WO2018159308A1 - 電線、コイルおよび電線の製造方法 - Google Patents
電線、コイルおよび電線の製造方法 Download PDFInfo
- Publication number
- WO2018159308A1 WO2018159308A1 PCT/JP2018/005275 JP2018005275W WO2018159308A1 WO 2018159308 A1 WO2018159308 A1 WO 2018159308A1 JP 2018005275 W JP2018005275 W JP 2018005275W WO 2018159308 A1 WO2018159308 A1 WO 2018159308A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- fluoropolymer
- group
- electric wire
- unit
- carbon atoms
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F214/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
- C08F214/18—Monomers containing fluorine
- C08F214/26—Tetrafluoroethene
- C08F214/262—Tetrafluoroethene with fluorinated vinyl ethers
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D127/00—Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers
- C09D127/02—Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment
- C09D127/12—Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
- C09D127/18—Homopolymers or copolymers of tetrafluoroethene
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B13/00—Apparatus or processes specially adapted for manufacturing conductors or cables
- H01B13/0016—Apparatus or processes specially adapted for manufacturing conductors or cables for heat treatment
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B13/00—Apparatus or processes specially adapted for manufacturing conductors or cables
- H01B13/06—Insulating conductors or cables
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B3/00—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
- H01B3/18—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
- H01B3/30—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
- H01B3/44—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B3/00—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
- H01B3/18—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
- H01B3/30—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
- H01B3/44—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins
- H01B3/443—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins from vinylhalogenides or other halogenoethylenic compounds
- H01B3/445—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins from vinylhalogenides or other halogenoethylenic compounds from vinylfluorides or other fluoroethylenic compounds
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F27/00—Details of transformers or inductances, in general
- H01F27/28—Coils; Windings; Conductive connections
- H01F27/2823—Wires
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F27/00—Details of transformers or inductances, in general
- H01F27/28—Coils; Windings; Conductive connections
- H01F27/32—Insulating of coils, windings, or parts thereof
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F2800/00—Copolymer characterised by the proportions of the comonomers expressed
- C08F2800/10—Copolymer characterised by the proportions of the comonomers expressed as molar percentages
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B13/00—Apparatus or processes specially adapted for manufacturing conductors or cables
- H01B13/003—Apparatus or processes specially adapted for manufacturing conductors or cables using irradiation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B13/00—Apparatus or processes specially adapted for manufacturing conductors or cables
- H01B13/06—Insulating conductors or cables
- H01B13/16—Insulating conductors or cables by passing through or dipping in a liquid bath; by spraying
Definitions
- the present invention relates to an electric wire, a coil using the electric wire, and a method for manufacturing the electric wire.
- Patent Document 1 proposes a polyimide composition containing a photocurable polyimide as a liquid insulating varnish.
- Patent Document 2 proposes a tetrafluoroethylene / perfluoro (alkyl vinyl ether) copolymer which is a fluorine-containing resin having a low relative dielectric constant and capable of being thinned in order to suppress transmission loss.
- thermosetting resin used in the liquid insulating varnish described in Patent Document 1 has a lower insulating property than a fluorine-containing resin, particularly a perfluoro resin.
- extrusion molding of the fluorine-containing resin described in Patent Document 2 requires an expensive molding machine that is resistant to the acid component generated during molding.
- An object of the present invention is to provide an electric wire and a coil that are coated with a cured product of a fluorine-containing polymer that can be cured by heat or light and have high insulation properties and high productivity.
- An object of this invention is to provide the manufacturing method of the electric wire which can manufacture a highly insulating electric wire using a simple apparatus.
- the present invention provides an electric wire having the following configurations [1] to [9], a manufacturing method thereof, and a coil.
- a curable composition comprising a conductive wire and a coating layer covering the outer periphery of the conductive wire, wherein the coating layer includes a fluorine-containing polymer containing three or more functional groups represented by the following formula (F) Electric wire made of cured product.
- R f1 represents a single bond, a fluoroalkylene group, or a fluoroalkylene group having 2 or more carbon atoms having an etheric oxygen atom between carbon-carbon atoms
- Z 1 represents NR 1 NR 2 H, NR 3 OR 4 or OR 5
- R 1 , R 2 , R 3 , R 4 and R 5 are each independently a hydrogen atom or an alkyl group.
- X 1 and X 2 are each independently a hydrogen atom or a fluorine atom
- Q 1 is a single bond or an etheric oxygen atom
- R f1 is a single bond or a fluoroalkylene group.
- Z 1 is NR 1 NR 2 H, NR 3 OR 4 or OR 5
- R 1 , R 2 , R 3 , R 4 and R 5 are each independently a hydrogen atom or an alkyl group.
- cured material of the fluoropolymer which can be thermally or photocured can be provided.
- the manufacturing method of the electric wire which can manufacture a highly insulating electric wire using a simple apparatus can be provided.
- the compound represented by formula (a) may be referred to as compound (a). The same applies to compounds represented by other formulas.
- the unit represented by formula (b) may be referred to as unit (b). Units represented by other formulas are also described in the same manner.
- a group represented by the formula (c) may be referred to as a group (c). Groups represented by other formulas are also described in the same manner.
- the “unit” in the polymer means a portion derived from the monomer formed by polymerization of the monomer.
- a unit derived from a monomer is also simply referred to as a monomer unit.
- a unit derived from fluoroethylene is referred to as a “fluoroethylene unit”.
- Fluoroethylene means a compound in which 0 to 3 fluorine atoms of tetrafluoroethylene (CF 2 ⁇ CF 2 ) are substituted with a hydrogen atom or a halogen atom other than fluorine (eg, chlorine, bromine, iodine). To do.
- a group having a carbon atom chain such as an alkyl group, a fluoroalkyl group, a fluoroalkylene group, a fluoroalkoxy group, or a fluoroalkenyl group may be linear or branched.
- Fluoroalkyl group refers to a group in which one or more hydrogen atoms of an alkyl group are substituted with fluorine atoms.
- the ratio of fluorine atoms in the fluoroalkyl group was expressed by (number of fluorine atoms in the fluoroalkyl group) / (number of hydrogen atoms in the alkyl group having the same number of carbon atoms corresponding to the fluoroalkyl group) ⁇ 100 (%). In some cases, 50% or more is preferable, and 100%, that is, a perfluoroalkyl group is particularly preferable.
- a fluoroalkylene group, a fluoroalkoxy group, and a fluoroalkenyl group and a perfluoroalkylene group, a perfluoroalkoxy group, and a perfluoroalkenyl group are particularly preferable.
- “Curing” means curing by crosslinking unless otherwise specified.
- the “precursor layer” means a layer that forms a coating layer by being cured, and in this specification, refers to a layer of a curable composition. In this specification, “to” representing a numerical range includes upper and lower limits.
- the electric wire of the present invention has a conductive wire and a coating layer that covers the outer periphery of the conductive wire, and the coating layer includes a fluorine-containing polymer (hereinafter referred to as three or more functional groups represented by the following formula (F)). It consists of the hardened
- F fluorine-containing polymer
- R f1 represents a single bond, a fluoroalkylene group, or a fluoroalkylene group having 2 or more carbon atoms having an etheric oxygen atom between carbon-carbon atoms
- Z 1 represents NR 1 NR 2 H, NR 3 OR 4 or OR 5
- R 1 , R 2 , R 3 , R 4 and R 5 are each independently a hydrogen atom or an alkyl group.
- a conducting wire used for an electric wire can be used without any particular limitation.
- the constituent material of the conducting wire include a copper conductor and an aluminum conductor.
- a copper conductor means the conductor which has copper as a main component, and oxygen-free copper, low oxygen copper, etc. are mainly used. The same applies to the aluminum conductor.
- a conductor is not limited to this, For example, the conductor which gave metal plating, such as nickel, chromium, silver, tin, can be used for the outer periphery of a copper wire.
- the longest diameter in the cross section perpendicular to the length direction of the conducting wire is preferably 0.002 to 20 mm.
- Examples of the cross-sectional shape orthogonal to the length direction of the conducting wire include a round shape, a foil shape, and a polygonal shape such as a quadrangular shape. In the case of a polygonal shape, a shape having a predetermined curvature with no sharp corners is also included.
- the conducting wire may be used as a single wire composed of a single conductor, or may be used as a stranded wire composed of a plurality of conductors.
- the coating layer covering the outer periphery of the conducting wire is made of a cured product of a curable composition containing the fluoropolymer (A). Having a coating layer covering the outer periphery of the conducting wire means that the coating layer is formed along the outer periphery of the conducting wire in any cross section orthogonal to the length direction of the conducting wire.
- a further coating layer may be provided between the conductor and the coating layer or outside the coating layer.
- the thickness of a coating layer is suitably adjusted with the use and kind of electric wire.
- the coating layer preferably has a thickness of 1 to 1000 ⁇ m, more preferably 10 to 1000 ⁇ m.
- the curable composition is a composition that contains the fluoropolymer (A) as a curable component and does not contain a volatile component such as a solvent.
- the crosslinking reaction of the fluoropolymer (A) occurs based on the group (F).
- group (F) when Z 1 is OR 5, by de-COZ 1 reaction by the irradiation of active energy rays, cause -R f1 radicals from group (F), -R f1 when radicals are bonded to each other by a coupling is assumed.
- Z 1 is NR 1 NR 2 H
- groups (F) are coupled to each other by irradiation with active energy rays and / or heating to form a cross-linked site of diacylhydrazine or tetrazine structure.
- both groups react with each other by the following formula by heating. It is assumed to be combined.
- the reaction is preferably performed under predetermined conditions, for example, in the presence of an inert gas such as nitrogen.
- the curable composition may be composed of only the fluoropolymer (A), and a reactive component other than the fluoropolymer (A) (hereinafter referred to as “the fluoropolymer (A)”) as long as the crosslinking reaction of the fluoropolymer (A) is not inhibited.
- the fluoropolymer (A) also referred to as “other reactive components”.
- other reactive components include a fluorine-containing polymer having one or two groups (F), a silane coupling agent for improving adhesion to a conductive wire, and the like.
- the curable composition may further contain a non-reactive component.
- each component which a curable composition contains is demonstrated.
- the fluoropolymer (A) contains three or more groups (F) in one molecule.
- -R f1 COZ 1 (F) (In Formula (F), R f1 represents a single bond, a fluoroalkylene group, or a fluoroalkylene group having 2 or more carbon atoms having an etheric oxygen atom between carbon-carbon atoms, and Z 1 represents NR 1 NR 2 H, NR 3 OR 4 or OR 5 , and R 1 , R 2 , R 3 , R 4 and R 5 are each independently a hydrogen atom or an alkyl group.)
- R f1 in the group (F) is a fluoroalkylene group
- the carbon number is preferably 1 to 6, and particularly preferably 1 to 4.
- the fluoroalkylene group is preferably a perfluoroalkylene group from the viewpoint of excellent thermal stability. That is, R f1 is preferably a perfluoroalkylene group having 1 to 6 carbon atoms, and particularly preferably a perfluoroalkylene group having 1 to 4 carbon atoms.
- R f1 is a fluoroalkylene group having 2 or more carbon atoms having an etheric oxygen atom between carbon-carbon atoms
- the carbon number is preferably 2 to 10, and particularly preferably 2 to 6.
- the fluoroalkylene group is preferably a perfluoroalkylene group from the viewpoint of excellent thermal stability. That is, R f1 is preferably a C 2-10 perfluoroalkylene group having an etheric oxygen atom between carbon-carbon atoms, and a C 2-6 perfluoroalkyl group having an etheric oxygen atom between carbon-carbon atoms.
- An alkylene group is particularly preferred.
- R f1 , CF 2 , (CF 2 ) 2 , (CF 2 ) 3 , (CF 2 ) 4 , CF 2 CF (CF 3 ) O (CF 2 ) 2 , CF 2 CF (CF 3 ) O (CF 2 ) 3 , (CF 2 ) 3 O (CF 2 ) 2 , (CF 2 ) 2 O (CF 2 ) 2 , CF 2 OCF (CF 3 ), CF 2 OCF (CF 3 ) CF 2 OCF (CF 3 ) and the like are preferable.
- R 1 , R 2 , R 3 and R 4 are preferably a hydrogen atom or an alkyl group having 1 to 6 carbon atoms from the viewpoint of high hydrogen bondability and excellent solubility of the fluoropolymer (A) in alcohol.
- a hydrogen atom or an alkyl group having 1 or 2 carbon atoms is more preferable, a methyl group or a hydrogen atom is more preferable, and a hydrogen atom is particularly preferable.
- R 5 is preferably an alkyl group having 1 to 6 carbon atoms, more preferably an alkyl group having 1 or 2 carbon atoms, and particularly preferably a methyl group from the viewpoint that the fluoropolymer (A) is excellent in fluidity during heating. preferable.
- R 5 is preferably a hydrogen atom or a methyl group, and particularly preferably a hydrogen atom.
- —COZ 1 is preferably —COOH, —COOCH 3 , —COOC 2 H 5 , —CONHNH 2 , —CON (CH 3 ) NHCH 3 , —CONOHH, —CONHOCH 3 or the like.
- the number of groups (F) in the fluoropolymer (A) is 3 or more, preferably 3 to 100, and more preferably 3 to 30.
- the type of group (F) may be different or the same.
- a combination of groups (F) can be appropriately selected depending on the type of the crosslinking reaction.
- Z 1 in the group (F) is NR 1 NR 2 H or NR 3 OR 4 , for example, even if the fluorine atom content is high like perfluoropolymer, the fluorinated polymer (A) is an alcohol. Has the advantage of dissolving.
- Examples of the alcohol include methanol, ethanol, n-propanol, isopropanol, n-butanol, isobutanol, tert-butanol, methoxyethanol, methoxypropanol, and the like, with methanol and ethanol being preferred.
- alcohol solubility is required for the fluoropolymer (A)
- a fluorine-containing polymer (A) having a dissolution amount with respect to the total of (preferably methanol) and the fluorine-containing polymer (A) of 2% by mass or more is obtained.
- the amount of the fluoropolymer (A) dissolved in the total of the alcohol and the fluoropolymer (A) is preferably 3% by mass or more, more preferably 4% by mass or more, and further preferably 5% by mass or more.
- the fluorine atom content in the fluoropolymer (A) is preferably 50 to 76% by mass.
- a fluorine atom content of 50% by mass or more is preferable in terms of excellent insulation and flame retardancy, and a content of 76% by mass or less is preferable in terms of excellent moldability.
- the content of fluorine atoms is more preferably 55 to 65% by mass.
- the fluorine atom content can be calculated by 19 F-NMR measurement.
- the fluoropolymer (A) may have the group (F) in the side chain of the polymer unit or at the end of the main chain of the polymer. May be.
- the group (F) preferably has a structure in which it is bonded to the main chain of the polymer via a single bond or an etheric oxygen atom.
- a unit represented by the following formula (U1) is preferable.
- X 1 and X 2 are each independently a hydrogen atom or a fluorine atom, Q 1 is a single bond or an etheric oxygen atom, and —R f1 COZ 1 is a group (F Equivalent to).
- group (F) when it has group (F) in the principal chain terminal, as group (F), group shown by the following formula (F1), group shown by the following formula (F11), group shown by the following formula (F12) Etc. are preferred.
- group (F1), group (F11), group (F12) etc. may exist in the side chain of a polymerization unit as needed.
- -(R f2 O) k -R f1 COZ 1 (F1) In the formula (F1), R f2 is a perfluoroalkylene group having 1 to 4 carbon atoms. K represents an integer of 1 to 200.
- —R f1 COZ 1 corresponds to the group (F).
- —CF 2 COZ 1 (F11) —CF 2 CF 2 COZ 1 (F12)
- the types and examples of Z 1 in formula (F11) and formula (F12) are the same as those described for group (F).
- the fluoropolymer (A) may be, for example, a fluoropolymer (A) having a total of three or more units (U1) and groups (F1). Specifically, the fluoropolymer (A) having two groups (F1) at one end of the main chain and having one or more units (U1), and one group (F1) at the main chain ends. And a fluorine-containing polymer (A) having two or more units (U1). Furthermore, in the above, the fluoropolymer (A) may have a group (F11), a group (F12), or the like as the main chain terminal group (F) instead of the group (F1).
- the fluorine-containing polymer (A) is preferably a fluorine-containing polymer having 3 or more units (U1) (hereinafter also referred to as a fluorine-containing polymer (A1)), and a group having 3 or more groups (F1). Fluoropolymer (hereinafter referred to as fluorinated polymer (A2)) and the like.
- the fluoropolymer (A1) may be composed of only the unit (U1) or may be composed of units other than the unit (U1) and the unit (U1). Hereinafter, each unit which comprises a fluoropolymer (A1) is demonstrated.
- Q 1 is preferably an etheric oxygen atom.
- X 1 and X 2 are both fluorine atoms or preferably hydrogen atoms, and more preferably both fluorine atoms.
- unit (U1) include the following units. -[CF 2 -CF (COZ 1 )]-, -[CF 2 -CF (CF 2 -COZ 1 )]-, -[CF 2 -CF ((CF 2 ) 2 -COZ 1 )]-,-[CF 2 -CF (O (CF 2 ) 2 -COZ 1 )]-, -[CF 2 -CF (O (CF 2 ) 3 -COZ 1 )]-, -[CF 2 -CF (O (CF 2 ) 4 -COZ 1 )]-, -[CF 2 -CF (OCF 2 CF (CF 3 ) O (CF 2 ) 2 -COZ 1 )]-, -[CF 2 -CF (OCF 2 CF (CF 3 ) O (CF 2 ) 3 -COZ 1 )]-, -[CF 2 -CF (O (CF 2 ) 3 O (CF 2 ) 3 -COZ 1 )]-,
- the unit (U1) is represented by — [CF 2 —CF (COOCH 3 )] —, — [CF 2 —CF (CF 2 —COOCH 3 )] —, — [CF 2 —CF (O ( CF 2 ) 3 COOCH 3 )]-,-[CF 2 -CF (OCF 2 CF (CF 3 ) O (CF 2 ) 3 COOCH 3 )]-,-[CF 2 -CF (O (CF 2 ) 3 CONHNH 2 )] — or — [CF 2 —CF (O (CF 2 ) 3 CONHOH)] — is particularly preferred.
- the fluoropolymer (A1) may contain one type of unit (U1) alone or in combination of two or more types.
- the fluoropolymer (A1) is preferably a fluoropolymer containing units (U1) in which Z 1 is NR 1 NR 2 H.
- the crosslinking conditions, the type of Z 1 , and the alcohol solubility of the fluoropolymer (A1) are the same as those described for the fluoropolymer (A).
- the unit (U1) in which Z 1 is OR 5 can be formed by polymerizing a compound represented by the following formula (11) as a monomer.
- the unit (U1) in which Z 1 is NR 1 NR 2 H and NR 3 OR 4 can be formed by a method for producing a fluoropolymer (A1) described later.
- CX 1 X 2 CF-Q 1 -R f1 -COOR 5 (11) (In formula (11), X 1 , X 2 , Q 1 , R f1 and OR 5 are as defined in formula (U1), and the examples and preferred ranges are also the same.)
- a unit (U1a) where Z 1 is OR 5 is a unit (U1a), and a unit (U1) where Z 1 is NR 1 NR 2 H ) Is a unit (U1b), and a unit (U1) in which Z 1 is NR 3 OR 4 is a unit (U1c).
- the fluoropolymer (A1) is further referred to as a fluoroethylene unit (hereinafter also referred to as “unit (U2)”) and a unit represented by the formula (U3) described later (hereinafter referred to as “unit (U3)”). And other units (hereinafter also referred to as “unit (U4)”).
- Unit (U2) Specific examples of the unit (U2) include tetrafluoroethylene (CF 2 ⁇ CF 2 ) (TFE), trifluoroethylene (CF 2 ⁇ CHF) (TrFE), chlorotrifluoroethylene (CFCl ⁇ CF 2 ), vinylidene fluoride. And a unit derived from dodo (CF 2 ⁇ CH 2 ). From the viewpoint of excellent light resistance, TFE units, TrFE units and chlorotrifluoroethylene units are preferred. The TFE unit is particularly preferred from the viewpoint that the highly polar —COZ 1 group is likely to be present at the interface and the adhesion to the substrate is excellent.
- the TFE unit is particularly preferably a TrFE unit or a chlorotrifluoroethylene unit from the viewpoint that the fluoropolymer has less crystallinity than the TFE unit, hardly causes light scattering, and has high transparency. From the viewpoint of excellent solubility in alcohol, TrFE units are particularly preferred.
- the fluoropolymer may contain one unit (U2) alone or a combination of two or more units (U2).
- the unit (U3) is a unit represented by the following formula (U3) (excluding the fluoroethylene unit). -[CX 3 X 4 -CY 1 Y 2 ]-(U3) (In Formula (U3), X 3 and X 4 are each independently a hydrogen atom, a fluorine atom or a chlorine atom, Y 1 is a hydrogen atom, a fluorine atom or a chlorine atom, and Y 2 is a hydrogen atom.
- the fluoroalkyl group for Y 2 preferably has 1 to 15 carbon atoms, and particularly preferably 1 to 6 carbon atoms. From the viewpoint of excellent thermal stability, a perfluoroalkyl group is preferable, a C 1-6 perfluoroalkyl group is more preferable, and —CF 3 is particularly preferable.
- the fluoroalkyl group having 2 or more carbon atoms having an etheric oxygen atom between carbon-carbon atoms in Y 2 the carbon number is preferably 2 to 15 and particularly preferably 2 to 6.
- a perfluoroalkyl group having 2 or more carbon atoms having an etheric oxygen atom between carbon-carbon atoms is preferable, and perfluorocarbon having an etheric oxygen atom between carbon-carbon atoms is preferred.
- Alkyl groups are particularly preferred.
- the fluoroalkoxy group for Y 2 preferably has 1 to 15 carbon atoms, and particularly preferably 1 to 6 carbon atoms. From the viewpoint of excellent thermal stability, a perfluoroalkoxy group having 1 to 6 carbon atoms is preferable, and —OCF 3 , —OCF 2 CF 3 , —O (CF 2 ) 2 CF 3 , —O (CF 2 ) 3 CF 3 are Particularly preferred.
- the fluoroalkoxy group having 2 or more carbon atoms having an etheric oxygen atom between carbon-carbon atoms in Y 2 the carbon number is preferably 2 to 15 and particularly preferably 2 to 6.
- a perfluoroalkoxy group having 2 or more carbon atoms having an etheric oxygen atom between carbon-carbon atoms is preferred, and a perfluorocarbon having 2 to 6 carbon atoms having an etheric oxygen atom between carbon-carbon atoms.
- Alkoxy groups are particularly preferred.
- the fluoroalkenyl group in Y 2 preferably has 5 to 15 carbon atoms from the viewpoint that the cyclization reaction does not proceed in the molecule and the synthesis is easy. From the viewpoint of excellent thermal stability, a perfluoroalkenyl group is preferable, and — (CF 2 ) 4 CF ⁇ CF 2 , — (CF 2 ) 5 CF ⁇ CF 2, and — (CF 2 ) 6 CF ⁇ CF 2 are particularly preferable.
- the fluoroalkenyl group having 2 or more carbon atoms having an etheric oxygen atom between carbon-carbon atoms in Y 2 the carbon number is preferably 2 to 15 and particularly preferably 2 to 6.
- a perfluoroalkenyl group having 2 or more carbon atoms having an etheric oxygen atom between carbon-carbon atoms is preferred, and a perfluorocarbon having 2-6 carbon atoms having an etheric oxygen atom between carbon-carbon atoms.
- Alkenyl groups are particularly preferred.
- unit (U3) include the following units. -[CH 2 -CH 2 ]-,-[CF 2 -CF (CF 3 )]-,-[CH 2 -CF (CF 3 )]-,-[CH 2 -CH (CF 3 )]-,- [CH 2 —CF ((CF 2 ) 3 CF 3 )] —, — [CH 2 —CF ((CF 2 ) 5 CF 3 )] —, — [CF 2 —CF (OCF 3 )] —, — [ CF 2 —CF (OCF 2 CF 3 )] —, — [CF 2 —CF (O (CF 2 ) 2 CF 3 )] —, — [CF 2 —CF (O (CF 2 ) 3 CF 3 )] —, — [CF 2 —CF (OCF 2 CF (CF 3 )] —, — [CF 2 —CF (OCF 2 CF (CF 3 )] —, — [CF
- the fluoropolymer (A1) has a low glass transition temperature, excellent fluidity and excellent moldability, and when the fluoropolymer (A1) is cured by at least one of heating and active energy ray irradiation.
- the unit (U3) is represented by — [CH 2 —CH 2 ] —, — [CF 2 —CF (CF 3 )] —, — [CF 2 , because of its high mobility and the ease of cross-linking between molecules.
- the fluoropolymer may contain one unit (U3) alone or in a combination of two or more units (U3).
- Unit (U3) can be formed by polymerizing compound (31) as a monomer.
- CX 3 X 4 CY 1 Y 2 (31) (In formula (31), X 3 , X 4 , Y 1 and Y 2 are as defined in formula (U3), and the examples and preferred ranges are also the same.)
- unit (U4) examples include units derived from propylene, isobutene, 2-trifluoromethyl-3,3,3-trifluoro-1-propene, and the like.
- the number of groups (F) in the fluoropolymer (A1) is 3 or more from the viewpoint of excellent cross-linking reactivity between the groups (F), and there are few cases where the molecular weight of the fluoropolymer (A1) is large, When the molecular weight is small, it is preferably large. Usually, 3 to 100 are preferable, and 3 to 30 are more preferable.
- the number of groups (F) in the fluoropolymer (A1) is an average number per molecule.
- the number of groups (F) contained in the fluoropolymer (A1) corresponds to the number of units (U1) contained in the fluoropolymer (A1).
- Z 1 in the group (F) of the fluoropolymer (A1) is preferably a single group or consists of two types of NR 1 NR 2 H and OR 5 . That is, the unit (U1) of the fluoropolymer (A1) is composed of any one of the unit (U1a), the unit (U1b), and the unit (U1c), or the unit (U1a) and the unit (U1b). It is preferable to consist of two types.
- the unit (U1) of the fluoropolymer (A1) is composed of two types of units (U1a) and units (U1b), alcohol solubility of the fluoropolymer (A1), suppression of foaming during curing, Considering the crosslinking density of the resulting cured product, the unit (U1b) is preferably 1 to 90 mol%, more preferably 5 to 70 mol% with respect to the total of the unit (U1a) and the unit (U1b). ⁇ 60 mol% is particularly preferred.
- the mass average molecular weight of the fluoropolymer (A1) is preferably 1,000 to 1,000,000. A mass average molecular weight of 3,000 or more is more preferable because it has few volatile components. A mass average molecular weight of 100,000 or less is more preferable because of excellent solubility.
- the weight average molecular weight of the fluoropolymer (A1) is 1,000 to 15,000, the viscosity is 1 to 1,000 Pa ⁇ s, and it becomes 10 Pa ⁇ s or less when heated at 25 to 100 ° C. Without using it, the conductor can be coated with a curing agent composition containing the fluoropolymer (A1).
- the fluorine atom content of the fluoropolymer (A1) is the same as that described for the fluoropolymer (A).
- the mass average molecular weight can be determined as a PMMA (polymethyl methacrylate) equivalent molecular weight by gel permeation chromatography (GPC). In the present specification, unless otherwise specified, the mass average molecular weight is determined by the above method.
- PMMA polymethyl methacrylate
- GPC gel permeation chromatography
- Viscosity can be determined with a rotary viscometer at 25 ° C. In the present specification, unless otherwise specified, the viscosity is determined by the above method.
- the content of the unit (U1) in the fluoropolymer (A1) is determined by considering the alcohol solubility of the fluoropolymer (A1), the suppression of foaming during curing, the crosslink density of the resulting cured product, and the like.
- the amount is preferably 0.02 to 7.1 mmol / g, more preferably 0.1 to 4 mmol / g, still more preferably 0.1 to 3 mmol / g, based on the mass of the fluoropolymer (A1). ⁇ 1 mmol / g is particularly preferred.
- the unit (U1) is composed only of the unit (U1b) in which Z 1 is NR 1 NR 2 H, alcohol solubility of the fluoropolymer (A1), suppression of foaming during curing, and crosslinking of the resulting cured product Considering the density and the like, the content of the unit (U1b) with respect to the mass of the fluoropolymer (A1) is preferably 0.02 to 4 mmol / g, more preferably 0.02 to 1 mmol / g, 0.2 ⁇ 0.5 mmol / g is particularly preferred.
- Z 1 consists only of units (U1c) in which NR 3 OR 4 is present, considering the alcohol solubility of the fluoropolymer (A1), the suppression of foaming during curing, the crosslinking density of the resulting cured product, etc.
- the content of the unit (U1c) with respect to the mass of the fluoropolymer (A1) is preferably 0.1 to 4 mmol / g, more preferably 0.2 to 3 mmol / g, and particularly preferably 0.3 to 1 mmol / g. .
- the unit (U1a) with respect to the mass of the fluoropolymer (A1) is considered in consideration of the suppression of foaming during curing, the crosslinking density of the resulting cured product, and the like.
- the content of is preferably 0.1 to 4 mmol / g, more preferably 0.1 to 3 mmol / g, and particularly preferably 0.3 to 1 mmol / g.
- the content of units (U1a) to (U1c) in the fluoropolymer (A1) can be calculated by 19 F-NMR measurement.
- the proportion of the unit (U1) in all the units of the fluoropolymer (A1) is determined in consideration of the alcohol solubility of the fluoropolymer (A1), the suppression of foaming during curing, the crosslinking density of the resulting cured product, and the like. For example, it is preferably 1 to 100 mol%, more preferably 3 to 98 mol%, further preferably 3 to 50 mol%, and particularly preferably 5 to 15 mol%.
- a preferred embodiment of the fluoropolymer (A1) is a fluoropolymer containing the unit (U1), the unit (U2) and the unit (U3), wherein the units ( The proportion of U1) is 1 to 98 mol%, the proportion of units (U2) is 1 to 95 mol%, and the proportion of units (U3) is 1 to 95 mol%.
- the contents of units (U1) to (U4) in the fluoropolymer (A1) can be calculated by 19 F-NMR and 1 H-NMR measurements.
- the fluoropolymer (A1) is an arbitrary monomer such as the monomer (11), fluoroethylene, or the monomer (31).
- a known method for example, (Method described in International Publication No. 2015/098773).
- polymerization method examples include known polymerization methods such as suspension polymerization, solution polymerization, emulsion polymerization, and bulk polymerization.
- Solution polymerization is preferred because it is easy to control the molecular weight, for example, the mass average molecular weight to a predetermined size.
- solvent for the solution polymerization a fluorine-containing solvent described later is preferable.
- the fluoropolymer (A1) in which the unit (U1) is composed of the unit (U1a) and the unit (U1b), or the unit (U1) is composed only of the unit (U1b) is, for example, a unit (
- the fluorine-containing polymer (A1) containing U1a) is reacted with a hydrazine compound represented by the following formula (5) (hereinafter also simply referred to as “hydrazine compound”), and a part or all of the unit (U1a) is unit It can be produced by a method of modifying to (U1b).
- a hydrazine compound represented by the following formula (5) hereinafter also simply referred to as “hydrazine compound”
- HR 1 N—NR 2 H (5) In formula (5), R 1 and R 2 are as defined in formula (U1), and examples and preferred ranges are the same.
- hydrazine compound examples include hydrazine, methyl hydrazine, and 1,2-dimethyl hydrazine.
- the hydrazine compound may be used in the form of a hydrate such as hydrazine monohydrate.
- hydrazine compound is used as a term including a hydrate of a hydrazine compound.
- Hydrazine monohydrate is preferable as the hydrazine compound from the viewpoints of safety and solubility of the resulting fluoropolymer (A1) in alcohol.
- the form of the hydrazine compound to be subjected to the reaction may be an aqueous solution or a salt. An aqueous solution is more preferred.
- a commercial item can be used for the hydrazine compound.
- denaturation ratio to the unit (U1b) of a unit (U1a) can be adjusted with the usage-amount of the hydrazine compound with respect to the unit (U1a) in the fluoropolymer (A1) containing the unit (U1a) used as a raw material.
- the content of the unit in which Z 1 is NR 1 NR 2 H can be measured by quantifying the remaining —COOR 5 groups by infrared spectroscopy (IR).
- the fluoropolymer (A1) in which a desired ratio of the unit (U1a) is modified to the unit (U1b) is obtained specifically, the amount of the hydrazine compound used is the unit (U1a).
- the content of the fluorine-containing polymer (A1) is preferably 0.1 to 20 mol, more preferably 0.3 to 15 mol, particularly preferably 0.5 to 10 mol, based on 1 mol of the group represented by —COOR 5. preferable.
- the reaction can be performed in the presence of a solvent.
- a solvent what can melt
- a solvent in which the fluorine-containing polymer (A1) containing at least the unit (U1a) is dissolved is preferable.
- the solvent include a fluorine-containing solvent, an ether solvent, and an ester solvent, and can be appropriately selected according to the polarity of the raw material components.
- the solvent may be used alone or in combination of two or more. Furthermore, it is also preferable to use a mixture of these solvents and alcohol. Alcohol can be added as the reaction proceeds.
- alcohol what was described to the term of the fluoropolymer (A) can be used.
- the fluorine-containing solvent contains fluorine and carbon, and may further contain chlorine, oxygen and hydrogen. Examples thereof include fluorinated alkanes, fluorinated aromatic compounds, fluoroalkyl ethers, fluorinated alkyl amines, and fluoroalcohols.
- fluorinated alkane a compound having 4 to 8 carbon atoms is preferable.
- examples of commercially available products include CF 3 CH 2 CF 2 H (HFC-245fa), CF 3 CH 2 CF 2 CH 3 (HFC-365mfc), perfluorohexane, 1H-perfluorohexane, perfluorooctane, C 6 F 13 H (Asahi Glass Co., Ltd., Asahi Clin (registered trademark) AC-2000), C 6 F 13 C 2 H 5 (Asahi Glass Co., Ltd., Asahi Clin (registered trademark) AC-6000), C 2 F 5 CHFCHFCF 3 (manufactured by Chemers Co., Ltd.) , Vertrel (registered trademark) XF) and the like.
- fluorinated aromatic compound examples include hexafluorobenzene, trifluoromethylbenzene, perfluorotoluene, bis (trifluoromethyl) benzene, and the like.
- fluoroalkyl ether a compound having 4 to 12 carbon atoms is preferable.
- commercially available products include CF 3 CH 2 OCF 2 CF 2 H (Asahi Glass Co., Ltd., Asahiklin (registered trademark) AE-3000), C 4 F 9 OCH 3 (3M Co., Novec (registered trademark) 7100).
- Examples of the fluorinated alkylamine include perfluorotripropylamine and perfluorotributylamine.
- Examples of the fluoroalcohol include 2,2,3,3-tetrafluoropropanol, 2,2,2-trifluoroethanol, hexafluoroisopropanol and the like.
- Other examples include dichloropentafluoropropane (HCFC-225) and perfluoro (2-butyltetrahydrofuran).
- Examples of dichloropentafluoropropane include Asahiclin (registered trademark) AK-225 series (manufactured by Asahi Glass Co., Ltd.) such as AK-225G.
- ether solvents include ethylene glycol dimethyl ether, ethylene glycol diethyl ether, diethylene glycol dimethyl ether, diisopropyl ether, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, propylene glycol monomethyl ether, and propylene glycol dimethyl ether.
- ester solvent examples include methyl acetate, ethyl acetate, n-propyl acetate, isopropyl acetate, n-butyl acetate, and isobutyl acetate.
- the reaction is performed, for example, by dissolving the fluoropolymer (A1) containing the unit (U1a) in the above solvent and adding a hydrazine compound at 0 to 30 ° C. After the addition, the fluoropolymer (A1) containing the target unit (U1b) can be obtained by heating to 30 to 100 ° C. and reacting for 1 minute to 10 hours.
- the fluoropolymer (A1) in which the unit (U1) is composed of the unit (U1a) and the unit (U1c) or the unit (U1) is composed only of the unit (U1c) is, for example, a unit (
- the fluorine-containing polymer (A1) containing U1a) is reacted with a hydroxylamine compound represented by the following formula (6) (hereinafter, also simply referred to as “hydroxylamine compound”) to give a part or all of the unit (U1a) Can be produced by a method of modifying to a unit (U1c).
- NHR 3 OR 4 (6) In formula (6), R 3 and R 4 are as defined in formula (U1), and examples and preferred ranges are the same.
- hydroxylamine compound examples include hydroxylamine, N-methylhydroxylamine, N, O-dimethylhydroxylamine, and isopropylhydroxylamine. From the viewpoint that the solubility of the resulting fluoropolymer (A1) in alcohol is more excellent, Hydroxylamine is preferred.
- the form of the hydroxylamine compound subjected to the reaction may be an aqueous solution or a salt. An aqueous solution is preferable from the viewpoint of safety. A commercial item can be used for a hydroxylamine compound.
- the fluorine-containing polymer (A1) containing the unit (U1a) is reacted with a hydroxylamine compound to modify part or all of the unit (U1a) into the unit (U1c), and the fluorine-containing polymer containing the unit (U1c)
- a method for producing the union (A1) for example, in the method for producing the fluoropolymer (A1) containing the unit (U1b), the same method is used except that the hydrazine compound is changed to a hydroxylamine compound. It is done. Even in this case, the content of the unit in which Z 1 is NR 3 OR 4 can be measured by quantifying the remaining —COOR 5 groups by infrared spectroscopy (IR).
- the production method of the fluoropolymer (A1) specifically includes the following. .
- the amounts of the hydrazine compound and the hydroxylamine compound to be used are the proportions of the unit (U1a), unit (U1b) and unit (U1c) in the target fluoropolymer (A1). Adjust according to.
- the fluoropolymer having only the unit (U1b) and the unit (U1c) as the unit (U1) by adjusting the usage amount of the hydrazine compound and the hydroxylamine compound ( A1) can be manufactured.
- the fluoropolymer (A2) is a fluoropolymer having three or more groups (F1) as the group (F). -(R f2 O) k -R f1 COZ 1 (F1) (In the formula (F1), R f2 is a perfluoroalkylene group having 1 to 4 carbon atoms. K represents an integer of 1 to 200. —R f1 COZ 1 corresponds to the group (F).)
- R f2 in the group (F1) is a perfluoroalkylene group having 1 to 4 carbon atoms, specifically, — (R f2 O) k — is — (C a F 2a O) k — ( a is an integer of 1 to 4, k is an integer of 1 to 200, and each —C a F 2a O— unit may be the same or different.
- -C a F 2a O- units can be linear may be branched, for example, -CF 2 CF 2 CF 2 CF 2 O -, - CF 2 CF 2 CF 2 O -, - CF (CF 3) CF 2 O—, —CF 2 CF 2 O—, —CF 2 O— may be mentioned.
- k can be appropriately adjusted according to the desired molecular weight. A preferable range of k is 2 to 100.
- R f2 may be a combination of a plurality of units, and in this case, each unit may be present in any of a block, alternating, and random.
- — (R f2 O) k — represents — (CF 2 CF 2 CF 2 CF 2 O) k1 — (CF 2 CF 2 CF 2 O) k2 — (CF (CF 3 ) CF 2 O) k3- (CF 2 CF 2 O) k4- (CF 2 O) k5- (where k1, k2, k3, k4 and k5 are each independently an integer of 0 or more, and k1, k2, k3 , K4 and k5 are in the range of 1 to 200, and each repeating unit may be present in any of block, alternating and random).
- the R f2, ⁇ (CF 2 O ) k11 (CF 2 CF 2 O) k12 ⁇ , (CF 2 CF 2 O) k13, (CF 2 CF 2 CF 2 O) k14, are preferred, more preferably ⁇ ( CF 2 O) k11 (CF 2 CF 2 O) k12 ⁇ , a (CF 2 CF 2 O) k13 .
- k11 is an integer of 1 or more
- k12 is an integer of 1 or more
- k11 + k12 is an integer of 2 to 200
- the bonding order of k11 CF 2 O and k12 CF 2 CF 2 O is limited.
- k13 and k14 are integers of 1 to 200.
- group (F1) include the following groups. -(CF 2 O) k11 (CF 2 CF 2 O) k12 -CF 2 -COZ 1 , — (CF 2 O) k11 (CF 2 CF 2 O) k12 — (CF 2 ) 2 —COZ 1 , - (CF 2 O) k11 ( CF 2 CF 2 O) k12 - (CF 2) 3 -COZ 1, -(CF 2 CF 2 O) k13 -CF 2 -COZ 1 , -(CF 2 CF 2 O) k13- (CF 2 ) 2 -COZ 1 , - (CF 2 CF 2 CF 2 O) k14 - (CF 2) 2 -COZ 1, - (CF 2 CF 2 CF 2 O) k14 - (CF 2) 3 -COZ 1, (Z 1 is —OH, —OCH 3 , —OC 2 H 5 , —NHNH 2 , —N (CH 3
- k11 is 1 to 50
- k12 is 3 to 149
- k11 + k12 is preferably 5 to 150
- k11 is 1 to 10
- k12 Is more preferably 10 to 99
- k11 + k12 is more preferably 15 to 100.
- k13 is preferably 5 to 150, more preferably 15 to 100.
- k14 is preferably 5 to 150, and more preferably 15 to 100.
- the fluoropolymer (A2) may contain one kind of the group (F1) alone or in combination of two or more kinds.
- the fluorine-containing polymer (A2) is preferably a fluorine-containing polymer containing a group (F1) in which Z 1 is NR 1 NR 2 H.
- the crosslinking conditions, the type of Z 1 , and the alcohol solubility of the fluoropolymer (A2) are the same as those described for the fluoropolymer (A).
- a group (F1a) in which Z 1 is OR 5 is a group (F1a), and a group (F1) in which Z 1 is NR 1 NR 2 H ) Is a group (F1b), and a group (F1) in which Z 1 is NR 3 OR 4 is a group (F1c).
- -(R f2 O) k -R f1 COOR 5 (F1a) -(R f2 O) k -R f1 CONR 1 NR 2 H (F1b) -(R f2 O) k -R f1 CONR 3 OR 4 (F1c)
- the group (F1) possessed by three or more fluoropolymers (A2) is one kind because the production of the fluoropolymer (A2) is simple and the uniformity of the curing reaction in the curable composition is excellent. It is preferable to consist of these groups. A combination of two groups that react with each other is also preferred. Specifically, the group (F1) in the fluoropolymer (A2) is entirely composed of any one of the group (F1a), the group (F1b), or the group (F1c), or the group (F1a) It is preferably composed of two combinations of groups (F1b).
- Examples of the fluoropolymer (A2) include compounds represented by the following formula (A2a).
- n is an integer of 3 or more.
- Y 3 (n + m) -valent perfluorinated saturated hydrocarbon group, (n + m) -valent perfluorinated saturated hydrocarbon group having an etheric oxygen atom inserted between carbon-carbon atoms, or etheric between carbon-carbon atoms
- An (n + m) -valent carbon skeleton in which an oxygen atom may be inserted is shown, and there is no —OCF 2 O— structure in the group.
- n + m is an integer of 3 to 20.
- F2 is a group represented by the following formula (F2).
- m is an integer of 0 or more.
- k1, k2, and k3 are the same as those described in the specific example of — (R f2 O) k —, wherein R f3 is a perfluoroalkyl group having 1 to 20 carbon atoms, carbon A perfluoroalkoxy group having 1 to 20 carbon atoms, a perfluoroalkyl group having 2 to 20 carbon atoms having an etheric oxygen atom between the carbon-carbon atoms (there is no —OCF 2 O— structure in the group), Or a C 2-20 perfluoroalkoxy group having an etheric oxygen atom between carbon-carbon atoms (how
- Y 3 preferably has 1 to 50 carbon atoms, more preferably 1 to 20 carbon atoms, and still more preferably 1 to 5 carbon atoms.
- Examples of Y 3 include groups represented by the following (a) to (g).
- the valence of Y 3 is represented by (n + m) valence and is an integer of 3 to 20.
- the value of (n + m) is preferably 3-6.
- R f3 examples include a linear structure, a branched structure, a ring structure, or a structure having a partial ring structure, a linear structure or a branched structure is preferable, and a linear structure is particularly preferable.
- a perfluoroalkyl group or a perfluoroalkoxy group is preferable, and a perfluoroalkoxy group is more preferable.
- R f3 preferably has 1 to 10 carbon atoms, particularly preferably 1 to 6 carbon atoms. Specific examples include a trifluoromethoxy group, a heptafluoropropyloxy group, and a tridecafluorohexyloxy group.
- the fluoropolymer (A2a) has F2, it is possible to suppress foaming at the time of curing, to adjust the crosslinking density of the obtained cured product, and the like.
- the ratio of m to n + m in the fluoropolymer (A2a) is preferably 0 to 0.5.
- n indicating the number of groups (F1) is not particularly limited as long as it is 3 or more.
- the group (F1) may be bonded to all the bonds of Y 3 .
- the number of groups (F1) may be 3 or 4.
- a compound in which Y 3 is the group (a) and the number n of the groups (F1) is 4 is preferable from the viewpoint of excellent crosslinking efficiency.
- the mass average molecular weight of the fluoropolymer (A2) is preferably 1,000 to 20,000. A mass average molecular weight of 3,000 or more is more preferable because it has few evaporation components. The mass average molecular weight is more preferably 10,000 or less because of excellent solubility.
- the weight average molecular weight of the fluoropolymer (A2) is 1,000 to 5,000, the viscosity is 1 to 100 Pa ⁇ s and 10 Pa ⁇ s or less when heated at 25 to 100 ° C., and no solvent is used.
- the conductor can be coated with a curing agent composition containing the fluoropolymer (A1).
- the fluorine atom content of the fluoropolymer (A2) is the same as that described for the fluoropolymer (A).
- Fluoropolymer (A2) for example, the fluoropolymer group (F1) is a group (F1a) as (A2a), a known method (e.g., method described in Japanese Patent No. 5028801), Y 3 [(R f2 O) k -R f1 COF] n can be synthesized and then esterified or produced by hydrolysis after esterification.
- F1a group (F1a) as (A2a)
- Y 3 [(R f2 O) k -R f1 COF] n can be synthesized and then esterified or produced by hydrolysis after esterification.
- the fluorine-containing polymer (A2a) in which the group (F1) is composed of the group (F1a) and the group (F1b) or the group (F1) is composed only of the group (F1b) is, for example, a group
- the fluorine-containing polymer (A2a) containing F1a) can be reacted with a hydrazine compound to modify part or all of the group (F1a) to the group (F1b).
- the unit (U1a) containing the unit (U1a) is partially or entirely modified with a hydrazine compound to form the unit (U1b).
- a fluoropolymer (A2a) in which the group (F1) is composed of the group (F1a) and the group (F1b) or the group (F1) is composed only of the group (F1b) can be produced.
- the reaction temperature is preferably in the range of 10 to 100 ° C.
- the fluorine-containing polymer (A2a) in which the group (F1) is composed of the group (F1a) and the group (F1c), or the group (F1) is composed only of the group (F1c) is, for example, a group obtained as described above (
- the fluorine-containing polymer (A2a) containing F1a) can be reacted with a hydroxylamine compound, and part or all of the group (F1a) can be modified to the group (F1c).
- the fluoropolymer (A2a) in which the group (F1) is composed of the group (F1a) and the group (F1c) or the group (F1) is composed only of the group (F1c) can be produced.
- the reaction temperature is preferably in the range of 10 to 100 ° C.
- the coating layer in the electric wire of the present invention is made of a cured product of a curable composition containing the fluoropolymer (A).
- the curable composition may consist only of the fluoropolymer (A).
- a fluoropolymer (A) may be used individually by 1 type, and may be used in combination of 2 or more type. When two or more types are combined, two or more types of fluorine-containing polymer (A1), two or more types of fluorine-containing polymer (A2), fluorine-containing polymer (A1) and fluorine-containing polymer (A2) And the like.
- the content of the fluoropolymer (A) in the curable composition is preferably 10 to 100% by mass and more preferably 50 to 100% by mass with respect to the total amount of the curable composition.
- the curable composition may contain, in addition to the fluoropolymer (A), other reactive components as long as the crosslinking reaction of the fluoropolymer (A) is not inhibited.
- other reactive components include a fluorine-containing polymer having one or two groups (F), a silane coupling agent for improving adhesion to a conductive wire, and the like.
- silane coupling agent include those described in International Publication No. 2015/098773.
- the content of other reaction components in the curable composition is preferably 0.01 to 50% by mass, more preferably 0.1 to 10% by mass as the content of each component with respect to the total amount of the curable composition. .
- the curable composition may further contain a non-reactive component.
- Non-reactive components include inorganic fillers, fluoropolyether compounds, perfluororesins such as polytetrafluoroethylene (Asahi Glass Co., Ltd., Fluoron (registered trademark) PTFE fine powder), and ethylene-tetrafluoroethylene copolymers (Asahi Glass Co., Ltd., Fluoron). (Registered Trademark) ETFE powder) and the like, and organic pigments.
- the inorganic filler metal oxide particles such as silica, titania, zirconia, and alumina, glass fiber, carbon fiber, and various inorganic pigments are preferable.
- the longest diameter of the inorganic filler is not particularly limited, but is preferably 0.1 to 1000 ⁇ m because it can be easily dispersed in the coating layer.
- the content of the inorganic filler is preferably 20 to 200 parts by weight, particularly preferably 50 to 100 parts by weight, based on 100 parts by weight of the fluoropolymer (A). If content of an inorganic filler is more than the lower limit of the said range, hardness will be raised more. If it is below the upper limit of the said range, it is excellent in a moldability.
- the content of the non-reactive component other than the inorganic filler in the curable composition is preferably 10 to 90% by mass, more preferably 30 to 70% by mass as the content of each component with respect to the total amount of the curable composition. .
- the curable composition may be used as it is, and the outer periphery of the conductive wire may be covered to form a precursor layer made of the curable composition. From the viewpoint of workability, it is preferable to prepare a coating composition containing a curable composition and a solvent and to form a precursor layer using the coating composition. Subsequently, an electric wire is manufactured by hardening
- the coating composition is a liquid composition containing a curable composition and a solvent for dissolving or dispersing the curable composition. If the coating composition is used, the formation of the precursor layer on the outer periphery of the conductive wire becomes easy and the productivity is improved. When the coating composition is used, a coating film made of the coating composition is formed on the outer periphery of the conductive wire, and then a solvent is removed from the coating film to obtain a precursor layer made of the curable composition.
- the solvent used in the coating composition a solvent having a function of sufficiently dissolving or dispersing the curable composition is preferable.
- the solvent preferably contains a liquid having a boiling point of 250 ° C. or lower (hereinafter referred to as “liquid (L)”) from the viewpoint of ease of removal.
- liquid (L) include alcohols having a boiling point of 250 ° C. or lower and compounds having a boiling point of 250 ° C. or lower among the compounds exemplified as the solvent for producing the fluoropolymer (A).
- the solvent may be used alone or in combination of two or more. When two or more liquids (L) having different boiling points are used, foaming of the cured product is easily suppressed.
- the content of the curable composition in the coating composition is preferably 0.1 to 99% by mass, more preferably 1 to 70% by mass, and particularly preferably 5 to 60% by mass.
- the content of the solvent in the coating composition is preferably 99.9 to 1% by mass, more preferably 99 to 30% by mass, and particularly preferably 95 to 40% by mass.
- the content of the liquid (L) in the solvent is preferably 50 to 100% by mass, particularly preferably 70 to 100% by mass.
- the method for producing an electric wire in the present invention is a method for producing an electric wire having a conducting wire and a coating layer covering the outer periphery of the conducting wire, and includes the following steps (1) and (2).
- a curable composition containing a fluoropolymer containing three or more groups (F) to form a precursor layer hereinafter also referred to as “precursor layer forming step”.
- Heat is applied to the precursor layer obtained in (1) and / or irradiation with active energy rays to obtain a coating layer made of a cured product of the curable composition (hereinafter referred to as “curing”). Also referred to as a “process”).
- the method for forming the precursor layer of the coating layer on the outer periphery of the conducting wire is not particularly limited as long as it is a method in which a uniform precursor layer is formed on the entire outer periphery of the conducting wire.
- the curable composition is preferably applied by applying a coating composition containing the curable composition and a solvent, preferably a solvent containing a liquid (L).
- the coating composition described above can be used as the coating composition.
- a method for applying the coating composition to the outer periphery of the conductive wire a method similar to the method for applying the curable composition can be applied.
- Examples of the coating method for the curable composition include spin coating, wipe coating, spray coating, squeegee coating, dip coating, die coating, ink jet, flow coating, roll coating, casting, Langmuir-Bro Examples thereof include a jet method and a gravure coating method. In particular, the dip coating method is preferable.
- a solvent preferably a solvent containing liquid (L) is volatilized from the coating film made of the coating composition.
- L solvent containing liquid
- drying methods such as heat drying and reduced pressure drying can be applied.
- the drying method include heat drying at 50 to 300 ° C. for 1 to 120 minutes, heat drying at 400 to 700 ° C. for 1 to 60 seconds, 0.1 to 500 mmHg, and vacuum drying for 1 to 120 minutes.
- the curing step is a step of curing the curable composition constituting the precursor layer obtained in (1) above to obtain a coating layer made of a cured product.
- the curing method is a method of heating, irradiation of active energy rays, and a combination thereof, depending on the type of curable composition to be used, specifically the type of group (F) of the fluoropolymer (A). Is appropriately selected.
- the group (F) contained in the fluoropolymer (A) is composed only of —R f1 COOR 5 , it is considered that the crosslinking reaction caused by heating, particularly the crosslinking reaction caused by heating at 300 ° C. or less, does not proceed easily. Therefore, in that case, it is preferable to perform the curing step by irradiation with active energy rays.
- the group (F) of the fluoropolymer (A) contains —R f1 CONR 1 NR 2 H or —R f1 CONR 3 OR 4 , it is cured by heating, irradiation with active energy rays, or a combination thereof. It is preferable to perform a process.
- the group (F) contained in the fluoropolymer (A) is a combination of —R f1 CONR 1 NR 2 H and —R f1 COOR 5 , it is preferable to perform the curing step by heating.
- the curing method of irradiating active energy rays can obtain a cured product, that is, a coating layer, at a lower temperature than the curing method by heating.
- a curing method by irradiation with active energy rays is preferable.
- heating can be performed before, simultaneously with, and / or after irradiation with active energy rays.
- the heating temperature is not particularly limited as long as the curable component in the curable composition, particularly the group (F) of the fluoropolymer (A) undergoes a crosslinking reaction.
- the heating temperature is preferably in the range of 100 to 300 ° C. In any of the following cases, heating is more preferably performed in an atmosphere of an inert gas such as nitrogen from the viewpoint of promoting the reaction.
- the heating temperature is preferably 100 to 200 ° C., and 120 to 180 ° C. Is particularly preferred.
- the heating time depends on the temperature, it is preferably 10 minutes to 10 hours, particularly preferably 30 minutes to 4 hours. A method of gradually raising the temperature is also effective.
- the heating temperature is preferably 150 to 300 ° C., more preferably 200 to 260 ° C.
- the heating time depends on the temperature, it is preferably 1 minute to 10 hours, more preferably 1 to 5 hours, even more preferably 2 to 4 hours. A method of gradually raising the temperature is also effective.
- the heating temperature is preferably 50 to 250 ° C., more preferably 70 to 120 ° C.
- the heating time depends on the temperature, it is preferably 1 minute to 10 hours, more preferably 1 to 5 hours, even more preferably 2 to 4 hours. A method of gradually raising the temperature is also effective.
- the wavelength of the active energy rays is a wavelength at which the curable component in the curable composition, particularly the group (F) of the fluoropolymer (A) has a crosslinking reaction. If there is, it will not be specifically limited.
- the wavelength of the active energy ray is preferably 150 to 300 nm, particularly preferably 200 to 260 nm.
- Sources of active energy rays are metal halide lamps at 250 to 300 nm, low pressure mercury lamps at 185 and 254 nm, excimer lamps at 172 and 222 nm, KrF excimer laser at 248 nm, ArF excimer laser at 193 nm, and 157 nm. Includes an F 2 laser.
- the curable composition containing the fluoropolymer (A) can be cured to form a coating layer.
- crosslinking can be performed by irradiating active energy rays at an irradiation intensity of 0.1 to 500 mW / cm 2 for about 1 minute to 10 hours.
- the crosslinking reaction can proceed without using a photoinitiator.
- the electric wire of the present invention has a coating layer containing a cured product of the fluoropolymer (A). Since the fluoropolymer (A) can be easily cured without requiring a special device by heat or photocuring, the productivity of the electric wire is high.
- the electric wire of the present invention has a high insulation property when the dielectric breakdown strength of the cured product of the fluoropolymer (A) is 20 kV / mm or more. Moreover, since the hardened
- the use of the electric wire of the present invention is not particularly limited. Since the electric wire of the present invention is excellent in insulation and heat resistance, a high-voltage electric wire, a communication electric wire, a motor, a generator, a blast furnace, an electric furnace, an electric heating device, a medical device, an electric knife, an automobile, a railway vehicle, an aircraft, It is suitable as an electric wire used at a high temperature, such as an electric wire for wiring used in an ironworks, a power plant, etc., a substrate for wireless communication using high frequency, millimeter wave, or the like.
- the coil of the present invention is obtained by forming the electric wire of the present invention into a coil shape.
- the coil of the present invention can be used in fields that require high insulation and heat resistance, such as various electric and electronic devices.
- the coil of the present invention is used in a motor, a transformer, a wireless power feeding power transmission coil, a power receiving coil, and the like, and can constitute a high-performance electric / electronic device.
- the core wire of the coil may be used as a single wire or a stranded wire.
- the coil shape means a long electric wire wound spirally.
- the number of windings of the electric wire, the shape, size, etc. of the coil are not particularly limited.
- the coil is appropriately adjusted according to various electric / electronic devices to which the coil is applied.
- the weight average molecular weight of the fluorinated polymer is CF 2 ClCF 2 CHClF (manufactured by Asahi Glass Co., Ltd., trade name: ASAHIKLIN AK-225G) for the fluorinated polymer P1, and fluorinated polymers Q1, Q3, Q4 and R1, R3 and R4 were calculated as PMMA (polymethyl methacrylate) equivalent molecular weight by gel permeation chromatography (GPC) using tetrahydrofuran as a solvent.
- PMMA polymethyl methacrylate
- GPC gel permeation chromatography
- the dielectric constant and dielectric loss tangent of 12 GHz and 24 GHz use a synthesized sweeper 8340B manufactured by YHP, a network analyzer 8510B manufactured by YHP, a cylindrical cavity resonator (material: copper, internal mirror finish), and a semi-rigid cable for signal transmission Measured.
- the dielectric breakdown strength was measured using a dielectric breakdown tester HAT-300-100RHO manufactured by Yamazaki Sangyo Co., Ltd. Measurement conditions: temperature; 23 ⁇ 2 ° C., humidity; 50 ⁇ 5% RH, standing time before measurement at the temperature and humidity; 40 hours or more.
- Peripheral medium for measuring dielectric strength Insulating oil.
- the fluoropolymer was added in such an amount that the content of the fluoropolymer was 5% by mass, stirred and mixed at a temperature of 40 ° C. for 1 hour, and then cooled to room temperature (25 ° C.). It was determined whether 1 mL of the obtained mixture could be filtered without clogging with a PTFE (polytetrafluoroethylene) filter having a pore diameter of 0.5 ⁇ m and a diameter of 25 mm. If it was filterable, it was “dissolved”, and if it was not filterable, it was “dissolved”.
- PTFE polytetrafluoroethylene
- the mass average molecular weight was 34,000, and the fluorine atom content was 64% by mass.
- Example 1 The fluoropolymer P1 obtained in Production Example 1 was hot-pressed at 80 ° C. to obtain a transparent film. This transparent film was irradiated with a 200 W low-pressure mercury lamp for 2 hours in a nitrogen atmosphere, and then turned over and irradiated for another 2 hours. As a result, a cured film FP1 without foaming was formed. As a result of IR measurement, absorption at 1,794 cm ⁇ 1 based on C ⁇ O of the —COOCH 3 group almost disappeared. Table 1 shows the electrical characteristics of the cured film FP1. FP1 showed an insulating property comparable to the fluororesin used in conventional extrusion molding.
- the fluoropolymer P1 was dissolved in Asahi Clin AC-2000 to make a 10% by mass solution, and a copper wire (diameter 1.5 mm) having a round cross section was immersed in this solution and then pulled up, thereby pulling P1 into the copper wire. The solution was applied. Next, the copper wire was dried at 50 ° C. for 1 hour and at 70 ° C. for 1 hour, and then irradiated with a 200 W low-pressure mercury lamp for 2 hours in a nitrogen atmosphere. A coated electric wire excellent in insulation can be obtained.
- the molar average molecular weight was 34,000, and the fluorine atom content was 64% by mass.
- Example 2 The fluoropolymer Q1 obtained in Production Example 2 was hot pressed at 160 ° C. to obtain a transparent film. When this transparent film was heated at 200 ° C. for 3 days and 260 ° C. for 5 hours in a nitrogen atmosphere, a cured film FQ1 without foaming was obtained. Table 1 shows the electrical characteristics of the cured film FQ1. FQ1 showed an insulating property comparable to that of a fluororesin used in conventional extrusion molding.
- the fluoropolymer Q1 was dissolved in Asahi Clin AC-2000 to make a 10% by mass solution, and a copper wire (diameter 1.5 mm) having a round cross section was immersed in this solution and then pulled up, so that the Q1 The solution was applied.
- the copper wire was dried at 50 ° C. for 1 hour and then at 70 ° C. for 1 hour, and then heated in a nitrogen atmosphere at 200 ° C. for 1 hour and 260 ° C. for 5 hours, thereby insulating the fluoropolymer-cured product.
- An electric wire that is superior to the above can be obtained.
- Example 3 The fluoropolymer P2 obtained in Production Example 3 was hot pressed at 300 ° C. to obtain a transparent film. This transparent film was irradiated with a 200 W low-pressure mercury lamp for 2 hours in a nitrogen atmosphere, and then turned over and irradiated for another 2 hours. As a result, a cured film FP2 without foaming was obtained. Table 1 shows the electrical characteristics of the cured film FP2. From these values, FP2 showed an insulating property comparable to the fluororesin used in conventional extrusion molding.
- the powder of the fluoropolymer P2 is dispersed in FLUTEC® PP11 (F2, manufactured by Chemicals, tetracosafluorotetradecahydrophenanthrene) to obtain a 10 mass% dispersion in which P2 swells, and the dispersion has a round cross section.
- the copper wire (1.5 mm in diameter) was dipped and then pulled up to apply the P2 dispersion to the copper wire.
- the copper wire was dried at 200 ° C. for 1 hour and at 250 ° C. for 1 hour, and then irradiated with a 200 W low-pressure mercury lamp for 2 hours in a nitrogen atmosphere.
- a coated electric wire excellent in insulation can be obtained.
- Example 4 The fluoropolymer Q3 obtained in Production Example 4 was heated at 100 ° C. for 30 minutes, 200 ° C. for 30 minutes, and 250 ° C. for 90 minutes in a nitrogen atmosphere to obtain a cured product FQ3. Even when FQ3 was immersed in methanol, it was insoluble.
- the fluoropolymer Q3 was dissolved in methanol to obtain a 10% by mass solution, and a copper wire (diameter 1.5 mm) having a round cross section was immersed in this solution, and then pulled up to apply the Q3 solution to the copper wire. .
- the copper wire was dried at 50 ° C. for 1 hour and at 70 ° C. for 1 hour, it was heated in a nitrogen atmosphere at 200 ° C. for 30 minutes and at 250 ° C. for 90 minutes. can get.
- the reaction solution was pre-dried under a nitrogen stream and then vacuum-dried at room temperature for 1 day to obtain a fluoropolymer Q4.
- the fluorine-containing polymer Q4 had a mass average molecular weight of 4,000 and a fluorine atom content of 61% by mass.
- the fluoropolymer Q4 was soluble in methanol.
- Example 5 The fluorinated polymer Q4 obtained in Production Example 5 was heated in a nitrogen atmosphere at 100 ° C. for 30 minutes, 200 ° C. for 30 minutes, and 250 ° C. for 90 minutes to obtain a cured product FQ4. Even when FQ4 was immersed in methanol, it was insoluble.
- the fluoropolymer Q4 was dissolved in methanol to obtain a 10% by mass solution, and a copper wire (diameter: 1.5 mm) having a round cross section was immersed in this solution and then pulled up to apply the Q4 solution to the copper wire. .
- the copper wire was dried at 50 ° C. for 1 hour and at 70 ° C. for 1 hour, it was heated in a nitrogen atmosphere at 200 ° C. for 30 minutes and at 250 ° C. for 90 minutes. can get.
- Example 6 The fluoropolymer R3 obtained in Production Example 6 was heated at 150 ° C. for 30 minutes, 200 ° C. for 30 minutes, and 250 ° C. for 90 minutes in a nitrogen atmosphere to obtain a cured product FR3. Even when FR3 was immersed in methanol, it was insoluble.
- the fluoropolymer R3 was dissolved in methanol to obtain a 10% by mass solution, and a copper wire having a round cross section (diameter: 1.5 mm) was immersed in this solution and then pulled up to apply the R3 solution to the copper wire. .
- the copper wire is dried in a nitrogen atmosphere at 50 ° C. for 1 hour and then at 70 ° C. for 1 hour, and then heated in a nitrogen atmosphere for 30 minutes at 200 ° C. for 90 minutes at 250 ° C., thereby covering with a fluoropolymer cured product.
- the obtained electric wire is obtained.
- Example 7 The fluoropolymer R4 obtained in Production Example 7 was heated at 90 ° C. for 95 minutes and 100 ° C. for 120 minutes in a nitrogen atmosphere to obtain a cured product FR4. Even when FR4 was immersed in methanol, it was insoluble.
- the fluoropolymer R4 was dissolved in methanol to obtain a 10% by mass solution, and a copper wire (diameter: 1.5 mm) having a round cross section was immersed in this solution and then pulled up to apply the R4 solution to the copper wire. .
- a copper wire (diameter: 1.5 mm) having a round cross section was immersed in this solution and then pulled up to apply the R4 solution to the copper wire.
- a coated wire is obtained after drying the copper wire in a nitrogen atmosphere at 50 ° C. for 1 hour and at 70 ° C. for 1 hour, in a nitrogen atmosphere, heating at 90 ° C. for 95 minutes and heating at 100 ° C. for 120 minutes.
- the molar average molecular weight was 34,000, and the fluorine atom content was 64% by mass.
- the fluoropolymer R1 was soluble in Asahiklin AC-2000 containing 3% by mass of methanol.
- Example 8 The fluoropolymer R1 obtained in Production Example 8 was heated at 90 ° C. for 95 minutes and then at 100 ° C. for 120 minutes in a nitrogen atmosphere to obtain a cured product FR1. Even when FR1 was immersed in Asahi Clin AC-2000 containing 3% by mass of methanol, it was insoluble.
- the fluorine-containing polymer R1 is dissolved in Asahiclin AC-2000 containing 3% by mass of methanol to obtain a 10% by mass solution of R1, and a copper wire (diameter 1.5 mm) having a round cross section is immersed in this solution. Thereafter, the R4 solution was applied to the copper wire by pulling up. Next, after drying the copper wire in a nitrogen atmosphere at 50 ° C. for 1 hour and at 70 ° C. for 1 hour, in a nitrogen atmosphere, heating at 90 ° C. for 95 minutes and heating at 100 ° C. for 120 minutes, A coated wire is obtained.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Polymers & Plastics (AREA)
- Thermal Sciences (AREA)
- Medicinal Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Materials Engineering (AREA)
- Wood Science & Technology (AREA)
- Insulated Conductors (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
- Paints Or Removers (AREA)
- Organic Insulating Materials (AREA)
Abstract
熱または光硬化が可能な含フッ素重合体の硬化物により被覆された、絶縁性が高く、生産性の高い電線およびコイルの提供。導線と、前記導線の外周を被覆する被覆層を有し、前記被覆層は、下式(F)で表される官能基を3つ以上含む含フッ素重合体を含む硬化性組成物の硬化物からなる電線。 -Rf1COZ1 …(F) (式(F)中、Rf1は、単結合、フルオロアルキレン基、または炭素-炭素原子間にエーテル性酸素原子を有する炭素数2以上のフルオロアルキレン基であり、Z1は、NR1NR2H、NR3OR4またはOR5であり、R1、R2、R3、R4およびR5は、それぞれ独立に、水素原子またはアルキル基である。)
Description
本発明は、電線およびそれを用いたコイルならびに該電線の製造方法に関する。
モバイル機器や自動車等の小型化、軽量化を進めるために、これらの用途に用いられる電線には、細径化が求められる。これに伴い、芯線(内部導体)を被覆する絶縁材からなる被覆層を薄肉形成する必要が生じている。
従来から、巻線に用いられるエナメル線の製造には熱硬化性樹脂を溶剤に溶解した液状絶縁ワニスが用いられる。該液状絶縁ワニスを用いてエナメル線を製造するには、芯線を液状絶縁ワニス中に浸漬し塗布した後、焼付し熱硬化させて被覆層を形成する。この場合、液状絶縁ワニスにおける熱硬化性樹脂濃度の調整などにより被覆層の薄肉化が可能である。近年、生産性を上げるために、特許文献1では液状絶縁ワニスとして光硬化性のポリイミドを含有するポリイミド組成物が提案されている。
一方、巻線以外の電線では、一般に、熱可塑性樹脂を押し出し成形して芯線が被覆される。特許文献2では伝送損失を抑えるために、比誘電率が低く薄肉化可能な含フッ素樹脂であるテトラフルオロエチレン/ペルフルオロ(アルキルビニルエーテル)共重合体が提案されている。
しかし、特許文献1に記載の液状絶縁ワニスに用いられる熱硬化性樹脂は含フッ素樹脂、特にペルフルオロ樹脂に比べて絶縁性が低くかった。一方、特許文献2に記載の含フッ素樹脂の押出成形には、成形時に発生する酸成分に耐性のある高価な成形機を必要とした。
本発明は、熱または光硬化が可能な含フッ素重合体の硬化物により被覆された、絶縁性が高く、生産性の高い電線およびコイルの提供を目的とする。本発明は、簡易な装置を用いて高絶縁性の電線が製造可能な電線の製造方法の提供を目的とする。
本発明は、以下[1]~[9]の構成を有する電線、その製造方法、コイルを提供する。
[1]導線と、前記導線の外周を被覆する被覆層を有し、前記被覆層は、下式(F)で表される官能基を3つ以上含む含フッ素重合体を含む硬化性組成物の硬化物からなる電線。
-Rf1COZ1 …(F)
(式(F)中、Rf1は、単結合、フルオロアルキレン基、または炭素-炭素原子間にエーテル性酸素原子を有する炭素数2以上のフルオロアルキレン基であり、Z1は、NR1NR2H、NR3OR4またはOR5であり、R1、R2、R3、R4およびR5は、それぞれ独立に、水素原子またはアルキル基である。)
[2]前記含フッ素重合体は、前記式(F)で示される官能基の少なくとも1つを下式(U1)で表される単位中に含む、[1]に記載の電線。
(式(U1)中、X1およびX2は、それぞれ独立に、水素原子またはフッ素原子であり、Q1は、単結合またはエーテル性酸素原子である。Rf1は、単結合、フルオロアルキレン基、または炭素-炭素原子間にエーテル性酸素原子を有する炭素数2以上のフルオロアルキレン基であり、Z1は、NR1NR2H、NR3OR4またはOR5であり、R1、R2、R3、R4およびR5は、それぞれ独立に、水素原子またはアルキル基である。)
[3]前記含フッ素重合体が前記式(U1)で表される単位を3つ以上含む、[2]に記載の電線。
[4]前記含フッ素重合体が下式(F1)で表される基を3つ以上含む、[1]に記載の電線。
-(Rf2O)k-Rf1COZ1 …(F1)
(式(F1)中、Rf2は、炭素数が1~4のペルフルオロアルキレン基である。kは1~200の整数を示す。Rf1は、単結合、フルオロアルキレン基、または炭素-炭素原子間にエーテル性酸素原子を有する炭素数2以上のフルオロアルキレン基であり、Z1は、NR1NR2H、NR3OR4またはOR5であり、R1、R2、R3、R4およびR5は、それぞれ独立に、水素原子またはアルキル基である。)
[5]前記含フッ素重合体が、1つの炭素原子に前記式(F1)で表される基が3個または4個結合した化合物である、[4]に記載の電線。
[6]前記含フッ素重合体に含まれるフッ素原子の量が50~76質量%である、[1]~[5]のいずれかに記載の電線。
[7]前記導線が銅導体またはアルミニウム導体からなる、[1]~[6]のいずれかに記載の電線。
[8][1]~[7]のいずれかに記載の電線を製造する方法であって、前記導線の外周を前記硬化性組成物により被覆して前記被覆層の前駆層を形成し、前記前駆層に熱を加えて、および/または、活性エネルギー線を照射して、前記硬化性組成物の硬化物からなる被覆層を得ることを特徴とする電線の製造方法。
[9]前記前駆層が、前記硬化性組成物と沸点が250℃以下の液体を含むコーティング組成物を前記導線の外周に塗布し、前記塗布された前記コーティング組成物から前記液体を揮発させることにより形成される、[8]に記載の電線の製造方法。
[10][1]~[7]のいずれかに記載の電線をコイル状に成形してなるコイル。
[1]導線と、前記導線の外周を被覆する被覆層を有し、前記被覆層は、下式(F)で表される官能基を3つ以上含む含フッ素重合体を含む硬化性組成物の硬化物からなる電線。
-Rf1COZ1 …(F)
(式(F)中、Rf1は、単結合、フルオロアルキレン基、または炭素-炭素原子間にエーテル性酸素原子を有する炭素数2以上のフルオロアルキレン基であり、Z1は、NR1NR2H、NR3OR4またはOR5であり、R1、R2、R3、R4およびR5は、それぞれ独立に、水素原子またはアルキル基である。)
[2]前記含フッ素重合体は、前記式(F)で示される官能基の少なくとも1つを下式(U1)で表される単位中に含む、[1]に記載の電線。
[3]前記含フッ素重合体が前記式(U1)で表される単位を3つ以上含む、[2]に記載の電線。
[4]前記含フッ素重合体が下式(F1)で表される基を3つ以上含む、[1]に記載の電線。
-(Rf2O)k-Rf1COZ1 …(F1)
(式(F1)中、Rf2は、炭素数が1~4のペルフルオロアルキレン基である。kは1~200の整数を示す。Rf1は、単結合、フルオロアルキレン基、または炭素-炭素原子間にエーテル性酸素原子を有する炭素数2以上のフルオロアルキレン基であり、Z1は、NR1NR2H、NR3OR4またはOR5であり、R1、R2、R3、R4およびR5は、それぞれ独立に、水素原子またはアルキル基である。)
[5]前記含フッ素重合体が、1つの炭素原子に前記式(F1)で表される基が3個または4個結合した化合物である、[4]に記載の電線。
[6]前記含フッ素重合体に含まれるフッ素原子の量が50~76質量%である、[1]~[5]のいずれかに記載の電線。
[7]前記導線が銅導体またはアルミニウム導体からなる、[1]~[6]のいずれかに記載の電線。
[8][1]~[7]のいずれかに記載の電線を製造する方法であって、前記導線の外周を前記硬化性組成物により被覆して前記被覆層の前駆層を形成し、前記前駆層に熱を加えて、および/または、活性エネルギー線を照射して、前記硬化性組成物の硬化物からなる被覆層を得ることを特徴とする電線の製造方法。
[9]前記前駆層が、前記硬化性組成物と沸点が250℃以下の液体を含むコーティング組成物を前記導線の外周に塗布し、前記塗布された前記コーティング組成物から前記液体を揮発させることにより形成される、[8]に記載の電線の製造方法。
[10][1]~[7]のいずれかに記載の電線をコイル状に成形してなるコイル。
本発明によれば、熱または光硬化が可能な含フッ素重合体の硬化物により被覆された、絶縁性が高く、生産性の高い電線およびコイルが提供できる。
また、本発明によれば、簡易な装置を用いて高絶縁性の電線が製造可能な電線の製造方法が提供できる。
また、本発明によれば、簡易な装置を用いて高絶縁性の電線が製造可能な電線の製造方法が提供できる。
以下に、本発明の実施の形態を説明する。なお、本発明は下記説明に限定して解釈されない。
[本明細書における用語の意味]
式(a)で表される化合物を化合物(a)と記す場合がある。他の式で表される化合物も同様に記す。式(b)で表される単位を単位(b)と記す場合がある。他の式で表される単位も同様に記す。式(c)で表される基を基(c)と記す場合がある。他の式で表される基も同様に記す。
式(a)で表される化合物を化合物(a)と記す場合がある。他の式で表される化合物も同様に記す。式(b)で表される単位を単位(b)と記す場合がある。他の式で表される単位も同様に記す。式(c)で表される基を基(c)と記す場合がある。他の式で表される基も同様に記す。
重合体における「単位」とは、単量体が重合することによって形成する該単量体に由来する部分を意味する。単量体に由来する単位を、単に、単量体単位とも記す。例えば、フルオロエチレンに由来する単位を「フルオロエチレン単位」と記す。
「フルオロエチレン」とは、テトラフルオロエチレン(CF2=CF2)の0~3個のフッ素原子が水素原子またはフッ素以外のハロゲン原子(例えば、塩素、臭素、ヨウ素)に置換された化合物を意味する。
アルキル基、フルオロアルキル基、フルオロアルキレン基、フルオロアルコキシ基、フルオロアルケニル基等の炭素原子鎖を有する基は、直鎖状でもよく、分岐状でもよい。
「フルオロアルキル基」とは、アルキル基の水素原子の1個以上がフッ素原子に置換された基をいう。フルオロアルキル基中のフッ素原子の割合は、(フルオロアルキル基中のフッ素原子数)/(フルオロアルキル基に対応する同一炭素原子数のアルキル基中の水素原子数)×100(%)で表現した場合に50%以上が好ましく、100%すなわちペルフルオロアルキル基が特に好ましい。フルオロアルキレン基、フルオロアルコキシ基、フルオロアルケニル基についても同様であり、ペルフルオロアルキレン基、ペルフルオロアルコキシ基、ペルフルオロアルケニル基が特に好ましい。
「硬化」とは、特に言及しない限り、架橋により硬化することを意味する。
「前駆層」とは、硬化することにより被覆層を形成する層を意味し、本明細書では、硬化性組成物の層をいう。
本明細書において、数値範囲を表す「~」では、上下限を含む。
「硬化」とは、特に言及しない限り、架橋により硬化することを意味する。
「前駆層」とは、硬化することにより被覆層を形成する層を意味し、本明細書では、硬化性組成物の層をいう。
本明細書において、数値範囲を表す「~」では、上下限を含む。
[電線]
本発明の電線は、導線と、前記導線の外周を被覆する被覆層を有し、前記被覆層は、下式(F)で表される官能基を3つ以上含む含フッ素重合体(以下、含フッ素重合体(A)ともいう。)を含む硬化性組成物の硬化物からなる。
-Rf1COZ1 …(F)
(式(F)中、Rf1は、単結合、フルオロアルキレン基、または炭素-炭素原子間にエーテル性酸素原子を有する炭素数2以上のフルオロアルキレン基であり、Z1は、NR1NR2H、NR3OR4またはOR5であり、R1、R2、R3、R4およびR5は、それぞれ独立に、水素原子またはアルキル基である。)
本発明の電線は、導線と、前記導線の外周を被覆する被覆層を有し、前記被覆層は、下式(F)で表される官能基を3つ以上含む含フッ素重合体(以下、含フッ素重合体(A)ともいう。)を含む硬化性組成物の硬化物からなる。
-Rf1COZ1 …(F)
(式(F)中、Rf1は、単結合、フルオロアルキレン基、または炭素-炭素原子間にエーテル性酸素原子を有する炭素数2以上のフルオロアルキレン基であり、Z1は、NR1NR2H、NR3OR4またはOR5であり、R1、R2、R3、R4およびR5は、それぞれ独立に、水素原子またはアルキル基である。)
(導線)
導線(「芯線」ともいう。)は、通常、電線に用いられる導線が特に制限なく使用できる。導線の構成材料としては、銅導体、アルミニウム導体等が挙げられる。なお、銅導体は、銅が主成分である導体を意味し、主に無酸素銅や低酸素銅などが使用される。アルミニウム導体も同様である。また、導体はこれに限定されるものではなく、例えば銅線の外周にニッケル、クロム、銀、スズなどの金属メッキを施した導体も使用可能である。
導線(「芯線」ともいう。)は、通常、電線に用いられる導線が特に制限なく使用できる。導線の構成材料としては、銅導体、アルミニウム導体等が挙げられる。なお、銅導体は、銅が主成分である導体を意味し、主に無酸素銅や低酸素銅などが使用される。アルミニウム導体も同様である。また、導体はこれに限定されるものではなく、例えば銅線の外周にニッケル、クロム、銀、スズなどの金属メッキを施した導体も使用可能である。
導線の長さ方向に直交する断面における最長径は、0.002~20mmが好ましい。導線の長さ方向に直交する断面形状としては、丸形状、箔状、あるいは四角形状等の多角形状が挙げられる。なお、多角形状の場合、角の部分が尖っていない、所定の曲率を有する形状も含むものとする。
導線(芯線)は、一本の導体で構成される単線として用いても、複数の導体をより合わせて構成された撚り線として用いてもよい。
(被覆層)
導線の外周を被覆する被覆層は、含フッ素重合体(A)を含む硬化性組成物の硬化物からなる。導線の外周を被覆する被覆層を有するとは、導線の長さ方向に直交するいずれの断面においても、導線の外周に沿って被覆層が形成されていることをいう。本発明の電線において、導線と上記被覆層の間、または上記被覆層の外側にさらなる被覆層を有してもよい。被覆層の厚さは、電線の用途や種類により適宜調整される。被覆層は、例えば、1~1000μmの厚さが好ましく、10~1000μmの厚さがより好ましい。
導線の外周を被覆する被覆層は、含フッ素重合体(A)を含む硬化性組成物の硬化物からなる。導線の外周を被覆する被覆層を有するとは、導線の長さ方向に直交するいずれの断面においても、導線の外周に沿って被覆層が形成されていることをいう。本発明の電線において、導線と上記被覆層の間、または上記被覆層の外側にさらなる被覆層を有してもよい。被覆層の厚さは、電線の用途や種類により適宜調整される。被覆層は、例えば、1~1000μmの厚さが好ましく、10~1000μmの厚さがより好ましい。
硬化性組成物は、含フッ素重合体(A)を硬化性成分として含有し、溶媒等の揮発性成分を含まない組成物である。
含フッ素重合体(A)の架橋反応は、基(F)に基づき生起する。
基(F)中の、Z1がOR5の場合、活性エネルギー線の照射による脱COZ1反応により、基(F)から-Rf1ラジカルが生じ、-Rf1ラジカル同士がカップリングにより結合すると想定される。
基(F)中の、Z1がOR5の場合、活性エネルギー線の照射による脱COZ1反応により、基(F)から-Rf1ラジカルが生じ、-Rf1ラジカル同士がカップリングにより結合すると想定される。
Z1がNR1NR2Hの場合、活性エネルギー線の照射および/または加熱により、基(F)同士がカップリングしてジアシルヒドラジンまたはテトラジン構造の架橋部位が形成されると想定される。
Z1がNR3OR4の場合、活性エネルギー線の照射および/または加熱による脱COZ1反応により、基(F)から-Rf1ラジカルが生じ、-Rf1ラジカル同士がカップリングにより結合すると考えられる。
基(F)が、Z1がNR1NR2Hである基とZ1がOR5である基の両方の基を有する場合、加熱により両基が以下の式のとおり反応して両基が結合すると想定される。
-Rf1CONR1NR2H + -Rf1COOR5 → -Rf1CONHNHCORf1-
上記いずれの架橋反応においても、所定の条件下、例えば、窒素等の不活性ガスの存在下に反応を行うことが好ましい。
-Rf1CONR1NR2H + -Rf1COOR5 → -Rf1CONHNHCORf1-
上記いずれの架橋反応においても、所定の条件下、例えば、窒素等の不活性ガスの存在下に反応を行うことが好ましい。
硬化性組成物は、含フッ素重合体(A)のみからなってもよく、含フッ素重合体(A)の上記架橋反応を阻害しない範囲で含フッ素重合体(A)以外の反応性成分(以下、「その他の反応性成分」ともいう)を含んでもよい。その他の反応性成分としては、基(F)を1つまたは2つ有する含フッ素重合体、導線等との密着性向上のためのシランカップリング剤等が挙げられる。硬化性組成物は、さらに非反応性成分を含んでいてもよい。以下、硬化性組成物が含有する各成分について説明する。
(含フッ素重合体(A))
含フッ素重合体(A)は基(F)を1分子中に3個以上含有する。
-Rf1COZ1 …(F)
(式(F)中、Rf1は、単結合、フルオロアルキレン基、または炭素-炭素原子間にエーテル性酸素原子を有する炭素数2以上のフルオロアルキレン基であり、Z1は、NR1NR2H、NR3OR4またはOR5であり、R1、R2、R3、R4およびR5は、それぞれ独立に、水素原子またはアルキル基である。)
含フッ素重合体(A)は基(F)を1分子中に3個以上含有する。
-Rf1COZ1 …(F)
(式(F)中、Rf1は、単結合、フルオロアルキレン基、または炭素-炭素原子間にエーテル性酸素原子を有する炭素数2以上のフルオロアルキレン基であり、Z1は、NR1NR2H、NR3OR4またはOR5であり、R1、R2、R3、R4およびR5は、それぞれ独立に、水素原子またはアルキル基である。)
基(F)中の、Rf1がフルオロアルキレン基である場合、炭素数は1~6が好ましく、1~4が特に好ましい。炭素数が3以上の場合には、熱安定性に優れる点から直鎖構造が好ましい。フルオロアルキレン基は、熱安定性に優れる点からペルフルオロアルキレン基が好ましい。すなわち、Rf1としては、炭素数1~6のペルフルオロアルキレン基が好ましく、炭素数1~4のペルフルオロアルキレン基が特に好ましい。
Rf1が、炭素-炭素原子間にエーテル性酸素原子を有する炭素数2以上のフルオロアルキレン基である場合、炭素数は2~10が好ましく、2~6が特に好ましい。炭素数が3以上の場合には、熱安定性に優れる点から直鎖構造が好ましい。フルオロアルキレン基は、熱安定性に優れる点からペルフルオロアルキレン基が好ましい。すなわち、Rf1としては、炭素-炭素原子間にエーテル性酸素原子を有する炭素数2~10のペルフルオロアルキレン基が好ましく、炭素-炭素原子間にエーテル性酸素原子を有する炭素数2~6のペルフルオロアルキレン基が特に好ましい。
Rf1として、具体的には、CF2、(CF2)2、(CF2)3、(CF2)4、CF2CF(CF3)O(CF2)2、CF2CF(CF3)O(CF2)3、(CF2)3O(CF2)2、(CF2)2O(CF2)2、CF2OCF(CF3)、CF2OCF(CF3)CF2OCF(CF3)等が好ましい。
R1、R2、R3およびR4は、水素結合性が高く、含フッ素重合体(A)のアルコールへの溶解性に優れる点から、水素原子または炭素数1~6のアルキル基が好ましく、水素原子または炭素数1もしくは2のアルキル基がより好ましく、メチル基または水素原子がさらに好ましく、水素原子が特に好ましい。
R5は、含フッ素重合体(A)が、加熱時の流動性に優れる点から、炭素数1~6のアルキル基が好ましく、炭素数1または2のアルキル基がより好ましく、メチル基が特に好ましい。含フッ素重合体(A)を含む硬化性組成物の硬化物の透明性が高い点からは、R5は水素原子またはメチル基が好ましく、水素原子が特に好ましい。
-COZ1として、具体的には、-COOH、-COOCH3、-COOC2H5、-CONHNH2、-CON(CH3)NHCH3、-CONHOH、-CONHOCH3等が好ましい。
含フッ素重合体(A)中の基(F)の数は3個以上であり、3~100個が好ましく、3~30個がより好ましい。基(F)の種類は異なってもよく、同一でもよい。上記架橋反応の種類に応じて基(F)の組み合わせを適宜選択できる。
また、基(F)中のZ1がNR1NR2HまたはNR3OR4である場合、例えば、ペルフルオロポリマーのようにフッ素原子含有量が高くても含フッ素重合体(A)が、アルコールに溶解する利点を有する。
アルコールとしては、メタノール、エタノール、n-プロパノール、イソプロパノール、n-ブタノール、イソブタノール、tert-ブタノール、メトキシエタノール、メトキシプロパノール等が挙げられ、メタノールおよびエタノールが好ましい。
含フッ素重合体(A)に対してアルコール溶解性が求められる場合、含フッ素重合体(A)における基(F)の種類や割合を調整することで、例えば、室温(25℃)で、アルコール(好ましくは、メタノール)および含フッ素重合体(A)の合計に対する溶解量が2質量%以上の含フッ素重合体(A)が得られる。アルコールおよび含フッ素重合体(A)の合計に対する含フッ素重合体(A)の溶解量は3質量%以上が好ましく、4質量%以上がより好ましく、5質量%以上がさらに好ましい。
含フッ素重合体(A)中のフッ素原子の含有量は50~76質量%が好ましい。フッ素原子の含有量が50質量%以上であれば絶縁性と難燃性に優れる点で好ましく、76質量%以下であれば成形性に優れる点で好ましい。フッ素原子の含有量は、55~65質量%がより好ましい。フッ素原子の含有量は、19F-NMR測定により算出できる。
含フッ素重合体(A)は、基(F)の合計数が3個以上であれば、基(F)を重合単位の側鎖に有してもよく、高分子の主鎖末端に有してもよい。基(F)を重合単位の側鎖に有する場合、基(F)は、単結合またはエーテル性酸素原子を介して重合体の主鎖に結合する構造が好ましい。
基(F)を側鎖に有する重合単位としては、下式(U1)で示される単位が好ましい。
(式(U1)中、X1およびX2は、それぞれ独立に、水素原子またはフッ素原子であり、Q1は、単結合またはエーテル性酸素原子である。-Rf1COZ1は、基(F)に相当する。)
また、基(F)を主鎖末端に有する場合、基(F)としては、下式(F1)で示される基、下式(F11)で示される基、下式(F12)で示される基等が好ましい。なお、必要に応じて基(F1)、基(F11)、基(F12)等は重合単位の側鎖に存在してもよい。
-(Rf2O)k-Rf1COZ1 …(F1)
(式(F1)中、Rf2は、炭素数が1~4のペルフルオロアルキレン基である。kは1~200の整数を示す。-Rf1COZ1は、基(F)に相当する。)
-CF2COZ1 …(F11)
-CF2CF2COZ1 …(F12)
(式(F11)および式(F12)中のZ1の種類と例示は上記基(F)で説明したのと同様である。)
-(Rf2O)k-Rf1COZ1 …(F1)
(式(F1)中、Rf2は、炭素数が1~4のペルフルオロアルキレン基である。kは1~200の整数を示す。-Rf1COZ1は、基(F)に相当する。)
-CF2COZ1 …(F11)
-CF2CF2COZ1 …(F12)
(式(F11)および式(F12)中のZ1の種類と例示は上記基(F)で説明したのと同様である。)
含フッ素重合体(A)は、例えば、単位(U1)と、基(F1)を合計で3つ以上有する含フッ素重合体(A)でもよい。具体的には、主鎖末端に2個の基(F1)を有し、1個以上の単位(U1)を有する含フッ素重合体(A)、主鎖末端に1個の基(F1)を有し、2個以上の単位(U1)を有する含フッ素重合体(A)等が挙げられる。さらに、上記において含フッ素重合体(A)は、基(F1)に変えて、主鎖末端の基(F)として、基(F11)、基(F12)等を有するものでもよい。
含フッ素重合体(A)として、好ましくは、単位(U1)を3つ以上有する含フッ素重合体(以下、含フッ素重合体(A1)ともいう。)、基(F1)を3つ以上有する含フッ素重合体(以下、含フッ素重合体(A2))等が挙げられる。
<含フッ素重合体(A1)>
含フッ素重合体(A1)は、単位(U1)のみで構成されてもよく、単位(U1)と単位(U1)以外の単位で構成されてもよい。以下、含フッ素重合体(A1)を構成する各単位について説明する。
含フッ素重合体(A1)は、単位(U1)のみで構成されてもよく、単位(U1)と単位(U1)以外の単位で構成されてもよい。以下、含フッ素重合体(A1)を構成する各単位について説明する。
単位(U1)中、Q1は、エーテル性酸素原子が好ましい。X1およびX2は共にフッ素原子であるか、水素原子が好ましく、共にフッ素原子がより好ましい。
単位(U1)の具体例としては、以下の単位が挙げられる。
-[CF2-CF(COZ1)]-、
-[CF2-CF(CF2-COZ1)]-、
-[CF2-CF((CF2)2-COZ1)]-、-[CF2-CF(O(CF2)2-COZ1)]-、
-[CF2-CF(O(CF2)3-COZ1)]-、
-[CF2-CF(O(CF2)4-COZ1)]-、
-[CF2-CF(OCF2CF(CF3)O(CF2)2-COZ1)]-、
-[CF2-CF(OCF2CF(CF3)O(CF2)3-COZ1)]-、
-[CF2-CF(O(CF2)3O(CF2)2-COZ1)]-、
-[CF2-CF(O(CF2)2O(CF2)2-COZ1)]-、
-[CH2-CF(CF2OCF(CF3)-COZ1)]-、
-[CH2-CF(CF2OCF(CF3)CF2OCF(CF3)-COZ1)]-。
(Z1は、-OH、-OCH3、-NHNH2、-N(CH3)NHCH3、-NHOH、または、-NHOCH3である。)
-[CF2-CF(COZ1)]-、
-[CF2-CF(CF2-COZ1)]-、
-[CF2-CF((CF2)2-COZ1)]-、-[CF2-CF(O(CF2)2-COZ1)]-、
-[CF2-CF(O(CF2)3-COZ1)]-、
-[CF2-CF(O(CF2)4-COZ1)]-、
-[CF2-CF(OCF2CF(CF3)O(CF2)2-COZ1)]-、
-[CF2-CF(OCF2CF(CF3)O(CF2)3-COZ1)]-、
-[CF2-CF(O(CF2)3O(CF2)2-COZ1)]-、
-[CF2-CF(O(CF2)2O(CF2)2-COZ1)]-、
-[CH2-CF(CF2OCF(CF3)-COZ1)]-、
-[CH2-CF(CF2OCF(CF3)CF2OCF(CF3)-COZ1)]-。
(Z1は、-OH、-OCH3、-NHNH2、-N(CH3)NHCH3、-NHOH、または、-NHOCH3である。)
入手容易の点から、単位(U1)は、-[CF2-CF(COOCH3)]-、-[CF2-CF(CF2-COOCH3)]-、-[CF2-CF(O(CF2)3COOCH3)]-、-[CF2-CF(OCF2CF(CF3)O(CF2)3COOCH3)]-、-[CF2-CF(O(CF2)3CONHNH2)]-または-[CF2-CF(O(CF2)3CONHOH)]-が特に好ましい。
含フッ素重合体(A1)は、基(F)を3つ以上有する限り、単位(U1)の1種を単独で含んでもよく、2種以上の組み合わせで含んでもよい。水素結合性がより高く、導線に対する接着性により優れる点からは、含フッ素重合体(A1)としては、Z1がNR1NR2Hである単位(U1)を含む含フッ素重合体が好ましい。架橋条件とZ1の種類、含フッ素重合体(A1)のアルコール溶解性については、上記含フッ素重合体(A)で説明したのと同様である。
Z1がOR5である単位(U1)は、下式(11)で表される化合物を単量体として重合することにより形成できる。また、Z1が、NR1NR2HおよびNR3OR4である単位(U1)は、後述する含フッ素重合体(A1)の製造方法により形成できる。
CX1X2=CF-Q1-Rf1-COOR5 …(11)
(式(11)中、X1、X2、Q1、Rf1およびOR5は、式(U1)で定義されたとおりであり、例示も好ましい範囲も同様である。)
CX1X2=CF-Q1-Rf1-COOR5 …(11)
(式(11)中、X1、X2、Q1、Rf1およびOR5は、式(U1)で定義されたとおりであり、例示も好ましい範囲も同様である。)
以下、下式(U1a)、(U1b)、(U1c)に示すように、Z1がOR5である単位(U1)を単位(U1a)、Z1がNR1NR2Hである単位(U1)を単位(U1b)、Z1がNR3OR4である単位(U1)を単位(U1c)という。
(式(U1a)、式(U1b)、式(U1c)中、X1、X2、Q1、Rf1、R1、R2、R3、R4およびR5は、式(U1)で定義されたとおりであり、例示も好ましい範囲も同様である。)
含フッ素重合体(A1)は、さらに、フルオロエチレン単位(以下、「単位(U2)」とも記す。)、後述する式(U3)で表される単位(以下、「単位(U3)」とも記す。)、その他の単位(以下、「単位(U4)」とも記す。)を有してもよい。
<単位(U2)>
単位(U2)の具体例としては、テトラフルオロエチレン(CF2=CF2)(TFE)、トリフルオロエチレン(CF2=CHF)(TrFE)、クロロトリフルオロエチレン(CFCl=CF2)、ビニリデンフルオリド(CF2=CH2)等に由来する単位が挙げられる。耐光性に優れる点から、TFE単位、TrFE単位、クロロトリフルオロエチレン単位が好ましい。極性の高い-COZ1基が界面に存在しやすくなることで基材に対する接着性に優れる点からは、TFE単位が特に好ましい。TFE単位ほど含フッ素重合体の結晶性が高くなく、光散乱が生じにくく、透明性が高い点からは、TrFE単位、クロロトリフルオロエチレン単位が特に好ましい。アルコールに対する溶解性に優れる点からは、TrFE単位が特に好ましい。
単位(U2)の具体例としては、テトラフルオロエチレン(CF2=CF2)(TFE)、トリフルオロエチレン(CF2=CHF)(TrFE)、クロロトリフルオロエチレン(CFCl=CF2)、ビニリデンフルオリド(CF2=CH2)等に由来する単位が挙げられる。耐光性に優れる点から、TFE単位、TrFE単位、クロロトリフルオロエチレン単位が好ましい。極性の高い-COZ1基が界面に存在しやすくなることで基材に対する接着性に優れる点からは、TFE単位が特に好ましい。TFE単位ほど含フッ素重合体の結晶性が高くなく、光散乱が生じにくく、透明性が高い点からは、TrFE単位、クロロトリフルオロエチレン単位が特に好ましい。アルコールに対する溶解性に優れる点からは、TrFE単位が特に好ましい。
含フッ素重合体は、単位(U2)を1種単独で含んでもよく、2種以上の単位(U2)の組み合わせで含んでもよい。
<単位(U3)>
単位(U3)は下式(U3)で表される単位(ただし、フルオロエチレン単位を除く。)である。
-[CX3X4-CY1Y2]- …(U3)
(式(U3)中、X3およびX4は、それぞれ独立に、水素原子、フッ素原子または塩素原子であり、Y1は、水素原子、フッ素原子または塩素原子であり、Y2は、水素原子、フルオロアルキル基、炭素-炭素原子間にエーテル性酸素原子を有する炭素数2以上のフルオロアルキル基、フルオロアルコキシ基、炭素-炭素原子間にエーテル性酸素原子を有する炭素数2以上のフルオロアルコキシ基、フルオロアルケニル基、または炭素-炭素原子間にエーテル性酸素原子を有する炭素数2以上のフルオロアルケニル基である。)
単位(U3)は下式(U3)で表される単位(ただし、フルオロエチレン単位を除く。)である。
-[CX3X4-CY1Y2]- …(U3)
(式(U3)中、X3およびX4は、それぞれ独立に、水素原子、フッ素原子または塩素原子であり、Y1は、水素原子、フッ素原子または塩素原子であり、Y2は、水素原子、フルオロアルキル基、炭素-炭素原子間にエーテル性酸素原子を有する炭素数2以上のフルオロアルキル基、フルオロアルコキシ基、炭素-炭素原子間にエーテル性酸素原子を有する炭素数2以上のフルオロアルコキシ基、フルオロアルケニル基、または炭素-炭素原子間にエーテル性酸素原子を有する炭素数2以上のフルオロアルケニル基である。)
Y2における、フルオロアルキル基としては、炭素数が1~15が好ましく、1~6が特に好ましい。熱安定性に優れる点から、ペルフルオロアルキル基が好ましく、炭素数1~6のペルフルオロアルキル基がより好ましく、-CF3が特に好ましい。Y2における、炭素-炭素原子間にエーテル性酸素原子を有する炭素数2以上のフルオロアルキル基としては、炭素数は2~15が好ましく、2~6が特に好ましい。熱安定性に優れる点から、炭素-炭素原子間にエーテル性酸素原子を有する炭素数2以上のペルフルオロアルキル基が好ましく、炭素-炭素原子間にエーテル性酸素原子を有する炭素数2~6のペルフルオロアルキル基が特に好ましい。
Y2における、フルオロアルコキシ基としては、炭素数が1~15が好ましく、1~6が特に好ましい。熱安定性に優れる点から、炭素数1~6のペルフルオロアルコキシ基が好ましく、-OCF3、-OCF2CF3、-O(CF2)2CF3、-O(CF2)3CF3が特に好ましい。Y2における、炭素-炭素原子間にエーテル性酸素原子を有する炭素数2以上のフルオロアルコキシ基としては、炭素数は2~15が好ましく、2~6が特に好ましい。熱安定性に優れる点から、炭素-炭素原子間にエーテル性酸素原子を有する炭素数2以上のペルフルオロアルコキシ基が好ましく、炭素-炭素原子間にエーテル性酸素原子を有する炭素数2~6のペルフルオロアルコキシ基が特に好ましい。
Y2における、フルオロアルケニル基としては、分子内で環化反応が進行せず、合成が容易である点から、炭素数が5~15が好ましい。熱安定性に優れる点から、ペルフルオロアルケニル基が好ましく、-(CF2)4CF=CF2、-(CF2)5CF=CF2および-(CF2)6CF=CF2が特に好ましい。Y2における、炭素-炭素原子間にエーテル性酸素原子を有する炭素数2以上のフルオロアルケニル基としては、炭素数は2~15が好ましく、2~6が特に好ましい。熱安定性に優れる点から、炭素-炭素原子間にエーテル性酸素原子を有する炭素数2以上のペルフルオロアルケニル基が好ましく、炭素-炭素原子間にエーテル性酸素原子を有する炭素数2~6のペルフルオロアルケニル基が特に好ましい。
単位(U3)の具体例としては、下記単位が挙げられる。
-[CH2-CH2]-、-[CF2-CF(CF3)]-、-[CH2-CF(CF3)]-、-[CH2-CH(CF3)]-、-[CH2-CF((CF2)3CF3)]-、-[CH2-CF((CF2)5CF3)]-、-[CF2-CF(OCF3)]-、-[CF2-CF(OCF2CF3)]-、-[CF2-CF(O(CF2)2CF3)]-、-[CF2-CF(O(CF2)3CF3)]-、-[CF2-CF(OCF2CF(CF3)O(CF2)2CF3)]-、-[CF2-CF((CF2)4CF=CF2)]-、-[CF2-CF((CF2)5CF=CF2)]-、-[CF2-CF((CF2)6CF=CF2)]-。
-[CH2-CH2]-、-[CF2-CF(CF3)]-、-[CH2-CF(CF3)]-、-[CH2-CH(CF3)]-、-[CH2-CF((CF2)3CF3)]-、-[CH2-CF((CF2)5CF3)]-、-[CF2-CF(OCF3)]-、-[CF2-CF(OCF2CF3)]-、-[CF2-CF(O(CF2)2CF3)]-、-[CF2-CF(O(CF2)3CF3)]-、-[CF2-CF(OCF2CF(CF3)O(CF2)2CF3)]-、-[CF2-CF((CF2)4CF=CF2)]-、-[CF2-CF((CF2)5CF=CF2)]-、-[CF2-CF((CF2)6CF=CF2)]-。
含フッ素重合体(A1)は、ガラス転移温度が低く、流動性に優れ、成形性に優れる点、および含フッ素重合体(A1)を、加熱および活性エネルギー線照射の少なくとも一方により硬化させる際に、運動性が高く分子間の架橋反応が進行しやすい点から、単位(U3)は、-[CH2-CH2]-、-[CF2-CF(CF3)]-、-[CF2-CF(OCF3)]-、-[CF2-CF(O(CF2)2CF3)]-または-[CF2-CF(OCF2CF(CF3)O(CF2)2CF3)]-が好ましい。
含フッ素重合体は、単位(U3)を1種単独で含んでもよく、2種以上の単位(U3)の組み合わせで含んでもよい。
単位(U3)は、化合物(31)を単量体として重合することにより形成できる。
CX3X4=CY1Y2 …(31)
(式(31)中、X3、X4、Y1およびY2は、式(U3)で定義されたとおりであり、例示も好ましい範囲も同様である。)
CX3X4=CY1Y2 …(31)
(式(31)中、X3、X4、Y1およびY2は、式(U3)で定義されたとおりであり、例示も好ましい範囲も同様である。)
単位(U4)としては、例えば、プロピレン、イソブテン、2-トリフルオロメチル-3,3,3-トリフルオロ-1-プロペン等に由来する単位が挙げられる。
(好ましい含フッ素重合体(A1)の態様)
含フッ素重合体(A1)中の基(F)の個数は、基(F)同士の架橋反応性に優れる点から3以上であり、含フッ素重合体(A1)の分子量が大きい場合は少なく、分子量が小さい場合は多いことが好ましい。通常、3~100個が好ましく、3~30個がより好ましい。なお、含フッ素重合体(A1)中の基(F)の個数は、分子当たりの平均の個数である。含フッ素重合体(A1)(ただし、主鎖末端に基(F)を有しない場合)が有する基(F)の個数は、含フッ素重合体(A1)が有する単位(U1)の個数に相当する。含フッ素重合体(A1)が有する基(F)におけるZ1は、単一の基であるか、NR1NR2HとOR5の2種からなることが好ましい。すなわち、含フッ素重合体(A1)が有する単位(U1)は、単位(U1a)、単位(U1b)または単位(U1c)のいずれか1種からなるか、単位(U1a)と単位(U1b)の2種からなることが好ましい。
含フッ素重合体(A1)中の基(F)の個数は、基(F)同士の架橋反応性に優れる点から3以上であり、含フッ素重合体(A1)の分子量が大きい場合は少なく、分子量が小さい場合は多いことが好ましい。通常、3~100個が好ましく、3~30個がより好ましい。なお、含フッ素重合体(A1)中の基(F)の個数は、分子当たりの平均の個数である。含フッ素重合体(A1)(ただし、主鎖末端に基(F)を有しない場合)が有する基(F)の個数は、含フッ素重合体(A1)が有する単位(U1)の個数に相当する。含フッ素重合体(A1)が有する基(F)におけるZ1は、単一の基であるか、NR1NR2HとOR5の2種からなることが好ましい。すなわち、含フッ素重合体(A1)が有する単位(U1)は、単位(U1a)、単位(U1b)または単位(U1c)のいずれか1種からなるか、単位(U1a)と単位(U1b)の2種からなることが好ましい。
含フッ素重合体(A1)が有する単位(U1)が、単位(U1a)と単位(U1b)の2種からなる場合、含フッ素重合体(A1)のアルコール溶解性、硬化時の発泡の抑制、得られる硬化物の架橋密度等を考慮すれば、単位(U1a)と単位(U1b)の合計に対して、単位(U1b)は、1~90mol%が好ましく、5~70mol%がより好ましく、10~60mol%が特に好ましい。
含フッ素重合体(A1)の質量平均分子量は、1,000~1,000,000が好ましい。質量平均分子量が3,000以上であれば、揮発成分が少ないためより好ましい。質量平均分子量が100,000以下であれば、溶解性に優れるためより好ましい。なお、含フッ素重合体(A1)の質量平均分子量が1,000~15,000の場合には粘度が1~1,000Pa・sで、25~100℃加熱により10Pa・s以下となり、溶剤を用いずに含フッ素重合体(A1)を含有する硬化剤組成物を導線に被覆できる。含フッ素重合体(A1)のフッ素原子含有量は、含フッ素重合体(A)として説明したのと同様である。
質量平均分子量は、ゲルパーミエーションクロマトグラフィ(GPC)により、PMMA(ポリメチルメタクリレート)換算分子量として求めることができる。本明細書において、特に断りのない限り、質量平均分子量は上記方法により求めたものをいう。
粘度は、25℃、回転型粘度計により求めることができる。本明細書において、特に断りのない限り、粘度は上記方法により求めたものをいう。
含フッ素重合体(A1)中の単位(U1)の含有量は、含フッ素重合体(A1)のアルコール溶解性、硬化時の発泡の抑制、得られる硬化物の架橋密度等を考慮すれば、含フッ素重合体(A1)の質量に対して、0.02~7.1mmol/gが好ましく、0.1~4mmol/gがより好ましく、0.1~3mmol/gがさらに好ましく、0.2~1mmol/gが特に好ましい。
単位(U1)における、Z1がNR1NR2Hである単位(U1b)のみからなる場合、含フッ素重合体(A1)のアルコール溶解性、硬化時の発泡の抑制、得られる硬化物の架橋密度等を考慮すれば、含フッ素重合体(A1)の質量に対する単位(U1b)の含有量は、0.02~4mmol/gが好ましく、0.02~1mmol/gがより好ましく、0.2~0.5mmol/gが特に好ましい。
Z1がNR3OR4である単位(U1c)のみからなる場合、含フッ素重合体(A1)のアルコール溶解性、硬化時の発泡の抑制、得られる硬化物の架橋密度等を考慮すれば、含フッ素重合体(A1)の質量に対する単位(U1c)の含有量は、0.1~4mmol/gが好ましく、0.2~3mmol/gがより好ましく、0.3~1mmol/gが特に好ましい。
Z1がOR5である単位(U1a)のみからなる場合、硬化時の発泡の抑制、得られる硬化物の架橋密度等を考慮すれば、含フッ素重合体(A1)の質量に対する単位(U1a)の含有量は、0.1~4mmol/gが好ましく、0.1~3mmol/gがより好ましく、0.3~1mmol/gが特に好ましい。
含フッ素重合体(A1)中の、単位(U1a)~単位(U1c)の含有量は、19F-NMR測定により算出できる。
含フッ素重合体(A1)の全単位中、単位(U1)の割合は、含フッ素重合体(A1)のアルコール溶解性、硬化時の発泡の抑制、得られる硬化物の架橋密度等を考慮すれば、1~100mol%が好ましく、3~98mol%がより好ましく、3~50mol%がさらに好ましく、5~15mol%が特に好ましい。
含フッ素重合体(A1)の好ましい態様は、単位(U1)、単位(U2)および単位(U3)を含む含フッ素重合体であって、含フッ素重合体(A1)の全単位中、単位(U1)の割合が1~98mol%であり、単位(U2)の割合が1~95mol%であり、単位(U3)の割合が1~95mol%である。
含フッ素重合体(A1)中の単位(U1)~単位(U4)の含有量は、19F-NMR、1H-NMR測定により算出できる。
[含フッ素重合体(A1)の製造方法]
含フッ素重合体(A1)は、例えば、単位(U1)が単位(U1a)のみからなる場合は、単量体(11)と、フルオロエチレン、単量体(31)等の任意の単量体を、得られる含フッ素重合体(A1)において各単量体由来の単位(U1a)、単位(U2)、単位(U3)等が所望の割合となるように用いて、公知の方法(例えば、国際公開第2015/098773号に記載の方法)で重合させることで得られる。
含フッ素重合体(A1)は、例えば、単位(U1)が単位(U1a)のみからなる場合は、単量体(11)と、フルオロエチレン、単量体(31)等の任意の単量体を、得られる含フッ素重合体(A1)において各単量体由来の単位(U1a)、単位(U2)、単位(U3)等が所望の割合となるように用いて、公知の方法(例えば、国際公開第2015/098773号に記載の方法)で重合させることで得られる。
重合方法としては、懸濁重合、溶液重合、乳化重合、塊状重合等の公知の重合方法が挙げられる。分子量、例えば、質量平均分子量を所定の大きさに制御することが容易な点で、溶液重合が好ましい。溶液重合の溶媒としては後述の含フッ素溶媒が好ましい。
単位(U1)が単位(U1a)と単位(U1b)からなる、または単位(U1)が単位(U1b)のみからなる含フッ素重合体(A1)は、例えば、上記のようにして得られる単位(U1a)を含む含フッ素重合体(A1)と下式(5)で表されるヒドラジン化合物(以下、単に「ヒドラジン化合物」とも記す。)を反応させ、単位(U1a)の一部または全部を単位(U1b)に変性する方法により製造できる。
HR1N-NR2H …(5)
(式(5)中、R1およびR2は、式(U1)で定義されたとおりであり、例示も好ましい範囲も同様である。)
HR1N-NR2H …(5)
(式(5)中、R1およびR2は、式(U1)で定義されたとおりであり、例示も好ましい範囲も同様である。)
ヒドラジン化合物として、ヒドラジン、メチルヒドラジン、1,2-ジメチルヒドラジンが挙げられる。ヒドラジン化合物はヒドラジン・1水和物のような水和物の形態で用いられてもよい。以下、「ヒドラジン化合物」は、ヒドラジン化合物の水和物を含む用語として使用される。安全性および得られる含フッ素重合体(A1)のアルコールへの溶解性がより優れる点から、ヒドラジン化合物としては、ヒドラジン・1水和物が好ましい。反応に供するヒドラジン化合物の形態は、水溶液でもよく塩でもよい。水溶液がより好ましい。ヒドラジン化合物は、市販品を用いることができる。
単位(U1a)の単位(U1b)への変性割合は、原料として用いる単位(U1a)を含む含フッ素重合体(A1)における単位(U1a)に対するヒドラジン化合物の使用量により調整できる。なお、得られる含フッ素重合体(A1)において、残存する-COOR5基を赤外分光(IR)で定量することにより、Z1がNR1NR2Hである単位の含有量を測定できる。
単位(U1a)の所望の割合が単位(U1b)に変性された含フッ素重合体(A1)が得られる限り特に限定されないが、具体的には、ヒドラジン化合物の使用量は、単位(U1a)を含む含フッ素重合体(A1)の-COOR5で表される基1モルに対して、0.1~20モルが好ましく、0.3~15モルがより好ましく、0.5~10モルが特に好ましい。なお、単位(U1a)の全てを単位(U1b)に変性する場合には、-COOR5で表される基1モルに対して、ヒドラジン化合物を3~20モル用いることが好ましい。
反応は、溶媒の存在下で行うことができる。溶媒としては、原料成分(単位(U1a)を含む含フッ素重合体(A1)、ヒドラジン化合物)を溶解できるものが好ましい。少なくとも単位(U1a)を含む含フッ素重合体(A1)が溶解する溶媒が好ましい。溶媒としては、含フッ素溶媒、エーテル系溶媒、エステル系溶媒が挙げられ、原料成分の極性等に応じて適宜選択できる。溶媒は1種単独を用いてもよく、2種以上を併用してもよい。さらに、これらの溶媒とアルコールを混合して用いることも好ましい。反応の進行に伴いアルコールを添加することも可能である。ここで、アルコールとしては、含フッ素重合体(A)の項に記したものが使用できる。
含フッ素溶媒は、フッ素および炭素を含み、さらに塩素、酸素および水素を含んでもよい。例えば、フッ素化アルカン、フッ素化芳香族化合物、フルオロアルキルエーテル、フッ素化アルキルアミン、フルオロアルコール等が挙げられる。
フッ素化アルカンとしては、炭素数4~8の化合物が好ましい。市販品としては、例えば、CF3CH2CF2H(HFC-245fa)、CF3CH2CF2CH3(HFC-365mfc)、ペルフルオロヘキサン、1H-ペルフルオロヘキサン、ペルフルオロオクタン、C6F13H(旭硝子社製、アサヒクリン(登録商標)AC-2000)、C6F13C2H5(旭硝子社製、アサヒクリン(登録商標)AC-6000)、C2F5CHFCHFCF3(ケマーズ社製、バートレル(登録商標)XF)等が挙げられる。
フッ素化芳香族化合物としては、例えば、ヘキサフルオロベンゼン、トリフルオロメチルベンゼン、ペルフルオロトルエン、ビス(トリフルオロメチル)ベンゼン等が挙げられる。フルオロアルキルエーテルとしては、炭素数4~12の化合物が好ましい。市販品としては、例えば、CF3CH2OCF2CF2H(旭硝子社製、アサヒクリン(登録商標)AE-3000)、C4F9OCH3(3M社製、ノベック(登録商標)7100)、C4F9OC2H5(3M社製、ノベック(登録商標)7200)、C2F5CF(OCH3)C3F7(3M社製、ノベック(登録商標)7300)等が挙げられる。
フッ素化アルキルアミンとしては、例えば、ペルフルオロトリプロピルアミン、ペルフルオロトリブチルアミン等が挙げられる。フルオロアルコールとしては、例えば、2,2,3,3-テトラフルオロプロパノール、2,2,2-トリフルオロエタノール、ヘキサフルオロイソプロパノール等が挙げられる。その他、ジクロロペンタフルオロプロパン(HCFC-225)、ペルフルオロ(2-ブチルテトラヒドロフラン)等が挙げられる。ジクロロペンタフルオロプロパンは、市販品としてAK-225G等のアサヒクリン(登録商標)AK-225シリーズ(旭硝子社製)が挙げられる。
エーテル系溶媒としては、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、ジエチレングリコールジメチルエーテル、ジイソプロピルエーテル、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールジメチルエーテル等が挙げられる。
エステル系溶媒としては、酢酸メチル、酢酸エチル、酢酸n-プロピル、酢酸イソプロピル、酢酸n-ブチル、酢酸イソブチル等が挙げられる。
反応は、例えば上記溶媒に、単位(U1a)を含む含フッ素重合体(A1)を溶解させ、0~30℃で、ヒドラジン化合物を添加することによって行う。添加後、30~100℃に加熱して、1分~10時間反応させることによって、目的の単位(U1b)を含む含フッ素重合体(A1)を得ることができる。
単位(U1)が単位(U1a)と単位(U1c)からなる、または単位(U1)が単位(U1c)のみからなる含フッ素重合体(A1)は、例えば、上記のようにして得られる単位(U1a)を含む含フッ素重合体(A1)と下式(6)で表されるヒドロキシルアミン化合物(以下、単に「ヒドロキシルアミン化合物」とも記す。)を反応させ、単位(U1a)の一部または全部を単位(U1c)に変性する方法により製造できる。
NHR3OR4 …(6)
(式(6)中、R3およびR4は、式(U1)で定義されたとおりであり、例示も好ましい範囲も同様である。)
NHR3OR4 …(6)
(式(6)中、R3およびR4は、式(U1)で定義されたとおりであり、例示も好ましい範囲も同様である。)
ヒドロキシルアミン化合物として、ヒドロキシルアミン、N-メチルヒドロキシルアミン、N,O-ジメチルヒドロキシルアミン、イソプロピルヒドロキシルアミンが挙げられ、得られる含フッ素重合体(A1)のアルコールへの溶解性がより優れる点から、ヒドロキシルアミンが好ましい。反応に供するヒドロキシルアミン化合物の形態は、水溶液でもよく、塩でもよい。安全性の点から水溶液が好ましい。ヒドロキシルアミン化合物は、市販品を用いることができる。
単位(U1a)を含む含フッ素重合体(A1)とヒドロキシルアミン化合物を反応させて、単位(U1a)の一部または全部を単位(U1c)に変性して、単位(U1c)を含む含フッ素重合体(A1)を製造する方法としては、例えば、上記単位(U1b)を含む含フッ素重合体(A1)を製造する方法において、ヒドラジン化合物をヒドロキシルアミン化合物に変更する以外は同様とする方法が挙げられる。この場合においても、残存する-COOR5基を赤外分光(IR)で定量することにより、Z1がNR3OR4である単位の含有量を測定できる。
なお、含フッ素重合体(A1)が、単位(U1a)、単位(U1b)および単位(U1c)の全てを含む場合、含フッ素重合体(A1)の製造方法は具体的には以下が挙げられる。
(a)単位(U1a)を含む含フッ素重合体(A1)とヒドラジン化合物とを反応させて、次いで、ヒドロキシルアミン化合物を反応させる。
(b)単位(U1a)を含む含フッ素重合体(A1)とヒドロキシルアミン化合物とを反応させて、次いで、ヒドラジン化合物を反応させる。
(c)単位(U1a)を含む含フッ素重合体(A1)とヒドロキシルアミン化合物とヒドラジン化合物とを反応させる。
ただし、上記(a)~(c)において、用いるヒドラジン化合物とヒドロキシルアミン化合物の量を、目的とする含フッ素重合体(A1)における単位(U1a)、単位(U1b)および単位(U1c)の割合に合わせて調整する。
(b)単位(U1a)を含む含フッ素重合体(A1)とヒドロキシルアミン化合物とを反応させて、次いで、ヒドラジン化合物を反応させる。
(c)単位(U1a)を含む含フッ素重合体(A1)とヒドロキシルアミン化合物とヒドラジン化合物とを反応させる。
ただし、上記(a)~(c)において、用いるヒドラジン化合物とヒドロキシルアミン化合物の量を、目的とする含フッ素重合体(A1)における単位(U1a)、単位(U1b)および単位(U1c)の割合に合わせて調整する。
また、上記(a)~(c)において、ヒドラジン化合物およびヒドロキシルアミン化合物の使用量を調整することで、単位(U1)として、単位(U1b)および単位(U1c)のみを有する含フッ素重合体(A1)を製造できる。
<含フッ素重合体(A2)>
含フッ素重合体(A2)は、基(F)として、基(F1)を3個以上有する含フッ素重合体である。
-(Rf2O)k-Rf1COZ1 …(F1)
(式(F1)中、Rf2は、炭素数が1~4のペルフルオロアルキレン基である。kは1~200の整数を示す。-Rf1COZ1は、基(F)に相当する。)
含フッ素重合体(A2)は、基(F)として、基(F1)を3個以上有する含フッ素重合体である。
-(Rf2O)k-Rf1COZ1 …(F1)
(式(F1)中、Rf2は、炭素数が1~4のペルフルオロアルキレン基である。kは1~200の整数を示す。-Rf1COZ1は、基(F)に相当する。)
基(F1)中のRf2が、炭素数1~4のペルフルオロアルキレン基であるとは、具体的には、-(Rf2O)k-が、-(CaF2aO)k-(aは、1~4の整数であり、kは、1~200の整数であり、各-CaF2aO-単位は、同一でも異なっていてもよい)であることを意味する。
-CaF2aO-単位は、直鎖状でも分岐鎖状でもよく、例えば、-CF2CF2CF2CF2O-、-CF2CF2CF2O-、-CF(CF3)CF2O-、-CF2CF2O-、-CF2O-が挙げられる。kは、所望の分子量に応じて、適宜、調整することができる。kの好ましい範囲は、2~100である。
Rf2は、複数の単位の組み合わせでもよく、その場合、各単位は、ブロック、交互、ランダムのいずれで存在してもよい。
-(Rf2O)k-は、具体的には、-(CF2CF2CF2CF2O)k1-(CF2CF2CF2O)k2-(CF(CF3)CF2O)k3-(CF2CF2O)k4-(CF2O)k5-(ここで、k1、k2、k3、k4およびk5は、それぞれ独立して、0以上の整数であり、k1、k2、k3、k4およびk5の合計は1~200であり、各繰り返し単位は、ブロック、交互、ランダムのいずれで存在してもよい)が挙げられる。
Rf2としては、{(CF2O)k11(CF2CF2O)k12}、(CF2CF2O)k13、(CF2CF2CF2O)k14、が好ましく、より好ましくは{(CF2O)k11(CF2CF2O)k12}、(CF2CF2O)k13である。ただし、k11は1以上の整数であり、k12は1以上の整数であり、k11+k12は2~200の整数であり、k11個のCF2Oおよびk12個のCF2CF2Oの結合順序は限定されない。k13およびk14は、1~200の整数である。
基(F1)として具体的には以下の基が挙げられる。
-(CF2O)k11(CF2CF2O)k12-CF2-COZ1、
-(CF2O)k11(CF2CF2O)k12-(CF2)2-COZ1、
-(CF2O)k11(CF2CF2O)k12-(CF2)3-COZ1、
-(CF2CF2O)k13-CF2-COZ1、
-(CF2CF2O)k13-(CF2)2-COZ1、
-(CF2CF2CF2O)k14-(CF2)2-COZ1、
-(CF2CF2CF2O)k14-(CF2)3-COZ1、
(Z1は、-OH、-OCH3、-OC2H5、-NHNH2、-N(CH3)NHCH3、-NHOH、または、-NHOCH3である。k11、k12、k13、k14は、上記と同様である。)
-(CF2O)k11(CF2CF2O)k12-CF2-COZ1、
-(CF2O)k11(CF2CF2O)k12-(CF2)2-COZ1、
-(CF2O)k11(CF2CF2O)k12-(CF2)3-COZ1、
-(CF2CF2O)k13-CF2-COZ1、
-(CF2CF2O)k13-(CF2)2-COZ1、
-(CF2CF2CF2O)k14-(CF2)2-COZ1、
-(CF2CF2CF2O)k14-(CF2)3-COZ1、
(Z1は、-OH、-OCH3、-OC2H5、-NHNH2、-N(CH3)NHCH3、-NHOH、または、-NHOCH3である。k11、k12、k13、k14は、上記と同様である。)
-(CF2O)k11(CF2CF2O)k12において、k11が1~50であり、k12が3~149であり、k11+k12が5~150が好ましく、k11が1~10であり、k12が10~99であり、k11+k12が15~100がより好ましい。-(CF2CF2O)k13において、k13は5~150が好ましく、15~100がより好ましい。-(CF2CF2CF2O)k14において、k14は5~150が好ましく、15~100がより好ましい。
含フッ素重合体(A2)は、基(F1)を3つ以上有する限り、基(F1)の1種を単独で含んでもよく、2種以上の組み合わせで含んでもよい。水素結合性がより高く、導線に対する接着性により優れる点からは、含フッ素重合体(A2)としては、Z1がNR1NR2Hである基(F1)を含む含フッ素重合体が好ましい。架橋条件とZ1の種類、含フッ素重合体(A2)のアルコール溶解性については、上記含フッ素重合体(A)で説明したのと同様である。
以下、下式(F1a)、(F1b)、(F1c)に示すように、Z1がOR5である基(F1)を基(F1a)、Z1がNR1NR2Hである基(F1)を基(F1b)、Z1がNR3OR4である基(F1)を基(F1c)という。
-(Rf2O)k-Rf1COOR5…(F1a)
-(Rf2O)k-Rf1CONR1NR2H…(F1b)
-(Rf2O)k-Rf1CONR3OR4…(F1c)
-(Rf2O)k-Rf1COOR5…(F1a)
-(Rf2O)k-Rf1CONR1NR2H…(F1b)
-(Rf2O)k-Rf1CONR3OR4…(F1c)
含フッ素重合体(A2)の製造が簡便で、硬化性組成物における硬化反応の均一性に優れる等の点から、含フッ素重合体(A2)が3個以上有する基(F1)は、1種の基からなることが好ましい。または、互いに反応する2種の基の組み合わせも好ましい。具体的には、含フッ素重合体(A2)における基(F1)は、全てが基(F1a)、基(F1b)、または基(F1c)のいずれか1種からなるか、基(F1a)と基(F1b)の2種の組み合わせからなることが好ましい。
含フッ素重合体(A2)としては、例えば、下式(A2a)で示される化合物が挙げられる。
(F1-)nY3(-F2)m …(A2a)
F1:式(F1)で示される基である。nは3以上の整数である。
Y3:(n+m)価のペルフルオロ化飽和炭化水素基、炭素-炭素原子間にエーテル性酸素原子が挿入された(n+m)価のペルフルオロ化飽和炭化水素基、または炭素-炭素原子間にエーテル性酸素原子が挿入されてもよい(n+m)価の炭素骨格を示し、該基中には-OCF2O-構造は存在しない。n+mは、3~20の整数である。
(F1-)nY3(-F2)m …(A2a)
F1:式(F1)で示される基である。nは3以上の整数である。
Y3:(n+m)価のペルフルオロ化飽和炭化水素基、炭素-炭素原子間にエーテル性酸素原子が挿入された(n+m)価のペルフルオロ化飽和炭化水素基、または炭素-炭素原子間にエーテル性酸素原子が挿入されてもよい(n+m)価の炭素骨格を示し、該基中には-OCF2O-構造は存在しない。n+mは、3~20の整数である。
F2:下式(F2)で示される基である。mは0以上の整数である。
Rf3-(CF2CF2CF2CF2O)k1-(CF2CF2CF2O)k2-(CF(CF3)CF2O)k3- …(F2)
(式(F2)中、k1、k2、k3は、上記-(Rf2O)k-の具体例で説明したのと同様である。Rf3は、炭素数1~20のペルフルオロアルキル基、炭素数1~20のペルフルオロアルコキシ基、炭素-炭素原子間にエーテル性酸素原子を有する炭素数2~20のペルフルオロアルキル基(ただし、該基中には-OCF2O-構造は存在しない。)、または炭素-炭素原子間にエーテル性酸素原子を有する炭素数2~20のペルフルオロアルコキシ基(ただし、該基中には-OCF2O-構造は存在しない。))
Rf3-(CF2CF2CF2CF2O)k1-(CF2CF2CF2O)k2-(CF(CF3)CF2O)k3- …(F2)
(式(F2)中、k1、k2、k3は、上記-(Rf2O)k-の具体例で説明したのと同様である。Rf3は、炭素数1~20のペルフルオロアルキル基、炭素数1~20のペルフルオロアルコキシ基、炭素-炭素原子間にエーテル性酸素原子を有する炭素数2~20のペルフルオロアルキル基(ただし、該基中には-OCF2O-構造は存在しない。)、または炭素-炭素原子間にエーテル性酸素原子を有する炭素数2~20のペルフルオロアルコキシ基(ただし、該基中には-OCF2O-構造は存在しない。))
Y3の炭素数は1~50が好ましく、1~20がより好ましく、1~5がさらに好ましい。Y3として、例えば、以下の(a)~(g)で示される基が挙げられる。Y3の価数は、(n+m)価で示され、3~20の整数である。(n+m)の値は、3~6が好ましい。
Rf3としては、直鎖構造、分岐構造、環構造、または部分的に環構造を有する構造が挙げられ、直鎖構造または分岐構造が好ましく、直鎖構造が特に好ましい。ペルフルオロアルキル基またはペルフルオロアルコキシ基が好ましく、ペルフルオロアルコキシ基がより好ましい。Rf3の炭素数は1~10がより好ましく、1~6が特に好ましい。具体的にはトリフルオロメトキシ基、ヘプタフルオロプロピロキシ基、トリデカフルオロヘキシロキシ基等が挙げられる。含フッ素重合体(A2a)がF2を有することで、硬化時の発泡の抑制、得られる硬化物の架橋密度の調整等が可能である。含フッ素重合体(A2a)におけるn+mに対するmの割合は、0~0.5が好ましい。
含フッ素重合体(A2a)において、基(F1)の数を示すnは3以上であれば特に制限されない。Y3の有する結合手の全てに基(F1)が結合してもよい。例えば、Y3が基(a)である場合、基(F1)の数は3でも、4でもよい。含フッ素重合体(A2a)は、Y3が基(a)であり、基(F1)の数nが4である化合物が、架橋効率に優れる点から好ましい。
含フッ素重合体(A2)の質量平均分子量は、1,000~20,000が好ましい。質量平均分子量は3,000以上が蒸発成分が少ないためより好ましい。質量平均分子量は10,000以下が溶解性に優れるためより好ましい。なお、含フッ素重合体(A2)の質量平均分子量が1,000~5,000の場合には粘度が1~100Pa・sで、25~100℃加熱により10Pa・s以下となり、溶剤を用いずに含フッ素重合体(A1)を含有する硬化剤組成物を導線に被覆できる。含フッ素重合体(A2)のフッ素原子含有量は、含フッ素重合体(A)として説明したのと同様である。
[含フッ素重合体(A2)の製造方法]
含フッ素重合体(A2)は、例えば、基(F1)が基(F1a)である含フッ素重合体(A2a)として、公知の方法(例えば、特許第5028801号に記載の方法)で、Y3[(Rf2O)k-Rf1COF]nを合成し、これをエステル化、またはエステル化の後に加水分解することで製造することができる。
含フッ素重合体(A2)は、例えば、基(F1)が基(F1a)である含フッ素重合体(A2a)として、公知の方法(例えば、特許第5028801号に記載の方法)で、Y3[(Rf2O)k-Rf1COF]nを合成し、これをエステル化、またはエステル化の後に加水分解することで製造することができる。
基(F1)が基(F1a)と基(F1b)からなる、または基(F1)が基(F1b)のみからなる含フッ素重合体(A2a)は、例えば、上記のようにして得られる基(F1a)を含む含フッ素重合体(A2a)とヒドラジン化合物を反応させ、基(F1a)の一部または全部を基(F1b)に変性する方法により製造できる。
具体的には、上記において単位(U1a)を含む含フッ素重合体(A1)の単位(U1a)の一部または全部をヒドラジン化合物により変性させ、単位(U1b)とする方法と同様の方法により、基(F1)が基(F1a)と基(F1b)からなる、または基(F1)が基(F1b)のみからなる含フッ素重合体(A2a)を製造できる。ただし、含フッ素重合体(A2a)においては、反応温度は、10~100℃の範囲が好ましい。
基(F1)が基(F1a)と基(F1c)からなる、または基(F1)が基(F1c)のみからなる含フッ素重合体(A2a)は、例えば、上記のようにして得られる基(F1a)を含む含フッ素重合体(A2a)とヒドロキシルアミン化合物を反応させ、基(F1a)の一部または全部を基(F1c)に変性する方法により製造できる。
具体的には、上記において単位(U1a)を含む含フッ素重合体(A1)中の単位(U1a)の一部または全部をヒドロキシルアミン化合物により変性させ、単位(U1c)とする方法と同様の方法により、基(F1)が基(F1a)と基(F1c)からなる、または基(F1)が基(F1c)のみからなる含フッ素重合体(A2a)を製造できる。ただし、含フッ素重合体(A2a)においては、反応温度は、10~100℃の範囲が好ましい。
[硬化性組成物]
本発明の電線における被覆層は、含フッ素重合体(A)を含む硬化性組成物の硬化物によりなる。硬化性組成物は、含フッ素重合体(A)のみからなってもよい。含フッ素重合体(A)は1種を単独で使用してもよく、2種以上を組み合わせて使用してもよい。2種以上を組み合わせる場合、含フッ素重合体(A1)の2種以上の組み合わせ、含フッ素重合体(A2)の2種以上の組み合わせ、含フッ素重合体(A1)と含フッ素重合体(A2)の組み合わせ等が挙げられる。硬化性組成物における含フッ素重合体(A)の含有量は、硬化性組成物の全量に対して、10~100質量%が好ましく、50~100質量%がより好ましい。
本発明の電線における被覆層は、含フッ素重合体(A)を含む硬化性組成物の硬化物によりなる。硬化性組成物は、含フッ素重合体(A)のみからなってもよい。含フッ素重合体(A)は1種を単独で使用してもよく、2種以上を組み合わせて使用してもよい。2種以上を組み合わせる場合、含フッ素重合体(A1)の2種以上の組み合わせ、含フッ素重合体(A2)の2種以上の組み合わせ、含フッ素重合体(A1)と含フッ素重合体(A2)の組み合わせ等が挙げられる。硬化性組成物における含フッ素重合体(A)の含有量は、硬化性組成物の全量に対して、10~100質量%が好ましく、50~100質量%がより好ましい。
硬化性組成物は、含フッ素重合体(A)に加えて、含フッ素重合体(A)の上記架橋反応を阻害しない範囲でその他の反応性成分を含んでもよい。その他の反応性成分としては、基(F)を1つまたは2つ有する含フッ素重合体、導線等との密着性向上のためのシランカップリング剤等が挙げられる。シランカップリング剤は、例えば、国際公開第2015/098773号に記載されているものが挙げられる。
硬化性組成物におけるその他の反応成分の含有量は、硬化性組成物の全量に対して、各成分の含有量として0.01~50質量%が好ましく、0.1~10質量%がより好ましい。
硬化性組成物はさらに非反応性成分を含有してもよい。非反応性成分としては、無機フィラー、フルオロポリエーテル化合物、ポリテトラフルオロエチレン(旭硝子社製、フルオン(登録商標)PTFEファインパウダー)などのペルフルオロ樹脂、エチレン-テトラフルオロエチレンコポリマー(旭硝子社製、フルオン(登録商標)ETFEパウダー)などの部分フッ素化樹脂、有機顔料等が挙げられる。
無機フィラーとしては、シリカ、チタニア、ジルコニア、アルミナ等の金属酸化物粒子や、ガラス繊維、炭素繊維、各種無機顔料が好ましい。無機フィラーの最長径は、特に限定されないが、被覆層に分散しやすいことから、0.1~1000μmが好ましい。無機フィラーの含有量は、含フッ素重合体(A)の100質量部に対して20~200質量部が好ましく、50~100質量部が特に好ましい。無機フィラーの含有量が前記範囲の下限値以上であれば、硬度をより高める。前記範囲の上限値以下であれば、成形性に優れる。
硬化性組成物における無機フィラー以外の非反応性成分の含有量は、硬化性組成物の全量に対して、各成分の含有量として10~90質量%が好ましく、30~70質量%がより好ましい。
電線製造において、硬化性組成物をそのまま使用して、導線の外周を被覆して、硬化性組成物からなる前駆層を形成してもよい。作業性の観点からは、硬化性組成物と溶剤を含むコーティング組成物を調製し、該コーティング組成物を使用して前駆層を形成することが好ましい。次いで、前駆層を硬化して被覆層を得ることで電線が製造される。
[コーティング組成物]
コーティング組成物は、硬化性組成物と硬化性組成物を溶解または分散する溶剤を含有する液状の組成物である。コーティング組成物を用いれば、導線外周への前駆層の形成が容易となり、生産性が向上する。なお、コーティング組成物を用いた場合、導線外周にコーティング組成物からなる塗膜が形成され、次いで、塗膜から溶剤を除去することで、硬化性組成物からなる前駆層が得られる。
コーティング組成物は、硬化性組成物と硬化性組成物を溶解または分散する溶剤を含有する液状の組成物である。コーティング組成物を用いれば、導線外周への前駆層の形成が容易となり、生産性が向上する。なお、コーティング組成物を用いた場合、導線外周にコーティング組成物からなる塗膜が形成され、次いで、塗膜から溶剤を除去することで、硬化性組成物からなる前駆層が得られる。
コーティング組成物に用いる溶剤としては、硬化性組成物を十分に溶解または分散する機能を有する溶剤が好ましい。溶剤は、除去の容易さの観点から沸点が250℃以下の液体(以下、「液体(L)」という。)を含むことが好ましい。液体(L)としては、沸点が250℃以下のアルコールおよび含フッ素重合体(A)を製造するための溶媒として例示された化合物のうち沸点が250℃以下のもの(ただし、アルコールを除く)が好ましい。溶剤は1種単独を用いてもよく、2種以上を併用してもよい。沸点の異なる2種以上の液体(L)を用いると硬化物の発泡が良好に抑えられやすい。
コーティング組成物中の硬化性組成物の含有量は、0.1~99質量%が好ましく、1~70質量%がより好ましく、5~60質量%が特に好ましい。コーティング組成物中の溶剤の含有量は99.9~1質量%が好ましく、99~30質量%がより好ましく、95~40質量%が特に好ましい。溶剤中の液体(L)の含有量は、50~100質量%が好ましく、70~100質量%が特に好ましい。
[電線の製造方法]
本発明における電線の製造方法は、導線と該導線の外周を被覆する被覆層を有する電線の製造方法であって、以下の(1)、(2)の工程を有する。
(1)導線の外周を、基(F)を3つ以上含む含フッ素重合体を含む硬化性組成物により被覆して前駆層を形成する(以下、「前駆層形成工程」ともいう。)。
(2)上記(1)で得られた前駆層に熱を加えて、および/または、活性エネルギー線を照射して、上記硬化性組成物の硬化物からなる被覆層を得る(以下、「硬化工程」ともいう)。
本発明における電線の製造方法は、導線と該導線の外周を被覆する被覆層を有する電線の製造方法であって、以下の(1)、(2)の工程を有する。
(1)導線の外周を、基(F)を3つ以上含む含フッ素重合体を含む硬化性組成物により被覆して前駆層を形成する(以下、「前駆層形成工程」ともいう。)。
(2)上記(1)で得られた前駆層に熱を加えて、および/または、活性エネルギー線を照射して、上記硬化性組成物の硬化物からなる被覆層を得る(以下、「硬化工程」ともいう)。
(1)前駆層形成工程
導線の外周に被覆層の前駆層を形成する方法としては、導線の外周全体に均一な前駆層が形成される方法であれば特に制限されない。硬化性組成物を加熱することにより流動させて、該硬化性組成物を導線の外周に塗布する方法、導線の外周に該硬化性組成物を被覆させるように押し出す成形方法(電線押出成形)等が挙げられる。
導線の外周に被覆層の前駆層を形成する方法としては、導線の外周全体に均一な前駆層が形成される方法であれば特に制限されない。硬化性組成物を加熱することにより流動させて、該硬化性組成物を導線の外周に塗布する方法、導線の外周に該硬化性組成物を被覆させるように押し出す成形方法(電線押出成形)等が挙げられる。
硬化性組成物の塗布は、上記硬化性組成物と、溶剤、好ましくは液体(L)を含有する溶剤、を含むコーティング組成物の塗布により行われることが好ましい。コーティング組成物としては上記のコーティング組成物が使用できる。コーティング組成物の導線外周への塗布方法は、硬化性組成物の塗布方法と同様の方法が適用可能である。
硬化性組成物の塗布方法としては、スピンコート法、ワイプコート法、スプレーコート法、スキージーコート法、ディップコート法、ダイコート法、インクジェット法、フローコート法、ロールコート法、キャスト法、ラングミュア・ブロジェット法、グラビアコート法等が挙げられる。特に、ディップコート法が好ましい。
なお、コーティング組成物を用いて塗膜を形成した場合、コーティング組成物からなる塗膜から溶剤、好ましくは液体(L)を含有する溶剤を揮発させる。コーティング組成物から溶剤を揮発させて除去することで、硬化性組成物からなる前駆層が得られる。
溶剤を揮発させる方法としては、加熱乾燥、減圧乾燥等の公知の乾燥方法が適用できる。乾燥方法としては、例えば、50~300℃で1~120分間の加熱乾燥、400~700℃で1~60秒間の加熱乾燥、0.1~500mmHg、1~120分間の減圧乾燥等が挙げられる。なお、溶剤の揮発、すなわち乾燥はこれらを組み合せて行ってもよい。
(2)硬化工程
硬化工程は、上記(1)で得られた前駆層を構成する硬化性組成物を硬化させ、硬化物からなる被覆層とする工程である。硬化の方法は、用いる硬化性組成物の種類、具体的には、含フッ素重合体(A)が有する基(F)の種類に応じて、加熱、活性エネルギー線の照射、およびこれらを組み合わせる方法から適宜選択される。
硬化工程は、上記(1)で得られた前駆層を構成する硬化性組成物を硬化させ、硬化物からなる被覆層とする工程である。硬化の方法は、用いる硬化性組成物の種類、具体的には、含フッ素重合体(A)が有する基(F)の種類に応じて、加熱、活性エネルギー線の照射、およびこれらを組み合わせる方法から適宜選択される。
含フッ素重合体(A)が有する基(F)が、-Rf1COOR5のみで構成される場合、加熱による架橋反応、特に300℃以下の加熱による架橋反応は進行し難いものと考えられる。したがって、その場合は活性エネルギー線の照射により硬化工程を行うことが好ましい。含フッ素重合体(A)が有する基(F)が-Rf1CONR1NR2H、または-Rf1CONR3OR4を含有する場合は、加熱、活性エネルギー線の照射、これらの組み合わせにより硬化工程を行うことが好ましい。含フッ素重合体(A)が有する基(F)が-Rf1CONR1NR2Hと-Rf1COOR5の組み合わせである場合、加熱により硬化工程を行うことが好ましい。
活性エネルギー線を照射する硬化方法は、加熱による硬化方法に比べて、より低温で硬化物、すなわち被覆層を得ることができる。被覆層形成方法として、低温処理が求められる場合には、活性エネルギー線の照射による硬化方法が好ましい。なお、加熱および活性エネルギー線の照射の両方が行われる場合、加熱は、活性エネルギー線の照射の前、同時、および/または後に行うことができる。
(加熱硬化条件)
前駆層を加熱硬化する場合、加熱温度は、硬化性組成物中の硬化性成分、特には含フッ素重合体(A)が有する基(F)が架橋反応する温度であれば、特に限定されない。加熱温度は、100~300℃の範囲が好ましい。なお、以下のいずれの場合においても、反応促進の観点から加熱は窒素などの不活性ガスの雰囲気下に行うことがより好ましい。
前駆層を加熱硬化する場合、加熱温度は、硬化性組成物中の硬化性成分、特には含フッ素重合体(A)が有する基(F)が架橋反応する温度であれば、特に限定されない。加熱温度は、100~300℃の範囲が好ましい。なお、以下のいずれの場合においても、反応促進の観点から加熱は窒素などの不活性ガスの雰囲気下に行うことがより好ましい。
例えば、含フッ素重合体(A)が基(F)として-Rf1CONR1NR2Hと-Rf1COOR5の2種を含む場合、加熱温度は100~200℃が好ましく、120~180℃が特に好ましい。加熱時間は、温度に依存するが、10分~10時間が好ましく、30分~4時間が特に好ましい。段階的に昇温する方法も効果的である。
含フッ素重合体(A)が基(F)として-Rf1CONR1NR2Hを含有する場合、加熱温度は150~300℃が好ましく、200~260℃がより好ましい。加熱時間は温度に依存するが、1分~10時間が好ましく、1~5時間がより好まく、2~4時間がさらに好ましい。段階的に昇温する方法も効果的である。
また、含フッ素重合体(A)が基(F)として-Rf1CONR3OR4を含有する場合、加熱温度は50~250℃が好ましく、70~120℃がより好ましい。加熱時間は温度に依存するが、1分~10時間が好ましく、1~5時間がより好まく、2~4時間がさらに好ましい。段階的に昇温する方法も効果的である。
(活性エネルギー線照射硬化条件)
前駆層を活性エネルギー線照射で硬化する場合、活性エネルギー線の波長は、硬化性組成物中の硬化性成分、特には含フッ素重合体(A)が有する基(F)が架橋反応する波長であれば、特に限定されない。活性エネルギー線の波長は、150~300nmが好ましく、200~260nmが特に好ましい。活性エネルギー線の発生源としては、250~300nmにはメタルハライドランプ、185、254nmには低圧水銀ランプ、172nm、222nmにはエキシマランプ、248nmにはKrFエキシマレーザー、193nmにはArFエキシマレーザー、157nmにはF2レーザーが挙げられる。
前駆層を活性エネルギー線照射で硬化する場合、活性エネルギー線の波長は、硬化性組成物中の硬化性成分、特には含フッ素重合体(A)が有する基(F)が架橋反応する波長であれば、特に限定されない。活性エネルギー線の波長は、150~300nmが好ましく、200~260nmが特に好ましい。活性エネルギー線の発生源としては、250~300nmにはメタルハライドランプ、185、254nmには低圧水銀ランプ、172nm、222nmにはエキシマランプ、248nmにはKrFエキシマレーザー、193nmにはArFエキシマレーザー、157nmにはF2レーザーが挙げられる。
活性エネルギー線の照射強度に応じて照射時間を調節することにより、含フッ素重合体(A)を含む硬化性組成物を硬化させて、被覆層を形成できる。例えば、架橋は、活性エネルギー線を照射強度が0.1~500mW/cm2で1分~10時間程度照射することにより行うことができる。上記特定の波長の活性エネルギー線を照射することにより、光開始剤を用いることなく架橋反応を進行させることができる。なお、反応促進の観点から、活性エネルギー線照射の場合においても、窒素などの不活性ガスの雰囲気下に行うことが好ましい。
本発明の電線は、含フッ素重合体(A)の硬化物を含む被覆層を有する。含フッ素重合体(A)の硬化は、熱または光硬化により特別な装置を必要とすることなく簡便に行えるため、電線の生産性が高い。
本発明の電線は、例えば、含フッ素重合体(A)の硬化物の絶縁破壊強さとして、20kV/mm以上であると、被覆層が高い絶縁性を有する。また、含フッ素重合体(A)の硬化物は架橋構造を有することから、被覆層は強度に優れ、耐熱性にも優れる。被覆層が上記特性を有することから、本発明の電線は信頼性に優れる。
本発明の電線の用途は特に限定されない。本発明の電線は、絶縁性や耐熱性に優れることから、高電圧電線、通信電線や、モーター、発電機、高炉、電気炉、電熱機器、医療機器、電気メス、自動車、鉄道車両、航空機、製鉄所、発電所等で用いられる配線用電線、高周波やミリ波等を用いた無線通信用の基板等、特に高温下で使用される電線として好適である。
[コイル]
本発明のコイルは、本発明の電線をコイル状に成形して得る。本発明のコイルは、各種電気・電子機器など、高絶縁性や耐熱性を必要とする分野に利用可能である。例えば、本発明のコイルはモーターやトランス、無線給電の送電コイルや受電コイル等に用いられ、高性能の電気・電子機器を構成できる。コイルの芯線は、単線として用いても撚り線として用いてもよい。
本発明のコイルは、本発明の電線をコイル状に成形して得る。本発明のコイルは、各種電気・電子機器など、高絶縁性や耐熱性を必要とする分野に利用可能である。例えば、本発明のコイルはモーターやトランス、無線給電の送電コイルや受電コイル等に用いられ、高性能の電気・電子機器を構成できる。コイルの芯線は、単線として用いても撚り線として用いてもよい。
電線をコイル状に成形する方法としては、公知の方法が特に限定なく適用できる。コイル状とは、具体的には、長尺の電線を螺旋状に巻き回したものをいう。このようなコイルにおいて、電線の巻線数、コイルの形状、大きさ等は特に限定されない。コイルが適用される各種電気・電子機器に合わせて適宜調整される。
以下、本発明を実施例によって具体的に説明するが、本発明は、以下の実施例によって何ら限定されない。各例の評価は、以下に記載の方法にしたがった。
[評価方法]
(質量平均分子量)
含フッ素重合体の質量平均分子量は、含フッ素重合体P1についてはCF2ClCF2CHClF(旭硝子社製、商品名:アサヒクリンAK-225G)を、含フッ素重合体Q1、Q3、Q4およびR1、R3、R4についてはテトラヒドロフランを溶媒として用いて、ゲルパーミエーションクロマトグラフィ(GPC)によりPMMA(ポリメチルメタクリレート)換算分子量として算出した。
(含フッ素重合体中のフッ素原子含有量)
含フッ素重合体中のフッ素原子含有は、19F-NMRから求めた。
(質量平均分子量)
含フッ素重合体の質量平均分子量は、含フッ素重合体P1についてはCF2ClCF2CHClF(旭硝子社製、商品名:アサヒクリンAK-225G)を、含フッ素重合体Q1、Q3、Q4およびR1、R3、R4についてはテトラヒドロフランを溶媒として用いて、ゲルパーミエーションクロマトグラフィ(GPC)によりPMMA(ポリメチルメタクリレート)換算分子量として算出した。
(含フッ素重合体中のフッ素原子含有量)
含フッ素重合体中のフッ素原子含有は、19F-NMRから求めた。
(比誘電率、誘電正接、および絶縁破壊強さ)
各例で製造したフィルムを用い、アジレント・テクノロジー社製LCRメータHP4284A、安藤電機社製TO-19恒温槽、および安藤電機社製SE-70形固体用電極により、1kHz、1MHzの比誘電率、誘電正接を測定した。12GHz、24GHzの比誘電率、誘電正接は、YHP社製シンセサイズドスイーパー8340B、YHP社製ネットワークアナライザー8510B、円筒空洞共振器(材質:銅、内部鏡面仕上げ)、および信号伝送用セミリジットケーブルを用いて測定した。絶縁破壊強さは、山崎産業社製絶縁破壊試験機HAT-300-100RHO型を用いて測定した。測定条件:温度;23±2℃、湿度;50±5%RH、前記温度、湿度での測定前静置時間;40時間以上。絶縁破壊強さ測定の周辺媒体:絶縁油。
各例で製造したフィルムを用い、アジレント・テクノロジー社製LCRメータHP4284A、安藤電機社製TO-19恒温槽、および安藤電機社製SE-70形固体用電極により、1kHz、1MHzの比誘電率、誘電正接を測定した。12GHz、24GHzの比誘電率、誘電正接は、YHP社製シンセサイズドスイーパー8340B、YHP社製ネットワークアナライザー8510B、円筒空洞共振器(材質:銅、内部鏡面仕上げ)、および信号伝送用セミリジットケーブルを用いて測定した。絶縁破壊強さは、山崎産業社製絶縁破壊試験機HAT-300-100RHO型を用いて測定した。測定条件:温度;23±2℃、湿度;50±5%RH、前記温度、湿度での測定前静置時間;40時間以上。絶縁破壊強さ測定の周辺媒体:絶縁油。
(溶解性判定)
液体の1mLに、含フッ素重合体の含有量が5質量%となる量の含フッ素重合体を加え、温度40℃で、1時間撹拌混合した後、室温(25℃)まで冷却した。得られた混合物1mLが、孔径0.5μm、直径25mmのPTFE(ポリテトラフルオロエチレン)製フィルタにより、目詰まりせずにろ過可能かどうかで判定した。ろ過可能であれば「溶解した」とし、ろ過不可能であれば「溶解せず」とした。
液体の1mLに、含フッ素重合体の含有量が5質量%となる量の含フッ素重合体を加え、温度40℃で、1時間撹拌混合した後、室温(25℃)まで冷却した。得られた混合物1mLが、孔径0.5μm、直径25mmのPTFE(ポリテトラフルオロエチレン)製フィルタにより、目詰まりせずにろ過可能かどうかで判定した。ろ過可能であれば「溶解した」とし、ろ過不可能であれば「溶解せず」とした。
(製造例1)
内容積が1Lの撹拌機付きステンレス鋼製オートクレーブを減圧脱気した後、重合開始剤であるパーブチルPV(日油社製;tert-ブチルパーオキシピバレート)のアサヒクリンAK-225G(旭硝子社製)50質量%溶液の0.8g、CF2=CFOCF2CF2CF2COOCH3(以下、MPVBという)の48.5g、CF2=CFOCF2CF2CF3(PPVE)の795g、アサヒクリンAC-2000(旭硝子社製)の39.4gを仕込んだ。さらにCF2=CF2の120.3gを圧入した後、内温を60℃まで昇温して4時間重合を行った。この間に圧力が1.01MPaGに保たれるよう、さらにCF2=CF2(TFE)の46.4gをフィードした。
内容積が1Lの撹拌機付きステンレス鋼製オートクレーブを減圧脱気した後、重合開始剤であるパーブチルPV(日油社製;tert-ブチルパーオキシピバレート)のアサヒクリンAK-225G(旭硝子社製)50質量%溶液の0.8g、CF2=CFOCF2CF2CF2COOCH3(以下、MPVBという)の48.5g、CF2=CFOCF2CF2CF3(PPVE)の795g、アサヒクリンAC-2000(旭硝子社製)の39.4gを仕込んだ。さらにCF2=CF2の120.3gを圧入した後、内温を60℃まで昇温して4時間重合を行った。この間に圧力が1.01MPaGに保たれるよう、さらにCF2=CF2(TFE)の46.4gをフィードした。
オートクレーブを冷却してガスをパージした後、内容物のうち600gをヘキサンの6Lを入れたガラスビーカに添加した。上層を除去した後、下層を減圧加熱することにより残留するモノマー成分を留去し、含フッ素重合体P1の103.3gを得た。1H-NMRおよび19F-NMRにより算出した含フッ素重合体P1の単位組成は、単位(U1a-1):単位(U2-1):単位(U3-1)=2:71:27(モル比)であり、質量平均分子量は34,000、フッ素原子含有量は64質量%であった。
(実施例1)
製造例1で得られた含フッ素重合体P1を80℃で熱プレスし、透明フィルムを得た。この透明フィルムを窒素雰囲気下で、200Wの低圧水銀ランプで2時間照射した後、裏返してさらに2時間照射したところ、発泡のない硬化フィルムFP1ができた。IR測定により、-COOCH3基のC=Oに基づく1,794cm-1の吸収がほぼ消失した。硬化フィルムFP1の電気特性を表1に記す。FP1は、従来の押出成形で用いられるフッ素樹脂に匹敵する絶縁性を示した。
製造例1で得られた含フッ素重合体P1を80℃で熱プレスし、透明フィルムを得た。この透明フィルムを窒素雰囲気下で、200Wの低圧水銀ランプで2時間照射した後、裏返してさらに2時間照射したところ、発泡のない硬化フィルムFP1ができた。IR測定により、-COOCH3基のC=Oに基づく1,794cm-1の吸収がほぼ消失した。硬化フィルムFP1の電気特性を表1に記す。FP1は、従来の押出成形で用いられるフッ素樹脂に匹敵する絶縁性を示した。
また、含フッ素重合体P1をアサヒクリンAC-2000に溶かして10質量%溶液とし、この溶液に断面が丸形状の銅線(直径1.5mm)を浸漬後、引き上げることにより、銅線にP1溶液を塗布した。次いで銅線を50℃で1時間、70℃で1時間乾燥後、窒素雰囲気下で、200Wの低圧水銀ランプで2時間照射、裏返してさらに2時間照射することにより、含フッ素重合体硬化物により被覆された絶縁性に優れる電線が得られる。
(製造例2)
製造例1で得られた含フッ素重合体P1の26.5gをアサヒクリンAC-2000の129.1gに溶解した後、メタノールの4.0gとヒドラジン一水和物79質量%水溶液の0.4gを添加して40℃で2日間撹拌した。反応液をシャーレに移して大気下で予備乾燥した後、100℃で1日間真空乾燥して含フッ素重合体Q1を得た。IR測定により、-COOCH3基のC=Oに基づく1,794cm-1の吸収がほぼ消失し、-CONH-基のC=Oに基づく1,705cm-1の吸収が新たに生じたことを確認した。
製造例1で得られた含フッ素重合体P1の26.5gをアサヒクリンAC-2000の129.1gに溶解した後、メタノールの4.0gとヒドラジン一水和物79質量%水溶液の0.4gを添加して40℃で2日間撹拌した。反応液をシャーレに移して大気下で予備乾燥した後、100℃で1日間真空乾燥して含フッ素重合体Q1を得た。IR測定により、-COOCH3基のC=Oに基づく1,794cm-1の吸収がほぼ消失し、-CONH-基のC=Oに基づく1,705cm-1の吸収が新たに生じたことを確認した。
IR測定の結果と含フッ素重合体P1の分析結果から、含フッ素重合体Q1の組成は、単位(U1b-1):単位(U2-1):単位(U3-1)=2:71:27(モル比)であり、質量平均分子量は34,000、フッ素原子含有量は64質量%であった。
(実施例2)
製造例2で得られた含フッ素重合体Q1を160℃で熱プレスし、透明フィルムを得た。この透明フィルムを窒素雰囲気下で、200℃加熱3日間、260℃加熱5時間行ったところ、発泡のない硬化フィルムFQ1ができた。硬化フィルムFQ1の電気特性を表1に記す。FQ1は、従来の押出成形で用いられるフッ素樹脂に匹敵する絶縁性を示した。
製造例2で得られた含フッ素重合体Q1を160℃で熱プレスし、透明フィルムを得た。この透明フィルムを窒素雰囲気下で、200℃加熱3日間、260℃加熱5時間行ったところ、発泡のない硬化フィルムFQ1ができた。硬化フィルムFQ1の電気特性を表1に記す。FQ1は、従来の押出成形で用いられるフッ素樹脂に匹敵する絶縁性を示した。
また、含フッ素重合体Q1をアサヒクリンAC-2000に溶かして10質量%溶液とし、この溶液に断面が丸形状の銅線(直径1.5mm)を浸漬後、引き上げることにより、銅線にQ1溶液を塗布した。次いで銅線を50℃で1時間、70℃で1時間乾燥後、窒素雰囲気下で、200℃加熱1時間、260℃加熱5時間行うことにより、含フッ素重合体硬化物により被覆された絶縁性に優れる電線が得られる。
(製造例3)
国際公開第2012/157715号に記載の方法により、MPVBおよびTFEを重合させて、単位(U1a-1):単位(U2-1)=14:86(モル比)の含フッ素重合体P2を合成した。含フッ素重合体P2のフッ素原子含有量は69質量%であった。
国際公開第2012/157715号に記載の方法により、MPVBおよびTFEを重合させて、単位(U1a-1):単位(U2-1)=14:86(モル比)の含フッ素重合体P2を合成した。含フッ素重合体P2のフッ素原子含有量は69質量%であった。
(実施例3)
製造例3で得られた含フッ素重合体P2を300℃で熱プレスし、透明フィルムを得た。この透明フィルムを窒素雰囲気下で、200Wの低圧水銀ランプで2時間照射した後、裏返してさらに2時間照射したところ、発泡のない硬化フィルムFP2ができた。硬化フィルムFP2の電気特性を表1に記す。これらの値からFP2は、従来の押出成形で用いられるフッ素樹脂に匹敵する絶縁性を示した。
製造例3で得られた含フッ素重合体P2を300℃で熱プレスし、透明フィルムを得た。この透明フィルムを窒素雰囲気下で、200Wの低圧水銀ランプで2時間照射した後、裏返してさらに2時間照射したところ、発泡のない硬化フィルムFP2ができた。硬化フィルムFP2の電気特性を表1に記す。これらの値からFP2は、従来の押出成形で用いられるフッ素樹脂に匹敵する絶縁性を示した。
また、含フッ素重合体P2の粉体をFLUTEC PP11(F2 Chemicals社製、テトラコサフルオロテトラデカヒドロフェナントレン)に分散させてP2が膨潤した10質量%分散液とし、この分散液に断面が丸形状の銅線(直径1.5mm)を浸漬後、引き上げることにより、銅線にP2分散液を塗布した。次いで銅線を200℃で1時間、250℃で1時間乾燥後、窒素雰囲気下で、200Wの低圧水銀ランプで2時間照射、裏返してさらに2時間照射することにより、含フッ素重合体硬化物により被覆された絶縁性に優れる電線が得られる。
(製造例4)
国際公開第2004/067655号に記載の方法により、MPVBの単独重合体である含フッ素重合体P3を合成した。P3の2.6gをアサヒクリンAE-3000(旭硝子社製)の11.5gに溶解した後、メタノールの40.5gとヒドラジン一水和物79質量%水溶液の1.6gを添加して室温で1日間撹拌した。反応液を窒素気流下で予備乾燥した後、室温で1日間真空乾燥して含フッ素重合体Q3を得た。含フッ素重合体Q3の質量平均分子量は5,000、フッ素原子含有量は56質量%であった。Q3はメタノールに可溶だった。
国際公開第2004/067655号に記載の方法により、MPVBの単独重合体である含フッ素重合体P3を合成した。P3の2.6gをアサヒクリンAE-3000(旭硝子社製)の11.5gに溶解した後、メタノールの40.5gとヒドラジン一水和物79質量%水溶液の1.6gを添加して室温で1日間撹拌した。反応液を窒素気流下で予備乾燥した後、室温で1日間真空乾燥して含フッ素重合体Q3を得た。含フッ素重合体Q3の質量平均分子量は5,000、フッ素原子含有量は56質量%であった。Q3はメタノールに可溶だった。
(実施例4)
製造例4で得られた含フッ素重合体Q3を窒素雰囲気下で、100℃加熱30分、200℃加熱30分、250℃加熱90分行い、硬化物FQ3を得た。FQ3をメタノールに浸漬しても不溶だった。
製造例4で得られた含フッ素重合体Q3を窒素雰囲気下で、100℃加熱30分、200℃加熱30分、250℃加熱90分行い、硬化物FQ3を得た。FQ3をメタノールに浸漬しても不溶だった。
また、含フッ素重合体Q3をメタノールに溶かして10質量%溶液とし、この溶液に断面が丸形状の銅線(直径1.5mm)を浸漬後、引き上げることにより、銅線にQ3溶液を塗布した。次いで銅線を50℃で1時間、70℃で1時間乾燥後、窒素雰囲気下で、200℃加熱30分、250℃加熱90分行うことにより、含フッ素重合体硬化物により被覆された電線が得られる。
(製造例5)
特許第5028801号に記載の方法により、C(CF2O(CF2CF2O)kCF2COF)4(k=平均7)を合成し、エタノールを加えてエステル化した後に真空乾燥して含フッ素重合体P4[C(CF2O(CF2CF2O)kCF2COOC2H5)4]を得た。含フッ素重合体P4の2.1gをアサヒクリンAE-3000の16.3gに溶解した後、メタノールの2.8gとヒドラジン一水和物79質量%水溶液の0.4gを添加して室温で1日間撹拌した。反応液を窒素気流下で予備乾燥した後、室温で1日間真空乾燥して含フッ素重合体Q4を得た。IR測定により、-COOC2H5基のC=Oに基づく1,800cm-1付近の吸収がほぼ消失し、-CONH-基のC=Oに基づく1,700cm-1付近の吸収が新たに生じたことを確認した。含フッ素重合体Q4の質量平均分子量は4,000、フッ素原子含有量は61質量%であった。含フッ素重合体Q4はメタノールに可溶だった。
特許第5028801号に記載の方法により、C(CF2O(CF2CF2O)kCF2COF)4(k=平均7)を合成し、エタノールを加えてエステル化した後に真空乾燥して含フッ素重合体P4[C(CF2O(CF2CF2O)kCF2COOC2H5)4]を得た。含フッ素重合体P4の2.1gをアサヒクリンAE-3000の16.3gに溶解した後、メタノールの2.8gとヒドラジン一水和物79質量%水溶液の0.4gを添加して室温で1日間撹拌した。反応液を窒素気流下で予備乾燥した後、室温で1日間真空乾燥して含フッ素重合体Q4を得た。IR測定により、-COOC2H5基のC=Oに基づく1,800cm-1付近の吸収がほぼ消失し、-CONH-基のC=Oに基づく1,700cm-1付近の吸収が新たに生じたことを確認した。含フッ素重合体Q4の質量平均分子量は4,000、フッ素原子含有量は61質量%であった。含フッ素重合体Q4はメタノールに可溶だった。
(実施例5)
製造例5で得られた含フッ素重合体Q4を窒素雰囲気下で、100℃加熱30分、200℃加熱30分、250℃加熱90分行い、硬化物FQ4を得た。FQ4をメタノールに浸漬しても不溶だった。
製造例5で得られた含フッ素重合体Q4を窒素雰囲気下で、100℃加熱30分、200℃加熱30分、250℃加熱90分行い、硬化物FQ4を得た。FQ4をメタノールに浸漬しても不溶だった。
また、含フッ素重合体Q4をメタノールに溶かして10質量%溶液とし、この溶液に断面が丸形状の銅線(直径1.5mm)を浸漬後、引き上げることにより、銅線にQ4溶液を塗布した。次いで銅線を50℃で1時間、70℃で1時間乾燥後、窒素雰囲気下で、200℃加熱30分、250℃加熱90分行うことにより、含フッ素重合体硬化物により被覆された電線が得られる。
(製造例6)
製造例4に記載の含フッ素重合体P3の2.5gをアサヒクリンAE-3000の11.5gに溶解した後、メタノールの23.0gとヒドロキシルアミン50質量%水溶液の1.7gを添加して室温で1日間撹拌した。反応液を窒素気流下で予備乾燥した後、室温で1日間真空乾燥して含フッ素重合体R3を得た。含フッ素重合体R3の質量平均分子量は5,000、フッ素原子含有量は56質量%であった。含フッ素重合体R3はメタノールに可溶だった。
製造例4に記載の含フッ素重合体P3の2.5gをアサヒクリンAE-3000の11.5gに溶解した後、メタノールの23.0gとヒドロキシルアミン50質量%水溶液の1.7gを添加して室温で1日間撹拌した。反応液を窒素気流下で予備乾燥した後、室温で1日間真空乾燥して含フッ素重合体R3を得た。含フッ素重合体R3の質量平均分子量は5,000、フッ素原子含有量は56質量%であった。含フッ素重合体R3はメタノールに可溶だった。
(実施例6)
製造例6で得られた含フッ素重合体R3を窒素雰囲気下で、150℃加熱30分、200℃加熱30分、250℃加熱90分行い、硬化物FR3を得た。FR3をメタノールに浸漬しても不溶だった。
製造例6で得られた含フッ素重合体R3を窒素雰囲気下で、150℃加熱30分、200℃加熱30分、250℃加熱90分行い、硬化物FR3を得た。FR3をメタノールに浸漬しても不溶だった。
また、含フッ素重合体R3をメタノールに溶かして10質量%溶液とし、この溶液に断面が丸形状の銅線(直径1.5mm)を浸漬後、引き上げることにより、銅線にR3溶液を塗布した。次いで銅線を窒素雰囲気下、50℃で1時間、70℃で1時間乾燥後、窒素雰囲気下で、200℃加熱30分、250℃加熱90分行うことにより、含フッ素重合体硬化物により被覆された電線が得られる。
(製造例7)
製造例5に記載の含フッ素重合体P4の2.1gをアサヒクリンAE-3000の15.3gに溶解した後、メタノールの5.7gとヒドロキシルアミン50質量%水溶液の0.5gを添加して室温で4日間撹拌した。反応液を窒素気流下で予備乾燥した後、室温で1日間真空乾燥して含フッ素重合体R4を得た。IR測定により、-COOC2H5基のC=Oに基づく1,800cm-1付近の吸収がほぼ消失し、-CONH-基のC=Oに基づく1,700cm-1付近の吸収が新たに生じたことを確認した。含フッ素重合体R4の質量平均分子量は4,000、フッ素原子含有量は61質量%であった。含フッ素重合体R4はメタノールに可溶だった。
製造例5に記載の含フッ素重合体P4の2.1gをアサヒクリンAE-3000の15.3gに溶解した後、メタノールの5.7gとヒドロキシルアミン50質量%水溶液の0.5gを添加して室温で4日間撹拌した。反応液を窒素気流下で予備乾燥した後、室温で1日間真空乾燥して含フッ素重合体R4を得た。IR測定により、-COOC2H5基のC=Oに基づく1,800cm-1付近の吸収がほぼ消失し、-CONH-基のC=Oに基づく1,700cm-1付近の吸収が新たに生じたことを確認した。含フッ素重合体R4の質量平均分子量は4,000、フッ素原子含有量は61質量%であった。含フッ素重合体R4はメタノールに可溶だった。
(実施例7)
製造例7で得られた含フッ素重合体R4を窒素雰囲気下で、90℃加熱95分、100℃加熱120分行い、硬化物FR4を得た。FR4をメタノールに浸漬しても不溶だった。
製造例7で得られた含フッ素重合体R4を窒素雰囲気下で、90℃加熱95分、100℃加熱120分行い、硬化物FR4を得た。FR4をメタノールに浸漬しても不溶だった。
また、含フッ素重合体R4をメタノールに溶かして10質量%溶液とし、この溶液に断面が丸形状の銅線(直径1.5mm)を浸漬後、引き上げることにより、銅線にR4溶液を塗布した。次いで銅線を窒素雰囲気下で、50℃で1時間、70℃で1時間乾燥後、窒素雰囲気下で、90℃加熱95分、100℃加熱120分行うことにより、含フッ素重合体硬化物により被覆された電線が得られる。
(製造例8)
製造例1に記載の含フッ素重合体P1の5.1gをアサヒクリンAC-2000の42.8gに溶解した後、メタノールの2.4gとヒドロキシルアミン50質量%水溶液の0.2gを添加して室温で1日間撹拌した。反応液を大気気流下で予備乾燥した後、室温で1日間真空乾燥して含フッ素重合体R1を得た。IR測定により、-COOCH3基のC=Oに基づく1,800cm-1付近の吸収がほぼ消失し、-CONH-基のC=Oに基づく1,700cm-1付近の吸収が新たに生じたことを確認した。
製造例1に記載の含フッ素重合体P1の5.1gをアサヒクリンAC-2000の42.8gに溶解した後、メタノールの2.4gとヒドロキシルアミン50質量%水溶液の0.2gを添加して室温で1日間撹拌した。反応液を大気気流下で予備乾燥した後、室温で1日間真空乾燥して含フッ素重合体R1を得た。IR測定により、-COOCH3基のC=Oに基づく1,800cm-1付近の吸収がほぼ消失し、-CONH-基のC=Oに基づく1,700cm-1付近の吸収が新たに生じたことを確認した。
IR測定の結果と含フッ素重合体P1の分析結果から、含フッ素重合体R1の組成は、単位(U1c-1):単位(U2-1):単位(U3-1)=2:71:27(モル比)であり、質量平均分子量は34,000、フッ素原子含有量は64質量%であった。含フッ素重合体R1は3質量%のメタノールを含むアサヒクリンAC-2000に可溶だった。
(実施例8)
製造例8で得られた含フッ素重合体R1を窒素雰囲気下で、90℃加熱95分、100℃加熱120分行い、硬化物FR1を得た。FR1を3質量%のメタノールを含むアサヒクリンAC-2000に浸漬しても不溶だった。
製造例8で得られた含フッ素重合体R1を窒素雰囲気下で、90℃加熱95分、100℃加熱120分行い、硬化物FR1を得た。FR1を3質量%のメタノールを含むアサヒクリンAC-2000に浸漬しても不溶だった。
また、含フッ素重合体R1を3質量%のメタノールを含むアサヒクリンAC-2000に溶かして、R1の10質量%溶液とし、この溶液に断面が丸形状の銅線(直径1.5mm)を浸漬後、引き上げることにより、銅線にR4溶液を塗布した。次いで銅線を窒素雰囲気下で、50℃で1時間、70℃で1時間乾燥後、窒素雰囲気下で、90℃加熱95分、100℃加熱120分行うことにより、含フッ素重合体硬化物により被覆された電線が得られる。
Claims (10)
- 導線と、前記導線の外周を被覆する被覆層を有し、
前記被覆層は、下式(F)で表される官能基を3つ以上含む含フッ素重合体を含む硬化性組成物の硬化物からなる電線。
-Rf1COZ1 …(F)
(式(F)中、Rf1は、単結合、フルオロアルキレン基、または炭素-炭素原子間にエーテル性酸素原子を有する炭素数2以上のフルオロアルキレン基であり、Z1は、NR1NR2H、NR3OR4またはOR5であり、R1、R2、R3、R4およびR5は、それぞれ独立に、水素原子またはアルキル基である。) - 前記含フッ素重合体が前記式(U1)で表される単位を3つ以上含む、請求項2に記載の電線。
- 前記含フッ素重合体が下式(F1)で表される基を3つ以上含む、請求項1に記載の電線。
-(Rf2O)k-Rf1COZ1 …(F1)
(式(F1)中、Rf2は、炭素数が1~4のペルフルオロアルキレン基である。kは1~200の整数を示す。Rf1は、単結合、フルオロアルキレン基、または炭素-炭素原子間にエーテル性酸素原子を有する炭素数2以上のフルオロアルキレン基であり、Z1は、NR1NR2H、NR3OR4またはOR5であり、R1、R2、R3、R4およびR5は、それぞれ独立に、水素原子またはアルキル基である。) - 前記含フッ素重合体が、1つの炭素原子に前記式(F1)で表される基が3個または4個結合した化合物である、請求項4に記載の電線。
- 前記含フッ素重合体に含まれるフッ素原子の量が50~76質量%である、請求項1~5のいずれか1項に記載の電線。
- 前記導線が銅導体またはアルミニウム導体からなる、請求項1~6のいずれか1項に記載の電線。
- 請求項1~7のいずれか1項に記載の電線を製造する方法であって、
前記導線の外周を前記硬化性組成物により被覆して前記被覆層の前駆層を形成し、
前記前駆層に熱を加えて、および/または、活性エネルギー線を照射して、前記硬化性組成物の硬化物からなる被覆層を得ることを特徴とする電線の製造方法。 - 前記前駆層が、前記硬化性組成物と沸点が250℃以下の液体を含むコーティング組成物を前記導線の外周に塗布し、前記塗布された前記コーティング組成物から前記液体を揮発させることにより形成される、請求項8に記載の電線の製造方法。
- 請求項1~7のいずれか1項に記載の電線をコイル状に成形してなるコイル。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE112018001087.2T DE112018001087T5 (de) | 2017-03-02 | 2018-02-15 | Elektrischer Draht, Spule und Verfahren zur Herstellung eines elektrischen Drahts |
JP2019502867A JP6950736B2 (ja) | 2017-03-02 | 2018-02-15 | 電線、コイルおよび電線の製造方法 |
US16/452,610 US10759887B2 (en) | 2017-03-02 | 2019-06-26 | Electric wire, coil and method for producing electric wire |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017-039178 | 2017-03-02 | ||
JP2017039178 | 2017-03-02 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/452,610 Continuation US10759887B2 (en) | 2017-03-02 | 2019-06-26 | Electric wire, coil and method for producing electric wire |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018159308A1 true WO2018159308A1 (ja) | 2018-09-07 |
Family
ID=63370633
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/005275 WO2018159308A1 (ja) | 2017-03-02 | 2018-02-15 | 電線、コイルおよび電線の製造方法 |
Country Status (4)
Country | Link |
---|---|
US (1) | US10759887B2 (ja) |
JP (1) | JP6950736B2 (ja) |
DE (1) | DE112018001087T5 (ja) |
WO (1) | WO2018159308A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019073934A1 (ja) * | 2017-10-12 | 2019-04-18 | Agc株式会社 | 含フッ素弾性共重合体組成物、塗料、および塗装物品 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI776247B (zh) * | 2020-09-30 | 2022-09-01 | 寶德科技股份有限公司 | 充電式可撓性墊及其製作方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015022871A1 (ja) * | 2013-08-13 | 2015-02-19 | 旭硝子株式会社 | 含フッ素ポリエーテル化合物、潤滑剤、液状組成物および物品 |
WO2015098773A1 (ja) * | 2013-12-26 | 2015-07-02 | 旭硝子株式会社 | 含フッ素架橋体の製造方法およびその使用 |
WO2015104974A1 (ja) * | 2014-01-08 | 2015-07-16 | ダイキン工業株式会社 | 耐熱電線 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5089200A (en) * | 1989-10-06 | 1992-02-18 | E. I. Dupont De Nemours And Company | Process for melt extrusion of polymers |
EP1464676B2 (en) * | 2001-12-17 | 2020-05-13 | Daikin Industries, Ltd. | Crosslinkable elastomer composition and formed product comprising the same |
JP4591352B2 (ja) | 2003-11-26 | 2010-12-01 | ダイキン工業株式会社 | フッ素樹脂及び被覆電線 |
JP4607738B2 (ja) * | 2005-11-08 | 2011-01-05 | 三井・デュポンフロロケミカル株式会社 | 溶融成形用フッ素樹脂組成物 |
TW200912963A (en) * | 2007-08-08 | 2009-03-16 | Daikin Ind Ltd | Covered electric wire and coaxial cable |
CN105849163B (zh) * | 2014-01-08 | 2018-12-11 | 大金工业株式会社 | 改性含氟共聚物和氟树脂成型品 |
WO2015129913A1 (ja) | 2014-02-28 | 2015-09-03 | 東洋紡株式会社 | ポリイミド組成物及び絶縁電線 |
KR20180048455A (ko) * | 2015-09-01 | 2018-05-10 | 아사히 가라스 가부시키가이샤 | 함불소 중합체, 그 제조 방법, 및 함불소 중합체의 경화물 |
JP6927283B2 (ja) | 2017-03-01 | 2021-08-25 | Agc株式会社 | 含フッ素重合体、その硬化物の製造方法および発光装置 |
-
2018
- 2018-02-15 DE DE112018001087.2T patent/DE112018001087T5/de not_active Withdrawn
- 2018-02-15 WO PCT/JP2018/005275 patent/WO2018159308A1/ja active Application Filing
- 2018-02-15 JP JP2019502867A patent/JP6950736B2/ja active Active
-
2019
- 2019-06-26 US US16/452,610 patent/US10759887B2/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015022871A1 (ja) * | 2013-08-13 | 2015-02-19 | 旭硝子株式会社 | 含フッ素ポリエーテル化合物、潤滑剤、液状組成物および物品 |
WO2015098773A1 (ja) * | 2013-12-26 | 2015-07-02 | 旭硝子株式会社 | 含フッ素架橋体の製造方法およびその使用 |
WO2015104974A1 (ja) * | 2014-01-08 | 2015-07-16 | ダイキン工業株式会社 | 耐熱電線 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019073934A1 (ja) * | 2017-10-12 | 2019-04-18 | Agc株式会社 | 含フッ素弾性共重合体組成物、塗料、および塗装物品 |
CN111225950A (zh) * | 2017-10-12 | 2020-06-02 | Agc株式会社 | 含氟弹性共聚物组合物、涂料、及涂装物品 |
US11332561B2 (en) | 2017-10-12 | 2022-05-17 | AGC Inc. | Fluorinated elastic copolymer composition, coating material, and coated article |
Also Published As
Publication number | Publication date |
---|---|
DE112018001087T5 (de) | 2019-11-21 |
JPWO2018159308A1 (ja) | 2020-01-16 |
JP6950736B2 (ja) | 2021-10-13 |
US20190315896A1 (en) | 2019-10-17 |
US10759887B2 (en) | 2020-09-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6708275B2 (ja) | フッ素樹脂材料、高周波伝送用フッ素樹脂材料および高周波伝送用被覆電線 | |
TWI380324B (ja) | ||
JP5314707B2 (ja) | テトラフルオロエチレン/ヘキサフルオロプロピレン系共重合体及び電線 | |
JP5327057B2 (ja) | 硬化性組成物、含フッ素硬化物 | |
US10759887B2 (en) | Electric wire, coil and method for producing electric wire | |
JP2005320497A (ja) | テトラフルオロエチレン共重合体及びその製造方法 | |
JP2658172B2 (ja) | 離型剤 | |
WO2017038718A1 (ja) | 含フッ素重合体、その製造方法、および含フッ素重合体の硬化物 | |
KR102411754B1 (ko) | 함불소 중합체, 그 제조 방법, 및 함불소 중합체의 경화물을 구비하는 물품 | |
JP5030370B2 (ja) | 高周波信号伝送製品用テトラフルオロエチレン共重合体 | |
WO2019187725A1 (ja) | フッ素樹脂材料、高周波伝送用フッ素樹脂材料および高周波伝送用被覆電線 | |
JP5135658B2 (ja) | ポリテトラフルオロエチレンファインパウダー、それから得られるポリテトラフルオロエチレン成形体およびその製造方法 | |
JP2003238762A (ja) | 含フッ素樹脂組成物 | |
EP3960794A1 (en) | Magnet wire and coil | |
JP7024778B2 (ja) | 硬化性組成物、塗料、電線および樹脂物品 | |
JP2005314711A (ja) | 多孔質膜、物品及び複合材 | |
WO2023157589A1 (ja) | フッ素樹脂、その製造方法、組成物及び物品 | |
JP2006117958A (ja) | 多孔質膜、その製造方法及び物品 | |
WO2023195377A1 (ja) | 固体組成物、回路基板、及び、固体組成物の製造方法 | |
JPH1074949A (ja) | アクティブマトリクス基板 | |
JP2024032666A (ja) | 被覆電線および被覆電線の製造方法 | |
WO2024048190A1 (ja) | 被覆電線および被覆電線の製造方法 | |
TW202409239A (zh) | 適用於銅基材之氟聚合物組成物及方法及電子電信物品 | |
JP2023011961A (ja) | 含フッ素重合体、硬化性組成物、硬化物 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18760764 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019502867 Country of ref document: JP Kind code of ref document: A |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18760764 Country of ref document: EP Kind code of ref document: A1 |