WO2018159118A1 - 位置判定システム - Google Patents

位置判定システム Download PDF

Info

Publication number
WO2018159118A1
WO2018159118A1 PCT/JP2018/000927 JP2018000927W WO2018159118A1 WO 2018159118 A1 WO2018159118 A1 WO 2018159118A1 JP 2018000927 W JP2018000927 W JP 2018000927W WO 2018159118 A1 WO2018159118 A1 WO 2018159118A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
area
mobile terminal
vehicle interior
reception
Prior art date
Application number
PCT/JP2018/000927
Other languages
English (en)
French (fr)
Inventor
健一郎 三治
山口 太一
宗範 松本
宜隆 平尾
Original Assignee
株式会社Soken
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017226766A external-priority patent/JP6812955B2/ja
Application filed by 株式会社Soken, 株式会社デンソー filed Critical 株式会社Soken
Priority to EP18761850.9A priority Critical patent/EP3591429B1/en
Publication of WO2018159118A1 publication Critical patent/WO2018159118A1/ja
Priority to US16/549,991 priority patent/US11027701B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0295Proximity-based methods, e.g. position inferred from reception of particular signals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R25/00Fittings or systems for preventing or indicating unauthorised use or theft of vehicles
    • B60R25/20Means to switch the anti-theft system on or off
    • B60R25/24Means to switch the anti-theft system on or off using electronic identifiers containing a code not memorised by the user
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S11/00Systems for determining distance or velocity not using reflection or reradiation
    • G01S11/02Systems for determining distance or velocity not using reflection or reradiation using radio waves
    • G01S11/06Systems for determining distance or velocity not using reflection or reradiation using radio waves using intensity measurements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q9/00Arrangements in telecontrol or telemetry systems for selectively calling a substation from a main station, in which substation desired apparatus is selected for applying a control signal thereto or for obtaining measured values therefrom

Definitions

  • the present disclosure relates to a position determination system in which an in-vehicle device mounted on a vehicle estimates the position of a mobile terminal carried by a user who uses the vehicle.
  • Patent Document 1 discloses a system for estimating the position of a mobile terminal with respect to a vehicle by performing wireless communication between an on-vehicle device mounted on the vehicle and a mobile terminal carried by a user of the vehicle (hereinafter, a position estimation system). Is disclosed. Specifically, when the mobile terminal disclosed in Patent Document 1 receives a request signal requesting the return of a response signal from the vehicle-mounted device, the mobile terminal returns a response signal including RSSI (Received Signal Strength Strength Indication) of the request signal. . The in-vehicle device stores the RSSI included in the response signal returned from the mobile terminal in the memory.
  • RSSI Receiveived Signal Strength Strength Indication
  • the vehicle-mounted device determines that the mobile terminal is in the vehicle interior when the average value of the RSSI for the last five times stored in the memory exceeds a predetermined threshold. On the other hand, when the average value of RSSI for the latest five times is equal to or less than the threshold, it is determined that the vehicle is outside the passenger compartment.
  • the above-described mobile terminal is a communication terminal having a communication function based on Bluetooth (registered trademark), and in Patent Document 1, a smartphone, a mobile phone, or the like is assumed as the mobile terminal.
  • the vehicle-mounted device performs wireless communication conforming to Bluetooth (registered trademark).
  • Bluetooth registered trademark
  • communication based on a predetermined wireless communication standard, such as Bluetooth, in which the communication area is, for example, about several tens of meters at the maximum is referred to as near field communication.
  • the inventors tested the relationship between the reception intensity of the signal transmitted from the portable terminal in the vehicle-mounted device and the position of the portable terminal in the configuration in which the antenna for short-range communication is arranged in the vehicle interior. The following findings were obtained.
  • reception intensity is sufficiently higher in many areas in the passenger compartment than when the mobile terminal is present outside the passenger compartment.
  • the plurality of radio waves generated by the multipath act so as to weaken each other, and the reception intensity is relatively lower than other areas in the vehicle interior.
  • the in-vehicle device estimates the position of the mobile terminal based on the comparison between the received intensity of the signal transmitted from the mobile terminal and a predetermined threshold, when the mobile terminal is present at the null point in the vehicle interior, In some cases, the reception intensity from the mobile terminal cannot exceed the threshold value, and it is erroneously determined that the mobile terminal exists outside the passenger compartment.
  • the present disclosure has been made based on this situation, and the purpose of the present disclosure is to provide a position determination system capable of determining whether or not a mobile terminal is present in a predetermined target area with higher accuracy. It is to provide.
  • a position determination system for achieving the object is a vehicle-mounted device mounted on a vehicle and a communication terminal carried by a user of the vehicle, and a wireless signal including transmission source information is transmitted within a predetermined time.
  • a mobile terminal set to transmit at least once, and the vehicle-mounted device receives a signal transmitted from the mobile terminal via an antenna installed in the vehicle, and transmits the received radio signal.
  • Based on the reception unit for detecting the reception intensity and the reception intensity of the radio signal detected by the reception unit it is determined whether or not the mobile terminal is present in the target area set in advance based on the installation position of the antenna.
  • a determination threshold for determining whether or not the mobile terminal exists in the target area based on the reception intensity of the radio signal detected by the reception unit.
  • the position determination unit determines that the mobile terminal is outside the target area.
  • the reception strength of the radio signal detected by the mobile terminal is equal to or higher than the high level threshold, it is determined that the mobile terminal is present in the target area, and the mobile terminal is determined to be present in the target area.
  • the mobile terminal is configured to be determined to be outside the target area when the reception intensity of the radio signal detected by the unit is equal to or lower than the low level threshold.
  • the reception intensity detected by the reception unit when the reception intensity detected by the reception unit is equal to or higher than a predetermined high level threshold, it is determined that the position of the mobile terminal is within the target area, and the reception intensity is equal to or lower than the low level threshold. The determination result is held until.
  • the reception strength is equal to or lower than the low level threshold, it is determined that the position of the mobile terminal has transitioned from the target area to the outside of the target area, and the determination result is retained until the reception strength exceeds the high level threshold.
  • FIG. 1 is a diagram showing a schematic configuration of a position determination system
  • FIG. 2 is a block diagram showing a schematic configuration of the in-vehicle system of the first embodiment.
  • FIG. 3 is a block diagram showing a schematic configuration of the near field communication module
  • FIG. 4 is a diagram illustrating an example of an installation position of the short-range communication module.
  • FIG. 5 is a diagram showing a schematic configuration of the authentication ECU.
  • FIG. 6 is a diagram showing a result of testing the relationship between the position of the mobile terminal and the RSSI
  • FIG. 7 is a diagram for explaining the reason why the RSSI increases near the window.
  • FIG. 8 is a flowchart for explaining the position determination process.
  • FIG. 9 is a diagram showing a determination result of the position of the mobile terminal in the comparison configuration
  • FIG. 10 is a diagram for explaining the operation of the position determination unit.
  • FIG. 11 is a diagram illustrating a determination result of the position of the mobile terminal by the position determination unit
  • FIG. 12 is a block diagram showing a schematic configuration of the in-vehicle system of the second embodiment.
  • FIG. 13 is a flowchart for explaining the position determination process performed by the authentication ECU of the second embodiment.
  • FIG. 14 is a flowchart showing a modification of the position determination process performed by the authentication ECU of the second embodiment.
  • FIG. 15A is a diagram for explaining an operation when the position determination unit gets off when the determination algorithm shown in FIG.
  • FIG. 15B is a diagram for explaining the operation of the position determination unit when riding when the determination algorithm shown in FIG. 14 is employed
  • FIG. 16 is a block diagram showing a schematic configuration of the in-vehicle system of the third embodiment.
  • FIG. 17 is a diagram illustrating an example of installation positions of various short-range communication modules.
  • FIG. 18 is a diagram showing an example of the installation position of the vehicle exterior module,
  • FIG. 19 is a flowchart for explaining the position determination process performed by the authentication ECU of the third embodiment.
  • FIG. 20 is a diagram illustrating a result of simulating the intensity distribution of the signal transmitted by the mobile terminal when the mobile terminal is accommodated in the back pocket of the pants.
  • FIG. 21 is a diagram showing a result of simulating the intensity distribution of a signal transmitted by a mobile terminal when the mobile terminal is accommodated in a chest pocket of a jacket
  • FIG. 22 is a flowchart showing a modification of the position determination process performed by the authentication ECU of the third embodiment.
  • FIG. 23 is a conceptual diagram for explaining the configuration of the fourth embodiment.
  • FIG. 24 is a conceptual diagram illustrating how the target area is set in Modification 3.
  • FIG. 25 is a diagram for explaining the operation of the position determination unit and the vehicle control unit in Modification 3.
  • FIG. 26 is a conceptual diagram illustrating an example of an arrangement mode of the vehicle exterior module.
  • FIG. 27 is a conceptual diagram illustrating how the target area is set in the fourth modification.
  • FIG. 28 is a diagram for explaining an example of the operation of the position determination unit in Modification 4.
  • FIG. 29 is a flowchart for explaining the position determination process in the fifth embodiment.
  • FIG. 30 is a conceptual diagram illustrating how the target area is
  • FIG. 1 is a diagram illustrating an example of a schematic configuration of a position determination system 1 according to the present disclosure.
  • the position determination system 1 includes an in-vehicle system 10 mounted on a vehicle V and a mobile terminal 20 that is a communication terminal carried by a user of the vehicle V.
  • the vehicle V is a vehicle provided with a driver's seat (in other words, a steering wheel) on the right side, but is not limited thereto.
  • the vehicle V may be a vehicle provided with a driver's seat on the left side.
  • the portable terminal 20 is a communication terminal having a function of performing communication (hereinafter, referred to as short-range communication) compliant with a predetermined short-range wireless communication standard in which the communication range is, for example, about several tens of meters at the maximum.
  • short-range wireless communication standard for example, Bluetooth Low Energy (Bluetooth is a registered trademark), Wi-Fi (registered trademark), ZigBee (registered trademark), or the like can be adopted.
  • the mobile terminal 20 only needs to have the short-range communication function described above.
  • a smartphone can be used as the mobile terminal 20.
  • the portable terminal 20 may be a tablet terminal, a wearable device, a portable music player, a portable game machine, or the like.
  • the wearable device may have a function of sensing biological information such as a pulse.
  • the signal transmitted by the mobile terminal 20 as short-range communication includes transmission source information.
  • the transmission source information is, for example, identification information (hereinafter referred to as a terminal ID) assigned to the mobile terminal 20.
  • the terminal ID functions as information for identifying another communication terminal and the mobile terminal 20.
  • the portable terminal 20 wirelessly transmits a communication packet including transmission source information at a predetermined transmission interval, thereby notifying the surrounding communication terminals having a short-range communication function of the presence of itself (that is, Advertise).
  • a communication packet periodically transmitted for the purpose of advertisement is referred to as an advertisement packet.
  • the mobile terminal 20 is configured to wirelessly transmit an advertisement packet at a predetermined transmission interval (for example, 100 milliseconds).
  • the transmission interval of the advertisement packet may be variable according to the operation status of the mobile terminal 20. For example, when a predetermined application using the short-range communication function is operating in the foreground in the mobile terminal 20, the transmission interval is set to a relatively short time (for example, 50 milliseconds). On the other hand, when the application is not operating in the foreground, the transmission interval is set to a relatively long time (200 milliseconds).
  • the portable terminal 20 only needs to be configured to transmit an advertisement packet at least once in a predetermined time (for example, 200 milliseconds) defined by the position determination system 1.
  • the in-vehicle system 10 also has the short-range communication function described above.
  • the in-vehicle system 10 receives a signal (for example, an advertisement packet) transmitted from the mobile terminal 20 to detect that the mobile terminal 20 exists within a range in which near-field communication with the in-vehicle system 10 is possible.
  • a signal for example, an advertisement packet
  • the range in which the in-vehicle system 10 can perform near field communication with the mobile terminal 20 is also referred to as a communication area.
  • the in-vehicle system 10 corresponds to an in-vehicle device.
  • the in-vehicle system 10 includes an authentication ECU 100, a short-range communication module 140, a touch sensor 110, a start button 120, a lock button 130, an engine ECU 200, and a body ECU 300.
  • ECU stands for Electronic Control Unit.
  • the near field communication module 140 is connected to the authentication ECU 100 so as to communicate with each other.
  • Each of the touch sensor 110, the start button 120, and the lock button 130 is electrically connected to the authentication ECU 100.
  • the authentication ECU 100 is connected to each of the engine ECU 200 and the body ECU 300 via a communication network (hereinafter referred to as LAN: Local Area Network) 400 built in the vehicle so as to be able to communicate with each other.
  • LAN Local Area Network
  • the authentication ECU 100 roughly estimates the position of the mobile terminal 20 through cooperation (in other words, cooperation) with the short-range communication module 140, and performs vehicle control according to the estimation result in cooperation with other ECUs. It is ECU realized by.
  • This authentication ECU 100 is realized by using a computer. That is, the authentication ECU 100 includes a CPU 101, a RAM (Random Access Memory) 102, a flash memory 103, an I / O 104, and a bus line that connects these configurations.
  • a CPU 101 a central processing unit (CPU) 102
  • a RAM Random Access Memory
  • flash memory 103 a flash memory
  • I / O 104 an I / O 104
  • the CPU 101 is an arithmetic processing unit that executes various arithmetic processes.
  • the RAM 102 is a volatile storage medium, and the flash memory 103 is a rewritable nonvolatile storage medium.
  • the I / O 104 is a circuit module that functions as an interface for the authentication ECU 100 to communicate with the short-range communication module 140 and other devices (not shown) mounted on the vehicle V.
  • the I / O 104 may be realized using analog circuit elements, ICs, or the like.
  • the flash memory 103 stores a program (hereinafter referred to as a position determination program) for causing a normal computer to function as the authentication ECU 100.
  • a position determination program for causing a normal computer to function as the authentication ECU 100.
  • the above-described position determination program only needs to be stored in a non-transitory tangible recording medium (non-transitory tangible storage storage medium). Executing the position determination program by the CPU 101 corresponds to executing a method corresponding to the position determination program.
  • the authentication ECU 100 Details of the authentication ECU 100 will be described later. It should be noted that even when the travel power source (for example, the ignition power source) of the vehicle V is turned off, the authentication ECU 100 is supplied with sufficient power necessary for performing the position determination process described later from the vehicle-mounted battery. It is configured.
  • the travel power source for example, the ignition power source
  • the touch sensor 110 is mounted on each door handle of the vehicle V and detects that the user is touching the door handle. The detection result of each touch sensor 110 is sequentially output to the authentication ECU 100.
  • the start button 120 is a push switch for the user to start a drive source (for example, an engine). When a push operation is performed by the user, the start button 120 outputs a control signal indicating that to the authentication ECU 100.
  • the vehicle V is a vehicle including an engine as a power source, but is not limited thereto.
  • the vehicle V may be an electric vehicle or a hybrid vehicle.
  • the start button 120 is a switch for starting a drive motor.
  • the locking button 130 is a button for the user to lock the door of the vehicle V. It may be provided at each door handle of the vehicle V. When the lock button 130 is pressed by the user, it outputs a control signal indicating that to the authentication ECU 100.
  • the near field communication module 140 is a communication module for performing near field communication.
  • the short-range communication module 140 corresponds to a receiving unit. As shown in FIG. 3, the short-range communication module 140 includes an antenna 141, a transmission / reception unit 142, and a communication microcomputer 143 as finer components.
  • the antenna 141 is an antenna for transmitting and receiving radio waves in a frequency band (for example, 2.4 GHz band) used for near field communication.
  • the antenna 141 is an omnidirectional antenna as an example.
  • the antenna 141 may have directivity.
  • the transmission / reception unit 142 demodulates the signal received by the antenna 141 and provides it to the communication microcomputer 143. Further, a signal input from the authentication ECU 100 via the communication microcomputer 143 is modulated and output to the antenna 141 to be radiated as a radio wave.
  • the transmission / reception unit 142 includes an RSSI detection unit 1421 that sequentially detects the strength of a signal received by the antenna 141 (hereinafter, RSSI: Received Signal Strength Strength).
  • RSSI Received Signal Strength Strength
  • the RSSI detected by the RSSI detection unit 1421 is sequentially provided to the communication microcomputer 143 in association with the terminal ID included in the received data.
  • the RSSI may be expressed in, for example, a unit of power [dBm].
  • data in which RSSI and terminal ID are associated is referred to as RSSI data.
  • the communication microcomputer 143 is a microcomputer that controls data exchange with the authentication ECU 100, and is implemented using an MPU (Micro-processing unit), a RAM, or the like.
  • the communication microcomputer provides the reception data input from the transmission / reception unit 142 to the authentication ECU 100 sequentially or based on a request from the authentication ECU 100. That is, the data received by the transmission / reception unit 142 is provided to the authentication ECU 100 via the communication microcomputer 143.
  • the communication microcomputer 143 acquires the RSSI data from the RSSI detection unit 1421, the communication microcomputer 143 accumulates it in a RAM (not shown).
  • the RSSI data acquired sequentially may be sorted and stored in the RAM in chronological order so that the RSSI of the latest received data is at the head, for example. Data that has been stored for a certain period of time can be discarded in sequence. That is, RSSI data is held in the RAM for a certain period of time.
  • the communication microcomputer 143 provides RSSI data stored in the RAM based on a request from the authentication ECU 100.
  • RSSI data provided to the authentication ECU 100 may be deleted from the RAM.
  • the retention period of the RSSI data in the communication microcomputer 143 may be set to a value longer than a predetermined sampling period.
  • the sampling period is an interval at which the authentication ECU 100 acquires (in other words, samples) the RSSI of the signal transmitted from the mobile terminal 20.
  • the sampling period corresponds to an interval at which the authentication ECU 100 requests the communication microcomputer to provide RSSI data.
  • a specific value of the sampling interval may be designed as appropriate, and is assumed to be set to 200 milliseconds as an example here.
  • the RSSI data output from the transmission / reception unit 142 is temporarily held in the RAM, and the communication microcomputer 143 provides the authentication ECU 100 with the RSSI data stored in the RAM based on a request from the authentication ECU 100.
  • the communication microcomputer 143 provides the authentication ECU 100 with the RSSI data stored in the RAM based on a request from the authentication ECU 100.
  • RSSI data is sequentially provided to the authentication ECU 100 may be employed.
  • the short-range communication module 140 including the antenna 141 is appropriately designed in the vehicle interior so that at least the vehicle interior space around the front seat such as the driver's seat and the passenger seat (hereinafter referred to as the front seat space) is a communication area. It suffices if they are arranged.
  • the communication area for a certain near field communication module 140 is a range in which the near field communication module 140 can communicate with the mobile terminal 20.
  • the communication area can be adjusted by adjusting parameters such as signal transmission power, reception sensitivity, and mounting posture of the short-range communication module 140.
  • the antenna 141 is arrange
  • the non-line-of-sight area for the antenna 141 is an area where the signal transmitted from the antenna 141 does not reach directly. Since the propagation path of the wireless signal is reversible, the non-line-of-sight area for the antenna 141 is equivalent to an area where the antenna 141 can directly receive a signal transmitted from the mobile terminal 20. Even when the mobile terminal 20 exists in the non-line-of-sight area, the signal transmitted from the mobile terminal 20 can reach the non-line-of-sight area by being reflected by various structures.
  • the short-range communication module 140 is disposed near the boundary between the center console 2 and the instrument panel 3 as shown in FIG. 4 so that the entire vehicle interior space is a communication area.
  • the installation position of the short-range communication module 140 is not limited to this.
  • it may be arranged at the step of the driver's seat or the side of the driver's seat door on the side of the passenger compartment so that the vicinity of the driver's seat in the passenger compartment is within the line of sight and the outside of the passenger compartment is out of the line of sight.
  • FIG. 4 it is a conceptual top view of the vehicle V, Comprising: The roof part is permeate
  • the antenna 141 when allowing leakage of radio waves to the outside of the passenger compartment, the antenna 141 may be disposed at the center of the ceiling portion of the passenger compartment. In the case where the antenna 141 is a directional antenna, even if the antenna 141 is provided on the ceiling of the vehicle interior, if the antenna 141 is disposed in a posture in which the center of the directivity faces the floor surface of the vehicle V, the radio waves to the outside of the vehicle interior can be transmitted. Leakage can be suppressed.
  • only one short-range communication module 140 is provided in the vehicle interior. As will be described later as another embodiment, a plurality of short-range communication modules 140 may be provided in the vehicle interior.
  • Engine ECU 200 is an ECU that controls the operation of the engine mounted on vehicle V.
  • the body ECU 300 is connected to various vehicle-mounted actuators (VA) 310 and various vehicle-mounted sensors 320 so as to be communicable, and is an ECU that controls the vehicle-mounted actuator 310 based on a request from the authentication ECU 100.
  • the on-vehicle actuator 310 is, for example, a door lock motor constituting a lock mechanism of each door, an actuator for adjusting a seat position (hereinafter referred to as a seat actuator), or the like.
  • the vehicle-mounted sensor (VS) 320 here is a courtesy switch etc. which are arrange
  • a courtesy switch is a sensor that detects the opening and closing of a door.
  • the body ECU 300 locks or unlocks each door by outputting a predetermined control signal to a door lock motor provided in each door of the vehicle V based on a request from the authentication ECU 100, for example.
  • the authentication ECU 100 provides functions corresponding to the various functional blocks shown in FIG. 5 by executing the position determination program described above. That is, the authentication ECU 100 includes a vehicle information acquisition unit F1, a transmission processing unit F2, a reception processing unit F3, an RSSI acquisition unit F4, an authentication processing unit F5, a position determination unit F6, and a vehicle control unit F7 as functional blocks.
  • part or all of the functions executed by the authentication ECU 100 may be realized as hardware using a logic circuit or the like.
  • the aspect realized as hardware includes an aspect realized using one or a plurality of ICs.
  • some or all of the functional blocks provided in the authentication ECU 100 may be realized by a combination of software execution by the CPU 101 and an electronic circuit.
  • the authentication ECU 100 includes an RSSI storage unit M1 and a position storage unit M2.
  • the RSSI storage unit M1 is a storage area for storing the RSSI of the signal transmitted from the mobile terminal 20.
  • the position storage unit M2 is a storage area in which data indicating the position of the mobile terminal, such as whether or not the mobile terminal 20 exists in the vehicle interior, is stored.
  • the RSSI storage unit M1 and the position storage unit M2 may be any memory (for example, a non-volatile memory) that retains data even while the power supply for the vehicle V is turned off.
  • the data in the RAM 102 is held by the power supplied from the in-vehicle battery even while the traveling power supply is off. Therefore, in this embodiment, as an example, the RSSI storage unit M1 and the position storage unit M2 are realized by using a part of the storage area included in the RAM 102.
  • the RSSI storage unit M1 and the position storage unit M2 may be realized using a rewritable nonvolatile storage medium such as the flash memory 103.
  • the position storage unit M2 may be realized using a register included in the CPU 101.
  • the vehicle information acquisition unit F1 acquires various information (hereinafter, vehicle information) indicating the state of the vehicle V from a sensor (for example, the touch sensor 110) or ECU (for example, the body ECU 300) mounted on the vehicle V.
  • vehicle information includes, for example, the open / closed state of the door, the locked or unlocked state of each door, the presence / absence of touch on the door handle, the presence / absence of pressing of the start button 120, and the like.
  • the information contained in vehicle information is not restricted to what was mentioned above.
  • the vehicle information includes a shift position detected by a shift position sensor (not shown) and a detection result of a brake sensor that detects whether or not the brake pedal is depressed. Note that acquiring information indicating the locked or unlocked state of each door corresponds to determining the locked or unlocked state of each door.
  • the vehicle information acquisition unit F1 specifies the current state of the vehicle V based on the various information described above. For example, the vehicle information acquisition unit F1 determines that the vehicle V is parked when the engine is off and all the doors are locked. Of course, the conditions for determining that the vehicle V is parked may be appropriately designed, and various determination conditions and the like can be applied.
  • the vehicle information acquisition unit F1 corresponds to a vehicle state determination unit.
  • the transmission processing unit F2 generates data addressed to the mobile terminal 20 and outputs the data to the short-range communication module 140. Thereby, a signal corresponding to desired data is transmitted as a radio wave.
  • the reception processing unit F3 is configured to acquire reception data from the short-range communication module 140.
  • the RSSI acquisition unit F4 is configured to acquire RSSI data from the short-range communication module 140.
  • the RSSI acquisition unit F4 of this embodiment acquires RSSI data by requesting the short-range communication module 140 to provide RSSI data at a predetermined sampling interval.
  • the RSSI acquisition unit F4 collects RSSI of signals transmitted from the mobile terminal 20.
  • the RSSI of the signal transmitted from the mobile terminal 20 is an RSSI associated with the terminal ID of the mobile terminal 20.
  • the RSSI of the signal transmitted from the mobile terminal 20 is abbreviated as the RSSI of the mobile terminal 20.
  • the RSSI of signals from other than the mobile terminal 20 may be discarded. Further, the process of discarding the RSSI of signals from other than the mobile terminal 20 may be performed by the short-range communication module 140 (for example, the communication microcomputer 143). In that case, it is assumed that the terminal ID of the portable terminal 20 is also registered in the short-range communication module 140.
  • the RSSI of the mobile terminal 20 is accumulated in the RSSI storage unit M1.
  • the plurality of RSSIs having different acquisition times may be sorted and stored in the RAM 102 in time series so that the RSSI of the latest received data is at the head, for example.
  • RSSIs that have been stored for a certain period of time after being stored in the RAM 102 may be deleted sequentially. According to such a configuration, the RSSI of the signal received within the latest fixed time is stored in the RAM 102.
  • the RSSI holding time may be, for example, a time that is 5 to 10 times the sampling interval.
  • the RSSI acquisition unit F 4 The RSSI is stored separately for each terminal ID.
  • the authentication processing unit F5 performs a process of authenticating the mobile terminal 20 (hereinafter referred to as an authentication process) in cooperation with the short-range communication module 140. It is assumed that the near field communication for authentication is performed after being encrypted. That is, the authentication process is performed by encrypted communication. The authentication process itself may be performed using various methods such as a challenge-response method. Detailed description thereof is omitted here. It is assumed that data necessary for the authentication process (for example, a verification code) is stored in each of the mobile terminal 20 and the authentication ECU 100.
  • the in-vehicle system 10 includes a short-range communication module for specifying the position of the mobile terminal 20 and a short-range communication module (data communication module) for performing data communication with the mobile terminal 20 separately. It may be.
  • the data communication module plays a role of performing authentication processing with the mobile terminal 20.
  • the data communication module plays a role as a gateway.
  • the position determination unit F6 is configured to determine whether or not the mobile terminal 20 exists in the vehicle interior based on the RSSI of the mobile terminal 20 collected by the RSSI acquisition unit F4.
  • the flash memory 103 includes a high level threshold and a low level threshold as determination thresholds for the position determination unit F6 to determine whether the mobile terminal 20 is present in the vehicle interior based on the RSSI of the mobile terminal 20. Two parameters are prepared in advance.
  • the high level threshold is a threshold for determining that the mobile terminal 20 is present in the passenger compartment.
  • the high level threshold is set to a relatively higher value than the low level threshold.
  • the high level threshold value may be designed with reference to RSSI when the mobile terminal 20 is present in the passenger compartment (particularly around the driver's seat), which is specified by a test or the like.
  • FIG. 6 is a diagram showing the results of testing the relationship between the RSSI of the mobile terminal 20 and the position of the mobile terminal 20 in the front seat space and the area around the door for the driver's seat outside the passenger compartment.
  • the test results shown in FIG. 6 show that the mobile terminal 20 is at the same height as the window of the vehicle V, specifically, the height from the road surface is 1.1 m when the door of the vehicle V is closed.
  • the RSSI when the mobile terminal 20 is present in the front seat in the vehicle interior is a point where the mobile terminal 20 is several meters away from the vehicle interior. It becomes a value relatively larger than RSSI in the case of A point where the RSSI has decreased by 10 dBm or more in the front seat space compared to the surroundings represents a point where the RSSI rapidly decreases due to the influence of multipath, that is, a null point. Note that even in the region outside the passenger compartment, the region near the window portion can be within the line-of-sight of the antenna 141 as shown in FIG. 7, and thus may have a relatively higher value than other regions outside the passenger compartment.
  • the high level threshold only needs to be set to a value sufficiently larger than the RSSI when the mobile terminal 20 is present at a point about several meters away from the vehicle V based on the test result described above.
  • the high level threshold is set to ⁇ 40 dBm.
  • it is an extremely low value compared to other areas, in other words, a point assumed to be a null point. It is preferable to determine after removing observation values at.
  • the low level threshold is a threshold for determining that the mobile terminal 20 exists outside the passenger compartment.
  • the specific value of the low level threshold may be appropriately designed based on the result of testing the correspondence between the position of the mobile terminal 20 and the RSSI, similarly to the high level threshold.
  • the low level threshold is preferably set to a value 10 dBm or more lower than the high level threshold.
  • -50 dBm is set.
  • the position determination part F6 determines whether the portable terminal 20 exists in a vehicle interior using the high level threshold value and low level threshold value which were mentioned above. The operation of the position determination unit F6 will be described later separately.
  • the determination result of the position determination unit F6 is stored in the position storage unit M2.
  • the determination result of the position determination unit F6 is position information of the mobile terminal 20 such as whether the mobile terminal 20 exists inside or outside the vehicle interior.
  • the determination result of the position determination unit F6 is referred to by the vehicle control unit F7.
  • the location information of the mobile terminal 20 registered in the location storage unit M2 is assumed to be set outside the passenger compartment in an initial state such as at the time of factory shipment. Further, as a more preferable aspect in the present embodiment, when the signal from the mobile terminal 20 cannot be received, the position information of the mobile terminal 20 registered in the position storage unit M2 is set outside the vehicle compartment. . In addition, when the state where the vehicle V is parked continues for a certain time (for example, 1 hour) or more, the position information of the mobile terminal 20 registered in the position storage unit M2 may be set outside the vehicle compartment. Whether or not the vehicle V is parked may be specified by the vehicle information acquisition unit F1 based on signals input from various sensors. According to such an aspect, the position information of the portable terminal 20 registered in the position storage unit M2 can be reset periodically or at a predetermined timing.
  • the vehicle control unit F7 When the authentication of the portable terminal 20 by the authentication processing unit F5 is successful, the vehicle control unit F7 enters a standby state for a certain time (for example, 10 seconds). When the vehicle information acquisition unit F1 detects that a predetermined user operation has been performed during the standby state, vehicle control is performed according to the content of the user operation. That is, when the vehicle information acquisition unit F1 detects a predetermined user operation within a predetermined time after the authentication processing of the mobile terminal 20 by the authentication processing unit F5 is successful, the vehicle control unit F7 responds to the user operation. It is the structure which implements the vehicle control. In addition, it is preferable that the determination result of the position determination part F6 is also used for the vehicle control execution condition.
  • the position determination unit F6 determines that the mobile terminal 20 is outside the passenger compartment, and touches the handle by the user with the touch sensor 110 when the mobile terminal 20 is in the standby state.
  • the door is unlocked in cooperation with the body ECU 300.
  • the position determination unit F6 determines that the mobile terminal 20 is present in the passenger compartment and is in the standby state
  • the start button 120 when the start button 120 is pressed by the user, it cooperates with the engine ECU 200. Then start the engine.
  • the contents of the vehicle control performed by the vehicle control unit F7 may be appropriately designed in accordance with the execution conditions.
  • the position determination process is a process for determining the position of the mobile terminal 20. This position determination process may be performed at a predetermined sampling interval, for example.
  • the RSSI acquisition unit F4 acquires RSSI data from the short-range communication module 140, and proceeds to S102.
  • the RSSI acquisition unit F4 determines whether the RSSI data associated with the terminal ID (that is, the registration ID) of the mobile terminal 20 has been acquired. If the RSSI associated with the registration ID has been acquired as a result of the process of S101, an affirmative determination is made in S102 and the process proceeds to S103. On the other hand, when the RSSI associated with the registration ID cannot be acquired, a negative determination is made in S102 and this flow ends.
  • the mobile terminal 20 when the RSSI associated with the registration ID can be acquired in S101, the mobile terminal 20 is present in the vicinity of the vehicle V (including the passenger compartment), and the signal transmitted from the mobile terminal 20 is not This means that the distance communication module 140 can receive. If the mobile terminal 20 is not present near the vehicle V and the signal transmitted from the mobile terminal 20 is not received by the short-range communication module 140, a negative determination is made in S102. That is, the determination process in S102 corresponds to a process of determining whether or not the mobile terminal 20 exists around the vehicle V.
  • the RSSI acquisition unit F4 stores the RSSI of the mobile terminal 20 acquired in S101 in the RSSI storage unit M1, and proceeds to S104.
  • the position determination unit F6 calculates the moving average value of the RSSI of the mobile terminal 20 based on the data stored in the RSSI storage unit M1. Specifically, an average value using the latest N RSSIs stored in the RSSI storage unit M1 as a population is calculated. N may be a natural number of 2 or more, and is 5 in the present embodiment. In this case, the moving average value is calculated using the RSSI of the portable terminal 20 sampled at the latest five time points. Of course, N may be 10, 20 or the like.
  • the moving average value of the RSSI of the mobile terminal 20 calculated in S104 is referred to as average strength.
  • the process proceeds to S105.
  • the position determination unit F6 reads the result of the previous position determination process with reference to the position storage unit M2. If it is determined in the previous position determination process that the position of the mobile terminal 20 is outside the passenger compartment, an affirmative determination is made in S106 and the process proceeds to S107. On the other hand, if it is determined in the previous position determination process that the position of the mobile terminal 20 is in the passenger compartment, a negative determination is made in S106 and the process proceeds to S111.
  • the position determination unit F6 compares the average intensity calculated in S104 with the high level threshold and determines whether the average intensity is equal to or higher than the high level threshold. If the average intensity is greater than or equal to the high level threshold, an affirmative determination is made in S107 and the process proceeds to S108, where it is determined that the mobile terminal 20 is present in the passenger compartment. And the determination result that the position of the portable terminal 20 is a vehicle interior is preserve
  • storage part M2 rewrites the positional information on the portable terminal 20 preserve
  • the determination threshold value used in the next position determination process is set to the low level threshold value, and the process proceeds to S115.
  • the process proceeds to S110, and it is determined that the mobile terminal 20 exists outside the passenger compartment.
  • the process in S110 corresponds to maintaining the previous determination result that the mobile terminal 20 exists outside the passenger compartment.
  • the setting of the determination threshold used in the next position determination process is not changed (that is, the high level threshold is set), and the process proceeds to S115.
  • the state in which the mobile terminal 20 exists outside the vehicle compartment continues using the high-level threshold as the determination threshold. It is determined whether or not. And when average intensity is more than a high level threshold value, it determines with the position of the portable terminal 20 having changed from the vehicle interior to the vehicle interior. That is, the high level threshold value functions as a threshold value for determining whether or not the mobile terminal 20 has been brought into the passenger compartment.
  • the position determination unit F6 compares the average intensity calculated in S104 with the low level threshold to determine whether the average intensity is equal to or lower than the low level threshold. If the average intensity is equal to or lower than the low level threshold, an affirmative determination is made in S111 and the process proceeds to S112, where it is determined that the mobile terminal 20 is outside the vehicle compartment. And the determination result that the position of the portable terminal 20 exists outside the passenger compartment is stored in the position storage unit M2, and the process proceeds to S113.
  • storage part M2 rewrites the positional information on the portable terminal 20 preserve
  • the determination threshold value used in the next position determination process is set to the high level threshold value, and the process proceeds to S115.
  • the process proceeds to S114, and it is determined that the portable terminal 20 exists in the vehicle interior.
  • the process in S114 corresponds to maintaining the previous determination result that the mobile terminal 20 exists in the passenger compartment.
  • the setting of the determination threshold used in the next position determination process is not changed (that is, the low level threshold is set), and the process proceeds to S115.
  • the state in which the mobile terminal 20 is present in the vehicle interior continues using the low level threshold as the determination threshold. It is determined whether or not. And when average intensity becomes below a low level threshold value, it determines with the position of the portable terminal 20 having changed from the vehicle interior to the vehicle interior outside. That is, the low level threshold value functions as a threshold value for determining whether or not the portable terminal 20 has been taken out of the passenger compartment. Note that determining that the mobile terminal 20 has been taken out of the passenger compartment suggests that the user of the mobile terminal 20 has gone out of the passenger compartment.
  • the authentication processing unit F5 performs authentication processing with the mobile terminal 20 by encrypted communication. If the authentication process is successful, the process proceeds to S116, whereas if the authentication process is unsuccessful, this flow ends. In S116, the vehicle control unit F7 shifts to the standby state and ends this flow. When it is detected that a user operation corresponding to the position of the mobile terminal 20 has been executed while in the standby state, predetermined vehicle control (for example, door locking) according to the situation is performed. To do.
  • predetermined vehicle control for example, door locking
  • the comparison configuration is a configuration for determining whether or not the mobile terminal 20 is present in the vehicle interior using one type of determination threshold.
  • the mobile terminal 20 is determined to be present in the passenger compartment when the average RSSI intensity is equal to or greater than the determination threshold, and the mobile terminal 20 is present outside the passenger compartment when the average RSSI intensity is less than the determination threshold.
  • the setting value of the threshold for determination is too low in the comparative configuration, there is an increased risk of erroneous determination that the mobile terminal 20 is present in the passenger compartment even though the mobile terminal 20 actually exists outside the passenger compartment.
  • the determination threshold value it is necessary to set the determination threshold value to a value that is unlikely to cause erroneous determination in view of those circumstances.
  • FIG. 9 shows the determination result of the position of the mobile terminal 20 by the comparison configuration when the determination threshold of the comparison configuration is set to ⁇ 45 dBm in the test environment shown in FIG.
  • the average intensity when the average intensity is equal to or higher than the high level threshold, it is determined that the position of the mobile terminal 20 has transitioned from the outside of the passenger compartment to the passenger compartment, and the average intensity is equal to or lower than the low level threshold. The determination result is held. Further, when the average intensity is equal to or lower than the low level threshold, it is determined that the position of the mobile terminal 20 has transitioned from the vehicle interior to the outside of the vehicle interior, and the determination result is retained until the average intensity is equal to or higher than the high level threshold. .
  • time t1 shown in FIG. 10 represents a point in time when the mobile terminal 20 was brought into the vehicle interior and the average RSSI intensity was equal to or higher than the high-level threshold, and time t3 was taken out of the vehicle interior. It represents a point in time when the average intensity of RSSI is equal to or lower than the low level threshold. Time t2 represents a point in time when the average intensity temporarily decreases due to the influence of multipath.
  • FIG. 11 shows the determination result of the position of the mobile terminal 20 when the high level threshold is set to ⁇ 40 dBm and the high level threshold is set to ⁇ 50 dBm in the test environment shown in FIG.
  • FIG. 11 and FIG. 9 it is possible to suppress an erroneously determined region as compared with the comparison configuration.
  • the gap between the high level threshold and the low level threshold is preferably 10 dB or more as described above in the present embodiment. If the gap between the high level threshold and the low level threshold is set large, the determination result can be easily held. That is, the risk of erroneously determining the position of the mobile terminal 20 due to multipath, radio wave leakage, or the like can be further reduced. However, if the gap between the high level threshold and the low level threshold is set too large, it becomes difficult to exceed the high level threshold or to fall below the low level threshold. As a result, the possibility of erroneous determination is relatively increased. Therefore, the gap between the high level threshold and the low level threshold is preferably set to a value within a predetermined range with 10 dB as a reference in view of the above trade-off.
  • the evaluation results in FIGS. 6 and 11 are evaluation results at a height corresponding to the window.
  • a space lower than the window for example, the height corresponding to the seating surface or the height corresponding to the floor surface in the passenger compartment, erroneous determination is further less likely to occur. That is, in a space lower than the window, when the mobile terminal 20 is outside the vehicle compartment, a metal body such as a door is interposed between the mobile terminal 20 and the antenna 141, and the mobile terminal 20 is placed in the vehicle interior. This is because the RSSI has a significantly different value depending on whether or not it exists.
  • the sampling interval is set to several hundred milliseconds (specifically, 200 milliseconds). Since the moving speed of the user around the vehicle is assumed to be about 1 m / sec, the RSSI of the mobile terminal 20 is roughly sampled every time the user moves about 20 cm by setting the sampling interval to 200 milliseconds. can do. By sampling the RSSI of the mobile terminal 20 relatively densely in this way, it is possible to reduce the risk of missing the moment when the RSSI of the mobile terminal 20 exceeds the high level threshold. As a result, it is possible to accurately detect that the mobile terminal 20 has been brought into the vehicle compartment.
  • the sampling interval may be a time interval that is sufficiently early with respect to human movement.
  • the position determination system 1 according to the second embodiment of the present disclosure will be described with reference to the drawings.
  • the main difference between the present embodiment and the first embodiment is that the RSSI in the near field communication module installed in the passenger compartment and the near field communication module installed so that the predetermined area outside the passenger compartment becomes the line-of-sight area. It is in the point which estimates the position of the portable terminal 20 using the difference with RSSI.
  • the configuration and operation of the in-vehicle system 10 in the position determination system 1 in the second embodiment will be mainly described.
  • members having the same functions as those described in the first embodiment are denoted by the same reference numerals, and description thereof is omitted.
  • the configuration of the above-described embodiment can be applied to the other portions.
  • the various short-range communication modules included in the in-vehicle system 10 are not distinguished from each other, they are also simply referred to as short-range communication modules without a reference sign.
  • the in-vehicle system 10 in this embodiment includes a vehicle interior module 150 and a vehicle exterior module 160 as short-distance communication modules.
  • the engine ECU 200 and the like are not shown.
  • the vehicle interior module 150 is a short-range communication module mainly for performing short-range communication with the mobile terminal 20 existing in the vehicle interior, and corresponds to the short-range communication module 140 in the first embodiment.
  • the vehicle interior module 150 is preferably provided at a position where the outside of the vehicle compartment is the out-of-sight region, such as the vicinity of the center console 2 or the foot of the driver's seat.
  • the vehicle interior module 150 corresponds to a receiving unit, particularly a vehicle interior receiving unit.
  • the antenna for near field communication with which the vehicle interior module 150 is provided corresponds to a vehicle interior antenna.
  • the vehicle exterior module 160 is a short-distance communication module for performing short-range communication mainly with the mobile terminal 20 existing outside the vehicle interior.
  • the configuration and functions of the vehicle exterior module 160 are the same as those of the vehicle interior module 150.
  • the outside module 160 may be arranged, for example, on the outer surface of the driver's seat door, the roof of the vehicle V, the hood, the pillar, or the like so that the predetermined range outside the cabin is within the line of sight.
  • the vehicle exterior module 160 corresponds to a reception unit, in particular, a vehicle exterior reception unit.
  • the antenna for near field communication with which the vehicle exterior module 160 is provided corresponds to a vehicle exterior antenna.
  • the vehicle exterior module 160 is preferably attached at a position where the vehicle interior is out of sight. Further, the vehicle exterior antenna may be realized using a directional antenna. In the present embodiment, as an example, it is assumed that only one vehicle exterior module 160 is provided. As will be described later as another embodiment, a plurality of vehicle exterior modules 160 may be provided.
  • the RSSI acquisition unit F4 acquires RSSI data from each of the vehicle interior module 150 and the vehicle exterior module 160, and stores the acquired RSSI data in the RSSI storage unit M1 by distinguishing each acquisition source. . That is, the RSSI of the mobile terminal 20 acquired from the vehicle interior module 150 and the RSSI of the mobile terminal 20 acquired from the vehicle exterior module 160 are distinguished and stored in the RSSI storage unit M1.
  • the position determination unit F6 determines that the mobile terminal 20 exists in the vehicle interior based on the difference between the RSSI of the mobile terminal 20 acquired from the vehicle interior module 150 and the RSSI of the mobile terminal 20 acquired from the vehicle exterior module 160. It is determined whether or not to do. Specifically, the vehicle interior average strength that is the average strength of the RSSI of the mobile terminal 20 acquired from the vehicle interior module 150 and the vehicle exterior average that is the average strength of the RSSI of the mobile terminal 20 acquired from the vehicle exterior module 160. Calculate each of the intensities.
  • strength difference (DELTA) RSSI which is the value which subtracted the vehicle interior average intensity
  • the intensity difference ⁇ RSSI represents the difference between the signal intensity of the radio signal transmitted from the mobile terminal 20 in the vehicle interior and the signal intensity outside the vehicle interior (particularly in the vicinity of the vehicle).
  • the intensity difference ⁇ RSSI corresponds to the intensity difference value.
  • the index used for the position determination of the mobile terminal 20 does not represent the reception intensity itself, but the difference between the reception intensity in the vehicle interior module 150 and the reception intensity in the vehicle exterior module 160. It is. Therefore, the high level threshold and the low level threshold in the present embodiment are the difference between the reception intensity in the vehicle interior module 150 and the reception intensity in the vehicle exterior module 160 when the mobile terminal 20 is outside the vehicle interior. And it is determined based on the difference between the reception intensity in the vehicle interior module 150 and the reception intensity in the vehicle exterior module 160 when the mobile terminal 20 is present in the vehicle interior.
  • the reception intensity at the vehicle interior module 150 tends to be greater than the reception intensity at the vehicle interior module 160. Therefore, the intensity difference ⁇ RSSI can be expected to be a positive value.
  • the reception intensity at the vehicle interior module 150 tends to be smaller than the reception intensity at the vehicle interior module 160. Therefore, the intensity difference ⁇ RSSI can be expected to be a negative value.
  • the high level threshold and the low level threshold may be determined in view of the above-described tendency.
  • the high level threshold is set to +5 dB
  • the low level threshold is set to ⁇ 5 dB.
  • the high level threshold may be set to +10 dB and the low level threshold may be set to 0 dB. Specific values of the high level threshold and the low level threshold may be appropriately designed.
  • the flowchart shown in FIG. 13 may be executed at a predetermined sampling interval, similarly to the flowchart shown in FIG.
  • the RSSI acquisition unit F4 acquires RSSI data from each of the vehicle interior module 150 and the vehicle exterior module 160, and proceeds to S202.
  • the RSSI acquisition unit F4 determines whether the RSSI data associated with the registration ID has been acquired as a result of the processing in S211.
  • the subsequent processing such as S203 is performed.
  • S203 it is not limited to this. If at least one of the vehicle interior module 150 and the vehicle exterior module 160 has not acquired the RSSI of the mobile terminal 20, a negative determination may be made in S202 to end this flow.
  • the RSSI acquisition unit F4 stores the RSSI of the mobile terminal 20 acquired in S201 in the RSSI storage unit M1, and proceeds to S204.
  • the RSSI of the mobile terminal 20 cannot be acquired by any one of the vehicle interior module 150 and the vehicle exterior module 160
  • a lower limit value in other words, a minimum value
  • the position determination process can be continued, and as a result, the mobile The position of the terminal 20 can be determined.
  • the position determination unit F6 performs a moving average value (that is, average strength) of RSSI in each short-range communication module. Is calculated. Specifically, based on the latest N RSSIs acquired by the vehicle interior module 150, a moving average value (that is, vehicle interior average strength) of RSSI in the vehicle interior module 150 is calculated. In addition, based on the latest N RSSIs acquired by the vehicle exterior module 160, a moving average value (that is, vehicle exterior average strength) of the RSSI in the vehicle exterior module 160 is calculated. When the calculation process in S204 is completed, the process proceeds to S205.
  • a moving average value that is, average strength
  • the position determination unit F6 calculates the intensity difference ⁇ RSSI by subtracting the vehicle interior average intensity from the vehicle interior average intensity, and proceeds to S206.
  • the position determination unit F6 refers to the position storage unit M2 and reads the result of the previous position determination process. If it is determined in the previous position determination process that the position of the mobile terminal 20 is outside the passenger compartment, an affirmative determination is made in S207 and the process proceeds to S208. On the other hand, when it is determined in the previous position determination process that the position of the mobile terminal 20 is in the vehicle interior, a negative determination is made in S207 and the process proceeds to S212.
  • the position determination unit F6 compares the intensity difference ⁇ RSSI calculated in S205 with the high level threshold value, and determines whether the intensity difference ⁇ RSSI is equal to or higher than the high level threshold value. If the intensity difference ⁇ RSSI is greater than or equal to the high level threshold, an affirmative determination is made in S208 and the process moves to S209, where it is determined that the mobile terminal 20 is present in the vehicle interior. And the determination result that the position of the portable terminal 20 is a vehicle interior is preserve
  • the position determination unit F6 compares the intensity difference ⁇ RSSI calculated in S205 with the low level threshold to determine whether the intensity difference ⁇ RSSI is equal to or lower than the low level threshold.
  • the intensity difference ⁇ RSSI is equal to or lower than the low level threshold value
  • an affirmative determination is made in S212 and the process proceeds to S213, where it is determined that the mobile terminal 20 exists outside the passenger compartment.
  • the determination result that the position of the mobile terminal 20 exists outside the passenger compartment is stored in the position storage unit M2, and the process proceeds to S214.
  • the determination threshold value used in the next position determination process is set to the high level threshold value, and this flow ends.
  • the process proceeds to S215.
  • S215 it is determined that the mobile terminal 20 exists in the passenger compartment, and this flow ends.
  • the process in S215 corresponds to maintaining the previous determination result that the mobile terminal 20 exists in the passenger compartment. When the previous determination result is maintained, this flow ends without changing the setting of the determination threshold used in the next position determination process.
  • an authentication process or the like may be performed as in the first embodiment.
  • the authentication process may be performed using any one of a plurality of short-range communication modules.
  • the difference in the transmission power by the model of the portable terminal 20 can be offset by using intensity difference (DELTA) RSSI. Therefore, according to the second embodiment, it is not necessary to set the high level threshold value and the low level threshold value for each model. Therefore, according to the configuration of the second embodiment, it is possible to achieve both suppression of development man-hours and improvement of determination accuracy.
  • DELTA intensity difference
  • the mobile terminal 20 is present in the vehicle interior as compared with simple RSSI and average intensity. It changes sharply depending on whether it exists outside the passenger compartment. Therefore, according to the structure of 2nd Embodiment, it can detect that the portable terminal 20 was brought into the vehicle interior at an early stage compared with 1st Embodiment. The same applies when the portable terminal 20 is taken out of the passenger compartment. Moreover, according to the structure of 2nd Embodiment, it can determine more correctly also when the portable terminal 20 is located continuously by the window outside a vehicle interior.
  • the position determination unit F6 of the second embodiment determines that the mobile terminal 20 has a predetermined application based on the average intensity outside the vehicle compartment when it is determined that the mobile terminal 20 exists outside the vehicle compartment. You may determine whether it exists in an unlocking area. Specifically, when the average outside vehicle strength is equal to or greater than a predetermined threshold (hereinafter referred to as a threshold for locking and unlocking), it is determined that the mobile terminal 20 exists in the unlocking and unlocking area, while the average outside vehicle strength is applied. If it is less than the unlocking threshold, the mobile terminal 20 determines that it does not exist in the unlocking area.
  • a predetermined threshold hereinafter referred to as a threshold for locking and unlocking
  • the lock / unlock area is appropriately set so that the door lock / unlock control based on the touch operation on the touch sensor 110 or the pressing operation of the lock button 130 is executed only when the mobile terminal 20 exists in the area.
  • the unlocking / unlocking area is set to an area within 1 to 2 meters from various doors provided on the vehicle V including the trunk door. According to such a configuration, since the mobile terminal 20 performs the locking / unlocking control only when the mobile terminal 20 exists in the locking / unlocking area even in the area outside the passenger compartment, the crime prevention property of the vehicle V can be improved. it can.
  • FIG. 14 is a flowchart of the position determination process when the position of the mobile terminal 20 is estimated using an intensity difference ⁇ RSSI obtained by subtracting the vehicle interior average intensity from the vehicle interior average intensity.
  • the flowchart shown in FIG. 14 may be executed at a predetermined sampling interval, similarly to the flowchart shown in FIG.
  • the processes in S201a to S204a shown in FIG. 14 are the same as the processes in S201 to S204 described above.
  • the position determination unit F6 calculates the intensity difference ⁇ RSSI by subtracting the vehicle interior average intensity from the vehicle interior average intensity, and proceeds to S206a.
  • the position determination unit F6 reads the result of the previous position determination process with reference to the position storage unit M2, as in S206. If it is determined in the previous position determination process that the position of the mobile terminal 20 is in the vehicle interior, an affirmative determination is made in S207a and the process proceeds to S208a. On the other hand, if it is determined in the previous position determination process that the position of the mobile terminal 20 is outside the passenger compartment, a negative determination is made in S207a and the process proceeds to S212a.
  • the position determination unit F6 compares the intensity difference ⁇ RSSI calculated in S205 with the high level threshold and determines whether the intensity difference ⁇ RSSI is equal to or higher than the high level threshold.
  • the high level threshold value used at this time is a value larger than zero.
  • the high level threshold is preferably set to a value greater than +5 dB, such as +10 dB.
  • S208a If the intensity difference ⁇ RSSI is greater than or equal to the high level threshold, an affirmative determination is made in S208a and the process proceeds to S209a, where it is determined that the mobile terminal 20 is outside the vehicle compartment. Then, the determination result that the position of the mobile terminal 20 is outside the passenger compartment is stored in the position storage unit M2, and the process proceeds to S210a. In S210a, the determination threshold value used in the next position determination process is set to the low level threshold value, and this flow ends.
  • S208a when the intensity difference ⁇ RSSI is less than the high level threshold value, the process proceeds to S211a, and it is determined that the mobile terminal 20 exists in the vehicle interior.
  • the process in S211 corresponds to maintaining the previous determination result that the mobile terminal 20 exists in the vehicle interior. When the previous determination result is maintained, this flow ends without changing the setting of the determination threshold used in the next position determination process.
  • the position determination unit F6 compares the intensity difference ⁇ RSSI calculated in S205a with the low level threshold to determine whether the intensity difference ⁇ RSSI is equal to or lower than the low level threshold.
  • the low level threshold used at this time is a value smaller than 0.
  • the low level threshold is preferably set to a value smaller than ⁇ 5 dB, such as ⁇ 10 dB.
  • S212a when the average intensity exceeds the low level threshold, the process proceeds to S215a.
  • S215a it is determined that the mobile terminal 20 exists outside the passenger compartment, and this flow ends.
  • the process in S215a corresponds to maintaining the previous determination result that the mobile terminal 20 exists outside the passenger compartment. When the previous determination result is maintained, this flow ends without changing the setting of the determination threshold used in the next position determination process.
  • FIG. 15A and 15B are diagrams for explaining the operation of the position determination unit F6 when the above determination algorithm is used.
  • FIG. 15A shows the correspondence between the intensity difference ⁇ RSSI and the determination result of the position determination unit F6 when the user who has boarded the vehicle V carrying the mobile terminal 20 gets off the vehicle V and leaves the vehicle V (hereinafter referred to as the departure process). Showing the relationship.
  • FIG. 15B shows a correspondence relationship between the intensity difference ⁇ RSSI and the determination result of the position determination unit F6 when the user carrying the mobile terminal 20 approaches and gets into the vehicle V (hereinafter referred to as an entry process).
  • the vehicle interior strength representative value when the user exists in the vehicle interior, the vehicle interior strength representative value is sufficiently larger than the vehicle interior strength representative value, and therefore the strength difference ⁇ RSSI is less than or equal to the high level threshold (mainly Transition in the region below the low level threshold).
  • the high level threshold mainly Transition in the region below the low level threshold.
  • the position determination unit F6 detects that the mobile terminal 20 has been taken out of the vehicle interior from the vehicle interior based on the behavior of the intensity difference ⁇ RSSI.
  • the RSSI of the portable terminal 20 in the vehicle exterior module 160 becomes smaller as the user leaves the vehicle V, so the intensity difference ⁇ RSSI converges to zero.
  • the determination result that the mobile terminal 20 exists outside the passenger compartment is maintained until the intensity difference ⁇ RSSI is equal to or lower than the low level threshold.
  • the RSSI of the mobile terminal 20 in the outside module 160 increases as the user approaches the vehicle, so that the intensity difference ⁇ RSSI gradually increases from around zero.
  • the intensity difference ⁇ RSSI may be equal to or higher than the high level threshold.
  • the vehicle interior strength representative value becomes larger than the vehicle interior strength representative value, and the strength difference ⁇ RSSI is equal to or lower than the low level threshold.
  • the position determination unit F6 detects that the mobile terminal 20 has been brought into the vehicle interior from the outside of the vehicle based on the behavior of the intensity difference ⁇ RSSI.
  • the determination result that the mobile terminal 20 is present in the vehicle interior is maintained if the intensity difference ⁇ RSSI does not exceed the high level threshold value. .
  • the determination result that the mobile terminal 20 exists outside the passenger compartment is maintained unless the intensity difference ⁇ RSSI is equal to or lower than the low level threshold value. Therefore, the same effect as the aspect which employ
  • the position determination system 1 according to the third embodiment of the present disclosure will be described with reference to the drawings.
  • the in-vehicle system 10 includes a plurality of vehicle interior modules 150 and vehicle exterior modules 160.
  • the configuration and operation of the in-vehicle system 10 in the position determination system 1 according to the third embodiment will be mainly described. Note that members having the same functions as those described in the first embodiment are denoted by the same reference numerals, and description thereof is omitted.
  • the configurations of the various embodiments described above can be applied to the other portions.
  • the in-vehicle system 10 in the present embodiment includes a plurality of vehicle interior modules 150 and a plurality of vehicle exterior modules 160, as shown in FIG. In FIG. 12, the engine ECU 200 and the like are not shown.
  • Each short-range communication module can basically employ a module having the same configuration and function.
  • each short-range communication module is assumed to have the configuration shown in FIG.
  • the in-vehicle system 10 includes a front seat module 150A and a rear seat module 150B as the vehicle interior module 150, as shown in FIG.
  • the front seat module 150A is a vehicle interior module 150 that mainly uses the front seat space as a communication area.
  • the front seat module 150A is arranged near the center console 2 as in the vehicle interior module 150 of the first embodiment, for example.
  • the rear seat module 150 ⁇ / b> B is a vehicle interior module 150 for mainly setting a vehicle interior space around the rear seat (hereinafter, rear seat space) as a communication area.
  • the rear seat module 150B is embedded in the seating surface, for example, in the center of the rear seat in the vehicle width direction.
  • the installation positions of the front seat module 150A and the rear seat module 150B may be appropriately designed, and are not limited to the above-described embodiments.
  • the in-vehicle system 10 may include three or more vehicle interior modules 150. Each vehicle interior module 150 is connected to the authentication ECU 100 so as to be able to communicate with each other.
  • the in-vehicle system 10 includes a right first module 160A, a right second module 160B, a right third module 160C, a left first module 160D, and a left second module.
  • a module 160E, a left third module 160F, and a rear end module 160G are provided.
  • the right first module 160A is a vehicle exterior module 160 arranged on the front end side of the front seat door in the right side of the vehicle.
  • the right first module 160A is arranged in the vicinity of the right front wheel.
  • the right second module 160B is a vehicle exterior module 160 arranged in the vicinity of the center in the vehicle front-rear direction among the side portions on the right side of the vehicle. In this embodiment, it shall be arrange
  • the right third module 160 ⁇ / b> C is a vehicle exterior module 160 that is disposed on the rear end side of the right side of the vehicle with respect to the rear seat door.
  • the right third module 160C is disposed in the vicinity of the right rear wheel.
  • the module located at the foremost side and the module located at the rearmost side are arranged at positions separated by 1 m or more in the vehicle longitudinal direction. Preferably it is.
  • the module located at the foremost side is the right first module 160A, and the module located at the most rear side.
  • the distance D between the right first module 160A and the right third module 160C is set to about 3 m.
  • the distance D may be 2 m or 1.5 m.
  • the left first module 160D, the left second module 160E, and the left third module 160F are for the exterior of the passenger compartment paired with the right first module 160A, the right second module 160B, and the right third module 160C that have already been described.
  • the left first module 160D is disposed on the left side surface portion of the vehicle V at a position opposite to the right first module 160A.
  • the left second module 160E and the left third module 160F may be disposed on the left side surface portion of the vehicle V at positions opposite to the right second module 160B and the right third module 160C.
  • the left second module 160E is mounted on the right second module 160B, such as the inside of the door handle for the left front seat, the inside of the door handle for the right rear seat, the locker portion under the door, or the right edge of the roof. It is arranged in the place corresponding to.
  • the rear end module 160G is a vehicle exterior module 160 disposed in the vicinity of the center in the vehicle width direction of the rear end of the vehicle.
  • the rear end module 160G may be disposed in the vicinity of the trunk door handle.
  • each vehicle compartment module may be appropriately designed and is not limited to the above-described mode.
  • the number of vehicle exterior modules 160 included in the in-vehicle system 10 may be 5 or less, or 8 or more.
  • Each vehicle exterior module 160 is connected to the authentication ECU 100 so as to be able to communicate with each other.
  • the RSSI acquisition unit F4 in the present embodiment acquires RSSI data from each of the plurality of short-range communication modules, and stores the acquired RSSI data in the RSSI storage unit M1 by distinguishing the acquisition sources.
  • the position determination part F6 calculates the moving average value (namely, average intensity
  • the flowchart shown in FIG. 19 may be executed at a predetermined sampling interval, similarly to the flowchart shown in FIG.
  • the RSSI acquisition unit F4 acquires RSSI data from each of the plurality of short-range communication modules, and proceeds to S302. In S302, the RSSI acquisition unit F4 determines whether the RSSI data associated with the registration ID has been acquired as a result of the processing in S312.
  • the RSSI associated with the registration ID (that is, the RSSI of the mobile terminal 20) can be acquired by at least one of the plurality of short-range communication modules as a result of the process of S301, S302 is positively determined. Then, the process proceeds to S303. On the other hand, if no RSSI associated with the registration ID has been acquired in any of the short-range communication modules, a negative determination is made in S302 and this flow ends.
  • subsequent processing such as S303 is performed. Not limited to this. If the RSSI of the mobile terminal 20 has not been acquired by both the vehicle interior module 150 and the vehicle exterior module 160, a negative determination may be made in S302 to end this flow.
  • the RSSI acquisition unit F4 stores the RSSI of the mobile terminal 20 acquired in S301 in the RSSI storage unit M1, and proceeds to S304.
  • the lower limit value of the RSSI range that can be output by the RSSI detection unit 1421 (in other words, (Minimum value) is registered.
  • the position of the mobile terminal 20 can be determined when at least one of the plurality of short-range communication modules can receive a signal from the mobile terminal 20.
  • the position determination unit F6 calculates the average strength in each short-range communication module based on the RSSI associated with each short-range communication module stored in the RSSI storage unit M1.
  • the method for calculating the average intensity for each short-range communication module is as described above.
  • the position determination unit F6 calculates a representative value of RSSI (hereinafter referred to as a vehicle interior strength representative value) in the short-range communication module corresponding to the vehicle interior module 150 based on the average strength of each vehicle interior module 150. To do. Specifically, the average strength in the front seat module 150A and the average strength in the rear seat module 150B are compared, and the higher average strength is adopted as the vehicle interior strength representative value. As another aspect, the vehicle interior strength representative value may be an average value of the average strength for each vehicle interior module 150. Further, when the in-vehicle system 10 includes three or more vehicle interior modules 150, the vehicle interior strength representative value may be a median value of average strength for each vehicle interior module 150. In addition, the vehicle interior strength representative value may be the minimum value of the average strength for each vehicle interior module 150.
  • a vehicle interior strength representative value may be an average value of the average strength for each vehicle interior module 150.
  • the position determination unit F6 determines the RSSI representative value in the near field communication module corresponding to the vehicle exterior module 160 (hereinafter, vehicle interior strength representative value) based on the average strength of each vehicle exterior module 160. Is calculated.
  • the largest value that is, the maximum value
  • the vehicle exterior intensity representative value is adopted as the vehicle exterior intensity representative value.
  • the vehicle interior strength representative value may be an average value of the average strength for each vehicle exterior module 160. Further, when the in-vehicle system 10 includes three or more vehicle exterior modules 160 as in the present embodiment, the vehicle exterior strength representative value may be a median value of the average strength for each vehicle exterior module 160. Good. In addition, the vehicle interior strength representative value may be the minimum value of the average strength for each vehicle exterior module 160.
  • vehicle interior strength representative value and the vehicle interior strength representative value are determined using the same basic statistics. For example, when the vehicle interior strength representative value is the average value of the average strength for each vehicle interior module 150, the vehicle exterior strength representative value is the average value of the average strength for each vehicle exterior module 160 accordingly. Shall. When the calculation process of the vehicle interior strength representative value and the vehicle exterior strength representative value is completed, the process proceeds to S306.
  • the position determination unit F6 calculates a value obtained by subtracting the vehicle interior strength representative value from the vehicle interior strength representative value, and proceeds to S307.
  • the value obtained by subtracting the vehicle interior strength representative value from the vehicle interior strength representative value functions as a parameter representing the difference between the reception strength in the vehicle interior module 150 and the reception strength in the vehicle interior module 160. Therefore, the value obtained by subtracting the vehicle interior strength representative value from the vehicle interior strength representative value is hereinafter referred to as a strength difference ⁇ RSSI.
  • the position determination unit F6 reads the result of the previous position determination process with reference to the position storage unit M2. If it is determined in the previous position determination process that the position of the mobile terminal 20 is outside the passenger compartment, an affirmative determination is made in S308 and the process proceeds to S309. On the other hand, if it is determined in the previous position determination process that the position of the mobile terminal 20 is in the passenger compartment, a negative determination is made in S308 and the process proceeds to S313.
  • the position determination unit F6 compares the intensity difference ⁇ RSSI calculated in S306 with the high level threshold, and determines whether the intensity difference ⁇ RSSI is equal to or higher than the high level threshold.
  • the high level threshold used here is set based on the same technical idea as the high level threshold used in the second embodiment.
  • S309 If the intensity difference ⁇ RSSI is greater than or equal to the high level threshold value, an affirmative determination is made in S309 and the process proceeds to S310, where it is determined that the mobile terminal 20 exists in the vehicle interior. And the determination result that the position of the portable terminal 20 is a vehicle interior is preserve
  • the position determination unit F6 compares the intensity difference ⁇ RSSI calculated in S306 with the low level threshold to determine whether the intensity difference ⁇ RSSI is equal to or lower than the low level threshold.
  • the low level threshold used here is set based on the same technical idea as the low level threshold used in the second embodiment.
  • S316 it determines with the portable terminal 20 existing in a vehicle interior, and complete
  • an authentication process or the like may be performed as a subsequent process of S311, S312, S315, or S316 as in the first embodiment.
  • the representative value of the reception strength in the short-range communication module provided in the vehicle interior (that is, the representative value of the vehicle interior strength) and the reception strength in the short-range communication module provided outside the vehicle compartment.
  • the difference from the representative value (that is, the vehicle interior strength representative value) is adopted as the strength difference ⁇ RSSI. According to such a configuration, it is possible to reduce the possibility of erroneous determination depending on the user's portable terminal 20 possession form.
  • FIG. 20 shows the intensity of the signal transmitted from the mobile terminal 20 when the user faces the front of the body toward the vehicle V in a state where the mobile terminal 20 is accommodated in a pocket provided on the back side of the pants.
  • FIG. 21 shows a simulation of the intensity distribution of the signal transmitted from the mobile terminal 20 when the user faces the front of the body toward the vehicle V in a state where the mobile terminal 20 is accommodated in the chest pocket of the jacket. Represents the figure.
  • the RSSI in the short-range communication module that is relatively close to the user is It fluctuates greatly according to the user's mobile terminal 20 carrying.
  • the RSSI in the right second module 160 ⁇ / b> B located in front of the user is largely dependent on whether it is carried in a possessed form located on the user's back side. fluctuate.
  • the RSSI variation amount in the right third module 160C that is located relatively far from the user is not as large as the RSSI variation amount in the right second module 160B.
  • the average intensity for each of the plurality of outside modules is used as a population to determine the outside intensity representative value to be used for calculating the intensity difference ⁇ RSSI.
  • strength difference (DELTA) RSSI can be suppressed.
  • the position of the mobile terminal 20 can be determined with higher accuracy than in the second embodiment.
  • the plurality of vehicle compartment modules 160 are arranged in a distributed manner over 2 m or more in the vehicle front-rear direction. It can be expected that the signal from the portable terminal 20 is received without being affected by the user's human body. Therefore, in the side surface portion of the vehicle V, a plurality of vehicle exterior modules 160 are arranged in a vehicle longitudinal direction so as to be distributed over 2 m or more, thereby determining whether the mobile terminal 20 is present in the vehicle interior. It can be further increased.
  • the intensity difference ⁇ RSSI is determined using the plurality of vehicle interior modules 150 and the plurality of vehicle exterior modules 160, the influence of multipath can be suppressed.
  • the position determination unit F6 of the third embodiment determines that the mobile terminal 20 is outside the vehicle compartment, and the mobile terminal 20 is determined based on the vehicle interior strength representative value. You may determine whether it exists in the lock / unlock area. Specifically, when the vehicle interior strength representative value is equal to or greater than a predetermined threshold, it is determined that the mobile terminal 20 is present in the unlocking / unlocking area, while the vehicle exterior strength representative value is less than the predetermined threshold. If it is, the mobile terminal 20 determines that it does not exist in the locking / unlocking area.
  • the locking / unlocking area is the area described above as an application example of the second embodiment.
  • the position determination unit F6 performs the process of controlling the locked / unlocked state only when the mobile terminal 20 is present in the unlocked / unlocked area, if there is only one vehicle exterior module 160, FIG. 20, due to the influence of the human body, it may be determined that the mobile terminal 20 exists outside the lock / unlock area even though the mobile terminal 20 actually exists within the lock / unlock area. is there.
  • any of the plurality of vehicle exterior modules 160 can receive a signal from the mobile terminal 20 without being affected by the human body, and as a result, the vehicle interior strength representative value is within the unlocked / unlocked area of the mobile terminal 20. This is because it can be expected to be equal to or higher than the threshold for determination.
  • FIG. 22 is a flowchart of the position determination process when the position of the mobile terminal 20 is estimated using the intensity difference ⁇ RSSI obtained by subtracting the vehicle interior strength representative value from the vehicle interior strength representative value.
  • the flowchart shown in FIG. 22 may be executed at a predetermined sampling interval, similarly to the flowchart shown in FIG.
  • the processes of S301a to S305a shown in FIG. 22 are the same as the processes of S301 to S305 described above.
  • the position determination unit F6 calculates a value obtained by subtracting the vehicle interior strength representative value from the vehicle interior strength representative value as the strength difference ⁇ RSSI, and proceeds to S307a.
  • the position determination unit F6 refers to the position storage unit M2, and reads the result of the previous position determination process. If it is determined in the previous position determination process that the position of the mobile terminal 20 is in the passenger compartment, an affirmative determination is made in S308a and the process proceeds to S309a. On the other hand, if it is determined in the previous position determination process that the position of the mobile terminal 20 is outside the passenger compartment, a negative determination is made in S308a and the process proceeds to S313a.
  • the position determination unit F6 compares the intensity difference ⁇ RSSI calculated in S306a with the high level threshold to determine whether the intensity difference ⁇ RSSI is equal to or higher than the high level threshold.
  • the high level threshold used here may be appropriately designed in a range larger than the low level threshold such as +5 dB.
  • S309a If the intensity difference ⁇ RSSI is greater than or equal to the high level threshold, an affirmative determination is made in S309a and the process proceeds to S310a, where it is determined that the mobile terminal 20 is outside the vehicle compartment. Then, the determination result that the position of the mobile terminal 20 is outside the passenger compartment is stored in the position storage unit M2, and the process proceeds to S311a. In S311a, the determination threshold value used in the next position determination process is set to the low level threshold value, and this flow ends.
  • the position determination unit F6 compares the intensity difference ⁇ RSSI calculated in S306a with the low level threshold to determine whether the intensity difference ⁇ RSSI is equal to or lower than the low level threshold.
  • the low level threshold value used here may be appropriately designed so that the gap between the high level threshold value and the low level threshold value is not less than a predetermined value (for example, 5 dB) in a range smaller than the high level threshold value such as ⁇ 5 dB. .
  • the process proceeds to S316a.
  • S316a it is determined that the mobile terminal 20 exists outside the passenger compartment, and this flow ends. In this case, the setting of the threshold value for determination used in the next position determination process is not changed and remains set to the low level threshold value. Even in such an aspect, the same effect as the aspect in which a value obtained by subtracting the vehicle interior strength representative value from the vehicle interior strength representative value is adopted as the strength difference ⁇ RSSI is achieved.
  • the in-vehicle system 10 of the fourth embodiment includes a driver's seat module 150D, a passenger seat module 150P, a first rear seat module 150Q, and a second rear seat module, as shown in FIG. A module 150R is provided.
  • the antenna 141 provided in each of the driver seat module 150D, the passenger seat module 150P, the first rear seat module 150Q, and the second rear seat module 150R is a directional antenna to form a limited communication area. can do.
  • the driver's seat module 150D is a vehicle interior module 150 whose communication area is the driver's seat area.
  • the driver's seat area is an area (actually a space) used by a passenger seated in the driver's seat.
  • the driver seat area corresponds to a part of the front seat space described above.
  • the driver seat area may be, for example, a space on the driver seat side from the center console 2 and in front of the backrest portion of the driver seat.
  • As the position of the backrest portion of the driver's seat a position designed in advance based on an average seat position of persons of various physiques can be applied. Further, the upper part of the instrument panel 3 and the center console 2 can be included in the driver seat area.
  • the driver's seat module 150D is disposed in an area corresponding to the upper part of the driver's seat in the ceiling portion of the passenger compartment, with the center of the directivity of the antenna 141 facing the driver's seat (mainly its seating surface).
  • the mounting position of the driver seat module 150D is not limited to this. It may be disposed on the side of the driver's seat door on the side of the passenger compartment, the feet of the driver's seat, the center console 2, or the instrument panel 3 that faces the driver's seat. It may be buried inside the driver's seat.
  • the passenger seat module 150P is a vehicle interior module 150 having a passenger seat area as a communication area.
  • the passenger seat area is an area (in other words, a space) used by a passenger seated in the passenger seat.
  • the passenger seat area is generally set around the passenger seat.
  • the passenger seat area may be the remaining area excluding the driver seat area from the front seat space.
  • the passenger seat area may be, for example, a space on the passenger seat side from the center console 2 and in front of the backrest portion of the passenger seat.
  • the passenger seat module 150P is arranged in a position corresponding to the upper part of the passenger seat in the ceiling portion of the passenger compartment with the center of directivity of the antenna 141 facing the passenger seat (mainly the seating surface).
  • the mounting position of the passenger seat module 150P is not limited to this.
  • the passenger seat door may be disposed in the side surface portion of the passenger compartment side, the feet of the passenger seat, the center console 2, the instrument panel 3, a region facing the passenger seat, or the like. It may be buried inside the passenger seat.
  • a line that bisects the vehicle in the vehicle width direction (in other words, the right half and the left half) may be adopted as a boundary between the driver seat area and the passenger seat area.
  • the first rear seat module 150Q is a vehicle interior module 150 whose communication area is an area corresponding to the rear of the passenger seat (hereinafter, the first rear seat area) in the rear seat space.
  • the first rear seat module 150Q may be arranged in a posture in which the center of the directivity of the antenna 141 faces the first rear seat area, for example, in a ceiling portion of the vehicle interior.
  • the mounting position of the first rear seat module 150Q is not limited to this. You may arrange
  • the second rear seat module 150R is a vehicle interior module 150 having an area corresponding to the rear of the driver seat in the rear seat space (hereinafter referred to as a second rear seat area) as a communication area. Similarly to the first rear seat module 150Q, the second rear seat module 150R may be disposed at a position that is appropriately designed in the vehicle interior.
  • the driver seat module 150D and the passenger seat module 150P correspond to the aforementioned front seat module 150A.
  • the first rear seat module 150Q and the second rear seat module 150R correspond to the aforementioned rear seat module 150B.
  • the RSSI acquisition unit F4 of the authentication ECU 100 of the present embodiment sequentially acquires the reception strength (that is, RSSI data) in each vehicle interior module 150. Further, the position determination unit F6 calculates a representative value of RSSI (hereinafter referred to as a vehicle interior strength representative value) in the near field communication module corresponding to the vehicle interior module 150 based on the average strength in each vehicle interior module 150. calculate. Specifically, the largest value among the average strengths of the driver seat module 150D, the passenger seat module 150P, the first rear seat module 150Q, and the second rear seat module 150R Adopted as a representative strength value.
  • the vehicle interior strength representative value may be the average value of the average strength for each vehicle interior module 150 or the median value of the average strength for each vehicle interior module 150.
  • the vehicle interior strength representative value may be the minimum value of the average strength for each vehicle interior module 150.
  • the position determination unit F6 determines whether the portable terminal 20 exists in the vehicle interior or the vehicle exterior by the same determination logic as S106 to S114 constituting the flowchart of FIG. That is, in a state where it is determined that the mobile terminal 20 is outside the vehicle compartment, if the vehicle interior strength representative value is equal to or higher than the high level threshold, it is determined that the mobile terminal 20 is present in the vehicle interior. On the other hand, in a state where it is determined that the mobile terminal 20 is present in the vehicle interior, if the vehicle interior strength representative value is equal to or lower than the low level threshold, it is determined that the mobile terminal 20 is present outside the vehicle interior.
  • the determination as to whether or not the mobile terminal 20 exists in the vehicle interior is further performed by using the vehicle interior strength representative value obtained by combining the RSSIs in the plurality of vehicle interior modules 150. It can be carried out with high accuracy.
  • the number of the vehicle interior modules 150 used in order to calculate a vehicle interior strength representative value is not restricted to four. Two, three, or five or more may be used.
  • Modification 1 In the various embodiments described above, the aspect of determining the position of the mobile terminal 20 while suppressing the time-varying component of RSSI by using the concept of the moving average value (that is, the average intensity) is disclosed, but the present invention is not limited thereto. . You may determine the position of the portable terminal 20 not using a moving average value but using a detected value as it is.
  • the modification 1 is not limited to the first to fourth embodiments described above, and can be applied to various embodiments and modifications such as a fifth embodiment described later.
  • Modification 2 In the above description, a 2.4 GHz band radio wave is assumed as a radio wave used for short-range communication, but the radio wave is not limited to this.
  • the near field communication may be realized using radio waves in other frequency bands.
  • a radio wave having a lower frequency (in other words, a radio wave having a longer wavelength) has a property of propagating around an object. That is, the frequency at which the influence of the human body on the RSSI appears is a frequency that is so high that it cannot go around the human body.
  • the radio wave in which the influence of multipath appears remarkably is a radio wave realized using a frequency that provides a wavelength that is not sufficiently long with respect to the size of the vehicle V.
  • the wavelength that is not sufficiently long with respect to the size of the vehicle V is a wavelength that is shorter than, for example, a length obtained by multiplying the length of the vehicle body in the front-rear direction by 10 (hereinafter referred to as vehicle extension length).
  • the wavelength that is not sufficiently long with respect to the size of the vehicle V is a wavelength of 50 m or less. If the radio wave has such a wavelength, the radio wave acts as a far field, so that the influence of multipath appears remarkably. In other words, a wavelength that is not sufficiently long with respect to the size of the vehicle V corresponds to a wavelength that does not operate in the near-field mode around the vehicle.
  • the frequency at which the wavelength is 50 m is about 6 MHz. Therefore, the frequency that provides a wavelength that is not sufficiently long for the size of the vehicle V is a frequency higher than 6 MHz. Therefore, the various embodiments described above are more useful when near field communication is performed using radio waves having a frequency higher than 6 MHz.
  • the vehicle extension length may be a value that is sufficiently longer than the length of the vehicle body in the front-rear direction, and the magnification (hereinafter, expansion magnification) is not limited to ten times.
  • the expansion magnification may be appropriately designed in the range of 5 times or more.
  • the modification 2 is not limited to the first to fourth embodiments described above, and can be applied to various embodiments such as a fifth embodiment to be described later.
  • the position determination system 1 that determines whether or not the mobile terminal 20 is present in the vehicle interior using the two determination threshold values, the high level threshold value and the low level threshold value, is exemplified.
  • the setting mode of the area to be determined by the system 1 (hereinafter, target area) is not limited to this.
  • the position determination system 1 may determine whether or not the mobile terminal 20 is present in the locking / unlocking area Lx using two determination threshold values, a high level threshold value and a low level threshold value. . That is, the target area may be the locking / unlocking area Lx.
  • the locking / unlocking area Lx is an area set as a condition for the vehicle control unit F7 to execute a process of controlling the locking / unlocking state of the door provided in the vehicle V.
  • the vehicle control unit F7 executes a process for controlling the door locking / unlocking state based on the presence of the portable terminal 20 in the locking / unlocking area Lx and the successful authentication of the portable terminal 20. To do.
  • the unlocking / unlocking area is set to an area within a few meters from various doors provided on the vehicle V outside the passenger compartment.
  • the door is not limited to a door for a driver's seat or a door for a passenger seat, but may include a trunk door.
  • a plurality of locking / unlocking areas Lx may be set so as not to overlap each other outside the vehicle compartment.
  • a plurality of locking / unlocking areas Lx may be set in the vehicle V so as to correspond to the plurality of doors.
  • FIG. 24 is a diagram conceptually showing the lock / unlock area, and the hatched portion of FIG. 24 conceptually shows the lock / unlock area.
  • a lock / unlock area L1 shown in FIG. 24 represents a lock / unlock area Lx (hereinafter referred to as a first lock / unlock area) for controlling the lock / unlock state of the door for the driver's seat.
  • L2 represents a locking / unlocking area Lx (hereinafter referred to as a second locking / unlocking area) for controlling the locking / unlocking state of the door for the passenger seat.
  • the locking / unlocking area L3 represents a locking / unlocking area Lx (hereinafter, third locking / unlocking area) for controlling the locking / unlocking state of the trunk door.
  • the first locking / unlocking area L1 is set near the driver's seat door, and the second locking / unlocking area L2 is set near the passenger's seat door.
  • the third locking / unlocking area L3 is set near the trunk door.
  • the vicinity of the door is an area within a predetermined distance (for example, 0.7 m, 1 m, 1.5 m) from the door handle.
  • the in-vehicle system 10 is configured such that at least one vehicle exterior module 160 corresponding to one locking / unlocking area Lx exists.
  • the vehicle exterior module 160 corresponding to a certain locking / unlocking area Lx is a vehicle exterior module 160 including the locking / unlocking area at the center of the communication area.
  • the center of the communication area is an area where the communication quality (for example, RSSI, signal quality, etc.) is a predetermined level, and the distance from the vehicle exterior module 160 is within a few meters.
  • the vehicle exterior module 160 is preferably realized using a directional antenna.
  • the in-vehicle system 10 includes a first vehicle exterior module 160L, a second vehicle exterior module 160M, and a third vehicle exterior module 160N as the vehicle exterior modules 160 corresponding to the lock / unlock areas Lx. Yes.
  • the first vehicle exterior module 160L is a vehicle exterior module 160 arranged to include the first locking / unlocking area L1 in the communication area. That is, the first exterior module 160L is the exterior module 160 corresponding to the first locking / unlocking area L1.
  • the right second module 160B described above can be used as the first vehicle exterior module 160L.
  • the first exterior module 160L only needs to be arranged so that the communication area includes the area set as the first locking / unlocking area L1 outside the interior. For example, the A pillar or B on the right side of the vehicle Can be placed on the pillar.
  • the directivity center is directed toward the window of the driver's door, and is located in the vicinity of the window of the ceiling portion in the vehicle interior. It may be arranged.
  • the first vehicle exterior module 160L corresponds to the right receiving unit.
  • the second vehicle exterior module 160M is a vehicle exterior module 160 disposed so as to include the second locking / unlocking area L2 in the communication area. That is, the second vehicle exterior module 160M is the vehicle exterior module 160 corresponding to the second locking / unlocking area L2.
  • the above-described left second module 160E can be used as the second vehicle exterior module 160M.
  • the second exterior module 160M only needs to be disposed outside the interior so as to include the area set as the second locking / unlocking area L2 in the communication area. For example, the A pillar or B on the left side of the vehicle Can be placed on the pillar.
  • the directivity center is directed to the window of the passenger door and is located near the window of the ceiling portion in the passenger compartment. It may be arranged.
  • the second vehicle exterior module 160M corresponds to the left receiving unit.
  • the third vehicle exterior module 160N is a vehicle exterior module 160 arranged to include the third locking / unlocking area L3 in the communication area. That is, the third vehicle exterior module 160N is the vehicle exterior module 160 corresponding to the third locking / unlocking area L3. The third vehicle exterior module 160N corresponds to the aforementioned rear end module 160G.
  • the position determination unit F6 performs the same position determination process as in the first embodiment described above for each of the plurality of lock / unlock areas Lx. For example, the position determination unit F6 determines whether or not the mobile terminal 20 exists in the first locking / unlocking area L1 using the RSSI in the first vehicle exterior module 160L.
  • the position determination unit F6 determines that the RSSI detected by the first vehicle exterior module 160L is a predetermined high level when the mobile terminal 20 determines that the mobile terminal 20 exists outside the first locking / unlocking area L1. When it becomes more than a level threshold value, it determines with the portable terminal 20 existing in the 1st locking / unlocking area L1. In addition, in a state where the mobile terminal 20 has determined that the mobile terminal 20 is present in the first locking / unlocking area L1, the mobile terminal is in a case where the RSSI detected by the first vehicle exterior module 160L is equal to or lower than the low level threshold. 20 is determined to exist outside the first locking / unlocking area L1. Of course, the determination may be made using the average intensity instead of RSSI.
  • Whether or not the mobile terminal 20 is present in the second locking / unlocking area L2 is determined using RSSI in the second vehicle exterior module 160M, which is the vehicle exterior module 160 corresponding to the second locking / unlocking area L2. can do.
  • Whether or not the mobile terminal 20 is present in the third locking / unlocking area L3 is determined using RSSI in the third vehicle exterior module 160N that is the vehicle exterior module 160 corresponding to the third locking / unlocking area L3. can do.
  • the portable terminal 20 exists in any of the 1st locking / unlocking area L1, the 2nd locking / unlocking area L2, the 3rd locking / unlocking area L3, and other areas. Can be identified.
  • the other areas are areas that do not correspond to any of the first locking / unlocking area L1, the second locking / unlocking area L2, and the third locking / unlocking area L3.
  • the vehicle control unit F7 determines that the position determination unit F6 determines that the portable terminal 20 exists in the first locking / unlocking area L1, and if the authentication of the portable terminal 20 is successful, the door Vehicle control for locking or unlocking the driver's seat door is performed based on a predetermined user operation on the steering wheel.
  • the position determination unit F6 What is necessary is just to identify the presence area for every portable terminal 20 based on RSSI.
  • the mobile terminal 20A exists in the first unlocking area L1 as shown in FIG.
  • the mobile terminal 20B exists in the second locking / unlocking area L2
  • vehicle control is performed to lock or unlock both the driver seat door and the passenger seat door. According to such an aspect, the convenience in the case where one vehicle V is shared by a plurality of users can be improved.
  • the service according to the user includes, for example, automatic adjustment of the seat position, adjustment of the temperature and air volume of the air conditioning, and the like.
  • a mobile terminal When it is determined that one mobile terminal 20 exists in a plurality of lock / unlock areas Lx, that is, when a conflict occurs in the determination result, a mobile terminal is used by using a determination algorithm which will be separately described later as a fifth embodiment. What is necessary is just to identify 20 positions.
  • the concept disclosed in the fourth embodiment may be applied to the third modification, and a plurality of vehicle exterior modules 160 corresponding to one locking / unlocking area Lx may be arranged.
  • a plurality of vehicle exterior modules 160 corresponding to the first locking / unlocking area L1 may be arranged.
  • such a configuration corresponds to a configuration in which a plurality of first vehicle exterior modules 160L are provided.
  • the position determination unit F6 represents a representative value (for example, an average value or a maximum value) based on the RSSI in the plurality of first vehicle compartment modules 160L.
  • the position determination system 1 uses two determination thresholds, a high level threshold and a low level threshold, to determine whether or not the mobile terminal 20 is present in an area (hereinafter referred to as a welcome area) Wx in which a predetermined welcome process is executed. It may be determined by In other words, the target area that is the determination target area of the position determination system 1 may be the welcome area Wx.
  • the welcome process is a process of turning on the lighting in the vehicle interior or exterior or operating the air conditioner when detecting the approach of the user.
  • the welcome area Wx is an area that is within 5 m from the vehicle V, for example.
  • the welcome area Wx is preferably set so as to include the aforementioned locking / unlocking area Lx.
  • FIG. 27 is a diagram conceptually showing the welcome area Wx.
  • a hatched portion of the dot pattern in FIG. 27 conceptually represents the welcome area Wx.
  • region enclosed with a dashed-dotted line in FIG. 27 conceptually represents the range in which the vehicle-mounted system 10 and the portable terminal 20 can perform near field communication.
  • the in-vehicle system 10 includes at least one vehicle exterior module 160 that includes the welcome area Wx in the communication area.
  • the welcome area Wx may be formed using a plurality of vehicle exterior modules 160.
  • the welcome area Wx is formed using one vehicle exterior module 160P.
  • the mounting position of the vehicle exterior module 160P may be designed as appropriate.
  • the roof portion of the vehicle V can be used.
  • the position determination unit F6 determines whether or not the mobile terminal 20 is present in the welcome area Wx using the RSSI in the vehicle exterior module 160P. Specifically, the position determination unit F6 determines that the mobile terminal 20 exists outside the welcome area Wx, and the RSSI detected by the vehicle exterior module 160P is equal to or higher than a predetermined high level threshold. In this case, it is determined that the mobile terminal 20 exists in the welcome area Wx.
  • the mobile terminal 20 in a state where it is determined that the mobile terminal 20 exists in the welcome area Wx, if the RSSI in the vehicle exterior module 160P is equal to or lower than the low level threshold, the mobile terminal 20 is present outside the welcome area Wx. judge.
  • the determination may be made using average intensity instead of RSSI.
  • the position of the mobile terminal 20 is determined using the two threshold values such as the high level threshold and the low level threshold, it is accurately determined whether or not the mobile terminal 20 exists in the welcome area Wx. Can do.
  • the welcome area Wx may be formed by using a plurality of vehicle exterior modules 160.
  • a total of five vehicle exterior modules 160 may be used.
  • Each of the vehicle exterior modules 160A, 160B, 160D, 160E, and 160G shown in FIG. 28 corresponds to the vehicle exterior module 160 having the same reference mentioned in the third embodiment.
  • the right first module 160A and the right second module 160B are vehicle exterior modules 160 whose communication area is on the right side of the vehicle.
  • the left first module 160D and the left second module 160E are vehicle exterior modules 160 whose communication area is on the left side of the vehicle.
  • the rear end module 160G is a vehicle exterior module 160 that forms a communication area behind the vehicle.
  • the number of vehicle exterior modules 160 used for forming the welcome area Wx is not limited to five, and may be two, three, seven, or the like. Further, if the in-vehicle system 10 includes the right third module 160C and the left third module 160F shown in FIG. 17, the RSSI in the outside module 160 is also within the welcome area Wx or outside the welcome area Wx. It may be used for the determination.
  • the position determination unit F6 is provided for each of the plurality of vehicle exterior modules 160. Based on the RSSI, the vehicle interior strength representative value is calculated, and it is determined whether the portable terminal 20 exists in the welcome area Wx by comparing the vehicle exterior strength representative value with the high level threshold value and the low level threshold value. According to such an aspect, it is possible to reduce the risk of erroneously determining the position of the mobile terminal 20 due to the user's possession of the mobile terminal 20.
  • the vehicle exterior strength representative value is preferably the maximum value in each vehicle exterior module 160.
  • the position determination unit F6 includes the mobile terminal 20 in the welcome area Wx.
  • the detailed position of the mobile terminal 20 in the welcome area Wx can be determined based on the RSSI in each of the plurality of outside-vehicle modules 160.
  • the position determination unit F6 of the present modification includes a right area W1 corresponding to the right side of the vehicle, a left area W2 corresponding to the left side of the vehicle, and a left side area W2 corresponding to the left side of the vehicle based on the RSSI in each of the plurality of outside module 160. It is determined in which of the rear areas W3 corresponding to the rear of the vehicle. For convenience, small sections obtained by dividing the welcome area Wx such as the right area W1, the left area W2, and the rear area W3 are referred to as sub-areas.
  • FIG. 28 is a diagram conceptually showing a sub-area.
  • each vehicle compartment module 160 is associated with a sub-area corresponding to a region in which the vehicle compartment module 160 is a main communication area.
  • the right first module 160A and the right second module 160B are the vehicle exterior modules 160 whose communication area is on the right side of the vehicle, they are registered as the vehicle exterior modules 160 corresponding to the right area W1.
  • the left first module 160D and the left second module 160E are the vehicle exterior modules 160 whose communication area is on the right side of the vehicle, they are registered as the vehicle exterior modules 160 corresponding to the left area W2.
  • the rear end module 160G is a vehicle exterior module 160 whose communication area is the rear of the vehicle, it is registered as the vehicle exterior module 160 corresponding to the rear area W3.
  • the position determination unit F6 determines that the mobile terminal 20 is present in the welcome area Wx
  • the maximum of the plurality of vehicle exterior modules 160 that is the vehicle exterior module 160 having the highest average strength are identified.
  • the maximum module and the semi-maximum module are the vehicle exterior modules 160 corresponding to the same subarea, it is determined that the mobile terminal 20 exists in the subarea.
  • both the maximum module and the semi-maximum module are the vehicle exterior modules 160 associated with the right area W1
  • this aspect corresponds to a configuration in which it is determined that the mobile terminal 20 is present on the right side of the vehicle when both the maximum module and the semi-maximum module are the vehicle exterior modules 160 whose communication area is on the right side of the vehicle. To do.
  • the difference between them is calculated. If the difference is equal to or greater than a predetermined threshold, it may be determined that the mobile terminal 20 exists in the subarea corresponding to the maximum module. When the difference is less than the predetermined threshold, the detailed position of the mobile terminal 20 may be unknown. Alternatively, if the difference is less than the predetermined threshold, it is assumed that the mobile terminal 20 exists near the boundary between the subareas, and the subarea corresponding to the maximum module and the quasi-maximum module are present as areas where the mobile terminal 20 exists. Both corresponding subareas may be employed.
  • the case where the maximum module and the semi-maximum module do not correspond to the same subarea is, for example, the case where the maximum module is the right second module 160B and the semi-maximum module is the rear end module 160G.
  • the aspect which pinpoints whether the portable terminal 20 exists in the right side, the left side, and back is disclosed above, it is not restricted to this. You may be comprised so that the portable terminal 20 may identify whether it exists ahead or back. It may be configured to specify whether the mobile terminal 20 is on the left side or the right side.
  • the position determination unit F6 has disclosed an aspect in which the same position determination process as that in the first embodiment described above is performed for each of the plurality of lock / unlock areas Lx.
  • the method for specifying the existence area is not limited to this.
  • another embodiment for specifying the presence area of the mobile terminal 20 is disclosed as a fifth embodiment.
  • the in-vehicle system 10 of the present embodiment includes a plurality of lock / unlock areas Lx as target areas so that they do not overlap each other outside the vehicle compartment, and the vehicle exterior module 160 is provided. At least one is provided for each locking / unlocking area Lx.
  • the first vehicle exterior module 160L is arranged so that the first locking / unlocking area L1 is positioned at the center of the communication area, and the second locking / unlocking area L2 is positioned at the center of the communication area.
  • the second exterior module 160M and the third exterior module 160N arranged so that the third locking / unlocking area L3 is located at the center of the communication area.
  • the first vehicle compartment module 160L is located on the right side of the vehicle V. This corresponds to the vehicle exterior module 160 serving as a communication area.
  • the second vehicle exterior module 160M places the left side of the vehicle V in the communication area. This corresponds to the vehicle exterior module 160.
  • the first locking / unlocking area L1 is set near the driver's seat door, and the driver's seat is arranged on the right side of the vehicle V. Therefore, the first locking / unlocking area L1 corresponds to the right area. . Since the second locking / unlocking area L2 is set near the passenger seat door and the passenger seat is disposed on the left side of the vehicle V, the second locking / unlocking area L2 corresponds to the left area.
  • FIG. 29 is a flowchart for explaining position determination processing in the present embodiment. Note that the position determination unit F6 performs, for example, processing corresponding to S301 to S304 in FIG. 19 as pre-processing in the flowchart shown in FIG.
  • the position determination unit F6 in the above setting, for each locking / unlocking area Lx represents the RSSI representative value (hereinafter referred to as area representative) in the vehicle exterior module 160 associated with the locking / unlocking area Lx. Value).
  • the area representative value for a certain lock / unlock area Lx may be the maximum value of RSSI in at least one vehicle exterior module 160 associated with the lock / unlock area Lx.
  • the area representative value may be an average value or a median value.
  • the RSSI (more specifically, average strength) in each vehicle exterior module 160 is directly used as the area representative value.
  • the average strength in the first vehicle exterior module 160L is adopted as the area representative value in the first locking / unlocking area L1.
  • the average strength in the second vehicle exterior module 160M is adopted as the area representative value in the second locking / unlocking area L2.
  • the average strength in the third vehicle exterior module 160N is employed as the area representative value for the third locking / unlocking area L3.
  • the position determination unit F6 as S402, a candidate intensity difference that is a difference between the first intensity that is the largest area representative value and the second intensity that is the second largest area representative value among the plurality of area representative values. Is calculated.
  • S403 is executed.
  • the position storage unit M2 is referred to, and the result of the previous position determination process is referred to.
  • the mobile terminal 20 moves to the unlocking area Lx (hereinafter, the maximum intensity area) corresponding to the first intensity. It is determined whether it is determined that it exists. If it is determined in the previous position determination process that the mobile terminal 20 is present in the maximum intensity area, an affirmative determination is made in S403 and S404 is executed. On the other hand, if it is not determined that the mobile terminal 20 exists in the maximum intensity area in the previous position determination process, a negative determination is made in S403 and S407 is executed.
  • the candidate intensity difference calculated in S402 is compared with the low level threshold to determine whether the candidate intensity difference is equal to or lower than the low level threshold.
  • the specific value of the low level threshold used here may be designed as appropriate. For example, it is preferably set to a value that can be regarded as having no significant difference between the first intensity and the second intensity, such as +5 dB.
  • the mobile terminal 20 determines that the mobile terminal 20 exists outside the maximum intensity area, stores the determination result in the position storage unit M2, and ends the present flow.
  • the process proceeds to S406, and the mobile terminal 20 determines that it exists in the maximum intensity area and ends this flow. That is, the portable terminal 20 maintains the previous determination result that it exists in the maximum intensity area.
  • the candidate intensity difference calculated in S402 is compared with the high level threshold to determine whether the candidate intensity difference is equal to or higher than the high level threshold.
  • the specific value of the high level threshold used here may be appropriately designed in a range larger than the low level threshold.
  • the high level threshold value is preferably set to a value that is, for example, 5 dB or more larger than the low level threshold value described above.
  • the mobile terminal 20 when the mobile terminal 20 is present in the first locking / unlocking area L1, for example, it can be detected with high accuracy.
  • the determination result is held until the candidate strength difference becomes equal to or less than a predetermined low level threshold value. Therefore, although the mobile terminal 20 is present in the first locking / unlocking area L1, the reception strength of the first vehicle exterior module 160L is reduced due to multipath or the like, and the mobile terminal 20 is The risk of misjudging that it does not exist in the lock area L1 can be reduced. In other words, the stability of the determination result of the position of the mobile terminal 20 can be improved.
  • other locking / unlocking areas Lx such as the second locking / unlocking area L2.
  • the determination accuracy of the area where the mobile terminal 20 exists can be increased.
  • Modification 5 is a modification of the fifth embodiment.
  • the 1st locking / unlocking area L1, the 2nd locking / unlocking area L2, and the 3rd locking / unlocking area L3 were disclosed as object area, this was disclosed. Not limited to.
  • the third locking / unlocking area L3 may not be set.
  • the target area may correspond to the right area W1, the left area W2, etc. as a welcome area.
  • the position determination unit F6 may be configured to determine whether the mobile terminal 20 exists on the right side or the left side of the vehicle V. You may be comprised so that it may determine whether the portable terminal 20 exists in the front side of the vehicle V, or a back side.
  • a predetermined range in front of the vehicle V may be set as the target area.
  • the vehicle exterior module 160 is also disposed at the front end of the vehicle V.
  • the plurality of target areas may be set in the passenger compartment as shown in FIG. FIG. 30 shows a mode in which a driver seat area R1, a passenger seat area R2, a first rear seat area R3, and a second rear seat area R4 are set as target areas.
  • the driver seat area R1, the passenger seat area R2, the first rear seat area R3, and the second rear seat area R4 are sequentially arranged in the driver seat area, the passenger seat area, the first rear seat area, and the second rear seat area, respectively.
  • the driver seat module 150D corresponds to a driver seat receiver.
  • the passenger seat module 150P corresponds to a passenger seat receiver.
  • the position of the mobile terminal 20 in the vehicle compartment can be determined with high accuracy.
  • the first rear seat area R3 and the second rear seat area R4 may be integrated into one target area.
  • the fifth embodiment and the sixth modification can be combined. That is, as the target area, the first locking / unlocking area L1, the second locking / unlocking area L2, the third locking / unlocking area L3, the driver seat area R1, the passenger seat area R2, the first rear seat area R3, and the second rear portion.
  • a seating area R4 may be set.
  • the determination algorithm exemplified as the third modification may be applied to identify in which area the mobile terminal 20 exists.
  • each unit is expressed as, for example, S101.
  • each part can be divided into a plurality of sub-parts, while the plurality of parts can be combined into one part.
  • each part configured in this manner can be referred to as a circuit, a device, a module, and a means.
  • Each of the above-mentioned plurality of parts or a combination thereof is not only (i) a software part combined with a hardware unit (for example, a computer), but also (ii) hardware (for example, an integrated circuit, As a part of the (wiring logic circuit), it can be realized with or without including the functions of related devices.
  • the hardware unit can be configured inside a microcomputer.

Abstract

位置判定システムは、車両に搭載された車載器(10)と、車両のユーザによって携帯される通信端末であって、送信元情報を含む無線信号を所定時間内に少なくとも一回は送信するように設定されている携帯端末(20)と、を備える。車載器は、車両に設置されたアンテナを介して、携帯端末から送信される無線信号を受信するとともに、受信した無線信号の受信強度を検出する受信部(140、150、160)と、受信部が検出した無線信号の受信強度に基づいて、アンテナの設置位置を基準として予め設定されている対象エリア内に携帯端末が存在するか否かを判定する位置判定部(F6)と、を備える。

Description

位置判定システム 関連出願の相互参照
 本出願は、2017年2月28日に出願された日本特許出願番号2017-036124号および2017年11月27日に出願された日本特許出願番号2017―226766号に基づくもので、ここにその記載内容を援用する。
 本開示は、車両に搭載されている車載器が、車両を利用するユーザによって携帯される携帯端末の位置を推定する位置判定システムに関する。
 特許文献1には、車両に搭載された車載器と車両のユーザによって携帯される携帯端末とが無線通信を実施することで、車両に対する携帯端末の位置を推定するシステム(以降、位置推定システム)が開示されている。具体的には、特許文献1に開示の携帯端末は、車載器から応答信号の返送を要求するリクエスト信号を受信した場合、当該リクエスト信号のRSSI(Received Signal Strength Indication)を含む応答信号を返送する。車載器は、携帯端末から返送されてくる応答信号に含まれているRSSIをメモリに保存していく。そして、車載器は、メモリに保存されている直近5回分のRSSIの平均値が所定の閾値を超過している場合に、携帯端末は車室内に存在すると判定する。一方、直近5回分のRSSIの平均値が閾値以下である場合には車室外に存在すると判定する。
 なお、上述の携帯端末とは、Bluetooth(登録商標)による通信機能を備える通信端末であり、特許文献1においては携帯端末として、スマートフォンや携帯電話機などが想定されている。これに伴い、車載器は、Bluetooth(登録商標)に準拠した無線通信を実施するものである。便宜上、以降ではBluetoothなどの、通信エリアが例えば最大でも数十メートル程度となる所定の無線通信規格に準拠した通信を近距離通信と称する。
特開2015-214316号公報
 発明者らは、近距離通信用のアンテナを車室内に配置した構成において、携帯端末から送信された信号の車載器での受信強度と、携帯端末の位置との関係性について試験したところ、次のような知見が得られた。
 携帯端末が車室内に存在する場合、車室内の多くの領域では、携帯端末が車室外に存在する場合よりも十分に大きい受信強度が得られる。しかしながら、携帯端末が車室内に存在する場合であっても、マルチパスによって生じた複数の電波が互い弱め合うように作用し、受信強度が車室内の他の領域よりも相対的に大きく低下しまう位置(以降、ヌルポイント)が存在しうる。
 そして、車載器が携帯端末から送信される信号の受信強度と所定の閾値との比較に基づいて携帯端末の位置を推定する構成では、携帯端末が車室内のヌルポイントに存在している場合、携帯端末からの受信強度が閾値を上回ることができず、携帯端末は車室外に存在すると誤判定してしまう場合があった。
 本開示は、この事情に基づいて成されたものであり、その目的とするところは、より精度良く携帯端末が所定の対象エリア内に存在するのか否かを判定することができる位置判定システムを提供することにある。
 その目的を達成するための本開示にかかる位置判定システムは、車両に搭載された車載器と、車両のユーザによって携帯される通信端末であって、送信元情報を含む無線信号を所定時間内に少なくとも一回は送信するように設定されている携帯端末と、を備え、車載器は、車両に設置されたアンテナを介して、携帯端末から送信される信号を受信するとともに、受信した無線信号の受信強度を検出する受信部と、受信部が検出した無線信号の受信強度に基づいて、アンテナの設置位置を基準として予め設定されている対象エリア内に携帯端末が存在するか否かを判定する位置判定部と、を備え、位置判定部が受信部によって検出されている無線信号の受信強度に基づいて携帯端末が対象エリアに存在するか否かを判定するための判定用閾値として、ハイレベル閾値と、ハイレベル閾値よりも小さいローレベル閾値の2つのパラメータが用意されており、位置判定部は、携帯端末は対象エリア外に存在すると判定している状態において、受信部によって検出されている無線信号の受信強度がハイレベル閾値以上となった場合には携帯端末は対象エリア内に存在すると判定し、携帯端末は対象エリア内に存在すると判定している状態において、受信部によって検出されている無線信号の受信強度がローレベル閾値以下となった場合には携帯端末は対象エリア外に存在すると判定するように構成されている。
 以上の構成によれば、受信部によって検出されている受信強度が所定のハイレベル閾値以上となった場合に、携帯端末の位置は対象エリア内に存在すると判定し、受信強度がローレベル閾値以下となるまでその判定結果を保持する。また、受信強度がローレベル閾値以下となった場合には、携帯端末の位置は対象エリア内から対象エリア外に遷移したと判定し、受信強度がハイレベル閾値以上となるまでその判定結果を保持する。
 したがって、いったん携帯端末が対象エリア内に存在すると判定されれば、携帯端末の受信強度がマルチパスの影響等で一時的に低下しても、ローレベル閾値以下にさえならなければ、携帯端末は対象エリア内に存在するという判定結果が維持される。故に、マルチパスによって携帯端末の位置を誤判定してしまう恐れを抑制できる。換言すれば、より精度良く携帯端末が所定のエリア内に存在するのか否かを判定することができる。
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
図1は、位置判定システムの概略的な構成を示した図であり、 図2は、第1実施形態の車載システムの概略的な構成を示したブロック図であり、 図3は、近距離通信モジュールの概略的な構成を示したブロック図であり、 図4は、近距離通信モジュールの設置位置の一例を示した図である。 図5は、認証ECUの概略的な構成を示した図である。 図6は、携帯端末の位置とRSSIとの関係を試験した結果を示した図であり、 図7は、窓付近でRSSIが高くなる理由について説明するための図であり、 図8は、位置判定処理を説明するためのフローチャートであり、 図9は、比較構成での携帯端末の位置の判定結果を示した図であり、 図10は、位置判定部の作動を説明するための図であり、 図11は、位置判定部による携帯端末の位置の判定結果を示した図であり、 図12は、第2実施形態の車載システムの概略的な構成を示したブロック図であり、 図13は、第2実施形態の認証ECUが実施する位置判定処理を説明するためのフローチャートであり、 図14は、第2実施形態の認証ECUが実施する位置判定処理の変形例を示すフローチャートであり、 図15Aは、図14に示す判定アルゴリズムを採用した場合の位置判定部の降車時における作動を説明するための図であり、 図15Bは、図14に示す判定アルゴリズムを採用した場合の位置判定部の乗車時における作動を説明するための図であり、 図16は、第3実施形態の車載システムの概略的な構成を示したブロック図であり、 図17は、種々の近距離通信モジュールの設置位置の一例を示した図であり、 図18は、車室外用モジュールの設置位置の一例を示した図であり、 図19は、第3実施形態の認証ECUが実施する位置判定処理を説明するためのフローチャートであり、 図20は、携帯端末がズボンの後ろ側ポケットに収容されている場合の、携帯端末が送信した信号の強度分布をシミュレーションした結果を示した図であり、 図21は、携帯端末がジャケットの胸ポケットに収容されている場合の、携帯端末が送信した信号の強度分布をシミュレーションした結果を示した図であり、 図22は、第3実施形態の認証ECUが実施する位置判定処理の変形例を示すフローチャートであり、 図23は、第4実施形態の構成を説明するための概念図であり、 図24は、変形例3における対象エリアの設定態様を示す概念図であり、 図25は、変形例3における位置判定部及び車両制御部の作動を説明するための図であり、 図26は、車室外用モジュールの配置態様の一例を示す概念図であり、 図27は、変形例4における対象エリアの設定態様を示す概念図であり、 図28は、変形例4における位置判定部の作動の一例を説明するための図であり、 図29は、第5実施形態における位置判定処理について説明するためのフローチャートであり、 図30は、変形例6における対象エリアの設定態様を示す概念図である。
 (第1実施形態)
 以下、本開示の実施の形態の一例である第1実施形態について図を用いて説明する。図1は、本開示に係る位置判定システム1の概略的な構成の一例を示す図である。図1に示すように位置判定システム1は、車両Vに搭載された車載システム10と、当該車両Vのユーザによって携帯される通信端末である携帯端末20と、を備えている。便宜上、本明細書では、車両Vは右側に運転席(換言すればハンドル)が設けられている車両とするが、これに限らない。車両Vは左側に運転席が設けられている車両であってもよい。
 携帯端末20は、通信範囲が例えば最大でも数十メートル程度となる所定の近距離無線通信規格に準拠した通信(以降、近距離通信とする)を実施する機能を備えた通信端末である。ここでの近距離無線通信規格としては、例えばBluetooth Low Energy(Bluetoothは登録商標)や、Wi-Fi(登録商標)、ZigBee(登録商標)等を採用することができる。
 携帯端末20は、上述の近距離通信機能を備えていればよく、例えばスマートフォンを携帯端末20として用いることができる。もちろん、携帯端末20は、タブレット端末、ウェアラブルデバイス、携帯用音楽プレーヤ、携帯用ゲーム機等であってもよい。ウェアラブルデバイスは、脈拍等の生体情報をセンシングする機能を備えるものであっても良い。携帯端末20が近距離通信として送信する信号には、送信元情報が含まれている。送信元情報は、例えば携帯端末20に割り当てられた識別情報(以降、端末IDとする)である。端末IDは他の通信端末と携帯端末20とを識別するための情報として機能する。
 また、携帯端末20は、送信元情報を含む通信パケットを所定の送信間隔で無線送信することで、近距離通信機能を備えた周囲の通信端末に対して、自分自身の存在を通知する(つまりアドバタイズする)。以降では便宜上、アドバタイズを目的として定期的に送信される通信パケットのことをアドバタイズパケットと称する。
 なお、携帯端末20は、アドバタイズパケットを所定の送信間隔(例えば100ミリ秒)で無線送信するように構成されている。アドバタイズパケットの送信間隔は携帯端末20の動作状況に応じて可変であってもよい。例えば携帯端末20において近距離通信機能を利用する所定のアプリケーションがフォアグラウンドで動作している場合、送信間隔は相対的に短い時間(例えば50ミリ秒)に設定される。一方、当該アプリケーションがフォアグラウンドで動作していない場合、送信間隔は相対的に長い時間(200ミリ秒)に設定される。携帯端末20は、位置判定システム1が規定する所定の時間(例えば200ミリ秒)に少なくとも一回はアドバタイズパケットを送信するように構成されていればよい。
 車載システム10もまた、上述の近距離通信機能を備えている。車載システム10は、携帯端末20から送信されてくる信号(例えばアドバタイズパケット)を受信することによって、携帯端末20が車載システム10と近距離通信可能な範囲内に存在することを検出する。以降では、車載システム10が携帯端末20と近距離通信可能な範囲のことを通信エリアとも記載する。車載システム10が車載器に相当する。
 (車載システム10)
 次に、車載システム10の構成及び作動について述べる。車載システム10は、図2に示すように、認証ECU100、近距離通信モジュール140、タッチセンサ110、始動ボタン120、施錠ボタン130、エンジンECU200、ボディECU300を備える。なお、ECUは、Electronic Control Unitを意味する。
 近距離通信モジュール140は、認証ECU100と相互通信可能に接続されている。タッチセンサ110、始動ボタン120、及び施錠ボタン130のそれぞれは認証ECU100と電気的に接続されている。認証ECU100は、エンジンECU200及びボディECU300のそれぞれと、車両内に構築された通信ネットワーク(以降、LAN:Local Area Network)400を介して相互通信可能に接続されている。
 認証ECU100は、概略的に、近距離通信モジュール140との連携(換言すれば協働)によって、携帯端末20の位置を推定し、その推定結果に応じた車両制御を他のECUとの協働によって実現するECUである。
 この認証ECU100は、コンピュータを用いて実現されている。すなわち、認証ECU100は、CPU101、RAM(Random Access Memory)102、フラッシュメモリ103、I/O104、及びこれらの構成を接続するバスラインなどを備えている。
 CPU101は、CPU101は種々の演算処理を実行する演算処理装置である。RAM102は揮発性の記憶媒体であり、フラッシュメモリ103は、書き換え可能な不揮発性の記憶媒体である。I/O104は、認証ECU100が、近距離通信モジュール140や、車両Vに搭載されている図示しない他のデバイスと通信するためのインターフェースとして機能する回路モジュールである。I/O104は、アナログ回路素子やICなどを用いて実現されればよい。
 フラッシュメモリ103には、ユーザが所有する携帯端末20に割り当てられている端末IDが登録されている。便宜上以降では、携帯端末20の端末IDとしてフラッシュメモリ103に登録されている端末IDのことを登録IDとも記載する。また、フラッシュメモリ103には、通常のコンピュータを認証ECU100として機能させるためのプログラム(以降、位置判定プログラム)等が格納されている。なお、上述の位置判定プログラムは、非遷移的実体的記録媒体(non- transitory tangible storage medium)に格納されていればよい。CPU101が位置判定プログラムを実行することは、位置判定プログラムに対応する方法が実行されることに相当する。
 この認証ECU100の詳細については別途後述する。なお、車両Vの走行用電源(例えばイグニッション電源)がオフになっている場合も、認証ECU100には、後述する位置判定処理を実施するために必要十分な電力が車載バッテリから供給されるように構成されている。
 タッチセンサ110は、車両Vの各ドアハンドルに装備されており、ユーザがそのドアハンドルを触れていることを検出する。各タッチセンサ110の検出結果は、認証ECU100に逐次出力される。
 始動ボタン120は、ユーザが駆動源(例えばエンジン)を始動させるためのプッシュスイッチである。始動ボタン120は、ユーザによってプッシュ操作がされると、その旨を示す制御信号を認証ECU100に出力する。なお、ここでは一例として車両Vは、エンジンを動力源として備える車両とするがこれに限らない。車両Vは、電気自動車やハイブリッド車であってもよい。車両Vがモータを駆動源として備える車両である場合には、始動ボタン120は駆動用のモータを始動させるためのスイッチである。
 施錠ボタン130は、ユーザが車両Vのドアを施錠するためのボタンである。車両Vの各ドアハンドルに設けられればよい。施錠ボタン130は、ユーザによって押下されると、その旨を示す制御信号を、認証ECU100に出力する。
 近距離通信モジュール140は、近距離通信を実施するための通信モジュールである。近距離通信モジュール140が受信部に相当する。近距離通信モジュール140は、より細かい構成要素として図3に示すように、アンテナ141、送受信部142、及び通信マイコン143を備える。
 アンテナ141は、近距離通信に用いられる周波数帯(例えば2.4GHz帯)の電波を送受信するためのアンテナである。本実施形態では一例としてアンテナ141は無指向性アンテナとする。他の態様としてアンテナ141は指向性を備えるものであってもよい。
 送受信部142は、アンテナ141で受信した信号を復調し、通信マイコン143に提供する。また、通信マイコン143を介して認証ECU100から入力された信号を変調して、アンテナ141に出力し、電波として放射させる。
 また、送受信部142は、アンテナ141で受信した信号の強度(以降、RSSI:Received Signal Strength Indication)を逐次検出するRSSI検出部1421を備える。RSSI検出部1421が検出したRSSIは、受信データに含まれる端末IDと対応付けられて通信マイコン143に逐次提供される。なお、RSSIは、例えば電力の単位[dBm]で表現されればよい。便宜上、RSSIと端末IDとを対応づけたデータをRSSIデータと称する。
 通信マイコン143は、認証ECU100とのデータの受け渡しを制御するマイクロコンピュータであり、MPU(Micro-processing unit)やRAM等を用いて実現されている。通信マイコンは、送受信部142から入力された受信データを順次又は認証ECU100からの要求に基づいて認証ECU100に提供する。つまり、送受信部142が受信したデータは、通信マイコン143を介して認証ECU100に提供される。
 また通信マイコン143は、RSSI検出部1421からRSSIデータを取得すると、図示しないRAMに蓄積していく。逐次取得されるRSSIデータは、例えば、最新の受信データのRSSIが先頭となるように時系列順にソートされてRAMに保存されれば良い。保存されてから一定時間経過したデータは順次破棄されていけば良い。つまり、RSSIデータはRAMに一定時間保持される。通信マイコン143は、認証ECU100からの要求に基づいてRAMに蓄積されているRSSIデータを提供する。
 なお、認証ECU100に提供したRSSIデータについてはRAMから削除されれば良い。通信マイコン143におけるRSSIデータの保存期間は、所定のサンプリング周期よりも長い値に設定されれば良い。サンプリング周期は、携帯端末20から送信された信号のRSSIを認証ECU100が取得(換言すればサンプリング)する間隔である。本実施形態では、サンプリング周期は、認証ECU100が通信マイコンに対してRSSIデータの提供を要求する間隔に相当する。サンプリング間隔の具体的な値は適宜設計されればよく、ここでは一例として200ミリ秒に設定されているものとする。
 なお、本実施形態では送受信部142が出力するRSSIデータはRAMにいったん保持され、通信マイコン143が認証ECU100からの要求に基づいてRAMに蓄積されているRSSIデータを認証ECU100に提供するものとするが、これに限らない。RSSIデータは、認証ECU100に逐次提供される構成を採用しても良い。
 アンテナ141を含む近距離通信モジュール140は、少なくとも運転席や助手席といった前部座席周辺の車室内空間(以降、前部座席空間)が通信エリアとなるように、車室内の適宜設計される位置に配置されていればよい。或る近距離通信モジュール140にとっての通信エリアとは、当該近距離通信モジュール140が携帯端末20と双方通信可能な範囲である。通信エリアは、近距離通信モジュール140での信号の送信電力や受信感度、取り付け姿勢などのパラメータを調整することで調整することができる。また、アンテナ141は、ドアの外側領域(すなわち車室外)が見通し外領域となるように配置されていることが好ましい。
 アンテナ141にとっての見通し外領域とは、アンテナ141から送信された信号が直接到達しない領域である。なお、無線信号の伝搬経路には可逆性があるため、アンテナ141にとっての見通し外領域は、換言すれば、アンテナ141が携帯端末20から送信された信号を直接受信可能な領域に相当する。携帯端末20が見通し外領域に存在する場合であっても携帯端末20から送信された信号は、種々の構造物で反射されることによって、見通し外領域にも到達しうる。
 本実施形態では一例として近距離通信モジュール140は、車室内空間の全域が通信エリアとなるように、図4に示すようにセンターコンソール2とインストゥルメントパネル3との境界付近に配置されているものとする。なお、近距離通信モジュール140の設置位置は、これに限らない。車室内の運転席付近が見通し内となり、かつ、車室外が見通し外となるように、例えば運転席の足元や、運転席用のドアの車室内側の側面に配置していても良い。なお、図4では、車両Vの概念的な上面図であって、センターコンソール2等を図示するために屋根部を透過させて示している。
 また、車室外への電波の漏れを許容する場合、アンテナ141は、車室内天井部分の中央に配置してもよい。なお、アンテナ141を指向性アンテナとする場合には、車室内の天井に設ける場合であっても、指向性の中心が車両Vの床面に向く姿勢で配置すれば、車室外への電波の漏れを抑制することができる。本実施形態では一例として近距離通信モジュール140は車室内に1つだけ設けられているものとする。他の実施態様として後述するように、近距離通信モジュール140は車室内に複数設けられていても良い。
 エンジンECU200は、車両Vに搭載されたエンジンの動作を制御するECUである。ボディECU300は、種々の車載アクチュエータ(VA)310や、種々の車載センサ320と通信可能に接続されており、認証ECU100からの要求に基づいて車載アクチュエータ310を制御するECUである。ここでの車載アクチュエータ310とは、例えば、各ドアのロック機構を構成するドアロックモータや、座席位置を調整するためのアクチュエータ(以降、シートアクチュエータ)などである。また、ここでの車載センサ(VS)320とは、ドア毎に配置されているカーテシスイッチなどである。カーテシスイッチは、ドアの開閉を検出するセンサである。このボディECU300は、例えば認証ECU100からの要求に基づいて、車両Vの各ドアに設けられたドアロックモータに所定の制御信号を出力することで各ドアを施錠したり開錠したりする。
 (認証ECU100)
 認証ECU100は、上述した位置判定プログラムを実行することで、図5に示す種々の機能ブロックに対応する機能を提供する。すなわち、認証ECU100は機能ブロックとして、車両情報取得部F1、送信処理部F2、受信処理部F3、RSSI取得部F4、認証処理部F5、位置判定部F6、及び車両制御部F7を備えている。
 なお、認証ECU100が実行する機能の一部又は全部は、論理回路等を用いたハードウェアとして実現されていてもよい。ハードウェアとして実現される態様には1つ又は複数のICを用いて実現される態様も含まれる。また、認証ECU100が備える機能ブロックの一部又は全部は、CPU101によるソフトウェアの実行と電子回路の組み合わせによって実現されていてもよい。
 また、認証ECU100は、RSSI記憶部M1と、位置記憶部M2とを備える。RSSI記憶部M1は、携帯端末20から送信された信号のRSSIを保存するための記憶領域である。位置記憶部M2は、携帯端末20が車室内に存在するのか否かといった、携帯端末の位置を示すデータが保存される記憶領域である。
 RSSI記憶部M1及び位置記憶部M2は、車両Vの走行用電源がオフになっている間もデータが保持されるメモリ(例えば不揮発性メモリ)であればよい。走行用電源がオフとなっている間もRAM102のデータは車載バッテリから供給される電力によって保持される。故に、本実施形態では一例としてRSSI記憶部M1及び位置記憶部M2はRAM102が備える記憶領域の一部を用いて実現されているものとする。なお、他の態様として、RSSI記憶部M1及び位置記憶部M2は、フラッシュメモリ103等の書き換え可能な不揮発性の記憶媒体を用いて実現されてもよい。また、位置記憶部M2はCPU101が備えるレジスタを用いて実現されていても良い。
 車両情報取得部F1は、車両Vに搭載されたセンサ(例えばタッチセンサ110)やECU(例えばボディECU300)から、車両Vの状態を示す種々の情報(以降、車両情報)を取得する。車両情報としては、例えば、ドアの開閉状態や、各ドアの施錠又は開錠状態、ドアハンドルへのタッチの有無、始動ボタン120の押下の有無等が該当する。なお、車両情報に含まれる情報は、上述したものに限らない。図示しないシフトポジションセンサが検出するシフトポジションや、ブレーキペダルが踏み込まれているか否かを検出するブレーキセンサの検出結果なども車両情報に含まれる。なお、各ドアの施錠又は開錠状態を示す情報を取得することは、各ドアの施錠又は開錠状態を判定することに相当する。
 また、車両情報取得部F1は、上述した種々の情報に基づいて、車両Vの現在の状態を特定する。例えば車両情報取得部F1は、エンジンがオフであり、全てのドアが施錠されている場合に、車両Vは駐車されていると判定する。もちろん、車両Vが駐車されていると判定する条件は適宜設計されればよく、多様な判定条件等を適用することができる。車両情報取得部F1が車両状態判定部に相当する。
 送信処理部F2は、携帯端末20宛のデータを生成し、近距離通信モジュール140に出力する。これにより、所望のデータに対応する信号を電波として送信させる。受信処理部F3は、近距離通信モジュール140から受信データを取得する構成である。
 RSSI取得部F4は、近距離通信モジュール140からRSSIデータを取得する構成である。本実施形態のRSSI取得部F4は、近距離通信モジュール140に対して所定のサンプリング間隔でRSSIデータの提供を要求することにより、RSSIデータを取得する。
 そして、近距離通信モジュール140から取得したRSSIデータの中に、携帯端末20から送信された信号のRSSIが含まれている場合には、そのRSSIをRSSI記憶部M1に保存する。つまり、RSSI取得部F4は、携帯端末20から送信されてくる信号のRSSIを収集する。なお、携帯端末20から送信された信号のRSSIとは、携帯端末20の端末IDと対応付けられているRSSIである。以降では、携帯端末20から送信された信号のRSSIのことを、携帯端末20のRSSIと略して記載する。
 なお、携帯端末20以外からの信号のRSSIは破棄されれば良い。また、携帯端末20以外からの信号のRSSIを破棄する処理は、近距離通信モジュール140(例えば通信マイコン143)で実施されても良い。その場合、近距離通信モジュール140にも携帯端末20の端末IDが登録されているものとする。
 携帯端末20が車両Vの周辺に存在する場合、RSSI記憶部M1には、携帯端末20のRSSIが蓄積されていく。取得時刻が異なる複数のRSSIは、例えば、最新の受信データのRSSIが先頭となるように時系列順にソートされてRAM102に保存されれば良い。RAM102に格納されてから一定時間経過したRSSIは順次削除されていけばよい。そのような構成によれば、RAM102には、直近一定時間以内に受信した信号のRSSIが保存される。RSSIを保持する時間は、例えばサンプリング間隔を5倍~10倍した時間とすればよい。
 なお、複数の携帯端末20が車載システム10に登録されている場合であって、かつ、複数の携帯端末20からのRSSIを取得できている場合には、RSSI取得部F4は各携帯端末20のRSSIを端末ID毎に区別して保存していく。
 認証処理部F5は、近距離通信モジュール140と連携して、携帯端末20を認証する処理(以降、認証処理)を実施する。認証のための近距離通信は、暗号化されて実施されるものとする。つまり、認証処理は暗号通信によって実施される。認証処理自体は、チャレンジ-レスポンス方式など多様な方式を用いて実施されればよい。ここではその詳細な説明は省略する。なお、認証処理に必要なデータ(例えば照合用のコード)などは携帯端末20と認証ECU100のそれぞれに保存されているものとする。
 なお、車載システム10は、携帯端末20の位置を特定するための近距離通信モジュールと、携帯端末20とのデータ通信を実施するための近距離通信モジュール(データ通信用モジュール)とを別個に備えていてもよい。その場合にはデータ通信用モジュールが、携帯端末20との認証処理を実施する役割を担う。データ通信用モジュールは、ゲートウェイとしての役割を担う。
 位置判定部F6は、RSSI取得部F4によって収集されている携帯端末20のRSSIに基づいて、携帯端末20が車室内に存在するのか否かを判定する構成である。フラッシュメモリ103には、位置判定部F6が携帯端末20のRSSIに基づいて携帯端末20が車室内に存在するか否かを判定するための判定用閾値として、ハイレベル閾値と、ローレベル閾値の2つのパラメータが予め用意されている。
 ハイレベル閾値は、携帯端末20は車室内に存在すると判定するための閾値である。ハイレベル閾値は、ローレベル閾値よりも相対的に高い値に設定されている。例えばハイレベル閾値は、試験等によって特定される、携帯端末20が車室内(特に運転席周辺)に存在する場合のRSSIを基準として設計されればよい。
 図6は、前部座席空間及び車室外の運転席用のドア周辺領域における携帯端末20のRSSIと携帯端末20の位置との関係を試験した結果を表した図である。図6に示す試験結果は、車両Vのドアを閉めた状態において、携帯端末20を車両Vの窓部と同じ程度の高さ、具体的には路面からの高さが1.1mとなる位置に配置した時のRSSIを表している。なお、ここでは一例として車両右側に運転席が設けられているものとする。
 図6に示すように、車両Vのドアを閉めている場合には、携帯端末20が車室内の前部座席に存在する場合のRSSIは、携帯端末20が車室から数メートル程度離れた地点に存在する場合のRSSIよりも相対的に大きい値となる。前部座席空間において周辺に比べてRSSIが10dBm以上低下している地点は、マルチパスの影響によってRSSIが急激に低下する地点、すなわちヌルポイントを表している。なお、車室外領域であっても窓部近傍領域は、図7に示すように、アンテナ141の見通し内となりうるため、車室外の他の領域よりも相対的に高い値となる場合がある。
 ハイレベル閾値は、上述した試験結果に基づいて、携帯端末20が車両Vから数メートル程度離れた地点に存在する場合のRSSIよりも十分に大きい値に設定されていればよい。本実施形態では一例としてハイレベル閾値は、-40dBmに設定されているものとする。なお、ハイレベル閾値を、携帯端末20が車室内に存在する場合に観測されるRSSIに基づいて決定する場合、他の領域に比べて極端に低い値、換言すればヌルポイントと想定される地点での観測値は除外した上で決定することが好ましい。
 ローレベル閾値は、携帯端末20は車室外に存在すると判定するための閾値である。ローレベル閾値の具体的な値も、ハイレベル閾値と同様に、携帯端末20の位置とRSSIとの対応関係を試験した結果に基づいて適宜設計されればよい。ローレベル閾値は、ハイレベル閾値よりも10dBm以上低い値に設定されていることが好ましい。ここでは一例として-50dBmに設定されているものとする。
 位置判定部F6は、上述したハイレベル閾値及びローレベル閾値を用いて、携帯端末20が車室内に存在するのか否かを判定する。この位置判定部F6の作動については別途後述する。位置判定部F6の判定結果は、位置記憶部M2に保存される。位置判定部F6の判定結果とは、携帯端末20が車室内と車室外のどちらに存在するかといった、携帯端末20の位置情報である。位置判定部F6の判定結果は、車両制御部F7によって参照される。
 なお、位置記憶部M2に登録されている携帯端末20の位置情報は、工場出荷時等の初期状態においては車室外に設定されているものとする。また、本実施形態ではより好ましい態様として、携帯端末20からの信号を受信できなくなった場合には、位置記憶部M2に登録されている携帯端末20の位置情報を車室外に設定するものとする。その他、車両Vが駐車されている状態が一定時間(例えば1時間)以上継続した場合には、位置記憶部M2に登録されている携帯端末20の位置情報を車室外に設定してもよい。車両Vが駐車された状態であるか否かは、種々のセンサから入力される信号に基づいて車両情報取得部F1が特定すればよい。このような態様によれば、位置記憶部M2に登録されている携帯端末20の位置情報を定期的、または所定のタイミングでリセットすることができる。
 車両制御部F7は、認証処理部F5による携帯端末20の認証が成功した場合、一定時間(例えば10秒間)、スタンバイ状態となる。そして、スタンバイ状態となっている間に所定のユーザ操作が実施されたことを車両情報取得部F1が検出した場合に、そのユーザ操作の内容に応じた車両制御を実施する。つまり、車両制御部F7は、認証処理部F5による携帯端末20の認証処理が成功してから所定時間以内に、車両情報取得部F1が所定のユーザ操作を検出した場合に、当該ユーザ操作に応じた車両制御を実施する構成である。なお、車両制御の実行条件には、位置判定部F6の判定結果も用いられることが好ましい。
 例えば車両Vが駐車されている状況において、位置判定部F6によって携帯端末20は車室外に存在すると判定されており、かつ、スタンバイ状態となっているときに、タッチセンサ110によってユーザによるハンドルにタッチする操作が検出された場合には、ボディECU300と連携してドアを開錠する。
 また、例えば位置判定部F6によって携帯端末20が車室内に存在すると判定されており、かつ、スタンバイ状態となっているときに、始動ボタン120がユーザによって押下された場合には、エンジンECU200と連携してエンジンを始動させる。その他、車両制御部F7が実施する車両制御の内容は、実施条件と合わせて適宜設計されれば良い。
 (位置判定処理)
 次に、図8に示すフローチャートを用いて認証ECU100が実施する位置判定処理について説明する。位置判定処理は、携帯端末20の位置を判定するための処理である。この位置判定処理は、例えば所定のサンプリング間隔で実施されればよい。
 まずS101ではRSSI取得部F4が、近距離通信モジュール140からRSSIデータを取得してS102に移る。S102ではRSSI取得部F4が、携帯端末20の端末ID(つまり登録ID)と対応付けられているRSSIデータを取得できたか否かを判定する。S101の処理の結果、登録IDと対応付けられているRSSIを取得できている場合には、S102が肯定判定されてS103に移る。一方、登録IDと対応付けられているRSSIを取得できなかった場合には、S102が否定判定されて本フローを終了する。
 なお、S101で登録IDと対応付けられているRSSIを取得できている場合とは、携帯端末20が車両Vの周辺(車室内を含む)に存在し、携帯端末20から送信された信号を近距離通信モジュール140が受信できていることを意味する。また、携帯端末20が車両Vの近くに存在せず、携帯端末20から送信された信号を近距離通信モジュール140が受信していない場合には、S102が否定判定されることとなる。つまり、S102での判定処理は、携帯端末20が車両Vの周辺に存在するか否かを判定する処理に相当する。
 S103ではRSSI取得部F4が、S101で取得した携帯端末20のRSSIをRSSI記憶部M1に保存してS104に移る。S104では位置判定部F6が、RSSI記憶部M1に保存されているデータに基づいて、携帯端末20のRSSIの移動平均値を算出する。具体的には、RSSI記憶部M1に保存されている直近N個のRSSIを母集団とする平均値を算出する。Nは2以上の自然数であればよく、本実施形態では5とする。この場合、直近5つの時点でサンプリングされた携帯端末20のRSSIを用いて移動平均値を算出することとなる。もちろん、Nは10や20などであってもよい。
 以降では、S104で算出された携帯端末20のRSSIの移動平均値のことを平均強度と称する。S104での算出処理が完了するとS105に移る。
 S105では位置判定部F6が、位置記憶部M2を参照し、前回の位置判定処理の結果を読み出す。前回の位置判定処理において携帯端末20の位置は車室外であると判定されている場合、S106が肯定判定されてS107に移る。一方、前回の位置判定処理において携帯端末20の位置は車室内であると判定されている場合、S106は否定判定されてS111に移る。
 S107では位置判定部F6が、S104で算出されている平均強度とハイレベル閾値とを比較して、平均強度がハイレベル閾値以上であるか否かを判定する。平均強度がハイレベル閾値以上である場合にはS107が肯定判定されてS108に移り、携帯端末20は車室内に存在すると判定する。そして、携帯端末20の位置は車室内であるという判定結果を位置記憶部M2に保存してS109に移る。
 なお、携帯端末20は車室内に存在しているという判定結果を位置記憶部M2に保存する処理は、位置記憶部M2に保存されている携帯端末20の位置情報を車室外から車室内に書き換える処理に相当する。S109では次回の位置判定処理で用いる判定用閾値をローレベル閾値に設定してS115に移る。
 一方、S107において、平均強度がハイレベル閾値未満である場合にはS110に移り、携帯端末20は車室外に存在すると判定する。S110での処理は、携帯端末20は車室外に存在するという前回の判定結果を維持することに相当する。前回の判定結果を維持する場合には、次回の位置判定処理で用いる判定用閾値の設定は変更せずに(つまりハイレベル閾値に設定したまま)、S115に移る。
 このように前回の位置判定処理において携帯端末20が車室外に存在すると判定されている場合には、判定用閾値としてハイレベル閾値を用いて携帯端末20が車室外に存在する状態が継続しているか否かを判定する。そして、平均強度がハイレベル閾値以上となっている場合には、携帯端末20の位置は、車室外から車室内に遷移したと判定する。つまり、ハイレベル閾値は、携帯端末20が車室内に持ち込まれたか否かを判定する閾値として機能する。
 S111では位置判定部F6が、S104で算出されている平均強度とローレベル閾値とを比較して、平均強度がローレベル閾値以下であるか否かを判定する。平均強度がローレベル閾値以下である場合にはS111が肯定判定されてS112に移り、携帯端末20は車室外に存在すると判定する。そして、携帯端末20の位置は車室外に存在しているという判定結果を位置記憶部M2に保存してS113に移る。なお、携帯端末20は車室外に存在しているという判定結果を位置記憶部M2に保存する処理は、位置記憶部M2に保存されている携帯端末20の位置情報を車室内から車室外に書き換える処理に相当する。S113では次回の位置判定処理で用いる判定用閾値をハイレベル閾値に設定してS115に移る。
 一方、S111において、平均強度がローレベル閾値を超過している場合にはS114に移り、携帯端末20は車室内に存在すると判定する。S114での処理は、携帯端末20は車室内に存在するという前回の判定結果を維持することに相当する。前回の判定結果を維持する場合には、次回の位置判定処理で用いる判定用閾値の設定は変更せずに(つまりローレベル閾値に設定したまま)、S115に移る。
 このように前回の位置判定処理において携帯端末20が車室内に存在すると判定されている場合には、判定用閾値としてローレベル閾値を用いて携帯端末20が車室内に存在する状態が継続しているか否かを判定する。そして、平均強度がローレベル閾値以下となった場合には、携帯端末20の位置は車室内から車室外に遷移したと判定する。つまり、ローレベル閾値は、携帯端末20が車室外に持ち出されたか否かを判定する閾値として機能する。なお、携帯端末20が車室外に持ち出されたと判定することは、携帯端末20のユーザが車室外に出たことを示唆している。
 S115では認証処理部F5が、携帯端末20と暗号通信による認証処理を実施する。認証処理が成功した場合にはS116に移る一方、認証処理が失敗した場合には本フローを終了する。S116では車両制御部F7が、スタンバイ状態に移行して本フローを終了する。なお、スタンバイ状態となっている間に携帯端末20の位置に応じたユーザ操作が実行されたことを検出した場合には、当該状況に応じた所定の車両制御(例えばドアの施錠)などを実施する。
 (第1実施形態の効果)
 次に、以上で述べた本実施形態の作動及び効果について、比較構成を導入して説明する。ここでの比較構成とは、1種類の判定用閾値を用いて携帯端末20が車室内に存在するか否かを判定する構成である。比較構成では、RSSIの平均強度が判定用閾値以上である場合に携帯端末20は車室内に存在すると判定し、RSSIの平均強度が判定用閾値未満である場合に携帯端末20は車室外に存在すると判定する。比較構成において判定用閾値の設定値が低すぎると、携帯端末20が実際には車室外に存在するにも関わらず、車室内に存在すると誤判定する恐れが高まる。一方、比較構成において判定用閾値の設定値が高すぎると、携帯端末20が実際には車室内に存在するにも関わらず、車室外に存在すると誤判定する恐れが高まる。したがって、比較構成では、それらの事情を鑑みて、判定用閾値を、誤判定が生じにくい値に設定する必要がある。
 しかしながら、図6を用いて説明したように、車室内にはマルチパスによるヌルポイントが存在するため、1つの閾値では車室外領域とヌルポイントとなっている車室内領域とを切り分けることは困難である。故に、比較構成では、図9に示すように、携帯端末20が実際には車室内に存在するにも関わらず、車室外に存在すると誤判定してしまう領域が幾つか発生してしまう。
 また、車室外の窓部付近に携帯端末20が配置された場合には、RSSIは想定的に高いレベルを推移する。そのため、比較構成では、車室外の窓部付近に携帯端末20が存在する場合、実際には車室外に存在するにも関わらず、携帯端末20は車室内に存在すると判定してしまう場合がある。なお、図9は、図6に示した試験環境において、比較構成の判定用閾値を-45dBmに設定した場合の、比較構成による携帯端末20の位置の判定結果を示したものである。
 これに対し、本実施形態では、平均強度がハイレベル閾値以上となった場合に、携帯端末20の位置は車室外から車室内に遷移したと判定し、平均強度がローレベル閾値以下となるまでその判定結果を保持する。また、平均強度がローレベル閾値以下となった場合には、携帯端末20の位置は車室内から車室外に遷移したと判定し、平均強度がハイレベル閾値以上となるまでその判定結果を保持する。
 したがって、図10に示すように、携帯端末20のRSSIがマルチパスの影響で一時的に低下しても、ローレベル閾値以下とならなければ、携帯端末20は車室内に存在するという判定結果が維持される。なお、図10に示す時刻t1は携帯端末20が車室内に持ち込まれてRSSIの平均強度がハイレベル閾値以上となった時点を表しており、時刻t3は携帯端末20が車室外に持ち出されてRSSIの平均強度がローレベル閾値以下となった時点を表している。時刻t2は、マルチパスの影響で平均強度が一時的に低下した時点を表している。
 その結果、本実施形態の構成によれば、マルチパスによって誤判定してしまう恐れや、車室外窓際付近での誤判定を抑制することができる。図11は、図6に示した試験環境において、ハイレベル閾値を-40dBm、ハイレベル閾値を-50dBmに設定した場合の携帯端末20の位置の判定結果を示したものである。図11と図9とを比較すれば分かるように、本実施形態によれば比較構成よりも誤判定している領域を抑制することができる。
 なお、ハイレベル閾値とローレベル閾値のギャップは、本実施形態として上述したように、10dB以上設けられていることが好ましい。ハイレベル閾値とローレベル閾値とのギャップを大きく設定しておけば、判定結果を保持しやすくなる。つまり、マルチパスや電波漏れ等に起因して携帯端末20の位置を誤判定してしまう恐れをより一層低減することができる。ただし、ハイレベル閾値とローレベル閾値のギャップを大きく設定しすぎると、背反としてハイレベル閾値を越えにくくなったり、ローレベル閾値を下回りにくくなったりする。その結果、誤判定してしまう可能性が相対的に増加してしまう。故に、ハイレベル閾値とローレベル閾値のギャップは、上記のトレードオフを鑑みて、10dBを基準とする所定範囲内の値に設定されることが好ましい。
 また、図6や図11での評価結果は、窓部相当の高さでの評価結果である。窓部よりも低い空間、例えば、座面相当の高さや車室内の床面相当の高さでは、より一層誤判定は生じにくくなる。それは、窓部よりも低い空間では、携帯端末20が車室外に存在する場合、携帯端末20とアンテナ141との間にドア等の金属体が介在することになり、携帯端末20が車室内に存在するか否かによってRSSIが大きく異なる値を取るようになるためである。
 さらに、上述した実施形態ではサンプリング間隔を数百ミリ秒(具体的には200ミリ秒)に設定した。車両周辺でのユーザの移動速度は1m/秒程度と想定されるため、サンプリング間隔を200ミリ秒に設定することにより、概略的にはユーザが20cm程度移動する度に携帯端末20のRSSIを採取することができる。このように相対的に密に携帯端末20のRSSIをサンプリングすることによって、携帯端末20のRSSIがハイレベル閾値を超過している瞬間を見逃してしまう恐れを低減できる。その結果、携帯端末20が車室内に持ち込まれたことを精度良く検出することができる。なお、サンプリング間隔は、人の動きに対して十分早い時間間隔であればよい。
 (第2実施形態)
 次に、本開示の第2実施形態に係る位置判定システム1について、図を用いて説明する。本実施形態と第1実施形態との主たる相違点は、車室内に設置された近距離通信モジュールでのRSSIと、車室外の所定領域が見通し内領域となるように設置された近距離通信モジュールでのRSSIとの差を用いて携帯端末20の位置を推定する点にある。
 以降では、第2実施形態における位置判定システム1のうち、主として車載システム10の構成及び作動について説明する。なお、前述の第1実施形態で述べた部材と同一の機能を有する部材については、同一の符号を付し、その説明を省略する。また、構成の一部のみに言及している場合、他の部分については先に説明した実施形態の構成を適用することができる。車載システム10が備える種々の近距離通信モジュールを区別しない場合には、符号を付けずに単に近距離通信モジュールとも記載する。
 本実施形態における車載システム10は、図12に示すように、近距離通信モジュールとして、車室内用モジュール150と、車室外用モジュール160と、を備える。図12においてエンジンECU200等の図示は省略している。
 車室内用モジュール150は、主として車室内に存在する携帯端末20と近距離通信を実施するための近距離通信モジュールであり、第1実施形態における近距離通信モジュール140に相当する。車室内用モジュール150は、センターコンソール2付近や運転席の足元など、車室外が見通し外領域となる位置に設けられていることが好ましい。車室内用モジュール150が受信部、特に、車室内受信部に相当する。また、車室内用モジュール150が備える近距離通信用のアンテナが車室内アンテナに相当する。
 車室外用モジュール160は、主として車室外に存在する携帯端末20と近距離通信を実施するための近距離通信モジュールである。車室外用モジュール160の構成や機能は、車室内用モジュール150と同様である。車室外用モジュール160は、車室外の所定範囲が見通し内となるように、例えば、運転席用ドアの外側面や、車両Vの屋根部、ボンネット、ピラー等に配置されれば良い。車室外用モジュール160が受信部、特に、車室外受信部に相当する。また、車室外用モジュール160が備える近距離通信用のアンテナが車室外アンテナに相当する。車室外用モジュール160は、車室内が見通し外となる位置に取り付けられることが好ましい。また、車室外アンテナは指向性アンテナを用いて実現されていても良い。本実施形態では一例として車室外用モジュール160は1つだけ設けられているものとする。他の実施態様として後述するように、車室外用モジュール160は複数設けられていても良い。
 本実施形態におけるRSSI取得部F4は、車室内用モジュール150と車室外用モジュール160のそれぞれからRSSIデータを取得するとともに、取得したRSSIデータを、取得元毎に区別してRSSI記憶部M1に保存する。つまり、車室内用モジュール150から取得した携帯端末20のRSSIと、車室外用モジュール160から取得した携帯端末20のRSSIとを区別してRSSI記憶部M1に保存する。
 また、位置判定部F6は、車室内用モジュール150から取得した携帯端末20のRSSIと、車室外用モジュール160から取得した携帯端末20のRSSIの差に基づいて、携帯端末20が車室内に存在するのか否かを判定する。具体的には、車室内用モジュール150から取得した携帯端末20のRSSIの平均強度である車室内平均強度と、車室外用モジュール160から取得した携帯端末20のRSSIの平均強度である車室外平均強度のそれぞれを算出する。そして、車室内平均強度から車室外平均強度を減算した値である強度差ΔRSSIを算出し、当該強度差と、判定用閾値としてのハイレベル閾値やローレベル閾値との比較によって携帯端末20の位置を判定する。強度差ΔRSSIは、携帯端末20から送信された無線信号の車室内での信号強度と、車室外(特に車両近傍)での信号強度の差を表す。強度差ΔRSSIが強度差分値に相当する。
 ところで、本実施形態では、携帯端末20の位置判定に用いる指標が、受信強度そのものを表すものではなく、車室内用モジュール150での受信強度と、車室外用モジュール160での受信強度との差である。そのため、本実施形態でのハイレベル閾値やローレベル閾値は、携帯端末20が車室外に存在する場合の車室内用モジュール150での受信強度と車室外用モジュール160での受信強度との差、及び、携帯端末20が車室内に存在する場合の車室内用モジュール150での受信強度と車室外用モジュール160での受信強度との差に基づいて決定されている。
 携帯端末20が車室内に存在する場合には、車室内用モジュール150での受信強度は、車室外用モジュール160での受信強度よりも大きくなりやすい。それ故、強度差ΔRSSIは正の値となることが期待できる。一方、携帯端末20が車室外に存在する場合には、車室内用モジュール150での受信強度は、車室外用モジュール160での受信強度よりも小さくなりやすい。それ故、強度差ΔRSSIは負の値となることが期待できる。
 ハイレベル閾値やローレベル閾値は、上述した傾向を鑑みて決定されれば良い。本実施形態では一例として、ハイレベル閾値は+5dBに設定されており、ローレベル閾値は-5dBに設定されているものとする。もちろん、他の態様として、ハイレベル閾値を+10dBに設定し、ローレベル閾値を0dBに設定してもよい。ハイレベル閾値及びローレベル閾値の具体的な値は適宜設計されれば良い。
 次に、図13に示すフローチャートを用いて、第2実施形態の認証ECU100が実施する位置判定処理について説明する。図13に示すフローチャートは、図8に示すフローチャートと同様に、所定のサンプリング間隔で実施されれば良い。
 まず、S201ではRSSI取得部F4が、車室内用モジュール150と車室外用モジュール160のそれぞれからRSSIデータを取得してS202に移る。S202ではRSSI取得部F4が、S211での処理の結果、登録IDと対応付けられているRSSIデータを取得できたか否かを判定する。
 S201の処理の結果、車室内用モジュール150と車室外用モジュール160の少なくとも何れか一方で、登録IDと対応付けられているRSSI(つまり携帯端末20のRSSI)を取得できている場合には、S202が肯定判定されてS203に移る。一方、車室内用モジュール150と車室外用モジュール160の何れにおいても、登録IDと対応付けられているRSSIを取得できなかった場合には、S202が否定判定されて本フローを終了する。
 なお、本実施形態では一例として、車室内用モジュール150と車室外用モジュール160の少なくとも何れか一方で携帯端末20のRSSIを取得できた場合には、S203等の後続する処理を実施するものとするが、これに限らない。車室内用モジュール150と車室外用モジュール160の少なくとも何れか一方で携帯端末20のRSSIを取得できていない場合には、S202が否定判定されて本フローを終了させても良い。
 S203ではRSSI取得部F4が、S201で取得した携帯端末20のRSSIをRSSI記憶部M1に保存してS204に移る。なお、車室内用モジュール150と車室外用モジュール160の何れか一方で携帯端末20のRSSIを取得できていない場合、RSSI記憶部M1には携帯端末20のRSSIを取得できていない方の近距離通信モジュールでの最新のRSSIとして、RSSI検出部1421が出力可能なRSSIの下限値(換言すれば最小値)を登録するものとする。このような構成によれば、車室内用モジュール150と車室外用モジュール160の少なくとも何れかが携帯端末20からの信号を受信できている場合には、位置判定処理を継続でき、その結果として携帯端末20の位置を判定することができる。
 S204では位置判定部F6が、RSSI記憶部M1に保存されている各近距離通信モジュールと対応付けられているRSSIに基づいて、各近距離通信モジュールでのRSSIの移動平均値(つまり平均強度)を算出する。具体的には、車室内用モジュール150で取得した直近N個のRSSIに基づいて、車室内用モジュール150でのRSSIの移動平均値(つまり車室内平均強度)を算出する。また、車室外用モジュール160で取得した直近N個のRSSIに基づいて、車室外用モジュール160でのRSSIの移動平均値(つまり車室外平均強度)を算出する。S204での算出処理が完了するとS205に移る。
 S205では位置判定部F6が、車室内平均強度から車室外平均強度を減算することによって、強度差ΔRSSIを算出してS206に移る。S206では位置判定部F6が、位置記憶部M2を参照し、前回の位置判定処理の結果を読み出す。前回の位置判定処理において携帯端末20の位置は車室外であると判定されている場合、S207が肯定判定されてS208に移る。一方、前回の位置判定処理において携帯端末20の位置は車室内であると判定されている場合、S207は否定判定されてS212に移る。
 S208では位置判定部F6が、S205で算出されている強度差ΔRSSIとハイレベル閾値とを比較して、強度差ΔRSSIがハイレベル閾値以上であるか否かを判定する。強度差ΔRSSIがハイレベル閾値以上である場合にはS208が肯定判定されてS209に移り、携帯端末20は車室内に存在すると判定する。そして、携帯端末20の位置は車室内であるという判定結果を位置記憶部M2に保存してS210に移る。S210では次回の位置判定処理で用いる判定用閾値をローレベル閾値に設定して本フローを終了する。
 一方、S208において、強度差ΔRSSIがハイレベル閾値未満である場合にはS211に移り、携帯端末20は車室外に存在すると判定する。S211での処理は、携帯端末20は車室外に存在するという前回の判定結果を維持することに相当する。前回の判定結果を維持する場合、次回の位置判定処理で用いる判定用閾値の設定は変更せずに本フローを終了する。
 S212では位置判定部F6が、S205で算出されている強度差ΔRSSIとローレベル閾値とを比較して、強度差ΔRSSIがローレベル閾値以下であるか否かを判定する。強度差ΔRSSIがローレベル閾値以下である場合にはS212が肯定判定されてS213に移り、携帯端末20は車室外に存在すると判定する。そして、携帯端末20の位置は車室外に存在しているという判定結果を位置記憶部M2に保存してS214に移る。S214では次回の位置判定処理で用いる判定用閾値をハイレベル閾値に設定して本フローを終了する。
 一方、S212において、平均強度がローレベル閾値を超過している場合にはS215に移る。S215では、携帯端末20は車室内に存在すると判定して本フローを終了する。S215での処理は、携帯端末20は車室内に存在するという前回の判定結果を維持することに相当する。前回の判定結果を維持する場合、次回の位置判定処理で用いる判定用閾値の設定は変更せずに本フローを終了する。
 なお、図13では省略しているが、S210や、S211、S214、S215の後続処理として、前述の第1実施形態と同様に、認証処理等を実施してもよい。認証処理は、複数の近距離通信モジュールのうちの何れか1つを用いて実施されれば良い。
 (第2実施形態の効果)
 上述した構成によっても第1実施形態と同様の効果を奏する。さらに、第2実施形態によれば、第1実施形態が奏する効果に加えて下記の効果も奏する。
 一般的にスマートフォンなどの携帯端末は、機種によって近距離通信用の無線信号の送信電力が異なる。そのため、第1実施形態の構成では、判定精度を高めるためには、携帯端末20の機種に応じたハイレベル閾値及びローレベル閾値を設定する必要がある。これに対し、第2実施形態の構成によれば、強度差ΔRSSIを用いることで、携帯端末20の機種による送信電力の違いを相殺できる。そのため、第2実施形態によれば、機種毎のハイレベル閾値及びローレベル閾値の設定作業が不要となる。故に、第2実施形態の構成によれば、開発工数の抑制と判定精度の向上を両立させることができる。
 また、強度差ΔRSSIは、車室内用モジュール150でのRSSIと車室外用モジュール160でのRSSIでの差であるため、単純なRSSIや平均強度に比べて、携帯端末20が車室内に存在するか車室外に存在するかに応じて急峻に変化する。そのため、第2実施形態の構成によれば、第1実施形態に比べて早期に携帯端末20が車室内に持ち込まれたことを検出することができる。携帯端末20が車室外に持ち出された場合も同様である。また、第2実施形態の構成によれば、車室外の窓際に携帯端末20が継続的に位置している場合においてもより正しく判定できる。
 ところで、第2実施形態の位置判定部F6は、その応用例として、携帯端末20は車室外に存在していると判定している場合、車室外平均強度に基づいて携帯端末20が所定の施開錠エリア内に存在するか否かを判定しても良い。具体的には、車室外平均強度が所定の閾値(以降、施開錠用閾値)以上である場合には携帯端末20が施開錠エリア内に存在すると判定する一方、車室外平均強度が施開錠用閾値未満である場合には、携帯端末20は施開錠エリア内には存在しないと判定する。
 施開錠エリアは、当該エリア内に携帯端末20が存在する場合にのみタッチセンサ110へのタッチ操作や施錠ボタン130の押下操作に基づいたドアの施開錠制御を実行するように適宜設定されるエリアである。施開錠エリアは、トランクドアを含む車両Vに設けられた種々のドアから1~2メートル以内となるエリアに設定される。このような構成によれば、携帯端末20が、車室外領域の中でも施開錠エリアに存在する場合にのみ、施開錠制御を実施するようになるため、車両Vの防犯性を高めることができる。
 なお、以上では、車室内平均強度から車室外平均強度を減算した値を強度差ΔRSSIとして採用する態様を開示したが、これに限らない。車室外平均強度から車室内平均強度を減算した値を強度差ΔRSSIとして採用し、当該強度差ΔRSSIと、判定用閾値としてのハイレベル閾値やローレベル閾値との比較によって携帯端末20の位置を判定してもよい。
 その場合、認証ECU100は図14に例示する手順で位置判定処理を実行すればよい。図14は、車室外平均強度から車室内平均強度を減算してなる強度差ΔRSSIを用いて携帯端末20の位置を推定する場合の位置判定処理についてのフローチャートである。図14に示すフローチャートは、図13に示すフローチャートと同様に、所定のサンプリング間隔で実施されれば良い。図14に示すS201a~S204aの処理は、前述のS201~S204の処理と同様である。
 S205aでは位置判定部F6が、車室外平均強度から車室内平均強度を減算することによって、強度差ΔRSSIを算出してS206aに移る。S206aでは位置判定部F6が、S206と同様に、位置記憶部M2を参照し、前回の位置判定処理の結果を読み出す。前回の位置判定処理において携帯端末20の位置は車室内であると判定されている場合、S207aが肯定判定されてS208aに移る。一方、前回の位置判定処理において携帯端末20の位置は車室外であると判定されている場合、S207aは否定判定されてS212aに移る。
 S208aでは位置判定部F6が、S205で算出されている強度差ΔRSSIとハイレベル閾値とを比較して、強度差ΔRSSIがハイレベル閾値以上であるか否かを判定する。このとき用いられるハイレベル閾値は、0よりも大きい値である。ハイレベル閾値は、例えば+10dBなど、+5dBよりも大きい値に設定されていることが好ましい。
 強度差ΔRSSIがハイレベル閾値以上である場合にはS208aが肯定判定されてS209aに移り、携帯端末20は車室外に存在すると判定する。そして、携帯端末20の位置は車室外であるという判定結果を位置記憶部M2に保存してS210aに移る。S210aでは次回の位置判定処理で用いる判定用閾値をローレベル閾値に設定して本フローを終了する。
 一方、S208aにおいて、強度差ΔRSSIがハイレベル閾値未満である場合にはS211aに移り、携帯端末20は車室内に存在すると判定する。S211での処理は、携帯端末20は車室内に存在するという前回の判定結果を維持することに相当する。前回の判定結果を維持する場合、次回の位置判定処理で用いる判定用閾値の設定は変更せずに本フローを終了する。
 S212aでは位置判定部F6が、S205aで算出されている強度差ΔRSSIとローレベル閾値とを比較して、強度差ΔRSSIがローレベル閾値以下であるか否かを判定する。このとき用いられるローレベル閾値は、ローレベル閾値は0よりも小さい値である。ローレベル閾値は、例えば-10dBなど、-5dBよりも小さい値に設定されていることが好ましい。
 強度差ΔRSSIがローレベル閾値以下である場合にはS212aが肯定判定されてS213aに移り、携帯端末20は車室内に存在すると判定する。そして、携帯端末20の位置は車室内に存在しているという判定結果を位置記憶部M2に保存してS214aに移る。S214aでは次回の位置判定処理で用いる判定用閾値をハイレベル閾値に設定して本フローを終了する。
 一方、S212aにおいて、平均強度がローレベル閾値を超過している場合にはS215aに移る。S215aでは、携帯端末20は車室外に存在すると判定して本フローを終了する。S215aでの処理は、携帯端末20は車室外に存在するという前回の判定結果を維持することに相当する。前回の判定結果を維持する場合、次回の位置判定処理で用いる判定用閾値の設定は変更せずに本フローを終了する。
 図15Aおよび15Bは、上記の判定アルゴリズムを用いた場合の位置判定部F6の作動を説明するための図である。図15Aは、携帯端末20を所持している車両Vに搭乗していたユーザが降車して、車両Vから離れる際(以降、離脱過程)の強度差ΔRSSIと位置判定部F6の判定結果の対応関係を示している。図15Bは、携帯端末20を所持しているユーザが車両Vに接近し乗り込む際(以降、エントリー過程)の強度差ΔRSSIと位置判定部F6の判定結果の対応関係を示している。
 図15Aに示すように、ユーザが車室内に存在する場合には車室外強度代表値よりも車室内強度代表値のほうが十分に大きい値を取るため、強度差ΔRSSIは、ハイレベル閾値以下(主としてローレベル閾値以下)の領域で推移する。離脱過程として、ユーザがドアを開けて車室外に出てドアを閉めると、一転して車室外強度代表値のほうが車室内強度代表値よりも大きくなり、強度差ΔRSSIはハイレベル閾値以上となる。位置判定部F6はこのような強度差ΔRSSIの挙動に基づいて携帯端末20は車室内から車室外に持ち出されたことを検出する。なお、ユーザが車両Vから離れるにつれて車室外用モジュール160での携帯端末20のRSSIは小さくなっていくため、強度差ΔRSSIは0に収束していく。ただし、上記の判定アルゴリズムによれば強度差ΔRSSIがローレベル閾値以下となるまでは携帯端末20は車室外に存在するという判定結果が維持される。
 また、エントリー過程においては、ユーザが車両に近づくにつれて車室外用モジュール160での携帯端末20のRSSIが大きくなっていくため、強度差ΔRSSIは0付近から徐々に大きくなっていく。その際、強度差ΔRSSIはハイレベル閾値以上となりうる。そして、ユーザがドアを開けて車両Vに乗り込みドアを閉めると、一転して車室外強度代表値よりも車室内強度代表値のほうが大きくなり、強度差ΔRSSIはローレベル閾値以下となる。位置判定部F6はこのような強度差ΔRSSIの挙動に基づいて携帯端末20は車室外から車室内に持ち込まれたことを検出する。
 このような態様によれば、強度差ΔRSSIがマルチパスの影響で一時的に低下しても、ハイレベル閾値以上とならなければ、携帯端末20は車室内に存在するという判定結果が維持される。また、いったん車室外に存在すると判定した以降においては強度差ΔRSSIがローレベル閾値以下とならなければ携帯端末20は車室外に存在するという判定結果が維持される。故に、車室内平均強度から車室外平均強度を減算した値を強度差ΔRSSIとして採用する態様と同様の効果を奏する。
 (第3実施形態)
 次に、本開示の第3実施形態に係る位置判定システム1について、図を用いて説明する。先に説明した第2実施形態と本実施形態との主たる相違点は、車載システム10が車室内用モジュール150及び車室外用モジュール160をそれぞれ複数備えている点である。以降では、第3実施形態における位置判定システム1のうち、主として車載システム10の構成及び作動について説明する。なお、前述の第1実施形態で述べた部材と同一の機能を有する部材については、同一の符号を付し、その説明を省略する。また、構成の一部のみに言及している場合、他の部分については先に説明した種々の実施形態の構成を適用することができる。
 本実施形態における車載システム10は、図16に示すように、複数の車室内用モジュール150と、複数の車室外用モジュール160とを備える。図12においてエンジンECU200等の図示は省略している。各近距離通信モジュールは、基本的には、同じ構成、機能を有するものを採用することができる。ここでは一例として各近距離通信モジュールは、図3に示す構成を有しているものとする。
 本実施形態では一例として、車載システム10は、車室内用モジュール150として、図17に示すように、前部座席用モジュール150A、及び、後部座席用モジュール150Bを備える。前部座席用モジュール150Aは、主として前部座席空間を通信エリアにするための車室内用モジュール150である。前部座席用モジュール150Aは、例えば第1実施形態の車室内用モジュール150と同様に、センターコンソール2付近に配置されている。
 後部座席用モジュール150Bは、主として後部座席周辺の車室内空間(以降、後部座席空間)を通信エリアにするための車室内用モジュール150である。後部座席用モジュール150Bは、例えば後部座席の車幅方向中央部において着座面に埋設されている。もちろん、前部座席用モジュール150Aや後部座席用モジュール150Bの設置位置は、適宜設計されればよく、上述した態様に限らない。また、車載システム10は、車室内用モジュール150を3つ以上備えていても良い。各車室内用モジュール150は、認証ECU100と相互通信可能に接続されている。
 また、車載システム10は、車室外用モジュール160として図17及び図18に示すように、右側第1モジュール160A、右側第2モジュール160B、右側第3モジュール160C、左側第1モジュール160D、左側第2モジュール160E、左側第3モジュール160F、及び、後端部用モジュール160Gとを備える。
 右側第1モジュール160Aは、車両右側の側面部のうち、前部座席用のドアよりも前端部側に配置されている車室外用モジュール160である。本実施形態では一例として右側第1モジュール160Aは、右側前輪付近に配置されているものとする。
 右側第2モジュール160Bは、車両右側の側面部のうち、車両前後方向中央部付近に配置されている車室外用モジュール160である。本実施形態では一例として前部座席用のドアの外側側面部に配置されているものとする。なお、他の態様として右側第2モジュール160Bは、右側前部座席用のドアハンドル内部や、後部座席用のドアの外側の側面部、右側後部座席用のドアハンドル内部に配置されていてもよい。また、ドア下のロッカー部分や、屋根部の右側縁部に配置されていてもよい。
 右側第3モジュール160Cは、車両右側の側面部のうち、後部座席用のドアよりも後端部側に配置されている車室外用モジュール160である。本実施形態では一例として右側第3モジュール160Cは、右側後輪付近に配置されているものとする。車両Vの右側面に配置されている複数の車室外用モジュールのうち、最も前側に位置するものと、最も後ろ側に位置するものとは、車両前後方向において1m以上離れた位置に配置されていることが好ましい。なお、本実施形態において、車両Vの右側面に配置されている複数の車室外用モジュールのうち、最も前側に位置するものとは右側第1モジュール160Aであり、最も後ろ側に位置するものとは右側第3モジュール160Cである。ここでは一例として右側第1モジュール160Aと右側第3モジュール160Cとの距離Dは3m程度に設定されている。距離Dは2mや1.5mなどであってもよい。
 左側第1モジュール160D、左側第2モジュール160E、及び左側第3モジュール160Fは、既に説明した右側第1モジュール160A、右側第2モジュール160B、及び右側第3モジュール160Cのそれぞれと対をなす車室外用モジュール160である。左側第1モジュール160Dは、車両Vの左側の側面部において、右側第1モジュール160Aと反対側となる位置に配置されている。左側第2モジュール160E及び左側第3モジュール160Fについても同様に、車両Vの左側の側面部において、右側第2モジュール160B、右側第3モジュール160Cと反対側となる位置に配置されていれば良い。例えば左側第2モジュール160Eは、左側前部座席用のドアハンドル内部や、右側後部座席用のドアハンドル内部、ドア下のロッカー部分、屋根部の右側縁部など、右側第2モジュール160Bの搭載位置に対応する場所に配置される。後端部用モジュール160Gは、車両後端部の車幅方向中央部付近に配置されている車室外用モジュール160である。例えば後端部用モジュール160Gは、トランク用のドアハンドル付近に配置されていればよい。
 もちろん、各車室外用モジュールの設置位置は、適宜設計されればよく、上述した態様に限らない。また、車載システム10が備える車室外用モジュール160の数は、5個以下であっても良いし、8個以上であってもよい。各車室外用モジュール160は、認証ECU100と相互通信可能に接続されている。
 本実施形態におけるRSSI取得部F4は、複数の近距離通信モジュールのそれぞれからRSSIデータを取得するとともに、取得したRSSIデータを、取得元毎に区別してRSSI記憶部M1に保存する。
 また、位置判定部F6は、各近距離通信モジュールで取得されているRSSIに基づいて、近距離通信モジュール毎のRSSIの移動平均値(つまり平均強度)を算出し、近距離通信モジュール毎の平均強度に基づいて、携帯端末20の位置を判定する。この位置判定部F6の作動の詳細については別途後述する。
 次に、図19に示すフローチャートを用いて、第3実施形態の認証ECU100が実施する位置判定処理について説明する。図19に示すフローチャートは、図8に示すフローチャート同様に、所定のサンプリング間隔で実施されれば良い。
 まず、S301ではRSSI取得部F4が、複数の近距離通信モジュールのそれぞれからRSSIデータを取得してS302に移る。S302ではRSSI取得部F4が、S312での処理の結果、登録IDと対応付けられているRSSIデータを取得できたか否かを判定する。
 S301の処理の結果、複数の近距離通信モジュールの少なくとも何れか1つで、登録IDと対応付けられているRSSI(つまり携帯端末20のRSSI)を取得できている場合には、S302が肯定判定されてS303に移る。一方、何れの近距離通信モジュールにおいても、登録IDと対応付けられているRSSIを取得できなかった場合には、S302が否定判定されて本フローを終了する。
 なお、本実施形態では一例として、複数の近距離通信モジュールの少なくとも何れか1つで携帯端末20からの信号を受信できている場合には、S303等の後続する処理を実施するものとするが、これに限らない。車室内用モジュール150と車室外用モジュール160の両方で携帯端末20のRSSIを取得できていない場合には、S302が否定判定されて本フローを終了させても良い。
 S303ではRSSI取得部F4が、S301で取得した携帯端末20のRSSIをRSSI記憶部M1に保存してS304に移る。なお、携帯端末20からの信号を受信できていない近距離通信モジュールでの最新のRSSIについては、実際の観測値の代わりに、RSSI検出部1421が出力可能なRSSIの範囲の下限値(換言すれば最小値)を登録するものとする。このような構成によれば、複数の近距離通信モジュールの少なくとも何れか1つが携帯端末20からの信号を受信できている場合には、携帯端末20の位置を判定することができる。
 S304では位置判定部F6が、RSSI記憶部M1に保存されている各近距離通信モジュールと対応付けられているRSSIに基づいて、各近距離通信モジュールでの平均強度を算出する。近距離通信モジュール毎の平均強度の算出方法は前述の通りである。S304での算出処理が完了するとS305に移る。
 S305では位置判定部F6が、車室内用モジュール150毎の平均強度に基づいて、車室内用モジュール150に該当する近距離通信モジュールでのRSSIの代表値(以降、車室内強度代表値)を算出する。具体的には、前部座席用モジュール150Aでの平均強度と、後部座席用モジュール150Bでの平均強度とを比較して高い方の平均強度を車室内強度代表値として採用する。なお、他の態様として、車室内強度代表値は、車室内用モジュール150毎の平均強度の平均値であってもよい。また、車載システム10が3つ以上の車室内用モジュール150を備えている場合、車室内強度代表値は、車室内用モジュール150毎の平均強度の中央値であってもよい。その他、車室内強度代表値は、車室内用モジュール150毎の平均強度の最小値であってもよい。
 また、S305において位置判定部F6は、車室外用モジュール160毎の平均強度に基づいて、車室外用モジュール160に該当する近距離通信モジュールでのRSSIの代表値(以降、車室外強度代表値)を算出する。ここでは一例として、車室外用モジュール160毎の平均強度の中で最も大きい値(つまり最大値)を、車室外強度代表値として採用する。
 なお、他の態様として、車室外強度代表値は、車室外用モジュール160毎の平均強度の平均値であってもよい。また、本実施形態のように車載システム10が3つ以上の車室外用モジュール160を備えている場合、車室外強度代表値は、車室外用モジュール160毎の平均強度の中央値であってもよい。その他、車室外強度代表値は、車室外用モジュール160毎の平均強度の最小値であってもよい。
 なお、車室内強度代表値と車室外強度代表値とは、同じ基本統計量を用いて決定されるものとする。例えば、車室内強度代表値を車室内用モジュール150毎の平均強度の平均値とする場合には、それに合わせて、車室外強度代表値は車室外用モジュール160毎の平均強度の平均値とするものとする。車室内強度代表値及び車室外強度代表値の算出処理が完了するとS306に移る。
 S306では位置判定部F6が、車室内強度代表値から車室外強度代表値を減算した値を算出してS307に移る。なお、車室内強度代表値から車室外強度代表値を減算した値は、車室内用モジュール150での受信強度と、車室外用モジュール160での受信強度の差を表すパラメータとして機能する。そのため、車室内強度代表値から車室外強度代表値を減算した値のことを以降では、強度差ΔRSSIと記載する。
 S307では位置判定部F6が、位置記憶部M2を参照し、前回の位置判定処理の結果を読み出す。前回の位置判定処理において携帯端末20の位置は車室外であると判定されている場合、S308が肯定判定されてS309に移る。一方、前回の位置判定処理において携帯端末20の位置は車室内であると判定されている場合、S308は否定判定されてS313に移る。
 S309では位置判定部F6が、S306で算出されている強度差ΔRSSIとハイレベル閾値とを比較して、強度差ΔRSSIがハイレベル閾値以上であるか否かを判定する。ここで用いられるハイレベル閾値は第2実施形態で用いられるハイレベル閾値と同様の技術的思想に基づいて設定されている。
 強度差ΔRSSIがハイレベル閾値以上である場合にはS309が肯定判定されてS310に移り、携帯端末20は車室内に存在すると判定する。そして、携帯端末20の位置は車室内であるという判定結果を位置記憶部M2に保存してS311に移る。S311では次回の位置判定処理で用いる判定用閾値をローレベル閾値に設定して本フローを終了する。
 一方、S309において、強度差ΔRSSIがハイレベル閾値未満である場合にはS312に移る。S312では携帯端末20は車室外に存在すると判定して本フローを終了する。この場合、次回の位置判定処理で用いる判定用閾値の設定は変更されない。
 S313では位置判定部F6が、S306で算出されている強度差ΔRSSIとローレベル閾値とを比較して、強度差ΔRSSIがローレベル閾値以下であるか否かを判定する。ここで用いられるローレベル閾値は第2実施形態で用いられるローレベル閾値と同様の技術的思想に基づいて設定されている。
 強度差ΔRSSIがローレベル閾値以下である場合にはS313が肯定判定されてS314に移り、携帯端末20は車室外に存在すると判定する。そして、携帯端末20の位置は車室外に存在しているという判定結果を位置記憶部M2に保存してS315に移る。
 一方、S313において、強度差ΔRSSIがローレベル閾値を超過している場合にはS316に移る。S316では、携帯端末20は車室内に存在すると判定して本フローを終了する。この場合次回の位置判定処理で用いる判定用閾値の設定は変更されず、ローレベル閾値に設定されたままとなる。なお、図19では省略しているが、S311や、S312、S315、S316の後続処理として、前述の第1実施形態と同様に、認証処理等を実施してもよい。
 (第3実施形態の効果)
 上述した構成によっても第2実施形態と同様の効果を奏する。さらに、第3実施形態によれば、第2実施形態が奏する効果に加えて下記の効果も奏する。
 上述した第3実施形態では、車室内に設けられた近距離通信モジュールでの受信強度の代表値(つまり車室内強度代表値)と、車室外に設けられた近距離通信モジュールでの受信強度の代表値(つまり車室外強度代表値)との差を強度差ΔRSSIとして採用する。このような構成によれば、ユーザの携帯端末20の所持形態によって誤判定が生じる恐れを低減することができる。
 ここで、図20及び図21を用いてユーザの携帯端末20の所持形態がRSSIに与える影響について説明する。図20は、ユーザが、ズボンの後ろ側に設けられたポケットに携帯端末20を収容した状態で車両Vに体の正面部を向けている時の、携帯端末20から送信される信号の強度の分布をシミュレーションした図を表している。また、図21は、ユーザが、携帯端末20をジャケットの胸ポケットに収容した状態で車両Vに体の正面部を向けている時の、携帯端末20から送信される信号の強度の分布をシミュレーションした図を表している。
 図20、図21を比較すれば分かるように、携帯端末20から送信された信号は人体によって大きく減衰されてしまうため、相対的にユーザから近い位置に存在する近距離通信モジュールでのRSSIは、ユーザの携帯端末20の所持携帯に応じて大きく変動する。例えば、具体的には、図20、図21に示すようにユーザの正面に位置する右側第2モジュール160BでのRSSIは、ユーザの背中側に位置する所持形態で携帯されているか否かによって大きく変動する。一方、ユーザから相対的に離れた位置に存在する右側第3モジュール160CでのRSSIの変動量は、右側第2モジュール160BでのRSSIの変動量ほど大きくない。
 このような傾向を鑑みると、複数の車室外用モジュール毎の平均強度を母集団として、強度差ΔRSSIを算出する上で用いる車室外強度代表値を決定することで、ユーザの携帯端末20の所持形態が強度差ΔRSSIに与える影響を抑制することができる。その結果、第2実施形態に比べて、より精度良く携帯端末20の位置を判定することができる。
 特に、本実施形態のように、車両Vの側面部において、複数の車室外用モジュール160を車両前後方向に2m以上に渡って分散して配置することにより、複数の車室外用モジュール160の何れかは、ユーザの人体の影響を受けずに携帯端末20からの信号を受信することが期待できる。故に、車両Vの側面部において、複数の車室外用モジュール160を車両前後方向に2m以上に渡って分散して配置することにより、携帯端末20が車室内に存在するか否かの判定精度をより一層高めることができる。
 なお、車両Vの側面部において複数の車室外用モジュール160を車両前後方向に2m以上に渡って分散して配置する構成は、側面視において車室外用モジュール160をドア付近に存在するユーザを挟み込むように配置した構成に相当する。その他、上記構成によれば、複数の車室内用モジュール150や、複数の車室外用モジュール160を用いて強度差ΔRSSIを決定するため、マルチパスの影響も抑制できる。
 ところで、第3実施形態の位置判定部F6は、その応用例として、携帯端末20は車室外に存在していると判定している場合、車室外強度代表値に基づいて携帯端末20が所定の施開錠エリア内に存在するか否かを判定しても良い。具体的には、車室外強度代表値が所定の閾値以上となっている場合に、携帯端末20が施開錠エリア内に存在すると判定する一方、車室外強度代表値が所定の閾値未満となっている場合に、携帯端末20は施開錠エリア内には存在しないと判定する。施開錠エリアは、第2実施形態の応用例として上述したエリアである。
 位置判定部F6が、携帯端末20が施開錠エリア内に存在する場合のみ施開錠状態を制御する処理を実施する場合において、仮に車室外用モジュール160が1つだけの場合には、図20を用いて説明したように人体の影響によって、実際には携帯端末20が施開錠エリア内に存在するにも関わらず、携帯端末20は施開錠エリア外に存在すると判定される場合がある。
 そのような課題に対し、複数の車室外用モジュール160を車両前後方向に2m以上に渡って分散して配置することによって、人体の影響による誤判定が生じる恐れを低減することができる。複数の車室外用モジュール160の何れかは、人体の影響を受けずに携帯端末20からの信号を受信でき、その結果、車室外強度代表値が、携帯端末20が施開錠エリア内に存在すると判定するための閾値以上となることが期待できるためである。
 なお、以上では、車室内強度代表値から車室外強度代表値を減算した値を強度差ΔRSSIとして採用する態様を開示したが、これに限らない。車室外強度代表値から車室内強度代表値を減算した値を強度差ΔRSSIとして採用し、当該強度差ΔRSSIを用いて携帯端末20の位置を判定してもよい。
 その場合、認証ECU100は図22に例示する手順で位置判定処理を実行すればよい。図22は、車室外強度代表値から車室内強度代表値を減算してなる強度差ΔRSSIを用いて携帯端末20の位置を推定する場合の位置判定処理についてのフローチャートである。図22に示すフローチャートは、図19に示すフローチャートと同様に、所定のサンプリング間隔で実施されれば良い。図22に示すS301a~S305aの処理は、前述のS301~S305の処理と同様である。
 S306aでは位置判定部F6が、強度差ΔRSSIとして、車室外強度代表値から車室内強度代表値を減算した値を算出してS307aに移る。S307aでは位置判定部F6が、位置記憶部M2を参照し、前回の位置判定処理の結果を読み出す。前回の位置判定処理において携帯端末20の位置は車室内であると判定されている場合、S308aが肯定判定されてS309aに移る。一方、前回の位置判定処理において携帯端末20の位置は車室外であると判定されている場合、S308aは否定判定されてS313aに移る。
 S309aでは位置判定部F6が、S306aで算出されている強度差ΔRSSIとハイレベル閾値とを比較して、強度差ΔRSSIがハイレベル閾値以上であるか否かを判定する。ここで用いられるハイレベル閾値は+5dBなど、ローレベル閾値よりも大きい範囲において適宜設計されればよい。
 強度差ΔRSSIがハイレベル閾値以上である場合にはS309aが肯定判定されてS310aに移り、携帯端末20は車室外に存在すると判定する。そして、携帯端末20の位置は車室外であるという判定結果を位置記憶部M2に保存してS311aに移る。S311aでは次回の位置判定処理で用いる判定用閾値をローレベル閾値に設定して本フローを終了する。
 一方、S309aにおいて、強度差ΔRSSIがハイレベル閾値未満である場合にはS312aに移る。S312aでは携帯端末20は車室内に存在すると判定して本フローを終了する。この場合、次回の位置判定処理で用いる判定用閾値の設定は変更されない。
 S313aでは位置判定部F6が、S306aで算出されている強度差ΔRSSIとローレベル閾値とを比較して、強度差ΔRSSIがローレベル閾値以下であるか否かを判定する。ここで用いられるローレベル閾値は-5dBなど、ハイレベル閾値よりも小さい範囲において、ハイレベル閾値とローレベル閾値とのギャップが所定の値(例えば5dB)以上となるように適宜設計されればよい。
 強度差ΔRSSIがローレベル閾値以下である場合にはS313aが肯定判定されてS314aに移り、携帯端末20は車室内に存在すると判定する。そして、携帯端末20の位置は車室内に存在しているという判定結果を位置記憶部M2に保存してS315aに移る。S315aでは次回の位置判定処理で用いる判定用閾値をハイレベル閾値に設定して本フローを終了する。
 一方、S313aにおいて、強度差ΔRSSIがローレベル閾値を超過している場合にはS316aに移る。S316aでは、携帯端末20は車室外に存在すると判定して本フローを終了する。この場合次回の位置判定処理で用いる判定用閾値の設定は変更されず、ローレベル閾値に設定されたままとなる。このような態様によっても、車室内強度代表値から車室外強度代表値を減算した値を強度差ΔRSSIとして採用する態様と同様の効果を奏する。
 (第4実施形態)
 上述した第1実施形態では1つの車室内用モジュール150での受信強度を用いて、携帯端末20が車室内に存在するのか否かを判定する態様を開示したが、これに限らない。第1実施形態に対して第3実施形態で言及している車室内強度代表値の概念を導入し、車室内強度代表値によって携帯端末20が車室内に存在するのか車室外に存在するのかを判定してもよい。便宜上、そのような実施の形態を第4実施形態と称する。
 第4実施形態の車載システム10は、車室内用モジュール150として図23に示すように、運転席用モジュール150D、助手席用モジュール150P、第1後部座席用モジュール150Q、及び、第2後部座席用モジュール150Rを備える。運転席用モジュール150D、助手席用モジュール150P、第1後部座席用モジュール150Q、及び第2後部座席用モジュール150Rのそれぞれが備えるアンテナ141は、限定的な通信エリアを形成するために指向性アンテナとすることができる。
 運転席用モジュール150Dは、運転席エリアを通信エリアとする車室内用モジュール150である。運転席エリアは、運転席に着座している乗員が使用するエリア(実態としては空間)である。運転席エリアは前述の前部座席空間の一部に相当する。運転席エリアは、例えば、センターコンソール2から運転席側であって、かつ、運転席の背もたれ部よりも前側の空間とすればよい。運転席の背もたれ部の位置としては、様々な体格の人物の平均的なシートポジションに基づいて予め設計された位置を適用することができる。また、インストゥルメントパネル3の上方やセンターコンソール2部分も運転席エリアに含めることができる。
 運転席用モジュール150Dは、車室内の天井部分において運転席の上方に該当する領域に、アンテナ141の指向性の中心が運転席(主としてその着座面)に向いた姿勢で配置されている。なお、運転席用モジュール150Dの搭載位置はこれに限らない。運転席用ドアの車室内側の側面部分や、運転席の足元、センターコンソール2、インストゥルメントパネル3において運転席と対向する部分などに配置されていてもよい。運転席の内部に埋没されていても良い。
 助手席用モジュール150Pは、助手席エリアを通信エリアとする車室内用モジュール150である。助手席エリアは、助手席に着座している乗員が使用するエリア(換言すれば空間)である。助手席エリアは概略的には助手席周辺に設定される。助手席エリアは前部座席空間から運転席エリアを除外した残りのエリアとすることができる。助手席エリアは、例えば、センターコンソール2から助手席側であって、かつ、助手席の背もたれ部よりも前側の空間とすればよい。
 例えば助手席用モジュール150Pは、車室内の天井部分において助手席の上方に該当する領域に、アンテナ141の指向性の中心が助手席(主としてその着座面)に向いた姿勢で配置されている。なお、助手席用モジュール150Pの搭載位置はこれに限らない。助手席用ドアの車室内側の側面部分や、助手席の足元、センターコンソール2、インストゥルメントパネル3において助手席と対向する領域などに配置されていてもよい。助手席の内部に埋没されていても良い。なお、センターコンソール2の代わりに、車両を車幅方向に(換言すれば右半分と左半分に)2等分する線を、運転席エリアと助手席エリアの境界として採用しても良い。
 第1後部座席用モジュール150Qは、後部座席空間のうち、助手席の後ろに該当する領域(以降、第1後部座席エリア)を通信エリアとする車室内用モジュール150である。第1後部座席用モジュール150Qは、例えば車室内の天井部分において、アンテナ141の指向性の中心が第1後部座席エリアに向いた姿勢で配置されていればよい。なお、第1後部座席用モジュール150Qの搭載位置はこれに限らない。助手席の背もたれ部の後部座席側の側面部分や、後部座席の足元などに配置されていてもよい。後部座席の内部に埋没されていても良い。
 第2後部座席用モジュール150Rは、後部座席空間のうち、運転席の後ろに該当する領域(以降、第2後部座席エリア)を通信エリアとする車室内用モジュール150である。第2後部座席用モジュール150Rも、第1後部座席用モジュール150Qと同様に車室内において適宜設計される位置に配置されれば良い。なお、運転席用モジュール150D及び助手席用モジュール150Pは、前述の前部座席用モジュール150Aに相当する。また、第1後部座席用モジュール150Q及び第2後部座席用モジュール150Rは、前述の後部座席用モジュール150Bに相当する。
 本実施形態の認証ECU100のRSSI取得部F4は、各車室内用モジュール150での受信強度(つまりRSSIデータ)を逐次取得する。また、位置判定部F6は、各車室内用モジュール150での平均強度に基づいて、車室内用モジュール150に該当する近距離通信モジュールでのRSSIの代表値(以降、車室内強度代表値)を算出する。具体的には、運転席用モジュール150D、助手席用モジュール150P、第1後部座席用モジュール150Q、及び、第2後部座席用モジュール150Rのそれぞれでの平均強度の中で最も大きい値を、車室内強度代表値として採用する。
 もちろん、他の態様として、車室内強度代表値は、車室内用モジュール150毎の平均強度の平均値としてもよいし、車室内用モジュール150毎の平均強度の中央値であってもよい。その他、車室内強度代表値は、車室内用モジュール150毎の平均強度の最小値であってもよい。
 そして、位置判定部F6は、図8のフローチャートを構成するS106~S114と同様の判定ロジックによって、携帯端末20が車室内に存在するか車室外に存在するかを判定する。すなわち、携帯端末20は車室外に存在すると判定している状態において、車室内強度代表値がハイレベル閾値以上となった場合には携帯端末20は車室内に存在すると判定する。一方、携帯端末20は車室内に存在すると判定している状態において、車室内強度代表値がローレベル閾値以下となった場合には携帯端末20は車室外に存在すると判定する。
 上記の構成では、複数の車室内用モジュール150でのRSSIを組み合わせてなる車室内強度代表値を用いて判定を行うことにより、携帯端末20が車室内に存在するのか否かの判定をより一層精度良く実施することができる。なお、以上では4つの車室内用モジュール150を備える態様を開示したが、車室内強度代表値を算出するために使用する車室内用モジュール150の数は4つに限らない。2個や、3個でも良いし、5個以上でも良い。
 (変形例1)
 上述した種々の実施形態では移動平均値の概念(つまり平均強度)を用いることによって、RSSIの時変動成分を抑制して、携帯端末20の位置を判定する態様を開示したが、これに限らない。移動平均値ではなく、検出値をそのまま用いて携帯端末20の位置を判定してもよい。当該変形例1は上述した第1~第4実施形態に限らず、後述する第5実施形態など、種々の実施形態や変形例に適用可能である。
 (変形例2)
 以上では、近距離通信に用いられる電波として、2.4GHz帯の電波を想定して説明したが、これに限らない。近距離通信は、その他の周波数帯の電波を用いて実現されても良い。
 ところで、周波数が低い電波ほど(換言すれば波長が長い電波)ほど、物体を回り込んで伝搬する性質を有する。つまり、RSSIに対する人体の影響が顕著に表れる周波数とは、人体を回り込めないほど高い周波数である。また、マルチパスの影響が顕著に表れる電波とは、車両Vのサイズに対し十分長くない波長を提供する周波数を用いて実現される電波である。車両Vのサイズに対し十分長くない波長とは、例えば車体の前後方向の長さを10倍した長さ(以降、車両拡張長)よりも短い波長である。仮に車両Vのサイズを5mと想定する場合には、車両Vのサイズに対し十分長くない波長とは、50m以下の波長である。そのような波長を有する電波であれば、電波が遠方界として作用するため、マルチパスの影響が顕著に表れる。換言すれば、車両Vのサイズに対し十分長くない波長とは、車両周辺において近傍界モードで動作しない波長に相当する。
 なお、波長が50mとなる周波数とは、約6MHzである。故に車両Vのサイズに対し十分長くない波長を提供する周波数とは6MHzよりも高い周波数である。したがって、上述した種々の実施形態は、近距離通信が6MHzよりも高い周波数の電波を用いて実施される場合により有用性が高まる。なお、車両拡張長は、車体の前後方向の長さよりも十分に長い値であればよく、その倍率(以降、拡張倍率)は10倍に限らない。拡張倍率は5倍以上の範囲で適宜設計されればよい。当該変形例2もまた上述した第1~第4実施形態に限らず、後述する第5実施形態など、種々の実施形態に適用可能である。
 (変形例3)
 上述した種々の実施形態では、ハイレベル閾値とローレベル閾値の2つの判定用閾値を用いて携帯端末20が車室内に存在するのか否かを判定する位置判定システム1を例示したが、位置判定システム1の判定対象とするエリア(以降、対象エリア)の設定態様はこれに限らない。
 例えば、位置判定システム1は、施開錠エリアLx内に携帯端末20が存在するか否かを、ハイレベル閾値とローレベル閾値の2つの判定用閾値を用いて判定するものであってもよい。つまり、対象エリアは施開錠エリアLxであってもよい。
 施開錠エリアLxは、車両制御部F7が車両Vに設けられているドアの施開錠状態を制御する処理を実行するための条件として設定されているエリアである。車両制御部F7は、携帯端末20が当該施開錠エリアLxに存在すること、及び、携帯端末20の認証が成功していることに基づいて、ドアの施開錠状態を制御する処理を実行する。
 施開錠エリアは、車室外のうち、車両Vに設けられた種々のドアから数メートル以内となるエリアに設定される。ここでのドアとは、運転席用のドアや、助手席用のドアに限らず、トランクドアなども含まれうる。
 施開錠エリアLxは図24に示すように、車室外において互いに重ならないように複数設定されていてもよい。換言すれば、車両Vには複数のドアのそれぞれに対応するように複数の施開錠エリアLxが設定されていても良い。図24は、施開錠エリアを概念的に表した図であって、図24中のドットパターンのハッチングを施している部分が、施開錠エリアを概念的に表している。
 図24に示す施開錠エリアL1は、運転席用のドアの施開錠状態を制御するための施開錠エリアLx(以降、第1施開錠エリア)を表しており、施開錠エリアL2は助手席用のドアの施開錠状態を制御するための施開錠エリアLx(以降、第2施開錠エリア)を表している。施開錠エリアL3はトランクドアの施開錠状態を制御するための施開錠エリアLx(以降、第3施開錠エリア)を表している。第1施開錠エリアL1は運転席用ドア付近に設定されており、第2施開錠エリアL2は助手席用ドア付近に設定されている。第3施開錠エリアL3は、トランクドア付近に設定されている。なお、ドア付近とはドアハンドルから所定距離(例えば0.7mや1m、1.5m)以内となる領域である。
 車載システム10は、1つの施開錠エリアLxに対応する車室外用モジュール160が少なくとも1つ存在するように構成されている。或る施開錠エリアLxに対応する車室外用モジュール160とは、当該施開錠エリアを通信エリアの中心に含む車室外用モジュール160である。通信エリアの中心とは通信品質(例えばRSSIや信号品質等)が所定のレベルとなる領域であって、車室外用モジュール160からの距離が数メートル以内となる領域である。
 なお、無指向性のアンテナ141では、所望の施開錠エリアL1を形成することが困難となることが予見される。そのため、施開錠エリアLxなど車室外の所定領域を対象エリアに設定する場合、車室外用モジュール160は、指向性アンテナを用いて実現することが好ましい。
 本変形例3では第1施開錠エリアL1、第2施開錠エリアL2、及び第3施開錠エリアL3が車両Vに設定されているものとする。また、車載システム10は、各施開錠エリアLxに対応する車室外用モジュール160として、第1車室外用モジュール160L、第2車室外用モジュール160M、及び第3車室外用モジュール160Nを備えている。
 第1車室外用モジュール160Lは、第1施開錠エリアL1を通信エリアに含むように配置された車室外用モジュール160である。つまり、第1車室外用モジュール160Lは、第1施開錠エリアL1に対応する車室外用モジュール160である。本変形例3のように運転席が車両右側に配置されている場合、前述の右側第2モジュール160Bを第1車室外用モジュール160Lとして利用することができる。なお、第1車室外用モジュール160Lは、車室外において第1施開錠エリアL1に設定されている領域を通信エリアに含むように配置されていればよく、例えば、車両右側のAピラーやBピラーに配置する事ができる。また、第1車室外用モジュール160Lが備えるアンテナ141を指向性アンテナとする場合には、指向性の中心が運転席用ドアの窓部に向いた姿勢で車室内の天井部分の窓部近傍に配置されていても良い。第1車室外用モジュール160Lが右側受信部に相当する。
 第2車室外用モジュール160Mは、第2施開錠エリアL2を通信エリアに含むように配置された車室外用モジュール160である。つまり、第2車室外用モジュール160Mは、第2施開錠エリアL2に対応する車室外用モジュール160である。本変形例3のように運転席が車両右側に配置されている場合、前述の左側第2モジュール160Eを第2車室外用モジュール160Mとして利用することができる。なお、第2車室外用モジュール160Mは、車室外において第2施開錠エリアL2に設定されている領域を通信エリアに含むように配置されていればよく、例えば、車両左側のAピラーやBピラーに配置する事ができる。また、第2車室外用モジュール160Mが備えるアンテナ141を指向性アンテナとする場合には、指向性の中心が助手席用ドアの窓部に向いた姿勢で車室内の天井部分の窓部近傍に配置されていても良い。第2車室外用モジュール160Mが左側受信部に相当する。
 第3車室外用モジュール160Nは、第3施開錠エリアL3を通信エリアに含むように配置された車室外用モジュール160である。つまり、第3車室外用モジュール160Nは、第3施開錠エリアL3に対応する車室外用モジュール160である。第3車室外用モジュール160Nは、前述の後端部用モジュール160Gに相当する。
 上記の構成において位置判定部F6は、複数の施開錠エリアLxのそれぞれを対象として、前述の第1実施形態等と同様の位置判定処理を実施する。例えば位置判定部F6は第1車室外用モジュール160LでのRSSIを用いて、携帯端末20が第1施開錠エリアL1内に存在するのか否かを判定する。
 具体的には、位置判定部F6は、携帯端末20は第1施開錠エリアL1外に存在すると判定している状態において、第1車室外用モジュール160Lによって検出されているRSSIが所定のハイレベル閾値以上となった場合には携帯端末20は第1施開錠エリアL1内に存在すると判定する。また、携帯端末20は第1施開錠エリアL1内に存在すると判定している状態において、第1車室外用モジュール160Lによって検出されているRSSIがローレベル閾値以下となった場合には携帯端末20は第1施開錠エリアL1外に存在すると判定する。もちろん、RSSIの代わりに平均強度を用いて判定を行っても良い。
 携帯端末20が第2施開錠エリアL2に存在するのか否かは、第2施開錠エリアL2に対応する車室外用モジュール160である第2車室外用モジュール160MでのRSSIを用いて判定することができる。携帯端末20が第3施開錠エリアL3に存在するのか否かは、第3施開錠エリアL3に対応する車室外用モジュール160である第3車室外用モジュール160NでのRSSIを用いて判定することができる。
 上記の構成によれば位置判定部F6は、携帯端末20が、第1施開錠エリアL1、第2施開錠エリアL2、第3施開錠エリアL3、及びその他のエリアのいずれに存在するのかを特定することができる。その他のエリアとは、第1施開錠エリアL1、第2施開錠エリアL2、及び第3施開錠エリアL3の何れにも該当しない領域である。また、車両制御部F7は、位置判定部F6が携帯端末20は第1施開錠エリアL1内に存在すると判定しており、且つ、携帯端末20の認証が成功している場合には、ドアハンドルに対する所定のユーザ操作に基づいて運転席用ドアを施錠又は開錠する車両制御を実施する。
 また、複数の携帯端末20が車載システム10に登録されている場合であって、かつ、複数の携帯端末20からのRSSIを取得できている場合には、位置判定部F6は各携帯端末20のRSSIに基づいて、携帯端末20毎の存在エリアを特定すればよい。例えばユーザAの携帯端末20Aと、ユーザBの携帯端末20Bが車載システム10に登録されている構成において、図25に示すように携帯端末20Aが第1施開錠エリアL1内に存在し、且つ、携帯端末20Bが第2施開錠エリアL2内に存在する場合には、運転席用ドアと助手席用ドアの両方を施錠又は開錠する車両制御を実施する。そのような態様によれば1つの車両Vを複数のユーザで共用する場合における利便性を向上することができる。また、各座席に着座するユーザを携帯端末20の端末IDから特定することができるため、ユーザに応じたサービスの提供を実施することができる。ユーザに応じたサービスとは、例えば、シートポジションの自動調整や、空調の温度及び風量の調整などである。
 なお、1つの携帯端末20が複数の施開錠エリアLxに存在する判定した場合、つまり、判定結果に競合が生じた場合には、第5実施形態として別途後述する判定アルゴリズムを用いて携帯端末20の位置を特定すれば良い。
 さらに、本変形例3に対して第4実施形態に開示の概念を適用し、1つの施開錠エリアLxに対応する車室外用モジュール160が複数配置されていても良い。例えば図26に示すように第1施開錠エリアL1に対応する車室外用モジュール160が複数配置されていても良い。そのような構成は換言すれば第1車室外用モジュール160Lを複数設けた構成に相当する。図26に示すように複数の第1車室外用モジュール160Lが存在する場合、位置判定部F6は複数の第1車室外用モジュール160LでのRSSIに基づいて代表値(例えば平均値や最大値)を算出し、当該代表値とハイレベル閾値、ローレベル閾値との比較によって携帯端末20が第1施開錠エリアL1に存在するか否かを判定する。このような態様によれば、第3実施形態や第4実施形態と同様に、ユーザによる携帯端末20の所持態様に起因して携帯端末20の位置を誤判定する恐れを低減することができる。
 (変形例4)
 また、位置判定システム1は、所定のウェルカム処理を実行するエリア(以降、ウェルカムエリア)Wx内に携帯端末20が存在するか否かをハイレベル閾値とローレベル閾値の2つの判定用閾値を用いて判定するものであっても良い。つまり、位置判定システム1の判定対象とするエリアである対象エリアは、ウェルカムエリアWxであっても良い。
 ウェルカム処理は、ユーザの接近を検知した場合に、車室内、または車室外の照明を点灯させたり、空調装置を作動させたりする処理である。ウェルカムエリアWxは、例えば車両Vから5m以内となるエリアである。ウェルカムエリアWxは前述の施開錠エリアLxを含むように設定されることが好ましい。
 図27はウェルカムエリアWxを概念的に表した図である。図27中のドットパターンのハッチングを施している部分が、ウェルカムエリアWxを概念的に表している。なお、図27において一点鎖線で囲まれる領域は、車載システム10と携帯端末20とが近距離通信可能な範囲を概念的に表している。
 車両VにウェルカムエリアWxが設定されている場合、車載システム10は、ウェルカムエリアWxを通信エリアに含む車室外用モジュール160を少なくとも1つ備える。ウェルカムエリアWxは複数の車室外用モジュール160を用いて形成されていても良い。ここでは一例としてウェルカムエリアWxは、1つの車室外用モジュール160Pを用いて形成されているものとする。車室外用モジュール160Pの搭載位置は適宜設計されればよい。例えば、車両Vの屋根部などとすることができる。
 本変形例4の構成において位置判定部F6は、車室外用モジュール160PでのRSSIを用いて、携帯端末20がウェルカムエリアWx内に存在するのか否かを判定する。具体的には、位置判定部F6は、携帯端末20はウェルカムエリアWx外に存在すると判定している状態において、車室外用モジュール160Pによって検出されているRSSIが所定のハイレベル閾値以上となった場合には携帯端末20はウェルカムエリアWx内に存在すると判定する。
 また、携帯端末20はウェルカムエリアWx内に存在すると判定している状態において、車室外用モジュール160PでのRSSIがローレベル閾値以下となった場合には携帯端末20はウェルカムエリアWx外に存在すると判定する。RSSIの代わりに平均強度を用いて判定を行っても良い。このようにハイレベル閾値とローレベル閾値といった2つの閾値を用いて携帯端末20の位置を判定する構成によれば、携帯端末20がウェルカムエリアWx内に存在するのか否かを精度よく判定することができる。
 なお、ウェルカムエリアWxは複数の車室外用モジュール160を用いて形成されていても良い。例えば図28に示すように合計5個の車室外用モジュール160を用いて形成されていても良い。図28に示す車室外用モジュール160A、160B、160D、160E、及び160Gは何れも第3実施形態で言及した同符号の車室外用モジュール160に対応している。
 右側第1モジュール160A及び右側第2モジュール160Bは、車両右側方を通信エリアとする車室外用モジュール160である。左側第1モジュール160D及び左側第2モジュール160Eは、車両左側方を通信エリアとする車室外用モジュール160である。後端部用モジュール160Gは、車両後方に通信エリアを形成する車室外用モジュール160である。
 なお、ウェルカムエリアWxの形成に供される車室外用モジュール160の数は5個に限らず、2個や3個、7個などであっても良い。また、仮に車載システム10が図17に示す右側第3モジュール160Cや左側第3モジュール160Fを備える場合には、これらの車室外用モジュール160でのRSSIもまたウェルカムエリアWx内、またはウェルカムエリアWx外の判定に利用してもよい。
 図28に示すようにウェルカムエリアWx内、またはウェルカムエリアWx外の判定に利用可能な車室外用モジュール160が複数存在する場合には、位置判定部F6は複数の車室外用モジュール160のそれぞれでのRSSIに基づいて車室外強度代表値を算出し、車室外強度代表値とハイレベル閾値、ローレベル閾値との比較によって携帯端末20がウェルカムエリアWx内に存在するか否かを判定する。このような態様によれば、ユーザによる携帯端末20の所持態様に起因して携帯端末20の位置を誤判定する恐れを低減することができる。なお、3以上の車室外用モジュール160を用いてウェルカムエリアWxを形成する態様においては、車室外強度代表値は、各車室外用モジュール160での最大値とすることが好ましい。ウェルカムエリアWxのうちのユーザが存在するサブエリアを特定することにより、例えばユーザが存在する側の照明の点灯など、ユーザが存在する方向に応じたウェルカム処理を実施することができる。
 また、車室外のそれぞれ異なる領域を通信エリアとする複数の車室外用モジュール160を用いてウェルカムエリアWxを形成している構成においては、位置判定部F6は、携帯端末20がウェルカムエリアWx内に存在すると判定している場合、複数の車室外用モジュール160のそれぞれでのRSSIに基づいて、ウェルカムエリアWx内での携帯端末20の詳細位置を判定することができる。
 例えば本変形例の位置判定部F6は、複数の車室外用モジュール160のそれぞれでのRSSIに基づいて、携帯端末20が車両右側に相当する右側エリアW1、車両左側に相当する左側エリアW2、及び車両後方に相当する後方エリアW3の何れに存在するのかを判定する。便宜上、右側エリアW1や左側エリアW2、後方エリアW3といった、ウェルカムエリアWxを分割してなる小区画をサブエリアと称する。図28はサブエリアを概念的に示した図である。
 なお、各車室外用モジュール160は、その車室外用モジュール160が主たる通信エリアとする領域と対応するサブエリアと対応付けられている。例えば右側第1モジュール160A及び右側第2モジュール160Bは、車両右側方を通信エリアとする車室外用モジュール160であるため、右側エリアW1に対応する車室外用モジュール160として登録されている。左側第1モジュール160D及び左側第2モジュール160Eは、車両右側方を通信エリアとする車室外用モジュール160であるため、左側エリアW2に対応する車室外用モジュール160として登録されている。後端部用モジュール160Gは、車両後方を通信エリアとする車室外用モジュール160であるため、後方エリアW3に対応する車室外用モジュール160として登録されている。
 上記設定において位置判定部F6は、携帯端末20がウェルカムエリアWx内に存在すると判定している場合、複数の車室外用モジュール160のうち、平均強度が1番大きい車室外用モジュール160である最大モジュールと、平均強度が2番目に大きい車室外用モジュール160である準最大モジュールとを特定する。そして、最大モジュールと準最大モジュールが同じサブエリアに該当する車室外用モジュール160である場合には、携帯端末20は当該サブエリアに存在すると判定する。
 例えば最大モジュールと準最大モジュールの両方が右側エリアW1と対応付けられている車室外用モジュール160である場合には携帯端末20は右側エリアに存在すると判定する。このような態様は、換言すれば最大モジュールと準最大モジュールの両方が車両右側方を通信エリアとする車室外用モジュール160である場合に、携帯端末20が車両右側に存在すると判定する構成に相当する。
 一方、最大モジュールと準最大モジュールが同じサブエリアに該当しない場合には、それらの差分を算出する。そして、その差分が所定の閾値以上である場合には、携帯端末20は最大モジュールに対応するサブエリアに存在すると判定すればよい。差分が所定の閾値未満である場合には、携帯端末20の詳細位置は不明とすればよい。或いは、差分が所定の閾値未満である場合には、携帯端末20がそれらのサブエリアの境界付近に存在するとみなし、携帯端末20が存在するエリアとして最大モジュールに対応するサブエリアと準最大モジュールに対応するサブエリアの両方を採用しても良い。なお、最大モジュールと準最大モジュールが同じサブエリアに該当しない場合とは、例えば最大モジュールが右側第2モジュール160Bであって、準最大モジュールが後端部用モジュール160Gである場合などである。以上では、携帯端末20が右側、左側、後方の何れに存在するのかを特定する態様を開示したがこれに限らない。携帯端末20が前方、後方のどちらに存在するのかを特定するように構成されていても良い。携帯端末20が左側、右側のどちらに存在するのかを特定するように構成されていても良い。
 (第5実施形態)
 変形例3では、位置判定部F6は、複数の施開錠エリアLxのそれぞれを対象として、前述の第1実施形態等と同様の位置判定処理を実施する態様を開示したが、携帯端末20の存在エリアを特定する方法はこれに限らない。ここでは携帯端末20の存在エリアを特定するための他の実施態様を、第5実施形態として開示する。
 一例として本実施形態の車載システム10は、図24に示すように、対象エリアとしての施開錠エリアLxが車室外において互いに重ならないように複数設定されており、且つ、車室外用モジュール160が施開錠エリアLx毎に少なくとも1つずつ設けられている。すなわち、第1施開錠エリアL1が通信エリアの中心に位置するように配置されている第1車室外用モジュール160Lと、第2施開錠エリアL2が通信エリアの中心に位置するように配置されている第2車室外用モジュール160Mと、第3施開錠エリアL3が通信エリアの中心に位置するように配置されている第3車室外用モジュール160Nと、を備える。
 なお、第1施開錠エリアL1は運転席ドア付近に設定されており、且つ、運転席が車両Vの右側に配置されているため、第1車室外用モジュール160Lは、車両Vの右側を通信エリアとする車室外用モジュール160に相当する。また、第2施開錠エリアL2は助手席ドア付近に設定されており、且つ、助手席が車両左側に配置されているため、第2車室外用モジュール160Mは、車両Vの左側を通信エリアとする車室外用モジュール160に相当する。
 同様に、第1施開錠エリアL1は運転席ドア付近に設定されており、且つ、運転席が車両Vの右側に配置されているため、第1施開錠エリアL1は右側エリアに相当する。第2施開錠エリアL2は助手席ドア付近に設定されており、且つ、助手席が車両Vの左側に配置されているため、第2施開錠エリアL2は左側エリアに相当する。
 上記の設定における位置判定部F6の作動について図29に示すフローチャートを用いて説明する。図29は本実施形態における位置判定処理を説明するためのフローチャートである。なお、図29に示すフローチャートの事前処理として位置判定部F6は、例えば図19のS301~S304に相当する処理が実行しているものとする。
 上記の設定における位置判定部F6は、まずS401として、施開錠エリアLx毎に、その施開錠エリアLxに対応づけられている車室外用モジュール160でのRSSIの代表値(以降、エリア代表値)を決定する。或る施開錠エリアLxについてのエリア代表値は、当該施開錠エリアLxと対応付けられている少なくとも1つの車室外用モジュール160でのRSSIの最大値とすればよい。エリア代表値は平均値、中央値であってもよい。
 本実施形態では各施開錠エリアLxに対応する車室外用モジュール160は1つずつであるため、各車室外用モジュール160でのRSSI(より具体的には平均強度)がそのままエリア代表値として適用される。具体的には第1車室外用モジュール160Lでの平均強度を第1施開錠エリアL1でのエリア代表値として採用する。第2車室外用モジュール160Mでの平均強度を第2施開錠エリアL2でのエリア代表値として採用する。第3車室外用モジュール160Nでの平均強度を第3施開錠エリアL3についてのエリア代表値として採用する。
 次に、位置判定部F6はS402として、複数のエリア代表値のうち、1番大きいエリア代表値である第1強度と2番目に大きいエリア代表値である第2強度の差である候補強度差を算出する。S402での処理が完了すると、S403を実行する。
 S403では位置記憶部M2を参照し、前回の位置判定処理の結果を参照し、前回の位置判定処理において携帯端末20は第1強度に対応する施開錠エリアLx(以降、強度最大エリア)に存在すると判定しているか否かを判定する。前回の位置判定処理において携帯端末20は強度最大エリアに存在すると判定している場合、S403を肯定判定してS404を実行する。一方、前回の位置判定処理において携帯端末20は強度最大エリアに存在するとは判定していない場合、S403を否定判定してS407を実行する。
 S404では、S402で算出されている候補強度差とローレベル閾値とを比較して、候補強度差がローレベル閾値以下であるか否かを判定する。ここで用いられるローレベル閾値の具体的な値は適宜設計されれば良い。例えば+5dBなど、第1強度と第2強度に優位な差がないとみなせる値に設定されていることが好ましい。
 候補強度差がローレベル閾値以下である場合にはS404を肯定判定してS405を実行する。S405では携帯端末20は強度最大エリア外に存在すると判定し、当該判定結果を位置記憶部M2に保存して本フローを終了する。
 一方、S404において、候補強度差がローレベル閾値を超過している場合にはS406に移り、携帯端末20は強度最大エリア内に存在すると判定して本フローを終了する。つまり、携帯端末20は強度最大エリア内に存在するという前回の判定結果を維持する。
 S407では、S402で算出されている候補強度差とハイレベル閾値とを比較して、候補強度差がハイレベル閾値以上であるか否かを判定する。ここで用いられるハイレベル閾値の具体的な値はローレベル閾値よりも大きい範囲において適宜設計されれば良い。ハイレベル閾値は前述のローレベル閾値よりも例えば5dB以上大きい値に設定されていることが好ましい。
 候補強度差がハイレベル閾値以上である場合にはS407を肯定判定してS408を実行する。一方、候補強度差がハイレベル閾値未満である場合にはS407を否定判定してS409を実行する。
 S408では携帯端末20は強度最大エリア内に存在すると判定し、当該判定結果を位置記憶部M2に保存して本フローを終了する。S409では、携帯端末20の位置(換言すれば端末位置)は不明であると判定する。そして、携帯端末20の位置は不明であるという判定結果を位置記憶部M2に保存して本フローを終了する。なお、端末位置は不明であると判定している状態は、端末位置の特定を保留にしている状態に相当する。
 以上の構成によれば、携帯端末20が例えば第1施開錠エリアL1に存在する場合には、その旨を精度良く検出することができる。また、いったん携帯端末20は第1施開錠エリアL1に存在すると判定した場合には、候補強度差が所定のローレベル閾値以下となるまではその判定結果が保持される。故に、携帯端末20が第1施開錠エリアL1に存在するにも関わらず、マルチパス等の影響によって第1車室外用モジュール160Lでの受信強度が低下し、携帯端末20は第1施開錠エリアL1には存在しないと誤判定する恐れを低減できる。換言すれば、携帯端末20の位置の判定結果の安定性を高めることができる。第2施開錠エリアL2等、他の施開錠エリアLxについても同様である。換言すれば、本実施形態の構成によれば携帯端末20が存在するエリアの判定精度を高める事ができる。
 (変形例5)
 変形例5は、第5実施形態の変形例である。上述した第5実施形態では、対象エリアとして、第1施開錠エリアL1と、第2施開錠エリアL2と、第3施開錠エリアL3とが設定されている態様を開示したが、これに限らない。第3施開錠エリアL3は設定されていなくとも良い。
 また、対象エリアは、ウェルカムエリアとしての右側エリアW1、左側エリアW2等に相当するものであってもよい。位置判定部F6は携帯端末20が車両Vの右側、左側のどちらに存在するのかを判定するように構成されていても良い。携帯端末20が車両Vの前側、後ろ側のどちらに存在するのかを判定するように構成されていても良い。換言すれば車両Vの前方所定範囲が対象エリアとして設定されていてもよい。なお、車両Vの前方所定範囲を対象エリアとして設定する場合には、車両Vの前端部にも車室外用モジュール160が配置されていることが好ましい。
 (変形例6)
 上述した第5実施形態では、複数の対象エリアが車室外において互いに重ならないように設定されている態様を開示したが、これに限らない。複数の対象エリアは、図30に示すように車室内に設定されていても良い。図30は、対象エリアとして、運転席エリアR1、助手席エリアR2、第1後部座席エリアR3、及び第2後部座席エリアR4が設定されている態様を示している。運転席エリアR1、助手席エリアR2、第1後部座席エリアR3、及び第2後部座席エリアR4は順に、前述の運転席エリア、助手席エリア、第1後部座席エリア、及び第2後部座席エリアに相当する。運転席用モジュール150Dが運転席用受信部に相当する。助手席用モジュール150Pが助手席用受信部に相当する。
 このような対象エリアの設定態様によれば、車室内での携帯端末20の位置を精度良く判定することができる。なお、第1後部座席エリアR3と第2後部座席エリアR4は1つの対象エリアに統合して取り扱っても良い。
 また、第5実施形態や変形例6とは組み合わせて実施することができる。つまり対象エリアとして、第1施開錠エリアL1、第2施開錠エリアL2、第3施開錠エリアL3、運転席エリアR1、助手席エリアR2、第1後部座席エリアR3、及び第2後部座席エリアR4が設定されていても良い。その他、本変形例6として開示のエリア設定に対して、変形例3として例示した判定アルゴリズムを適用し、携帯端末20が何れのエリアに存在するのかを特定しても良い。
 本開示に記載されるフローチャート、あるいは、フローチャートの処理は、複数の部(あるいはステップと言及される)から構成され、各部は、たとえば、S101と表現される。さらに、各部は、複数のサブ部に分割されることができる、一方、複数の部が合わさって一つの部にすることも可能である。さらに、このように構成される各部は、サーキット、デバイス、モジュール、ミーンズとして言及されることができる。
 また、上記の複数の部の各々あるいは組合わさったものは、(i) ハードウエアユニット(例えば、コンピュータ)と組み合わさったソフトウエアの部のみならず、(ii) ハードウエア(例えば、集積回路、配線論理回路)の部として、関連する装置の機能を含みあるいは含まずに実現できる。さらに、ハードウエアの部は、マイクロコンピュータの内部に構成されることもできる。
 本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範畴や思想範囲に入るものである。

Claims (21)

  1.  車両に搭載された車載器(10)と、前記車両のユーザによって携帯される通信端末であって、送信元情報を含む無線信号を所定時間内に少なくとも一回は送信するように設定されている携帯端末(20)と、を備え、
     前記車載器は、
     前記車両に設置されたアンテナを介して、前記携帯端末から送信される前記無線信号を受信するとともに、受信した前記無線信号の受信強度を検出する受信部(140、150、160)と、
     前記受信部が検出した前記無線信号の受信強度に基づいて、前記アンテナの設置位置を基準として予め設定されている対象エリア内に前記携帯端末が存在するか否かを判定する位置判定部(F6)と、を備え、
     前記位置判定部が前記受信部によって検出されている前記無線信号の受信強度に基づいて前記携帯端末が前記対象エリア内に存在するか否かを判定するための判定用閾値として、ハイレベル閾値と、前記ハイレベル閾値よりも小さいローレベル閾値の2つのパラメータが設定されており、
     前記位置判定部は、
     前記携帯端末は前記対象エリア外に存在すると判定している状態において、前記受信部によって検出されている前記無線信号の受信強度が前記ハイレベル閾値以上となった場合には前記携帯端末は前記対象エリア内に存在すると判定し、
     前記携帯端末は前記対象エリア内に存在すると判定している状態において、前記受信部によって検出されている前記無線信号の受信強度が前記ローレベル閾値以下となった場合には前記携帯端末は前記対象エリア外に存在すると判定する位置判定システム。
  2.  請求項1において、
     前記車載器は、
     前記受信部として、前記車両の車室内に設置された車室内アンテナを介して前記携帯端末から送信される前記無線信号を受信するとともに、受信した前記無線信号の受信強度を検出する車室内受信部(150)を備え、
     前記位置判定部は、
     前記車室内受信部が検出した前記無線信号の受信強度に基づいて、前記携帯端末が車室内に存在するか否かを判定するものであって、
     前記携帯端末は車室外に存在すると判定している状態において、前記車室内受信部によって検出されている前記無線信号の受信強度が前記ハイレベル閾値以上となった場合には前記携帯端末は車室内に存在すると判定し、
     前記携帯端末は車室内に存在すると判定している状態において、前記車室内受信部によって検出されている前記無線信号の受信強度が前記ローレベル閾値以下となった場合には前記携帯端末は車室外に存在すると判定する位置判定システム。
  3.  請求項2において、
     前記車載器は複数の前記車室内受信部を備え、
     前記位置判定部は、
     複数の前記車室内受信部のそれぞれで検出された前記無線信号の受信強度に基づいて、車室内での前記無線信号の受信強度の代表値である車室内強度代表値を算出し、
     前記携帯端末は車室外に存在すると判定している状態において、前記車室内強度代表値が前記ハイレベル閾値以上となった場合には前記携帯端末は車室内に存在すると判定し、
     前記携帯端末は車室内に存在すると判定している状態において、前記車室内強度代表値が前記ローレベル閾値以下となった場合には前記携帯端末は車室外に存在すると判定する位置判定システム。
  4.  請求項1において、
     前記受信部として、
     前記車両の車室内に設置された車室内アンテナを介して前記携帯端末から送信される前記無線信号を受信するとともに、受信した前記無線信号の受信強度を検出する車室内受信部(150)と、
     前記車両の車室外に設置された車室外アンテナを介して、前記携帯端末から送信される前記無線信号を受信するとともに、受信した前記無線信号の受信強度を検出する車室外受信部(160)と、を備え、
     前記位置判定部は、
     前記車室内受信部が検出している前記無線信号の受信強度と、前記車室外受信部が検出している前記無線信号の受信強度とに基づいて、前記無線信号の車室内での信号強度と、車室外での信号強度の差を示す強度差分値を算出し、
     前記携帯端末は車室外に存在すると判定している状態において、前記強度差分値が前記ハイレベル閾値以上となった場合には前記携帯端末は車室内に存在すると判定し、
     前記携帯端末は車室内に存在すると判定している状態において、前記強度差分値が前記ローレベル閾値以下となった場合には前記携帯端末は車室外に存在すると判定する位置判定システム。
  5.  請求項4において、
     複数の前記車室内受信部と、
     複数の前記車室外受信部と、を備え、
     前記位置判定部は、
     複数の前記車室内受信部のそれぞれで検出された前記無線信号の受信強度に基づいて、車室内での前記無線信号の受信強度の代表値である車室内強度代表値を算出し、
     複数の前記車室外受信部のそれぞれで検出された前記無線信号の受信強度に基づいて、車室内での前記無線信号の受信強度の代表値である車室外強度代表値を算出し、
     前記車室内強度代表値から前記車室外強度代表値を減算することによって、前記強度差分値を算出するように構成されている位置判定システム。
  6.  請求項1において、
     前記車載器は前記受信部として、
     前記車両の車室内に設置された車室内アンテナを介して前記携帯端末から送信される前記無線信号を受信するとともに、受信した前記無線信号の受信強度を検出する車室内受信部(150)と、
     前記車両の車室外に設置された車室外アンテナを介して、前記携帯端末から送信される前記無線信号を受信するとともに、受信した前記無線信号の受信強度を検出する車室外受信部(160)と、を備え、
     前記位置判定部は、
     前記車室内受信部が検出している前記無線信号の受信強度と、前記車室外受信部が検出している前記無線信号の受信強度とに基づいて、前記無線信号の車室内での信号強度と、車室外での信号強度の差を示す強度差分値を算出し、
     前記携帯端末は車室外に存在すると判定している状態において、前記強度差分値が前記ローレベル閾値以下となった場合には前記携帯端末は車室内に存在すると判定し、
     前記携帯端末は車室内に存在すると判定している状態において、前記強度差分値が前記ハイレベル閾値以上となった場合には前記携帯端末は車室外に存在すると判定する位置判定システム。
  7.  請求項6において、
     複数の前記車室内受信部と、
     複数の前記車室外受信部と、を備え、
     前記位置判定部は、
     複数の前記車室内受信部のそれぞれで検出された前記無線信号の受信強度に基づいて、車室内での前記無線信号の受信強度の代表値である車室内強度代表値を算出し、
     複数の前記車室外受信部のそれぞれで検出された前記無線信号の受信強度に基づいて、車室内での前記無線信号の受信強度の代表値である車室外強度代表値を算出し、
     前記車室外強度代表値から前記車室内強度代表値を減算することによって、前記強度差分値を算出するように構成されている位置判定システム。
  8.  請求項5又は7において、
     前記車室外受信部は、前記車両の運転席側の側面部に少なくとも2つ以上配置されており、
     前記車両の運転席側の側面部に設けられた複数の前記車室外受信部のうち、最も前側に配置されたものと最も後ろ側に配置されたものとは、車両前後方向において1m以上離れるようにそれぞれ配置されている位置判定システム。
  9.  請求項4から8の何れか1項において、
     前記車室内受信部は、車室内のうち、車室外に存在する前記携帯端末からの前記無線信号が直接到達しない位置に配置されており、
     前記車室外受信部は、前記車両のボディにおいて、車室内に存在する前記携帯端末からの前記無線信号が直接到達しない位置に配置されている位置判定システム。
  10.  請求項4から9の何れか1項において、
     前記判定用閾値とは異なる閾値であって、前記車両に設けられたドアの施開錠状態を制御する処理を実行するためのエリアである施開錠エリア内に前記携帯端末が存在するか否かを判定するための施開錠用閾値が予め設定されており、
     前記位置判定部は、
     前記携帯端末は車室外に存在すると判定している状態において、前記車室外受信部が検出した前記無線信号の受信強度が前記施開錠用閾値以上となっている場合には、前記携帯端末が前記施開錠エリア内に存在すると判定する一方、前記車室外受信部が検出した前記無線信号の受信強度が前記施開錠用閾値未満となっている場合には、前記携帯端末は前記施開錠エリア内に存在しないと判定する位置判定システム。
  11.  請求項1において、
     前記対象エリアは、前記位置判定部が前記携帯端末は当該対象エリア内に存在すると判定していることに基づいて前記車載器が前記車両に設けられたドアの施開錠状態を制御する処理を実行するための、車室外の所定領域に設定された施開錠エリアであって、
     前記受信部は、前記施開錠エリアを通信エリアに含むように設けられており、
     前記位置判定部は、
     前記携帯端末は前記施開錠エリア外に存在すると判定している状態において、前記受信部によって検出されている前記無線信号の受信強度が前記ハイレベル閾値以上となった場合には前記携帯端末は前記施開錠エリア内に存在すると判定するとともに、
     前記携帯端末は前記施開錠エリア内に存在すると判定している状態において、前記受信部によって検出されている前記無線信号の受信強度が前記ローレベル閾値以下となった場合には前記携帯端末は前記施開錠エリア外に存在すると判定する位置判定システム。
  12.  請求項11において、
     前記車載器は、前記施開錠エリアを通信エリアに含むようにそれぞれ異なる位置に設けられている複数の前記受信部を備え、
     前記位置判定部は、
     複数の前記受信部のそれぞれで検出された前記無線信号の受信強度に基づいて、複数の前記受信部での前記無線信号の受信強度の代表値である強度代表値を算出し、
     前記携帯端末は前記施開錠エリア外に存在すると判定している状態において、前記強度代表値が前記ハイレベル閾値以上となった場合には前記携帯端末は前記施開錠エリア内に存在すると判定し、
     前記携帯端末は前記施開錠エリア内に存在すると判定している状態において、前記強度代表値が前記ローレベル閾値以下となった場合には前記携帯端末は前記施開錠エリア外に存在すると判定する位置判定システム。
  13.  請求項1において、
     前記対象エリアは、前記車両の周辺とみなす領域として予め設定されているウェルカムエリアであって、
     前記受信部は、前記ウェルカムエリアを通信エリアに含むように設けられており、
     前記位置判定部は、
     前記携帯端末は前記ウェルカムエリア外に存在すると判定している状態において、前記受信部によって検出されている前記無線信号の受信強度が前記ハイレベル閾値以上となった場合には前記携帯端末は前記ウェルカムエリア内に存在すると判定するとともに、
     前記携帯端末は前記ウェルカムエリア内に存在すると判定している状態において、前記受信部によって検出されている前記無線信号の受信強度が前記ローレベル閾値以下となった場合には前記携帯端末は前記ウェルカムエリア外に存在すると判定する位置判定システム。
  14.  請求項13において、
     前記車載器は、前記ウェルカムエリアの少なくとも一部を通信エリアに含むようにそれぞれ異なる位置に配置されている複数の前記受信部を備え、
     前記位置判定部は、
     複数の前記受信部のそれぞれで検出された前記無線信号の受信強度に基づいて、複数の前記受信部での前記無線信号の受信強度の代表値である強度代表値を算出し、
     前記携帯端末は前記ウェルカムエリア外に存在すると判定している状態において、前記強度代表値が前記ハイレベル閾値以上となった場合には前記携帯端末は前記ウェルカムエリア内に存在すると判定し、
     前記携帯端末は前記ウェルカムエリア内に存在すると判定している状態において、前記強度代表値が前記ローレベル閾値以下となった場合には前記携帯端末は前記ウェルカムエリア外に存在すると判定する位置判定システム。
  15.  請求項13又は14において、
     車室外のそれぞれ異なる領域を通信エリアとする複数の前記受信部を備え、
     前記位置判定部は、前記携帯端末は前記ウェルカムエリア内に存在すると判定している場合には、複数の前記受信部のそれぞれでの受信強度に基づいて、前記ウェルカムエリア内での詳細位置を判定する位置判定システム。
  16.  請求項1において、
     複数の前記対象エリアがそれぞれ異なる領域に設定されており、
     前記受信部は、複数の前記対象エリアのそれぞれに対応するように、前記対象エリア毎に少なくとも1つずつ設けられており、
     前記位置判定部は、
     前記対象エリア毎に、当該対象エリアと対応付けられている少なくとも1つの前記受信部での受信強度に基づいて、前記対象エリアに対応付けられている前記受信部での受信強度の代表値であるエリア代表値を決定し、
     複数の前記エリア代表値のうち、1番大きい前記エリア代表値である第1強度から2番目に大きい前記エリア代表値である第2強度を減算してなる候補強度差を算出し、
     前記携帯端末は前記第1強度に対応する前記対象エリア内に存在するとは判定していない状態において前記候補強度差が前記ハイレベル閾値以上となった場合には前記携帯端末は前記第1強度に対応する前記対象エリア内に存在すると判定するとともに、
     前記携帯端末は前記第1強度に対応する前記対象エリア内に存在するとは判定している状態において前記候補強度差が前記ローレベル閾値以下となった場合には前記携帯端末は前記第1強度に対応する前記対象エリア外に存在すると判定する位置判定システム。
  17.  請求項16において、
     前記対象エリアとして、車室外において前記車両の右側の所定範囲である右側エリアと、前記車両の左側の所定範囲である左側エリアと、が設定されており、
     前記右側エリアに対応する前記受信部として、前記車両の右側を通信エリアとするように設けられている右側受信部(160L)と、
     前記左側エリアに対応する前記受信部として、前記車両の左側を通信エリアとするように設けられている左側受信部(160M)と、を備え、
     前記位置判定部は、前記候補強度差を用いた判定により、前記携帯端末が前記右側エリアに存在すること、及び、前記左側エリアに存在することを検出する位置判定システム。
  18.  請求項16又は17において、
     前記対象エリアとして、車室内において運転席周辺の所定範囲である運転席エリアと、助手席周辺の所定範囲である助手席エリアと、が設定されており、
     前記運転席周辺を通信エリアとするように設定されている前記アンテナと接続されている運転席用受信部(150D)と、
     前記助手席周辺を通信エリアとするように設定されている前記アンテナと接続されている助手席用受信部(150P)と、を備え、
     前記位置判定部は、前記候補強度差を用いた判定により、前記携帯端末が前記運転席エリアに存在すること、及び、前記助手席エリアに存在することを検出する位置判定システム。
  19.  請求項1から18の何れか1項において、
     前記位置判定部は、前記受信部が前記携帯端末から送信される前記無線信号を受信していない場合には前記携帯端末は車室外に存在すると判定するように構成されている位置判定システム。
  20.  請求項1から19の何れか1項において、
     前記車両に搭載されているセンサから入力される信号に基づいて、前記車両が駐車されているか否か、及び、前記車両のドアが施錠されたか否かを判定する車両状態判定部(F1)をさらに備え、
     前記位置判定部は、前記車両状態判定部が前記車両は駐車されたと判定した後に、さらに、前記車両のドアが施錠されたと判定したことに基づいて前記携帯端末は車室外に存在すると判定するように構成されている位置判定システム。
  21.  請求項1から20の何れか1項において、
     前記無線信号は、前記車両の前後方向の長さに10以上の所定の拡張倍率を乗じた値よりも短い波長を提供する周波数の電波を用いて実現されているように構成されている位置判定システム。

     
PCT/JP2018/000927 2017-02-28 2018-01-16 位置判定システム WO2018159118A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP18761850.9A EP3591429B1 (en) 2017-02-28 2018-01-16 Location determination system
US16/549,991 US11027701B2 (en) 2017-02-28 2019-08-23 Location determination system

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017-036124 2017-02-28
JP2017036124 2017-02-28
JP2017-226766 2017-11-27
JP2017226766A JP6812955B2 (ja) 2017-02-28 2017-11-27 位置判定システム

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/549,991 Continuation US11027701B2 (en) 2017-02-28 2019-08-23 Location determination system

Publications (1)

Publication Number Publication Date
WO2018159118A1 true WO2018159118A1 (ja) 2018-09-07

Family

ID=63370302

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/000927 WO2018159118A1 (ja) 2017-02-28 2018-01-16 位置判定システム

Country Status (1)

Country Link
WO (1) WO2018159118A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020100941A1 (ja) * 2018-11-16 2020-05-22 株式会社東海理化電機製作所 位置判定システム及び位置判定方法
JP2020085884A (ja) * 2018-11-16 2020-06-04 株式会社東海理化電機製作所 位置判定システム及び位置判定方法
CN111243136A (zh) * 2020-01-13 2020-06-05 东莞市同欣智能科技有限公司 一种智能锁控制系统
JP2020186922A (ja) * 2019-05-10 2020-11-19 矢崎総業株式会社 乗員の乗降検知システムおよび乗員の乗降検知方法
CN112389366A (zh) * 2019-08-13 2021-02-23 南京天擎汽车电子有限公司 车辆智能迎宾方法、装置、系统、可读存储介质和车辆
US11300953B2 (en) * 2014-07-18 2022-04-12 Denso Corporation Remote control apparatus and remote control system utilizing the apparatus
US20220179037A1 (en) * 2019-04-25 2022-06-09 Panasonic Intellectual Property Management Co., Ltd. Area determination system, area determination method, and program

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09284841A (ja) * 1996-04-19 1997-10-31 Sanyo Electric Co Ltd 無線電話装置
US20010005170A1 (en) * 1999-11-30 2001-06-28 Patric Heide Anti-theft protection system for a motor vehicle, and a method for operating an anti-theft protection system
JP2012172334A (ja) * 2011-02-18 2012-09-10 Mitsubishi Electric Corp 車両無線装置
WO2014171082A1 (ja) * 2013-04-15 2014-10-23 株式会社デンソー 距離測定装置
JP2015085899A (ja) * 2013-11-01 2015-05-07 株式会社デンソー 車両制御装置
JP2015214316A (ja) 2014-05-13 2015-12-03 株式会社東海理化電機製作所 車両通信システム
JP2016155526A (ja) * 2015-02-26 2016-09-01 株式会社日本自動車部品総合研究所 車両盗難防止装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09284841A (ja) * 1996-04-19 1997-10-31 Sanyo Electric Co Ltd 無線電話装置
US20010005170A1 (en) * 1999-11-30 2001-06-28 Patric Heide Anti-theft protection system for a motor vehicle, and a method for operating an anti-theft protection system
JP2012172334A (ja) * 2011-02-18 2012-09-10 Mitsubishi Electric Corp 車両無線装置
WO2014171082A1 (ja) * 2013-04-15 2014-10-23 株式会社デンソー 距離測定装置
JP2015085899A (ja) * 2013-11-01 2015-05-07 株式会社デンソー 車両制御装置
JP2015214316A (ja) 2014-05-13 2015-12-03 株式会社東海理化電機製作所 車両通信システム
JP2016155526A (ja) * 2015-02-26 2016-09-01 株式会社日本自動車部品総合研究所 車両盗難防止装置

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11300953B2 (en) * 2014-07-18 2022-04-12 Denso Corporation Remote control apparatus and remote control system utilizing the apparatus
WO2020100941A1 (ja) * 2018-11-16 2020-05-22 株式会社東海理化電機製作所 位置判定システム及び位置判定方法
JP2020085884A (ja) * 2018-11-16 2020-06-04 株式会社東海理化電機製作所 位置判定システム及び位置判定方法
JP7438675B2 (ja) 2018-11-16 2024-02-27 株式会社東海理化電機製作所 位置判定システム及び位置判定方法
US20220179037A1 (en) * 2019-04-25 2022-06-09 Panasonic Intellectual Property Management Co., Ltd. Area determination system, area determination method, and program
US11782123B2 (en) * 2019-04-25 2023-10-10 Panasonic Intellectual Property Management Co., Ltd. Area determination system, area determination method, and program
JP2020186922A (ja) * 2019-05-10 2020-11-19 矢崎総業株式会社 乗員の乗降検知システムおよび乗員の乗降検知方法
JP7244346B2 (ja) 2019-05-10 2023-03-22 矢崎総業株式会社 乗員の乗降検知システムおよび乗員の乗降検知方法
CN112389366A (zh) * 2019-08-13 2021-02-23 南京天擎汽车电子有限公司 车辆智能迎宾方法、装置、系统、可读存储介质和车辆
CN111243136A (zh) * 2020-01-13 2020-06-05 东莞市同欣智能科技有限公司 一种智能锁控制系统
CN111243136B (zh) * 2020-01-13 2022-04-05 东莞市同欣智能科技有限公司 一种智能锁控制系统

Similar Documents

Publication Publication Date Title
JP6812955B2 (ja) 位置判定システム
WO2018159118A1 (ja) 位置判定システム
US11630194B2 (en) Position determination system
JP6520283B2 (ja) ユーザ識別システム、車両用携帯機
JP6451441B2 (ja) ユーザ識別システム、車両用携帯機
JP6489083B2 (ja) 乗員情報取得システム
JP7131193B2 (ja) 位置判定システム
JP7183830B2 (ja) 車両用位置推定システム
JP7081236B2 (ja) 位置判定システム、位置判定装置
JP7347561B2 (ja) 車両用位置判定システム、車両用通信システム
CN110063043B (zh) 检测装置、检测方法及记录介质
CN112020732B (zh) 控制方法和设备
JP2019014309A (ja) 車両用無線通信システム、位置判定システム
JP2018036207A (ja) ユーザ位置判定システム
US20210306083A1 (en) Positioning system
JP2016008486A (ja) 車両用通信システム、車載機、携帯機及びコンピュータプログラム
JP2020112416A (ja) 乗員位置推定システム
KR20190088893A (ko) 차량 탑재 통신 장치 및 통신 방법
JP2021096119A (ja) ユーザ位置判定システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18761850

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018761850

Country of ref document: EP

Effective date: 20190930