WO2018157274A1 - 一种类钻碳振动膜的制作方法及一种扬声器 - Google Patents
一种类钻碳振动膜的制作方法及一种扬声器 Download PDFInfo
- Publication number
- WO2018157274A1 WO2018157274A1 PCT/CN2017/075106 CN2017075106W WO2018157274A1 WO 2018157274 A1 WO2018157274 A1 WO 2018157274A1 CN 2017075106 W CN2017075106 W CN 2017075106W WO 2018157274 A1 WO2018157274 A1 WO 2018157274A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- carbon
- diamond
- diaphragm
- vapor deposition
- chemical vapor
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04R—LOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
- H04R7/00—Diaphragms for electromechanical transducers; Cones
- H04R7/02—Diaphragms for electromechanical transducers; Cones characterised by the construction
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04R—LOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
- H04R31/00—Apparatus or processes specially adapted for the manufacture of transducers or diaphragms therefor
- H04R31/003—Apparatus or processes specially adapted for the manufacture of transducers or diaphragms therefor for diaphragms or their outer suspension
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/26—Deposition of carbon only
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/455—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
- C23C16/45595—Atmospheric CVD gas inlets with no enclosed reaction chamber
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/50—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/50—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
- C23C16/503—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using dc or ac discharges
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/50—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
- C23C16/513—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using plasma jets
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04R—LOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
- H04R9/00—Transducers of moving-coil, moving-strip, or moving-wire type
- H04R9/02—Details
- H04R9/025—Magnetic circuit
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04R—LOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
- H04R9/00—Transducers of moving-coil, moving-strip, or moving-wire type
- H04R9/06—Loudspeakers
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04R—LOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
- H04R2307/00—Details of diaphragms or cones for electromechanical transducers, their suspension or their manufacture covered by H04R7/00 or H04R31/003, not provided for in any of its subgroups
- H04R2307/023—Diaphragms comprising ceramic-like materials, e.g. pure ceramic, glass, boride, nitride, carbide, mica and carbon materials
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04R—LOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
- H04R2307/00—Details of diaphragms or cones for electromechanical transducers, their suspension or their manufacture covered by H04R7/00 or H04R31/003, not provided for in any of its subgroups
- H04R2307/025—Diaphragms comprising polymeric materials
Definitions
- the invention relates to, in particular, to a method for manufacturing a diamond-like carbon diaphragm and a loudspeaker.
- Diamond-like carbon (Diamond Like Carbon (referred to as DLC) technology developed in the early 1970s, essentially a hydrogen-containing amorphous carbon film, due to its similar properties to natural diamonds, such as high hardness, good corrosion resistance, smooth surface, low friction coefficient, It has excellent abrasion resistance, good biocompatibility, etc., and is therefore used on a horn diaphragm to extend high frequencies.
- DLC Diamond-like carbon
- the molecular structure contains a twisted sp3 bond, it has a high internal stress, and the adhesion tends to be poor, which is liable to cause problems such as cracking and peeling.
- the invention provides a method for manufacturing a diamond-like carbon diaphragm, comprising the steps of:
- the substrate being a polymer material
- the step of depositing the carbon-like carbon composite film comprises: introducing a carbon-containing gas from one end of the atmospheric piezoelectric slurry chemical vapor deposition device at a temperature lower than 90 ° C, and providing a voltage solution of 10 kV or less and 5 kV or more. From the other end of the atmospheric piezoelectric slurry chemical vapor deposition apparatus, a main gas is introduced from the carbon-containing gas, and the dissociated carbon-containing gas is carried out by the main gas to the atmospheric piezoelectric slurry chemical vapor deposition apparatus. And depositing on the surface of the substrate to form a diamond-like carbon composite film;
- the step of forming a diamond-like carbon diaphragm comprises: cutting a diamond-like carbon diaphragm of a desired diameter from the diamond-like carbon composite film, and forming a diamond-like carbon diaphragm of a desired shape by a pressing process; or by a pressing process A diamond-like carbon diaphragm of a desired shape and diameter is pressed on a diamond-like carbon composite film, and the diamond-like carbon diaphragm is cut.
- the step of depositing the diamond-like carbon composite film further comprises maintaining a distance of 1 to 3 cm between the nozzle of the atmospheric piezoelectric plasma chemical vapor deposition apparatus and the substrate.
- the primary gas is one of dry atmosphere, nitrogen, and oxygen.
- the diamond-like carbon film has a thickness between 20 nanometers and 100 nanometers.
- the substrate has a thickness between 9 microns and 50 microns.
- the method for manufacturing the diamond-like carbon diaphragm of the invention can realize the deposition of the diamond-like carbon film only under the atmospheric pressure environment and the low temperature environment, compared with the conventional plasma-assisted chemical vapor deposition and physical vapor deposition manufacturing methods.
- the process is simplified by eliminating the need for a vacuum chamber and vacuum.
- it is possible to avoid film wrinkles caused by film penetration or thermal deformation caused by high temperature, and the formed diamond-like carbon vibration film is flat.
- the present invention also provides a speaker comprising: a magnetic system, a voice coil, and the above-described diamond-like carbon diaphragm, wherein one end of the voice coil is connected to the diamond-like carbon diaphragm, and the other end of the voice coil is inserted into the Within the magnetic field generated by the magnetic system.
- the speaker of the present invention has a diamond-like carbon vibrating membrane prepared by the foregoing method, and can be realized only in an atmospheric pressure environment or a low temperature environment, compared with the conventional plasma assisted chemical vapor deposition and physical vapor deposition manufacturing methods.
- the deposition of a diamond-like carbon film simplifies the process without the need for a vacuum chamber and vacuum.
- the high frequency performance of the speaker with this type of carbon drilling diaphragm is superior.
- FIG. 1 is a first flowchart of a first embodiment of a method for manufacturing a carbon-like carbon diaphragm according to the present invention
- FIG. 2 is a second flowchart of the first embodiment of the method for manufacturing a diamond-like carbon diaphragm according to the present invention
- FIG. 3 is a schematic view of a device used in the first embodiment of the method for manufacturing a diamond-like carbon diaphragm according to the present invention
- FIG. 4 is a frequency response curve diagram of a diamond-like carbon vibration film according to an embodiment of a method for fabricating a diamond-like carbon diaphragm according to an embodiment of the present invention
- FIG. 5 is a distortion diagram of a diamond-like carbon vibration film according to an embodiment of a method for fabricating a carbon-drilling diaphragm according to an embodiment of the present invention
- FIG. 6 is a frequency response graph of a diamond-like carbon diaphragm according to still another embodiment of the method for fabricating a diamond-like carbon diaphragm according to the present invention.
- FIG. 7 is a distortion diagram of a diamond-like carbon vibration film according to still another embodiment of the method for fabricating a carbon-like vibration film of the present invention.
- FIG. 8 is a frequency response graph of a common vibrating membrane and a diamond-like carbon vibrating membrane according to a third embodiment of the method for fabricating a carbon-like vibrating membrane of the present invention
- Fig. 9 is a distortion diagram of a conventional vibrating membrane and a diamond-like carbon vibrating membrane according to a third embodiment of the method for producing a diamond-like carbon diaphragm according to the present invention.
- the present invention provides a method for manufacturing a diamond-like carbon diaphragm, comprising the steps of:
- a substrate 1 is placed in the air, and the substrate is a polymer material.
- the substrate is polyetherimide (PEI), polyethylene terephthalate (PET), and poly A film made of any one of ether ether ketone (PEEK), polyphenylene sulfide (PPS), and polyurethane (PU).
- a working platform 2 is disposed in an atmospheric pressure environment, and the substrate is placed on the working platform 2; in order to ensure that the substrate is fixed during the manufacturing process, the substrate 1 can be clamped to the working platform by the clamp.
- the substrate 1 is adsorbed and fixed on the work platform 2 by means of a vacuum adsorption device.
- the step of depositing the diamond-like carbon composite film comprises: introducing a carbon-containing gas from one end of the atmospheric piezoelectric slurry chemical vapor deposition device 3 at a temperature lower than 90 ° C, and supplying a voltage of 10 kV or less and 5 kV or more Dissociating the carbon-containing gas, the main gas is introduced from the other end of the atmospheric piezoelectric slurry chemical vapor deposition device 3, and the dissociated carbon-containing gas is taken out of the atmospheric piezoelectric slurry chemical vapor deposition device 3 by the main gas and deposited on the substrate 1
- the surface forms a diamond-like carbon composite film; preferably, the carbon-containing gas and the main gas are simultaneously introduced from one end and the other end of the atmospheric piezoelectric slurry chemical vapor deposition device 3, respectively.
- the carbon-containing gas and the main gas are successively introduced. It is introduced into the atmospheric piezoelectric slurry chemical vapor deposition device 3.
- the number of charged particles per unit volume after the carbon-containing gas is dissociated by a voltage of 10 kV or less and 5 kV or more is between 10 11 and 10 13 . Since the entire production method is carried out at a temperature lower than 90 ° C, the substrate 1 does not have thermal stress residual, and the formed diamond-like carbon composite film is very smooth and flat.
- the carbon-containing gas is dissipated into the plasma state by passing into the atmospheric piezoelectric slurry chemical vapor deposition device 3, and the carbonaceous gas in the post-dissociation plasma state is taken out of the device 3 through the gas stream of the main gas and deposited on the carbon dioxide gas.
- the plasma carbon ions dissociated by the carbon-containing gas are taken out by the gas stream of the main gas and molecularly rearranged on the surface of the substrate to form a diamond-like carbon film.
- the flow rate of the main gas is controlled within a standard state (ie, 1 atmosphere, 25 degrees Celsius) in the range of 30 to 40 L/min to better bring out the carbon-containing gas in the dissociated plasma state. Deposited on the surface of the substrate to increase deposition efficiency.
- the step of forming a diamond-like carbon diaphragm comprises: cutting a diamond-like carbon diaphragm of a desired diameter from the diamond-like carbon composite film, and forming a diamond-like carbon diaphragm of a desired shape by a pressing process, specifically, In mass production, a plurality of diamond-like carbon diaphragms are simultaneously cut from the entire diamond-like carbon composite film, and after being cut, the diamond-like carbon diaphragms of a desired shape are pressed, for example, a curved film; or a pressing process is used in the class.
- the nozzle 33 of the atmospheric piezoelectric slurry chemical vapor deposition device is kept at a distance of 1 to 3 cm from the substrate 1 , specifically , the outlet 332 of the nozzle 33 of the atmospheric piezoelectric slurry chemical vapor deposition device is kept at a distance of 1 to 3 cm from the substrate 1; the distance of the retention is determined according to the scanning moving speed of the device and the voltage supplied, preferably, when scanning When the moving speed is 200mm/s and the voltage is 6.5 kV, it is kept at a distance of 1.5 cm.
- the atmospheric piezoelectric slurry chemical vapor deposition apparatus 3 includes: a dissociation device 31, a controller, a nozzle 33, a main gas supply system 35, a carbon-containing gas supply system 34, and an exhaust system. .
- the dissociation device 31 includes an AC power source 314, a housing 311, and an electrode disposed in the housing 311.
- the electrode includes a center electrode 312 disposed in the housing 311 and a first electrode 313 disposed on the housing 311.
- the AC power source 314 It is connected to the center electrode.
- the first electrode 313 is disposed on the inner wall of the housing 311 and is grounded.
- the main gas supply system 35 opens the main gas from the inlet 331 of the nozzle, and flows in a spiral manner toward the nozzle 33 through a high-voltage electric field formed between the center electrode 312 and the first electrode 313.
- the carbon-containing gas supply system 34 passes the carbon-containing gas from the side close to the nozzle 33, and a plasma generating region is formed around the outlet of the carbon-containing gas, and a part of the carbon-containing gas is generated between the center electrode 312 and the first electrode 313. Dissociation occurs in the plasma generating region formed by the high voltage electric field.
- the controller controls the AC power source 314 to provide a voltage of less than 10 kV and more than 5 kV to the center electrode to generate the energy required to dissociate the carbonaceous gas and thereby control the stability of the dissociation.
- the exhaust system recovers the main gas, the carbon-containing gas, and the dissociated carbon-containing gas.
- the main gas is one of dry air, nitrogen or oxygen, or any combination of the three
- the carbon-containing gas is an alkane gas, an olefin gas or an alkyne gas.
- the diamond-like carbon film has a thickness of between 20 nanometers and 100 nanometers. If it is lower than 20 nanometers, the diamond-like carbon film formed can not improve the high frequency performance; if it is higher than 100 nanometers, the diamond-like carbon film is easily dried into a powder, and the high frequency performance cannot be improved. effect.
- the thickness of the diamond-like carbon film is determined by the density of the carbon ions in the plasma state and the deposition residence time. Under the same plasma carbon ion density, if the residence time is too long, the local film will be too thick, and conversely, the locality will be too thin.
- the outlet 332 of the nozzle 33 of the atmospheric piezoelectric slurry chemical vapor deposition device is kept at a distance of 1.5 cm from the substrate 1, and can dissociate more than 95% of the carbon-containing gas, and the plasma carbon ion
- the density reaches about 10 12
- the scanning moving speed is 200mm/s, scanning one back and forth, forming a diamond-like carbon film thickness of 20 nanometers, scanning two round trips, forming a diamond-like carbon film thickness of 40 nanometers, scanning three round-trips, forming a class
- the carbon film is drilled to a thickness of 60 nm.
- the outlet 332 of the nozzle 33 of the atmospheric piezoelectric slurry chemical vapor deposition device is kept at a distance of 1.5 cm from the substrate 1, and can dissociate about 90% of the carbon-containing gas, and the plasma carbon ion
- the density reaches about 10 11
- the scanning moving speed is 150mm / s, scanning one back and forth, forming a diamond-like carbon film thickness of 20 nanometers, scanning two round trips, forming a diamond-like carbon film thickness of 40 nanometers, scanning three rounds, forming
- the diamond-like carbon film has a thickness of 60 nm.
- the outlet 332 of the nozzle 33 of the atmospheric piezoelectric slurry chemical vapor deposition apparatus is kept at a distance of 1.5 cm from the substrate 1, and can dissociate about 99% of the carbon-containing gas, and the plasma carbon ion
- the density reaches about 10 13
- the scanning moving speed is 250mm/s, scanning one back and forth, forming a diamond-like carbon film thickness of 20 nanometers, scanning two round trips, forming a diamond-like carbon film thickness of 40 nanometers, scanning three round-trips, forming a class
- the carbon film is drilled to a thickness of 60 nm.
- the substrate 1 has a thickness of between 9 ⁇ m and 50 ⁇ m. If lower than At 9 microns, the substrate is easily broken down during the coating process; if it is above 50 microns, it is not suitable for use as a film.
- the following provides the relationship between the thickness of the desired diamond-like carbon film and the thickness of the desired substrate 1 and the high frequency performance as follows:
- Diamond-like carbon film thickness (nano) Substrate thickness (micron) High frequency performance description 20 9 High frequency extends to 40KHz with low distortion 20 1 2 High frequency extends to 40KHz with low distortion 60 50 High frequency extends to 40KHz with low distortion
- the high frequency extends to 40 KHz, and the distortion is small.
- the high frequency extends to 40 KHz, and the distortion is small.
- the diamond-like carbon film thickness is 60 nm and the substrate thickness is 50 ⁇ m
- the diamond-like carbon film is better at the high frequency extension than the ordinary diaphragm, and the overall balance of the low and medium high frequency sound is also good.
- the ordinary diaphragm has severe distortion between 3 and 4 kHz, which will affect the sound quality.
- the diamond-like carbon film has excellent distortion in the whole frequency domain and contributes to the sound quality.
- the method for manufacturing the diamond-like carbon diaphragm of the invention can realize the deposition of the diamond-like carbon film only under the atmospheric pressure environment and the low temperature environment, compared with the conventional plasma-assisted chemical vapor deposition and physical vapor deposition manufacturing methods.
- the process is simplified by eliminating the need for a vacuum chamber and vacuum.
- it is possible to avoid film wrinkles caused by film penetration or thermal deformation caused by high temperature, and the formed diamond-like carbon vibration film is flat.
- the present invention provides a speaker comprising: a magnetic system, a voice coil, and the above-described diamond-like carbon diaphragm, wherein one end of the voice coil is connected to the diamond-like carbon diaphragm, and the other end of the voice coil is inserted into the magnetic Within the magnetic field generated by the system.
- the speaker of the present invention has a diamond-like carbon vibrating membrane prepared by the foregoing method, and can be realized only in an atmospheric pressure environment or a low temperature environment, compared with the conventional plasma assisted chemical vapor deposition and physical vapor deposition manufacturing methods.
- the deposition of a diamond-like carbon film simplifies the process without the need for a vacuum chamber and vacuum.
- the high frequency performance of the speaker with this type of carbon drilling diaphragm is superior.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Acoustics & Sound (AREA)
- Signal Processing (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Plasma & Fusion (AREA)
- Manufacturing & Machinery (AREA)
- Inorganic Chemistry (AREA)
- Multimedia (AREA)
- Chemical Vapour Deposition (AREA)
- Diaphragms For Electromechanical Transducers (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
Abstract
本发明涉及一种类钻碳膜的制作方法,包括步骤:将一基材放置于空气中,所述基材为高分子材料;类钻碳复合膜沉积的步骤包括:在低于 90℃的温度条件下,从大气压电浆化学气相沉积装置的一端通入含碳气体,并提供10千伏以下且5千伏以上的电压解离所述含碳气体,从所述大气压电浆化学气相沉积装置的另一端通入主气体,解离后的所述含碳气体被所述主气体带出所述大气压电浆化学气相沉积装置并沉积在所述基材的表面形成类钻碳复合膜;类钻碳振动膜成型的步骤包括:从所述类钻碳复合膜中裁切所需直径的类钻碳振动膜,并通过压制工艺形成所需形状的类钻碳振动膜;或通过压制工艺在类钻碳复合膜上压制形成所需形状和直径的类钻碳振动膜,并裁切所述类钻碳振动膜。本发明的类钻碳振动膜的制作方法,相比于传统的电浆辅助化学气相沉积和物理气相沉积的制作方法,只需在大气压环境、低温环境下就可实现类钻碳膜的沉积,无需设置真空腔体和真空装置,简化了制程。并且在低温环境下,能够避免高温导致的穿膜或热变形引起的膜皱掉,形成的类钻碳振动膜更为平坦。
Description
【技术领域】
本发明涉及,特别是涉及一种类钻碳振动膜的制作方法及一种扬声器。
【背景技术】
类钻碳(Diamond Like
Carbon,简称DLC)技术发展于1970年代初期,本质是一种含氢的非晶质碳膜,由于具有和天然钻石相近的性质,如高硬度、耐腐蚀性佳、表面平滑、摩擦系数小、抗磨耗性佳、生物相容性佳等,因此被用于喇叭振动膜上以延伸高频。但是,由于其分子结构中含有被扭曲的sp3键,具有较高的内应力,附着性往往不佳,容易产生破裂、剥落等问题。
现有的类钻碳膜制作方法多采用电浆辅助化学气相沉积 (Plasma Enhanced Chemical
Vapor Deposition, PECVD) 和物理气相沉积 (Physical Vapor Deposition,
PVD),传统的电浆辅助化学气相沉积需在高温、真空条件下进行,传统的物理气相沉积需在真空条件下进行,制程步骤和装置均复杂,且热应力残留导致类钻碳膜附着力差,往往还需要另外设置中介层或添加其它元素进行类钻碳膜的沉积,才能解决附着力差的问题,增加了制程步骤,且附着力也很难保证。
【发明内容】
基于此,有必要提供一种能够提高类钻碳膜附着力及制程步骤简单的类钻碳振动膜制作方法。
本发明提供一种类钻碳振动膜的制作方法,包括步骤:
将一基材放置于空气中,所述基材为高分子材料;
类钻碳复合膜沉积的步骤包括:在低于90℃的温度条件下,从大气压电浆化学气相沉积装置的一端通入含碳气体,并提供10千伏以下且5千伏以上的电压解离所述含碳气体,从所述大气压电浆化学气相沉积装置的另一端通入主气体,解离后的所述含碳气体被所述主气体带出所述大气压电浆化学气相沉积装置并沉积在所述基材的表面形成类钻碳复合膜;
类钻碳振动膜成型的步骤包括:从所述类钻碳复合膜中裁切所需直径的类钻碳振动膜,并通过压制工艺形成所需形状的类钻碳振动膜;或通过压制工艺在类钻碳复合膜上压制形成所需形状和直径的类钻碳振动膜,并裁切所述类钻碳振动膜。
在其中一个实施例中,所述类钻碳复合膜沉积的步骤之前还包括,将大气压电浆化学气相沉积装置的喷嘴与所述基材之间保持1至3厘米距离。
在其中一个实施例中,所述主气体为干洁大气、氮气和氧气中的一种。
在其中一个实施例中,所述类钻碳膜的厚度为20納米至100納米之间。
在其中一个实施例中,所述基材的厚度为 9微米至50微米之间。
本发明的类钻碳振动膜的制作方法,相比于传统的电浆辅助化学气相沉积和物理气相沉积的制作方法,只需在大气压环境、低温环境下就可实现类钻碳膜的沉积,无需设置真空腔体和真空装置,简化了制程。并且在低温环境下,能够避免高温导致的穿膜或热变形引起的膜皱掉,形成的类钻碳振动膜更为平坦。
本发明还提供一种扬声器,包括:磁系统、音圈和前述所述的类钻碳振动膜,所述音圈一端与所述类钻碳振动膜连接,所述音圈另一端插入所述磁系统产生的磁场内。
本发明的扬声器,由于具有的类钻碳振动膜由前述方法制得,相比于传统的电浆辅助化学气相沉积和物理气相沉积的制作方法,只需在大气压环境、低温环境下就可实现类钻碳膜的沉积,无需设置真空腔体和真空装置,简化了制程。并且在低温环境下,能够避免高温导致的穿膜或热变形引起的膜皱掉,制成的类钻碳振动膜更为平坦。具有该类钻碳振动膜的扬声器高频性能表现较优。
【附图说明】
图1为本发明类钻碳振动膜的制作方法的实施例一的流程图一;
图2为本发明类钻碳振动膜的制作方法的实施例一的流程图二;
图3为本发明类钻碳振动膜的制作方法的实施例一的所使用的装置示意图;
图4为本发明类钻碳振动膜的制作方法的实施例一一实施方式的类钻碳振动膜的频响曲线图;
图5为本发明类钻碳振动膜的制作方法的实施例一一实施方式的类钻碳振动膜的失真曲线图;
图6为本发明类钻碳振动膜的制作方法的实施例一再一实施方式的类钻碳振动膜的频响曲线图;
图7为本发明类钻碳振动膜的制作方法的实施例一再一实施方式的类钻碳振动膜的失真曲线图;
图8为本发明类钻碳振动膜的制作方法的实施例一第三实施方式的普通振动膜与类钻碳振动膜的频响曲线图;
图9为本发明类钻碳振动膜的制作方法的实施例一第三实施方式的普通振动膜与类钻碳振动膜的失真曲线图。
【具体实施方式】
为了便于理解本发明,下面将参照相关附图对本发明进行更全面的描述。附图中给出了本发明的较佳实施方式。但是,本发明可以以许多不同的形式来实现,并不限于本文所描述的实施方式。相反地,提供这些实施方式的目的是使对本发明的公开内容理解的更加透彻全面。
需要说明的是,当元件被称为“固定于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。本文所使用的术语“内”、“外”、“左”、“右”以及类似的表述只是为了说明的目的,并不表示是唯一的实施方式。
请参阅图1和图3所示,本发明提供一种类钻碳振动膜的制作方法,包括步骤:
将一基材1放置于空气中,所述基材为高分子材料,优选的,所述基材为聚醚酰亚胺(PEI)、聚对苯二甲酸乙二醇酯(PET)、聚醚醚酮(PEEK)、聚苯硫醚(PPS)、聚氨基甲酸酯(PU)中的任意一种高分子材料制成的薄膜。本实施例中进一步的,在大气压环境中设置一工作平台2,将基材放置在工作平台2上;为了确保制作过程中基材固定不动,可通过夹具将基材1夹紧在工作平台2上,或通过真空吸附装置将基材1吸附固定在工作平台2上。
类钻碳复合膜沉积的步骤包括:在低于90℃的温度条件下,从大气压电浆化学气相沉积装置3的一端通入含碳气体,并提供10千伏以下且5千伏以上的电压解离含碳气体,从大气压电浆化学气相沉积装置3的另一端通入主气体,解离后的含碳气体被主气体将带出大气压电浆化学气相沉积装置3并沉积在基材1的表面形成类钻碳复合膜;优选的,含碳气体和主气体同时分别从大气压电浆化学气相沉积装置3的一端和另一端通入,在其它实施例中,含碳气体和主气体先后通入大气压电浆化学气相沉积装置3。本实施例中,含碳气体通过10千伏以下且5千伏以上的电压解离后每单位体积内的带电粒子数在1011~1013之间。由于整个制作方法在低于90℃的温度条件下进行,基材1不会有热应力残留,形成的类钻碳复合膜非常光滑平坦。
本实施例中,将含碳气体通入大气压电浆化学气相沉积装置3中解离成电浆态,将解离后电浆态的含碳气体通过主气体的气流带出装置3并沉积在基材表面上;具体的,含碳气体解离成的电浆态的碳离子被主气体的气流带出并在基材表面上进行分子重新排列而形成类钻碳膜。优选的,主气体的气流流速控制在标准状态下(即1个大气压,25摄氏度)30~40L/min范围内,以更好地将解离后电浆态的所述含碳气体带出并沉积在所述基材的表面上,提高沉积效率。
类钻碳振动膜成型的步骤包括:从所述类钻碳复合膜中裁切所需直径的类钻碳振动膜,并通过压制工艺形成所需形状的类钻碳振动膜,具体的,在批量生产中,从整片类钻碳复合膜同时裁切多个类钻碳振动膜,裁切完后压制成所需形状的类钻碳振动膜,例如:曲面膜;或通过压制工艺在类钻碳复合膜上压制形成所需形状和直径的类钻碳振动膜,并裁切所述类钻碳振动膜,具体的,在批量生产中,从整片类钻碳复合膜同时压制形成多个所需形状和直径的类钻碳振动膜,压制完后裁切。
本实施例中,如图2和图3所示,类钻碳复合膜沉积步骤之前还包括,将大气压电浆化学气相沉积装置的喷嘴33与基材1之间保持1至3厘米距离,具体的,大气压电浆化学气相沉积的装置的喷嘴33的出口332与基材1之间保持1至3厘米距离;保持的距离根据装置的扫描移动速度和提供的电压而定,优选的,当扫描移动速度200mm/s、提供电压6.5千伏时,保持在1.5厘米距离。
本实施例中,如图3所示,大气压电浆化学气相沉积装置3包括:解离装置31、控制器、喷嘴33、主气体供气系统35、含碳气体供气系统34以及排气系统。
解离装置31包括交流电源314、壳体311和设于壳体311内的电极,电极包括设于壳体311内的中心电极312以及设于壳体311上的第一电极313,交流电源314与中心电极连接,优选的,所述第一电极313设于壳体311的内壁上并接地。主气体供气系统35将主气体从喷嘴的入口331通入,并通过中心电极312和第一电极313之间形成的高压电场以螺旋方式往喷嘴33方向流动。
含碳气体供气系统34将含碳气体从靠近喷嘴33的的侧面通入,含碳气体的出口处周边形成电浆产生区,部分含碳气体在中心电极312和第一电极313之间产生的高压电场形成的电浆产生区中发生解离。
控制器控制交流电源314提供10千伏以下且5千伏以上的电压给中心电极,以产生解离含碳气体所需的能量,并以此控制解离的稳定性。
排气系统回收主气体、含碳气体和解离后的所述含碳气体。
本实施例中,所述主气体为干洁大气、氮气和氧气中的一种或是三者的任意混合,所述含碳气体为烷烃气体、烯烃气体或炔烃气体。
本实施例中,所述类钻碳膜的厚度为20纳米至100纳米之间。若低于20纳米,则形成的类钻碳振动膜不能起到提高高频性能的效果;若高于100纳米,则类钻碳膜容易干化成粉末状,同样不能起到提高高频性能的效果。
具体的,在大气压电浆化学气相沉积装置的喷嘴与所述基材之间的距离保持固定的情况下,类钻碳膜的厚度由电浆态的碳离子的密度和沉积停留时间决定。相同的电浆态碳离子密度下,如果停留时间过长,会造成局部膜太厚,反之,会造成局部太薄。
具体实施方式一
提供6.5千伏的电压,大气压电浆化学气相沉积的装置的喷嘴33的出口332与基材1之间保持1.5厘米距离,能将95%以上的含碳气体解离,电浆态碳离子的密度达到约1012,扫描移动速度200mm/s,扫描一个来回,形成的类钻碳膜厚度20纳米,扫描两个来回,形成的类钻碳膜厚度40纳米,扫描三个来回,形成的类钻碳膜厚度60纳米。
具体实施方式二
提供5千伏的电压,大气压电浆化学气相沉积的装置的喷嘴33的出口332与基材1之间保持1.5厘米距离,能将约90%以上
的含碳气体解离,电浆态碳离子的密度达到约
1011,扫描移动速度150mm/s,扫描一个来回,形成的类钻碳膜厚度20纳米,扫描两个来回,形成的类钻碳膜厚度40纳米,扫描三个来回,形成的类钻碳膜厚度60纳米。
具体实施方式三
提供10千伏的电压,大气压电浆化学气相沉积的装置的喷嘴33的出口332与基材1之间保持1.5厘米距离,能将
约99%
的含碳气体解离,电浆态碳离子的密度达到约1013,扫描移动速度250mm/s,扫描一个来回,形成的类钻碳膜厚度20纳米,扫描两个来回,形成的类钻碳膜厚度40纳米,扫描三个来回,形成的类钻碳膜厚度
60纳米。
本实施例中,所述基材1的厚度为 9微米至50微米之间。若低于
9微米,则基材容易在镀膜过程中被击穿;若高于50微米,则不适合当膜片使用。
以下提供所需类钻碳膜的厚度与所需基材1厚度的关系以及高频性能如下表:
类钻碳膜厚度(纳米) | 基材厚度(微米) | 高频性能描述 |
20 | 9 | 高频延伸到 40KHz ,且失真小 |
20 | 1 2 | 高频延伸到 40KHz ,且失真小 |
60 | 50 | 高频延伸到 40KHz ,且失真小 |
如图4和图5所示,当类钻碳膜厚度为20纳米、基材厚度为9微米时,高频延伸到40KHz,且失真小。
如图6和图7所示,当类钻碳膜厚度为20纳米、基材厚度为12微米时,高频延伸到40KHz,且失真小。
如图8所示,当类钻碳膜厚度为60纳米、基材厚度为50微米时,类钻碳振动膜在高频延伸较普通振动膜好,低中高频响的整体平衡也较好。如图9所示,普通振动膜在3~4KHz间有严重失真,会影响音质表现,类钻碳振动膜在全频域的失真表现优异,有助于音质表现。
本发明的类钻碳振动膜的制作方法,相比于传统的电浆辅助化学气相沉积和物理气相沉积的制作方法,只需在大气压环境、低温环境下就可实现类钻碳膜的沉积,无需设置真空腔体和真空装置,简化了制程。并且在低温环境下,能够避免高温导致的穿膜或热变形引起的膜皱掉,形成的类钻碳振动膜更为平坦。
本发明提供一种扬声器,包括:磁系统、音圈和前述所述的类钻碳振动膜,所述音圈一端与所述类钻碳振动膜连接,所述音圈另一端插入所述磁系统产生的磁场内。
本发明的扬声器,由于具有的类钻碳振动膜由前述方法制得,相比于传统的电浆辅助化学气相沉积和物理气相沉积的制作方法,只需在大气压环境、低温环境下就可实现类钻碳膜的沉积,无需设置真空腔体和真空装置,简化了制程。并且在低温环境下,能够避免高温导致的穿膜或热变形引起的膜皱掉,制成的类钻碳振动膜更为平坦。具有该类钻碳振动膜的扬声器高频性能表现较优。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。
Claims (6)
- 一种类钻碳振动膜的制作方法,其特征在于,包括步骤:将一基材放置于空气中,所述基材为高分子材料;类钻碳复合膜沉积的步骤包括:在低于90℃的温度条件下,从大气压电浆化学气相沉积装置的一端通入含碳气体,并提供10千伏以下且5千伏以上的电压解离所述含碳气体,从所述大气压电浆化学气相沉积装置的另一端通入主气体,解离后的所述含碳气体被所述主气体带出所述大气压电浆化学气相沉积装置并沉积在所述基材的表面形成类钻碳复合膜;类钻碳振动膜成型的步骤包括:从所述类钻碳复合膜中裁切所需直径的类钻碳振动膜,并通过压制工艺形成所需形状的类钻碳振动膜;或通过压制工艺在类钻碳复合膜上压制形成所需形状和直径的类钻碳振动膜,并裁切所述类钻碳振动膜。
- 根据权利要求1所述的类钻碳振动膜的制作方法,其特征在于,所述类钻碳复合膜沉积的步骤之前还包括,将大气压电浆化学气相沉积装置的喷嘴与所述基材之间保持1至3厘米距离。
- 根据权利要求1所述的类钻碳振动膜的制作方法,其特征在于,所述主气体为干洁大气、氮气和氧气中的一种。
- 根据权利要求1所述的类钻碳振动膜的制作方法,其特征在于,所述类钻碳膜的厚度为20納米至100納米之间。
- 根据权利要求1所述的类钻碳振动膜的制作方法,其特征在于,所述基材的厚度为 9微米至50微米之间。
- 一种扬声器,其特征在于,包括:磁系统、音圈和权利要求1-5任一项所述的类钻碳振动膜,所述音圈一端与所述类钻碳振动膜连接,所述音圈另一端插入所述磁系统产生的磁场内。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/488,802 US10993058B2 (en) | 2017-02-28 | 2017-02-28 | Manufacturing method for diamond-like carbon vibrating diaphragm and loudspeaker |
PCT/CN2017/075106 WO2018157274A1 (zh) | 2017-02-28 | 2017-02-28 | 一种类钻碳振动膜的制作方法及一种扬声器 |
EP17898586.7A EP3591994A4 (en) | 2017-02-28 | 2017-02-28 | PROCESS FOR MANUFACTURING A DIAMOND-TYPE CARBON VIBRATING MEMBRANE AND LOUDSPEAKER |
CN201780000100.6A CN107005777B (zh) | 2017-02-28 | 2017-02-28 | 一种类钻碳振动膜的制作方法及一种扬声器 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2017/075106 WO2018157274A1 (zh) | 2017-02-28 | 2017-02-28 | 一种类钻碳振动膜的制作方法及一种扬声器 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018157274A1 true WO2018157274A1 (zh) | 2018-09-07 |
Family
ID=59435954
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2017/075106 WO2018157274A1 (zh) | 2017-02-28 | 2017-02-28 | 一种类钻碳振动膜的制作方法及一种扬声器 |
Country Status (4)
Country | Link |
---|---|
US (1) | US10993058B2 (zh) |
EP (1) | EP3591994A4 (zh) |
CN (1) | CN107005777B (zh) |
WO (1) | WO2018157274A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115198241A (zh) * | 2022-06-27 | 2022-10-18 | 岭南师范学院 | 一种纳米类金刚石非晶碳膜及其制备方法与应用 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101649450A (zh) * | 2004-06-25 | 2010-02-17 | 应用材料股份有限公司 | 包埋层水阻障性的改进 |
CN101886252A (zh) * | 2010-08-06 | 2010-11-17 | 北京大学 | 一种在pc树脂镜片上沉积dlc薄膜的制备方法 |
CN102390607A (zh) * | 2010-06-23 | 2012-03-28 | 株式会社J<ech | 具备防静电功能的电子元件包装用包装材料及其制造方法 |
CN102560413A (zh) * | 2010-12-13 | 2012-07-11 | 财团法人金属工业研究发展中心 | 类钻碳膜及其制作方法 |
CN105283581A (zh) * | 2013-03-06 | 2016-01-27 | 康宁股份有限公司 | 钻石状碳和氧氮化硅薄膜的结晶和漂白 |
DE102016200367B3 (de) * | 2016-01-14 | 2017-02-02 | Hochschule Wismar | Verfahren zum Herstellen einer dünnen Schicht aus porösem DLC, Verwendung einer PECVD-Anlage und mit porösem DLC beschichtetes Werkstück |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2868120B2 (ja) * | 1997-06-11 | 1999-03-10 | 川崎重工業株式会社 | 電子ビーム励起プラズマ発生装置 |
KR19990002102A (ko) | 1997-06-19 | 1999-01-15 | 구자홍 | 스피커 진동판의 dlc 코팅 장치 |
TW455912B (en) * | 1999-01-22 | 2001-09-21 | Sony Corp | Method and apparatus for film deposition |
WO2000063956A1 (fr) * | 1999-04-20 | 2000-10-26 | Sony Corporation | Procede et dispositif pour realiser un depot de couches minces, et procede pour la production d'un dispositif a semiconducteur a couches minces |
JP5176887B2 (ja) | 2008-11-12 | 2013-04-03 | セイコーエプソン株式会社 | 静電アクチュエータ、液滴吐出ヘッド及びそれらの製造方法並びに液滴吐出装置 |
TWI477159B (zh) | 2014-05-27 | 2015-03-11 | Cotron Corp | 振動元件 |
TWI551717B (zh) | 2015-03-05 | 2016-10-01 | 馗鼎奈米科技股份有限公司 | 類鑽碳膜之製造方法 |
CN204929219U (zh) | 2015-06-25 | 2015-12-30 | 东莞正任电子有限公司 | 一种耳机扬声器用新型振膜及具有该新型振膜的耳机扬声器 |
JP2017038030A (ja) * | 2015-08-14 | 2017-02-16 | 株式会社ディスコ | ウエーハの加工方法及び電子デバイス |
-
2017
- 2017-02-28 WO PCT/CN2017/075106 patent/WO2018157274A1/zh unknown
- 2017-02-28 CN CN201780000100.6A patent/CN107005777B/zh active Active
- 2017-02-28 EP EP17898586.7A patent/EP3591994A4/en not_active Withdrawn
- 2017-02-28 US US16/488,802 patent/US10993058B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101649450A (zh) * | 2004-06-25 | 2010-02-17 | 应用材料股份有限公司 | 包埋层水阻障性的改进 |
CN102390607A (zh) * | 2010-06-23 | 2012-03-28 | 株式会社J<ech | 具备防静电功能的电子元件包装用包装材料及其制造方法 |
CN101886252A (zh) * | 2010-08-06 | 2010-11-17 | 北京大学 | 一种在pc树脂镜片上沉积dlc薄膜的制备方法 |
CN102560413A (zh) * | 2010-12-13 | 2012-07-11 | 财团法人金属工业研究发展中心 | 类钻碳膜及其制作方法 |
CN105283581A (zh) * | 2013-03-06 | 2016-01-27 | 康宁股份有限公司 | 钻石状碳和氧氮化硅薄膜的结晶和漂白 |
DE102016200367B3 (de) * | 2016-01-14 | 2017-02-02 | Hochschule Wismar | Verfahren zum Herstellen einer dünnen Schicht aus porösem DLC, Verwendung einer PECVD-Anlage und mit porösem DLC beschichtetes Werkstück |
Non-Patent Citations (1)
Title |
---|
See also references of EP3591994A4 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115198241A (zh) * | 2022-06-27 | 2022-10-18 | 岭南师范学院 | 一种纳米类金刚石非晶碳膜及其制备方法与应用 |
CN115198241B (zh) * | 2022-06-27 | 2024-04-19 | 岭南师范学院 | 一种纳米类金刚石非晶碳膜及其制备方法与应用 |
Also Published As
Publication number | Publication date |
---|---|
US20200068329A1 (en) | 2020-02-27 |
EP3591994A1 (en) | 2020-01-08 |
CN107005777B (zh) | 2020-04-14 |
US10993058B2 (en) | 2021-04-27 |
CN107005777A (zh) | 2017-08-01 |
EP3591994A4 (en) | 2020-11-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH10121254A (ja) | 三次元物品にバリヤーフィルムを付着させる方法 | |
JP2016063223A5 (zh) | ||
CN108781500A (zh) | 等离子体生成装置 | |
CN111155302B (zh) | 一种石墨烯复合碳纤维及其pecvd制备方法 | |
WO2018157274A1 (zh) | 一种类钻碳振动膜的制作方法及一种扬声器 | |
JPS6063375A (ja) | 気相法堆積膜製造装置 | |
JP7049883B2 (ja) | ボロン系膜の成膜方法および成膜装置 | |
WO2020116248A1 (ja) | プラズマ処理装置 | |
CN1031740C (zh) | 制备类金刚石复合振膜的方法 | |
TW201002856A (en) | Plasma cvd apparatus and manufacturing method of magnetic recording media | |
CN211047202U (zh) | 一种振膜 | |
JP2001335947A (ja) | Cvd成膜装置及びcvd成膜方法 | |
JPS6289868A (ja) | 硬質炭素被膜の製造方法 | |
KR960008697A (ko) | 고주파 플라즈마 화학증착법을 이용한 원형기판용 코팅층의 대량 합성장치 및 합성방법 | |
CN106011781A (zh) | 一种增大金刚石膜沉积面积的方法 | |
JPS61288069A (ja) | ダイヤモンド様カ−ボン成膜装置 | |
WO2003000558A1 (fr) | Contenant en plastique a cloisons de separation et caracteristique d'isolation contre l'humidite et les gaz, dispositif et procede de fabrication dudit contenant en plastique | |
CN1934898A (zh) | 使用压电膜制造膜式扬声器的方法及具有其的音响设备 | |
JP2003077903A5 (zh) | ||
KR102328322B1 (ko) | 대기압 중주파 플라즈마 처리장치 | |
JPH0237758B2 (zh) | ||
JPS62185879A (ja) | アモルフアスカ−ボン膜の成膜方法 | |
JPWO2017104357A1 (ja) | プラズマcvd成膜装置用電極、電極の製造方法、プラズマcvd成膜装置および機能性フィルムの製造方法 | |
JPS60162777A (ja) | プラズマcvd装置 | |
CN118814133A (zh) | 化学气相沉积装置及化学气相沉积方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17898586 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2017898586 Country of ref document: EP Effective date: 20190930 |