structure; An oxygen atom-containing heterocyclic structure such as an oxacycloheptane structure or an oxanorbornane structure; Nitrogen atom-containing heterocyclic structures such as azacyclohexane structure and diazabicyclooctane structure; And sulfur atom-containing heterocyclic structures such as a thiacyclohexane structure and a thianorbornane structure.
  • Examples of the aromatic ring structure having 5 or more ring members include a benzene structure, a naphthalene structure, a phenanthrene structure, and an anthracene structure.
  • Examples of the aromatic heterocyclic structure having 5 or more ring members include oxygen atom-containing heterocyclic structures such as a furan structure, a pyran structure, a benzofuran structure, and a benzopyran structure; Examples thereof include a nitrogen atom-containing heterocyclic structure such as a pyridine structure, a pyrimidine structure and an indole structure.
  • the lower limit of the number of ring members of the ring structure of R p1 is preferably 6, more preferably 8, more preferably 9, and particularly preferably 10.
  • the upper limit of the number of ring members is preferably 15, more preferably 14, more preferably 13, and particularly preferably 12.
  • a part or all of the hydrogen atoms contained in the ring structure of R p1 may be substituted with a substituent.
  • substituents include halogen atoms such as fluorine atom, chlorine atom, bromine atom and iodine atom, hydroxy group, carboxy group, cyano group, nitro group, alkoxy group, alkoxycarbonyl group, alkoxycarbonyloxy group, acyl group, Examples include an acyloxy group. Of these, a hydroxy group is preferred.
  • R p1 is preferably a monovalent group containing an alicyclic structure having 5 or more ring members or a monovalent group containing an aliphatic heterocyclic structure having 5 or more ring members, and 1 containing an alicyclic structure having 9 or more ring members. More preferred are monovalent groups or monovalent groups containing an aliphatic heterocyclic structure having 9 or more ring members, such as an adamantyl group, a hydroxyadamantyl group, a norbornane lactone-yl group, a norbornane sultone-yl group, or a 5-oxo-4-oxa group. A tricyclo [4.3.1.1 3,8 ] undecan-yl group is more preferred, and an adamantyl group is particularly preferred.
  • Examples of the divalent linking group represented by R p2 include a carbonyl group, an ether group, a carbonyloxy group, a sulfide group, a thiocarbonyl group, a sulfonyl group, and a divalent hydrocarbon group.
  • a carbonyloxy group, a sulfonyl group, an alkanediyl group or a divalent alicyclic saturated hydrocarbon group is preferable
  • a carbonyloxy group and a divalent alicyclic saturated hydrocarbon group are more preferable
  • a carbonyloxy group Or a norbornanediyl group is more preferable
  • a carbonyloxy group is particularly preferable.
  • Examples of the monovalent hydrocarbon group having 1 to 20 carbon atoms represented by R p3 or R p4 include an alkyl group having 1 to 20 carbon atoms.
  • Examples of the monovalent fluorinated hydrocarbon group having 1 to 20 carbon atoms represented by R p3 or R p4 include a fluorinated alkyl group having 1 to 20 carbon atoms.
  • R p3 or R p4 is preferably a hydrogen atom, a fluorine atom or a fluorinated alkyl group, more preferably a fluorine atom or a perfluoroalkyl group, and even more preferably a fluorine atom or a trifluoromethyl group.
  • Examples of the monovalent fluorinated hydrocarbon group having 1 to 20 carbon atoms represented by R p5 or R p6 include a fluorinated alkyl group having 1 to 20 carbon atoms.
  • R p5 or R p6 is preferably a fluorine atom or a fluorinated alkyl group, more preferably a fluorine atom or a perfluoroalkyl group, still more preferably a fluorine atom or a trifluoromethyl group, and particularly preferably a fluorine atom.
  • n p1 is preferably an integer of 0 to 5, more preferably an integer of 0 to 3, further preferably an integer of 0 to 2, and particularly preferably 0 or 1.
  • n p2 is preferably an integer of 0 to 5, more preferably an integer of 0 to 2, still more preferably 0 or 1, and particularly preferably 0.
  • np3 1 is preferable and 2 is more preferable.
  • the upper limit of n p3 is preferably 4, more preferably 3, and even more preferably 2.
  • the lower limit of n p1 + n p2 + n p3 is preferably 2 and more preferably 4.
  • the upper limit of n p1 + n p2 + n p3 is preferably 20, and more preferably 10.
  • Examples of the monovalent radiation-sensitive onium cation represented by T + include a cation represented by the following formula (r ⁇ a) (hereinafter, also referred to as “cation (r ⁇ a)”), and the following formula (r ⁇ a cation represented by b) (hereinafter also referred to as “cation (rb)”), a cation represented by the following formula (rc) (hereinafter also referred to as “cation (rc)”), and the like. Can be mentioned.
  • R B3 and R B4 are each independently a monovalent organic group having 1 to 20 carbon atoms.
  • R B5 is a monovalent organic group having 1 to 20 carbon atoms, a hydroxy group, a nitro group, or a halogen atom.
  • b3 is independently an integer of 0 to 5. If R B5 is plural, the plurality of R B5 may be the same or different, and the plurality of R B5, may constitute a keyed ring structure.
  • n bb is an integer of 0 to 3.
  • Examples of the monovalent organic group having 1 to 20 carbon atoms represented by R B3 , R B4, or R B5 include, for example, a monovalent hydrocarbon group having 1 to 20 carbon atoms, and a carbon-carbon gap of the hydrocarbon group.
  • R B3 or R B4 is preferably a monovalent unsubstituted hydrocarbon group having 1 to 20 carbon atoms or a hydrocarbon group in which a hydrogen atom is substituted with a substituent, and a monovalent unsubstituted group having 6 to 18 carbon atoms.
  • R B3 or R B4 is preferably a monovalent unsubstituted hydrocarbon group having 1 to 20 carbon atoms or a hydrocarbon group in which a hydrogen atom is substituted with a substituent, and a monovalent unsubstituted group having 6 to 18 carbon atoms.
  • an aromatic hydrocarbon group in which a hydrogen atom is substituted with a substituent is more preferable, and a phenyl group is more preferable.
  • Examples of the substituent which may be substituted for the hydrogen atom of the monovalent hydrocarbon group having 1 to 20 carbon atoms represented by R B3 or R B4 include substituted or unsubstituted 1 to 20 carbon atoms.
  • Valent hydrocarbon group, —OSO 2 —R k , —SO 2 —R k , —OR k , —COOR k , —O—CO—R k , —O—R kk —COOR k , —R kk —CO -R k, or -S-R k are preferred.
  • R k is a monovalent hydrocarbon group having 1 to 10 carbon atoms.
  • R kk is a single bond or a divalent hydrocarbon group having 1 to 10 carbon atoms.
  • R B5 is a substituted or unsubstituted monovalent hydrocarbon group having 1 to 20 carbon atoms, —OSO 2 —R k , —SO 2 —R k , —OR k , —COOR k , —O—CO— R k , —O—R kk —COOR k , —R kk —CO—R k or —S—R k is preferred.
  • R k is a monovalent hydrocarbon group having 1 to 10 carbon atoms.
  • R kk is a single bond or a divalent hydrocarbon group having 1 to 10 carbon atoms.
  • R B6 and R B7 are each independently a monovalent organic group having 1 to 20 carbon atoms, a hydroxy group, a nitro group, or a halogen atom.
  • b4 is an integer of 0 to 7. If R B6 is plural, the plurality of R B6 may be the same or different, and plural R B6 may constitute The combined ring structure.
  • b5 is an integer of 0 to 6. If R B7 is plural, R B7 may be the same or different, and plural R B7 may constitute The combined ring structure.
  • n b2 is an integer of 0 to 3.
  • R B8 is a single bond or a divalent organic group having 1 to 20 carbon atoms.
  • n b1 is an integer of 0-2.
  • R B6 or R B7 includes a substituted or unsubstituted monovalent hydrocarbon group having 1 to 20 carbon atoms, —OR k , —COOR k , —O—CO—R k , —O—R kk —COOR. k or —R kk —CO—R k is preferred.
  • R k is a monovalent hydrocarbon group having 1 to 10 carbon atoms.
  • R kk is a single bond or a divalent hydrocarbon group having 1 to 10 carbon atoms.
  • R B9 and R B10 are each independently a monovalent organic group having 1 to 20 carbon atoms, a hydroxy group, a nitro group, or a halogen atom.
  • b6 and b7 are each independently an integer of 0 to 5. If R B9 is plural, plural R B9 may be the same or different, and plural R B9 may constitute The combined ring structure. If R B10 is plural, R B10 may be the same or different, and plural R B10 may constitute a keyed ring structure.
  • R B9 or R B10 includes a substituted or unsubstituted monovalent hydrocarbon group having 1 to 20 carbon atoms, —OSO 2 —R k , —SO 2 —R k , —OR k , —COOR k , — A ring structure in which two or more of O—CO—R k , —O—R kk —COOR k , —R kk —CO—R k , —S—R k or these groups are combined with each other preferable.
  • R k is a monovalent hydrocarbon group having 1 to 10 carbon atoms.
  • R kk is a single bond or a divalent hydrocarbon group having 1 to 10 carbon atoms.
  • Examples of the monovalent hydrocarbon group having 1 to 20 carbon atoms represented by R B5 , R B6 , R B7 , R B9 or R B10 include a methyl group, an ethyl group, an n-propyl group, an n-butyl group, and the like.
  • a linear alkyl group of branched alkyl groups such as i-propyl group, i-butyl group, sec-butyl group, t-butyl group;
  • Aryl groups such as phenyl group, tolyl group, xylyl group, mesityl group, naphthyl group; Examples include aralkyl groups such as benzyl group and phenethyl group.
  • Examples of the divalent organic group represented by R B8 include one hydrogen atom from the monovalent organic group having 1 to 20 carbon atoms exemplified as R B3 , R B4 and R B5 in the formula (ra). Examples include groups other than atoms.
  • Examples of the substituent that may substitute the hydrogen atom of the hydrocarbon group represented by R B5 , R B6 , R B7 , R B9, or R B10 include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • a halogen atom such as hydroxy group, carboxy group, cyano group, nitro group, alkoxy group, alkoxycarbonyl group, alkoxycarbonyloxy group, acyl group, and acyloxy group.
  • a halogen atom is preferable and a fluorine atom is more preferable.
  • R B5 , R B6 , R B7 , R B9 or R B10 an unsubstituted linear or branched monovalent alkyl group, a monovalent fluorinated alkyl group, an unsubstituted monovalent aromatic carbonization
  • a hydrogen group, —OSO 2 —R k or —SO 2 —R k is preferred, a fluorinated alkyl group and an unsubstituted monovalent aromatic hydrocarbon group are more preferred, and a fluorinated alkyl group is more preferred.
  • an integer of 0 to 2 is preferable, 0 or 1 is more preferable, and 0 is more preferable.
  • n bb 0 or 1 is preferable, and 0 is more preferable.
  • b4 is preferably an integer of 0 to 2, more preferably 0 or 1, and still more preferably 0.
  • b5 is preferably an integer of 0 to 2, more preferably 0 or 1, and still more preferably 0.
  • nb2 , 2 or 3 is preferable and 2 is more preferable.
  • n b1 , 0 or 1 is preferable, and 0 is more preferable.
  • b6 or b7 is preferably an integer of 0 to 2, more preferably 0 or 1, and still more preferably 0.
  • T + is preferably a cation (r ⁇ a), more preferably a triphenylsulfonium cation.
  • Examples of the acid generator include those represented by the following formulas (4-1-1) to (4-1-18) (hereinafter referred to as “compound (4- 1-1) to (4-1-18) ”), for example, compounds represented by the following formulas (4-2-1) to (4-2-3) as acid generators that generate imide acid (Hereinafter also referred to as “compounds (4-2-1) to (4-2-3)”) and the like.
  • T + is a monovalent radiation-sensitive onium cation.
  • Acid generators include compounds (4-1-1) to (4-1-4) and (4-1-16) to (4-1-18), and compound (4-2-1). Is preferred.
  • the lower limit of the content of the [B] acid generator is preferably 0.1 parts by mass with respect to 100 parts by mass of the [A] polymer component. 1 part by mass is more preferable, 5 parts by mass is further preferable, and 10 parts by mass is particularly preferable. As an upper limit of the said content, 50 mass parts is preferable, 40 mass parts is more preferable, 30 mass parts is further more preferable, 25 mass parts is especially preferable.
  • the acid generator can contain 1 type (s) or 2 or more types.
  • X is an oxygen atom or a sulfur atom.
  • R 1 is a hydrogen atom or a monovalent organic group having 1 to 20 carbon atoms.
  • R 2 to R 5 are each independently a hydrogen atom or a monovalent organic group having 1 to 20 carbon atoms, or two or more of these groups are combined with each other and together with the carbon atom to which they are bonded It represents an alicyclic structure or aliphatic heterocyclic structure having 3 to 20 ring members.
  • Z n + is an n-valent cation. n is an integer of 1 to 3.
  • Examples of the monovalent organic group having 1 to 20 carbon atoms represented by R 1 to R 5 include, for example, a monovalent hydrocarbon group having 1 to 20 carbon atoms, a carbon-carbon boundary or a bond side of the hydrocarbon group.
  • Examples of the monovalent hydrocarbon group having 1 to 20 carbon atoms are the same as those exemplified as the monovalent hydrocarbon group having 1 to 20 carbon atoms of R 15 , R 16 and R 17 in the above formula (2). Groups and the like.
  • hetero atom constituting the monovalent or divalent heteroatom-containing group examples include an oxygen atom, a nitrogen atom, a sulfur atom, a phosphorus atom, a silicon atom, and a halogen atom.
  • halogen atom examples include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • divalent heteroatom-containing group examples include —O—, —CO—, —S—, —CS—, —NR′—, a group in which two or more of these are combined, and the like.
  • R ' is a hydrogen atom or a monovalent hydrocarbon group. Of these, —CO— is preferred.
  • Examples of the monovalent heteroatom-containing group include halogen atoms such as fluorine atom, chlorine atom, bromine atom and iodine atom, hydroxy group, carboxy group, cyano group, amino group and sulfanyl group. Among these, a fluorine atom is preferable.
  • Examples of the alicyclic structure having 3 to 20 ring members composed of two or more of the groups R 2 to R 5 and the carbon atom to which they are bonded include a cyclopropane structure, a cyclobutane structure, and a cyclopentane structure.
  • Cyclohexane structure, cyclopentene structure, cyclohexene structure, norbornane structure, adamantane structure, fluorene structure and the like Among these, a cyclohexane structure, an adamantane structure or a fluorene structure is preferable.
  • Examples of the aliphatic heterocyclic structure having 3 to 20 ring members composed of two or more of R 2 to R 5 groups together with the carbon atom to which they are bonded include lactone structure, cyclic carbonate structure, sultone Examples include a structure, an oxacycloalkane structure, an azacycloalkane structure, and a thiacycloalkane structure.
  • a lactone structure is preferable, and a butyrolactone structure or a norbornane lactone structure is more preferable.
  • the monovalent organic group for R 1 is preferably a hydrocarbon group or a group containing a divalent heteroatom-containing group at the end of the bond side of the hydrocarbon group, a chain hydrocarbon group or a chain hydrocarbon group A group containing —CO— at the terminal on the bond side is more preferable, an alkyl group or an alkylcarbonyl group is more preferable, and a methyl group or an acetyl group is particularly preferable.
  • R 1 is preferably a hydrogen atom from the viewpoint of LWR performance.
  • R 2 or R 3 is preferably a substituted or unsubstituted hydrocarbon group, a group containing an aliphatic heterocyclic structure, or a hydrogen atom.
  • a hydrocarbon group, a hydroxy group-substituted hydrocarbon group, a hydroxy group, and a fluorine atom-substituted hydrocarbon Group, a group containing a lactone structure or a hydrogen atom is more preferable, and a methyl group, a cyclohexyl group, a naphthyl group, a butyrolactone-yl group, a hydroxydi (trifluoromethyl) ethyl group, a hydroxydimethylethyl group or a hydrogen atom is more preferable.
  • R 4 or R 5 is preferably a hydrogen atom.
  • Examples of the n-valent cation represented by Z n + include a monovalent cation, an alkali metal cation, etc.
  • Examples of the divalent cation include a divalent onium cation and an alkaline earth metal cation.
  • Examples of the trivalent cation include a trivalent onium cation and a trivalent metal cation.
  • the onium cation may or may not be radiation sensitive.
  • the radiation-sensitive onium cation examples include a sulfonium cation such as a cation exemplified as the T + monovalent radiation-sensitive onium cation of formula (4) of the above-mentioned [B] acid generator, an iodonium cation, a tetrahydrothiophenium cation, and the like. Is mentioned.
  • the divalent or trivalent cation includes both a cation containing a cation moiety having a 2+ or 3+ charge and a cation containing two or three cation moieties having a 1+ charge.
  • N is preferably 1 or 2, and more preferably 1.
  • Z n + is preferably an onium cation, more preferably a monovalent or divalent sulfonium cation, still more preferably a monovalent sulfonium cation, and particularly preferably a triphenylsulfonium cation.
  • Examples of the compound [C] include compounds represented by the following formulas (1-1) to (1-16) (hereinafter also referred to as “compounds (1-1) to (1-16)”). .
  • Z n + has the same meaning as in the above formula (1).
  • the compound [C] is represented, for example, by the following formula (ia) in which R 1 in the above formula (1) is a hydrogen atom, R 2 to R 5 are hydrogen atoms or monovalent organic groups, and n is 1. In the case of a compound, it can be synthesized simply and with good yield according to the following scheme.
  • X is an oxygen atom or a sulfur atom.
  • R 2 to R 5 are each independently a hydrogen atom or a monovalent organic group having 1 to 20 carbon atoms.
  • R 6 is a monovalent organic group having 1 to 20 carbon atoms.
  • Y is a halogen atom.
  • Z + is a monovalent cation.
  • E ⁇ is a monovalent anion.
  • Y is preferably a chlorine atom or a bromine atom, more preferably a bromine atom.
  • the compound (ia) can be isolated by appropriately purifying the obtained product by column chromatography, recrystallization, distillation or the like.
  • [C] compounds other than compound (ia) can also be synthesized by the same method as described above.
  • the lower limit of the content of the compound is preferably 0.1 parts by weight, more preferably 0.5 parts by weight, and even more preferably 0.7 parts by weight with respect to 100 parts by weight of the polymer [A]. 1 part by mass is particularly preferred.
  • the upper limit of the content is preferably 10 parts by mass, more preferably 5 parts by mass, further preferably 3 parts by mass, and particularly preferably 2 parts by mass.
  • the solvent is not particularly limited as long as it is a solvent that can dissolve or disperse at least the [A] polymer, the [B] acid generator, the [C] compound, and an optional component that is optionally contained.
  • Examples of the solvent include alcohol solvents, ether solvents, ketone solvents, amide solvents, ester solvents, hydrocarbon solvents, and the like.
  • alcohol solvents examples include aliphatic monoalcohol solvents having 1 to 18 carbon atoms such as 4-methyl-2-pentanol and n-hexanol; An alicyclic monoalcohol solvent having 3 to 18 carbon atoms such as cyclohexanol; A polyhydric alcohol solvent having 2 to 18 carbon atoms such as 1,2-propylene glycol; Examples thereof include polyhydric alcohol partial ether solvents having 3 to 19 carbon atoms such as propylene glycol monomethyl ether.
  • ether solvents include dialkyl ether solvents such as diethyl ether, dipropyl ether, dibutyl ether, dipentyl ether, diisoamyl ether, dihexyl ether, and diheptyl ether; Cyclic ether solvents such as tetrahydrofuran and tetrahydropyran; And aromatic ring-containing ether solvents such as diphenyl ether and anisole.
  • dialkyl ether solvents such as diethyl ether, dipropyl ether, dibutyl ether, dipentyl ether, diisoamyl ether, dihexyl ether, and diheptyl ether
  • Cyclic ether solvents such as tetrahydrofuran and tetrahydropyran
  • aromatic ring-containing ether solvents such as diphenyl ether and anisole.
  • ketone solvent examples include acetone, methyl ethyl ketone, methyl-n-propyl ketone, methyl-n-butyl ketone, diethyl ketone, methyl-iso-butyl ketone, 2-heptanone, ethyl-n-butyl ketone, methyl-n-hexyl ketone, Chain ketone solvents such as di-iso-butyl ketone and trimethylnonanone: Cyclic ketone solvents such as cyclopentanone, cyclohexanone, cycloheptanone, cyclooctanone and methylcyclohexanone: Examples include 2,4-pentanedione, acetonylacetone, acetophenone, and the like.
  • amide solvent examples include cyclic amide solvents such as N, N′-dimethylimidazolidinone and N-methylpyrrolidone; Examples thereof include chain amide solvents such as N-methylformamide, N, N-dimethylformamide, N, N-diethylformamide, acetamide, N-methylacetamide, N, N-dimethylacetamide, and N-methylpropionamide.
  • cyclic amide solvents such as N, N′-dimethylimidazolidinone and N-methylpyrrolidone
  • chain amide solvents such as N-methylformamide, N, N-dimethylformamide, N, N-diethylformamide, acetamide, N-methylacetamide, N, N-dimethylacetamide, and N-methylpropionamide.
  • ester solvents include monocarboxylic acid ester solvents such as n-butyl acetate and ethyl lactate; Polyhydric alcohol carboxylate solvents such as propylene glycol acetate; Polyhydric alcohol partial ether carboxylate solvents such as propylene glycol monomethyl ether acetate; Polycarboxylic acid diester solvents such as diethyl oxalate; Examples thereof include carbonate solvents such as dimethyl carbonate and diethyl carbonate.
  • monocarboxylic acid ester solvents such as n-butyl acetate and ethyl lactate
  • Polyhydric alcohol carboxylate solvents such as propylene glycol acetate
  • Polyhydric alcohol partial ether carboxylate solvents such as propylene glycol monomethyl ether acetate
  • Polycarboxylic acid diester solvents such as diethyl oxalate
  • Examples thereof include carbonate solvents such as dimethyl carbonate and diethyl carbonate.
  • hydrocarbon solvent examples include aliphatic hydrocarbon solvents having 5 to 12 carbon atoms such as n-pentane and n-hexane; Examples thereof include aromatic hydrocarbon solvents having 6 to 16 carbon atoms such as toluene and xylene.
  • a solvent can contain 1 sort (s) or 2 or more sorts.
  • the polymer is a polymer having a larger mass content of fluorine atoms than the [A] polymer.
  • the polymer having a higher hydrophobicity than the [A] polymer as the base resin tends to be unevenly distributed in the resist film surface layer, and the [E] polymer has a larger mass content of fluorine atoms than the [A] polymer. Therefore, there is a tendency to be unevenly distributed in the surface layer of the resist film due to the characteristics resulting from the hydrophobicity.
  • the radiation sensitive resin composition it is possible to suppress the elution of the acid generator, the acid diffusion control agent, and the like during the immersion exposure into the immersion medium.
  • the advancing contact angle between the resist film and the immersion medium can be controlled within a desired range due to the properties resulting from the hydrophobicity of the [E] polymer, and bubble defects can be controlled. Generation can be suppressed. Furthermore, according to the radiation-sensitive resin composition, the receding contact angle between the resist film and the immersion medium is increased, and high-speed scanning exposure is possible without leaving water droplets.
  • the radiation-sensitive resin composition can form a resist film suitable for the immersion exposure method by containing the [E] polymer as described above.
  • the lower limit of the mass content of fluorine atoms in the polymer is preferably 1% by mass, more preferably 2% by mass, and even more preferably 3% by mass.
  • As an upper limit of the said mass content rate 60 mass% is preferable, 50 mass% is more preferable, and 40 mass% is further more preferable.
  • the fluorine atom content in the polymer is not particularly limited, and may be bonded to any of the main chain, the side chain, and the terminal, but is a structural unit containing a fluorine atom (hereinafter, “structural unit (f)”) It is preferable to have (also called).
  • structural unit (f) a structural unit containing a fluorine atom
  • the polymer preferably has a structural unit containing an acid-dissociable group from the viewpoint of improving development defect suppression of the radiation-sensitive resin composition.
  • the structural unit containing an acid dissociable group include the structural unit (I) in the [A] polymer.
  • the [E] polymer preferably has an alkali dissociable group.
  • the “alkali dissociable group” is a group that replaces a hydrogen atom such as a carboxy group or a hydroxy group, and dissociates in an aqueous alkali solution (eg, 2.38 mass% tetramethylammonium hydroxide aqueous solution at 23 ° C.). Refers to the group.
  • structural unit (f) a structural unit represented by the following formula (f-1) (hereinafter also referred to as “structural unit (f-1)”) or a structural unit represented by the following formula (f-2) (Hereinafter also referred to as “structural unit (f-2)”) is preferable.
  • the structural unit (f) may have one or more structural units (f-1) or structural units (f-2).
  • the structural unit (f-1) is a structural unit represented by the following formula (f-1). [E] By having the structural unit (f-1) in the polymer, the mass content of fluorine atoms can be adjusted.
  • R J represents a hydrogen atom, a fluorine atom, a methyl group or a trifluoromethyl group.
  • G is a single bond, an oxygen atom, a sulfur atom, —COO—, —SO 2 NH—, —CONH— or —OCONH—.
  • R K is a monovalent monovalent fluorine cycloaliphatic hydrocarbon group chain fluorinated hydrocarbon group or a C 4-20 having 1 to 6 carbon atoms.
  • R J is preferably a hydrogen atom or a methyl group, and more preferably a methyl group, from the viewpoint of the copolymerizability of the monomer that provides the structural unit (f-1).
  • G is preferably —COO—, —SO 2 NH—, —CONH— or —OCONH—, more preferably —COO—.
  • R as the monovalent fluorinated chain hydrocarbon group having 1 to 6 carbon atoms represented by K, for example, some or all of the linear hydrogen atoms to 1 carbon atoms which is substituted by fluorine atom 6 Or a branched alkyl group is mentioned.
  • Monocyclic monovalent fluorine cycloaliphatic hydrocarbon group for example, some or carbon number of 4 to 20 substitution all of the hydrogen atoms by fluorine atoms of the above R 4 to 20 carbon atoms represented by K Or a polycyclic alicyclic hydrocarbon group etc. are mentioned.
  • the R K preferably a fluorinated chain hydrocarbon group, a 2,2,2-trifluoroethyl group or a 1,1,1,3,3,3-hexafluoro-2-propyl group is more preferred, 2 More preferred is a 2,2-trifluoroethyl group.
  • the lower limit of the content ratio of the structural unit (f-1) is 10 mol% with respect to all the structural units constituting the [E] polymer. Is preferable, and 20 mol% is more preferable. As an upper limit of the said content rate, 100 mol% is preferable and 70 mol% is more preferable.
  • the structural unit (f-2) is represented by the following formula (f-2). [E] When the polymer has the structural unit (f-2), the solubility in an alkaline developer is improved, and the occurrence of development defects can be suppressed.
  • the structural unit (f-2) includes (x) an alkali-soluble group, and (y) a group that dissociates by the action of an alkali and increases the solubility in an alkali developer (hereinafter referred to as “alkali-dissociable group”). It is roughly divided into two cases.
  • R C represents a hydrogen atom, a fluorine atom, a methyl group or a trifluoromethyl group.
  • R D is a single bond, a (s + 1) -valent hydrocarbon group having 1 to 20 carbon atoms, an oxygen atom, a sulfur atom, —NR dd —, a carbonyl group, —COO— or a terminal at the R E side of this hydrocarbon group It is a structure in which —CONH— is bonded, or a structure in which part of the hydrogen atoms of the hydrocarbon group is substituted with an organic group having a hetero atom.
  • R dd is a hydrogen atom or a monovalent hydrocarbon group having 1 to 10 carbon atoms.
  • s is an integer of 1 to 3. However, when s is 1, RD is not a single bond.
  • R F is a hydrogen atom
  • a 1 is an oxygen atom, —COO— * or —SO 2 O— *. * Indicates a site that binds to R F.
  • W 1 is a single bond, a hydrocarbon group having 1 to 20 carbon atoms, or a divalent fluorinated hydrocarbon group.
  • a 1 is an oxygen atom
  • W 1 is a fluorinated hydrocarbon group having a fluorine atom or a fluoroalkyl group on the carbon atom to which A 1 is bonded.
  • R E is a single bond or a divalent organic group having 1 to 20 carbon atoms.
  • the plurality of R E , W 1 , A 1 and R F are the same or different.
  • the structural unit (f-2) has (x) an alkali-soluble group, the affinity for an alkali developer can be increased and development defects can be suppressed.
  • a 1 is an oxygen atom
  • W 1 is 1,1,1,3,3,3-hexafluoro-2,2-propanediyl. Particularly preferred is the group.
  • R F is a monovalent organic group having 1 to 30 carbon atoms
  • a 1 is an oxygen atom, —NR aa —, —COO— * Or —SO 2 O— *.
  • R aa is a hydrogen atom or a monovalent hydrocarbon group having 1 to 10 carbon atoms. * Indicates a site that binds to R F.
  • W 1 is a single bond or a divalent fluorinated hydrocarbon group having 1 to 20 carbon atoms.
  • R E is a single bond or a divalent organic group having 1 to 20 carbon atoms.
  • W 1 or R F has a fluorine atom on the carbon atom bonded to A 1 or on the adjacent carbon atom.
  • a 1 is an oxygen atom
  • W 1 and R E are single bonds
  • R D is a structure in which a carbonyl group is bonded to the terminal on the R E side of a hydrocarbon group having 1 to 20 carbon atoms
  • F is an organic group having a fluorine atom.
  • s is 2 or 3
  • a plurality of R E , W 1 , A 1 and R F may be the same or different.
  • the structural unit (f-2) has (y) an alkali-dissociable group
  • the resist film surface changes from hydrophobic to hydrophilic in the alkali development step.
  • the affinity for the developer can be greatly increased and development defects can be more efficiently suppressed.
  • the structural unit (f-2) having an alkali dissociable group those in which A 1 is —COO— * and R F or W 1 or both have a fluorine atom are particularly preferred.
  • R C is preferably a hydrogen atom or a methyl group, more preferably a methyl group, from the viewpoint of the copolymerizability of the monomer giving the structural unit (f-2).
  • R E is a divalent organic group
  • a group having a lactone structure is preferable, a group having a polycyclic lactone structure is more preferable, and a group having a norbornane lactone structure is more preferable.
  • the lower limit of the content ratio of the structural unit (f-2) is 1 mol% with respect to all the structural units constituting the [E] polymer. Is preferable, and 10 mol% is more preferable. As an upper limit of the said content rate, 70 mol% is preferable and 50 mol% is more preferable.
  • the lower limit of the content ratio of the structural unit (f) is preferably 10 mol%, more preferably 20 mol%, and even more preferably 30 mol% with respect to all structural units constituting the [E] polymer.
  • 100 mol% is preferable, 90 mol% is more preferable, and 85 mol% is further more preferable.
  • the lower limit of the structural unit containing an acid dissociable group in the polymer is preferably 5 mol%, more preferably 10 mol%, and more preferably 15 mol% with respect to all structural units constituting the [E] polymer. Is more preferable.
  • As an upper limit of the said content rate 90 mol% is preferable, 75 mol% is more preferable, and 50 mol% is further more preferable.
  • the said radiation sensitive resin composition contains a [E] polymer
  • a [E] polymer as a minimum of content of a [E] polymer, 0.1 mass part is preferable with respect to 100 mass parts of [A] polymers. 0.5 parts by mass is more preferable, 1 part by mass is further preferable, and 2 parts by mass is particularly preferable. As an upper limit of the said content, 30 mass parts is preferable, 20 mass parts is more preferable, 15 mass parts is further more preferable, and 10 mass parts is especially preferable.
  • the radiation sensitive resin composition may contain one or more [E] polymers.
  • the polymer can be synthesized by the same method as the above-mentioned [A] polymer.
  • the lower limit of Mw by GPC of the polymer is preferably 1,000, more preferably 3,000, still more preferably 4,000, and particularly preferably 5,000.
  • the upper limit of Mw is preferably 50,000, more preferably 30,000, still more preferably 20,000, and particularly preferably 10,000.
  • the lower limit of the ratio of Mw to Mn (Mw / Mn) by GPC of the polymer is usually 1, and preferably 1.2.
  • As an upper limit of the ratio 5 is preferable, 3 is more preferable, and 2 is more preferable.
  • ⁇ Other optional components In the radiation-sensitive resin composition, as other optional components, there may be mentioned, for example, an acid diffusion controller other than the [C] compound, an uneven distribution accelerator, a surfactant and the like. Each of these other optional components may be used alone or in combination of two or more.
  • the said radiation sensitive resin composition may contain another acid diffusion control body as needed.
  • a form of a free compound hereinafter referred to as “other acid diffusion controller” as appropriate
  • acid diffusion control agents for example, a compound having one nitrogen atom such as monoalkylamine, a compound having two nitrogen atoms such as ethylenediamine, a compound having three or more nitrogen atoms such as polyethyleneimine, Amide group-containing compounds such as N, N-dimethylacetamide, urea compounds such as 1,1,3,3-tetramethylurea, N- (undecylcarbonyloxyethyl) morpholine, Nt-butoxycarbonyl-4-hydroxy And nitrogen-containing heterocyclic compounds such as piperidine.
  • a compound having one nitrogen atom such as monoalkylamine
  • a compound having two nitrogen atoms such as ethylenediamine
  • a compound having three or more nitrogen atoms such as polyethyleneimine
  • Amide group-containing compounds such as N, N-dimethylacetamide, urea compounds such as 1,1,3,3-tetramethylurea, N- (undecylcarbonyloxyethyl) morph
  • photodegradable bases that generate a weak acid upon exposure to light such as triphenylsulfonium salicylate and triphenylsulfonium 10-camphorsulfonate (however, those corresponding to the compound [C] Can be used.
  • the said radiation sensitive resin composition contains another acid diffusion control agent
  • an upper limit of content of another acid diffusion control agent 5 mass parts is preferable with respect to 100 mass parts of [A] polymers. 3 parts by mass is more preferable, and 1 part by mass is more preferable.
  • the radiation-sensitive resin composition may contain one or more other acid diffusion controllers.
  • the uneven distribution accelerator has an effect of segregating the [E] polymer on the resist film surface more efficiently when the radiation-sensitive resin composition contains the [E] polymer.
  • the uneven distribution accelerator By adding the uneven distribution accelerator to the radiation sensitive resin composition, the amount of the [E] polymer added can be reduced as compared with the conventional case. Therefore, it is possible to further suppress the elution of components from the resist film to the immersion liquid without impairing the LWR performance, etc., and to perform immersion exposure at a higher speed by high-speed scanning, resulting in a watermark defect. It is possible to improve the hydrophobicity of the resist film surface that suppresses immersion-derived defects such as the above.
  • Examples of such an uneven distribution promoter include low molecular compounds having a relative dielectric constant of 30 or more and 200 or less and a boiling point at 1 atm of 100 ° C. or more.
  • Specific examples of such compounds include lactone compounds, carbonate compounds, nitrile compounds, and polyhydric alcohols.
  • lactone compound examples include ⁇ -butyrolactone, valerolactone, mevalolactone, norbornane lactone, and the like.
  • carbonate compound examples include propylene carbonate, ethylene carbonate, butylene carbonate, vinylene carbonate, and the like.
  • nitrile compound examples include succinonitrile.
  • polyhydric alcohol examples include glycerin.
  • the lower limit of the content of the uneven distribution accelerator is 100 parts by mass with respect to the total amount of the polymer contained in the radiation-sensitive resin composition. 10 mass parts is preferable, 15 mass parts is more preferable, 20 mass parts is further more preferable, and 25 mass parts is especially preferable. As an upper limit of the said content, 500 mass parts is preferable, 300 mass parts is more preferable, 200 mass parts is further more preferable, 100 mass parts is especially preferable.
  • surfactants have the effect of improving coatability, striation, developability, and the like.
  • examples of the surfactant include nonionic surfactants such as polyoxyethylene lauryl ether.
  • surfactant as an upper limit of content of surfactant, 2 mass parts is preferable with respect to 100 mass parts of [A] polymers.
  • the radiation-sensitive resin composition includes, for example, [A] polymer, [B] acid generator, [C] compound, [D] solvent, and optionally [E] polymer and other optional components in a predetermined ratio. And the mixture obtained is preferably prepared by filtering with, for example, a filter having a pore size of about 0.2 ⁇ m.
  • a filter having a pore size of about 0.2 ⁇ m As a minimum of solid concentration of the radiation sensitive resin composition, 0.1 mass% is preferred, 0.5 mass% is more preferred, and 1 mass% is still more preferred. As an upper limit of the said solid content concentration, 50 mass% is preferable, 30 mass% is more preferable, and 10 mass% is further more preferable.
  • ⁇ Resist pattern formation method> a step of applying the radiation-sensitive resin composition to one surface of a substrate (hereinafter also referred to as “coating step”) and a resist film obtained by the coating step are exposed. And a step of developing the exposed resist film (hereinafter also referred to as “developing step”).
  • the resist pattern forming method since the radiation-sensitive resin composition is used, the LWR is small, the resolution is high, the rectangular shape of the cross-sectional shape is excellent, and the film shrinks while exhibiting excellent depth of focus. A suppressed resist pattern can be formed.
  • each step will be described.
  • the radiation sensitive resin composition is applied to one surface of the substrate.
  • a resist film is formed.
  • the substrate on which the resist film is formed include conventionally known ones such as a silicon wafer, silicon dioxide, and a wafer coated with aluminum.
  • an organic or inorganic antireflection film disclosed in Japanese Patent Publication No. 6-12452 and Japanese Patent Application Laid-Open No. 59-93448 may be formed on the substrate.
  • the coating method include spin coating, spin coating, and roll coating.
  • pre-baking (PB) may be performed as needed to volatilize the solvent in the coating film. As a minimum of the temperature of PB, 60 degreeC is preferable and 80 degreeC is more preferable.
  • the lower limit of the PB time is preferably 5 seconds, and more preferably 10 seconds.
  • the upper limit of the time is preferably 600 seconds, and more preferably 300 seconds.
  • 10 nm is preferable and 20 nm is more preferable.
  • 1,000 nm is preferable, and 500 nm is more preferable.
  • the direct immersion of the immersion liquid and the resist film is performed on the formed resist film.
  • an immersion protective film that is insoluble in the immersion liquid may be provided.
  • a solvent peeling type protective film that peels off with a solvent before the developing process see JP 2006-227632 A
  • a developer peeling type protective film that peels off simultaneously with development in the developing process International Publication No. 2005/069096 and International Publication No. 2006/035790
  • the resist film obtained by the coating step is exposed.
  • This exposure is performed by irradiating exposure light through a photomask (in some cases through an immersion medium such as water).
  • electromagnetic waves such as visible light, ultraviolet light, far ultraviolet light, extreme ultraviolet light (EUV), X-rays and ⁇ rays; charged particle beams such as electron beams and ⁇ rays, depending on the line width of the target pattern.
  • EUV extreme ultraviolet light
  • charged particle beams such as electron beams and ⁇ rays, depending on the line width of the target pattern.
  • ArF excimer laser light (wavelength 193 nm), KrF excimer laser light (wavelength 248 nm), EUV or electron beams are more preferable, ArF excimer laser light, EUV or electron beams are more preferable. Further preferred.
  • the immersion liquid to be used include water and a fluorine-based inert liquid.
  • the immersion liquid is preferably a liquid that is transparent to the exposure wavelength and has a refractive index with a temperature coefficient that is as small as possible so as to minimize distortion of the optical image projected onto the film.
  • water it is preferable to use water from the viewpoints of availability and easy handling in addition to the above-described viewpoints.
  • an additive that reduces the surface tension of water and increases the surface activity may be added in a small proportion. This additive is preferably one that does not dissolve the resist film on the wafer and can ignore the influence on the optical coating on the lower surface of the lens.
  • the water used is preferably distilled water.
  • PEB post exposure baking
  • This PEB can increase the difference in solubility in the developer between the exposed portion and the unexposed portion.
  • 50 degreeC is preferable and 80 degreeC is more preferable.
  • 80 degreeC is more preferable.
  • 180 degreeC is preferable and 130 degreeC is more preferable.
  • the lower limit of the PEB time is preferably 5 seconds, and more preferably 10 seconds.
  • the upper limit of the time is preferably 600 seconds, and more preferably 300 seconds.
  • the radiation sensitive resin composition described above since the radiation sensitive resin composition described above is used, shrinkage of the resist film during PEB can be suppressed.
  • the exposed resist film is developed. Thereby, a predetermined resist pattern can be formed. After development, it is common to wash with water or a rinse solution such as alcohol and then dry.
  • the development method in the development step may be alkali development or organic solvent development. In the case of organic solvent development, since the exposed portion forms a resist pattern, the radiation-sensitive resin composition has a great advantage due to its excellent film shrinkage suppression.
  • examples of the developer used for development include sodium hydroxide, potassium hydroxide, sodium carbonate, sodium silicate, sodium metasilicate, aqueous ammonia, ethylamine, n-propylamine, diethylamine, and di-n-.
  • TMAH tetramethylammonium hydroxide
  • pyrrole pyrrole
  • piperidine choline
  • 1,8-diazabicyclo- [5.4.0] -7-undecene 1,8-diazabicyclo- [4.3.0] -5-nonene and the like
  • an alkaline aqueous solution in which at least one kind of alkaline compound is dissolved.
  • a TMAH aqueous solution is preferable, and a 2.38 mass% TMAH aqueous solution is more preferable.
  • examples of the developer include hydrocarbon solvents, ether solvents, ester solvents, ketone solvents, alcohol solvents, and other organic solvents, and solvents containing the above organic solvents.
  • organic solvent the 1 type (s) or 2 or more types of the solvent enumerated as [D] solvent of the above-mentioned radiation sensitive resin composition are mentioned, for example.
  • an ester solvent or a ketone solvent is preferable.
  • the ester solvent an acetate solvent is preferable, and n-butyl acetate is more preferable.
  • the ketone solvent is preferably a chain ketone, more preferably 2-heptanone.
  • 80 mass% is preferred, 90 mass% is more preferred, 95 mass% is still more preferred, and 99 mass% is especially preferred.
  • components other than the organic solvent in the developer include water and silicone oil.
  • a developing method for example, a method in which a substrate is immersed in a tank filled with a developer for a certain period of time (dip method), a method in which the developer is raised on the surface of the substrate by surface tension and is left stationary for a certain time (paddle method) ), A method of spraying the developer on the substrate surface (spray method), a method of continuously applying the developer while scanning the developer coating nozzle on the substrate rotating at a constant speed (dynamic dispensing method) Etc.
  • the acid diffusion controller of the present invention is represented by the following formula (1 ′). Since the acid diffusion control agent has the above-described properties, it can be suitably used as an acid diffusion control agent component of the radiation-sensitive resin composition, and its LWR performance and the like can be improved.
  • X is an oxygen atom or a sulfur atom.
  • R 1 is a hydrogen atom or a monovalent organic group having 1 to 20 carbon atoms.
  • R 2 to R 5 are each independently a hydrogen atom or a monovalent organic group having 1 to 20 carbon atoms, or two or more of these groups are combined with each other and together with the carbon atom to which they are bonded It represents an alicyclic structure or aliphatic heterocyclic structure having 3 to 20 ring members.
  • Z n + is an n-valent radiation-sensitive cation. n is an integer of 1 to 3.
  • the carboxylate of the present invention is represented by the following formula (i).
  • the carboxylate can be suitably used as the acid diffusion controller described above.
  • X is an oxygen atom or a sulfur atom.
  • R 1 is a hydrogen atom or a monovalent organic group having 1 to 20 carbon atoms.
  • R 2 to R 5 are each independently a hydrogen atom or a monovalent organic group having 1 to 20 carbon atoms, or two or more of these groups are combined with each other and together with the carbon atom to which they are bonded It represents an alicyclic structure or aliphatic heterocyclic structure having 3 to 20 ring members.
  • Z n + is an n-valent radiation-sensitive cation. n is an integer of 1 to 3.
  • R 2 or R 3 in the above formula (i) is preferably a monovalent organic group having 1 to 20 carbon atoms.
  • Z n + in the above formula (i) is preferably an onium cation.
  • the onium cation is preferably a sulfonium cation, an iodonium cation, a tetrahydrothiophenium cation, or a combination thereof.
  • n in the above formula (i) 2 or 3 is preferable. It is also preferred that n in the above formula (i) is 1 and Z n + is an alkali metal cation.
  • the carboxylic acid of the present invention is represented by the following formula (i ′).
  • the carboxylic acid can be suitably used as a raw material for the carboxylate described above.
  • X is an oxygen atom or a sulfur atom.
  • R 1 is a hydrogen atom or a monovalent organic group having 1 to 20 carbon atoms.
  • R 2 and R 3 are each independently a monovalent organic group having 1 to 20 carbon atoms, and
  • R 4 and R 5 are each independently a hydrogen atom or a monovalent organic group having 1 to 20 carbon atoms.
  • an alicyclic structure or aliphatic heterocyclic structure having 3 to 20 ring members composed of two or more of R 2 to R 5 combined with the carbon atom to which they are bonded.
  • the acid diffusion controller, the carboxylate and the carboxylic acid are described above in the section of the [C] compound.
  • Mw and Mn of the polymer were measured using a Tosoh GPC column (G2000HXL: 2, G3000HXL: 1 and G4000HXL: 1), flow rate: 1.0 mL / min, elution solvent: tetrahydrofuran, sample concentration: 1 Measurement was performed by gel permeation chromatography (GPC) using monodisperse polystyrene as a standard under the analysis conditions of 0.0 mass%, sample injection amount: 100 ⁇ L, column temperature: 40 ° C., detector: differential refractometer. The degree of dispersion (Mw / Mn) was calculated from the measurement results of Mw and Mn.
  • GPC gel permeation chromatography
  • M-3, M-4, M-5, and M-7 which are compounds containing a large protective group having a sterically bulky structure as a monomer that gives structural unit (I), are sterically small structures.
  • M-1, M-2, M-6 and M-16 which are compounds containing a small protecting group having the following, are used as monomers that give structural unit (II): M-8, M-9, M- 11, M-12, M-13, and M-14 are used as monomers that give structural unit (III), and M-10 and M-15 are used as monomers that give other structural units. -17 and M-18 were used.
  • “A” of M-15 in Table 1 indicates that M-15 is a structural unit derived from hydroxystyrene in the polymer (A-8).
  • parts by mass means a value when the total mass of monomers used is 100 parts by mass, and mol% is the total number of moles of monomers used. Means the value when 100 mol% is assumed.
  • the polymerization solution was cooled with water and cooled to 30 ° C. or lower.
  • the cooled polymerization solution was put into methanol (2,000 parts by mass), and the precipitated white powder was filtered off.
  • the filtered white powder was washed twice with methanol, filtered, and dried at 50 ° C. for 17 hours to obtain a white powdery polymer (A-1) (yield 78.9%).
  • Mw of the polymer (A-1) was 6,100, and Mw / Mn was 1.41.
  • the content ratios of structural units derived from (M-1) and (M-8) were 49.8 mol% and 50.2 mol%, respectively.
  • the polymerization solution was dropped into n-hexane (1,000 parts by mass) to solidify and purify the polymer.
  • propylene glycol monomethyl ether 150 parts by mass
  • methanol 150 parts by mass
  • triethylamine 1.5 molar equivalents relative to the amount of compound (M-10) used
  • water 1.5 molar equivalents relative to the amount of compound (M-10) used
  • the dripping start was set as the polymerization reaction start time, and the polymerization reaction was carried out for 6 hours.
  • the polymerization solution was cooled with water and cooled to 30 ° C. or lower.
  • n-Hexane 150 parts by mass was added to the polymerization reaction solution and diluted uniformly, and then methanol (600 parts by mass) was added and mixed.
  • distilled water 30 parts by mass was added to the mixed solution, and the mixture was further stirred and allowed to stand for 30 minutes.
  • the lower layer was recovered from the mixed solution, and the solvent in the recovered lower layer was replaced with propylene glycol monomethyl ether acetate to obtain a propylene glycol monomethyl ether acetate solution containing the polymer (E-1) (yield 72 0.0%).
  • Mw of the polymer (E-1) was 7,300, and Mw / Mn was 2.00.
  • the content ratio of the structural units derived from (M-16), (M-17) and (M-18) in the polymer (E-1) was 20.1 mol%, They were 38.9 mol% and 41.0 mol%.
  • Example 17 [Preparation of radiation-sensitive resin composition for ArF exposure] [Example 17] (Preparation of radiation-sensitive resin composition (J-1)) [A] 100 parts by mass of (A-1) as a polymer, [B] 7.9 parts by mass of (B-1) as an acid generator, 1.6 parts of (Z-1) as a [C] compound Part, (D-1) 2,240 parts by weight and (D-2) 960 parts by weight as solvent, (E-1) 3 parts by weight as polymer [E] and [F] promotion of uneven distribution A radiation sensitive resin composition (J-1) was prepared by blending 30 parts by mass of (F-1) as an agent and filtering through a membrane filter having a pore size of 0.2 ⁇ m.
  • Example 18 to 44 and Comparative Examples 1 to 4 Preparation of radiation-sensitive resin compositions (J-2) to (J-28) and (CJ-1) to (CJ-4)) Each radiation-sensitive resin composition was prepared in the same manner as in Example 17 except that the components of the types and contents shown in Table 2 and Table 3 were used.
  • a negative resist pattern was formed by the same operation as in the above resist pattern formation (1) except that n-butyl acetate was used instead of the TMAH aqueous solution and the organic solvent was developed, and no washing with water was performed. Formed.
  • LWR performance Using the scanning electron microscope, the resist pattern was observed from above the pattern, and the line width was measured at 50 arbitrary points. A 3 ⁇ value was determined from the distribution of the measured values, and this was defined as LWR performance (nm). The LWR performance indicates that the smaller the value, the better. The LWR performance can be evaluated as “good” when it is 4.0 nm or less and “not good” when it exceeds 4.0 nm.
  • resolution The dimension of the minimum resist pattern that can be resolved at the optimum exposure dose is measured, and the measurement result is defined as resolution (nm). The smaller the value, the better the resolution. The resolution can be evaluated as “good” when it is 34 nm or less, and “not good” when it exceeds 34 nm.
  • this resist film was exposed to the entire surface at 70 mJ using an ArF excimer laser immersion exposure apparatus (“NSR-S610C” manufactured by NIKON), and the film thickness was measured to measure the film thickness A before PEB. Asked. Subsequently, the resist film after the entire surface exposure was subjected to PEB at 90 ° C. for 60 seconds, and then the film thickness was measured again to obtain the film thickness B after PEB. 100 ⁇ (AB) / A (%) was determined from the measurement result, and this was defined as the film shrinkage inhibiting property (%).
  • the film shrinkage inhibition indicates that the smaller the value, the better the film shrinkage inhibition, and the better.
  • the film shrinkage inhibiting property can be evaluated as “good” when it is 15% or less, and “not good” when it exceeds 15%.
  • Table 4 below shows the results of performance evaluation of each radiation-sensitive resin composition during ArF exposure and the results of evaluation of film shrinkage inhibition.
  • Example 46 and Comparative Examples 5 to 8 Preparation of radiation-sensitive resin compositions (J-30) and (CJ-5) to (CJ-8)) Each radiation-sensitive resin composition was prepared in the same manner as in Example 45 except that the components having the types and contents shown in Table 5 below were used.
  • PEB was performed on the resist film at 130 ° C. for 60 seconds. Thereafter, the resist film was developed at 23 ° C. for 30 seconds using a 2.38 mass% TMAH aqueous solution as an alkaline developer, then washed with water and further dried to form a positive resist pattern.
  • the formed resist pattern was observed from above the pattern using the scanning electron microscope.
  • the exposure amount at which the line width of the line width was 100 nm was taken as the optimum exposure amount ( ⁇ C / cm 2 ), and this optimum exposure amount was taken as the sensitivity.
  • the radiation-sensitive resin compositions of the examples had LWR performance, resolution, rectangular shape of the cross-sectional shape, depth of focus, and film shrinkage suppression property when ArF exposure was performed. All were good, and when the electron beam exposure was performed, the sensitivity and LWR performance were good. Thus, it is judged that the said radiation sensitive resin composition is excellent in LWR performance, resolution, rectangularity of a cross-sectional shape, depth of focus, and film shrinkage suppression.
  • the radiation sensitive resin composition of the comparative example was not good in at least a part of the above performance.
  • electron beam exposure shows the same tendency as in EUV exposure. Therefore, according to the radiation sensitive resin composition of an Example, it is estimated that it is excellent in a sensitivity and LWR performance also in the case of EUV exposure.
  • a resist pattern that exhibits excellent depth of focus and film shrinkage suppression, low LWR, high resolution, and excellent cross-sectional rectangularity. can be formed.
  • the acid diffusion controlling agent of the present invention can be suitably used as an acid diffusion controlling agent component of the radiation sensitive resin composition.
  • the carboxylate and carboxylic acid of the present invention can be suitably used as a raw material for the acid diffusion controller. Accordingly, these can be suitably used for semiconductor device processing processes and the like that are expected to be further miniaturized in the future.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Materials For Photolithography (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

LWR性能、解像性、断面形状の矩形性、焦点深度及び膜収縮抑制性に優れる感放射線性樹脂組成物、レジストパターン形成方法、酸拡散制御剤、カルボン酸塩及びカルボン酸の提供を目的とする。本発明は、酸解離性基を有する重合体と、感放射線性酸発生体と、下記式(1)で表される化合物と、溶媒とを含有する感放射線性樹脂組成物である。下記式(1)中、Xは、酸素原子又は硫黄原子である。R1は、水素原子又は炭素数1~20の1価の有機基である。R2~R5は、それぞれ独立して水素原子又は炭素数1~20の1価の有機基であるか、又はこれらの基のうちの2つ以上が互いに合わせられこれらが結合する炭素原子と共に構成される環員数3~20の脂環構造又は脂肪族複素環構造を表す。Zn+は、n価のカチオンである。nは、1~3の整数である。

Description

感放射線性樹脂組成物、レジストパターン形成方法、酸拡散制御剤、カルボン酸塩及びカルボン酸
 本発明は、感放射線性樹脂組成物、レジストパターン形成方法、酸拡散制御剤、カルボン酸塩及びカルボン酸に関する。
 半導体デバイス、液晶デバイス等の各種電子デバイス構造の微細化に伴って、リソグラフィー工程におけるレジストパターンのさらなる微細化が要求されている。そのため、種々の感放射線性樹脂組成物が検討されている。このような感放射線性樹脂組成物は、ArFエキシマレーザー等の遠紫外線、極端紫外線(EUV)、電子線などの露光光の照射により酸を発生する成分を含む。これを露光することで露光部に酸を生成させ、この酸の触媒作用により露光部と未露光部の現像液に対する溶解速度に差を生じさせ、基板上にレジストパターンを形成させる。
 かかる感放射線性樹脂組成物には、解像性及びレジストパターンの断面形状の矩形性に優れること、LWR(Line Width Roughness)性能に優れること、焦点深度に優れこと、高精度なパターンを高い歩留まりで得られることが求められる。この要求に対して、感放射線性樹脂組成物に含有される重合体の構造が種々検討されている。たとえば重合体がブチロラクトン構造、ノルボルナンラクトン構造等のラクトン構造を有することで、レジストパターンの基板への密着性を高めると共に、これらの性能を向上できることが知られている(特開平11-212265号公報、特開2003-5375号公報及び特開2008-83370号公報参照)。
特開平11-212265号公報 特開2003-5375号公報 特開2008-83370号公報
 しかし、レジストパターンの微細化が線幅45nm以下のレベルまで進展している現在にあっては、上記性能の要求レベルはさらに高まり、上記従来の感放射線性樹脂組成物では、これらの要求を満足させることはできていない。さらに最近では、露光後加熱(Post Exposure Bake(PEB))の際のレジスト膜の収縮が小さく、膜収縮抑制性に優れることが要求されるなど、上述のレジスト諸性能がより向上することが求められている。
 本発明は、上述のような事情に基づいてなされたものであり、その目的は、LWR性能、解像性、断面形状の矩形性、焦点深度及び膜収縮抑制性に優れる感放射線性樹脂組成物、レジストパターン形成方法、酸拡散制御剤、カルボン酸塩及びカルボン酸を提供することにある。
 上記課題を解決するためになされた発明は、酸解離性基を有する重合体と、感放射線性酸発生体と、下記式(1)で表される化合物と、溶媒とを含有する感放射線性樹脂組成物である。
Figure JPOXMLDOC01-appb-C000005
(式(1)中、Xは、酸素原子又は硫黄原子である。Rは、水素原子又は炭素数1~20の1価の有機基である。R~Rは、それぞれ独立して水素原子又は炭素数1~20の1価の有機基であるか、又はこれらの基のうちの2つ以上が互いに合わせられこれらが結合する炭素原子と共に構成される環員数3~20の脂環構造又は脂肪族複素環構造を表す。Zn+は、n価のカチオンである。nは、1~3の整数である。)
 上記課題を解決するためになされた別の発明は、基板の一方の面に、当該感放射線性樹脂組成物を塗工する工程と、上記塗工工程により得られるレジスト膜を露光する工程と、上記露光されたレジスト膜を現像する工程とを備えるレジストパターン形成方法である。
 上記課題を解決するためになされた別の発明は、下記式(1’)で表される酸拡散制御剤である。
Figure JPOXMLDOC01-appb-C000006
(式(1’)中、Xは、酸素原子又は硫黄原子である。Rは、水素原子又は炭素数1~20の1価の有機基である。R~Rは、それぞれ独立して水素原子又は炭素数1~20の1価の有機基であるか、又はこれらの基のうちの2つ以上が互いに合わせられこれらが結合する炭素原子と共に構成される環員数3~20の脂環構造又は脂肪族複素環構造を表す。Zn+は、n価の感放射線性カチオンである。nは、1~3の整数である。)
 上記課題を解決するためになされたさらに別の発明は、下記式(i)で表されるカルボン酸塩である。
Figure JPOXMLDOC01-appb-C000007
(式(i)中、Xは、酸素原子又は硫黄原子である。Rは、水素原子又は炭素数1~20の1価の有機基である。R~Rは、それぞれ独立して水素原子又は炭素数1~20の1価の有機基であるか、又はこれらの基のうちの2つ以上が互いに合わせられこれらが結合する炭素原子と共に構成される環員数3~20の脂環構造又は脂肪族複素環構造を表す。Zn+は、n価の感放射線性カチオンである。nは、1~3の整数である。)
 上記課題を解決するためになされたさらに別の発明は、下記式(i’)で表されるカルボン酸である。
Figure JPOXMLDOC01-appb-C000008
(式(i’)中、Xは、酸素原子又は硫黄原子である。Rは水素原子又は炭素数1~20の1価の有機基である。R及びRはそれぞれ独立して炭素数1~20の1価の有機基であり、R及びRはそれぞれ独立して水素原子又は炭素数1~20の1価の有機基であるか、又はR~Rのうちの2つ以上が互いに合わせられこれらが結合する炭素原子と共に構成される環員数3~20の脂環構造又は脂肪族複素環構造を表す。)
 ここで、「有機基」とは、少なくとも1個の炭素原子を含む基をいう。複数の基が互いに合わせられ構成される「脂環構造」を表すとは、合わせられ構成された環が脂環構造であることを意味する。複数の基が互いに合わせられ構成される「脂肪族複素環構造」を表すとは、合わせられ構成された環が脂肪族複素環構造であることを意味する。「環員数」とは、脂環構造、芳香環構造、脂肪族複素環構造及び芳香族複素環構造の環を構成する原子数をいい、多環の場合は、この多環を構成する原子数をいう。
 本発明の感放射線性樹脂組成物及びレジストパターン形成方法によれば、優れた焦点深度及び膜収縮抑制性を発揮しつつ、LWRが小さく、解像度が高く、断面形状の矩形性に優れるレジストパターンを形成することができる。本発明の酸拡散制御剤は、当該感放射線性樹脂組成物の酸拡散制御剤成分として好適に用いることができる。本発明のカルボン酸塩及びカルボン酸は、当該酸拡散制御剤の原料として好適に用いることができる。従って、これらは、今後ますます微細化が進行すると予想される半導体デバイスの加工プロセス等に好適に用いることができる。
<感放射線性樹脂組成物>
 当該感放射線性樹脂組成物は、酸解離性基を有する重合体(以下、「[A]重合体」ともいう)と、感放射線性酸発生体(以下、「[B]酸発生体」ともいう)と、上記式(1)で表される化合物(以下、「[C]化合物」ともいう)と、溶媒(以下、「[D]溶媒」ともいう)とを含有する感放射線性樹脂組成物である。
 当該感放射線性樹脂組成物は、好適成分として、[A]重合体よりもフッ素原子の質量含有率が大きい重合体(以下、「[E]重合体」ともいう)を含有していてもよく、本発明の効果を損なわない範囲において、その他の任意成分を含有していてもよい。
 当該感放射線性樹脂組成物は、[A]重合体、[B]酸発生剤、[C]化合物及び[D]溶媒を含有することで、LWR性能、解像性、断面形状の矩形性、焦点深度及び膜収縮抑制性(以下、これらの特性をまとめて、「LWR性能等」ともいう)に優れる。当該感放射線性樹脂組成物が上記構成を備えることで、上記効果を奏する理由については必ずしも明確ではないが、例えば以下のように推察することができる。すなわち、[C]化合物は、式(1)におけるXの酸素原子又は硫黄原子が、カルボキシレートアニオン基が結合している炭素原子に隣接する炭素原子に結合している。このように、酸素原子又は硫黄原子がカルボキシレートアニオンに対して特定位置に存在することで、電子的な相互作用等により、[C]化合物はカルボキシレートアニオンとしての安定性を保ちながらも適度な塩基性を有し、これにより、[B]酸発生体から発生する酸の拡散長が適度に短く制御され、その結果、LWR性能等が向上していること等が考えられる。以下、各成分について説明する。
<[A]重合体>
 [A]重合体は、酸解離性基を有する重合体である。「酸解離性基」とは、カルボキシ基、ヒドロキシ基等の水素原子を置換する基であって、酸の作用により解離する基をいう。[A]重合体は、通常、酸解離性基を、酸解離性基を含む構造単位(以下、「構造単位(I)」ともいう)として有している。[A]重合体は、構造単位(I)以外に、ラクトン構造、環状カーボネート構造、スルトン構造又はこれらの組み合わせを有する構造単位(II)及び/又はヒドロキシ基を含む構造単位(III)を有することが好ましく、構造単位(I)~(III)以外のその他の構造単位を有していてもよい。以下、各構造単位について説明する。
[構造単位(I)]
 構造単位(I)は、酸解離性基を含む構造単位である。
 構造単位(I)としては、例えば下記式(2)で表される構造単位(以下、「構造単位(I-1)」ともいう)、アセタール構造を含む構造単位(以下、「構造単位(I-2)」ともいう)等が挙げられる。[A]重合体は、構造単位(I-1)及び(I-2)をそれぞれ1種又は2種以上を有していてもよい。[A]重合体は、構造単位(I-1)及び構造単位(I-2)の両方を有してもよい。以下、構造単位(I-1)及び構造単位(I-2)について説明する。
(構造単位(I-1))
 構造単位(I-1)は、下記式(2)で表される構造単位である。下記式(2)における-CR151617で表される基が酸解離性基である。酸解離性基としては、多環の脂環構造を含み、立体的に嵩高い構造を有する大保護基、大保護基以外の酸解離性基であって、脂環構造を含まないか又は単環の脂環構造を含み、立体的に小さい構造を有する小保護基等が挙げられる。
Figure JPOXMLDOC01-appb-C000009
 上記式(2)中、R14は、水素原子、フッ素原子、メチル基又はトリフルオロメチル基である。R15は、炭素数1~20の1価の炭化水素基である。R16及びR17は、それぞれ独立して、炭素数1~20の1価の炭化水素基であるか、又はこれらの基が互いに合わせられこれらが結合する炭素原子と共に構成される炭素数3~20の脂環構造を表す。
 R14としては、構造単位(I-1)を与える単量体の共重合性の観点から、水素原子及びメチル基が好ましく、メチル基がより好ましい。
 R15、R16又はR17で表される炭素数1~20の1価の炭化水素基としては、例えば炭素数1~20の1価の鎖状炭化水素基、炭素数3~20の1価の脂環式炭化水素基、炭素数6~20の1価の芳香族炭化水素基等が挙げられる。
 炭素数1~20の1価の鎖状炭化水素基としては、例えば
 メチル基、エチル基、n-プロピル基、i-プロピル基等のアルキル基;
 エテニル基、プロペニル基、ブテニル基等のアルケニル基;
 エチニル基、プロピニル基、ブチニル基等のアルキニル基などが挙げられる。
 炭素数3~20の1価の脂環式炭化水素基としては、例えば
 シクロペンチル基、シクロヘキシル基等の単環の脂環式飽和炭化水素基;
 シクロペンテニル基、シクロヘキセニル基等の単環の脂環式不飽和炭化水素基;
 ノルボルニル基、アダマンチル基、トリシクロデシル基等の多環の脂環式飽和炭化水素基;
 ノルボルネニル基、トリシクロデセニル基等の多環の脂環式不飽和炭化水素基などが挙げられる。
 炭素数6~20の1価の芳香族炭化水素基としては、例えば
 フェニル基、トリル基、キシリル基、ナフチル基、アントリル基等のアリール基;
 ベンジル基、フェネチル基、ナフチルメチル基、アントリルメチル基等のアラルキル基などが挙げられる。
 R16及びR17の基が互いに合わせられこれらが結合する炭素原子と共に構成される炭素数3~20の脂環構造としては、例えばシクロプロパン構造、シクロブタン構造、シクロペンタン構造、シクロヘキサン構造、シクロペンテン構造、シクロヘキセン構造等の単環の脂環構造;ノルボルナン構造、アダマンタン構造等の多環の脂環構造などが挙げられる。
 構造単位(I-1)としては、下記式(2-1)~(2-5)で表される構造単位(以下、「構造単位(I-1-1)~(I-1-5)」ともいう)が好ましい。
Figure JPOXMLDOC01-appb-C000010
 上記式(2-1)~(2-5)中、R14~R17は、上記式(2)と同義である。i及びjは、それぞれ独立して、1~4の整数である。
 構造単位(I-1)としては、例えば下記式で表される構造単位等が挙げられる。
Figure JPOXMLDOC01-appb-C000011

Figure JPOXMLDOC01-appb-C000012
 上記式中、R14は、上記式(2)と同義である。
 構造単位(I-1)としては、構造単位(I-1-1)~(I-1-5)が好ましく、1-アルキルシクロペンタン-1-イル(メタ)アクリレートに由来する構造単位、1-アルキルシクロヘキサン-1-イル(メタ)アクリレートに由来する構造単位、2-アルキルアダマンタン-2-イル(メタ)アクリレートに由来する構造単位、2-(アダマンタン-1-イル)プロパン-2-イル(メタ)アクリレートに由来する構造単位、2-(シクロヘキサン-1-イル)プロパン-2-イル(メタ)アクリレートに由来する構造単位又は2-アルキルテトラシクロドデカン-2-イル(メタ)アクリレートに由来する構造単位がより好ましい。
(構造単位(I-2))
 構造単位(I-2)は、アセタール構造を含む構造単位である。アセタール構造を含む基としては、例えば下記式(3)で表される基(以下、「基(X)」ともいう)等が挙げられる。基(X)は、酸の作用により分解して、*-R-OH、RC=O及びROHを生じる。基(X)において-C(R)(R)(OR)が酸解離性基である。
Figure JPOXMLDOC01-appb-C000013
 上記式(3)中、R及びRは、それぞれ独立して、水素原子若しくは炭素数1~20の1価の炭化水素基である。Rは、炭素数1~20の1価の炭化水素基である。Rは、単結合又は炭素数1~20の2価の炭化水素基である。R、R、R及びRのうちの2つ以上が、互いに合わせられこれらが結合する炭素原子又は原子鎖と共に環員数3~20の環構造を形成していてもよい。*は、構造単位(I-2)中の上記基(X)以外の部分との結合部位を示す。
 R、R又はRで表される炭素数1~20の1価の炭化水素基としては、例えば上記R15、R16又はR17の炭素数1~20の1価の炭化水素基として例示した基と同様の基等が挙げられる。
 R又はRとしては、水素原子又は鎖状炭化水素基が好ましい。この鎖状炭化水素基としては、アルキル基が好ましく、メチル基がより好ましい。Rとしては、脂環式炭化水素基が好ましく、多環の脂環式飽和炭化水素基がさらに好ましく、テトラシクロドデカン-2-イル基が特に好ましい。
 Rとしては、単結合又は鎖状炭化水素基が好ましく、単結合又は鎖状炭化水素基がより好ましく、単結合又はアルカンジイル基がさらに好ましく、単結合又はメタンジイル基が特に好ましく、単結合がさらに特に好ましい。
 R、R、R及びRのうちの2つ以上が形成する環員数3~20の環構造としては、例えば1,3-ジオキサシクロペンタン構造等の1,3-ジオキサシクロアルカン構造などが挙げられる。
 基(X)としては、1-(テトラシクロドデカン-2-イルオキシ)エタン-1-イルオキシ基が好ましい。
 構造単位(I)の含有割合の下限としては、[A]重合体を構成する全構造単位に対して、10モル%が好ましく、30モル%がより好ましく、40モル%がさらに好ましい。上記含有割合の上限としては、90モル%が好ましく、70モル%がより好ましく、60モル%がさらに好ましい。構造単位(I)の含有割合を上記範囲とすることで、当該感放射線性樹脂組成物の感度がさらに向上し、結果として、LWR性能等をさらに向上させることができる。
[構造単位(II)]
 構造単位(II)は、ラクトン構造、環状カーボネート構造、スルトン構造又はこれらの組み合わせを含む構造単位である。[A]重合体は、構造単位(II)をさらに有することで、現像液への溶解性を調整することができ、その結果、当該感放射線性樹脂組成物のLWR性能等をより向上させることができる。また、当該感放射線性樹脂組成物から形成されるレジストパターンと基板との密着性を向上させることができる。
 構造単位(II)としては、例えば下記式で表される構造単位等が挙げられる。
Figure JPOXMLDOC01-appb-C000014

Figure JPOXMLDOC01-appb-C000015

Figure JPOXMLDOC01-appb-C000016
 上記式中、RL1は、水素原子、フッ素原子、メチル基又はトリフルオロメチル基である。
 構造単位(II)としては、これらの中で、ノルボルナンラクトン構造を含む構造単位、γ-ブチロラクトン構造を含む構造単位、エチレンカーボネート構造を含む構造単位又はノルボルナンスルトン構造を含む構造単位が好ましい。
 [A]重合体が構造単位(II)を有する場合、構造単位(II)の含有割合の下限としては、[A]重合体を構成する全構造単位に対して、10モル%が好ましく、30モル%がより好ましく、40モル%がさらに好ましい。上記含有割合の上限としては、90モル%が好ましく、70モル%がより好ましく、60モル%がさらに好ましい。上記含有割合を上記範囲とすることで、当該感放射線性樹脂組成物のLWR性能等をさらに向上させることができる。また、レジストパターンの基板への密着性をより向上させることができる。
[構造単位(III)]
 構造単位(III)は、ヒドロキシ基を含む構造単位である。ヒドロキシ基としては、アルコール性ヒドロキシ基、フェノール性ヒドロキシ基等が挙げられる。[A]重合体は、構造単位(III)をさらに有することで、現像液への溶解性を調整することができ、その結果、当該感放射線性樹脂組成物のLWR性能等をより向上させることができる。また、当該感放射線性樹脂組成物から形成されるレジストパターンと基板との密着性を向上させることができる。構造単位(III)がフェノール性ヒドロキシ基を含む場合、当該感放射線性樹脂組成物は、KrF露光、EUV露光、電子線露光等における感度をより高めることができる。
 構造単位(III)としては、例えば下記式で表される構造単位等が挙げられる。
Figure JPOXMLDOC01-appb-C000017
 上記式中、RL2は、水素原子、フッ素原子、メチル基又はトリフルオロメチル基である。
 構造単位(III)としては、ヒドロキシスチレンに由来する構造単位又は3-ヒドロキシアダマンタン-1-イル(メタ)アクリレートに由来する構造単位が好ましい。
 [A]重合体が構造単位(III)を有する場合、構造単位(III)の含有割合の下限としては、[A]重合体を構成する全構造単位に対して、5モル%が好ましく、30モル%がより好ましく、40モル%がさらに好ましい。上記含有割合の上限としては、80モル%が好ましく、70モル%がより好ましく、60モル%がさらに好ましい。
 フェノール性ヒドロキシ基を含む構造単位は、例えばアセトキシスチレン等のアシロキシスチレンなどの単量体を用いて得られた重合体を、トリエチルアミン等の塩基存在下で加水分解すること等により形成することができる。
<その他の構造単位>
 [A]重合体は、上記構造単位(I)~(III)以外のその他の構造単位を有していてもよい。その他の構造単位としては、例えばカルボキシ基、シアノ基、ニトロ基、スルホンアミド基又はこれらの組み合わせを含む構造単位、非解離性の炭化水素基を含む構造単位等が挙げられる。[A]重合体がその他の構造単位を有する場合、この構造単位の含有割合の上限としては、[A]重合体を構成する全構造単位に対して、20モル%が好ましく、10モル%がより好ましい。
 [A]重合体の含有量の下限としては、当該感放射線性樹脂組成物の全固形分([D]溶媒以外の成分の総和)に対して、70質量%が好ましく、80質量%がより好ましく、85質量%がさらに好ましい。上記含有量の上限としては、99質量%が好ましく、95質量%がより好ましい。[A]重合体は、1種又は2種以上を含有することができる。
<[A]重合体の合成方法>
 [A]重合体は、例えば各構造単位を与える単量体を、ラジカル重合開始剤等を用い、溶媒中で重合することにより合成できる。
 [A]重合体のゲルパーミエーションクロマトグラフィー(GPC)によるポリスチレン換算重量平均分子量(Mw)の下限としては、1,000が好ましく、3,000がより好ましく、4,000がさらに好ましく、5,000が特に好ましい。上記Mwの上限としては、50,000が好ましく、30,000がより好ましく、20,000がさらに好ましく、10,000が特に好ましい。[A]重合体のMwを上記範囲とすることで、当該感放射線性樹脂組成物の塗工性を向上させることができ、その結果、LWR性能等をより向上させることができる。
 [A]重合体のGPCによるポリスチレン換算数平均分子量(Mn)に対するMwの比(Mw/Mn)の上限としては、5が好ましく、3がより好ましく、2がさらに好ましく、1.6が特に好ましい。上記比の下限としては、通常1であり、1.1が好ましい。
 本明細書における重合体のMw及びMnは、以下の条件によるゲルパーミエーションクロマトグラフィー(GPC)を用いて測定される値である。
 GPCカラム:東ソー社の「G2000HXL」2本、「G3000HXL」1本及び「G4000HXL」1本
 カラム温度:40℃
 溶出溶媒:テトラヒドロフラン(和光純薬工業社)
 流速:1.0mL/分
 試料濃度:1.0質量%
 試料注入量:100μL
 検出器:示差屈折計
 標準物質:単分散ポリスチレン
<[B]酸発生体>
 [B]酸発生体は、放射線の照射により酸を発生する物質である。この発生した酸により[A]重合体等が有する酸解離性基が解離してカルボキシ基、ヒドロキシ基等が生じ、[A]重合体の現像液への溶解性が変化するため、当該感放射線性樹脂組成物からレジストパターンを形成することができる。当該感放射線性樹脂組成物における[B]酸発生体の含有形態としては、低分子化合物の形態(以下、「[B]酸発生剤」ともいう)でも、重合体の一部として組み込まれた形態でも、これらの両方の形態でもよい。
 [B]酸発生体から発生する酸としては例えばスルホン酸、イミド酸等が挙げられる。
 [B]酸発生剤としては、例えばオニウム塩化合物、N-スルホニルオキシイミド化合物、スルホンイミド化合物、ハロゲン含有化合物、ジアゾケトン化合物等が挙げられる。
 オニウム塩化合物としては、例えばスルホニウム塩、テトラヒドロチオフェニウム塩、ヨードニウム塩、ホスホニウム塩、ジアゾニウム塩、ピリジニウム塩等が挙げられる。
 [B]酸発生剤の具体例としては、例えば特開2009-134088号公報の段落[0080]~[0113]に記載されている化合物等が挙げられる。
 [B]酸発生剤としては、例えば下記式(4)で表される化合物等が挙げられる。
Figure JPOXMLDOC01-appb-C000018
 上記式(4)中、Aは、1価のスルホン酸アニオン又は1価のイミド酸アニオンである。Tは、1価の感放射線性オニウムカチオンである。
 放射線の照射によりスルホン酸を発生する[B]酸発生剤としては、例えば下記式(4-1)で表される化合物(以下、「化合物(4-1)」ともいう)等が挙げられる。[B]酸発生剤が下記構造を有することで、[A]重合体の構造単位(I)との相互作用等により、露光により発生する酸のレジスト膜中の拡散長がより適度に短くなると考えられ、その結果、当該感放射線性樹脂組成物のLWR性能等をより向上させることができる。
Figure JPOXMLDOC01-appb-C000019
 上記式(4-1)中、Rp1は、環員数5以上の環構造を含む1価の基である。Rp2は、2価の連結基である。Rp3及びRp4は、それぞれ独立して、水素原子、フッ素原子、炭素数1~20の1価の炭化水素基又は炭素数1~20の1価のフッ素化炭化水素基である。Rp5及びRp6は、それぞれ独立して、フッ素原子又は炭素数1~20の1価のフッ素化炭化水素基である。np1は、0~10の整数である。np2は、0~10の整数である。np3は、0~10の整数である。但し、np1+np2+np3は、1以上30以下である。np1が2以上の場合、複数のRp2は同一でも異なっていてもよい。np2が2以上の場合、複数のRp3は同一でも異なっていてもよく、複数のRp4は同一でも異なっていてもよい。np3が2以上の場合、複数のRp5は同一でも異なっていてもよく、複数のRp6は同一でも異なっていてもよい。Tは、1価の感放射線性オニウムカチオンである。
 Rp1で表される環員数5以上の環構造を含む1価の基としては、例えば環員数5以上の脂環構造を含む1価の基、環員数5以上の脂肪族複素環構造を含む1価の基、環員数5以上の芳香環構造を含む1価の基、環員数5以上の芳香族複素環構造を含む1価の基等が挙げられる。
 環員数5以上の脂環構造としては、例えば
 シクロペンタン構造、シクロヘキサン構造、シクロヘプタン構造、シクロオクタン構造、シクロノナン構造、シクロデカン構造、シクロドデカン構造等の単環の飽和脂環構造;
 シクロペンテン構造、シクロヘキセン構造、シクロヘプテン構造、シクロオクテン構造、シクロデセン構造等の単環の不飽和脂環構造;
 ノルボルナン構造、アダマンタン構造、トリシクロデカン構造、テトラシクロドデカン構造等の多環の飽和脂環構造;
 ノルボルネン構造、トリシクロデセン構造等の多環の不飽和脂環構造等が挙げられる。
 環員数5以上の脂肪族複素環構造としては、例えば
 ヘキサノラクトン構造、ノルボルナンラクトン構造等のラクトン構造;
 ヘキサノスルトン構造、ノルボルナンスルトン構造等のスルトン構造;
 オキサシクロヘプタン構造、オキサノルボルナン構造等の酸素原子含有複素環構造;
 アザシクロヘキサン構造、ジアザビシクロオクタン構造等の窒素原子含有複素環構造;
 チアシクロヘキサン構造、チアノルボルナン構造等の硫黄原子含有複素環構造などが挙げられる。
 環員数5以上の芳香環構造としては、例えばベンゼン構造、ナフタレン構造、フェナントレン構造、アントラセン構造等が挙げられる。
 環員数5以上の芳香族複素環構造としては、例えば
 フラン構造、ピラン構造、ベンゾフラン構造、ベンゾピラン構造等の酸素原子含有複素環構造;
 ピリジン構造、ピリミジン構造、インドール構造等の窒素原子含有複素環構造などが挙げられる。
 Rp1の環構造の環員数の下限としては、6が好ましく、8がより好ましく、9がさらに好ましく、10が特に好ましい。上記環員数の上限としては、15が好ましく、14がより好ましく、13がさらに好ましく、12が特に好ましい。上記環員数を上記範囲とすることで上述の酸の拡散長をさらに適度に短くすることができ、その結果、当該感放射線性樹脂組成物のLWR性能等をより向上させることができる。
 Rp1の環構造が有する水素原子の一部又は全部は、置換基で置換されていてもよい。上記置換基としては、例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子、ヒドロキシ基、カルボキシ基、シアノ基、ニトロ基、アルコキシ基、アルコキシカルボニル基、アルコキシカルボニルオキシ基、アシル基、アシロキシ基等が挙げられる。これらの中でヒドロキシ基が好ましい。
 Rp1としては、環員数5以上の脂環構造を含む1価の基又は環員数5以上の脂肪族複素環構造を含む1価の基が好ましく、環員数9以上の脂環構造を含む1価の基又は環員数9以上の脂肪族複素環構造を含む1価の基がより好ましく、アダマンチル基、ヒドロキシアダマンチル基、ノルボルナンラクトン-イル基、ノルボルナンスルトン-イル基又は5-オキソ-4-オキサトリシクロ[4.3.1.13,8]ウンデカン-イル基がさらに好ましく、アダマンチル基が特に好ましい。
 Rp2で表される2価の連結基としては、例えばカルボニル基、エーテル基、カルボニルオキシ基、スルフィド基、チオカルボニル基、スルホニル基、2価の炭化水素基等が挙げられる。これらの中で、カルボニルオキシ基、スルホニル基、アルカンジイル基又は2価の脂環式飽和炭化水素基が好ましく、カルボニルオキシ基及び2価の脂環式飽和炭化水素基がより好ましく、カルボニルオキシ基又はノルボルナンジイル基がさらに好ましく、カルボニルオキシ基が特に好ましい。
 Rp3又はRp4で表される炭素数1~20の1価の炭化水素基としては、例えば炭素数1~20のアルキル基等が挙げられる。Rp3又はRp4で表される炭素数1~20の1価のフッ素化炭化水素基としては、例えば炭素数1~20のフッ素化アルキル基等が挙げられる。Rp3又はRp4としては、水素原子、フッ素原子又はフッ素化アルキル基が好ましく、フッ素原子又はパーフルオロアルキル基がより好ましく、フッ素原子又はトリフルオロメチル基がさらに好ましい。
 Rp5又はRp6で表される炭素数1~20の1価のフッ素化炭化水素基としては、例えば炭素数1~20のフッ素化アルキル基等が挙げられる。Rp5又はRp6としては、フッ素原子又はフッ素化アルキル基が好ましく、フッ素原子又はパーフルオロアルキル基がより好ましく、フッ素原子又はトリフルオロメチル基がさらに好ましく、フッ素原子が特に好ましい。
 np1としては、0~5の整数が好ましく、0~3の整数がより好ましく、0~2の整数がさらに好ましく、0又は1が特に好ましい。
 np2としては、0~5の整数が好ましく、0~2の整数がより好ましく、0又は1がさらに好ましく、0が特に好ましい。
 np3の下限としては、1が好ましく、2がより好ましい。np3を1以上とすることで、化合物(4-1)から生じる酸の強さを高めることができ、その結果、当該感放射線性樹脂組成物のLWR性能等をより向上させることができる。np3の上限としては、4が好ましく、3がより好ましく、2がさらに好ましい。
 np1+np2+np3の下限としては、2が好ましく、4がより好ましい。np1+np2+np3の上限としては、20が好ましく、10がより好ましい。
 Tで表される1価の感放射線性オニウムカチオンとしては、例えば下記式(r-a)で表されるカチオン(以下、「カチオン(r-a)」ともいう)、下記式(r-b)で表されるカチオン(以下、「カチオン(r-b)」ともいう)、下記式(r-c)で表されるカチオン(以下、「カチオン(r-c)」ともいう)等が挙げられる。
Figure JPOXMLDOC01-appb-C000020
 上記式(r-a)中、RB3及びRB4は、それぞれ独立して、炭素数1~20の1価の有機基である。RB5は、炭素数1~20の1価の有機基、ヒドロキシ基、ニトロ基又はハロゲン原子である。b3は、それぞれ独立して0~5の整数である。RB5が複数の場合、複数のRB5は同一でも異なっていてもよく、また、複数のRB5は、互いに合わせられ環構造を構成してもよい。nbbは、0~3の整数である。
 上記RB3、RB4又はRB5で表される炭素数1~20の1価の有機基としては、例えば炭素数1~20の1価の炭化水素基、この炭化水素基の炭素-炭素間又は結合手側の末端に2価のヘテロ原子含有基を含む1価の基(g)、上記炭化水素基又は基(g)が有する水素原子の一部又は全部をヘテロ原子含有基で置換した1価の基等が挙げられる。
 RB3又はRB4としては、炭素数1~20の1価の非置換の炭化水素基又は水素原子が置換基により置換された炭化水素基が好ましく、炭素数6~18の1価の非置換の芳香族炭化水素基又は水素原子が置換基により置換された芳香族炭化水素基がより好ましく、フェニル基がさらに好ましい。
 上記RB3又はRB4として表される炭素数1~20の1価の炭化水素基が有する水素原子を置換していてもよい置換基としては、置換又は非置換の炭素数1~20の1価の炭化水素基、-OSO-R、-SO-R、-OR、-COOR、-O-CO-R、-O-Rkk-COOR、-Rkk-CO-R又は-S-Rが好ましい。Rは、炭素数1~10の1価の炭化水素基である。Rkkは、単結合又は炭素数1~10の2価の炭化水素基である。
 RB5としては、置換又は非置換の炭素数1~20の1価の炭化水素基、-OSO-R、-SO-R、-OR、-COOR、-O-CO-R、-O-Rkk-COOR、-Rkk-CO-R又は-S-Rが好ましい。Rは、炭素数1~10の1価の炭化水素基である。Rkkは、単結合又は炭素数1~10の2価の炭化水素基である。
 上記式(r-b)中、RB6及びRB7は、それぞれ独立して、炭素数1~20の1価の有機基、ヒドロキシ基、ニトロ基又はハロゲン原子である。b4は、0~7の整数である。RB6が複数の場合、複数のRB6は同一でも異なっていてもよく、また、複数のRB6は、互いに合わせられ環構造を構成してもよい。b5は、0~6の整数である。RB7が複数の場合、複数のRB7は同一でも異なっていてもよく、また、複数のRB7は、互いに合わせられ環構造を構成してもよい。nb2は、0~3の整数である。RB8は、単結合又は炭素数1~20の2価の有機基である。nb1は、0~2の整数である。
 上記RB6又はRB7としては、置換又は非置換の炭素数1~20の1価の炭化水素基、-OR、-COOR、-O-CO-R、-O-Rkk-COOR又は-Rkk-CO-Rが好ましい。Rは、炭素数1~10の1価の炭化水素基である。Rkkは、単結合又は炭素数1~10の2価の炭化水素基である。
 上記式(r-c)中、RB9及びRB10は、それぞれ独立して、炭素数1~20の1価の有機基、ヒドロキシ基、ニトロ基又はハロゲン原子である。b6及びb7は、それぞれ独立して0~5の整数である。RB9が複数の場合、複数のRB9は同一でも異なっていてもよく、また、複数のRB9は、互いに合わせられ環構造を構成してもよい。RB10が複数の場合、複数のRB10は同一でも異なっていてもよく、また、複数のRB10は、互いに合わせられ環構造を構成してもよい。
 上記RB9又はRB10としては、置換又は非置換の炭素数1~20の1価の炭化水素基、-OSO-R、-SO-R、-OR、-COOR、-O-CO-R、-O-Rkk-COOR、-Rkk-CO-R、-S-R又はこれらの基のうちの2つ以上が互いに合わせられ構成される環構造が好ましい。Rは、炭素数1~10の1価の炭化水素基である。Rkkは、単結合又は炭素数1~10の2価の炭化水素基である。
 RB5、RB6、RB7、RB9又はRB10で表される炭素数1~20の1価の炭化水素基としては、例えば
 メチル基、エチル基、n-プロピル基、n-ブチル基等の直鎖状のアルキル基;
 i-プロピル基、i-ブチル基、sec-ブチル基、t-ブチル基等の分岐状のアルキル基;
 フェニル基、トリル基、キシリル基、メシチル基、ナフチル基等のアリール基;
 ベンジル基、フェネチル基等のアラルキル基等が挙げられる。
 RB8で表される2価の有機基としては、例えば上記式(r-a)のRB3、RB4及びRB5として例示した炭素数1~20の1価の有機基から1個の水素原子を除いた基等が挙げられる。
 上記RB5、RB6、RB7、RB9又はRB10で表される炭化水素基が有する水素原子を置換していてもよい置換基としては、例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子、ヒドロキシ基、カルボキシ基、シアノ基、ニトロ基、アルコキシ基、アルコキシカルボニル基、アルコキシカルボニルオキシ基、アシル基、アシロキシ基等が挙げられる。これらの中で、ハロゲン原子が好ましく、フッ素原子がより好ましい。
 RB5、RB6、RB7、RB9又はRB10としては、非置換の直鎖状又は分岐状の1価のアルキル基、1価のフッ素化アルキル基、非置換の1価の芳香族炭化水素基、-OSO-R又は-SO-Rが好ましく、フッ素化アルキル基及び非置換の1価の芳香族炭化水素基がより好ましく、フッ素化アルキル基がさらに好ましい。
 式(r-a)におけるb3としては、0~2の整数が好ましく、0又は1がより好ましく、0がさらに好ましい。nbbとしては、0又は1が好ましく、0がより好ましい。式(r-b)におけるb4としては、0~2の整数が好ましく、0又は1がより好ましく、0がさらに好ましい。b5としては、0~2の整数が好ましく、0又は1がより好ましく、0がさらに好ましい。nb2としては、2又は3が好ましく、2がより好ましい。nb1としては、0又は1が好ましく、0がより好ましい。式(r-c)におけるb6又はb7としては、0~2の整数が好ましく、0又は1がより好ましく、0がさらに好ましい。
 Tとしては、これらの中で、カチオン(r-a)が好ましく、トリフェニルスルホニウムカチオンがより好ましい。
 [B]酸発生剤としては、スルホン酸を発生する酸発生剤として、例えば下記式(4-1-1)~(4-1-18)で表される化合物(以下、「化合物(4-1-1)~(4-1-18)」ともいう)、イミド酸を発生する酸発生剤として、例えば下記式(4-2-1)~(4-2-3)で表される化合物(以下、「化合物(4-2-1)~(4-2-3)」ともいう)等が挙げられる。
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
 上記式(4-1-1)~(4-1-18)及び(4-2-1)~(4-2-3)中、Tは、1価の感放射線性オニウムカチオンである。
 [B]酸発生剤としては、化合物(4-1-1)~(4-1-4)及び(4-1-16)~(4-1-18)並びに化合物(4-2-1)が好ましい。
 [B]酸発生体が[B]酸発生剤の場合、[B]酸発生剤の含有量の下限としては、[A]重合体成分100質量部に対して、0.1質量部が好ましく、1質量部がより好ましく、5質量部がさらに好ましく、10質量部が特に好ましい。上記含有量の上限としては、50質量部が好ましく、40質量部がより好ましく、30質量部がさらに好ましく、25質量部が特に好ましい。[B]酸発生剤の含有量を上記範囲とすることで、当該感放射線性樹脂組成物は、感度及び現像性が向上し、その結果、LWR性能等をより向上させることができる。[B]酸発生体は、1種又は2種以上を含有することができる。
<[C]化合物>
 [C]化合物は、下記式(1)で表される。
Figure JPOXMLDOC01-appb-C000024
 上記式(1)中、Xは、酸素原子又は硫黄原子である。Rは、水素原子又は炭素数1~20の1価の有機基である。R~Rは、それぞれ独立して水素原子又は炭素数1~20の1価の有機基であるか、又はこれらの基のうちの2つ以上が互いに合わせられこれらが結合する炭素原子と共に構成される環員数3~20の脂環構造又は脂肪族複素環構造を表す。Zn+は、n価のカチオンである。nは、1~3の整数である。
 R~Rで表される炭素数1~20の1価の有機基としては、例えば炭素数1~20の1価の炭化水素基、この炭化水素基の炭素-炭素間又は結合手側の末端に2価のヘテロ原子含有基を含む基(α)、上記炭化水素基又は基(α)が有する水素原子の一部又は全部を1価のヘテロ原子含有基で置換した基等が挙げられる。
 炭素数1~20の1価の炭化水素基としては、例えば上記式(2)のR15、R16及びR17の炭素数1~20の1価の炭化水素基として例示した基と同様の基等が挙げられる。
 1価又は2価のヘテロ原子含有基を構成するヘテロ原子としては、例えば酸素原子、窒素原子、硫黄原子、リン原子、ケイ素原子、ハロゲン原子等が挙げられる。ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられる。
 2価のヘテロ原子含有基としては、例えば-O-、-CO-、-S-、-CS-、-NR’-、これらのうちの2つ以上を組み合わせた基等が挙げられる。R’は、水素原子又は1価の炭化水素基である。これらの中で、-CO-が好ましい。
 1価のヘテロ原子含有基としては、例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子、ヒドロキシ基、カルボキシ基、シアノ基、アミノ基、スルファニル基等が挙げられる。これらの中で、フッ素原子が好ましい。
 R~Rの基のうちの2つ以上が互いに合わせられこれらが結合する炭素原子と共に構成される環員数3~20の脂環構造としては、例えばシクロプロパン構造、シクロブタン構造、シクロペンタン構造、シクロヘキサン構造、シクロペンテン構造、シクロヘキセン構造、ノルボルナン構造、アダマンタン構造、フルオレン構造等が挙げられる。これらの中で、シクロヘキサン構造、アダマンタン構造又はフルオレン構造が好ましい。
 R~Rの基のうちの2つ以上が互いに合わせられこれらが結合する炭素原子と共に構成される環員数3~20の脂肪族複素環構造としては、例えばラクトン構造、環状カーボネート構造、スルトン構造、オキサシクロアルカン構造、アザシクロアルカン構造、チアシクロアルカン構造等が挙げられる。これらの中で、ラクトン構造が好ましく、ブチロラクトン構造又はノルボルナンラクトン構造がより好ましい。
 Rの1価の有機基としては、炭化水素基又は炭化水素基の結合手側の末端に2価のヘテロ原子含有基を含む基が好ましく、鎖状炭化水素基又は鎖状炭化水素基の結合手側の末端に-CO-を含む基がより好ましく、アルキル基又はアルキルカルボニル基がさらに好ましく、メチル基又はアセチル基が特に好ましい。
 Rとしては、LWR性能の観点から、水素原子が好ましい。
 R又はRとしては、置換若しくは非置換の炭化水素基、脂肪族複素環構造を含む基又は水素原子が好ましく、炭化水素基、ヒドロキシ基置換炭化水素基、ヒドロキシ基及びフッ素原子置換炭化水素基、ラクトン構造を含む基又は水素原子がより好ましく、メチル基、シクロヘキシル基、ナフチル基、ブチロラクトン-イル基、ヒドロキシジ(トリフルオロメチル)エチル基、ヒドロキシジメチルエチル基又は水素原子がさらに好ましい。
 R又はRとしては、水素原子が好ましい。
 Zn+で表されるn価のカチオンとしては、例えば
 1価のカチオンとして、1価のオニウムカチオン、アルカリ金属カチオン等が、
 2価のカチオンとして、2価のオニウムカチオン、アルカリ土類金属カチオン等が、
 3価のカチオンとして、3価のオニウムカチオン、3価の金属カチオン等が挙げられる。オニウムカチオンは、感放射線性であっても、感放射線性でなくてもよい。感放射線性オニウムカチオンとしては、上記[B]酸発生剤の式(4)のTの1価の感放射線性オニウムカチオンとして例示したカチオン等のスルホニウムカチオン、ヨードニウムカチオン、テトラヒドロチオフェニウムカチオン等が挙げられる。2価又は3価のカチオンには、2+又は3+の電荷を有するカチオン部位を含むカチオン、及び1+の電荷を有するカチオン部位を2個又は3個含むカチオンの両方が含まれる。
 nとしては、1又は2が好ましく、1がより好ましい。
 Zn+としては、オニウムカチオンが好ましく、1価又は2価のスルホニウムカチオンがより好ましく、1価のスルホニウムカチオンがさらに好ましく、トリフェニルスルホニウムカチオンが特に好ましい。
 [C]化合物としては、例えば下記式(1-1)~(1-16)で表される化合物(以下、「化合物(1-1)~(1-16)」ともいう)等が挙げられる。
Figure JPOXMLDOC01-appb-C000025
 上記式(1-1)~(1-16)中、Zn+は、上記式(1)と同義である。
<[C]化合物の合成方法>
 [C]化合物は、例えば上記式(1)におけるRが水素原子、R~Rが水素原子又は1価の有機基、nが1である下記式(i-a)で表される化合物の場合、下記スキームに従い、簡便かつ収率よく合成することができる。
Figure JPOXMLDOC01-appb-C000026
 上記スキーム中、Xは、酸素原子又は硫黄原子である。R~Rは、それぞれ独立して、水素原子又は炭素数1~20の1価の有機基である。Rは、炭素数1~20の1価の有機基である。Yは、ハロゲン原子である。Zは、1価のカチオンである。Eは、1価のアニオンである。
 Yとしては、塩素原子又は臭素原子が好ましく、臭素原子がより好ましい。
 上記式で表される(チオ)カルボニル化合物と、上記式で表されるα-ハロカルボン酸エステル化合物とを、亜鉛及びトリメチルシリルクロリドの存在下、テトラヒドロフラン等の溶媒中で反応させることにより、上記式(i-m)で表されるβ-ヒドロキシ又はスルファニルカルボン酸エステルが得られる。次に、この化合物(i-m)を水酸化リチウム存在下、テトラヒドロフラン等の溶媒中で加水分解させることにより、上記式(i-n)で表されるカルボン酸が得られる。次いで、この化合物(i-n)と、炭酸水素塩等のZで表される塩とを、アセトン等の溶媒中でイオン交換させることにより、化合物(i-a)を得ることができる。また、化合物(i-a)のXに結合する水素原子は、適切なメチル化剤、アセチル化剤等によって、有機基に置換することができる。
 得られた生成物を、カラムクロマトグラフィー、再結晶、蒸留等により適切に精製することにより化合物(i-a)を単離することができる。
 化合物(i-a)以外の[C]化合物についても、上記同様の方法により合成することができる。
 [C]化合物の含有量の下限としては、[A]重合体100質量部に対して、0.1質量部が好ましく、0.5質量部がより好ましく、0.7質量部がさらに好ましく、1質量部が特に好ましい。上記含有量の上限としては、10質量部が好ましく、5質量部がより好ましく、3質量部がさらに好ましく、2質量部が特に好ましい。[C]化合物の含有量を上記範囲とすることで、当該感放射線性樹脂組成物のLWR性能等をさらに向上させることができる。
<[D]溶媒>
 [D]溶媒は、少なくとも[A]重合体、[B]酸発生体、[C]化合物及び所望により含有される任意成分を溶解又は分散可能な溶媒であれば特に限定されない。
 [D]溶媒としては、例えばアルコール系溶媒、エーテル系溶媒、ケトン系溶媒、アミド系溶媒、エステル系溶媒、炭化水素系溶媒等が挙げられる。
 アルコール系溶媒としては、例えば
 4-メチル-2-ペンタノール、n-ヘキサノール等の炭素数1~18の脂肪族モノアルコール系溶媒;
 シクロヘキサノール等の炭素数3~18の脂環式モノアルコール系溶媒;
 1,2-プロピレングリコール等の炭素数2~18の多価アルコール系溶媒;
 プロピレングリコールモノメチルエーテル等の炭素数3~19の多価アルコール部分エーテル系溶媒などが挙げられる。
 エーテル系溶媒としては、例えば
 ジエチルエーテル、ジプロピルエーテル、ジブチルエーテル、ジペンチルエーテル、ジイソアミルエーテル、ジヘキシルエーテル、ジヘプチルエーテル等のジアルキルエーテル系溶媒;
 テトラヒドロフラン、テトラヒドロピラン等の環状エーテル系溶媒;
 ジフェニルエーテル、アニソール等の芳香環含有エーテル系溶媒などが挙げられる。
 ケトン系溶媒としては、例えば
 アセトン、メチルエチルケトン、メチル-n-プロピルケトン、メチル-n-ブチルケトン、ジエチルケトン、メチル-iso-ブチルケトン、2-ヘプタノン、エチル-n-ブチルケトン、メチル-n-ヘキシルケトン、ジ-iso-ブチルケトン、トリメチルノナノン等の鎖状ケトン系溶媒:
 シクロペンタノン、シクロヘキサノン、シクロヘプタノン、シクロオクタノン、メチルシクロヘキサノン等の環状ケトン系溶媒:
 2,4-ペンタンジオン、アセトニルアセトン、アセトフェノン等が挙げられる。
 アミド系溶媒としては、例えば
 N,N’-ジメチルイミダゾリジノン、N-メチルピロリドン等の環状アミド系溶媒;
 N-メチルホルムアミド、N,N-ジメチルホルムアミド、N,N-ジエチルホルムアミド、アセトアミド、N-メチルアセトアミド、N,N-ジメチルアセトアミド、N-メチルプロピオンアミド等の鎖状アミド系溶媒などが挙げられる。
 エステル系溶媒としては、例えば
 酢酸n-ブチル、乳酸エチル等のモノカルボン酸エステル系溶媒;
 酢酸プロピレングリコール等の多価アルコールカルボキシレート系溶媒;
 酢酸プロピレングリコールモノメチルエーテル等の多価アルコール部分エーテルカルボキシレート系溶媒;
 シュウ酸ジエチル等の多価カルボン酸ジエステル系溶媒;
 ジメチルカーボネート、ジエチルカーボネート等のカーボネート系溶媒などが挙げられる。
 炭化水素系溶媒としては、例えば
 n-ペンタン、n-ヘキサン等の炭素数5~12の脂肪族炭化水素系溶媒;
 トルエン、キシレン等の炭素数6~16の芳香族炭化水素系溶媒等が挙げられる。
 これらの中で、エステル系溶媒又はケトン系溶媒が好ましく、多価アルコール部分エーテルカルボキシレート系溶媒又は環状ケトン系溶媒がより好ましく、酢酸プロピレングリコールモノメチルエーテル又はシクロヘキサノンがさらに好ましい。[D]溶媒は、1種又は2種以上を含有することができる。
<[E]重合体>
 [E]重合体は、[A]重合体よりもフッ素原子の質量含有率が大きい重合体である。ベース樹脂としての[A]重合体より疎水性が高い重合体は、レジスト膜表層に偏在化する傾向があり、[E]重合体は[A]重合体よりもフッ素原子の質量含有率が大きいため、この疎水性に起因する特性により、レジスト膜表層に偏在化する傾向がある。その結果、当該感放射線性樹脂組成物によれば、液浸露光時における酸発生剤、酸拡散制御剤等が液浸媒体に溶出することを抑制することができる。また、当該感放射線性樹脂組成物によれば、この[E]重合体の疎水性に起因する特性により、レジスト膜と液浸媒体との前進接触角を所望の範囲に制御でき、バブル欠陥の発生を抑制できる。さらに、当該感放射線性樹脂組成物によれば、レジスト膜と液浸媒体との後退接触角が大きくなり、水滴が残らずに高速でのスキャン露光が可能となる。当該感放射線性樹脂組成物は、このように[E]重合体を含有することにより液浸露光法に好適なレジスト膜を形成することができる。
 [E]重合体のフッ素原子の質量含有率の下限としては、1質量%が好ましく、2質量%がより好ましく、3質量%がさらに好ましい。上記質量含有率の上限としては、60質量%が好ましく、50質量%がより好ましく、40質量%がさらに好ましい。フッ素原子の質量含有率を上記範囲とすることで、[E]重合体のレジスト膜における偏在化をより適度に調整することができる。なお、重合体のフッ素原子の質量含有率は、13C-NMRスペクトル測定により重合体の構造を求め、その構造から算出することができる。
 [E]重合体におけるフッ素原子の含有形態は特に限定されず、主鎖、側鎖及び末端のいずれに結合するものでもよいが、フッ素原子を含む構造単位(以下、「構造単位(f)」ともいう)を有することが好ましい。[E]重合体は、構造単位(f)以外にも、当該感放射線性樹脂組成物の現像欠陥抑制性向上の観点から、酸解離性基を含む構造単位を有することが好ましい。酸解離性基を含む構造単位としては、例えば、[A]重合体における構造単位(I)等が挙げられる。
 また、[E]重合体は、アルカリ解離性基を有することが好ましい。[E]重合体がアルカリ解離性基を有すると、アルカリ現像時にレジスト膜表面を疎水性から親水性に効果的に変えることができ、当該感放射線性樹脂組成物の現像欠陥抑制性がより向上する。「アルカリ解離性基」とは、カルボキシ基、ヒドロキシ基等の水素原子を置換する基であって、アルカリ水溶液(例えば、23℃の2.38質量%テトラメチルアンモニウムヒドロキシド水溶液)中で解離する基をいう。
 構造単位(f)としては、下記式(f-1)で表される構造単位(以下、「構造単位(f-1)」ともいう)又は下記式(f-2)で表される構造単位(以下、「構造単位(f-2)」ともいう)が好ましい。構造単位(f)は、構造単位(f-1)又は構造単位(f-2)をそれぞれ1種又は2種以上有していてもよい。
[構造単位(f-1)]
 構造単位(f-1)は、下記式(f-1)で表される構造単位である。[E]重合体は構造単位(f-1)を有することでフッ素原子の質量含有率を調整することができる。
Figure JPOXMLDOC01-appb-C000027
 上記式(f-1)中、Rは、水素原子、フッ素原子、メチル基又はトリフルオロメチル基である。Gは、単結合、酸素原子、硫黄原子、-COO-、-SONH-、-CONH-又は-OCONH-である。Rは、炭素数1~6の1価のフッ素化鎖状炭化水素基又は炭素数4~20の1価のフッ素化脂環式炭化水素基である。
 上記Rとしては、構造単位(f-1)を与える単量体の共重合性の観点から、水素原子又はメチル基が好ましく、メチル基がより好ましい。
 上記Gとしては、-COO-、-SONH-、-CONH-又は-OCONH-が好ましく、-COO-がより好ましい。
 上記Rで表される炭素数1~6の1価のフッ素化鎖状炭化水素基としては、例えば一部又は全部の水素原子がフッ素原子により置換された炭素数1~6の直鎖状又は分岐鎖状アルキル基が挙げられる。
 上記Rで表される炭素数4~20の1価のフッ素化脂環式炭化水素基としては、例えば一部又は全部の水素原子がフッ素原子により置換された炭素数4~20の単環又は多環の脂環式炭化水素基等が挙げられる。
 Rとしては、フッ素化鎖状炭化水素基が好ましく、2,2,2-トリフルオロエチル基又は1,1,1,3,3,3-ヘキサフルオロ-2-プロピル基がより好ましく、2,2,2-トリフルオロエチル基がさらに好ましい。
 [E]重合体が構造単位(f-1)を有する場合、構造単位(f-1)の含有割合の下限としては、[E]重合体を構成する全構造単位に対して、10モル%が好ましく、20モル%がより好ましい。上記含有割合の上限としては、100モル%が好ましく、70モル%がより好ましい。構造単位(f-1)の含有割合を上記範囲とすることで、[E]重合体のフッ素原子の質量含有率をさらに適度に調整することができる。
[構造単位(f-2)]
 構造単位(f-2)は、下記式(f-2)で表される。[E]重合体は構造単位(f-2)を有することで、アルカリ現像液への溶解性が向上し、現像欠陥の発生を抑制することができる。
Figure JPOXMLDOC01-appb-C000028
 構造単位(f-2)は、(x)アルカリ可溶性基を有する場合と、(y)アルカリの作用により解離してアルカリ現像液への溶解性が増大する基(以下、「アルカリ解離性基」ともいう)を有する場合の2つに大別される。(x)、(y)双方に共通して、上記式(f-2)中、Rは水素原子、フッ素原子、メチル基又はトリフルオロメチル基である。Rは単結合、炭素数1~20の(s+1)価の炭化水素基、この炭化水素基のR側の末端に酸素原子、硫黄原子、-NRdd-、カルボニル基、-COO-若しくは-CONH-が結合された構造、又はこの炭化水素基が有する水素原子の一部がヘテロ原子を有する有機基により置換された構造である。Rddは、水素原子又は炭素数1~10の1価の炭化水素基である。sは、1~3の整数である。但しsが1の場合、Rが単結合である場合はない。
 構造単位(f-2)が(x)アルカリ可溶性基を有する場合、Rは水素原子であり、Aは酸素原子、-COO-*又は-SOO-*である。*はRに結合する部位を示す。Wは単結合、炭素数1~20の炭化水素基又は2価のフッ素化炭化水素基である。Aが酸素原子である場合、WはAが結合する炭素原子にフッ素原子又はフルオロアルキル基を有するフッ素化炭化水素基である。Rは単結合又は炭素数1~20の2価の有機基である。sが2又は3の場合、複数のR、W、A及びRはそれぞれ同一又は異なる。構造単位(f-2)が(x)アルカリ可溶性基を有することで、アルカリ現像液に対する親和性を高め、現像欠陥を抑制することができる。(x)アルカリ可溶性基を有する構造単位(f-2)としては、Aが酸素原子であり、Wが1,1,1,3,3,3-ヘキサフルオロ-2,2-プロパンジイル基である場合が特に好ましい。
 構造単位(f-2)が(y)アルカリ解離性基を有する場合、Rは炭素数1~30の1価の有機基であり、Aは酸素原子、-NRaa-、-COO-*又は-SOO-*である。Raaは水素原子又は炭素数1~10の1価の炭化水素基である。*はRに結合する部位を示す。Wは単結合又は炭素数1~20の2価のフッ素化炭化水素基である。Rは、単結合又は炭素数1~20の2価の有機基である。Aが-COO-*又は-SOO-*である場合、W又はRはAと結合する炭素原子又はこれに隣接する炭素原子上にフッ素原子を有する。Aが酸素原子である場合、W、Rは単結合であり、Rは炭素数1~20の炭化水素基のR側の末端にカルボニル基が結合された構造であり、Rはフッ素原子を有する有機基である。sが2又は3の場合、複数のR、W、A及びRはそれぞれ同一でも異なっていてもよい。構造単位(f-2)が(y)アルカリ解離性基を有することにより、アルカリ現像工程においてレジスト膜表面が疎水性から親水性へと変化する。この結果、現像液に対する親和性を大幅に高め、より効率的に現像欠陥を抑制することができる。(y)アルカリ解離性基を有する構造単位(f-2)としては、Aが-COO-*であり、R若しくはW又はこれら両方がフッ素原子を有するものが特に好ましい。
 Rとしては、構造単位(f-2)を与える単量体の共重合性等の観点から、水素原子又はメチル基が好ましく、メチル基がより好ましい。
 Rが2価の有機基である場合、ラクトン構造を有する基が好ましく、多環のラクトン構造を有する基がより好ましく、ノルボルナンラクトン構造を有する基がより好ましい。
 [E]重合体が構造単位(f-2)を有する場合、構造単位(f-2)の含有割合の下限としては、[E]重合体を構成する全構造単位に対して、1モル%が好ましく、10モル%がより好ましい。上記含有割合の上限としては、70モル%が好ましく、50モル%がより好ましい。構造単位(f-2)の含有割合を上記範囲とすることで、当該感放射線性樹脂組成物から形成されたレジスト膜表面をアルカリ現像前後で撥水性から親水性へより適切に変えることができる。
 構造単位(f)の含有割合の下限としては、[E]重合体を構成する全構造単位に対して、10モル%が好ましく、20モル%がより好ましく、30モル%がさらに好ましい。上記含有割合の上限としては、100モル%が好ましく、90モル%がより好ましく、85モル%がさらに好ましい。
 [E]重合体における酸解離性基を含む構造単位の下限としては、[E]重合体を構成する全構造単位に対して、5モル%が好ましく、10モル%がより好ましく、15モル%がさらに好ましい。上記含有割合の上限としては、90モル%が好ましく、75モル%がより好ましく、50モル%がさらに好ましい。酸解離性基を含む構造単位の含有割合を上記範囲とすることで、当該感放射線性樹脂組成物の現像欠陥抑制性をさらに向上させることができる。
 当該感放射線性樹脂組成物が[E]重合体を含有する場合、[E]重合体の含有量の下限としては、[A]重合体100質量部に対して、0.1質量部が好ましく、0.5質量部がより好ましく、1質量部がさらに好ましく、2質量部が特に好ましい。上記含有量の上限としては、30質量部が好ましく、20質量部がより好ましく、15質量部がさらに好ましく、10質量部が特に好ましい。当該感放射線性樹脂組成物は[E]重合体を1種又は2種以上含有していてもよい。
 [E]重合体は、上述した[A]重合体と同様の方法で合成することができる。
 [E]重合体のGPCによるMwの下限としては、1,000が好ましく、3,000がより好ましく、4,000がさらに好ましく、5,000が特に好ましい。上記Mwの上限としては、50,000が好ましく、30,000がより好ましく、20,000がさらに好ましく、10,000が特に好ましい。[E]重合体のMwを上記範囲とすることで、当該感放射線性樹脂組成物の塗工性及び現像欠陥抑制性が向上する。
 [E]重合体のGPCによるMnに対するMwの比(Mw/Mn)の下限としては、通常1であり、1.2が好ましい。上記比の上限としては、5が好ましく、3がより好ましく、2がさらに好ましい。
<その他の任意成分>
 当該感放射線性樹脂組成物は、その他の任意成分として、例えば[C]化合物以外の他の酸拡散制御体、偏在化促進剤、界面活性剤等が挙げられる。これらのその他の任意成分はそれぞれ1種又は2種以上を併用してもよい。
[他の酸拡散制御体]
 当該感放射線性樹脂組成物は、必要に応じて、他の酸拡散制御体を含有してもよい。他の酸拡散制御体の当該感放射線性樹脂組成物における含有形態としては、遊離の化合物(以下、適宜「他の酸拡散制御剤」という)の形態でも、重合体の一部として組み込まれた形態でも、これらの両方の形態でもよい。
 他の酸拡散制御剤としては、例えばモノアルキルアミン等の1個の窒素原子を有する化合物、エチレンジアミン等の2個の窒素原子を有する化合物、ポリエチレンイミン等の3個以上の窒素原子を有する化合物、N,N-ジメチルアセトアミド等のアミド基含有化合物、1,1,3,3-テトラメチルウレア等のウレア化合物、N-(ウンデシルカルボニルオキシエチル)モルホリン、N-t-ブトキシカルボニル-4-ヒドロキシピペリジン等の含窒素複素環化合物などが挙げられる。また、他の酸拡散制御剤として、トリフェニルスルホニウムサリチレート、トリフェニルスルホニウム10-カンファースルホネート等の露光により感光し弱酸を発生する光崩壊性塩基(但し、[C]化合物に該当するものを除く)を用いることもできる。
 当該感放射線性樹脂組成物が他の酸拡散制御剤を含有する場合、他の酸拡散制御剤の含有量の上限としては、[A]重合体100質量部に対して、5質量部が好ましく、3質量部がより好ましく、1質量部がさらに好ましい。当該感放射線性樹脂組成物は他の酸拡散制御体を1種又は2種以上含有していてもよい。
[偏在化促進剤]
 偏在化促進剤は、当該感放射線性樹脂組成物が[E]重合体を含有する場合等に、[E]重合体を、より効率的にレジスト膜表面に偏析させる効果を有するものである。当該感放射線性樹脂組成物に偏在化促進剤を含有させることで、[E]重合体の添加量を従来よりも少なくすることができる。従って、LWR性能等を損なうことなく、レジスト膜から液浸液への成分の溶出をさらに抑制することや、高速スキャンにより液浸露光をより高速に行うことが可能になり、結果としてウォーターマーク欠陥等の液浸由来欠陥を抑制するレジスト膜表面の疎水性を向上させることができる。このような偏在化促進剤として用いることができるものとしては、比誘電率が30以上200以下で、1気圧における沸点が100℃以上の低分子化合物を挙げることができる。このような化合物としては、具体的には、ラクトン化合物、カーボネート化合物、ニトリル化合物、多価アルコール等が挙げられる。
 ラクトン化合物としては、例えばγ-ブチロラクトン、バレロラクトン、メバロラクトン、ノルボルナンラクトン等が挙げられる。カーボネート化合物としては、例えばプロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、ビニレンカーボネート等が挙げられる。ニトリル化合物としては、例えばスクシノニトリル等が挙げられる。多価アルコールとしては、例えばグリセリン等が挙げられる。
 当該感放射線性樹脂組成物が偏在化促進剤を含有する場合、偏在化促進剤の含有量の下限としては、当該感放射線性樹脂組成物が含有する重合体の総量100質量部に対して、10質量部が好ましく、15質量部がより好ましく、20質量部がさらに好ましく、25質量部が特に好ましい。上記含有量の上限としては、500質量部が好ましく、300質量部がより好ましく、200質量部がさらに好ましく、100質量部が特に好ましい。
[界面活性剤]
 界面活性剤は、塗工性、ストリエーション、現像性等を改良する効果を奏する。界面活性剤としては、例えばポリオキシエチレンラウリルエーテル等のノニオン系界面活性剤等が挙げられる。当該感放射線性樹脂組成物が界面活性剤を含有する場合、界面活性剤の含有量の上限としては、[A]重合体100質量部に対して、2質量部が好ましい。
<感放射線性樹脂組成物の調製方法>
 当該感放射線性樹脂組成物は、例えば[A]重合体、[B]酸発生体、[C]化合物、[D]溶媒及び必要に応じて[E]重合体等の任意成分を所定の割合で混合し、好ましくは得られた混合物を、例えば孔径0.2μm程度のフィルター等でろ過することにより調製することができる。当該感放射線性樹脂組成物の固形分濃度の下限としては、0.1質量%が好ましく、0.5質量%がより好ましく、1質量%がさらに好ましい。上記固形分濃度の上限としては、50質量%が好ましく、30質量%がより好ましく、10質量%がさらに好ましい。
<レジストパターン形成方法>
 当該レジストパターン形成方法は、基板の一方の面に、当該感放射線性樹脂組成物を塗工する工程(以下、「塗工工程」ともいう)と、上記塗工工程により得られるレジスト膜を露光する工程(以下、「露光工程」ともいう)と、上記露光されたレジスト膜を現像する工程(以下、「現像工程」ともいう)とを備える。
 上記レジストパターン形成方法によれば、当該感放射線性樹脂組成物を用いているので、優れた焦点深度を発揮しつつ、LWRが小さく、解像度が高く、断面形状の矩形性に優れ、膜収縮が抑制されたレジストパターンを形成することができる。以下、各工程について説明する。
[塗工工程]
 本工程では、基板の一方の面に、当該感放射線性樹脂組成物を塗工する。これにより、レジスト膜が形成される。このレジスト膜を形成する基板としては、例えばシリコンウェハ、二酸化シリコン、アルミニウムで被覆されたウェハ等の従来公知のもの等が挙げられる。また、例えば特公平6-12452号公報や特開昭59-93448号公報等に開示されている有機系又は無機系の反射防止膜を基板上に形成してもよい。塗工方法としては、例えば回転塗工(スピンコーティング)、流延塗工、ロール塗工等が挙げられる。塗工した後に、必要に応じて、塗膜中の溶媒を揮発させるため、プレベーク(PB)を行ってもよい。PBの温度の下限としては、60℃が好ましく、80℃がより好ましい。上記温度の上限としては、140℃が好ましく、120℃がより好ましい。PBの時間の下限としては、5秒が好ましく、10秒がより好ましい。上記時間の上限としては、600秒が好ましく、300秒がより好ましい。形成されるレジスト膜の平均厚みの下限としては、10nmが好ましく、20nmがより好ましい。上記平均厚みの上限としては、1,000nmが好ましく、500nmがより好ましい。
 液浸露光を行う場合で、当該感放射線性樹脂組成物が撥水性重合体添加剤を含有していない場合等には、上記形成したレジスト膜上に、液浸液とレジスト膜との直接の接触を避ける目的で、液浸液に不溶性の液浸用保護膜を設けてもよい。液浸用保護膜としては、現像工程の前に溶媒により剥離する溶媒剥離型保護膜(特開2006-227632号公報参照)、現像工程の現像と同時に剥離する現像液剥離型保護膜(国際公開第2005/069076号及び国際公開第2006/035790号参照)のいずれを用いてもよい。但し、スループットの観点からは、現像液剥離型液浸用保護膜を用いることが好ましい。
[露光工程]
 本工程では、上記塗工工程により得られるレジスト膜を露光する。この露光は、フォトマスクを介して(場合によっては、水等の液浸媒体を介して)露光光を照射することにより行う。露光光としては、目的とするパターンの線幅に応じて、例えば可視光線、紫外線、遠紫外線、極端紫外線(EUV)、X線、γ線等の電磁波;電子線、α線等の荷電粒子線などが挙げられる。これらの中でも、遠紫外線、EUV又は電子線が好ましく、ArFエキシマレーザー光(波長193nm)、KrFエキシマレーザー光(波長248nm)、EUV又は電子線がより好ましく、ArFエキシマレーザー光、EUV又は電子線がさらに好ましい。
 露光を液浸露光により行う場合、用いる液浸液としては、例えば水、フッ素系不活性液体等が挙げられる。液浸液は、露光波長に対して透明であり、かつ膜上に投影される光学像の歪みを最小限に留めるよう屈折率の温度係数ができる限り小さい液体が好ましいが、特に露光光がArFエキシマレーザー光である場合、上述の観点に加えて、入手の容易さ、取り扱いのし易さといった点から水を用いるのが好ましい。水を用いる場合、水の表面張力を減少させるとともに、界面活性力を増大させる添加剤をわずかな割合で添加しても良い。この添加剤は、ウェハ上のレジスト膜を溶解させず、かつレンズの下面の光学コートに対する影響が無視できるものが好ましい。使用する水としては蒸留水が好ましい。
 上記露光の後、ポストエクスポージャーベーク(PEB)を行い、レジスト膜の露光された部分において、露光により[B]酸発生体等から発生した酸による[A]重合体等が有する酸解離性基の解離を促進させることが好ましい。このPEBによって、露光部と未露光部とで現像液に対する溶解性の差を増大させることができる。PEBの温度の下限としては、50℃が好ましく、80℃がより好ましい。上記温度の上限としては、180℃が好ましく、130℃がより好ましい。PEBの時間の下限としては、5秒が好ましく、10秒がより好ましい。上記時間の上限としては、600秒が好ましく、300秒がより好ましい。
 当該レジストパターン形成方法によれば、上述の当該感放射線性樹脂組成物を用いているので、PEBの際のレジスト膜の収縮を抑制することができる。
[現像工程]
 本工程では、上記露光されたレジスト膜を現像する。これにより、所定のレジストパターンを形成することができる。現像後は、水又はアルコール等のリンス液で洗浄し、乾燥することが一般的である。現像工程における現像方法は、アルカリ現像であっても、有機溶媒現像であってもよい。有機溶媒現像の場合、露光部がレジストパターンを形成するため、当該感放射線性樹脂組成物が膜収縮抑制性に優れることによる利益が大きい。
 アルカリ現像の場合、現像に用いる現像液としては、例えば水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、けい酸ナトリウム、メタけい酸ナトリウム、アンモニア水、エチルアミン、n-プロピルアミン、ジエチルアミン、ジ-n-プロピルアミン、トリエチルアミン、メチルジエチルアミン、エチルジメチルアミン、トリエタノールアミン、テトラメチルアンモニウムヒドロキシド(TMAH)、ピロール、ピペリジン、コリン、1,8-ジアザビシクロ-[5.4.0]-7-ウンデセン、1,5-ジアザビシクロ-[4.3.0]-5-ノネン等のアルカリ性化合物の少なくとも1種を溶解したアルカリ水溶液等が挙げられる。これらの中でも、TMAH水溶液が好ましく、2.38質量%TMAH水溶液がより好ましい。
 有機溶媒現像の場合、現像液としては、炭化水素系溶媒、エーテル系溶媒、エステル系溶媒、ケトン系溶媒、アルコール系溶媒等の有機溶媒、上記有機溶媒を含有する溶媒等が挙げられる。上記有機溶媒としては、例えば上述の感放射線性樹脂組成物の[D]溶媒として列挙した溶媒の1種又は2種以上等が挙げられる。これらの中でも、エステル系溶媒又はケトン系溶媒が好ましい。エステル系溶媒としては、酢酸エステル系溶媒が好ましく、酢酸n-ブチルがより好ましい。ケトン系溶媒としては、鎖状ケトンが好ましく、2-ヘプタノンがより好ましい。現像液中の有機溶媒の含有量の下限としては、80質量%が好ましく、90質量%がより好ましく、95質量%がさらに好ましく、99質量%が特に好ましい。現像液中の有機溶媒以外の成分としては、例えば水、シリコンオイル等が挙げられる。
 現像方法としては、例えば現像液が満たされた槽中に基板を一定時間浸漬する方法(ディップ法)、基板表面に現像液を表面張力によって盛り上げて一定時間静止することで現像する方法(パドル法)、基板表面に現像液を噴霧する方法(スプレー法)、一定速度で回転している基板上に一定速度で現像液塗出ノズルをスキャンしながら現像液を塗出しつづける方法(ダイナミックディスペンス法)等が挙げられる。
<酸拡散制御剤>
 本発明の酸拡散制御剤は、下記式(1’)で表される。当該酸拡散制御剤は、上述の特性を有するので、当該感放射線性樹脂組成物の酸拡散制御剤成分として好適に用いることができ、そのLWR性能等を向上させることができる。
Figure JPOXMLDOC01-appb-C000029
 上記式(1’)中、Xは、酸素原子又は硫黄原子である。Rは、水素原子又は炭素数1~20の1価の有機基である。R~Rは、それぞれ独立して水素原子又は炭素数1~20の1価の有機基であるか、又はこれらの基のうちの2つ以上が互いに合わせられこれらが結合する炭素原子と共に構成される環員数3~20の脂環構造又は脂肪族複素環構造を表す。Zn+は、n価の感放射線性カチオンである。nは、1~3の整数である。
<カルボン酸塩>
 本発明のカルボン酸塩は、下記式(i)で表される。当該カルボン酸塩は、上述の当該酸拡散制御剤として好適に用いることができる。
Figure JPOXMLDOC01-appb-C000030
 上記式(i)中、Xは、酸素原子又は硫黄原子である。Rは、水素原子又は炭素数1~20の1価の有機基である。R~Rは、それぞれ独立して水素原子又は炭素数1~20の1価の有機基であるか、又はこれらの基のうちの2つ以上が互いに合わせられこれらが結合する炭素原子と共に構成される環員数3~20の脂環構造又は脂肪族複素環構造を表す。Zn+は、n価の感放射線性カチオンである。nは、1~3の整数である。
 上記式(i)におけるR又はRとしては、炭素数1~20の1価の有機基が好ましい。
 上記式(i)におけるZn+としては、オニウムカチオンが好ましい。上記オニウムカチオンとしては、スルホニウムカチオン、ヨードニウムカチオン、テトラヒドロチオフェニウムカチオン又はこれらの組み合わせが好ましい。
 上記式(i)におけるnとしては、2又は3が好ましい。また、上記式(i)におけるnが1であり、Zn+がアルカリ金属カチオンであることも好ましい。
<カルボン酸>
 本発明のカルボン酸は、下記式(i’)で表される。当該カルボン酸は、上述の当該カルボン酸塩の原料として好適に用いることができる。
Figure JPOXMLDOC01-appb-C000031
 上記式(i’)中、Xは、酸素原子又は硫黄原子である。Rは水素原子又は炭素数1~20の1価の有機基である。R及びRはそれぞれ独立して炭素数1~20の1価の有機基であり、R及びRはそれぞれ独立して水素原子又は炭素数1~20の1価の有機基であるか、又はR~Rのうちの2つ以上が互いに合わせられこれらが結合する炭素原子と共に構成される環員数3~20の脂環構造又は脂肪族複素環構造を表す。
 当該酸拡散制御剤、当該カルボン酸塩及び当該カルボン酸については、上記[C]化合物の項で上述している。
 以下、本発明に関して実施例を用いて詳細に説明するが、本発明はその要旨を超えない限り、以下の実施例に限定されるものではない。なお、実施例及び比較例における各測定は、下記の方法により行った。
[重量平均分子量(Mw)及び数平均分子量(Mn)]
 重合体のMw及びMnは、東ソー社のGPCカラム(G2000HXL:2本、G3000HXL:1本、及びG4000HXL:1本)を用い、流量:1.0mL/分、溶出溶媒:テトラヒドロフラン、試料濃度:1.0質量%、試料注入量:100μL、カラム温度:40℃、検出器:示差屈折計の分析条件で、単分散ポリスチレンを標準とするゲルパーミエーションクロマトグラフィー(GPC)により測定した。また、分散度(Mw/Mn)は、Mw及びMnの測定結果より算出した。
13C-NMR分析]
 核磁気共鳴装置(日本電子社の「JNM-ECX400」)を用い、測定溶媒として重クロロホルムを使用して、各重合体における各構造単位の含有割合(モル%)を求める分析を行った。
<[C]化合物の合成>
[実施例1](化合物(Z-1)の合成)
 下記反応スキームに従って、化合物(Z-1)を合成した。
 反応容器に亜鉛79.7mmol、トリメチルシリルクロリド2mmol及びテトラヒドロフラン40gを加えた。室温で10分撹拌後、下記化合物(ppz-1)66.6mmol及びブロモ酢酸メチル66.6mmolをテトラヒドロフラン10gに溶解させたものを滴下した。5時間撹拌後、飽和塩化アンモニウム水溶液を加えて反応を停止させた。酢酸エチルを加えて抽出し、有機層を分離した。得られた有機層を飽和炭酸水素ナトリウム水溶液、次いで水で洗浄した。無水硫酸ナトリウムで乾燥後、溶媒を留去し、カラムクロマトグラフィーで精製することで、化合物(pz-1)を良好な収率で得た。
 反応容器に化合物(pz-1)22.3mmol、テトラヒドロフラン40g及び水4gを加えた。続いて、水酸化リチウム33.5mmolを加え、室温で6時間撹拌した。トルエン及び水を加え、分液により得られた水層を塩酸により中和し、酢酸エチルで抽出した。得られた有機層を飽和塩化ナトリウム水溶液で洗浄し、無水硫酸ナトリウムで乾燥した後、溶媒留去することで、化合物(z-1)を良好な収率で得た。
 反応容器に、化合物(z-1)6.20mmol及びアセトン5gを加え、撹拌した。次に、トリフェニルスルホニウム炭酸水素塩(TPSHCO)6.30mmolの50質量%水溶液を滴下した。1時間撹拌後、ジクロロメタンを加えて抽出し、有機層を分離した。得られた有機層を無水硫酸ナトリウムで乾燥し、溶媒留去することで、化合物(Z-1)を良好な収率で得た。
Figure JPOXMLDOC01-appb-C000032
[実施例2~16](化合物(Z-2)~(Z-16)の合成)
 前駆体を適宜選択し、実施例1と同様の処方を選択することで、下記式(Z-2)~(Z-16)で表される[C]化合物を合成した。
Figure JPOXMLDOC01-appb-C000033
<重合体の合成>
 [A]重合体及び[E]重合体の合成に用いた単量体を以下に示す。
 構造単位(I)を与える単量体として、立体的に嵩高い構造を有する大保護基を含む化合物であるM-3、M-4、M-5及びM-7を、立体的に小さい構造を有する小保護基を含む化合物であるM-1、M-2、M-6及びM-16を用い、構造単位(II)を与える単量体として、M-8、M-9、M-11、M-12、M-13及びM-14を用い、構造単位(III)を与える単量体として、M-10及びM-15を用い、その他の構造単位を与える単量体として、M-17及びM-18を用いた。表1におけるM-15の「a」は、M-15が重合体(A-8)中でヒドロキシスチレンに由来する構造単位となることを示す。なお、以下の合成例においては特に断りのない限り、質量部は使用した単量体の合計質量を100質量部とした場合の値を意味し、モル%は使用した単量体の合計モル数を100モル%とした場合の値を意味する。
Figure JPOXMLDOC01-appb-C000034
[[A]重合体の合成]
[合成例1](重合体(A-1)の合成)
 単量体としての化合物(M-1)及び化合物(M-8)を、モル比率が50/50となるよう2-ブタノン(200質量部)に溶解した。ここに、開始剤としてのアゾビスイソブチロニトリル(AIBN)(5モル%)を添加し、単量体溶液を調製した。反応容器に2-ブタノン(100質量部)を入れ、30分窒素パージした。反応容器内を80℃とし、撹拌しながら、上記単量体溶液を3時間かけて滴下した。滴下開始を重合反応の開始時間とし、重合反応を6時間実施した。重合反応終了後、重合溶液を水冷して30℃以下に冷却した。冷却した重合溶液をメタノール(2,000質量部)中に投入し、析出した白色粉末をろ別した。ろ別した白色粉末をメタノールで2回洗浄した後、ろ別し、50℃で17時間乾燥させて白色粉末状の重合体(A-1)を得た(収率78.9%)。重合体(A-1)のMwは6,100であり、Mw/Mnは1.41であった。13C-NMR分析の結果、(M-1)及び(M-8)に由来する各構造単位の含有割合はそれぞれ49.8モル%及び50.2モル%であった。
[合成例2~7](重合体(A-2)~(A-7)の合成)
 モノマーを適宜選択し、合成例1と同様の操作を行うことによって、重合体(A-2)~重合体(A-7)を合成した。
[合成例8](重合体(A-8)の合成)
 単量体としての化合物(M-1)及び化合物(M-15)を、モル比率が50/50となるよう、プロピレングリコールモノメチルエーテル(100質量部)に溶解した。ここに、開始剤としてのAIBN(5モル%)及び連鎖移動剤としてのt-ドデシルメルカプタン(開始剤100質量部に対して38質量部)を加えて単量体溶液を調製した。この単量体溶液を窒素雰囲気下、反応温度を70℃に保持して、16時間共重合させた。重合反応終了後、重合溶液をn-ヘキサン(1,000質量部)中に滴下して、重合体を凝固精製した。上記重合体に、再度プロピレングリコールモノメチルエーテル(150質量部)を加えた。さらに、メタノール(150質量部)、トリエチルアミン(化合物(M-10)の使用量に対し1.5モル当量)及び水(化合物(M-10)の使用量に対し1.5モル当量)を加えて、沸点にて還流させながら、8時間加水分解反応を行った。反応終了後、溶媒及びトリエチルアミンを減圧留去し、得られた重合体をアセトン(150質量部)に溶解した。これを水(2,000質量部)中に滴下して凝固させ、生成した白色粉末をろ別した。50℃で17時間乾燥させて白色粉末状の重合体(A-8)を得た(収率72.3%)。重合体(A-8)のMwは6,400であり、Mw/Mnは1.72であった。13C-NMR分析の結果、(M-1)及び(M-15)に由来する各構造単位の含有割合は、それぞれ51.2モル%及び48.8モル%であった。
[[E]重合体の合成]
[合成例9](重合体(E-1)の合成)
 単量体としての化合物(M-16)、化合物(M-17)及び化合物(M-18)をモル比率が20/40/40となるよう、2-ブタノン(67質量部)に溶解した。ここに開始剤としてのAIBN(全単量体に対して5モル%)を添加して単量体溶液を調製した。反応容器に2-ブタノン(33質量部)を入れ、30分窒素パージした。反応容器内を80℃とし、撹拌しながら上記単量体溶液を3時間かけて滴下した。滴下開始を重合反応の開始時間とし、重合反応を6時間実施した。重合反応終了後、重合溶液を水冷して30℃以下に冷却した。n-ヘキサン(150質量部)を重合反応液に加え均一に希釈し、その後、メタノール(600質量部)を投入して混合した。次に、この混合液に蒸留水(30質量部)を投入し、さらに撹拌して30分静置した。次いで、混合液から下層を回収し、回収した下層中の溶媒をプロピレングリコールモノメチルエーテルアセテートに置換することで、重合体(E-1)を含むプロピレングリコールモノメチルエーテルアセテート溶液を得た(収率72.0%)。重合体(E-1)のMwは7,300であり、Mw/Mnは2.00であった。13C-NMR分析の結果、重合体(E-1)における(M-16)、(M-17)及び(M-18)に由来する構造単位の含有割合は、それぞれ20.1モル%、38.9モル%及び41.0モル%であった。
Figure JPOXMLDOC01-appb-T000035
<感放射線性樹脂組成物の調製>
 感放射線性樹脂組成物の調製に用いた[B]酸発生剤、[C]化合物、[D]溶媒及び[F]偏在化促進剤を以下に示す。
[[B]酸発生剤]
 酸発生剤(B-1)~(B-7)
 各構造式を以下に示す。
Figure JPOXMLDOC01-appb-C000036
[[C]化合物]
 実施例17~44で用いる化合物:上記実施例1~16で合成した化合物(Z-1)~(Z-16)
 比較例1~4で用いる化合物:下記式(CZ-1)~(CZ-4)で表される化合物
Figure JPOXMLDOC01-appb-C000037
[[D]溶媒]
 D-1:酢酸プロピレングリコールモノメチルエーテル
 D-2:シクロヘキサノン
[[F]偏在化促進剤]
 F-1:γ-ブチロラクトン
[ArF露光用感放射線性樹脂組成物の調製]
[実施例17](感放射線性樹脂組成物(J-1)の調製)
 [A]重合体としての(A-1)100質量部、[B]酸発生剤としての(B-1)7.9質量部、[C]化合物としての(Z-1)1.6質量部、[D]溶媒としての(D-1)2,240質量部及び(D-2)960質量部、[E]重合体としての(E-1)3質量部並びに[F]偏在化促進剤としての(F-1)30質量部を配合し、孔径0.2μmのメンブランフィルターでろ過することにより感放射線性樹脂組成物(J-1)を調製した。
[実施例18~44及び比較例1~4](感放射線性樹脂組成物(J-2)~(J-28)及び(CJ-1)~(CJ-4)の調製)
 下記表2及び表3に示す種類及び含有量の各成分を用いた以外は、実施例17と同様に操作して、各感放射線性樹脂組成物を調製した。
Figure JPOXMLDOC01-appb-T000038
Figure JPOXMLDOC01-appb-T000039
<レジストパターンの形成>
[ArF露光及びアルカリ現像によるレジストパターンの形成(1)]
 12インチのシリコンウエハ表面に、スピンコーター(東京エレクトロン社の「CLEAN TRACK ACT12」)を使用して、下層反射防止膜形成用組成物(ブルワーサイエンス社の「ARC66」)を塗工した後、205℃で60秒間加熱することにより平均厚さ105nmの反射防止膜を形成した。この反射防止膜上に、上述の通り調製した各感放射線性樹脂組成物を、上記スピンコーターを使用して塗工し、90℃で60秒間PBを行った。その後、感放射線性樹脂組成物を塗工した上記ウエハを23℃で30秒間冷却することで平均厚さ90nmのレジスト膜を形成した。次に、このレジスト膜に対し、ArFエキシマレーザー液浸露光装置(NIKON社の「NSR-S610C」)を用い、NA=1.3、ダイポール(シグマ0.977/0.782)の光学条件にて、40nmラインアンドスペース(L/S=1/1)マスクパターンを介して露光した。露光後、上記レジスト膜に90℃で60秒間PEBを行った。その後、アルカリ現像液として2.38質量%のTMAH水溶液を用いて上記レジスト膜をアルカリ現像し、現像後に水で洗浄し、さらに乾燥させることでポジ型のレジストパターンを形成した。このレジストパターン形成の際、ターゲット寸法が40nmの1対1ラインアンドスペースのマスクを介して形成した線幅が、線幅40nmの1対1ラインアンドスペースに形成される露光量を最適露光量とした。
[ArF露光及び有機溶媒現像によるレジストパターンの形成(2)]
 上記TMAH水溶液の代わりに酢酸n-ブチルを用いて有機溶媒現像し、かつ水での洗浄を行わなかった以外は上記レジストパターンの形成(1)と同様に操作して、ネガ型のレジストパターンを形成した。
<評価>
 上記形成したレジストパターンについて以下の測定を行うことにより、各感放射線性樹脂組成物のArF露光時の性能を評価した。なお、レジストパターンの測長には走査型電子顕微鏡(日立ハイテクノロジーズ社の「CG-4100」)を用いた。
[LWR性能]
 上記走査型電子顕微鏡を用い、レジストパターンをパターン上部から観察し、その線幅を任意のポイントで計50点測定した。この測定値の分布から3σ値を求め、これをLWR性能(nm)とした。LWR性能は、その値が小さいほど良いことを示す。LWR性能は、4.0nm以下の場合は「良好」と、4.0nmを超える場合は「良好でない」と評価できる。
[解像性]
 上記最適露光量において解像される最小のレジストパターンの寸法を測定し、この測定結果を解像性(nm)とした。解像性は、その値が小さいほど良いことを示す。解像性は、34nm以下の場合は「良好」と、34nmを超える場合は「良好でない」と評価できる。
[断面形状の矩形性]
 上記最適露光量において解像されるレジストパターンの断面形状を観察し、レジストパターンの高さ方向の中間での線幅Lbと、レジストパターンの上部での線幅Laとを測定し、Lbに対するLaの比を断面形状の矩形性とした。断面形状の矩形性は、0.9≦La/Lb≦1.1である場合は「良好」と、La/Lb<0.9又は1.1<La/Lbである場合は「良好でない」と評価できる。
[焦点深度]
 上記最適露光量において解像されるレジストパターンにおいて、深さ方向にフォーカスを変化させた際の寸法を観測し、ブリッジや残渣が無いままパターン寸法が基準の90%~110%に入る深さ方向の余裕度を測定し、この測定結果を焦点深度(nm)とした。焦点深度は、値が大きいほど良いことを示す。焦点深度は、60nm以上の場合は「良好」と、60nm未満の場合は「良好でない」と評価できる。
<膜収縮抑制性の評価>
 12インチのシリコンウエハ表面に、スピンコーター(東京エレクトロン社の「CLEAN TRACK ACT12」)を使用して、下層反射防止膜形成用組成物(ブルワーサイエンス社の「ARC66」)を塗工した後、205℃で60秒間加熱することにより平均厚さ105nmの反射防止膜を形成した。この反射防止膜上に、上記スピンコーターを使用して上記調製した各感放射線性樹脂組成物を塗工し、90℃で60秒間PBを行った。その後、PBを行った上記シリコンウエハを23℃で30秒間冷却し、平均厚さ90nmのレジスト膜を形成した。次に、このレジスト膜に対し、ArFエキシマレーザー液浸露光装置(NIKON社の「NSR-S610C」)を用い、70mJで全面露光を行った後に膜厚測定を実施してPEB前の膜厚Aを求めた。続いて、全面露光後のレジスト膜に90℃で60秒間のPEBを実施した後に、再度膜厚測定を実施し、PEB後の膜厚Bを求めた。測定結果から100×(A-B)/A(%)を求め、これを膜収縮抑制性(%)とした。膜収縮抑制性は、その値が小さいほど膜収縮抑制性に優れるため良いことを示す。膜収縮抑制性は、15%以下の場合は「良好」と、15%を超える場合は「良好でない」と評価できる。
 各感放射線性樹脂組成物のArF露光時の性能評価の結果と、膜収縮抑制性の評価結果とを下記表4に示す。
Figure JPOXMLDOC01-appb-T000040
[電子線露光用感放射線性樹脂組成物の調製]
[実施例45](感放射線性樹脂組成物(J-29)の調製)
 [A]重合体としての(A-8)100質量部、[B]酸発生剤としての(B-1)20質量部、[C]化合物としての(Z-1)3.2質量部、[D]溶媒としての(D-1)4,280質量部及び(D-2)1,830質量部並びに[E]重合体としての(E-1)3質量部を配合し、孔径0.2μmのメンブランフィルターでろ過することにより感放射線性樹脂組成物(J-29)を調製した。
[実施例46及び比較例5~8](感放射線性樹脂組成物(J-30)及び(CJ-5)~(CJ-8)の調製)
 下記表5に示す種類及び含有量の各成分を用いた以外は、実施例45と同様に操作して、各感放射線性樹脂組成物を調製した。
Figure JPOXMLDOC01-appb-T000041
<レジストパターンの形成>
[電子線露光及びアルカリ現像によるレジストパターンの形成(3)]
 8インチのシリコンウエハ表面にスピンコーター(東京エレクトロン社の「CLEAN TRACK ACT8」)を使用して、上記調製した各感放射線性樹脂組成物を塗工し、90℃で60秒間PBを行った。その後、上記シリコンウエハを23℃で30秒間冷却し、平均厚さ50nmのレジスト膜を形成した。次に、このレジスト膜に、簡易型の電子線描画装置(日立製作所社の「HL800D」、出力:50KeV、電流密度:5.0A/cm2)を用いて電子線を照射した。照射後、上記レジスト膜に130℃で60秒間PEBを行った。その後、アルカリ現像液としての2.38質量%TMAH水溶液を用いて上記レジスト膜を23℃で30秒間現像し、その後、水で洗浄し、さらに乾燥させることでポジ型のレジストパターンを形成した。
<評価>
 上記形成したレジストパターンについて以下の測定を行うことにより、各感放射線性樹脂組成物の電子線露光時の性能を評価した。
[感度]
 上記形成したレジストパターンを、上記走査型電子顕微鏡を用い、パターン上部から観察した。線幅が100nmのラインアンドスペースパターンになる露光量を最適露光量(μC/cm)とし、この最適露光量を感度とした。
[LWR性能]
 上記形成した線幅が100nm(L/S=1/1)のレジストパターンを、上記走査型電子顕微鏡を用い、パターン上部から観察した。線幅を任意のポイントで計50点測定し、その測定値の分布から3σ値を求め、これをLWR性能(nm)とした。LWR性能は、その値が小さいほど、線幅のばらつきが小さく良いことを示す。LWR性能は、20nm以下の場合は「良好」と、20nmを超える場合は「良好でない」と評価できる。
Figure JPOXMLDOC01-appb-T000042
 表4及び表6に示すように、実施例の感放射線性樹脂組成物は、ArF露光を行った場合には、LWR性能、解像性、断面形状の矩形性、焦点深度及び膜収縮抑制性の全てが良好であり、また、電子線露光を行った場合には感度及びLWR性能が良好であった。このように、当該感放射線性樹脂組成物は、LWR性能、解像性、断面形状の矩形性、焦点深度及び膜収縮抑制性に優れると判断される。これに対し、比較例の感放射線性樹脂組成物は、上記性能のうちの少なくとも一部が良好でなかった。ここで、一般的に、電子線露光によれば、EUV露光の場合と同様の傾向を示すことが知られている。従って、実施例の感放射線性樹脂組成物によれば、EUV露光の場合においても、感度、LWR性能に優れると推測される。
 本発明の感放射線性樹脂組成物及びレジストパターン形成方法によれば、優れた焦点深度及び膜収縮抑制性を発揮しつつ、LWRが小さく、解像度が高く、断面形状の矩形性に優れるレジストパターンを形成することができる。本発明の酸拡散制御剤は、当該感放射線性樹脂組成物の酸拡散制御剤成分として好適に用いることができる。本発明のカルボン酸塩及びカルボン酸は、当該酸拡散制御剤の原料として好適に用いることができる。従って、これらは、今後ますます微細化が進行すると予想される半導体デバイスの加工プロセス等に好適に用いることができる。

Claims (15)

  1.  酸解離性基を有する重合体と、
     感放射線性酸発生体と、
     下記式(1)で表される化合物と、
     溶媒と
     を含有する感放射線性樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001
    (式(1)中、Xは、酸素原子又は硫黄原子である。Rは、水素原子又は炭素数1~20の1価の有機基である。R~Rは、それぞれ独立して水素原子又は炭素数1~20の1価の有機基であるか、又はこれらの基のうちの2つ以上が互いに合わせられこれらが結合する炭素原子と共に構成される環員数3~20の脂環構造又は脂肪族複素環構造を表す。Zn+は、n価のカチオンである。nは、1~3の整数である。)
  2.  上記式(1)におけるRが水素原子である請求項1に記載の感放射線性樹脂組成物。
  3.  上記式(1)におけるR及びRが互いに合わせられこれらが結合する炭素原子と共に構成される環員数3~20の脂環構造又は脂肪族複素環構造を表す請求項1又は請求項2に記載の感放射線性樹脂組成物。
  4.  上記式(1)におけるR及びRが置換若しくは非置換の炭化水素基、脂肪族複素環構造を含む基又は水素原子である請求項1又は請求項2に記載の感放射線性樹脂組成物。
  5.  上記式(1)におけるR及びRが水素原子である請求項1から請求項4のいずれか1項に記載の感放射線性樹脂組成物。
  6.  上記感放射線性酸発生体が、放射線の照射によりスルホン酸を発生する請求項1から請求項5のいずれか1項に記載の感放射線性樹脂組成物。
  7.  基板の一方の面に、請求項1から請求項6のいずれか1項に記載の感放射線性樹脂組成物を塗工する工程と、
     上記塗工工程により得られるレジスト膜を露光する工程と、
     上記露光されたレジスト膜を現像する工程と
     を備えるレジストパターン形成方法。
  8.  下記式(1’)で表される酸拡散制御剤。
    Figure JPOXMLDOC01-appb-C000002
    (式(1’)中、Xは、酸素原子又は硫黄原子である。Rは、水素原子又は炭素数1~20の1価の有機基である。R~Rは、それぞれ独立して水素原子又は炭素数1~20の1価の有機基であるか、又はこれらの基のうちの2つ以上が互いに合わせられこれらが結合する炭素原子と共に構成される環員数3~20の脂環構造又は脂肪族複素環構造を表す。Zn+は、n価の感放射線性カチオンである。nは、1~3の整数である。)
  9.  下記式(i)で表されるカルボン酸塩。
    Figure JPOXMLDOC01-appb-C000003
    (式(i)中、Xは、酸素原子又は硫黄原子である。Rは、水素原子又は炭素数1~20の1価の有機基である。R~Rは、それぞれ独立して水素原子又は炭素数1~20の1価の有機基であるか、又はこれらの基のうちの2つ以上が互いに合わせられこれらが結合する炭素原子と共に構成される環員数3~20の脂環構造又は脂肪族複素環構造を表す。Zn+は、n価の感放射線性カチオンである。nは、1~3の整数である。)
  10.  上記式(i)におけるR及びRが炭素数1~20の1価の有機基である請求項9に記載のカルボン酸塩。
  11.  上記式(i)におけるZn+がオニウムカチオンである請求項9又は請求項10に記載のカルボン酸塩。
  12.  上記オニウムカチオンが、スルホニウムカチオン、ヨードニウムカチオン、テトラヒドロチオフェニウムカチオン又はこれらの組み合わせである請求項11に記載のカルボン酸塩。
  13.  上記式(i)におけるnが2又は3である請求項11又は請求項12に記載のカルボン酸塩。
  14.  上記式(i)におけるnが1であり、Zn+がアルカリ金属カチオンである請求項9又は請求項10に記載のカルボン酸塩。
  15.  下記式(i’)で表されるカルボン酸。
    Figure JPOXMLDOC01-appb-C000004
    (式(i’)中、Xは、酸素原子又は硫黄原子である。Rは水素原子又は炭素数1~20の1価の有機基である。R及びRはそれぞれ独立して炭素数1~20の1価の有機基であり、R及びRはそれぞれ独立して水素原子又は炭素数1~20の1価の有機基であるか、又はR~Rのうちの2つ以上が互いに合わせられこれらが結合する炭素原子と共に構成される環員数3~20の脂環構造又は脂肪族複素環構造を表す。)
PCT/JP2018/007043 2017-03-01 2018-02-26 感放射線性樹脂組成物、レジストパターン形成方法、酸拡散制御剤、カルボン酸塩及びカルボン酸 WO2018159560A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019502989A JP7140100B2 (ja) 2017-03-01 2018-02-26 感放射線性樹脂組成物、レジストパターン形成方法、及び酸拡散制御剤
KR1020197025221A KR102550157B1 (ko) 2017-03-01 2018-02-26 감방사선성 수지 조성물, 레지스트 패턴 형성 방법, 산확산 제어제, 카르복실산염 및 카르복실산
US16/552,339 US11320735B2 (en) 2017-03-01 2019-08-27 Radiation-sensitive resin composition, resist pattern-forming method, acid diffusion control agent, carboxylic acid salt and carboxylic acid

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017038807 2017-03-01
JP2017-038807 2017-03-01

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/552,339 Continuation US11320735B2 (en) 2017-03-01 2019-08-27 Radiation-sensitive resin composition, resist pattern-forming method, acid diffusion control agent, carboxylic acid salt and carboxylic acid

Publications (1)

Publication Number Publication Date
WO2018159560A1 true WO2018159560A1 (ja) 2018-09-07

Family

ID=63369995

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/007043 WO2018159560A1 (ja) 2017-03-01 2018-02-26 感放射線性樹脂組成物、レジストパターン形成方法、酸拡散制御剤、カルボン酸塩及びカルボン酸

Country Status (5)

Country Link
US (1) US11320735B2 (ja)
JP (1) JP7140100B2 (ja)
KR (1) KR102550157B1 (ja)
TW (1) TWI754724B (ja)
WO (1) WO2018159560A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109991811A (zh) * 2019-02-27 2019-07-09 江苏南大光电材料股份有限公司 一种酸扩散抑制剂及其制备方法与光刻胶组合物
JP2020203984A (ja) * 2019-06-17 2020-12-24 Jsr株式会社 感放射線性樹脂組成物、レジストパターン形成方法、酸拡散制御剤及び化合物
WO2022065090A1 (ja) * 2020-09-25 2022-03-31 Jsr株式会社 感放射線性樹脂組成物、パターン形成方法及びオニウム塩化合物
KR20240008803A (ko) 2022-07-12 2024-01-19 신에쓰 가가꾸 고교 가부시끼가이샤 레지스트 재료 및 패턴 형성 방법
KR20240009365A (ko) 2022-07-12 2024-01-22 신에쓰 가가꾸 고교 가부시끼가이샤 오늄염, 레지스트 조성물 및 패턴 형성 방법
KR20240024749A (ko) 2022-08-16 2024-02-26 신에쓰 가가꾸 고교 가부시끼가이샤 오늄염, 산 확산 제어제, 레지스트 조성물 및 패턴형성 방법
KR20240049171A (ko) 2022-10-07 2024-04-16 신에쓰 가가꾸 고교 가부시끼가이샤 레지스트 재료 및 패턴 형성 방법
KR20240051834A (ko) 2022-10-12 2024-04-22 신에쓰 가가꾸 고교 가부시끼가이샤 오늄염, 레지스트 조성물, 및 패턴 형성 방법
KR20240063779A (ko) 2022-11-02 2024-05-10 신에쓰 가가꾸 고교 가부시끼가이샤 술포늄염, 레지스트 재료 및 패턴 형성 방법
KR20240125461A (ko) 2023-02-10 2024-08-19 신에쓰 가가꾸 고교 가부시끼가이샤 술포늄염, 레지스트 재료 및 패턴 형성 방법
KR20240136852A (ko) 2023-03-07 2024-09-19 신에쓰 가가꾸 고교 가부시끼가이샤 레지스트 재료 및 패턴 형성 방법

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7365110B2 (ja) * 2018-09-11 2023-10-19 信越化学工業株式会社 ヨードニウム塩、レジスト組成物、及びパターン形成方法
JP7224161B2 (ja) * 2018-12-05 2023-02-17 東京応化工業株式会社 レジスト組成物及びレジストパターン形成方法
US11609495B2 (en) * 2019-10-28 2023-03-21 Jsr Corporation Radiation-sensitive resin composition and resist pattern-forming method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130052585A1 (en) * 2011-08-26 2013-02-28 Jsr Corporation Photodecomposable bases and photoresist compositions
US20140242526A1 (en) * 2013-02-23 2014-08-28 Jsr Corporation Positive tone organic solvent developed chemically amplified resist
JP2014235248A (ja) * 2013-05-31 2014-12-15 東京応化工業株式会社 レジスト組成物、化合物、高分子化合物及びレジストパターン形成方法
JP2015031760A (ja) * 2013-07-31 2015-02-16 東京応化工業株式会社 レジスト組成物、酸発生剤、高分子化合物及びレジストパターン形成方法
JP2015225251A (ja) * 2014-05-28 2015-12-14 信越化学工業株式会社 レジスト組成物及びパターン形成方法
JP2017197489A (ja) * 2016-04-28 2017-11-02 信越化学工業株式会社 新規カルボン酸オニウム塩、化学増幅レジスト組成物、及びパターン形成方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0612452B2 (ja) 1982-09-30 1994-02-16 ブリュ−ワ−・サイエンス・インコ−ポレイテッド 集積回路素子の製造方法
JPH0612452A (ja) 1992-06-25 1994-01-21 Hitachi Ltd グループ情報アクセス方式
JP3972438B2 (ja) 1998-01-26 2007-09-05 住友化学株式会社 化学増幅型のポジ型レジスト組成物
EP1179750B1 (en) * 2000-08-08 2012-07-25 FUJIFILM Corporation Positive photosensitive composition and method for producing a precision integrated circuit element using the same
JP2003005375A (ja) 2001-06-21 2003-01-08 Fuji Photo Film Co Ltd ポジ型レジスト組成物
JP2006227632A (ja) 2003-02-20 2006-08-31 Tokyo Ohka Kogyo Co Ltd 液浸露光プロセス用レジスト保護膜形成用材料、複合膜、およびレジストパターン形成方法
KR101426181B1 (ko) 2004-01-15 2014-07-31 제이에스알 가부시끼가이샤 액침용 상층막 형성 조성물 및 포토레지스트 패턴 형성 방법
KR101252976B1 (ko) 2004-09-30 2013-04-15 제이에스알 가부시끼가이샤 액침 상층막 형성 조성물
JP4832237B2 (ja) 2006-09-27 2011-12-07 富士フイルム株式会社 ポジ型レジスト組成物およびそれを用いたパターン形成方法
JP2009134088A (ja) 2007-11-30 2009-06-18 Jsr Corp 感放射線性樹脂組成物
JP5904180B2 (ja) * 2013-09-11 2016-04-13 信越化学工業株式会社 スルホニウム塩、化学増幅型レジスト組成物、及びパターン形成方法
US10295904B2 (en) * 2016-06-07 2019-05-21 Shin-Etsu Chemical Co., Ltd. Resist composition and patterning process
US10101654B2 (en) * 2016-09-20 2018-10-16 Shin-Etsu Chemical Co., Ltd. Resist composition and patterning process
JP7289669B2 (ja) * 2018-02-14 2023-06-12 住友化学株式会社 カルボン酸塩、カルボン酸発生剤、レジスト組成物及びレジストパターンの製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130052585A1 (en) * 2011-08-26 2013-02-28 Jsr Corporation Photodecomposable bases and photoresist compositions
US20140242526A1 (en) * 2013-02-23 2014-08-28 Jsr Corporation Positive tone organic solvent developed chemically amplified resist
JP2014235248A (ja) * 2013-05-31 2014-12-15 東京応化工業株式会社 レジスト組成物、化合物、高分子化合物及びレジストパターン形成方法
JP2015031760A (ja) * 2013-07-31 2015-02-16 東京応化工業株式会社 レジスト組成物、酸発生剤、高分子化合物及びレジストパターン形成方法
JP2015225251A (ja) * 2014-05-28 2015-12-14 信越化学工業株式会社 レジスト組成物及びパターン形成方法
JP2017197489A (ja) * 2016-04-28 2017-11-02 信越化学工業株式会社 新規カルボン酸オニウム塩、化学増幅レジスト組成物、及びパターン形成方法

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109991811A (zh) * 2019-02-27 2019-07-09 江苏南大光电材料股份有限公司 一种酸扩散抑制剂及其制备方法与光刻胶组合物
JP2020203984A (ja) * 2019-06-17 2020-12-24 Jsr株式会社 感放射線性樹脂組成物、レジストパターン形成方法、酸拡散制御剤及び化合物
JP7318338B2 (ja) 2019-06-17 2023-08-01 Jsr株式会社 感放射線性樹脂組成物、レジストパターン形成方法、酸拡散制御剤及び化合物
WO2022065090A1 (ja) * 2020-09-25 2022-03-31 Jsr株式会社 感放射線性樹脂組成物、パターン形成方法及びオニウム塩化合物
KR20240008803A (ko) 2022-07-12 2024-01-19 신에쓰 가가꾸 고교 가부시끼가이샤 레지스트 재료 및 패턴 형성 방법
KR20240009365A (ko) 2022-07-12 2024-01-22 신에쓰 가가꾸 고교 가부시끼가이샤 오늄염, 레지스트 조성물 및 패턴 형성 방법
KR20240024749A (ko) 2022-08-16 2024-02-26 신에쓰 가가꾸 고교 가부시끼가이샤 오늄염, 산 확산 제어제, 레지스트 조성물 및 패턴형성 방법
KR20240049171A (ko) 2022-10-07 2024-04-16 신에쓰 가가꾸 고교 가부시끼가이샤 레지스트 재료 및 패턴 형성 방법
KR20240051834A (ko) 2022-10-12 2024-04-22 신에쓰 가가꾸 고교 가부시끼가이샤 오늄염, 레지스트 조성물, 및 패턴 형성 방법
KR20240063779A (ko) 2022-11-02 2024-05-10 신에쓰 가가꾸 고교 가부시끼가이샤 술포늄염, 레지스트 재료 및 패턴 형성 방법
KR20240125461A (ko) 2023-02-10 2024-08-19 신에쓰 가가꾸 고교 가부시끼가이샤 술포늄염, 레지스트 재료 및 패턴 형성 방법
KR20240136852A (ko) 2023-03-07 2024-09-19 신에쓰 가가꾸 고교 가부시끼가이샤 레지스트 재료 및 패턴 형성 방법

Also Published As

Publication number Publication date
US11320735B2 (en) 2022-05-03
TW201841884A (zh) 2018-12-01
KR20190122685A (ko) 2019-10-30
JPWO2018159560A1 (ja) 2019-12-19
US20190391488A1 (en) 2019-12-26
TWI754724B (zh) 2022-02-11
KR102550157B1 (ko) 2023-07-03
JP7140100B2 (ja) 2022-09-21

Similar Documents

Publication Publication Date Title
JP7140100B2 (ja) 感放射線性樹脂組成物、レジストパターン形成方法、及び酸拡散制御剤
CN110325916B (zh) 感放射线性组合物及抗蚀剂图案形成方法
KR102447850B1 (ko) 감방사선성 수지 조성물 및 레지스트 패턴 형성 방법
JP7127643B2 (ja) 感放射線性樹脂組成物及びレジストパターン形成方法
KR102437123B1 (ko) 감방사선성 수지 조성물 및 레지스트 패턴 형성 방법
JP6648452B2 (ja) 感放射線性樹脂組成物及びレジストパターン形成方法
KR20220055463A (ko) 감방사선성 수지 조성물 및 레지스트 패턴의 형성 방법
JP2020008842A (ja) 感放射線性樹脂組成物、レジストパターン形成方法及び重合体組成物
JP2017156649A (ja) 感放射線性樹脂組成物、レジストパターン形成方法、重合体及び化合物
JP6668825B2 (ja) 感放射線性樹脂組成物及びレジストパターン形成方法
JP7396360B2 (ja) 感放射線性樹脂組成物、レジストパターン形成方法及び感放射線性酸発生剤
JP6183268B2 (ja) 感放射線性樹脂組成物及びレジストパターン形成方法
JP7268770B2 (ja) 感放射線性樹脂組成物及びレジストパターンの形成方法
JP6794728B2 (ja) 感放射線性樹脂組成物、レジストパターン形成方法、重合体及び化合物
JP2020148870A (ja) 感放射線性樹脂組成物、レジストパターン形成方法及び感放射線性酸発生剤
JP7062874B2 (ja) 感放射線性樹脂組成物及びレジストパターン形成方法
JP6555011B2 (ja) 感放射線性樹脂組成物及びレジストパターン形成方法
JP7342941B2 (ja) 感放射線性樹脂組成物及びレジストパターン形成方法
JP7272198B2 (ja) 感放射線性樹脂組成物、レジストパターン形成方法、重合体及びその製造方法並びに化合物
JP2018013744A (ja) 感放射線性樹脂組成物及びレジストパターン形成方法
JP6825249B2 (ja) 感放射線性樹脂組成物、レジストパターン形成方法、重合体及び化合物
JP6641759B2 (ja) 感放射線性樹脂組成物及びレジストパターン形成方法
WO2021140909A1 (ja) 感放射線性樹脂組成物及びレジストパターンの形成方法
US20230229082A2 (en) Radiation-sensitive resin composition and method of forming resist pattern
KR20230154805A (ko) 감방사선성 수지 조성물, 패턴 형성 방법, 중합체 및화합물

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18761011

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019502989

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197025221

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18761011

Country of ref document: EP

Kind code of ref document: A1