CN115198241B - 一种纳米类金刚石非晶碳膜及其制备方法与应用 - Google Patents

一种纳米类金刚石非晶碳膜及其制备方法与应用 Download PDF

Info

Publication number
CN115198241B
CN115198241B CN202210738430.8A CN202210738430A CN115198241B CN 115198241 B CN115198241 B CN 115198241B CN 202210738430 A CN202210738430 A CN 202210738430A CN 115198241 B CN115198241 B CN 115198241B
Authority
CN
China
Prior art keywords
layer
carbon film
argon
diamond
bias voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210738430.8A
Other languages
English (en)
Other versions
CN115198241A (zh
Inventor
田灿鑫
刘光元
吴会荣
林涛峰
邹长伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhaoqing Wanwei New Material Technology Co ltd
Lingnan Normal University
Original Assignee
Zhaoqing Wanwei New Material Technology Co ltd
Lingnan Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhaoqing Wanwei New Material Technology Co ltd, Lingnan Normal University filed Critical Zhaoqing Wanwei New Material Technology Co ltd
Priority to CN202210738430.8A priority Critical patent/CN115198241B/zh
Publication of CN115198241A publication Critical patent/CN115198241A/zh
Application granted granted Critical
Publication of CN115198241B publication Critical patent/CN115198241B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/021Cleaning or etching treatments
    • C23C14/022Cleaning or etching treatments by means of bombardment with energetic particles or radiation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0605Carbon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • C23C14/165Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • C23C14/185Metallic material, boron or silicon on other inorganic substrates by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/20Metallic material, boron or silicon on organic substrates
    • C23C14/205Metallic material, boron or silicon on organic substrates by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/36Carbonitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

本发明属于材料表面处理技术领域,具体涉及一种纳米类金刚石非晶碳膜及其制备方法与应用。本发明采用物理气相沉积和等离子体增强化学气相沉积的复合技术制备得到的纳米类金刚石碳膜,可以显著提高碳膜硬度,降低摩擦系数,且能提高碳膜的耐腐蚀性能。

Description

一种纳米类金刚石非晶碳膜及其制备方法与应用
技术领域
本发明属于材料表面处理技术领域。更具体地,涉及一种纳米类金刚石非晶碳膜及其制备方法与应用。
背景技术
类金刚石非晶薄膜通常被人们称为DLC薄膜,是英文词汇Diamond Like Carbon的简称,它是一类性质近似于金刚石,具有高硬度、高电阻率、良好光学性能等特点,同时又具有自身独特摩擦学特性的非晶碳薄膜,被广泛应用于刀模具、光学窗口、医疗器械等行业。类金刚石薄膜根据含氢和不含氢分为无氢类金刚石碳膜(a-C)和氢化类金刚石碳膜(a-C:H)两大类。氢化类金刚石碳膜多采用等离子体增强化学的气相沉积法(PECVD)方法进行制备,但制备所得的碳膜摩擦系数偏高。无氢类金刚石碳膜多采用磁控溅射石墨靶制备,磁控溅射石墨靶制备的无氢类金刚石碳膜摩擦系数可以达到0.15,但硬度偏低。如中国专利申请提供了一种复合类金刚石碳膜及其制备方法,其采用磁控溅射技术进行制备,制备得到的复合类金刚碳膜的摩擦系数得到有效降低,但该碳膜的硬度偏低,厚度偏小。因此,迫切需要提供一种能够制备同时具有摩擦系数低、硬度大的类金刚石非晶碳膜的制备方法。
发明内容
本发明要解决的技术问题是克服现有类金刚石非晶碳膜制备方法所得碳膜硬度低、厚度小的缺陷和不足,提供一种能够制备同时具有摩擦系数低、硬度大的类金刚石非晶碳膜的制备方法。
本发明的目的是提供一种纳米类金刚石非晶碳膜。
本发明的另一目的是提供一种纳米类金刚石非晶碳膜在刀具、光学窗口、医疗器械上的应用。
本发明的上述目通过以下技术方案实现:
本发明保护一种纳米类金刚石非晶碳膜,所述纳米类金刚石非晶碳膜由基底表面至外依次为连接层、过镀层和耐磨层,所述连接层为纯金属层,过渡层为氮碳化物层,耐磨层由内到外依次由无氢类金刚石碳膜和氢化类金刚石碳膜层叠构成;
所述纯金属层中的金属为Cr或Ti,所述氮碳化物层中的氮碳化物为CrCN或TiCN。
优选地,所述连接层的厚度为100~300nm。
优选地,所述过渡层的厚度为300~1000nm。
优选地,所述耐磨层的厚度为2000~3000nm。
本发明进一步保护所述纳米类金刚石非晶碳膜的制备方法,包括如下步骤:
S1.将待处理工件在氩气、氢气混合气氛、真空条件、偏压下,进行等离子体刻蚀;
S2.刻蚀结束后,开启金属靶材(Ti或Cr),在氩气、真空条件、偏压情况下在工件上沉积纯金属连接层;
S3.连接层沉积结束后,在氩气、氮气、乙炔混合气氛、真空条件、偏压情况下,沉积氮碳化物梯度过渡层;
S4.过渡层沉积结束后,关掉金属靶材、开启石墨靶,在氩气、乙炔混合气氛、真空条件、偏压情况下,沉积耐磨层,自然冷却,即得。
本发明的纳米类金刚石非晶碳膜采用物理气相沉积和等离子体增强化学气相沉积的复合技术制备,各膜层沉积所需原材料都通过金属靶材、石墨靶材和气源提供,易于大面积成膜。
优选地,在步骤S2中,所述连接层是在纯氩气环境下制备的。
优选地,在步骤S2、S4中,所述金属靶材为磁控金属靶材。
优选地,在步骤S1中,所述氩气和氢气的流量比为8~10:1,在步骤S3中,所述氩气流量不变,氮气和乙炔流量比变化为由5:1逐渐变为1:5。
优选地,在步骤S4中,所述氩气和乙炔的流量比为(2~3):1。
优选地,在步骤S4中,所述石墨靶为磁控石墨靶。
优选地,步骤S1中所述等离子体刻蚀、步骤S2~S4所述沉积的温度为100~200℃。
更优选地,步骤S1中所述等离子体刻蚀、步骤S2~S4所述沉积的温度为130~185℃。
优选地,在步骤S1~S4中,所述真空条件的气压为0.5~2Pa,偏压为-800~-50V,占空比5~80%,频率30~150KHz。
本发明进一步保护所述纳米类金刚石非晶碳膜在刀具、光学窗口、医疗器械上的应用。
本发明具有以下有益效果:
本发明采用物理气相沉积和等离子体增强化学气相沉积的复合技术制备得到的纳米类金刚石碳膜,可以显著提高碳膜硬度,降低摩擦系数,且能提高碳膜的耐腐蚀性能。
附图说明
图1为本发明实施例1制备的纳米类金刚石非晶碳膜的结构示意图,其中,各数字分别代表:1-零件基体;2-连接层;3-过渡层;4-耐磨层;5-耐磨层的局部放大部位。
具体实施方式
以下结合说明书附图和具体实施例来进一步说明本发明,但实施例并不对本发明做任何形式的限定。除非特别说明,本发明采用的试剂、方法和设备为本技术领域常规试剂、方法和设备。
除非特别说明,以下实施例所用试剂和材料均为市购。
实施例1
S1、将零件清洗、烘干后,置于真空镀膜腔室,通入氩气和氢气,流量比为10:1,设置仪器参数:气压2Pa,偏压-800V,占空比80%,频率150KHz,在170℃下进行等离子体刻蚀;
S2、刻蚀结束后,关掉氢气,打开Ti靶,在氩气环境下沉积Ti连接层,设置仪器参数:气压2Pa,偏压-800V,占空比5%,频率40KHz,在170℃下沉积连接结层,厚度为50nm;
S3、连结层沉积结束后,通入氮气和乙炔气,氩气流量不变,氮气和乙炔气的流量比由5:1逐渐减小到1:5,设置仪器参数:气压2Pa,偏压-200V,占空比80%,频率150KHz,在170℃,氩气、氮气、乙炔混合气氛下,沉积TiCN氮碳化物过渡层,厚度为500nm;
S4、过渡层沉积结束后,关掉氮气,氩气和乙炔的流量比为3:1,开启石墨靶、关掉金属Ti靶,设置仪器参数:气压2Pa,偏压-450V,占空比10%,频率150KHz,在180℃,氩气、乙炔混合气氛下,沉积无氢类金刚石碳膜和氢化类金刚石碳膜交替构成的耐磨层,厚度为2000nm,自然冷却,即得(结构示意图如图1所示)。
实施例2
S1、将零件清洗、烘干后,置于真空镀膜腔室,通入氩气和氢气,流量比为8:1,设置仪器参数:气压0.5Pa,偏压-600V,占空比80%,频率100KHz,在170℃下进行等离子体刻蚀;
S2、刻蚀结束后,关掉氢气,打开Cr靶,在氩气环境下沉积Cr连接层,设置仪器参数:气压0.2Pa,偏压-600V,占空比80%,频率30KHz,在170℃下沉积连接结层,厚度为200nm;
S3、连结层沉积结束后,通入氮气和乙炔气,氩气流量不变,氮气和乙炔气的流量比由4:1逐渐减小到1:3,设置仪器参数:气压0.5Pa,偏压-100V,占空比80%,频率80KHz,在150℃,氩气、氮气、乙炔混合气氛下,沉积CrCN氮碳化物过渡层,厚度为600nm;
S4、过渡层沉积结束后,关掉氮气,氩气和乙炔的流量比为2:1,开启石墨靶、关掉金属Cr靶,设置仪器参数:气压0.5Pa,偏压-450V,占空比10%,频率80KHz,在150℃,氩气、乙炔混合气氛下,沉积无氢类金刚石碳膜和氢化类金刚石碳膜交替构成的耐磨层,厚度为3000nm,自然冷却,即得。
实施例3
S1、将零件清洗、烘干后,置于真空镀膜腔室,通入氩气和氢气,流量比为9:1,设置仪器参数:气压1Pa,偏压-700V,占空比60%,频率50KHz,在170℃下进行等离子体刻蚀;
S2、刻蚀结束后,关掉氢气,打开Cr靶,在氩气环境下沉积Cr连接层,设置仪器参数:气压1Pa,偏压-700V,占空比10%,频率50KHz,在170℃温度,沉积连接结层,厚度为100nm;
S3、连结层沉积结束后,通入氮气和乙炔气,氩气流量不变,氮气和乙炔气的流量比由3:1逐渐减小到1:5,设置仪器参数:气压0.7Pa,偏压-80V,占空比80%,频率100KHz,在170℃,氩气、氮气、乙炔混合气氛下,沉积CrCN氮碳化物过渡层,厚度为800nm;
S4、过渡层沉积结束后,关掉氮气,氩气和乙炔的流量比为3:1,开启石墨靶、关掉金属Cr靶,设置仪器参数:气压1Pa,偏压-450V,占空比10%,频率150KHz,在170℃,氩气、乙炔混合气氛下,沉积无氢类金刚石碳膜和氢化类金刚石碳膜交替构成的耐磨层,厚度为2500nm,自然冷却,即得。
对比例1
S1、将零件清洗、烘干后,置于真空镀膜腔室,通入氩气和氢气,流量比为10:1,设置仪器参数:气压2Pa,偏压-800V,占空比80%,频率150KHz,在170℃下进行等离子体刻蚀;
S2、刻蚀结束后,关掉氢气,通入氮气和乙炔气,打开Ti靶,氩气流量不变,氮气和乙炔气的流量比由5:1逐渐减小到1:5,设置仪器参数:气压2Pa,偏压-200V,占空比80%,频率150KHz,在170℃,氩气、氮气、乙炔混合气氛下,沉积TiCN氮碳化物过渡层,厚度为500nm;
S3、过渡层沉积结束后,关掉氮气,氩气和乙炔的流量比为3:1,开启石墨靶、关掉金属Ti靶,设置仪器参数:气压2Pa,偏压-450V,占空比10%,频率150KHz,在180℃,氩气、乙炔混合气氛下,沉积无氢类金刚石碳膜和氢化类金刚石碳膜交替构成的耐磨层,厚度为2000nm,自然冷却,即得。
与实施例1的区别在于,没有Ti连接层。
对比例2
S1、将零件清洗、烘干后,置于真空镀膜腔室,通入氩气和氢气,流量比为10:1,设置仪器参数:气压2Pa,偏压-800V,占空比80%,频率150KHz,在170℃下进行等离子体刻蚀;
S2、刻蚀结束后,关掉氢气,打开Ti靶,在氩气环境下沉积Ti连接层,设置仪器参数:气压2Pa,偏压-800V,占空比5%,频率40KHz,在170℃下沉积连接结层,厚度为50nm;
S3、接结层沉积结束后,通入乙炔气,氩气和乙炔的流量比为3:1,开启石墨靶、关掉金属Ti靶,设置仪器参数:气压2Pa,偏压-450V,占空比10%,频率150KHz,在180℃,氩气、乙炔混合气氛下,沉积无氢类金刚石碳膜和氢化类金刚石碳膜交替构成的耐磨层,厚度为2000nm,自然冷却,即得。
与实施例1的区别在于,没有TiCN氮碳化物过渡层。
对比例3
S1、将零件清洗、烘干后,置于真空镀膜腔室,通入氩气和氢气,流量比为10:1,设置仪器参数:气压2Pa,偏压-800V,占空比80%,频率150KHz,在170℃下进行等离子体刻蚀;
S2、刻蚀结束后,关掉氢气,打开Ti靶,在氩气环境下沉积Ti连接层,设置仪器参数:气压2Pa,偏压-800V,占空比5%,频率40KHz,在170℃下沉积连接结层,厚度为50nm;
S3、连结层沉积结束后,通入氮气和乙炔气,氩气流量不变,氮气和乙炔气的流量比由5:1逐渐减小到1:5,设置仪器参数:气压2Pa,偏压-200V,占空比80%,频率150KHz,在170℃,氩气、氮气、乙炔混合气氛下,沉积TiCN氮碳化物过渡层,厚度为500nm,自然冷却,即得。
与实施例1的区别在于,没有耐磨层。
对比例4
S1、将零件清洗、烘干后,置于真空镀膜腔室,通入氩气和氢气,流量比为10:1,设置仪器参数:气压2Pa,偏压-800V,占空比80%,频率150KHz,在200℃下进行等离子体刻蚀;
S2、刻蚀结束后,关掉氢气,打开Ti靶,在氩气环境下沉积Ti连接层,设置仪器参数:气压2Pa,偏压-800V,占空比5%,频率40KHz,在220℃下沉积连接结层,厚度为50nm;
S3、连结层沉积结束后,通入氮气和乙炔气,氩气流量不变,氮气和乙炔气的流量比由5:1逐渐减小到1:5,设置仪器参数:气压2Pa,偏压-200V,占空比80%,频率150KHz,在220℃,氩气、氮气、乙炔混合气氛下,沉积TiCN氮碳化物过渡层,厚度为500nm;
S4、过渡层沉积结束后,关掉氮气,氩气和乙炔的流量比为3:1,开启石墨靶、关掉金属Ti靶,设置仪器参数:气压2Pa,偏压-450V,占空比10%,频率150KHz,在220℃,氩气、乙炔混合气氛下,沉积无氢类金刚石碳膜和氢化类金刚石碳膜交替构成的耐磨层,厚度为2000nm,自然冷却,即得。
与实施例1的区别在于,步骤S1~S4的温度改为220℃。
实验例1
(1)硬度测试
实验方法:采用纳米压痕对实施例1~3及对比例1~4所得一种纳米类金刚石非晶碳膜进行硬度测试,最大压力5毫牛,逐渐压入试样表面,压入一定深度(不超过膜厚的1/10),卸掉压力,通过压力除以压痕的面积计算得到硬度值,这里的面积为压痕的投影面积。
(2)摩擦系数测试
实验方法:采用球盘摩擦磨损仪对实施例1~3及对比例1~4所得一种纳米类金刚石非晶碳膜进行摩擦系数测试,把待测式样放在测试台上,以5牛顿的压力使对磨球与实施例1~3及对比例1~4所得一种纳米类金刚石非晶碳膜接触,然后二者发生相对移动产生摩擦,在摩擦过程中通过压力、摩擦力实时计算出摩擦系数(摩擦力除以压力)。
(3)耐腐蚀性测试:采用盐雾腐蚀试验测试耐腐蚀性:用盐溶液为浓度5%、PH值为6.5的氯化钠溶液浸泡实施例1~3及对比例1~4所得一种纳米类金刚石非晶碳膜,温度40℃,盐雾沉降率1.5mL/h,喷雾压力70kPa,试验时长24小时,试样表面没有或少量腐蚀产物耐腐蚀性为优,表面有较多腐蚀产物耐腐蚀性为良,表面有大量腐蚀产物耐腐蚀性为差。
(4)附着力测试
实验方法:压痕法,对实施例1~3及对比例1~4所得一种纳米类金刚石非晶碳膜进行压痕试验,把待测式样放在测试台上,用金刚石压头,用150Kg载荷压入薄膜,然后去除载荷,通过显微镜观察压痕形貌,判断附着力级别,在载荷压入薄膜过程中,载荷大于膜基结合力时,膜层与基底界面处产生横向裂纹、裂纹扩展到一定程度会使膜层崩裂脱落,根据裂纹、崩裂程度评判附着力等级,附着力等级为HF1~HF7,数字越大,附着力越差。
表1实施例1~3及对比例1~4制备所得碳膜的数据
当碳膜硬度不低于15GPa,附着力为HF1,摩擦系数低于0.2,耐腐蚀性为优时满足要求。
由表1可以看出,实施例1~3的硬度均大于15GPa,摩擦系数均大于0.15,耐腐蚀优良,附着力可达到HF1级,对比例1所得碳膜虽然硬度较好,但其附着力仅为HF3级,对比例2的硬度及附着力效果均不好,对比例3所得碳膜虽然附着力好,但其耐腐蚀性差,对比例4的硬度仅为9GPa,远不及实施例1~3所得碳膜的硬度。因此,只有在本申请的方案才能制备到到硬度、摩擦系数、耐腐蚀性、附着力效果均好的纳米类金刚石非晶碳膜。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (4)

1.一种纳米类金刚石非晶碳膜,其特征在于,所述纳米类金刚石非晶碳膜由基底表面至外依次为连接层、过镀层和耐磨层,所述连接层为纯金属层,过渡层为氮碳化物层,耐磨层由内到外依次由无氢类金刚石碳膜和氢化类金刚石碳膜层叠构成;
所述纯金属层中的金属为Cr或Ti,所述氮碳化物层中的氮碳化物为CrCN或TiCN;
所述连接层的厚度为100~300nm;
所述过渡层的厚度为300~1000nm;
所述耐磨层的厚度为2000~3000nm;
所述纳米类金刚石非晶碳膜的制备方法,包括如下步骤:
S1.将待处理工件在氩气、氢气混合气氛、真空条件、偏压情况下,进行等离子体刻蚀;
S2.刻蚀结束后,开启金属靶材,在氩气、真空条件、偏压情况下在工件上沉积纯金属连接层;
S3.连接层沉积结束后,在氩气、氮气、乙炔混合气氛、真空条件、偏压情况下,沉积氮碳化物梯度过渡层;
S4.过渡层沉积结束后,关掉金属靶材、开启石墨靶,在氩气、乙炔混合气氛、真空条件、偏压情况下,沉积耐磨层,自然冷却,即得;
步骤S1中所述等离子体刻蚀、步骤S2~S4所述沉积的温度为100~200℃;
在步骤S1~S4中,所述真空条件的气压为0.5~2Pa,偏压为-800~-50V,占空比5~80%,频率30~150KHz。
2.根据权利要求1所述纳米类金刚石非晶碳膜,其特征在于,在步骤S1中,所述氩气和氢气的流量比为8~10:1,在步骤S3中,所述氩气流量不变,氮气和乙炔流量比变化为由5:1逐渐变为1:5。
3.根据权利要求1所述纳米类金刚石非晶碳膜,其特征在于,在步骤S4中,所述氩气和乙炔的流量比为(2~3):1。
4.权利要求1所述纳米类金刚石非晶碳膜在刀具、光学窗口、医疗器械上的应用。
CN202210738430.8A 2022-06-27 2022-06-27 一种纳米类金刚石非晶碳膜及其制备方法与应用 Active CN115198241B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210738430.8A CN115198241B (zh) 2022-06-27 2022-06-27 一种纳米类金刚石非晶碳膜及其制备方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210738430.8A CN115198241B (zh) 2022-06-27 2022-06-27 一种纳米类金刚石非晶碳膜及其制备方法与应用

Publications (2)

Publication Number Publication Date
CN115198241A CN115198241A (zh) 2022-10-18
CN115198241B true CN115198241B (zh) 2024-04-19

Family

ID=83577412

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210738430.8A Active CN115198241B (zh) 2022-06-27 2022-06-27 一种纳米类金刚石非晶碳膜及其制备方法与应用

Country Status (1)

Country Link
CN (1) CN115198241B (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003026414A (ja) * 2001-07-17 2003-01-29 Sumitomo Electric Ind Ltd 非晶質炭素被膜と非晶質炭素被膜の製造方法および非晶質炭素被膜の被覆部材
CN103160801A (zh) * 2011-12-16 2013-06-19 中国科学院兰州化学物理研究所 在金属内表面制备类金刚石碳膜的方法
JP2013194273A (ja) * 2012-03-19 2013-09-30 Mitsubishi Heavy Ind Ltd 耐食および耐摩耗コーティング構造
CN103938211A (zh) * 2014-05-08 2014-07-23 西南交通大学 一种低应力、耐腐蚀的多层类金刚石(dlc)薄膜的沉积方法
CN106191794A (zh) * 2016-06-30 2016-12-07 上海材料研究所 钛合金表面超硬减摩耐磨复合膜层的覆层方法及钛合金材料
WO2018157274A1 (zh) * 2017-02-28 2018-09-07 万魔声学科技有限公司 一种类钻碳振动膜的制作方法及一种扬声器
CN111304586A (zh) * 2018-12-12 2020-06-19 北京首量科技股份有限公司 一种湿度环境自适应类金刚石膜及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003026414A (ja) * 2001-07-17 2003-01-29 Sumitomo Electric Ind Ltd 非晶質炭素被膜と非晶質炭素被膜の製造方法および非晶質炭素被膜の被覆部材
CN103160801A (zh) * 2011-12-16 2013-06-19 中国科学院兰州化学物理研究所 在金属内表面制备类金刚石碳膜的方法
JP2013194273A (ja) * 2012-03-19 2013-09-30 Mitsubishi Heavy Ind Ltd 耐食および耐摩耗コーティング構造
CN103938211A (zh) * 2014-05-08 2014-07-23 西南交通大学 一种低应力、耐腐蚀的多层类金刚石(dlc)薄膜的沉积方法
CN106191794A (zh) * 2016-06-30 2016-12-07 上海材料研究所 钛合金表面超硬减摩耐磨复合膜层的覆层方法及钛合金材料
WO2018157274A1 (zh) * 2017-02-28 2018-09-07 万魔声学科技有限公司 一种类钻碳振动膜的制作方法及一种扬声器
CN111304586A (zh) * 2018-12-12 2020-06-19 北京首量科技股份有限公司 一种湿度环境自适应类金刚石膜及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
PIII&D合成类金刚石碳膜的Raman光谱分析;刘洪喜;周荣;蒋业华;史海霞;汤宝寅;第十五届全国分子光谱学术报告会;全文 *
李云奇.《真空镀膜技术与设备》.东北工学院出版社,1989,第160页. *
黄章勇.《光纤通信用光电子器件制作工艺基础》.北京邮电大学出版社,2005,第191-192页. *

Also Published As

Publication number Publication date
CN115198241A (zh) 2022-10-18

Similar Documents

Publication Publication Date Title
Erdemir et al. Superior wear resistance of diamond and DLC coatings
Sun et al. Improvement of adhesive strength and surface roughness of diamond films on Co-cemented tungsten carbide tools
CN101856895B (zh) 一种金刚石膜涂层钢铁基复合材料及其制备方法
CN101487121B (zh) 一种金刚石/w-c梯度结构复合涂层及其制备方法
CN110106483B (zh) 一种类石墨颗粒复合的类金刚石涂层及其制备方法和应用
CN103334082B (zh) 一种切削刀具材料表面的Ti/TiN/TiAlN复合镀层及其制备方法
US5855974A (en) Method of producing CVD diamond coated scribing wheels
CN110616399B (zh) 覆盖工具及其制造方法
Chen et al. Tribological and cutting behavior of silicon nitride tools coated with monolayer-and multilayer-microcrystalline HFCVD diamond films
Chen et al. Microstructure and tribological performance of self-lubricating diamond/tetrahedral amorphous carbon composite film
CN111482622B (zh) 一种涂层切削刀具及其制备方法
Zia et al. Structural, mechanical, and tribological characteristics of diamond-like carbon coatings
Wei et al. Fretting wear and electrochemical corrosion of well-adhered CVD diamond films deposited on steel substrates with a WC–Co interlayer
CN111218663A (zh) 一种类金刚石保护性涂层及其制备方法
Qi et al. Effects of pulse width on corrosion behavior of diamond-like carbon coatings prepared on the surface of high nitrogen nickel-free stainless steel
CN111893459A (zh) 具有织构取向的涂层切削刀具及其制备方法
CN115198241B (zh) 一种纳米类金刚石非晶碳膜及其制备方法与应用
KR102088090B1 (ko) 피복 공구의 제조 방법
CN112647040A (zh) 一种ta-c基多层耐磨刀具涂层及其制备方法
CN203360554U (zh) 一种切削刀具材料表面的复合镀层
Kuprin et al. Tribological properties of vacuum arc Cr-ON coatings in macro-and microscale
JP6528936B2 (ja) 被覆工具の製造方法
CN112708859A (zh) 一种具有减摩抗磨的CrAlVN涂层的刀具及其制备方法
Zhang et al. Adhesion and raman studies of magnetron sputtered amorphous carbon on WC–Co
CN111979543A (zh) 一种基于摩擦诱导催化形成自润滑非晶碳膜的涂层材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant