TWI597379B - 類鑽碳與氮氧化矽薄膜之結晶與漂白 - Google Patents

類鑽碳與氮氧化矽薄膜之結晶與漂白 Download PDF

Info

Publication number
TWI597379B
TWI597379B TW103107245A TW103107245A TWI597379B TW I597379 B TWI597379 B TW I597379B TW 103107245 A TW103107245 A TW 103107245A TW 103107245 A TW103107245 A TW 103107245A TW I597379 B TWI597379 B TW I597379B
Authority
TW
Taiwan
Prior art keywords
color
substrate
film
induced
film containing
Prior art date
Application number
TW103107245A
Other languages
English (en)
Other versions
TW201441406A (zh
Inventor
波森查爾斯安德魯
Original Assignee
康寧公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 康寧公司 filed Critical 康寧公司
Publication of TW201441406A publication Critical patent/TW201441406A/zh
Application granted granted Critical
Publication of TWI597379B publication Critical patent/TWI597379B/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/56After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment
    • C23C14/5813Thermal treatment using lasers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/308Oxynitrides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Thermal Sciences (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Chemical Vapour Deposition (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Surface Treatment Of Glass (AREA)
  • Physical Vapour Deposition (AREA)
  • Laminated Bodies (AREA)

Description

類鑽碳與氮氧化矽薄膜之結晶與漂白 【相關申請案之交叉引用】
本申請案根據專利法主張在2013年3月6日申請之美國臨時申請案第61/773,434號的優先權利,本案依賴於該案之內容且該案之內容全文以引用之方式併入本文中。
本揭示案大體而言係關於類鑽碳(DLC)及氮氧化矽(SiOxNy),且更特定言之,係關於用於在基板上形成光學透明DLC及SiOxNy薄膜之低溫製程。
可使用各種技術(包括濺射及過濾陰極電弧沉積)來生產類鑽碳、氮氧化矽及其他高硬度薄膜。舉例而言,DLC及SiOxNy膜已主要因為該等膜之摩擦學性質而被研究以用作耐磨塗層。類鑽碳及氮氧化矽為光滑的及堅硬的並可有益地延長工件(諸如,刀頭)之磨損壽命。
在各種摩擦學應用中,類鑽碳及SiOxNy之光學性質通常不是最重要的。例如,有益地防刮之基於DLC之超市掃 描器大體上具有黃色色調。然而,在其他應用中(諸如,在用於透鏡及顯示器之耐磨塗層中),透明度及顏色可為重要之性質。
據信可藉由增加沉積溫度在原位(亦即,在膜之形成期間)改良DLC及SiOxNy薄膜之光學透明度。另一方面,在較低沉積溫度下形成之薄膜通常包括不利地影響該等薄膜之清晰度之缺陷,諸如石墨沉積物。
因此,隨著沉積溫度增加,各種技術可用於生產愈來愈無色透明之DLC或SiOxNy薄膜。然而,此等高沉積溫度大體上不適用於許多溫度敏感型基板,諸如,玻璃基板。
基於上文,將需要使用低溫製程形成光學透明類鑽碳及氮氧化矽薄膜,該低溫製程與玻璃基板及其他溫度敏感型基板相容。
本文揭示用於形成光學透明(亦即,無色透明)類鑽碳(DLC)薄膜或光學透明SiOxNy薄膜之方法。可使用相對低溫沉積製程首先在所支撐基板上形成DLC或SiOxNy薄膜。可使用沉積後之漂白步驟消除在如此沉積之薄膜中形成及不利地影響薄膜之光學性質之缺陷。漂白步驟可包括以紫外線輻射照射含缺陷之薄膜以降低缺陷在該膜內之濃度及在下層基板上形成光學透明的類鑽碳或SiOxNy薄膜。
將在隨後之詳細描述中闡述額外特徵及優點,且對於熟習此項技術者而言,該等額外特徵及優點將部分地自彼描述顯而易見或藉由實踐如在本文中(包括隨後之詳細描述、 申請專利範圍以及隨附圖式)所述之發明而認識到。
應瞭解,前述一般描述及以下詳細描述兩者皆呈現本發明之實施例,且意欲提供用於理解所主張發明之性質及特性的概述或框架。包括隨附圖式以提供對本發明之進一步理解,且隨附圖式併入本說明書中且構成本說明書之一部分。圖式說明本發明之各種實施例,且圖式與描述一起用以解釋本發明之原理及操作。
10‧‧‧雷射源
12‧‧‧UV輸出
20‧‧‧基板
30‧‧‧DLC薄膜
32‧‧‧輻射區域
A‧‧‧預照射之樣品
B‧‧‧照射後之樣品
第1圖圖示玻璃基板上之DLC薄膜之拉曼光譜;第2圖為圖示含缺陷之薄膜之紫外線照射之示意圖;及第3圖圖示(A)含缺陷之DLC薄膜及(B)經紫外線照射之DLC薄膜之拉曼光譜。
一種用於形成光學透明薄膜(諸如類鑽碳或氮氧化矽薄膜)之方法包含在基板上提供含缺陷之薄膜及以紫外線輻射照射含缺陷之薄膜以降低缺陷在該膜內之濃度。
各種沉積技術可用於在基板上形成薄膜,該等沉積技術包括物理氣相沉積法及化學氣相沉積法。示例性沉積方法為電漿輔助化學氣相沉積法(PECVD)。
舉例而言,RF(3kW,13.56MHz激勵)平行板Dynavac®(PECVD)類鑽碳沉積系統用於在各種玻璃基板上形成DLC薄膜。Dynavac®系統包括用於支撐基板之24英寸直徑之水冷式陰極及19英寸直徑的墊板。
使用氬作為工作氣體及丁烷作為碳源來製備薄膜樣品。典型沉積條件包括25mTorr之基準壓力及電極與墊板之間約750V之偏壓。在每次沉積開始時反應器(基板)溫度約為室溫(~24℃),且隨著沉積繼續進行增加至約50℃之最大溫度。
在沉積期間,根據各種實施例,基板溫度可小於400℃,亦即小於400℃、300℃、200℃、100℃、80℃、60℃或40℃。
沉積條件(包括沉積時間、RF功率、丁烷流量及所得薄膜厚度)之總計在表1中呈現。
取決於沉積輪次,平均膜厚度自約100nm至5000nm變化,例如自約150nm至1500nm變化。顏色略黃之如此沉積之薄膜使用inVia拉曼顯微鏡(Renishaw,Inc.)來量測。觀察到之主要峰值為與DLC材料中之sp2石墨模式相關之所謂之「G」峰值。拉曼資料在442nm及514nm處聚集。在兩種不同波長下記錄量測以便評估G峰值位置隨著激勵能量之移動。分散(亦即G峰值位置之相對移動)可用於決定原子接合(sp2對sp3)之性質以及膜內之殘餘氫含量。分散之計 算係G峰值位置之變化除以相關探測波長之變化。
參看表1,且尤其參看輪次1至輪次3,膜厚度為沉積時間之線性函數,其中對應沉積速率約為22nm/min。如參看輪次3、輪次5及輪次6所見,沉積速率隨著RF功率而增加,自1000W下之約16nm/min增加至3000W下之約24.5nm/min。隨著丁烷流量增加,沉積速率在約25nm/min下呈現飽和(輪次4、輪次5及輪次7)。
在第1圖中圖示DLC薄膜在玻璃基板上之典型拉曼光譜。所圖示之資料係針對輪次3。參看第1圖,442nm激勵之G波段定位在約1525cm-1處及514nm激勵之G波段定位在約1550cm-1處。對應之分散(D)為約0.34cm-1/nm((1550-1525)/(514-442))。G波段之半峰全幅值(full-width at half maximum;FWHM)為約125cm-1至150cm-1
G波段之位置以及相關FWHM量測顯示薄膜中之多達約30%(例如,30%、35%、40%或45%)之氫含量及在60%至80%之範圍中之sp3組合物。基於上文,推測DLC薄膜之原子微結構位於類聚合碳氫(PLCH)型DLC與類鑽碳氫(DLCH)形式之間。
如此形成之薄膜樣品暴露至來自脈衝KrF雷射之UV輻射(248nm)。舉例而言,參看第2圖,玻璃基板20上之DLC薄膜30暴露至來自雷射源10之短但強烈之脈衝的248nm的光。UV輸出12處於10Hz重複率,每脈衝100mJ及具有約25ns之脈衝時長。在示例性漂白輪次中,對應於約400,000J/s之脈衝,射束區域擴大至約1cm2。總輻射時間為 約2分鐘至5分鐘。
經照射區域32為光學透明及無色透明的。在不希望受理論約束之情況下,據信UV輻射選擇性地自膜之近表面區域切除石墨內容物及/或誘發石墨內容物相位轉換成透明DLC相。色彩誘導缺陷可能吸收UV輻射。吸收可激勵缺陷至較高能態,在該狀態下,缺陷可與薄膜中之鄰近原子反應以形成較不為色彩誘導材料,諸如鑽石。此外,該製程易於使用市售之雷射再結晶裝置擴展。
在第3圖中將預照射之樣品(A)之拉曼光譜與照射後之樣品(B)之彼拉曼光譜比較。相較於未處理薄膜,經UV處理之樣品之拉曼光譜學展示近1350cm-1之明確的缺陷鑽石峰值及較低背景強度(延伸超過2500cm-1)。在第3圖中自約1800延伸至2800之此背景峰值(或坡值)與2維(2D)碳網路(諸如石墨)有關。如在第3圖中清晰所示,2D(sp2混雜)組分對拉曼光譜之幫助在暴露至UV輻射後顯著地降低。
因為薄膜沉積在相對較低之溫度下執行,故除玻璃基板外,額外的溫度敏感型基板材料可能包括金屬、塑膠或生物材料,諸如木材。有利地,玻璃基板可為非UV吸收的。
形成光學透明薄膜之總時間(可包括用於形成及UV照射兩者之時間)可小於60min,亦即,小於60min、50min、40min、30min、20min、10min或5min。薄膜形成及UV照射之各別行為可在一個或複數個循環中循序執行。舉例而言,在一個實施例中,具有所要厚度之薄膜可形成在基板上, 及然後在隨後之漂白步驟中由UV照射處理。
在進一步實施例中,具有所要總厚度百分比之薄膜可形成在基板上,在該基板上,如此形成之膜由UV照射處理,及然後在先前經UV處理之層上實施進一步薄膜沉積。以此方式,在UV照射步驟中處理之薄膜材料之體積可受控制,亦即,小於薄膜之最終體積。舉例而言,經照射之含缺陷的薄膜可具有小於5000nm之厚度,亦即,約100nm、200nm、400nm、500nm或1000nm之厚度。在實施例中,沉積及照射可同時執行。
UV照射可增加經處理之薄膜的光學透明度到至少90%,例如,至少90%、92%、95%、98%或99%。
本文中揭示一種用於形成光學透明薄膜(諸如類鑽碳或氮氧化矽薄膜)之方法。該方法涉及首先使用相對較低之溫度沉積製程形成含缺陷之薄膜,及然後隨後藉由以UV光照射薄膜來降低缺陷在薄膜中之濃度。相較於如此沉積之薄膜,經UV處理之薄膜已改良光學透明度。
如在本文中所使用,除非上下文中另有明確規定,否則單數形式「一」及「該」包括複數個指示物。因此,例如,除非上下文中另有明確規定,否則對「類鑽碳薄膜」之引用包括具有兩個或兩個以上此等「薄膜」之實例。
本文中範圍可表達為自「約」一個特定值及/或至「約」另一特定值。當表達此範圍時,實例包括自一個特定值及/或至另一特定值。類似地,當該等值藉由使用先行詞「約」表達為近似值時,將瞭解,特定值形成另一形式。將進一步瞭 解,在與其他端點有關及獨立於其他端點之情況下,範圍中之每一者之端點是有意義的。
除非另有明確規定,否則絕不意欲本文中所闡述之任何方法被視為要求該方法之步驟以特定順序執行。因此,在方法請求項實際上並非敘述該方法之步驟遵循之順序或在申請專利範圍或描述中未另外特別說明步驟受限於特定順序的情況下,絕不意欲推測任意特定順序。
亦應注意,本文中之敘述係指組件「經配置」或「經調適」為以特定方式工作。在此方面,此組件「經配置」或「經調適」為具現化特定性質或以特定方式工作,其中此等敘述為與預期使用之敘述相反之結構性敘述。更具體而言,本文中對組件「經配置」或「經調適」之方式之引用指示組件的現有物理條件,且因此該等引用被視為組件之結構性特性之明確敘述。
雖然特定實施例之各種特徵結構、元件或步驟可使用過渡片語「包含」揭示,但應瞭解,暗示包括可使用過渡短語「由...組成」或「基本上由...組成」描述之彼等實施例之替代實施例。因此,例如,暗示的對包含玻璃材料之玻璃基板之替代實施例包括其中玻璃基板由玻璃材料組成之實施例及其中玻璃基板基本上由玻璃材料組成之實施例。
對熟習此項技術者而言將顯而易見的是,在不脫離本發明之精神及範疇之情況下,可對本揭示案作出各種修改及變更。因為熟習此項技術者可想到併入本發明之精神及物質之所揭示實施例之修改組合、子組合及變更,故本發明應理 解為包括在所附申請專利範圍及申請專利範圍之均等物之範疇內之一切事物。
A‧‧‧預照射之樣品
B‧‧‧照射後之樣品

Claims (13)

  1. 一種形成一光學透明薄膜之方法,該方法包含以下步驟:在一基板上提供具有一光學透明度的一含色彩誘導缺陷之類鑽碳或氮氧化矽薄膜,其中該含色彩誘導缺陷之薄膜包括石墨缺陷;及藉由以紫外線輻射照射該含色彩誘導缺陷之薄膜以降低在該含色彩誘導缺陷之薄膜內的色彩誘導缺陷之濃度,來增加該含色彩誘導缺陷之類鑽碳或氮氧化矽薄膜之該光學透明度到至少90%。
  2. 如請求項1所述之方法,其中在一基板上提供一含色彩誘導缺陷之類鑽碳或氮氧化矽薄膜之步驟包含以下步驟:經由電漿輔助化學氣相沉積在該基板上形成該含色彩誘導缺陷之薄膜。
  3. 如請求項1所述之方法,其中在一基板上提供一含色彩誘導缺陷之類鑽碳或氮氧化矽薄膜之步驟包含以下步驟:經由射頻電漿輔助化學氣相沉積(RF-PECVD)在該基板上形成該含色彩誘導缺陷之薄膜。
  4. 如請求項1所述之方法,其中在一基板上提供一含色彩誘導缺陷之類鑽碳或氮氧化矽薄膜之步驟包含以下步驟:在小於400℃之一沉積溫度下在該基板上形成該含色彩誘導缺 陷之薄膜。
  5. 如請求項1所述之方法,其中在一基板上提供一含色彩誘導缺陷之類鑽碳或氮氧化矽薄膜之步驟包含以下步驟:在小於100℃之一沉積溫度下在該基板上形成該含色彩誘導缺陷之薄膜。
  6. 如請求項1所述之方法,其中該基板包含選自由玻璃、塑膠、木材及金屬組成之群組之一材料。
  7. 如請求項1所述之方法,其中該基板為一玻璃基板。
  8. 如請求項1所述之方法,其中該紫外線輻射之一源為一KrF脈衝雷射。
  9. 如請求項1所述之方法,其中該紫外線輻射具有248nm之一波長。
  10. 如請求項1所述之方法,其中該紫外線輻射包含雷射輻射,且以紫外線輻射照射該含色彩誘導缺陷之薄膜的步驟進一步包含以下步驟:使該紫外線輻射掃描過該含色彩誘導缺陷之薄膜之一表面。
  11. 如請求項1所述之方法,其中該含色彩誘導缺陷之薄膜經照射少於5分鐘。
  12. 如請求項1所述之方法,其中該光學透明薄膜之一經照射區域實質上不含石墨。
  13. 如請求項1所述之方法,其中該光學透明薄膜具有自100nm至5000nm的一厚度。
TW103107245A 2013-03-06 2014-03-04 類鑽碳與氮氧化矽薄膜之結晶與漂白 TWI597379B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US201361773434P 2013-03-06 2013-03-06

Publications (2)

Publication Number Publication Date
TW201441406A TW201441406A (zh) 2014-11-01
TWI597379B true TWI597379B (zh) 2017-09-01

Family

ID=50382598

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103107245A TWI597379B (zh) 2013-03-06 2014-03-04 類鑽碳與氮氧化矽薄膜之結晶與漂白

Country Status (5)

Country Link
US (1) US9328422B2 (zh)
EP (1) EP2964803B1 (zh)
CN (1) CN105283581B (zh)
TW (1) TWI597379B (zh)
WO (1) WO2014137887A2 (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9110230B2 (en) 2013-05-07 2015-08-18 Corning Incorporated Scratch-resistant articles with retained optical properties
US9703011B2 (en) 2013-05-07 2017-07-11 Corning Incorporated Scratch-resistant articles with a gradient layer
US9359261B2 (en) 2013-05-07 2016-06-07 Corning Incorporated Low-color scratch-resistant articles with a multilayer optical film
US9684097B2 (en) 2013-05-07 2017-06-20 Corning Incorporated Scratch-resistant articles with retained optical properties
US9366784B2 (en) 2013-05-07 2016-06-14 Corning Incorporated Low-color scratch-resistant articles with a multilayer optical film
EP3027572B1 (en) 2013-08-01 2018-03-07 Corning Incorporated Methods and apparatus providing a substrate having a coating with an elastic modulus gradient
US9335444B2 (en) 2014-05-12 2016-05-10 Corning Incorporated Durable and scratch-resistant anti-reflective articles
US11267973B2 (en) 2014-05-12 2022-03-08 Corning Incorporated Durable anti-reflective articles
US9790593B2 (en) 2014-08-01 2017-10-17 Corning Incorporated Scratch-resistant materials and articles including the same
EP3300520B1 (en) 2015-09-14 2020-11-25 Corning Incorporated High light transmission and scratch-resistant anti-reflective articles
US10993058B2 (en) 2017-02-28 2021-04-27 1More Inc Manufacturing method for diamond-like carbon vibrating diaphragm and loudspeaker
CN111094200B (zh) 2018-08-17 2022-01-07 康宁股份有限公司 具有薄的耐久性减反射结构的无机氧化物制品
CN109797370A (zh) * 2019-03-06 2019-05-24 武汉理工大学 一种玻璃基透射可见光的dlc复合增硬薄膜及其制备方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4849199A (en) * 1987-03-30 1989-07-18 Crystallume Method for suppressing growth of graphite and other non-diamond carbon species during formation of synthetic diamond
US4933206A (en) * 1988-08-17 1990-06-12 Intel Corporation UV-vis characteristic writing in silicon nitride and oxynitride films
US5328855A (en) * 1991-07-25 1994-07-12 Matsushita Electric Industrial Co., Ltd. Formation of semiconductor diamond
US6713179B2 (en) * 2000-05-24 2004-03-30 Guardian Industries Corp. Hydrophilic DLC on substrate with UV exposure
US7807225B2 (en) * 2003-01-31 2010-10-05 Sharp Laboratories Of America, Inc. High density plasma non-stoichiometric SiOxNy films
JP2005326666A (ja) 2004-05-14 2005-11-24 Sumitomo Electric Ind Ltd 屈折率変調型回折光学素子とそれを含むプロジェクタ
US7491658B2 (en) * 2004-10-13 2009-02-17 International Business Machines Corporation Ultra low k plasma enhanced chemical vapor deposition processes using a single bifunctional precursor containing both a SiCOH matrix functionality and organic porogen functionality
US7517814B2 (en) 2005-03-30 2009-04-14 Tokyo Electron, Ltd. Method and system for forming an oxynitride layer by performing oxidation and nitridation concurrently
JP2007210821A (ja) 2006-02-08 2007-08-23 Japan Atomic Energy Agency レーザーによる硬質材料の合成方法と表面改質方法
US20080164808A1 (en) * 2007-01-05 2008-07-10 Tae-Woong Kim Organic light emitting display device and manufacturing method of the same
JP5154814B2 (ja) 2007-03-29 2013-02-27 東ソー・クォーツ株式会社 石英ガラス材料の製造方法
WO2009023263A1 (en) 2007-08-16 2009-02-19 The Trustees Of Columbia University In The City Of New Yor Direct bandgap substrate with silicon thin film circuitry
US20110256734A1 (en) 2010-04-15 2011-10-20 Hausmann Dennis M Silicon nitride films and methods
US8679987B2 (en) 2012-05-10 2014-03-25 Applied Materials, Inc. Deposition of an amorphous carbon layer with high film density and high etch selectivity
US9434640B2 (en) 2012-12-04 2016-09-06 Guardian Industries Corp. Method of making heat treated coated article with carbon based coating and protective film

Also Published As

Publication number Publication date
US20140255616A1 (en) 2014-09-11
EP2964803A2 (en) 2016-01-13
US9328422B2 (en) 2016-05-03
WO2014137887A3 (en) 2014-11-06
CN105283581B (zh) 2019-07-23
WO2014137887A2 (en) 2014-09-12
CN105283581A (zh) 2016-01-27
TW201441406A (zh) 2014-11-01
EP2964803B1 (en) 2019-05-15

Similar Documents

Publication Publication Date Title
TWI597379B (zh) 類鑽碳與氮氧化矽薄膜之結晶與漂白
KR101557518B1 (ko) 박층 침착 방법
US20060093833A1 (en) Components having crystalline coatings of the aluminum oxide/silicon oxide system and method for the production thereof
Ohtsu et al. Comparison of surface films formed on titanium by pulsed Nd: YAG laser irradiation at different powers and wavelengths in nitrogen atmosphere
Takayama et al. Mechanisms of micro-groove formation on single-crystal diamond by a nanosecond pulsed laser
Luca et al. Characterization of titania thin films prepared by reactive pulsed-laser ablation
Henkel et al. Self-organized nanocrack networks: a pathway to enlarge catalytic surface area in sputtered ceramic thin films, showcased for photocatalytic TiO2
Siozios et al. Growth and annealing strategies to control the microstructure of AlN: Ag nanocomposite films for plasmonic applications
JP7349082B2 (ja) 水素含有カーボン膜
Ciosek et al. Modification of zirconium oxide film microstructure during post-deposition annealing
Cicala et al. Plasma deposition of hydrogenated diamond-like carbon films from CH4-Ar mixtures
Kononenko et al. Effect of absorbing coating on ablation of diamond by IR laser pulses
Peitao et al. Morphology and transmittance of porous alumina on glass substrate
Xu et al. Influence of electric field on laser damage properties of DLC films by unbalanced magnetron sputtering
Tasche et al. The impact of O/Si ratio and hydrogen content on ArF excimer laser ablation of fused silica
Cosar et al. Improving the laser damage resistance of oxide thin films and multilayers via tailoring ion beam sputtering parameters
Němec et al. Photoinduced phenomena in As4Se3 amorphous thin films prepared by pulsed laser deposition
JP2002080980A (ja) 光触媒膜を有する金属基材とその製造方法及び金属基材表面の親水化方法
Wang et al. A comparative study of the influence of different post-treatment methods on the properties of HfO2 single layers
Vlček et al. UV-laser treatment of nanodiamond seeds—a valuable tool for modification of nanocrystalline diamond films properties
Guenther et al. Optical properties of tetrahedral amorphous carbon films and their potential for lab-on-a-chip
Marcinauskas et al. Irradiation of the amorphous carbon films by picosecond laser pulses
Veiko et al. Mechanisms of thin Cr films modification under multipulse femtosecond laser action
Zhu et al. Role of oxygen concentration distribution and microstructure in luminescent properties of laser-irradiated silicon
JP2012502188A (ja) 酸素化ガスが注入された膜、およびその製造方法