CN105283581A - 钻石状碳和氧氮化硅薄膜的结晶和漂白 - Google Patents

钻石状碳和氧氮化硅薄膜的结晶和漂白 Download PDF

Info

Publication number
CN105283581A
CN105283581A CN201480012674.1A CN201480012674A CN105283581A CN 105283581 A CN105283581 A CN 105283581A CN 201480012674 A CN201480012674 A CN 201480012674A CN 105283581 A CN105283581 A CN 105283581A
Authority
CN
China
Prior art keywords
film
defect
silicon oxynitride
radiation
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201480012674.1A
Other languages
English (en)
Other versions
CN105283581B (zh
Inventor
C·A·保尔森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Corning Inc
Original Assignee
Corning Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Corning Inc filed Critical Corning Inc
Publication of CN105283581A publication Critical patent/CN105283581A/zh
Application granted granted Critical
Publication of CN105283581B publication Critical patent/CN105283581B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/56After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment
    • C23C14/5813Thermal treatment using lasers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/308Oxynitrides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Thermal Sciences (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Chemical Vapour Deposition (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Surface Treatment Of Glass (AREA)
  • Laminated Bodies (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

采用较低温度沉积条件以及沉积后的漂白步骤形成光学透明的钻石状碳(DLC)薄膜。漂白可包括将刚沉积的薄膜暴露于UV激光辐射,这降低了膜中缺陷的浓度。该方法与温度敏感的基材相容,并且可用于在玻璃基材上形成无色清澈DLC层,例如,可用于显示器应用。

Description

钻石状碳和氧氮化硅薄膜的结晶和漂白
相关申请的交叉参考
本申请根据35U.S.C.§119,要求2013年3月6日提交的美国临时申请系列第61/773,434号的优先权,本文以该申请为基础并将其全文通过引用结合于此。
背景技术
本发明一般地涉及钻石状碳(DLC)和氧氮化硅(SiOxNy),更具体地,涉及用于在基材上形成光学透明的DLC和SiOxNy薄膜的低温方法。
可采用各种技术生产钻石状碳、氧氮化硅以及其他高硬度薄膜,包括喷溅和过滤阴极电弧沉积。例如,主要对DLC和SiOxNy膜的摩擦性质进行研究,用作耐磨涂层。钻石状碳和氧氮化硅是光滑且硬的,可有利地延长工件(例如刀具)的磨损寿命。
在各种摩擦应用中,钻石状碳和SiOxNy的光学性质通常并不重要。例如,基于DLC的超市扫描仪,其具有有利地耐划痕性,通常具有黄色色调。但是,在其他应用中,例如用于透镜和显示器的耐磨涂层中,透明度和颜色会是重要的性质。
相信通过增加沉积温度,DLC和SiOxNy薄膜的光学透明性可以得到原位(即在形成膜的过程中的)改进。另一方面,在较低沉积温度下形成的薄膜通常包括例如石墨沉积之类的缺陷,这对其透明性造成负面影响。
因此,随着沉积温度的增加,各种技术可用于生产不断增加的无色清澈的DLC或SiOxNy薄膜。但是,此类高沉积温度通常不适用于许多温度敏感的基材,例如玻璃基材。
基于上文所述,会希望采用与玻璃和其他温度敏感的基材相容的低温工艺来形成光学透明的钻石状碳和氧氮化硅薄膜。
发明内容
本文揭示了用于形成光学透明(即无色清澈)的钻石状碳(DLC)薄膜或光学透明的SiOxNy薄膜的方法。可采用较低温度沉积过程,将DLC或SiOxNy薄膜初始地形成在支撑基材上。可以采用沉积后漂白步骤来消除在刚沉积的薄膜中形成的缺陷,所述缺陷对薄膜的光学性质造成负面影响。漂白步骤可以包括用紫外辐射来照射含缺陷的薄膜,以降低膜中缺陷的浓度,并在下方基材上形成光学透明的钻石状碳或SiOxNy薄膜。
在以下的详细描述中给出了本发明的其他特征和优点,其中的部分特征和优点对本领域的技术人员而言,根据所作描述就容易看出,或者通过实施包括以下详细描述、权利要求书以及附图在内的本文所述的发明而被认识。
应理解,前面的一般性描述和以下的详细描述都只是本发明的示例,用来提供理解要求保护的本发明的性质和特性的总体评述或框架。包括的附图提供了对本发明的进一步的理解,附图被结合在本说明书中并构成说明书的一部分。附图举例说明了本发明的各种实施方式,并与描述一起用来解释本发明的原理和操作。
附图说明
图1显示玻璃基材上的DLC薄膜的拉曼光谱;
图2示意性显示含缺陷薄膜的UV辐射;以及
图3显示对于(A)含缺陷DLC薄膜和(B)经UV辐射的DLC薄膜的拉曼光谱。
具体实施方式
一种用于形成光学透明薄膜,例如钻石状碳或氧氮化硅薄膜的方法,该方法包括:在基材上提供含缺陷的薄膜,用紫外辐射来照射含缺陷的薄膜,以降低膜内缺陷的浓度。
可以采用各种沉积技术在基材上形成薄膜,包括物理和化学气相沉积方法。示例性沉积方法是等离子体增强的化学气相沉积(PECVD)。
例如,可以使用RF(3kW,13.56MHz激发)平行板(PECVD)钻石状碳沉积系统,在各种玻璃基材上形成DLC薄膜。系统包括24英寸的直径,水冷却阴极和用于支撑基材的19英寸直径的台板。
采用氩气作为工作气体,丁烷作为碳源,制备薄膜样品。典型的沉积条件包括25毫托的底压力,电极和台板之间约750V的偏压。反应器(基材)温度在每次沉积开始时约为室温(约24℃),随着沉积进行,增加到约50℃的最大温度。
在沉积过程中,根据各个实施方式,基材温度可以小于400℃,即小于400、300、200、100、80、60或40℃。
沉积条件的总结,包括沉积时间、RF功率、丁烷流动以及所得到的薄膜厚度,见表1所示。
表1:玻璃基材上的DLC薄膜的示例性沉积条件
取决于沉积运行,平均膜厚从约100nm变化至5000nm,例如约150-1500nm。采用inVia拉曼显微镜(雷尼绍有限公司(Renishaw,Inc.)),对颜色是略微黄色的刚沉积的薄膜进行测量。主要观察到的峰是所谓的“G”峰,其与DLC材料中的sp2石墨模式相关。拉曼数据在442nm和514nm处聚集。在两个不同波长处记录测量,从而评估具有激发能的G峰位置的偏移。色散,即G峰位置的相对偏移,可用于确定原子键合的特性(sp2vssp3)以及膜内的残留氢含量。通过G峰位置的变化除以相关探测波长的变化,计算色散。
参见表1,具体是运行编号1-3中,膜厚是沉积时间的线性函数,相应的沉积速率约为22nm/分钟。参见运行编号3、5和6可以看出,随着RF功率从1000W增加到3000W,沉积速率从约16nm/分钟增加到约24.5nm/分钟。对于丁烷流动增加,沉积速率似乎在约25nm/分钟饱和(运行编号4、5和7)。
玻璃基材上的DLC薄膜的典型拉曼光谱如图1所示。所示数据来自运行编号3。参见图1,442nm激发的G带位于约1525cm-1,514nm激发的G带位于约1550cm-1。对应的色散D约为0.34cm-1/nm((1550-1525)/(514-442))。G带的半峰全宽(FWHM)约为125-150cm-1
G带的位置,以及相关的FWHM测量,暗示薄膜中的氢含量多至约30%(例如,30、35、40或45%),sp3组成为60-80%。基于上述内容,DLC薄膜的原子微结构假定是在聚合物状碳-氢(PLCH)型DLC和钻石状碳氢(DLCH)形式之间。
将刚形成的薄膜样品暴露于来自脉冲KrF激光器(248nm)的UV辐射。例如,参见图2,将玻璃基材20上的DLC薄膜30暴露于来自激光源10的短、但是强烈的248nm光脉冲。UV输出12是10Hz的重复频率,100mJ/脉冲,脉冲持续时间约为25ns。在示例性漂白运行中,束面积膨胀到约1cm2,其对应约400000J/s的脉冲。总照射时间约为2-5分钟。
经辐射的区域32是光学透明且无色清澈的。不希望受到理论的限制,相信UV辐射从膜的近表面区域选择性地烧蚀掉石墨含量,和/或诱发石墨含量相转化成清澈DLC相。诱发颜色的缺陷可吸收UV辐射。吸收可将缺陷激发至更高能态,使得它们可以与薄膜中相邻的原子反应,以形成较不诱发颜色的材料,例如钻石。此外,可以采用市售可得激光重结晶设备容易地对所述工艺进行规模化。
将照射前的样品(A)的拉曼光谱与图3中的照射后的样品(B)的拉曼光谱进行比较。经UV处理的样品的拉曼光谱显示出靠近1350cm-1的良好限定的、检测的钻石峰,并且具有比未处理薄膜低的强度背景(延伸超过2500cm-1)。该背景峰(或丘)在图3中从约1800延伸到2800,与2维(2D)碳网络,例如石墨相关。如图3清楚所示,在暴露于UV辐射之后,2D(sp2杂化)组分对于拉曼光谱的贡献明显降低。
除了玻璃基材之外,由于薄膜沉积是在较低温度下进行,额外的温度敏感的基材材料可包括金属、塑料或者生物材料如木材。有利地,玻璃基材可以是无UV吸收的。
用于形成光学透明的薄膜的总时间(可包括成形和UV照射的时间)可以小于60分钟,即小于60、50、40、30、20、10或5分钟。可以在一个循环或者多个循环中,依次地进行薄膜成形和UV照射的各个行为。例如,在一个实施方式中,可以在基材上形成具有所需厚度的薄膜,然后在后续漂白步骤中通过UV照射进行处理。
在另一个实施方式中,可以在基材上形成具有所需总厚度一定百分比的薄膜,通过UV照射对由此形成的膜进行处理,然后在之前经UV处理的层上进一步进行薄膜沉积。以这种方式,可以对UV照射步骤中处理的薄膜材料的体积进行控制,即控制成小于薄膜的最终体积。例如,被照射的含缺陷的薄膜的厚度可以小于5000nm,即约为100、200、400、500或1000nm的厚度。在其他实施方式中,可以同时进行沉积和照射。
UV照射可使得经处理的薄膜的光学透明度增加至少90%,例如至少90、92、95、98或99%。
本文揭示了用于形成光学透明的薄膜(例如,钻石状碳或氧氮化硅薄膜)的方法。所述方法涉及:初始地,采用较低温度沉积工艺形成含缺陷的薄膜,然后通过用UV光照射薄膜降低薄膜中缺陷的浓度。相比于刚沉积的薄膜,经UV处理的薄膜具有改进的光学透明性。
除非上下文另外清楚地说明,否则,本文所用的单数形式的“一个”、“一种”和“该”包括复数指代。因此,例如,对一种“钻石状碳薄膜”的引用包括具有两种或更多种此类“钻石状碳薄膜”的例子,除非文本中有另外的明确表示。
本文中,范围可以表示为从“约”一个具体值和/或到“约”另一个具体值的范围。当表述这种范围时,例子包括自某一具体值始和/或至另一具体值止。类似地,当使用先行词“约”表示数值为近似值时,应理解,具体数值构成另一个方面。还应理解的是,每个范围的端点值在与另一个端点值有关和与另一个端点值无关时,都是有意义的。
除非另有表述,否则都不旨在将本文所述的任意方法理解为需要使其步骤以具体顺序进行。因此,当方法权利要求实际上没有陈述为其步骤遵循一定的顺序或者其没有在权利要求书或说明书中以任意其他方式具体表示步骤限于具体的顺序,都不旨在暗示该任意特定顺序。
还要注意本文关于将部件“构造成”或“使其适于”以特定的方式起作用的描述。这方面而言,对这样一个组件进行“配置成”或“使其适于”是为了具体表现特定的性质,或者以特定的方式起作用,其这样的描述是结构性的描述,而不是对预定期应用的描述。更具体地,本文所述的将组件“构造成”或“使其适于”的方式表示该组分现有的物理条件,因此可以将其看作该组件的结构特征的限定性描述。
虽然会用过渡语“包括”来公开特定实施方式的各种特征、元素或步骤,但是应理解的是,这暗示了包括可采用过渡语“由......构成”、“基本由......构成”描述在内的替代实施方式。因此,例如,所示的包括玻璃材料的玻璃基材的替代实施方式包括了由玻璃材料构成的玻璃基材的实施方式以及基本由玻璃材料构成的玻璃基材的实施方式。
对本领域的技术人员而言显而易见的是,可以在不偏离本发明的范围和精神的前提下对本发明进行各种修改和变动。因为本领域的技术人员可以想到所述实施方式的融合了本发明精神和实质的各种改良组合、子项组合和变化,应认为本发明包括所附权利要求书范围内的全部内容及其等同内容。

Claims (15)

1.一种形成光学透明薄膜的方法,该方法包括:
在基材上提供含缺陷的钻石状碳或氧氮化硅薄膜;以及
用紫外辐射来照射所述含缺陷的薄膜,以降低所述膜中缺陷的浓度,并在所述基材上形成光学透明的钻石状碳或氧氮化硅薄膜。
2.如权利要求1所述的方法,其特征在于,在基材上提供含缺陷的钻石状碳或氧氮化硅薄膜包括通过等离子体增强的化学气相沉积在所述基材上形成所述含缺陷的薄膜。
3.如权利要求1所述的方法,其特征在于,在基材上提供含缺陷的钻石状碳或氧氮化硅薄膜包括通过RF-PECVD在所述基材上形成所述含缺陷的薄膜。
4.如权利要求1所述的方法,其特征在于,在基材上提供含缺陷的钻石状碳或氧氮化硅薄膜包括以小于约400℃的沉积温度,在所述基材上形成所述含缺陷的薄膜。
5.如权利要求1所述的方法,其特征在于,在基材上提供含缺陷的钻石状碳或氧氮化硅薄膜包括以小于约100℃的沉积温度,在所述基材上形成所述含缺陷的薄膜。
6.如权利要求1-5中任一项所述的方法,其特征在于,所述基材包括选自下组的材料:玻璃、塑料、木材和金属。
7.如权利要求1-5中任一项所述的方法,其特征在于,所述基材是玻璃基材。
8.如权利要求1-6中任一项所述的方法,其特征在于,所述含缺陷的薄膜包括石墨缺陷。
9.如权利要求1-6中任一项所述的方法,其特征在于,所述紫外辐射的来源是KrF脉冲激光。
10.如权利要求1-6中任一项所述的方法,其特征在于,所述紫外辐射的波长约为248nm。
11.如权利要求1-6中任一项所述的方法,其特征在于,所述紫外辐射包括激光辐射,用紫外辐射来照射所述含缺陷的薄膜还包括将所述紫外辐射扫过所述含缺陷的薄膜的表面。
12.如权利要求1-6中任一项所述的方法,其特征在于,对所述含缺陷的薄膜的照射小于5分钟。
13.如权利要求1-6中任一项所述的方法,其特征在于,所述薄膜的经照射的区域基本不含石墨。
14.如权利要求1-6中任一项所述的方法,其特征在于,所述薄膜的经照射的区域是无色清澈的。
15.如权利要求1-6中任一项所述的方法,其特征在于,所述透明薄膜的厚度约为100-5000nm。
CN201480012674.1A 2013-03-06 2014-03-03 钻石状碳和氧氮化硅薄膜的结晶和漂白 Active CN105283581B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201361773434P 2013-03-06 2013-03-06
US61/773,434 2013-03-06
PCT/US2014/019852 WO2014137887A2 (en) 2013-03-06 2014-03-03 Crystallization and bleaching of diamond-like carbon and silicon oxynitride thin films.

Publications (2)

Publication Number Publication Date
CN105283581A true CN105283581A (zh) 2016-01-27
CN105283581B CN105283581B (zh) 2019-07-23

Family

ID=50382598

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201480012674.1A Active CN105283581B (zh) 2013-03-06 2014-03-03 钻石状碳和氧氮化硅薄膜的结晶和漂白

Country Status (5)

Country Link
US (1) US9328422B2 (zh)
EP (1) EP2964803B1 (zh)
CN (1) CN105283581B (zh)
TW (1) TWI597379B (zh)
WO (1) WO2014137887A2 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018157274A1 (zh) * 2017-02-28 2018-09-07 万魔声学科技有限公司 一种类钻碳振动膜的制作方法及一种扬声器
CN109797370A (zh) * 2019-03-06 2019-05-24 武汉理工大学 一种玻璃基透射可见光的dlc复合增硬薄膜及其制备方法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9110230B2 (en) 2013-05-07 2015-08-18 Corning Incorporated Scratch-resistant articles with retained optical properties
US9684097B2 (en) 2013-05-07 2017-06-20 Corning Incorporated Scratch-resistant articles with retained optical properties
US9359261B2 (en) 2013-05-07 2016-06-07 Corning Incorporated Low-color scratch-resistant articles with a multilayer optical film
US9703011B2 (en) 2013-05-07 2017-07-11 Corning Incorporated Scratch-resistant articles with a gradient layer
US9366784B2 (en) 2013-05-07 2016-06-14 Corning Incorporated Low-color scratch-resistant articles with a multilayer optical film
EP3027572B1 (en) 2013-08-01 2018-03-07 Corning Incorporated Methods and apparatus providing a substrate having a coating with an elastic modulus gradient
US9335444B2 (en) 2014-05-12 2016-05-10 Corning Incorporated Durable and scratch-resistant anti-reflective articles
US11267973B2 (en) 2014-05-12 2022-03-08 Corning Incorporated Durable anti-reflective articles
US9790593B2 (en) 2014-08-01 2017-10-17 Corning Incorporated Scratch-resistant materials and articles including the same
CN107735697B (zh) 2015-09-14 2020-10-30 康宁股份有限公司 减反射制品以及包含其的显示器装置
EP3837223A1 (en) 2018-08-17 2021-06-23 Corning Incorporated Inorganic oxide articles with thin, durable anti-reflective structures

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4933206A (en) * 1988-08-17 1990-06-12 Intel Corporation UV-vis characteristic writing in silicon nitride and oxynitride films
US6713179B2 (en) * 2000-05-24 2004-03-30 Guardian Industries Corp. Hydrophilic DLC on substrate with UV exposure
US20080164808A1 (en) * 2007-01-05 2008-07-10 Tae-Woong Kim Organic light emitting display device and manufacturing method of the same
US7491658B2 (en) * 2004-10-13 2009-02-17 International Business Machines Corporation Ultra low k plasma enhanced chemical vapor deposition processes using a single bifunctional precursor containing both a SiCOH matrix functionality and organic porogen functionality
US7807225B2 (en) * 2003-01-31 2010-10-05 Sharp Laboratories Of America, Inc. High density plasma non-stoichiometric SiOxNy films

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4849199A (en) * 1987-03-30 1989-07-18 Crystallume Method for suppressing growth of graphite and other non-diamond carbon species during formation of synthetic diamond
US5328855A (en) * 1991-07-25 1994-07-12 Matsushita Electric Industrial Co., Ltd. Formation of semiconductor diamond
JP2005326666A (ja) 2004-05-14 2005-11-24 Sumitomo Electric Ind Ltd 屈折率変調型回折光学素子とそれを含むプロジェクタ
US7517814B2 (en) 2005-03-30 2009-04-14 Tokyo Electron, Ltd. Method and system for forming an oxynitride layer by performing oxidation and nitridation concurrently
JP2007210821A (ja) 2006-02-08 2007-08-23 Japan Atomic Energy Agency レーザーによる硬質材料の合成方法と表面改質方法
JP5154814B2 (ja) 2007-03-29 2013-02-27 東ソー・クォーツ株式会社 石英ガラス材料の製造方法
WO2009023263A1 (en) 2007-08-16 2009-02-19 The Trustees Of Columbia University In The City Of New Yor Direct bandgap substrate with silicon thin film circuitry
US8728956B2 (en) 2010-04-15 2014-05-20 Novellus Systems, Inc. Plasma activated conformal film deposition
US8679987B2 (en) 2012-05-10 2014-03-25 Applied Materials, Inc. Deposition of an amorphous carbon layer with high film density and high etch selectivity
US9434640B2 (en) 2012-12-04 2016-09-06 Guardian Industries Corp. Method of making heat treated coated article with carbon based coating and protective film

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4933206A (en) * 1988-08-17 1990-06-12 Intel Corporation UV-vis characteristic writing in silicon nitride and oxynitride films
US6713179B2 (en) * 2000-05-24 2004-03-30 Guardian Industries Corp. Hydrophilic DLC on substrate with UV exposure
US7807225B2 (en) * 2003-01-31 2010-10-05 Sharp Laboratories Of America, Inc. High density plasma non-stoichiometric SiOxNy films
US7491658B2 (en) * 2004-10-13 2009-02-17 International Business Machines Corporation Ultra low k plasma enhanced chemical vapor deposition processes using a single bifunctional precursor containing both a SiCOH matrix functionality and organic porogen functionality
US20080164808A1 (en) * 2007-01-05 2008-07-10 Tae-Woong Kim Organic light emitting display device and manufacturing method of the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
G. SEPOLD ET AL.: "Influence of UV-laser radiation on the synthesis of DLC films by ECR-plasma-CVD", 《DIAMOND AND RELATED MATERIALS》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018157274A1 (zh) * 2017-02-28 2018-09-07 万魔声学科技有限公司 一种类钻碳振动膜的制作方法及一种扬声器
US10993058B2 (en) 2017-02-28 2021-04-27 1More Inc Manufacturing method for diamond-like carbon vibrating diaphragm and loudspeaker
CN109797370A (zh) * 2019-03-06 2019-05-24 武汉理工大学 一种玻璃基透射可见光的dlc复合增硬薄膜及其制备方法

Also Published As

Publication number Publication date
EP2964803A2 (en) 2016-01-13
WO2014137887A2 (en) 2014-09-12
US20140255616A1 (en) 2014-09-11
EP2964803B1 (en) 2019-05-15
TW201441406A (zh) 2014-11-01
CN105283581B (zh) 2019-07-23
US9328422B2 (en) 2016-05-03
WO2014137887A3 (en) 2014-11-06
TWI597379B (zh) 2017-09-01

Similar Documents

Publication Publication Date Title
CN105283581A (zh) 钻石状碳和氧氮化硅薄膜的结晶和漂白
US9150418B2 (en) Method and system for graphene formation
US5830332A (en) Sputter deposition of hydrogenated amorphous carbon film and applications thereof
Fan et al. Ultraviolet laser photolysis of hydrocarbons for nondiamond carbon suppression in chemical vapor deposition of diamond films
Ralchenko et al. Quality of diamond wafers grown by microwave plasma CVD: effects of gas flow rate
JP6586578B2 (ja) Dlc膜及びdlc膜被膜物品
JP6586618B2 (ja) Dlc膜形成方法及びdlc膜形成装置
Tsai et al. Evaluation research of polishing methods for large area diamond films produced by chemical vapor deposition
Böhme et al. Low roughness laser etching of fused silica using an adsorbed layer
Knoll et al. PECVD of carbon by inverted fireballs: From sputtering, bias enhanced nucleation to deposition
Juha et al. Radiation damage to amorphous carbon thin films irradiated by multiple 46.9 nm laser shots below the single-shot damage threshold
Kononenko et al. Laser-induced structure transformations of diamonds
JP4701386B2 (ja) 高硬度材料
Goto et al. Synthesis of diamond films by laser-induced chemical vapor deposition
Simakin et al. Laser deposition of diamond-like films from liquid aromatic hydrocarbons
Bäuerle et al. Laser-CVD of microstructures
Remnev Reactive ion beam stripping process for diamond coated cutting tools reconditioning
Veiko et al. Mechanisms of thin Cr films modification under multipulse femtosecond laser action
Kutsay et al. Nanostructuring of tetrahedral carbon films by carbon ion implantation
Gerhard et al. Homogenization and reduction of the roughness of polished sapphire surfaces via inert gas plasma post-processing
Marcinauskas et al. Irradiation of the amorphous carbon films by picosecond laser pulses
Bäuerle Laser induced chemical vapor deposition
JP2006039392A (ja) 薄膜と回折光学素子とそれらの製造方法
Kononenko Modification of Diamond Surface by Femtosecond Radiation
Kazemi et al. Optical freeform generation of N-BK7 by fluorine‐based plasma jet machining

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant