WO2018159152A1 - 半導体装置 - Google Patents

半導体装置 Download PDF

Info

Publication number
WO2018159152A1
WO2018159152A1 PCT/JP2018/001799 JP2018001799W WO2018159152A1 WO 2018159152 A1 WO2018159152 A1 WO 2018159152A1 JP 2018001799 W JP2018001799 W JP 2018001799W WO 2018159152 A1 WO2018159152 A1 WO 2018159152A1
Authority
WO
WIPO (PCT)
Prior art keywords
coating layer
insulating substrate
semiconductor device
adhesive force
outer peripheral
Prior art date
Application number
PCT/JP2018/001799
Other languages
English (en)
French (fr)
Inventor
麻緒 ▲高▼畠
崇夫 釣本
林田 幸昌
塩田 裕基
邦彦 田尻
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2019502503A priority Critical patent/JP6790226B2/ja
Publication of WO2018159152A1 publication Critical patent/WO2018159152A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/07Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/18Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different subgroups of the same main group of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Definitions

  • the present invention relates to a semiconductor device in which a semiconductor chip is mounted on an insulating substrate.
  • a semiconductor device using an IGBT (Insulated Gate Bipolar Transistor) as a semiconductor chip is also called a power module, and is used for high power control of a motor for a railway vehicle or the like.
  • a voltage of 1000 V or more is applied during driving, and a large current of 100 A or more may flow. Therefore, the power module is required to have a high withstand voltage and to release a large amount of heat generated when a large current flows to the outside with high efficiency.
  • the power module includes an insulating substrate having insulation, a high voltage electrode connected to one main surface of the insulating substrate, a ground electrode connected to the other surface, and a main surface facing the insulating substrate of the high voltage electrode
  • the casing is filled with a sealing material such as an insulating gel or solid molding material or an insulating gas.
  • the insulating substrate and the sealing material play an important role in preventing the current flowing through the semiconductor chip and the high voltage electrode from leaking outside the power module.
  • a semiconductor device with a coating covering a part of the main surface of the insulating substrate and the side surface of the high voltage electrode installed on the insulating substrate has been developed.
  • a semiconductor device using inorganic glass as a coating material is disclosed (for example, see Patent Document 1).
  • a semiconductor device using a semiconductive material as another coating material is disclosed (for example, see Patent Document 2).
  • JP 2000-340719 A (page 3-4, FIG. 4) Japanese Patent Laying-Open No. 2015-207731 (page 6, FIG. 2)
  • the present invention has been made to solve the above-described problems, and even if partial peeling occurs in the members around the high voltage electrode, it is possible to suppress the occurrence of partial discharge, and as a result, long-term The purpose is to ensure insulation reliability.
  • the semiconductor device includes an insulating substrate having an insulating property, a first surface provided on one surface of the insulating substrate and facing the insulating substrate, and a first surface positioned opposite to the first surface.
  • a first member having two surfaces, a semiconductor chip disposed on the second surface, a second member provided on the other surface of the insulating substrate, and a first member covering an outer peripheral end of the first surface of the first member.
  • the dielectric constant of the first coating layer is higher than the dielectric constant of the second coating layer.
  • the adhesive force between the first coating layer and the second coating layer is higher than the adhesive force between the first coating layer and the first member.
  • the present invention includes a first coating layer that covers the outer peripheral edge of the first member, and a second coating layer that covers the surface of the first coating layer, and the dielectric constant of the first coating layer is higher than that of the second coating layer.
  • the electric field at the interface between the first coating layer and the first member is relaxed, and further, the adhesive force between the first coating layer and the second coating layer is reduced by the adhesion between the first coating layer and the first member. Since it is higher than the force, even if a part of the peripheral member of the first member is peeled off, partial discharge can be suppressed, and as a result, long-term insulation reliability can be ensured.
  • FIG. 1 is a schematic cross-sectional view of a semiconductor device according to a first embodiment.
  • 1 is a schematic cross-sectional view of a semiconductor device according to a first embodiment.
  • 1 is a schematic cross-sectional view of a semiconductor device according to a first embodiment.
  • FIG. 4 is a schematic cross-sectional view of a semiconductor device according to a third embodiment.
  • FIG. 4 is a schematic cross-sectional view of a semiconductor device according to a third embodiment.
  • FIG. 6 is a schematic cross-sectional view of a semiconductor device according to a fourth embodiment.
  • FIG. 6 is a schematic cross-sectional view of a semiconductor device according to a fourth embodiment.
  • FIG. 6 is a schematic cross-sectional view showing a modification of the semiconductor device according to the first embodiment.
  • FIG. 1 is a schematic cross-sectional view of a semiconductor device according to Embodiment 1 for carrying out the present invention.
  • FIG. 2 is a partially enlarged view of a region II surrounded by a broken line in FIG. 1 and 2, the semiconductor device 1 according to the present embodiment includes a semiconductor chip 2, a first member 3, an insulating substrate 4, a second member 5, and a heat dissipation base plate 6. Is housed in a case 8 filled with a sealing material 7. The sealing material 7 is filled in a space sealed by the heat dissipation base plate 6 and the case 8.
  • the first member 3 is disposed on one surface of the insulating substrate 4.
  • the first member 3 includes a first surface 3A facing the one surface of the insulating substrate 4, a second surface 3B located on the opposite side of the first surface 3A, and the first surface 3A and the second surface. 3C which connects 3B. When the one surface is viewed in plan, the third surface 3C is disposed so as to surround the second surface 3B.
  • the outer peripheral end portion of the first surface 3A is connected to the outer peripheral end portion of the third surface 3C, and forms the outer peripheral end portion 3E of the first member 3.
  • the outer peripheral end 3 ⁇ / b> E of the first member 3 is connected to the insulating substrate 4 and forms a connection boundary between the first member 3 and the insulating substrate 4.
  • the outer peripheral end of the second surface 3B is connected to the inner peripheral end of the third surface 3C.
  • the area of the second surface 3B of the first member 3 is smaller than the area of the one surface of the insulating substrate 4.
  • the second member 5 is disposed on the other surface of the insulating substrate 4.
  • the second member 5 includes a fourth surface 5A facing the other surface of the insulating substrate 4, a fifth surface 5B located on the opposite side of the fourth surface 5A, and the fourth surface 5A and the fifth surface. 6C which has 5B which connects 5B. When the other surface is viewed in plan, the sixth surface 5C is disposed so as to surround the periphery of the fifth surface 5B.
  • the outer peripheral end portion of the fourth surface 5A is connected to the outer peripheral end portion of the sixth surface 5C, and forms the outer peripheral end portion 5E of the second member 5.
  • the outer peripheral end 5 ⁇ / b> E of the second member 5 is connected to the insulating substrate 4, and forms a connection boundary between the second member 5 and the insulating substrate 4.
  • the area of the fourth surface 5 ⁇ / b> A of the second member 5 is smaller than the area of the insulating substrate 4.
  • the other surface of the insulating substrate 4 is exposed outside the outer peripheral end of the second member 5 when the other surface is viewed in plan.
  • a solder layer 9 is disposed on the surface of the second member 5 opposite to the surface facing the insulating substrate 4, and the second member 5 is electrically and mechanically connected to the heat dissipation base plate 6 via the solder layer 9. It is connected to the.
  • the semiconductor chip 2 is disposed at the substantially central portion of the second surface 3B of the first member 3.
  • the outer periphery of the first member 3 covers the outer end of the second surface 3B (front surface) of the first member 3, the third surface 3C (side surface) of the first member 3, and one surface of the insulating substrate 4.
  • One coating layer 11 is disposed.
  • the first coating layer 11 is disposed so as to cover the connection boundary portion between the first member 3 and the insulating substrate 4.
  • a second coating layer 12 is disposed to cover the second surface 3B (the surface on the side where the semiconductor chip 2 is disposed) of the first member 3 to the surface of the first coating layer 11 and one surface of the insulating substrate 4. ing.
  • the second coating layer 12 includes a connection boundary between the first member 3 and the first coating layer 11, a surface of the first coating layer 11, and a connection boundary between the insulating substrate 4 and the first coating layer 11. It is arranged to cover.
  • the first coating layer 11 is made of a material having a higher dielectric constant than that of the second coating layer 12.
  • the semiconductor chip 2 for example, a power device such as an IGBT (Insulated Gate Bipolar Transistor) for high power control can be used.
  • the substrate constituting the semiconductor chip 2 is preferably silicon carbide (SiC), gallium nitride (GaN) or diamond (C). With such a substrate, for example, power loss is smaller than when a silicon substrate is used, and the power consumption of the semiconductor chip can be reduced. As a result, there is a margin in the thermal design of the semiconductor device, and the power module can be downsized.
  • silicon carbide and the like have high heat resistance and can be operated at higher temperatures.
  • a plurality of semiconductor chips 2 may be mounted on one first member 3.
  • a control element such as a MOSFET (Metal-Oxide-Semiconductor Field-Effect Transistor) may be mounted via wire bonding or the like.
  • the material constituting the first member 3 and the material constituting the second member 5 may be any material as long as a potential difference can be imparted between the first member 3 and the second member 5, Preferably it is comprised with the material which has electroconductivity, More preferably, it is comprised with the metal material.
  • the first member 3 and the second member 5 are plate-like members (metal plates) made of, for example, a metal material.
  • the first member 3 is preferably made of copper having a high thermal conductivity, but may be made of a conductor other than copper, such as aluminum or iron, or an alloy thereof.
  • a conductor other than copper such as aluminum or iron, or an alloy thereof.
  • wiring or other circuits may be formed for electrical connection with the semiconductor chip 2. Further, the connection between the first member 3 and the semiconductor chip 2 may be joined with solder or a silver bonding agent.
  • the insulating substrate 4 is a plate-like member mainly composed of an insulating material.
  • the insulating substrate 4 is made of a ceramic material such as alumina or aluminum nitride.
  • the thickness of the ceramic material is preferably 200 ⁇ m or more and 1500 ⁇ m or less.
  • the insulating substrate 4 may be made of an organic insulating sheet.
  • the organic insulating sheet is a compound structure in which an inorganic filler having a high thermal conductivity (fine particles such as alumina, aluminum nitride, or boron nitride) is dispersed and filled in an epoxy resin.
  • the thickness of the organic insulating sheet when used as the insulating substrate 4 is preferably 20 ⁇ m or more and 500 ⁇ m or less.
  • the second member 5 and the heat radiating base plate 6 are preferably made of copper having high thermal conductivity, but may be made of a conductor other than copper, such as aluminum, iron, or an alloy thereof.
  • the heat radiating base plate 6 may include a heat radiating fin. Alternatively, the heat radiating base plate 6 may be connected to another heat radiating fin.
  • the 2nd member 5 and the heat radiating base plate 6 may be comprised by the integrated object. In this case, the solder layer 9 becomes unnecessary, and the third coating layer 13 only needs to be formed so as to cover the outer peripheral end portion 5E of the second member 5.
  • the semiconductor device 1 is provided between the first member 3 and the second member 5 so that a potential difference can be applied.
  • the semiconductor device 1 is provided between the first member 3 and the insulating substrate 4 and between the first member 3 and the sealing material 7 so that a potential difference can be applied.
  • the second member 5 may be provided as a ground electrode that is grounded when the semiconductor device 1 is in use.
  • the first member may be provided as a high voltage electrode to which a high potential difference is applied to the second member 5 in the use state.
  • the coating layer 11 and the second coating layer 12 it is necessary to select materials that do not deteriorate at the operating temperature of the applied semiconductor device.
  • the coating layer is completed by simply applying the raw material, and cases where the coating layer is completed by processing after applying the raw material.
  • Specific methods of application include dipping method, electrodeposition method, dispensing method, 3D printer method and the like, and specific methods of processing include heating and ultraviolet irradiation.
  • the dipping method is a method in which a member to be coated is dipped and applied to the coating before curing.
  • the electrodeposition method is a method of applying a charged uncured coating material to a grounded or voltage-applied electrode. In this electrodeposition method, the coating material tends to gather at the electric field concentration location.
  • the dispensing method is a method in which an uncured coating material is applied to a portion requiring coating with a syringe or the like.
  • the first coating layer 11 is formed to cover the outer peripheral end 3E of the first member 3, that is, the connection boundary between the first member 3 and the insulating substrate 4. If it says from a different viewpoint, in the said planar view, 11 A of connection boundary parts of the 1st member 3 and the 1st coating layer 11 are arrange
  • a connection boundary portion 11A between the first member 3 and the first coating layer 11 is disposed, for example, on the second surface 3B.
  • connection boundary portion 11A between the first member 3 and the first coating layer 11 is disposed on the inner side of the outer peripheral end portion of the second surface 3B in the plan view.
  • the connection boundary portion 11 ⁇ / b> A forms an inner peripheral end portion of the surface 11 ⁇ / b> C of the first coating layer 11
  • the connection boundary portion 11 ⁇ / b> B forms an outer peripheral end portion of the surface 11 ⁇ / b> C of the first coating layer 11.
  • the surface 11 ⁇ / b> C of the first coating layer 11 is covered with the second coating layer 12.
  • the 1st coating layer 11 covers the outer periphery edge part 3E of the 1st member 3, ie, the connection boundary part of the 1st member 3 and the insulated substrate 4, over the perimeter of the 1st member 3 in the said planar view. It is preferable to be formed as described above.
  • the second coating layer 12 is formed so as to cover the surface 11C of the first coating layer 11. That is, the second coating layer 12 is formed so as to cover the connection boundary portion 11A between the first member 3 and the first coating layer 11 and the connection boundary portion 11B between the insulating substrate 4 and the first coating layer 11. Yes.
  • the second coating layer 12 is formed so as to cover, for example, the second surface 3B (the surface on the side where the semiconductor chip 2 is disposed) of the first member 3, the surface of the first coating layer 11, and one surface of the insulating substrate 4.
  • the connection boundary 12A between the first member 3 and the second coating layer 12 is disposed on the inner side of the outer peripheral end 3E of the first member 3 and the connection boundary 11A.
  • connection boundary portion 12B between the insulating substrate 4 and the second coating layer 12 is disposed outside the outer peripheral end portion 3E of the first member 3 and the connection boundary portion 11B.
  • the connection boundary portion 12 ⁇ / b> A forms an inner peripheral end portion of the surface 12 ⁇ / b> C of the second coating layer 12
  • the connection boundary portion 12 ⁇ / b> B forms an outer peripheral end portion of the surface 12 ⁇ / b> C of the second coating layer 12.
  • the surface 12 ⁇ / b> C of the second coating layer 12 is covered with the sealing material 7.
  • the second coating layer 12 also has the second surface 3 ⁇ / b> B (surface on the side where the semiconductor chip 2 is disposed), the surface of the first coating layer 11, and insulation. It is preferable that one surface of the substrate 4 is formed so as to cover the entire circumference of the first member 3 in the plan view.
  • the first coating layer 11 is disposed so as to cover the entire third surface 3 ⁇ / b> C of the first member 3.
  • the connection boundary portion 11A is disposed on the second surface 3B, and the connection boundary portion 12A between the first member 3 and the second coating layer 12 is on the second surface 3B. It arrange
  • the dielectric constant of the first coating layer 11 is higher than the dielectric constant of the second coating layer 12. In such a configuration, a voltage drop occurs in the first coating layer 11 and an effect that the voltage applied to the second coating layer 12 decreases is obtained. Further, when the capacitance of the first coating layer 11 is sufficiently higher than that of the second coating layer 12, the first coating layer 11 has substantially the same potential as that of the adjacent first member 3.
  • Examples of the material of the first coating layer 11 include conjugated polymers such as polyacetylene, polyacene, polypyrrole, polythiophene, polyaniline, and merocyanine. These materials have a relative dielectric constant of 10 to 1000.
  • Examples of the material of the second coating layer 12 include polyamide, polyimide, polyamideimide, epoxy, silicone rubber, and polyetheretherketone. The relative dielectric constant of these materials is 2.0 to 8.0.
  • a material whose relative dielectric constant is increased by adding a conductive filler, such as silicone rubber to which carbon black is added, can also be used as the material of the first coating layer 11.
  • FIG. 3 is a schematic cross-sectional view for explaining the adhesive force in the semiconductor device shown in FIG.
  • F1 F2 is made larger.
  • the first coating layer 11 is applied by the dispensing method and then semi-cured, and the second coating layer 12 is applied by the dispensing method on the first coating layer 11.
  • the following four methods can be mentioned as a method for realizing the above-described adhesive force relationship more reliably. That is, for example, at least one of the following four methods can be employed as a method for realizing the above-described adhesive force relationship when manufacturing the semiconductor device 1.
  • a silane coupling agent, a triazine thiol compound-containing adhesive, etc. are applied to the surface, and then the second coating layer 12 is applied and cured. Let By such a process, chemical bonds such as a crosslinking reaction between the first coating layer 11 and the second coating layer 12 are surely promoted, and F2 becomes larger than F1.
  • the concentration of silicon atoms present between the first coating layer 11 and the second coating layer 12 is such that the silicon atoms present between the first coating layer 11 and the first member 3. Higher than the concentration. Further, when the triazine thiol compound-containing adhesive is used, the concentration of sulfur atoms existing between the first coating layer 11 and the second coating layer 12 is between the first coating layer 11 and the first member 3. It is higher than the concentration of sulfur atoms present.
  • the surface roughness of the adhesive surface between the first coating layer 11 and the second coating layer 12 is the surface of the adhesive surface between the first coating layer 11 and the first member 3. It becomes larger than the roughness.
  • Etching and generating irregularities by comb-shaped jig After forming the first coating layer 11, irregularities are formed on the surface by etching or comb-shaped jig. Thereafter, the second coating layer 12 is applied and cured. By such a process, the adhesion area between the first coating layer 11 and the second coating layer 12 is expanded, and F2 becomes larger than F1.
  • the surface roughness between the first coating layer 11 and the second coating layer 12 is larger than the surface roughness between the first coating layer 11 and the first member 3.
  • Surface roughening process by file or sandblast After forming the first coating layer 11, the surface is roughened by a file or sandblast. Thereafter, the second coating layer 12 is applied and cured. By such a process, the adhesion area between the first coating layer 11 and the second coating layer 12 is expanded, and F2 becomes larger than F1.
  • the surface roughness between the first coating layer 11 and the second coating layer 12 is larger than the surface roughness between the first coating layer 11 and the first member 3.
  • the above-mentioned (1) As a method of making the adhesive force between the first coating layer 11 and the second coating layer 12 larger than the adhesive force between the first member 3 and the first coating layer 11, the above-mentioned (1) Other than the method (4).
  • the dielectric constant of the first coating layer 11 is higher than the dielectric constant of the second coating layer 12, and the capacitance of the first coating layer 11 is the first.
  • the first coating layer 11 has substantially the same potential as the adjacent first member 3.
  • the adhesive force (F2) between the first coating layer 11 and the second coating layer 12 is made larger than the adhesive force (F1) between the first member 3 and the first coating layer 11.
  • a semiconductor device such as a power module is used between the first member 3 and the first coating layer 11 or between the first coating layer 11 and the first coating layer 11 such as driving for a long time with a high voltage and a large current or driving in a high temperature and high humidity environment.
  • the adhesive force (F2) between the first coating layer 11 and the second coating layer 12 is based on the adhesive force (F1) between the first member 3 and the first coating layer 11. ) Is increased, so that even if some peeling occurs, peeling occurs first between the first member 3 and the first coating layer 11.
  • the first coating layer 11 has substantially the same potential as the adjacent first member 3, even if a partial peeling occurs between the first member 3 and the first coating layer 11, a large space is left in the peeling space. There is no electric field difference. Therefore, the peeling does not become a starting point of partial discharge.
  • the semiconductor device of the present embodiment even if partial peeling occurs on the members around the high voltage electrode, the occurrence of partial discharge can be suppressed, and as a result, long-term insulation reliability can be ensured. Can do.
  • Embodiment 2 FIG. Although the semiconductor device according to the second embodiment includes the configuration of the semiconductor device according to the first embodiment, it is specified that the volume resistivity of the first coating layer 11 is lower than the volume resistivity of the second coating layer 12. Is different.
  • the first coating layer is formed using a material in which a conductive filler such as carbon black is added to the material forming the first coating layer shown in the first embodiment.
  • the electrical conductivity of the first coating layer may be conductive or semiconductive. More specifically, the volume resistivity of the first coating layer is 10 10 ⁇ ⁇ cm or less, and the volume resistivity of the second coating layer is 10 12 ⁇ ⁇ cm or more. The smaller the volume resistivity of the first coating layer, the more reliably the potential of the first coating layer and the potential of the adjacent first member 3 can be set to the same potential, and the volume resistivity of the second coating layer is large. As a result, the insulating property of the second coating layer is ensured.
  • each thickness and each volume resistivity are appropriately set according to the driving frequency and driving voltage of the semiconductor device.
  • the first coating layer it is necessary to select a material having a time constant shorter than the rise time of the drive voltage of the semiconductor device (the time until the applied voltage reaches a peak value from zero).
  • This time constant is the product of the dielectric constant and volume resistivity of the material.
  • a material having a time constant shorter than the rise time of the drive voltage of 4 msec is the first.
  • Select as coating layer material In the case of a semiconductor device driven by a 2 kHz sine wave, a material having a time constant shorter than the drive voltage rise time of 0.125 msec is selected as the material of the first coating layer.
  • the time constant of the material constituting the second coating layer may be shorter or longer than the rise time of the drive voltage.
  • the time constant of the material constituting the first coating layer is, for example, not more than the time constant of the material constituting the second coating layer.
  • the dielectric constant of the material constituting the first coating layer is higher than the dielectric constant of the material constituting the second coating layer. Therefore, in order to realize the time constant of the material constituting the first coating layer as described above, the volume resistivity of the first coating layer is preferably lower than the volume resistivity of the second coating layer.
  • the semiconductor device configured as described above even if partial peeling occurs in the members around the high-voltage electrode, partial discharge can be suppressed, and as a result, long-term Insulation reliability can be ensured.
  • the time constant of the material constituting the first coating layer is set shorter than the rise time of the drive voltage of the semiconductor device. Even when driven, the above-described effects can be obtained without impairing responsiveness. Therefore, the semiconductor device according to the second embodiment is particularly suitable for a semiconductor device that inputs and outputs high-frequency signals.
  • FIG. 4 is a schematic cross-sectional view of a semiconductor device according to a third embodiment for carrying out the present invention.
  • FIG. 5 is a partial enlarged view of a region X surrounded by a broken line in FIG. 4 and 5, the semiconductor device 1 according to the present embodiment includes a semiconductor chip 2, a first member 3, an insulating substrate 4, a second member 5, and a heat dissipation base plate 6.
  • a solder layer 9 is disposed on the surface of the second member 5 opposite to the surface facing the insulating substrate 4, and the second member 5 is electrically and mechanically connected to the heat dissipation base plate 6 via the solder layer 9. It is connected.
  • the configuration so far is the same as that of the first embodiment.
  • the semiconductor device 1 according to the present embodiment includes a third coating layer 13 and a fourth coating layer 14 instead of the first coating layer 11 and the second coating layer 12. This is different from the semiconductor device 1 according to the first embodiment.
  • the third coating layer 13 is disposed so as to cover the sixth surface 5C (side surface) of the second member 5 and one surface of the insulating substrate 4. If it says from a different viewpoint, the 3rd coating layer 13 is formed so that the said outer peripheral edge part 5E of the 2nd member 5, ie, the connection boundary part of the insulating substrate 4 and the 2nd member 5, may be covered. Preferably, the third coating layer 13 is formed so as to cover the connection boundary 5 ⁇ / b> F between the second member 5 and the solder layer 9. The entire surface of the fifth surface 5B of the second member 5 is connected to the solder layer 9.
  • connection boundary portion 13A between the solder layer 9 and the third coating layer 13 is disposed on the inner side of the outer peripheral end portion 5E of the second member 5, and
  • connection boundary portion 13 ⁇ / b> B with the 3 coating layer 13 is disposed outside the outer peripheral end portion 3 ⁇ / b> E of the first member 3.
  • the fourth coating layer 14 is disposed so as to cover from the solder layer 9 to the surface of the third coating layer 13 and one surface of the insulating substrate 4. From a different point of view, the fourth coating layer 14 is formed so as to cover the connection boundary 13B between the insulating substrate 4 and the third coating layer 13 and the connection boundary 13A between the solder layer 9 and the third coating layer 13. Has been.
  • the third coating layer 13 and the fourth coating layer 14 are accommodated in a case 8 filled with a sealing material 7.
  • the sealing material 7 is filled in a space sealed by the heat dissipation base plate 6 and the case 8.
  • the material constituting the third coating layer 13 has a higher dielectric constant than the material constituting the fourth coating layer 14.
  • the material constituting the third coating layer 13 is the same as the material constituting the first coating layer 11 shown in the first or second embodiment.
  • the material which comprises the 4th coating layer 14 is the same as the material which comprises the 2nd coating layer 12 shown in Embodiment 1 or Embodiment 2.
  • FIG. For example, the third coating layer 13 is semiconductive, and the fourth coating layer 14 is insulating.
  • F4 is larger than F3.
  • a method for realizing such a relationship between the adhesive forces is the same as that for the first coating layer and the second coating layer described in the first embodiment.
  • the surface roughness of the adhesion surface between the third coating layer 13 and the fourth coating layer 14 is larger than the surface roughness of the adhesion surface between the third coating layer 13 and the second member 5.
  • the concentration of silicon atoms existing between the third coating layer 13 and the fourth coating layer 14 is The concentration of silicon atoms existing between the third coating layer 13 and the second member 5 becomes higher.
  • the concentration of sulfur atoms present between the third coating layer 13 and the fourth coating layer 14 is such that the third coating layer 13 and the second member 5 Higher than the concentration of sulfur atoms present between the two.
  • FIG. 6 is a schematic sectional view of a semiconductor device according to the fourth embodiment for carrying out the present invention.
  • FIG. 7 is a partially enlarged view of a region VII surrounded by a broken line in FIG. 6 and 7, the semiconductor device 1 of the present embodiment includes a semiconductor chip 2, a first member 3, an insulating substrate 4, a second member 5, and a heat dissipation base plate 6.
  • a solder layer 9 is disposed on the surface of the second member 5 opposite to the surface facing the insulating substrate 4, and the second member 5 is electrically and mechanically connected to the heat dissipation base plate 6 via the solder layer 9. It is connected to the.
  • the outer peripheral portion of the first member 3 includes the outer peripheral end of the second surface 3B (front surface) of the first member 3, the third surface 3C (side surface) of the first member 3, and one surface of the insulating substrate 4.
  • a covering first coating layer 11 is disposed.
  • a second coating layer 12 is disposed to cover the second surface 3B (the surface on the side where the semiconductor chip 2 is disposed) of the first member 3 to the surface of the first coating layer and one surface of the insulating substrate 4. Yes.
  • the configuration so far is the same as that of the first embodiment.
  • the semiconductor device 1 according to the present embodiment further includes a third coating layer 13 and a fourth coating layer 14 in addition to the first coating layer 11 and the second coating layer 12. It differs from the semiconductor device 1 according to the first embodiment in that it is provided.
  • the third coating layer 13 and the fourth coating layer 14 in the present embodiment may have the same configuration as the third coating layer 13 and the fourth coating layer 14 of the semiconductor device 1 according to the third embodiment. .
  • the third coating layer 13 is disposed so as to cover the outer peripheral end of the fifth surface 5B (front surface) of the second member 5, the sixth surface 5C (side surface) of the second member 5, and one surface of the insulating substrate 4. ing.
  • the fourth coating layer 14 is disposed so as to cover from the solder layer 9 to the surface of the third coating layer 13 and one surface of the insulating substrate 4. These are housed in a case 8 filled with a sealing material 7.
  • the sealing material 7 is filled in a space sealed by the heat dissipation base plate 6 and the case 8.
  • the material constituting the first coating layer 11 has a higher dielectric constant than the material constituting the second coating layer 12.
  • the material constituting the third coating layer 13 has a higher dielectric constant than the material constituting the fourth coating layer 14.
  • the material constituting the first coating layer 11 and the third coating layer 13 is the same as the material constituting the first coating layer shown in the first embodiment or the second embodiment.
  • the material constituting the second coating layer 12 and the fourth coating layer 14 is the same as the material constituting the second coating layer described in the first embodiment or the second embodiment.
  • F3 when the adhesive force between the second member 5 and the third coating layer 13 is F3, and the adhesive force between the third coating layer 13 and the fourth coating layer 14 is F4, F4 is larger than F3. ing.
  • the method for realizing such a relationship of adhesive strength is the same as that in the case of the first coating layer and the second coating layer described in the first embodiment. For example, the same method as in the third embodiment can be used. .
  • the semiconductor device 1 according to the present embodiment has the same configuration on the first member 3 side and the second member 5 side of the insulating substrate 4, so that the first coating layer 11 and the second coating layer are provided. 12 and the electric field concentrated on each of the third coating layer 13 and the fourth coating layer 14 can be relaxed. As a result, the semiconductor device 1 according to the present embodiment can further improve long-term insulation reliability.
  • the first coating layer 11 and the third coating layer 13 are conductive materials having a low volume resistivity. It may be configured. With this configuration, the potential of the first coating layer 11 and the potential of the first member 3 adjacent to each other, or the potential of the third coating layer 13 and the potential of the second member 5 adjacent to each other are more reliably set to the same potential. can do.
  • the adhesive force F1 between the first member 3 and the first coating layer 11, the first coating layer, and the second coating can be confirmed by conducting a decomposition investigation after the heat cycle test.
  • the temperature range and the number of cycles in the heat cycle test vary depending on the standard and design. For example, in the AEC-Q101, which is a standard for semiconductor reliability tests for automobiles, the temperature from ⁇ 55 ° C. to the junction temperature of the semiconductor chip + 25 ° C. When the junction temperature of the semiconductor chip 2 is 150 ° C., it is exemplified as 1000 cycles in the temperature range of ⁇ 55 ° C. to 175 ° C.
  • the partial discharge start voltage is measured after the heat cycle test, and is compared with the initial partial discharge start voltage, and then the decomposition position is checked to confirm the peeling position, whereby between the first member 3 and the first coating layer 11. It can be confirmed that there is tolerance for peeling or peeling between the second member 5 and the third coating layer 13.
  • the second member 5 is provided as a conductive portion that is not grounded, for example, when the semiconductor device 1 is in use. May be. If it says from a different viewpoint, the 2nd member 5 may be provided as a member to which a voltage is not applied in the use condition of the semiconductor device 1, for example.
  • connection boundary portion 11A between the first member 3 and the first coating layer 11 is on the third surface 3C of the first member 3. May be arranged.
  • FIG. 8 is a cross-sectional view showing a configuration in which the connection boundary portion 11A between the first member 3 and the first coating layer 11 is arranged on the third surface 3C of the first member 3 in the semiconductor device according to the first embodiment. It is. As shown in FIG. 8, such a first coating layer 11 can also be arranged so as to cover the outer peripheral end 3 ⁇ / b> E of the first member 3, that is, the connection boundary between the first member 3 and the insulating substrate 4.
  • the second coating layer 12 includes the connection boundary portion 11A between the first member 3 and the first coating layer 11, the surface of the first coating layer 11, and the connection boundary between the insulating substrate 4 and the second coating layer 12. What is necessary is just to arrange
  • a connection boundary portion 12A between the first member 3 and the second coating layer 12 is disposed, for example, on the second surface 3B.
  • the connection boundary portion 12A between the first member 3 and the second coating layer 12 may be disposed, for example, on the third surface 3C.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

高電圧電極の周辺の部材に一部剥離が生じても部分放電の発生を抑制することができる半導体装置を提供する。半導体装置(1)は、絶縁性を有する絶縁基板(4)と、絶縁基板(4)の一方の表面に設けられた第1部材(3)と、第1部材(3)の絶縁基板(4)と対向する表面とは反対側の表面に配置された半導体チップ(2)と、絶縁基板(4)の他方の表面に設けられた第2部材(5)と、第1部材(3)の外周端部を覆う第1コーティング層(11)と、第1部材(3)の反対側の表面から第1コーティング層(11)の表面および絶縁基板(4)の一方の表面まで覆う第2コーティング層(12)と、絶縁基板(4)、第1部材(3)、半導体チップ(2)、第2部材(5)、第1コーティング層(11)および第2コーティング層(12)を封止する封止材(7)とを備える。第1コーティング層(11)の誘電率は、第2コーティング層(12)の誘電率よりも高い。第1コーティング層(11)と第2コーティング層(12)との間の接着力が、第1コーティング層(11)と第1部材(3)との間の接着力よりも高い。

Description

半導体装置
 この発明は、絶縁基板に半導体チップを搭載した半導体装置に関する。
 半導体チップとしてIGBT(絶縁ゲートバイポーラトランジスタ:Insulated Gate Bipolar Transistor)を用いた半導体装置は、パワーモジュールとも呼ばれ、鉄道車両用モータなどの大電力制御に用いられている。このようなパワーモジュールにおいては、その駆動時に1000V以上の電圧が印加されると共に、100A以上の大きな電流が流れる場合がある。そのため、パワーモジュールには、高耐電圧であること、大電流が流れるときに発生する大量の熱を高効率に外部へ放出することが求められている。
 パワーモジュールは、絶縁性を有する絶縁基板と、絶縁基板の一方の主表面に接続された高電圧電極と、他方の面に接続された接地電極と、高電圧電極の絶縁基板と対向する主表面と反対側に搭載された半導体チップとからなる積層構造体、およびこの積層構造体を収納する筺体で構成されている。筺体内は、絶縁性のゲル状または固形状のモールド材、あるいは絶縁性のガスなどの封止材で満たされている。このような構造において、絶縁基板および封止材が、半導体チップおよび高電圧電極に流れる電流をパワーモジュールの外部に漏えいさせないために重要な役割を果たしている。
 近年、パワーモジュールの高電圧化、大電流化の要求に伴って、半導体チップに印加される電圧が上昇すると共に、半導体チップを流れる電流も増加している。半導体チップの動作電圧上昇に伴い、高電圧電極と絶縁基板との間の電圧差、高電圧電極と封止材との間の電圧差が大きくなり、これらの部位で部分放電の発生確率が高くなっている。高電圧電極の周辺の部材に気泡、剥離、異物混入などが存在すると、部分放電が発生する場合がある。部分放電は絶縁破壊を誘発し、パワーモジュールの長期絶縁信頼性を低下させるため、部分放電の発生確率を低減する必要である。
 部分放電の発生確率を低減するために、絶縁基板の主表面上の一部と絶縁基板上に設置された高電圧電極の側面とを覆うコーティングが施された半導体装置が開発されている。このような半導体装置として、コーティングの材料として無機ガラスを用いた半導体装置が開示されている(例えば、特許文献1参照)。別のコーティングの材料として半導電性材料を用いた半導体装置が開示されている(例えば、特許文献2参照)。
特開2000-340719号公報(3-4頁、図4) 特開2015-207731号公報(6頁、図2)
 従来のコーティングの材料として無機ガラスを用いた半導体装置においては、コーティング材と高電圧電極との間に一部でも剥離が生じた場合、その剥離部分の空隙に高い電界が誘起され、その空隙が部分放電の発生起点となり、長期的な絶縁信頼性が著しく低下するという問題があった。また、従来のコーティングの材料として半導電性材料を用いた半導体装置においては、コーティング材と高電圧電極との間に多少剥離が生じた場合でも、その剥離部分の空隙に高い電界は誘起されない。しかしながら、半導電性材料と封止材との間に一部でも剥離が生じた場合は、コーティングの材料として無機ガラスを用いた場合と同様に、半導電性材料と封止材との間の剥離部分の空隙に高い電界が誘起され、その空隙が部分放電の発生起点となり、長期的な絶縁信頼性が著しく低下するという問題があった。
 この発明は、上述のような課題を解決するためになされたもので、高電圧電極の周辺の部材に一部剥離が生じても部分放電の発生を抑制することができ、その結果長期的な絶縁信頼性を確保することを目的とする。
 この発明に係る半導体装置は、絶縁性を有する絶縁基板と、絶縁基板の一方の表面に設けられており、かつ絶縁基板と対向する第1面と、第1面とは反対側に位置する第2面とを有する第1部材と、第2面に配置された半導体チップと、絶縁基板の他方の表面に設けられた第2部材と、第1部材の第1面の外周端部を覆う第1コーティング層と、第1コーティング層の表面を覆う第2コーティング層と、絶縁基板、第1部材、半導体チップ、第2部材、第1コーティング層および第2コーティング層を封止する封止材とをさらに備える。第1コーティング層の誘電率は、第2コーティング層の誘電率よりも高い。第1コーティング層と第2コーティング層との間の接着力が、第1コーティング層と第1部材との間の接着力よりも高い。
 この発明は、第1部材の外周端部を覆う第1コーティング層と、第1コーティング層の表面を覆う第2コーティング層とを備え、第1コーティング層の誘電率を第2コーティング層より高くすることで第1コーティング層と第1部材の界面における電界を緩和し、さらに、第1コーティング層と第2コーティング層との間の接着力を、第1コーティング層と第1部材との間の接着力よりも高くしているので、第1部材の周辺の部材に一部剥離が生じても部分放電の発生抑制することができ、その結果長期的な絶縁信頼性を確保することができる。
実施の形態1に係る半導体装置の断面模式図である。 実施の形態1に係る半導体装置の断面模式図である。 実施の形態1に係る半導体装置の断面模式図である。 実施の形態3に係る半導体装置の断面模式図である。 実施の形態3に係る半導体装置の断面模式図である。 実施の形態4に係る半導体装置の断面模式図である。 実施の形態4に係る半導体装置の断面模式図である。 実施の形態1に係る半導体装置の変形例を示す断面模式図である。
 実施の形態1.
 図1は、この発明を実施するための実施の形態1に係る半導体装置の断面模式図である。また、図2は、図1中の破線で囲まれた領域IIの部分拡大図である。図1および図2において、本実施の形態の半導体装置1は、半導体チップ2と、第1部材3と、絶縁基板4と、第2部材5と、放熱ベース板6とを備えており、それらは封止材7で充填されたケース8に収納されている。封止材7は、放熱ベース板6とケース8とで密閉された空間に充填されている。
 絶縁基板4の一方の面には第1部材3が配置されている。第1部材3は、絶縁基板4の当該一方の面と対向している第1面3Aと、第1面3Aとは反対側に位置する第2面3Bと、第1面3Aと第2面3Bとを接続する第3面3Cとを有している。上記一方の面を平面視したときに、第3面3Cは、第2面3Bの周囲を囲むように配置されている。
 上記平面視において、第1面3Aの外周端部は第3面3Cの外周端部と接続されており、第1部材3の外周端部3Eを成している。第1部材3の上記外周端部3Eは、絶縁基板4に接続されており、第1部材3と絶縁基板4との接続境界部を成している。上記平面視において、第2面3Bの外周端部は第3面3Cの内周端部と接続されている。第1部材3の第2面3Bの面積は絶縁基板4の上記一方の面の面積よりも小さい。上記一方の面を平面視したときに第1部材3の外周端部3Eよりも外側には、絶縁基板4の一方の面が露出している。
 絶縁基板4の他方の面には第2部材5が配置されている。第2部材5は、絶縁基板4の当該他方の面と対向している第4面5Aと、第4面5Aとは反対側に位置する第5面5Bと、第4面5Aと第5面5Bとを接続する第6面5Cとを有している。上記他方の面を平面視したときに、第6面5Cは、第5面5Bの周囲を囲むように配置されている。
 上記他方の面を平面視したときに、第4面5Aの外周端部は第6面5Cの外周端部と接続されており、第2部材5の外周端部5Eを成している。第2部材5の上記外周端部5Eは、絶縁基板4に接続されており、第2部材5と絶縁基板4との接続境界部を成している。第2部材5の第4面5Aの面積は絶縁基板4の面積よりも小さい。上記他方の面を平面視したときの第2部材5の外周端部よりも外側には、絶縁基板4の他方の面が露出している。
 第2部材5の絶縁基板4に対向する面と反対側の面にははんだ層9が配置されており、このはんだ層9を介して第2部材5は放熱ベース板6と電気的および機械的に接続されている。
 第1部材3の上記第2面3Bのほぼ中央部には半導体チップ2が配置されている。第1部材3の外周部には、第1部材3の第2面3B(表面)の外周端、第1部材3の第3面3C(側面)および絶縁基板4の一方の面までを覆う第1コーティング層11が配置されている。言い換えると、第1コーティング層11は、第1部材3と絶縁基板4との接続境界部を覆うように配置されている。さらに、第1部材3の第2面3B(半導体チップ2が配置された側の表面)から第1コーティング層11の表面および絶縁基板4の一方の表面までを覆う第2コーティング層12が配置されている。言い換えると、第2コーティング層12は、第1部材3と第1コーティング層11との接続境界部、第1コーティング層11の表面、および絶縁基板4と第1コーティング層11との接続境界部を覆うように配置されている。なお、第1コーティング層11は第2コーティング層12より誘電率が高い材料で構成されている。
 半導体チップ2としては、例えば大電力制御用のIGBT(絶縁ゲートバイポーラトランジスタ:Insulated Gate Bipolar Transistor)などのパワーデバイスを用いることができる。半導体チップ2を構成する基板は、シリコンカーバイト(SiC)、ガリウムナイトライド(GaN)またはダイヤモンド(C)であることが好ましい。このような基板であれば、例えばシリコン基板を用いた場合に比べて電力損失が小さくなり、半導体チップの消費電力を低減することができる。その結果、半導体装置の熱設計に裕度ができ、パワーモジュールの小型化が可能である。また、シリコンカーバイトなどは耐熱性が高いため、より高温で動作可能である。
 また、ひとつの第1部材3に対して複数の半導体チップ2が搭載されていてもよい。複数の半導体チップ2が搭載される場合、ワイヤボンディングなどを介して、MOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor)などの制御素子が搭載されていてもよい。
 第1部材3を構成する材料および第2部材5を構成する材料は、第1部材3と第2部材5との互いの間で電位差が付与され得る限りにおいて任意の材料であればよいが、好ましくは導電性を有する材料で構成されており、より好ましくは金属材料で構成されている。第1部材3および第2部材5は、例えば金属材料で構成された板状部材(金属板)である。
 第1部材3は、熱伝導率の高い銅で構成されていることが好ましいが、銅以外の導体、例えばアルミニウムまたは鉄あるいはそれらの合金で構成されていてもよい。第1部材3の第2面3B(表面)には、半導体チップ2と電気的に接続するために配線もしくは他の回路などが形成されていてもよい。また、第1部材3と半導体チップ2との接続は、はんだや銀接合剤で接合されてもよい。
 絶縁基板4は、主に絶縁材料で構成された板状部材である。絶縁基板4は、アルミナまたは窒化アルミニウムなどのセラミック材料で構成されている。絶縁基板4としてセラミック材料を用いる場合、そのセラミック材料の厚みは、200μm以上1500μm以下であることが好ましい。それ以外の材料として、絶縁基板4は、有機絶縁シートで構成されていてもよい。有機絶縁シートとは、熱伝導率の高い無機フィラー(アルミナ、窒化アルミニウム、または窒化ホウ素などの微粒子)をエポキシ樹脂内に分散および充填させたコンパウンド構造体である。絶縁基板4として用いる場合の有機絶縁シートの厚みは、20μm以上500μm以下であることが好ましい。
 第2部材5および放熱ベース板6は、熱伝導率の高い銅で構成されていることが好ましいが、銅以外の導体、例えばアルミニウムまたは鉄あるいはそれらの合金で構成されていてもよい。放熱ベース板6は、放熱フィンを備えていてもよい。あるいは放熱ベース板6は、別部材の放熱フィンと接続されていてもよい。なお、第2部材5と放熱ベース板6とは、一体物で構成されていてもよい。この場合、はんだ層9が不要となり、第3コーティング層13は第2部材5の上記外周端部5Eを覆うように形成されていればよい。
 なお、半導体装置1は、第1部材3と第2部材5との間に、電位差を付与可能に設けられている。これにより、半導体装置1は、第1部材3と絶縁基板4との間、および第1部材3と封止材7との間に、電位差を付与可能に設けられている。第2部材5は、例えば半導体装置1の使用状態において接地される接地電極として設けられていてもよい。第1部材は、例えば上記使用状態において第2部材5に対し高電位差が付与される高電圧電極として設けられていてもよい。
 第1コーティング層11および第2コーティング層12は、適用する半導体装置の使用温度で劣化しない材料選定が必要である。また、いずれのコーティング層も原材料を塗布するだけでコーティング層が完成される場合と、原材料を塗布した後に加工することで完成される場合とがある。塗布の具体的な方法は、ディッピング法、電着法、ディスペンス法、3Dプリンタ法などがあり、加工の具体的な方法は、加熱、紫外線照射などがある。ディッピング法は、被コーティング部材を硬化前のコーティングにディップして塗布する方法である。電着法は、接地状態もしくは電圧印加した電極に帯電した硬化前のコーティング材を塗布する方法である。この電着法では、電界集中箇所にコーティング材料が集まる傾向にある。もし半導体チップ2が搭載された状態で電着法によるコーティングを行った場合、半導体チップ2の外周部にも高電圧電極の外周部と同じ二層のコーティングを施すことができる。ディスペンス法は、注射器などでコーティングが必要な部分に未硬化のコーティング材を塗布する方法である。
 第1コーティング層11は、第1部材3の外周端部3E、すなわち第1部材3と絶縁基板4との接続境界部を覆って形成されている。異なる観点から言えば、上記平面視において、第1部材3と第1コーティング層11との接続境界部11Aは第1部材3の外周端部3Eよりも内側に配置されており、絶縁基板4と第1コーティング層11との接続境界部11Bは第1部材3の外周端部3Eよりも外側に配置されている。第1部材3と第1コーティング層11との接続境界部11Aは、例えば第2面3B上に配置されている。第1部材3と第1コーティング層11との接続境界部11Aは、例えば上記平面視において第2面3Bの外周端部よりも内側に配置されている。接続境界部11Aは第1コーティング層11の表面11Cの内周端部を成しており、接続境界部11Bは第1コーティング層11の表面11Cの外周端部を成している。第1コーティング層11の表面11Cは、第2コーティング層12により覆われている。
 絶縁基板4と第1部材3との接続境界部は最も電界が集中し放電起点となりやすいため、この部分を第1コーティング層11で覆うことは必須である。なお、第1コーティング層11は、第1部材3の外周端部3E、すなわち第1部材3と絶縁基板4との接続境界部を、上記平面視における第1部材3の全周に渡って覆うように形成されていることが好ましい。
 第2コーティング層12は、第1コーティング層11の表面11Cを覆うように形成されている。すなわち、第2コーティング層12は、第1部材3と第1コーティング層11との接続境界部11Aと、絶縁基板4と第1コーティング層11との接続境界部11Bとを覆うように形成されている。第2コーティング層12は、例えば第1部材3の第2面3B(半導体チップ2が配置された側の表面)、第1コーティング層11の表面、および絶縁基板4の一方の表面を覆って形成されている。上記平面視において、第1部材3と第2コーティング層12との接続境界部12Aは、第1部材3の外周端部3Eおよび上記接続境界部11Aよりも内側に配置されている。絶縁基板4と第2コーティング層12との接続境界部12Bは、第1部材3の外周端部3Eおよび上記接続境界部11Bよりも外側に配置されている。接続境界部12Aは第2コーティング層12の表面12Cの内周端部を成しており、接続境界部12Bは第2コーティング層12の表面12Cの外周端部を成している。第2コーティング層12の表面12Cは、封止材7により覆われている。なお、第2コーティング層12も、第1コーティング層11と同様に、第1部材3の第2面3B(半導体チップ2が配置された側の表面)、第1コーティング層11の表面、および絶縁基板4の一方の表面を、上記平面視における第1部材3の全周に渡って覆うように形成されていることが好ましい。
 好ましくは、第1コーティング層11は、第1部材3の第3面3Cの全体を覆うように配置されている。この場合、上記平面視において、上記接続境界部11Aは第2面3B上に配置されており、かつ第1部材3と第2コーティング層12との接続境界部12Aは第2面3B上において上記接続境界部11Aよりも内側に配置されている。
 第1コーティング層11の誘電率は、第2コーティング層12の誘電率よりも高くしている。このような構成においては、第1コーティング層11で電圧降下が起こり、第2コーティング層12にかかる電圧が下がる効果が得られる。また、第1コーティング層11の持つ静電容量が第2コーティング層12より十分高いとき、第1コーティング層11は隣接する第1部材3とほぼ同電位となる。
 第1コーティング層11の材料としては、ポリアセチレン、ポリアセン、ポリピロール、ポリチオフェン、ポリアニリン、メロシアニンなどの共役系ポリマーが挙げられる。これらの材料の比誘電率は、10~1000である。第2コーティング層12の材料としては、ポリアミド、ポリイミド、ポリアミドイミド、エポキシ、シリコーンゴム、ポリエーテルエーテルケトンなどが挙げられる。これらの材料の比誘電率は、2.0~8.0である。
 なお、第1コーティング層11の比誘電率が第2コーティング層12の比誘電率に対して5倍より大きい場合において同様の効果が得られるため、上記に示した第2コーティング層12の材料に導電性フィラーを添加することにより比誘電率を上げた材料、例えばカーボンブラックを添加したシリコーンゴムなども第1コーティング層11の材料として使用可能である。
 図3は、図2に示した半導体装置において、接着力を説明する断面模式図である。図3に示すように、第1部材3と第1コーティング層11との間の接着力をF1、第1コーティング層11と第2コーティング層12との間の接着力をF2としたとき、F1よりF2を大きくしている。このような接着力の関係を実現する方法として、例えば、第1コーティング層11をディスペンス法で塗布した後に半硬化させた、その上に第2コーティング層12を同じくディスペンス法で塗布し、第1コーティング層11と第2コーティング層12とを同時硬化させる方法がある。このような方法では、第1コーティング層11と第2コーティング層12との間の化学結合が促進され、F1よりF2が大きくなる。
 より確実に上記のような接着力の関係を実現する方法として、次の4つの方法を挙げることができる。すなわち、半導体装置1を製造する際に上記のような接着力の関係を実現する方法として、例えば以下の4つの方法の少なくともいずれかを採用することができる。
(1)カップリング剤、接着剤の使用
 第1コーティング層11を形成後、その表面にシランカップリング剤、トリアジンチオール化合物含有接着剤など塗布し、続けて第2コーティング層12を塗布して硬化させる。このような工程によって、第1コーティング層11と第2コーティング層12と間の架橋反応などの化学結合が確実に促進され、F1よりF2が大きくなる。シランカップリング剤を用いた場合、第1コーティング層11と第2コーティング層12との間に存在するシリコン原子の濃度が、第1コーティング層11と第1部材3との間に存在するシリコン原子の濃度よりも高くなる。また、トリアジンチオール化合物含有接着剤を用いた場合、第1コーティング層11と第2コーティング層12との間に存在する硫黄原子の濃度が、第1コーティング層11と第1部材3との間に存在する硫黄原子の濃度よりも高くなる。
(2)プラズマ照射による表面活性化
 第1コーティング層11を形成後、その表面を希ガス・大気圧プラズマの照射により活性化する。その後第2コーティング層12を塗布して硬化させる。このような工程によって、第1コーティング層11と第2コーティング層12と間の架橋反応などの化学結合が確実に促進され、F1よりF2が大きくなる。このような方法を用いた場合、第1コーティング層11と第2コーティング層12との間の接着面の表面粗さが、第1コーティング層11と第1部材3との間の接着面の表面粗さよりも大きくなる。
(3)エッチング、櫛状治具による凹凸生成
 第1コーティング層11を形成後、その表面にエッチングまたは櫛状治具で凹凸を形成する。その後第2コーティング層12を塗布して硬化させる。このような工程によって、第1コーティング層11と第2コーティング層12と間の接着面積が拡大され、F1よりF2が大きくなる。このような方法を用いた場合、第1コーティング層11と第2コーティング層12との間の表面粗さが、第1コーティング層11と第1部材3との間の表面粗さよりも大きくなる。
(4)やすり、サンドブラストによる表面荒らし加工
 第1コーティング層11を形成後、その表面にやすりまたはサンドブラストで表面を荒らす。その後第2コーティング層12を塗布して硬化させる。このような工程によって、第1コーティング層11と第2コーティング層12と間の接着面積が拡大され、F1よりF2が大きくなる。このような方法を用いた場合、第1コーティング層11と第2コーティング層12との間の表面粗さが、第1コーティング層11と第1部材3との間の表面粗さよりも大きくなる。
 なお、第1部材3と第1コーティング層11との間の接着力よりも、第1コーティング層11と第2コーティング層12との間の接着力を大きくする方法としては、上述の(1)~(4)の方法以外でもよい。
 上述のように、本実施の形態の半導体装置においては、第1コーティング層11の誘電率は、第2コーティング層12の誘電率よりも高くしており、第1コーティング層11の持つ容量が第2コーティング層12より十分高いとき、第1コーティング層11は隣接する第1部材3とほぼ同電位となる。また、第1部材3と第1コーティング層11との間の接着力(F1)より、第1コーティング層11と第2コーティング層12との間の接着力(F2)を大きくしている。
 パワーモジュールなどの半導体装置は、高電圧・大電流での長時間駆動や高温高湿環境での駆動など、第1部材3と第1コーティング層11との間、あるいは第1コーティング層11と第2コーティング層12との間に一部剥離が生じるような環境下で用いられる場合がある。本実施の形態の半導体装置においては、第1部材3と第1コーティング層11との間の接着力(F1)より、第1コーティング層11と第2コーティング層12との間の接着力(F2)を大きくしているので、一部剥離が生じたとしても、第1部材3と第1コーティング層11との間で先に剥離が生じる。第1コーティング層11は隣接する第1部材3とほぼ同電位となっているので、第1部材3と第1コーティング層11との間に一部剥離が生じても、その剥離の空間に大きな電界差は生じない。したがって、その剥離は部分放電の起点とはならない。
 このように、本実施の半導体装置においては、高電圧電極の周辺の部材に一部剥離が生じても部分放電の発生を抑制することができ、その結果長期的な絶縁信頼性を確保することができる。
 実施の形態2.
 実施の形態2に係る半導体装置は、実施の形態1に係る半導体装置の構成を備えるが、第1コーティング層11の体積抵抗率が第2コーティング層12の体積抵抗率より低いことが特定されている点で異なる。
 本実施の形態においては、実施の形態1で示した第1コーティング層を構成する材料に、カーボンブラックなどの導電性フィラーを添加した材料を用いて第1コーティング層を構成したものである。第1コーティング層の電気伝導性は、導電性でも半導電性でもよい。より具体的には、第1コーティング層の体積抵抗率は1010Ω・cm以下とし、第2コーティング層の体積抵抗率は1012Ω・cm以上とする。第1コーティング層の体積抵抗率が小さいほど、第1コーティング層の電位と隣接する第1部材3の電位とをより確実に同電位とすることができ、第2コーティング層の体積抵抗率が大きいほど、第2コーティング層の絶縁性が確実なものとなる。しかし、第1コーティング層の抵抗と第2コーティング層の抵抗との差が大きいと、第1コーティング層と第2コーティング層との間の電位差が大きくなるので、これら第1および第2コーティング層の各厚みおよび各体積抵抗率は、半導体装置の駆動周波数や駆動電圧により適宜設定される。
 第1コーティング層の材料選定のための計算例について以下に述べる。第1コーティング層は、半導体装置の駆動電圧の立ち上がり時間(印加される電圧がゼロからピーク値に達するまでの時間)よりも短い時定数をもつ材料を選定する必要がある。この時定数は材料の誘電率と体積抵抗率との積であり、例えば、60Hzの正弦波で駆動される半導体装置の場合、駆動電圧の立ち上がり時間4msecよりも短い時定数をもつ材料を第1コーティング層の材料として選定する。また、2kHzの正弦波で駆動される半導体装置の場合、駆動電圧の立ち上がり時間0.125msecよりも短い時定数の材料を第1コーティング層の材料として選定する。一方、第2コーティング層を構成する材料の時定数は、駆動電圧の立ち上がり時間よりも短くてもよいし長くてもよい。第1コーティング層を構成する材料の時定数は、例えば第2コーティング層を構成する材料の時定数以下とされている。
 上述のように、第1コーティング層を構成する材料の誘電率は、第2コーティング層を構成する材料の誘電率よりも高い。そのため、上記のような第1コーティング層を構成する材料の時定数を実現するためには、第1コーティング層の体積抵抗率は第2コーティング層の体積抵抗率よりも低いのが好ましい。
 このように構成された半導体装置においては、実施の形態1と同様に、高電圧電極の周辺の部材に一部剥離が生じても部分放電の発生を抑制することができ、その結果長期的な絶縁信頼性を確保することができる。さらに、上述のように、実施の形態2に係る半導体装置は、第1コーティング層を構成する材料の時定数が半導体装置の駆動電圧の立ち上がり時間よりも短く設けられているため、例えば高周波信号で駆動される場合にも応答性を損なうことなく、上記効果を奏することができる。よって、実施の形態2に係る半導体装置は、特に高周波信号が入出力される半導体装置に好適である。
 実施の形態3.
 図4は、この発明を実施するための実施の形態3にかかる半導体装置の断面模式図である。また、図5は図4中の破線で囲まれた領域Xの部分拡大図である。図4および図5において、本実施の形態の半導体装置1は、半導体チップ2と、第1部材3と、絶縁基板4と、第2部材5と、放熱ベース板6とを備えている。第2部材5の絶縁基板4に対抗する面と反対の面にははんだ層9が配置されており、このはんだ層9を介して第2部材5は放熱ベース板6と電気的および機械的に接続されている。ここまでの構成は、実施の形態1と同様である。
 図4および図5に示されるように、本実施の形態に係る半導体装置1は、第1コーティング層11および第2コーティング層12に代えて、第3コーティング層13および第4コーティング層14を備えている点で、実施の形態1に係る半導体装置1と異なる。
 第3コーティング層13は、第2部材5の第6面5C(側面)および絶縁基板4の一方の面までを覆うように配置されている。異なる観点から言えば、第3コーティング層13は、第2部材5の上記外周端部5E、すなわち絶縁基板4と第2部材5との接続境界部を覆うように形成されている。好ましくは、第3コーティング層13は、第2部材5とはんだ層9との接続境界部5Fを覆うように形成されている。第2部材5の第5面5Bの全面は、はんだ層9と接続されている。上記他方の面を平面視したときに、はんだ層9と第3コーティング層13との接続境界部13Aは第2部材5の外周端部5Eよりも内側に配置されており、絶縁基板4と第3コーティング層13との接続境界部13Bは第1部材3の外周端部3Eよりも外側に配置されている。
 第4コーティング層14は、はんだ層9から第3コーティング層13の表面および絶縁基板4の一方の表面までを覆うように配置されている。異なる観点から言えば、第4コーティング層14は、絶縁基板4と第3コーティング層13との接続境界部13Bと、はんだ層9と第3コーティング層13の接続境界部13Aとを覆うように形成されている。
 第3コーティング層13および第4コーティング層14は封止材7で充填されたケース8に収納されている。封止材7は、放熱ベース板6とケース8とで密閉された空間に充填されている。
 第3コーティング層13を構成する材料は、第4コーティング層14を構成する材料と比べて誘電率が高い。第3コーティング層13を構成する材料は、実施の形態1または実施の形態2に示した第1コーティング層11を構成する材料と同じである。また、第4コーティング層14を構成する材料は、実施の形態1または実施の形態2に示した第2コーティング層12を構成する材料と同じである。例えば、第3コーティング層13は半導電性を有し、第4コーティング層14は絶縁性を有する。
 さらに、第2部材5と第3コーティング層13との間の接着力をF3、第3コーティング層13と第4コーティング層14との間の接着力をF4としたとき、F4はF3よりも大きくされている。このような接着力の関係を実現する方法は、実施の形態1で説明した第1コーティング層および第2コーティング層の場合と同様である。例えば、第3コーティング層13と第4コーティング層14との間の接着面の表面粗さは、第3コーティング層13と第2部材5との間の接着面の表面粗さよりも大きい。あるいは、第3コーティング層13と第4コーティング層14との接着剤として、シランカップリング剤を用いた場合、第3コーティング層13と第4コーティング層14との間に存在するシリコン原子の濃度が、第3コーティング層13と第2部材5との間に存在するシリコン原子の濃度よりも高くなる。あるいは、上記接着剤としてトリアジンチオール化合物含有接着剤を用いた場合、第3コーティング層13と第4コーティング層14との間に存在する硫黄原子の濃度が、第3コーティング層13と第2部材5との間に存在する硫黄原子の濃度よりも高くなる。
 このように構成された半導体装置1においては、第2部材5の周辺の部材に一部剥離が生じても部分放電の発生を抑制することができ、その結果、長期的な絶縁信頼性を確保することができる。
 実施の形態4.
 図6は、この発明を実施するための実施の形態4に係る半導体装置の断面模式図である。また、図7は、図6中の破線で囲まれた領域VIIの部分拡大図である。図6および図7において、本実施の形態の半導体装置1は、半導体チップ2と、第1部材3と、絶縁基板4と、第2部材5と、放熱ベース板6とを備えている。第2部材5の絶縁基板4に対向する面と反対側の面にははんだ層9が配置されており、このはんだ層9を介して第2部材5は放熱ベース板6と電気的および機械的に接続されている。また、第1部材3の外周部には、第1部材3の第2面3B(表面)の外周端、第1部材3の第3面3C(側面)および絶縁基板4の一方の面までを覆う第1コーティング層11が配置されている。さらに、第1部材3の第2面3B(半導体チップ2が配置された側の表面)から第1コーティング層の表面および絶縁基板4の一方の表面までを覆う第2コーティング層12が配置されている。ここまでの構成は、実施の形態1と同様である。
 図6および図7に示されるように、本実施の形態に係る半導体装置1は、第1コーティング層11および第2コーティング層12に加えて、第3コーティング層13および第4コーティング層14をさらに備えている点で、実施の形態1に係る半導体装置1と異なる。
 本実施の形態における第3コーティング層13および第4コーティング層14は、実施の形態3に係る半導体装置1の第3コーティング層13および第4コーティング層14と同様の構成を有していればよい。
 第3コーティング層13は、第2部材5の第5面5B(表面)の外周端、第2部材5の第6面5C(側面)および絶縁基板4の一方の面までを覆うように配置されている。第4コーティング層14は、はんだ層9から第3コーティング層13の表面および絶縁基板4の一方の表面までを覆うように配置されている。これらは封止材7で充填されたケース8に収納されている。封止材7は、放熱ベース板6とケース8とで密閉された空間に充填されている。
 第1コーティング層11を構成する材料は、第2コーティング層12を構成する材料と比べて誘電率が高い。第3コーティング層13を構成する材料は、第4コーティング層14を構成する材料と比べて誘電率が高い。
 第1コーティング層11および第3コーティング層13を構成する材料は、実施の形態1または実施の形態2に示した第1コーティング層を構成する材料と同じである。第2コーティング層12および第4コーティング層14を構成する材料は、実施の形態1または実施の形態2に示した第2コーティング層を構成する材料と同じである。
 さらに、第2部材5と第3コーティング層13との間の接着力をF3、第3コーティング層13と第4コーティング層14との間の接着力をF4としたとき、F4はF3より大きくされている。このような接着力の関係を実現する方法は、実施の形態1で説明した第1コーティング層および第2コーティング層の場合と同様であり、例えば実施の形態3と同様の方法とすることができる。
 このように構成された半導体装置1においては、実施の形態1や実施の形態3と同様に、第1部材3もしくは第2部材5の周辺の部材に一部剥離が生じても部分放電の発生を抑制することができ、その結果長期的な絶縁信頼性を確保することができる。
 さらに、本実施の形態に係る半導体装置1は、絶縁基板4の第1部材3側と第2部材5側とで同等の構成を備えていることにより、第1コーティング層11と第2コーティング層12の界面、および第3コーティング層13と第4コーティング層14の界面のそれぞれに集中する電界を緩和することができる。その結果本実施の形態に係る半導体装置1は、長期的な絶縁信頼性をさらに高めることができる。
 なお、実施の形態1、実施の形態2、実施の形態3、実施の形態4に記載した半導体装置において、第1コーティング層11および第3コーティング層13は、体積抵抗率の低い導電性材料で構成してもよい。このように構成することで、第1コーティング層11の電位と隣接する第1部材3の電位、もしくは第3コーティング層13の電位と隣接する第2部材5の電位とをより確実に同電位とすることができる。
 また、実施の形態1、実施の形態2、実施の形態3、実施の形態4に記載した半導体装置において、第1部材3と第1コーティング層11の接着力F1と第1コーティング層と第2コーティング層12の接着力F2の大小関係(F1<F2)、もしくは第2部材5と第3コーティング層13の接着力F3と第3コーティング層13と第4コーティング層14の接着力F4の大小関係(F3<F4)はヒートサイクル試験後に分解調査することで確認できる。ヒートサイクル試験の温度範囲やサイクル数は規格や設計などによって異なるが、例えば、自動車向け半導体の信頼性試験についての規格であるAEC-Q101では、-55℃から半導体チップのジャンクション温度+25℃の温度範囲で1000サイクルと規定されており、半導体チップ2のジャンクション温度が150℃である場合、-55℃から175℃の温度範囲で1000サイクルと例示されている。
 また、ヒートサイクル試験後に部分放電開始電圧を測定し、初期の部分放電開始電圧と比較してから分解調査して剥離位置を確認することで、第1部材3と第1コーティング層11の間の剥離もしくは第2部材5と第3コーティング層13の間の剥離に対する許容性があることを確認できる。
 また、実施の形態1、実施の形態2、実施の形態3、実施の形態4に記載した半導体装置において、第2部材5は、例えば半導体装置1の使用状態において接地されない導電部として設けられていてもよい。異なる観点から言えば、第2部材5は、例えば半導体装置1の使用状態において電圧が印加されない部材として設けられていてもよい。
 また、実施の形態1、実施の形態2、実施の形態4に記載した半導体装置において、第1部材3と第1コーティング層11との接続境界部11Aは第1部材3の第3面3C上に配置されていてもよい。図8は、実施の形態1に係る半導体装置において、第1部材3と第1コーティング層11との接続境界部11Aが第1部材3の第3面3C上に配置された構成を示す断面図である。図8に示されるように、このような第1コーティング層11も、第1部材3の外周端部3E、すなわち第1部材3と絶縁基板4との接続境界部を覆うように配置され得る。この場合も、第2コーティング層12は、第1部材3と第1コーティング層11との接続境界部11A、第1コーティング層11の表面、および絶縁基板4と第2コーティング層12との接続境界部12Bを覆うように配置されていればよい。第1部材3と第2コーティング層12との接続境界部12Aは、例えば第2面3B上に配置されている。なお、第1部材3と第2コーティング層12との接続境界部12Aは、例えば第3面3C上に配置されていてもよい。このような構成を備える半導体装置であっても、部分放電の発生確率が最も高い第1部材3の上記外周端部3Eと第1コーティング層11との間に一部剥離が生じた場合に、その剥離の空間に大きな電界差が生じることが抑制されているため、当該剥離が部分放電の起点となることが防止されている。
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 1 半導体装置、2 半導体チップ、3 第1部材、4 絶縁基板、5 第2部材、6 放熱ベース板、7 封止材、8 ケース、9 はんだ層、11 第1コーティング層、12 第2コーティング層、13 第3コーティング層、14 第4コーティング層。

Claims (13)

  1.  絶縁性を有する絶縁基板と、
     前記絶縁基板の一方の表面に設けられており、かつ前記絶縁基板と対向する第1面と、前記第1面とは反対側に位置する第2面とを有する第1部材と、
     前記第2面に配置された半導体チップと、
     前記絶縁基板の他方の表面に設けられた第2部材と、
     前記第1部材の前記第1面の外周端部を覆う第1コーティング層と、
     前記第1コーティング層の表面を覆う第2コーティング層と、
     前記絶縁基板、前記第1部材、前記半導体チップ、前記第2部材、前記第1コーティング層および前記第2コーティング層を封止する封止材とをさらに備え、
     前記第1コーティング層の誘電率は、前記第2コーティング層の誘電率よりも高く、
     前記第1コーティング層と前記第2コーティング層との間の接着力が、前記第1コーティング層と前記第1部材との間の接着力よりも高い、半導体装置。
  2.  前記第1コーティング層と前記第2コーティング層との間に存在するシリコン原子の濃度が、前記第1コーティング層と前記第1部材との間に存在するシリコン原子の濃度よりも高い、請求項1に記載の半導体装置。
  3.  前記第1コーティング層と前記第2コーティング層との間に存在する硫黄原子の濃度が、前記第1コーティング層と前記第1部材との間に存在する硫黄原子の濃度よりも高い、請求項1に記載の半導体装置。
  4.  前記第1コーティング層と前記第2コーティング層との間の表面粗さが、前記第1コーティング層と前記第1部材との間の表面粗さよりも大きい、請求項1に記載の半導体装置。
  5.  前記第1コーティング層は半導電性を有し、
     前記第2コーティング層は絶縁性を有する、請求項1~4のいずれか1項に記載の半導体装置。
  6.  前記第1部材は、前記第1面と前記第2面とを接続する第3面をさらに有し、
     前記第1コーティング層は、前記第1部材の前記第3面の全体を覆う、請求項1~5のいずれか1項に記載の半導体装置。
  7.  前記第2部材は、前記絶縁基板と対向する第4面と、前記第4面とは反対側に位置する第5面とを有し、
     前記第2部材の前記第4面の外周端部を覆う第3コーティング層と、
     前記第3コーティング層の前記表面および前記絶縁基板の前記一方の表面までを覆う第4コーティング層とをさらに備え、
     前記第3コーティング層および前記第4コーティング層は前記封止材に封止され、
     前記第3コーティング層の誘電率は、前記第4コーティング層の誘電率よりも高く、
     前記第3コーティング層と前記第4コーティング層との間の接着力が、前記第3コーティング層と前記第2部材との間の接着力よりも高い、請求項1~6のいずれか1項に記載の半導体装置。
  8.  絶縁性を有する絶縁基板と、
     前記絶縁基板の一方の表面に設けられており、かつ前記絶縁基板と対向する第1面と、前記第1面とは反対側に位置する第2面とを有する第1部材と、
     前記第1部材の前記第2面に配置された半導体チップと、
     前記絶縁基板の他方の表面に設けられており、かつ前記絶縁基板と対向する第4面と、前記第4面とは反対側に位置する第5面とを有する第2部材と、
     前記第2部材の前記第4面の外周端部を覆う第3コーティング層と、
     前記第3コーティング層の表面を覆う第4コーティング層と、
     前記絶縁基板、前記第1部材、前記半導体チップ、前記第2部材、前記第3コーティング層および前記第4コーティング層を封止する封止材とを備え、
     前記第3コーティング層の誘電率は、前記第4コーティング層の誘電率よりも高く、
     前記第3コーティング層と前記第4コーティング層との間の接着力が、前記第3コーティング層と前記第2部材との間の接着力よりも高い、半導体装置。
  9.  前記第3コーティング層と前記第4コーティング層との間に存在するシリコン原子の濃度が、前記第3コーティング層と前記第2部材との間に存在するシリコン原子の濃度よりも高い、請求項7または請求項8に記載の半導体装置。
  10.  前記第3コーティング層と前記第4コーティング層との間に存在する硫黄原子の濃度が、前記第3コーティング層と前記第2部材との間に存在する硫黄原子の濃度よりも高い、請求項7または請求項8に記載の半導体装置。
  11.  前記第3コーティング層と前記第4コーティング層との間の表面粗さが、前記第3コーティング層と前記第2部材との間の表面粗さがよりも大きい、請求項7または請求項8に記載の半導体装置。
  12.  前記第3コーティング層は半導電性を有し、
     前記第4コーティング層は絶縁性を有する、請求項7~11のいずれか1項に記載の半導体装置。
  13.  前記第2部材は、前記第4面と前記第5面とを接続する第6面をさらに有し、
     前記第3コーティング層は、前記第2部材の前記第6面の全体を覆う、請求項7~12のいずれか1項に記載の半導体装置。
PCT/JP2018/001799 2017-03-03 2018-01-22 半導体装置 WO2018159152A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019502503A JP6790226B2 (ja) 2017-03-03 2018-01-22 半導体装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017040040 2017-03-03
JP2017-040040 2017-03-03

Publications (1)

Publication Number Publication Date
WO2018159152A1 true WO2018159152A1 (ja) 2018-09-07

Family

ID=63370331

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/001799 WO2018159152A1 (ja) 2017-03-03 2018-01-22 半導体装置

Country Status (2)

Country Link
JP (1) JP6790226B2 (ja)
WO (1) WO2018159152A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020129589A (ja) * 2019-02-07 2020-08-27 積水化学工業株式会社 半導体装置
WO2021229673A1 (ja) * 2020-05-12 2021-11-18 三菱電機株式会社 電力用半導体装置
JP7276627B1 (ja) * 2022-06-30 2023-05-18 三菱電機株式会社 半導体装置の評価方法、半導体装置の製造方法、及び半導体装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002076197A (ja) * 2000-08-24 2002-03-15 Toshiba Corp 半導体装置用基板及び半導体装置
JP2010109011A (ja) * 2008-10-28 2010-05-13 Nec Electronics Corp 半導体装置およびその製造方法
WO2014006724A1 (ja) * 2012-07-05 2014-01-09 三菱電機株式会社 半導体装置
JP2017028132A (ja) * 2015-07-23 2017-02-02 富士電機株式会社 半導体モジュール及び半導体モジュールの製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013157598A (ja) * 2012-01-06 2013-08-15 Mitsubishi Electric Corp 半導体モジュール及びそれを用いた半導体装置及び半導体モジュールの製造方法
DE112012006690B4 (de) * 2012-07-11 2021-06-24 Mitsubishi Electric Corporation Halbleitervorrichtung und Verfahren zu ihrer Herstellung

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002076197A (ja) * 2000-08-24 2002-03-15 Toshiba Corp 半導体装置用基板及び半導体装置
JP2010109011A (ja) * 2008-10-28 2010-05-13 Nec Electronics Corp 半導体装置およびその製造方法
WO2014006724A1 (ja) * 2012-07-05 2014-01-09 三菱電機株式会社 半導体装置
JP2017028132A (ja) * 2015-07-23 2017-02-02 富士電機株式会社 半導体モジュール及び半導体モジュールの製造方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020129589A (ja) * 2019-02-07 2020-08-27 積水化学工業株式会社 半導体装置
JP7325747B2 (ja) 2019-02-07 2023-08-15 積水化学工業株式会社 半導体装置
WO2021229673A1 (ja) * 2020-05-12 2021-11-18 三菱電機株式会社 電力用半導体装置
JPWO2021229673A1 (ja) * 2020-05-12 2021-11-18
JP7086324B2 (ja) 2020-05-12 2022-06-17 三菱電機株式会社 電力用半導体装置
JP7276627B1 (ja) * 2022-06-30 2023-05-18 三菱電機株式会社 半導体装置の評価方法、半導体装置の製造方法、及び半導体装置
WO2024004157A1 (ja) * 2022-06-30 2024-01-04 三菱電機株式会社 半導体装置の評価方法、半導体装置の製造方法、及び半導体装置

Also Published As

Publication number Publication date
JP6790226B2 (ja) 2020-11-25
JPWO2018159152A1 (ja) 2019-06-27

Similar Documents

Publication Publication Date Title
CN109743882B (zh) 半导体装置以及电力变换装置
WO2010092905A1 (ja) 絶縁回路基板、インバータ装置、及びパワー半導体装置
WO2018159152A1 (ja) 半導体装置
KR20120109510A (ko) 비선형 저항형 전계 그레이딩을 갖는 전력 전자 모듈 및 그것의 제조 방법
JP2007012831A (ja) パワー半導体装置
CN103996667A (zh) 具有旁路功能的半导体器件及其方法
US10601307B1 (en) Semiconductor device and method for manufacturing the same
JP6246057B2 (ja) 半導体装置
JP5892796B2 (ja) 高圧モジュール
US20220051960A1 (en) Power Semiconductor Module Arrangement and Method for Producing the Same
CN113206048B (zh) 半导体装置及其制造方法
WO2020136810A1 (ja) 半導体装置、半導体装置の製造方法及び電力変換装置
JP5921723B2 (ja) 半導体装置
JP5826443B1 (ja) 半導体装置及びその製造方法
WO2015104808A1 (ja) パワー半導体装置および電力変換装置
JP6891075B2 (ja) パワー半導体モジュール
JP2017224778A (ja) 半導体装置
JP2022148684A (ja) 半導体装置
JP7293978B2 (ja) 半導体装置
JP7086324B2 (ja) 電力用半導体装置
JP7367352B2 (ja) 半導体モジュール、車両、および半導体モジュールの製造方法
JP2003086764A (ja) 半導体装置
JP2024123341A (ja) パワー半導体装置及びその製造方法
CN118805328A (zh) 电力转换装置
JP2023007133A (ja) パワー半導体装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18760967

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019502503

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18760967

Country of ref document: EP

Kind code of ref document: A1