WO2018155713A1 - エネルギーデバイス電極用樹脂、エネルギーデバイス電極形成用組成物、エネルギーデバイス電極及びエネルギーデバイス - Google Patents

エネルギーデバイス電極用樹脂、エネルギーデバイス電極形成用組成物、エネルギーデバイス電極及びエネルギーデバイス Download PDF

Info

Publication number
WO2018155713A1
WO2018155713A1 PCT/JP2018/007322 JP2018007322W WO2018155713A1 WO 2018155713 A1 WO2018155713 A1 WO 2018155713A1 JP 2018007322 W JP2018007322 W JP 2018007322W WO 2018155713 A1 WO2018155713 A1 WO 2018155713A1
Authority
WO
WIPO (PCT)
Prior art keywords
energy device
resin
mol
group
electrode
Prior art date
Application number
PCT/JP2018/007322
Other languages
English (en)
French (fr)
Inventor
駿介 長井
広喜 葛岡
鈴木 健司
信之 小川
Original Assignee
日立化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成株式会社 filed Critical 日立化成株式会社
Priority to JP2019501874A priority Critical patent/JP6908102B2/ja
Priority to EP18757587.3A priority patent/EP3588637A4/en
Priority to US16/488,318 priority patent/US11482706B2/en
Priority to CN201880013726.5A priority patent/CN110326138A/zh
Priority to KR1020197024723A priority patent/KR20190103450A/ko
Publication of WO2018155713A1 publication Critical patent/WO2018155713A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F220/28Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety
    • C08F220/285Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety and containing a polyether chain in the alcohol moiety
    • C08F220/286Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety and containing a polyether chain in the alcohol moiety and containing polyethylene oxide in the alcohol moiety, e.g. methoxy polyethylene glycol (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/42Nitriles
    • C08F220/44Acrylonitrile
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F301/00Macromolecular compounds not provided for in groups C08F10/00 - C08F299/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F220/28Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety
    • C08F220/281Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety and containing only one oxygen, e.g. furfuryl (meth)acrylate or 2-methoxyethyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F220/28Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety
    • C08F220/282Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety and containing two or more oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F220/28Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety
    • C08F220/285Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety and containing a polyether chain in the alcohol moiety
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an energy device electrode resin, an energy device electrode forming composition, an energy device electrode, and an energy device.
  • Lithium ion secondary batteries which are energy devices having a high energy density, are widely used as power sources for portable information terminals such as notebook personal computers, mobile phones, and PDAs (Personal Digital Assistants).
  • a negative electrode active material a carbon material having a multilayer structure capable of inserting lithium ions between layers (forming a lithium intercalation compound) and releasing is used.
  • lithium-containing metal composite oxide is mainly used as the positive electrode active material.
  • the electrode of the lithium ion secondary battery is prepared by kneading these active materials, binder resin, solvent (N-methyl-2-pyrrolidone, water, etc.), etc., and then collecting this with a transfer roll or the like. It is applied to one or both sides of a metal foil, which is a body, and the solvent is dried and removed to form a mixture layer, followed by compression molding with a roll press or the like.
  • PVDF Polyvinylidene fluoride
  • JP-A No. 2003-132893 discloses a monomer such as at least one of a 1-olefin having 2 to 4 carbon atoms and an alkyl (meth) acrylate having 3 or less carbon atoms in an alkyl group.
  • a modified poly (meth) acrylonitrile-based binder resin obtained by copolymerization of is disclosed.
  • Journal of Power Sources 109 (2002) 422-426 proposes to use a binary copolymer of acrylonitrile and a short chain methyl methacrylate as a binder resin.
  • WO 2006/033173 discloses a modified poly (meth) acrylonitrile-based binder resin obtained by copolymerizing at least one of ethylene glycol (meth) acrylate and alkyl (meth) acrylate.
  • the binder resin In order to increase the electrode density by compression molding, the binder resin must have excellent rollability.
  • rollability refers to a characteristic that the electrode density is easily improved by compression molding when forming the electrode.
  • the capacity of the lithium ion secondary battery can be increased.
  • poly (meth) acrylonitrile is a polymer having a rigid molecular structure. For this reason, the copolymers described in the above documents have poor rollability, and it is sometimes difficult to improve the electrode density by compression molding.
  • One aspect of the present invention has been made in view of the above circumstances, and an energy device electrode resin, an energy device electrode forming composition, and an energy device electrode resin that can achieve both adhesiveness and rollability.
  • An object is to provide an electrode and an energy device.
  • One embodiment of the present invention relates to the following, for example.
  • ⁇ 1> a structural unit derived from a nitrile group-containing monomer;
  • the ratio of structural units is 0.01 mol or less
  • Resin for energy device electrodes whose ratio of the structural unit derived from the said nitrile group containing monomer to the sum total of the structural unit derived from each monomer is 90 mol% or more and less than 100 mol%.
  • R 1 represents a hydrogen atom or a methyl group
  • R 2 represents a monovalent hydrocarbon group
  • n an integer of 1 to 50.
  • the ratio of the structural unit derived from the monomer represented by the formula (I) to 1 mol of the structural unit derived from the nitrile group-containing monomer is 0.001 mol to 0.2 mol ⁇ 1 > Resin for energy device electrodes as described in>.
  • R 3 represents a hydrogen atom or a methyl group
  • R 4 represents an alkyl group having 4 to 100 carbon atoms.
  • the ratio of the structural unit derived from the monomer represented by the formula (II) to 1 mol of the structural unit derived from the nitrile group-containing monomer is 0.001 mol to 0.2 mol ⁇ 3 > Resin for energy device electrodes as described in>.
  • ⁇ 8> The energy device electrode resin according to any one of ⁇ 1> to ⁇ 7>, wherein the monomer represented by the formula (I) includes methoxytriethylene glycol acrylate.
  • An energy device electrode forming composition comprising the energy device electrode resin according to any one of ⁇ 1> to ⁇ 8>.
  • a positive electrode active material including a lithium-containing metal composite oxide having lithium and nickel, wherein the proportion of nickel in the metal excluding lithium is 50 mol% or more Composition.
  • An energy device comprising the energy device electrode according to ⁇ 12>.
  • an energy device electrode resin and an energy device electrode forming composition that can achieve both adhesiveness and rollability, and an energy device electrode and an energy device using the energy device electrode resin.
  • the present invention is not limited to the following embodiments.
  • the components including element steps and the like are not essential unless otherwise specified.
  • the term “process” includes a process that is independent of other processes and includes the process if the purpose of the process is achieved even if it cannot be clearly distinguished from the other processes. It is.
  • numerical values indicated by using “to” include numerical values described before and after “to” as the minimum value and the maximum value, respectively.
  • the upper limit value or the lower limit value described in one numerical range may be replaced with the upper limit value or the lower limit value of another numerical range. Good. Further, in the numerical ranges described in this specification, the upper limit value or the lower limit value of the numerical range may be replaced with the values shown in the examples.
  • the content of each component in the composition is the sum of the plurality of substances present in the composition unless there is a specific indication when there are a plurality of substances corresponding to each component in the composition. It means the content rate of.
  • the particle diameter of each component in the composition is a mixture of the plurality of types of particles present in the composition unless there is a specific indication when there are a plurality of types of particles corresponding to each component in the composition. Means the value of.
  • the term “layer” or “film” refers to a part of the region in addition to the case where the layer or the film is formed when the region where the layer or film exists is observed. It is also included when it is formed only.
  • laminate indicates that layers are stacked, and two or more layers may be combined, or two or more layers may be detachable.
  • (meth) acryl means at least one of acryl and methacryl
  • (meth) acrylate means at least one of acrylate and methacrylate
  • (meth) allyl means at least one of allyl and methallyl. Mean one.
  • the resin for energy device electrodes of the present disclosure includes a structural unit derived from a nitrile group-containing monomer and a structural unit derived from a monomer represented by the following formula (I), and derived from a carboxy group-containing monomer And the ratio of the structural unit derived from the carboxy group-containing monomer and containing a carboxy group to 1 mol of the structural unit derived from the nitrile group-containing monomer is 0 .01 mol or less.
  • R 1 represents a hydrogen atom or a methyl group
  • R 2 represents a hydrogen atom or a monovalent hydrocarbon group
  • n represents an integer of 1 to 50.
  • the energy device electrode resin of the present disclosure can achieve both adhesiveness and rollability.
  • a compression layer is applied to a mixture layer containing a resin for an energy device electrode and an active material formed on a current collector by a roll press machine or the like.
  • the active materials are considered to be bound by the energy device electrode resin. Therefore, during compression molding, the active materials bound by the energy device electrode resin are once separated from each other by pressurization, and the active materials are bound again with the density of the mixture layer increased. Thus, it is considered that the active material is compressed and rearranged in the mixture layer, and the density of the mixture layer (that is, the electrode) is improved.
  • the carboxy group contained in the resin exhibits an adhesive force by forming a hydrogen bond with a polar group such as a hydroxyl group contained in an adherend such as an active material. For this reason, it is considered that a resin having a high content of carboxy groups exerts stronger adhesion to the adherend.
  • the resin for energy device electrodes of the present disclosure has sufficient adhesiveness as a binder resin, it is derived from a carboxy group-containing monomer and does not contain a structural unit containing a carboxy group or a structure derived from a nitrile group-containing monomer Since the ratio of the structural unit derived from the carboxy group-containing monomer to 1 mol of the unit and containing the carboxy group is 0.01 mol or less, the ratio of the structural unit derived from the carboxy group-containing monomer and containing the carboxy group It is thought that the adhesive force with respect to a to-be-adhered body is low compared with resin for energy device electrodes which exceeds 0.01 mol.
  • the resin for energy device electrodes having a low adhesive force as the binder resin, it is considered that the active materials are easily separated from each other during compression molding. Since the active materials are easily rearranged because the active materials are easily separated from each other, it is presumed that the density of the mixture layer (that is, the electrode) is easily improved and the rollability is improved. Therefore, it is speculated that the energy device electrode resin of the present disclosure can achieve both adhesiveness and rollability.
  • binder resin refers to a resin having a function of binding particles such as active materials.
  • nitrile group-containing monomer- There is no restriction
  • examples thereof include acrylic nitrile group-containing monomers such as acrylonitrile and methacrylonitrile, cyan nitrile group-containing monomers such as ⁇ -cyanoacrylate and dicyanovinylidene, and fumaric nitrile group-containing monomers such as fumaronitrile. It is done.
  • acrylonitrile is preferable in terms of ease of polymerization, cost performance, electrode flexibility, flexibility, and the like.
  • the ratio of acrylonitrile in the nitrile group-containing monomer is preferably 5% by mass to 100% by mass, more preferably 50% by mass to 100% by mass, and 70% by mass to 100% by mass. Is more preferable.
  • One of these nitrile group-containing monomers may be used alone, or two or more thereof may be used in combination.
  • the content of acrylonitrile is preferably, for example, 5% by mass to 95% by mass with respect to the total amount of the nitrile group-containing monomer. 50 mass% to 95 mass% is more preferable.
  • R 1 represents a hydrogen atom or a methyl group
  • R 2 represents a hydrogen atom or a monovalent hydrocarbon group
  • n represents an integer of 1 to 50.
  • n is an integer of 1 to 50, and in an embodiment, it is preferably an integer of 2 to 30, more preferably an integer of 2 to 15, and an integer of 2 to 10. More preferably. In another embodiment, n is preferably an integer of 1 to 30, more preferably an integer of 1 to 15, and further preferably an integer of 1 to 10.
  • R 2 is a hydrogen atom or a monovalent hydrocarbon group, for example, preferably a monovalent hydrocarbon group, and a monovalent hydrocarbon group having 1 to 50 carbon atoms. The monovalent hydrocarbon group having 1 to 25 carbon atoms is more preferable, and the monovalent hydrocarbon group having 1 to 12 carbon atoms is particularly preferable.
  • R 2 is a hydrogen atom or a monovalent hydrocarbon group having 1 to 50 carbon atoms, sufficient swelling resistance to the electrolytic solution tends to be obtained.
  • the hydrocarbon group include an alkyl group and a phenyl group.
  • R 2 is particularly suitably an alkyl group having 1 to 12 carbon atoms or a phenyl group.
  • the alkyl group may be linear, branched or cyclic.
  • a part of hydrogen atoms may be substituted with a substituent.
  • the substituent of R 2 is an alkyl group, a fluorine atom, a chlorine atom, a bromine atom, a halogen atom, a substituent containing a nitrogen atom such as an iodine atom, a substituent containing a phosphorus atom and an aromatic ring .
  • substituent when R 2 is a phenyl group include a halogen atom such as a fluorine atom, a chlorine atom, a bromine atom and an iodine atom, a substituent containing a nitrogen atom, a substituent containing a phosphorus atom, an aromatic ring, and a carbon number. Examples thereof include 3 to 10 cycloalkyl groups.
  • a monomer represented by the formula (I) a commercially available product or a synthetic product may be used. Specific examples of commercially available monomers represented by the formula (I) include 2-methoxyethyl acrylate, ethoxydiethylene glycol acrylate (trade name: Light acrylate EC-, manufactured by Kyoeisha Chemical Co., Ltd.).
  • methoxytriethylene glycol acrylate (R 1 in the general formula (I) is a hydrogen atom
  • R 2 is a methyl group, from the viewpoint of reactivity when copolymerized with a nitrile group-containing monomer, A compound in which n is 3) is more preferable.
  • These monomers represented by the general formula (I) may be used singly or in combination of two or more.
  • carboxy group-containing monomer examples include acrylic carboxy group-containing monomers such as acrylic acid and methacrylic acid, croton carboxy group-containing monomers such as crotonic acid, maleic acid, and the like.
  • Maleic carboxy group-containing monomers such as its anhydride, itaconic carboxy group-containing monomers such as itaconic acid and its anhydride, citraconic carboxy group-containing monomers such as citraconic acid and its anhydride, etc. It is done.
  • a monomer represented by the formula (II) may be used as necessary. There is no restriction
  • R 3 represents a hydrogen atom or a methyl group
  • R 4 represents an alkyl group having 4 to 100 carbon atoms.
  • R 4 is an alkyl group having 4 to 100 carbon atoms, preferably an alkyl group having 4 to 50 carbon atoms, more preferably an alkyl group having 6 to 30 carbon atoms. More preferably, it is an alkyl group having 8 to 15 carbon atoms. If R 4 is an alkyl group having 4 or more carbon atoms, sufficient flexibility tends to be obtained. When R 4 is an alkyl group having 100 or less carbon atoms, sufficient swelling resistance to the electrolytic solution tends to be obtained.
  • the alkyl group represented by R 4 may be linear, branched or cyclic. In the alkyl group represented by R 4 , some hydrogen atoms may be substituted with a substituent.
  • substituents include halogen atoms such as a fluorine atom, chlorine atom, bromine atom and iodine atom, a substituent containing a nitrogen atom, a substituent containing a phosphorus atom, and an aromatic ring.
  • alkyl group represented by R 4 include linear, branched or cyclic saturated alkyl groups, and halogenated alkyl groups such as fluoroalkyl groups, chloroalkyl groups, bromoalkyl groups, and alkyl iodide groups.
  • a commercially available product or a synthetic product may be used as a monomer represented by the formula (II).
  • Specific examples of commercially available monomers represented by the formula (II) include n-butyl (meth) acrylate, isobutyl (meth) acrylate, t-butyl (meth) acrylate, and amyl (meth) ) Acrylate, isoamyl (meth) acrylate, hexyl (meth) acrylate, heptyl (meth) acrylate, octyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, nonyl (meth) acrylate, decyl (meth) acrylate, isodecyl (meth) ) Acrylate, lauryl (meth) acrylate, tridecyl (meth) acrylate, hexadecyl (meth) acrylate, stearyl
  • R 4 is a fluoroalkyl group, 1,1-bis (trifluoromethyl) -2,2,2-trifluoroethyl acrylate, 2,2,3,3,4,4,4-heptafluoro Butyl acrylate, 2,2,3,4,4,4-hexafluorobutyl acrylate, nonafluoroisobutyl acrylate, 2,2,3,3,4,4,5,5-octafluoropentyl acrylate, 2,2 , 3,3,4,4,5,5,5-nonafluoropentyl acrylate, 2,2,3,3,4,4,5,5,6,6,6-undecafluorohexyl acrylate, 2, 2,3,3,4,4,5,5,6,6,7,7,8,8,8-pentadecafluorooctyl acrylate, 3,3,4,4,5,5,6,6 7, 7, 8, 8, 9, 9, 10, 10, 10-heptadecafluorodecyl acrylate, 2,2,3,3,4,4,5,5,6,6,7,7,8,8,9
  • the energy device electrode resin of the present disclosure includes a structural unit derived from a nitrile group-containing monomer and a structural unit derived from a monomer represented by formula (I), and is derived from a carboxy group-containing monomer.
  • the ratio of the structural unit containing a carboxy group and having a carboxy group-containing monomer to 1 mol of the structural unit derived from a nitrile group-containing monomer is 0.01 mol or less. If so, structural units derived from other monomers different from these monomers can be appropriately combined.
  • Other monomers are not particularly limited, and are (meth) acrylic containing an alkyl group having 1 to 3 carbon atoms such as methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate and the like.
  • Acid esters such as vinyl chloride, vinyl bromide, vinylidene chloride, maleic acid imide, phenylmaleimide, (meth) acrylamide, styrene, ⁇ -methylstyrene, vinyl acetate, sodium (meth) allylsulfonate, Examples include sodium (meth) allyloxybenzenesulfonate, sodium styrenesulfonate, 2-acrylamido-2-methylpropanesulfonic acid, and salts thereof. These other monomers may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the ratio of the structural units derived from the respective monomers contained in the energy device electrode resin of the present disclosure is not particularly limited, except for structural units derived from a carboxy group-containing monomer and containing a carboxy group. .
  • the ratio of the structural unit derived from the nitrile group-containing monomer to the total of the structural units derived from each monomer contained in the energy device electrode resin of the present disclosure may be 50 mol% or more and less than 100 mol%. Preferably, it is 80 mol% or more and less than 100 mol%, more preferably 90 mol% or more and less than 100 mol%.
  • n in the monomer represented by the formula (I) May represent an integer of 2 to 50.
  • the ratio of the structural unit derived from the carboxy group-containing monomer and containing the carboxy group to 1 mol of the structural unit derived from the nitrile group-containing monomer is preferably 0.005 mol or less, and 0.001 mol or less. More preferably.
  • the ratio of the structural unit derived from the monomer represented by formula (I) to 1 mol of the structural unit derived from the nitrile group-containing monomer is preferably 0.001 mol to 0.2 mol, for example.
  • the amount is more preferably 0.003 mol to 0.05 mol, and further preferably 0.005 mol to 0.035 mol.
  • the current collector particularly aluminum
  • the flexibility and flexibility of the electrode become better without impairing the adhesion to the positive electrode current collector using the foil and the swelling resistance against the electrolytic solution.
  • the resin is represented by the formula (II) with respect to 1 mol of the structural unit derived from the nitrile group-containing monomer.
  • the ratio of structural units derived from monomers is, for example, preferably 0.001 mol to 0.2 mol, more preferably 0.003 mol to 0.05 mol, and 0.005 mol to 0 mol. More preferably, it is 0.02 mol.
  • the ratio of the structural unit derived from the monomer represented by the formula (II) is 0.001 mol to 0.2 mol, the adhesion with the current collector, particularly the positive electrode current collector using aluminum foil, and There is a tendency that the flexibility and flexibility of the electrode become better without impairing the swelling resistance to the electrolytic solution.
  • the resin represented by the formula (I) with respect to 1 mol of the structural unit derived from the nitrile group-containing monomer.
  • the total ratio of the structural unit derived from the monomer and the structural unit derived from the monomer represented by formula (II) is preferably 0.001 mol to 0.2 mol, for example, 0.003 mol.
  • the amount is more preferably 0.05 mol, more preferably 0.005 mol to 0.035 mol.
  • the ratio of structural units derived from other monomers to 1 mol of structural units derived from a nitrile group-containing monomer is, for example, 0.005 mol to 0.1 mol is preferable, 0.01 mol to 0.06 mol is more preferable, and 0.03 mol to 0.05 mol is more preferable.
  • the method for producing the energy device electrode resin of the present disclosure is not particularly limited. Polymerization methods such as precipitation polymerization in water, bulk polymerization, suspension polymerization, emulsion polymerization, and solution polymerization can be applied. Precipitation polymerization in water is preferred in terms of ease of resin synthesis, ease of post-treatment such as recovery and purification. Hereinafter, the precipitation polymerization in water will be described in detail.
  • a water-soluble polymerization initiator As a polymerization initiator for performing precipitation polymerization in water, a water-soluble polymerization initiator is preferably used in view of polymerization initiation efficiency and the like.
  • Water-soluble polymerization initiators include persulfates such as ammonium persulfate, potassium persulfate and sodium persulfate, water-soluble peroxides such as hydrogen peroxide, 2,2′-azobis (2-methylpropionamidine hydrochloride) A combination of water-soluble azo compounds such as persulfate, etc.
  • reducing agents such as sodium bisulfite, ammonium bisulfite, sodium thiosulfate, hydrosulfite and polymerization accelerators such as sulfuric acid, iron sulfate, copper sulfate Redox type (redox type) and the like.
  • persulfates, water-soluble azo compounds, and the like are preferable in terms of ease of resin synthesis.
  • ammonium persulfate is particularly preferred.
  • the polymerization initiator is preferably used, for example, in the range of 0.001 mol% to 5 mol% with respect to the total amount of monomers used for the synthesis of the energy device electrode resin, 0.01 mol% More preferably, it is used in the range of ⁇ 2 mol%.
  • a chain transfer agent When carrying out precipitation polymerization in water, a chain transfer agent can be used for the purpose of adjusting the molecular weight.
  • the chain transfer agent include mercaptan compounds such as thioglycol, carbon tetrachloride, ⁇ -methylstyrene dimer, and the like. Among these, ⁇ -methylstyrene dimer and the like are preferable from the viewpoint of low odor.
  • a solvent other than water can be added as necessary, for example, by adjusting the particle diameter of the precipitated resin.
  • solvents other than water include amides such as N-methyl-2-pyrrolidone, N, N-dimethylacetamide, N, N-dimethylformamide, N, N-dimethylethyleneurea, N, N-dimethylpropyleneurea, tetra Ureas such as methylurea, lactones such as ⁇ -butyrolactone and ⁇ -caprolactone, carbonates such as propylene carbonate, ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, methyl acetate, ethyl acetate, n-butyl acetate , Esters such as butyl cellosolve acetate, butyl carbitol acetate, ethyl cellosolv
  • a monomer is introduced into a solvent, and the polymerization temperature is preferably 0 to 100 ° C., more preferably 30 to 90 ° C., preferably 1 to 50 hours, more preferably 2 By holding for 12 hours. If the polymerization temperature is 0 ° C. or higher, the polymerization reaction tends to be promoted. Further, when the polymerization temperature is 100 ° C. or lower, even when water is used as a solvent, the water tends to evaporate and it becomes difficult to perform polymerization. In particular, since the polymerization heat of the nitrile group-containing monomer tends to be large, it is preferable to proceed the polymerization while dropping the nitrile group-containing monomer into the solvent.
  • the weight average molecular weight of the energy device electrode resin of the present disclosure is preferably 10,000 to 1,000,000, more preferably 100,000 to 800,000, and still more preferably 250,000 to 700,000.
  • the weight average molecular weight is a value measured by the following method.
  • a measurement object is dissolved in N-methyl-2-pyrrolidone, and a PTFE (polytetrafluoroethylene) filter (manufactured by Kurashiki Boseki Co., Ltd., HPLC (high performance liquid chromatography) pretreatment, chromatodisc, model number: 13N, pore size: 0.45 ⁇ m] to remove insoluble matter.
  • PTFE polytetrafluoroethylene
  • GPC pump: L6200 Pump (manufactured by Hitachi, Ltd.), detector: differential refractive index detector L3300 RI Monitor (manufactured by Hitachi, Ltd.), column: TSKgel-G5000HXL and TSKgel-G2000HXL (both in total) , Inc.) in series, column temperature: 30 ° C., eluent: N-methyl-2-pyrrolidone, flow rate: 1.0 mL / min, standard material: polystyrene], and the weight average molecular weight is measured.
  • the acid value of the energy device electrode resin of the present disclosure is preferably 0 mgKOH / g to 70 mgKOH / g, more preferably 0 mgKOH / g to 20 mgKOH / g, and 0 mgKOH / g to 5 mgKOH / g. Is more preferable.
  • the acid value refers to a value measured by the following method. First, after precisely weighing 1 g of a measurement object, 30 g of acetone is added to the measurement object, and the measurement object is dissolved. Next, an appropriate amount of an indicator, phenolphthalein, is added to the solution to be measured and titrated with a 0.1N aqueous KOH solution.
  • A The nonvolatile content of the solution to be measured is calculated from the weight of the residue by weighing about 1 mL of the solution to be measured in an aluminum pan, drying it on a hot plate heated to 160 ° C. for 15 minutes.
  • the resin for an energy device electrode of the present disclosure is suitably used for an energy device, particularly a non-aqueous electrolyte type energy device.
  • a non-aqueous electrolyte-based energy device refers to a power storage or power generation device (apparatus) that uses an electrolyte other than water. Examples of the energy device include a lithium ion secondary battery, an electric double layer capacitor, a solar cell, and a fuel cell.
  • the energy device electrode resin of the present disclosure has high swelling resistance against non-aqueous electrolytes such as organic solvents other than water, and is preferably used for electrodes of lithium ion secondary batteries.
  • the resin for energy device electrodes of the present disclosure is not limited to energy devices, but includes paints, adhesives, curing agents, printing inks, solder resists, abrasives, electronic component sealants, semiconductor surface protective films, and interlayer insulation. It can be widely used for various coating resins such as membranes, varnishes for electrical insulation and biomaterials, molding materials and fibers.
  • composition for energy device electrode formation of this indication contains resin for energy device electrodes of this indication.
  • the composition for energy device electrode formation of this indication should just contain resin for energy device electrodes of this indication, and may contain various other ingredients if needed.
  • the composition for forming an energy device electrode of the present disclosure preferably includes a solvent.
  • a solvent used for preparation of the composition for energy device electrode formation of a varnish shape For example, the solvent, water, etc. which can be added when performing precipitation polymerization in water mentioned above can be used.
  • amide solvents, urea solvents, lactone solvents, and the like or mixed solvents containing them are preferable from the viewpoint of solubility of the energy device electrode resin, and N-methyl-2-pyrrolidone, ⁇ -butyrolactone is preferable.
  • the mixed solvent containing them is more preferable.
  • These solvent may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the content of the solvent is not particularly limited as long as it is equal to or higher than a necessary minimum amount capable of maintaining the dissolved state of the energy device electrode resin at room temperature (for example, 25 ° C.).
  • a necessary minimum amount capable of maintaining the dissolved state of the energy device electrode resin at room temperature (for example, 25 ° C.).
  • viscosity adjustment is normally performed while adding a solvent, it is preferable to set it as the arbitrary quantity which is not diluted too much more than necessary.
  • the viscosity at 25 ° C. is preferably 500 mPa ⁇ s to 50000 mPa ⁇ s, more preferably 1000 mPa ⁇ s to 20000 mPa ⁇ s, and 2000 mPa ⁇ s. More preferably, it is s to 10,000 mPa ⁇ s.
  • the viscosity is measured at 25 ° C. and a shear rate of 1.0 s ⁇ 1 using a rotary shear viscometer.
  • the composition for forming an energy device electrode of the present disclosure may contain an active material.
  • the active material used in the present disclosure is not particularly limited as long as it can reversibly insert and release lithium ions by, for example, charging and discharging of a lithium ion secondary battery that is an energy device.
  • the positive electrode has a function of releasing lithium ions at the time of charging and receiving lithium ions at the time of discharging, while the negative electrode has a function opposite to that of the positive electrode of receiving lithium ions at the time of charging and releasing lithium ions at the time of discharging.
  • different materials are usually used for the active materials used in the positive electrode and the negative electrode in accordance with the respective functions.
  • an active material (negative electrode active material) used for a negative electrode of a lithium ion secondary battery a material capable of occluding and releasing lithium ions, which is commonly used in the field of lithium ion secondary batteries can be used.
  • the negative electrode active material include lithium metal, lithium alloy, intermetallic compound, carbon material, metal complex, and organic polymer compound.
  • a negative electrode active material may be used individually by 1 type, and may be used in combination of 2 or more type. Among these, a carbon material is preferable.
  • Examples of the carbon material include graphite such as natural graphite (such as flake graphite) and artificial graphite, carbon black such as acetylene black, ketjen black, channel black, furnace black, lamp black, and thermal black, and carbon fiber.
  • the average particle size of the carbon material is preferably 0.1 ⁇ m to 60 ⁇ m, and more preferably 0.5 ⁇ m to 30 ⁇ m.
  • the BET specific surface area of the carbon material is preferably 1 m 2 / g to 10 m 2 / g.
  • the distance (d 002 ) between carbon hexagonal planes in the X-ray wide angle diffraction method is 3.35 to 3.40 mm, and crystallites in the c-axis direction (Lc) Is preferably 100% or more.
  • amorphous carbon having an interval (d 002 ) between carbon hexagonal planes in the X-ray wide angle diffraction method of 3.50 mm to 3.95 mm is used. Is preferred.
  • the average particle size is a volume-based particle size measured by dispersing a sample in purified water containing a surfactant and measuring with a laser diffraction particle size distribution analyzer (for example, SALD-3000J manufactured by Shimadzu Corporation). In the distribution, the value when the integration from the small diameter side becomes 50% (median diameter (D50)) is used.
  • a BET specific surface area can be measured from nitrogen adsorption capacity according to JIS Z 8830: 2013, for example.
  • AUTOSORB-1 (trade name) manufactured by QUANTACHROME can be used.
  • pretreatment for removing water by heating when measuring the BET specific surface area.
  • a measurement cell charged with 0.05 g of a measurement sample is depressurized to 10 Pa or less with a vacuum pump, heated at 110 ° C. and held for 3 hours or more, and then kept at a normal temperature ( Cool to 25 ° C).
  • the evaluation temperature is 77K
  • the evaluation pressure range is measured as a relative pressure (equilibrium pressure with respect to saturated vapor pressure) of less than 1.
  • an active material (positive electrode active material) used for a positive electrode of a lithium ion secondary battery those commonly used in this field can be used.
  • a lithium-containing metal composite oxide, an olivine type lithium salt, a chalcogen compound examples include manganese dioxide.
  • the lithium-containing metal composite oxide is a metal oxide containing lithium and a transition metal or a metal oxide in which a part of the transition metal in the metal oxide is substituted with a different element.
  • examples of the different element include Na, Mg, Sc, Y, Mn, Fe, Co, Ni, Cu, Zn, Al, Cr, Pb, Sb, V, and B.
  • Mn, Al, Co, Ni, Mg and the like are preferable. Different elements may be used alone or in combination of two or more.
  • lithium-containing metal composite oxide examples include Li x CoO 2 , Li x NiO 2 , Li x MnO 2 , Li x Co y Ni 1-y O 2 , Li x Co y M 1 1-y O z (Li In x Co y M 1 1-y O z , M 1 is at least one selected from the group consisting of Na, Mg, Sc, Y, Mn, Fe, Cu, Zn, Al, Cr, Pb, Sb, V, and B ), Li x Ni 1-y M 2 y O z (in Li x Ni 1-y M 2 y O z , M 2 is Na, Mg, Sc, Y, Mn, Fe, Co, And at least one element selected from the group consisting of Cu, Zn, Al, Cr, Pb, Sb, V, and B.), Li x Mn 2 O 4 , Li x Mn 2-y M 3 y O 4 ( li x in Mn 2-y M 3 y O 4, M 3 is Na
  • x is in the range of 0 ⁇ x ⁇ 1.2
  • y is in the range of 0 to 0.9
  • z is in the range of 2.0 to 2.3.
  • the x value indicating the molar ratio of lithium increases or decreases due to charge / discharge.
  • the olivine type lithium salts for example, LiFePO 4, and the like.
  • the chalcogen compound include titanium disulfide and molybdenum disulfide.
  • Li 2 MPO 4 F (in Li 2 MPO 4 F, M is Na, Mg, Sc, Y, Mn, Fe, Co, Ni, Cu, Zn, Al, Cr, Pb , Sb, V and B represents at least one element selected from the group consisting of B).
  • a positive electrode active material may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the positive electrode active material it is preferable to use a positive electrode active material including a lithium-containing metal composite oxide that has lithium and nickel and has a nickel content of 50 mol% or more in the metal excluding lithium.
  • a resin composition is prepared by applying PVDF, which is widely used as a binder resin, to a positive electrode active material in which the proportion of nickel in the metal excluding lithium is 50 mol% or more, the resin composition may be gelled.
  • the resin for energy device electrodes of the present disclosure is used as a binder resin, the gelation of the resin composition tends to be suppressed.
  • the positive electrode active material is represented by the following formula (III). It is preferable to use a positive electrode active material.
  • the capacity density of the positive electrode active material tends to increase.
  • the thermodynamic stability of the positive electrode active material tends to increase. It is preferable that 0.5 ⁇ b ⁇ 0.9, more preferably 0.55 ⁇ b ⁇ 0.85, and still more preferably 0.6 ⁇ b ⁇ 0.8. Further, since the discharge performance of the positive electrode active material tends to be improved as the Co ratio increases, the capacity density of the positive electrode active material tends to increase as the Co ratio decreases. 0.4 is preferable, and 0.1 ⁇ c ⁇ 0.4 is more preferable.
  • M in the formula (III) can contain at least one selected from the group consisting of Al, Mn, Mg and Ca.
  • the thermodynamic stability of the positive electrode active material tends to increase, and further, the increase in resistance caused by nickel entering the lithium site tends to be suppressed.
  • the smaller the M ratio the larger the capacity density of the positive electrode active material. From such a viewpoint, the ratio of M is preferably 0 ⁇ d ⁇ 0.2.
  • the positive electrode active material represented by the formula (III) can be prepared by a method commonly used in this field. An example of the preparation is shown below.
  • a metal salt solution of a metal to be introduced into the positive electrode active material is prepared.
  • the metal salt those commonly used in the field of energy devices can be used, and examples thereof include sulfates, chloride salts, nitrates, and acetates.
  • nitrate is preferable because it functions as an oxidant in the subsequent firing step, so that the oxidation of the metal in the firing raw material is easily promoted, and since it volatilizes by firing, it is difficult to remain in the positive electrode active material.
  • the molar ratio of each metal contained in the metal salt solution is preferably equal to the molar ratio of each metal of the positive electrode active material to be produced.
  • the lithium source is suspended in pure water.
  • the lithium source those commonly used in the field of energy devices can be used, and lithium carbonate, lithium nitrate, lithium hydroxide, lithium acetate, alkyl lithium, fatty acid lithium, lithium lithium and the like can be mentioned.
  • the metal salt solution of the said metal is added and lithium salt solution slurry is produced.
  • fine lithium-containing carbonate precipitates in the slurry.
  • the average particle diameter of the lithium-containing carbonate in the slurry can be adjusted by the shear rate of the slurry.
  • the precipitated lithium-containing carbonate is filtered off and dried to obtain a precursor of the positive electrode active material.
  • the obtained lithium-containing carbonate is filled in a firing container and fired in a firing furnace. Firing is preferably held in a heated state for a predetermined time in an oxygen-containing atmosphere, preferably in an oxygen atmosphere. Further, the firing is preferably performed under a pressure of 101 kPa to 202 kPa. The amount of oxygen in the composition can be increased by heating under pressure.
  • the firing temperature is preferably 850 ° C. to 1200 ° C., more preferably 850 ° C. to 1100 ° C., and further preferably 850 ° C. to 1000 ° C. When firing in such a temperature range, the crystallinity of the positive electrode active material tends to be improved.
  • the average particle size of the positive electrode active material is preferably 0.1 ⁇ m to 60 ⁇ m, and more preferably 0.5 ⁇ m to 30 ⁇ m. Further, the BET specific surface area of the positive electrode active material is preferably 1 m 2 / g to 10 m 2 / g.
  • a conductive agent may be used in combination with the active material.
  • the conductive agent carbon black, graphite, carbon fiber, metal fiber or the like can be used.
  • carbon black include acetylene black, ketjen black, channel black, furnace black, lamp black, and thermal black.
  • Examples of graphite include natural graphite and artificial graphite.
  • a conductive agent may be used individually by 1 type, and may be used in combination of 2 or more type.
  • a rubber for supplementing the flexibility and flexibility of the electrode as a cross-linking component for supplementing the swelling resistance to the electrolytic solution as other materials as necessary
  • additives such as an anti-settling agent, an antifoaming agent, and a leveling agent for improving the electrode coating properties of the components and the slurry can also be blended.
  • the energy device electrode of the present disclosure includes a current collector and an electrode mixture layer that is provided on at least one surface of the current collector and includes the composition for forming an energy device electrode of the present disclosure.
  • the energy device electrode of the present disclosure can be used as an electrode of a lithium ion secondary battery, an electric double layer capacitor, a solar cell, a fuel cell, or the like.
  • a case where the energy device electrode of the present disclosure is applied to an electrode of a lithium ion secondary battery will be described in detail.
  • the energy device electrode of the present disclosure is not limited to the following contents.
  • the current collector used in the present disclosure is not particularly limited, and a current collector commonly used in the field of lithium ion secondary batteries can be used.
  • Examples of the current collector (positive electrode current collector) used for the positive electrode of the lithium ion secondary battery include sheets and foils containing stainless steel, aluminum, titanium, and the like. Among these, a sheet or foil containing aluminum is preferable.
  • the thickness of the sheet and foil is not particularly limited, and is preferably 1 ⁇ m to 500 ⁇ m, more preferably 2 ⁇ m to 80 ⁇ m, and more preferably 5 ⁇ m, from the viewpoint of ensuring the strength and workability required for the current collector. More preferably, it is ⁇ 50 ⁇ m.
  • Examples of the current collector (negative electrode current collector) used for the negative electrode of the lithium ion secondary battery include sheets and foils containing stainless steel, nickel, copper, and the like. Among these, a sheet or foil containing copper is preferable.
  • the thickness of the sheet and foil is not particularly limited, and is preferably 1 ⁇ m to 500 ⁇ m, more preferably 2 ⁇ m to 100 ⁇ m, and more preferably 5 ⁇ m from the viewpoint of ensuring the strength and workability required for the current collector. More preferably, it is ⁇ 50 ⁇ m.
  • the electrode mixture layer used for a lithium ion secondary battery can be formed using the composition for energy device electrode formation containing an active material, a solvent, etc.
  • a positive electrode mixture layer is formed by using an energy device electrode forming composition containing a positive electrode active material.
  • a negative electrode mixture layer is formed by using an energy device electrode forming composition containing a negative electrode active material.
  • the electrode mixture layer is prepared, for example, by preparing a slurry of the composition for forming an energy device electrode, applying the slurry onto at least one surface of the current collector, and then drying and removing the solvent. It can be formed by rolling.
  • the application of the slurry can be performed using, for example, a comma coater.
  • the coating is suitably performed so that the ratio between the positive electrode capacity and the negative electrode capacity (negative electrode capacity / positive electrode capacity) is 1 or more in the opposing electrode.
  • the amount of slurry applied is, for example, preferably 5 g / m 2 to 500 g / m 2 , more preferably 50 g / m 2 to 300 g / m 2 in terms of dry mass per one side of the electrode mixture layer.
  • the removal of the solvent is performed, for example, by drying at 50 ° C. to 150 ° C., preferably 80 ° C. to 120 ° C., for 1 minute to 20 minutes, preferably 3 minutes to 10 minutes.
  • Rolling is performed, for example, using a roll press, and when the density of the mixture layer is a mixture layer of the negative electrode, for example, 1 g / cm 3 to 2 g / cm 3 , preferably 1.2 g / cm 3 to In the case of the positive electrode material mixture layer so as to be 1.8 g / cm 3 , for example, it is pressed so as to be 2 g / cm 3 to 5 g / cm 3 , preferably 2 g / cm 3 to 4 g / cm 3. .
  • vacuum drying may be performed at 100 to 150 ° C. for 1 to 20 hours.
  • the energy device of the present disclosure includes the energy device electrode of the present disclosure.
  • Examples of the energy device of the present disclosure include a lithium ion secondary battery, an electric double layer capacitor, a solar cell, and a fuel cell.
  • the energy device of the present disclosure is not limited to the following contents.
  • the lithium ion secondary battery includes, for example, a positive electrode, a negative electrode, a separator interposed between the positive electrode and the negative electrode, and an electrolytic solution.
  • the energy device electrode of the present disclosure is used as at least one of the positive electrode and the negative electrode. Since the energy device electrode of the present disclosure includes the energy device electrode resin of the present disclosure as a binder resin, the discharge capacity is improved and gas generation tends to be suppressed. The reason is not clear, but it is presumed that the binder resin forms a film with good ion permeability against the components of the mixture layer such as the active material and the conductive agent, and suppresses the decomposition of the electrolyte. The In addition, when electrodes other than the energy device electrode of the present disclosure are used as one of the positive electrode and the negative electrode, those commonly used in this field can be used.
  • the separator is not particularly limited as long as it has ion permeability while electronically insulating between the positive electrode and the negative electrode, and has resistance to oxidation on the positive electrode side and reducibility on the negative electrode side.
  • a material (material) of the separator that satisfies such characteristics a resin, an inorganic substance, or the like is used.
  • an olefin polymer As the resin, an olefin polymer, a fluorine polymer, a cellulose polymer, polyimide, nylon, or the like is used. Specifically, it is preferable to select from materials that are stable with respect to the electrolytic solution and have excellent liquid retention properties, and it is preferable to use a porous sheet made of polyolefin such as polyethylene and polypropylene, a nonwoven fabric, and the like.
  • inorganic substances include oxides such as alumina and silicon dioxide, nitrides such as aluminum nitride and silicon nitride, sulfates such as barium sulfate and calcium sulfate, and glass.
  • oxides such as alumina and silicon dioxide
  • nitrides such as aluminum nitride and silicon nitride
  • sulfates such as barium sulfate and calcium sulfate
  • glass glass
  • thin film-shaped base materials such as a nonwoven fabric, a woven fabric, and a microporous film
  • a substrate having a pore diameter of 0.01 ⁇ m to 1 ⁇ m and a thickness of 5 ⁇ m to 50 ⁇ m is preferably used.
  • a separator in which a composite porous layer is formed using the above-described inorganic material in a fiber shape or a particle shape by using a binder such as a resin can be used as a separator.
  • this composite porous layer may be formed on the surface of the positive electrode or the negative electrode to form a separator.
  • this composite porous layer may be formed on the surface of another separator to form a multilayer separator.
  • a composite porous layer in which alumina particles having a 90% particle diameter (D90) of less than 1 ⁇ m are bound using a fluororesin as a binder may be formed on the surface of the positive electrode.
  • the electrolytic solution contains a solute (supporting salt) and a nonaqueous solvent, and further contains various additives as necessary. Solutes usually dissolve in non-aqueous solvents.
  • the electrolytic solution is impregnated in the separator.
  • borates include lithium bis (1,2-benzenediolate (2-)-O, O ′) borate, bis (2,3-naphthalenedioleate (2-)-O, O ′) boric acid.
  • imide salts include lithium bistrifluoromethanesulfonate imide ((CF 3 SO 2 ) 2 NLi), lithium trifluoromethanesulfonate nonafluorobutanesulfonate ((CF 3 SO 2 ) (C 4 F 9 SO 2 ) NLi ), Lithium bispentafluoroethanesulfonate imide ((C 2 F 5 SO 2 ) 2 NLi), and the like.
  • a solute may be used individually by 1 type, and may be used in combination of 2 or more type. The amount of the solute dissolved in the nonaqueous solvent is preferably 0.5 mol / L to 2 mol / L.
  • non-aqueous solvent examples thereof include a cyclic carbonate ester, a chain carbonate ester, and a cyclic carboxylate ester.
  • examples of the cyclic carbonate include propylene carbonate (PC) and ethylene carbonate (EC).
  • examples of the chain carbonate include diethyl carbonate (DEC), ethyl methyl carbonate (EMC), dimethyl carbonate (DMC) and the like.
  • examples of the cyclic carboxylic acid ester include ⁇ -butyrolactone (GBL) and ⁇ -valerolactone (GVL).
  • a non-aqueous solvent may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the non-aqueous solvent preferably contains vinylene carbonate (VC).
  • the content when vinylene carbonate (VC) is contained is preferably 0.1% by mass to 2% by mass, and preferably 0.2% by mass to 1.5% by mass with respect to the total amount of the nonaqueous solvent. It is more preferable.
  • the laminate type lithium ion secondary battery can be manufactured, for example, as follows. First, the positive electrode and the negative electrode are cut into squares, and tabs are welded to the respective electrodes to produce a positive electrode terminal and a negative electrode terminal. An electrode laminate is produced by laminating a separator between a positive electrode and a negative electrode, and accommodated in an aluminum laminate pack in that state, and the positive electrode terminal and the negative electrode terminal are taken out of the aluminum laminate pack and sealed. Next, an electrolytic solution is poured into the aluminum laminate pack, and the opening of the aluminum laminate pack is sealed. Thereby, a lithium ion secondary battery is obtained.
  • FIG. 1 shows a cross-sectional view of a lithium ion secondary battery to which the present disclosure is applied.
  • a lithium ion secondary battery 1 of the present disclosure has a bottomed cylindrical battery container 6 made of nickel-plated steel.
  • the battery case 6 accommodates an electrode group 5 in which a strip-like positive electrode plate 2 and a negative electrode plate 3 are wound in a spiral shape with a separator 4 interposed therebetween.
  • the separator 4 has a width of 58 mm and a thickness of 30 ⁇ m.
  • a ribbon-like positive electrode tab terminal made of aluminum and having one end fixed to the positive electrode plate 2 is led out on the upper end surface of the electrode group 5.
  • the other end of the positive electrode tab terminal is joined by ultrasonic welding to the lower surface of a disk-shaped battery lid that is disposed on the upper side of the electrode group 5 and serves as a positive electrode external terminal.
  • a ribbon-like negative electrode tab terminal made of copper with one end fixed to the negative electrode plate 3 is led out on the lower end surface of the electrode group 5.
  • the other end of the negative electrode tab terminal is joined to the inner bottom of the battery container 6 by resistance welding. Therefore, the positive electrode tab terminal and the negative electrode tab terminal are led out to the opposite sides of the both end faces of the electrode group 5, respectively.
  • omitted illustration is given to the outer peripheral surface whole periphery of the electrode group 5.
  • the battery lid is caulked and fixed to the upper part of the battery container 6 via an insulating resin gasket. For this reason, the inside of the lithium ion secondary battery 1 is sealed. In addition, an electrolyte solution (not shown) is injected into the battery container 6.
  • Example 1A In a 1.0 liter separable flask equipped with a stirrer, a thermometer, and a condenser, 41.8 g of a nitrile group-containing monomer acrylonitrile (manufactured by Wako Pure Chemical Industries, Ltd.) under a nitrogen atmosphere, the formula (I ) 1.4 g of a methoxytriethylene glycol acrylate (trade name: NK ester AM-30G, manufactured by Shin-Nakamura Chemical Co., Ltd.) (a ratio of 0.008 mol to 1 mol of acrylonitrile) 767 mg of polymerization initiator potassium persulfate (Wako Pure Chemical Industries, Ltd.), chain transfer agent ⁇ -methylstyrene dimer (Wako Pure Chemical Industries, Ltd.) and purified water (Wako Pure Chemical Industries, Ltd.) 450 mL In addition, a reaction solution was prepared.
  • a methoxytriethylene glycol acrylate trade name: NK ester AM
  • the reaction solution was stirred at 60 ° C. for 3 hours and then at 80 ° C. for 3 hours with vigorous stirring. After cooling to room temperature (25 ° C.), the reaction solution was suction filtered and the precipitated resin was filtered off.
  • the filtered resin was sequentially washed with 300 mL of purified water (manufactured by Wako Pure Chemical Industries, Ltd.) and 300 mL of acetone (manufactured by Wako Pure Chemical Industries, Ltd.). The washed resin was dried for 24 hours with a vacuum dryer at 60 ° C./1 torr to obtain an energy device electrode resin.
  • Examples 2A to 5A A resin for an energy device electrode was synthesized by the method shown in Example 1A except that the composition of the monomer and the polymerization initiator was changed to the values shown in Table 1. The compositions and yields of Examples 1A to 5A are summarized in Table 1.
  • Example 1B In a 0.5 liter separable flask equipped with a stirrer, a thermometer and a cooling tube, 400 mL of purified water (manufactured by Wako Pure Chemical Industries, Ltd.) is added in a nitrogen atmosphere and the polymerization initiator is stirred at 73 ° C. 347 mg of ammonium persulfate (Wako Pure Chemical Industries, Ltd.) was added.
  • the temperature of the reaction solution was raised to 90 ° C., 210 mg of ammonium persulfate was added, and the mixture was further stirred for 1 hour. Then, after cooling to room temperature (25 degreeC), the reaction liquid was suction-filtered and the resin which precipitated was separated by filtration. The filtered resin was washed with 300 mL of purified water (manufactured by Wako Pure Chemical Industries, Ltd.). The washed resin was dried with a dryer at 100 ° C. for 12 hours to obtain an energy device electrode resin.
  • Examples 2B to 9B Resin for energy device electrode was synthesize
  • 2-MTA means 2-methoxyethyl acrylate. .
  • the compositions and yields of Examples 2B to 9B are summarized in Table 2.
  • the sealed container containing the resin film and the electrolytic solution was placed in a constant temperature bath at 25 ° C. and 50 ° C. and left for 24 hours. The sealed container was again put in a glove box in an argon atmosphere, the resin film was taken out, the electrolyte solution on the surface was wiped off with filter paper, and the mass after immersion was measured.
  • Example 6A Adhesiveness with current collector [Example 6A] Obtained in Example 1A were lithium manganate, which is a positive electrode active material, and acetylene black (trade name: HS-100, average particle size 48 nm (Denka Corporation catalog value), manufactured by Denka Corporation) as conductive particles.
  • the energy device electrode resin is 90.5 mass% to 94.5 mass% (positive electrode active material): 4.5 mass% (conductivity) in terms of solid mass ratio (total mass ratio is 100 mass%) After mixing so that it may become 5.0 mass%-1.0 mass% (resin for energy device electrodes), NMP was further added for viscosity adjustment, and the positive mix slurry was produced.
  • This slurry was applied substantially uniformly and uniformly to one surface of a 20 ⁇ m thick aluminum foil serving as a positive electrode current collector so that the coating amount after drying was 150.0 g / m 2 . Then, the drying process was performed and the sheet-like electrode was produced. The obtained electrode was pressed by a roll press to produce an electrode having a mixture layer density of 2.7 g / cm 3 . At this time, the presence or absence of peeling of the mixture layer was visually confirmed, and the relationship with the resin content (mass%) was examined. It is considered that the adhesive force is higher as the resin layer does not peel off with a smaller resin content. The results are shown in Table 3.
  • Rollability Lithium manganate which is a positive electrode active material, and acetylene black (trade name: HS-100, average particle size 48 nm (Denka Co., Ltd. catalog value), Denka Co., Ltd.) as conductive particles
  • the energy device electrode resin obtained in 1A is 94.0% by mass: 4.5% by mass: 1.5% by mass in terms of solid content (total mass ratio is 100% by mass).
  • NMP was further added for viscosity adjustment to prepare a positive electrode mixture slurry. This slurry was applied substantially uniformly and uniformly to one surface of a 20 ⁇ m thick aluminum foil serving as a positive electrode current collector so that the coating amount after drying was 150.0 g / m 2 .
  • the drying process was performed and the sheet-like electrode was produced.
  • the obtained electrode was cut into a strip having a length of 500 mm and a width of 53 mm, and then pressed at room temperature (25 ° C.) using a press roll, and the electrode density was measured.
  • the roll gap in the press roll was 10 ⁇ m and the press load was 70 kN. Based on the obtained results, it was judged that the higher the electrode density after pressing, the better the rollability.
  • the results are shown in Table 3.
  • the electrode density was calculated from the thickness of the mixture layer and the coating amount of the mixture layer.
  • Example 7A to 10A and Comparative Example 2 An electrode was prepared and evaluated in the same manner as in Example 6A, except that the energy device electrode resin obtained in Examples 2A to 5A and polyvinylidene fluoride (Comparative Example 1) were used.
  • Example 10B to 18B An electrode was prepared and evaluated in the same manner as in Example 6A, except that the energy device electrode resin obtained in Examples 1B to 9B was used.
  • the energy device electrode resins obtained in Examples 1A to 5B and Examples 1B to 9B are superior in adhesiveness compared to polyvinylidene fluoride.
  • the rolling property is comparable or slightly inferior to that of polyvinylidene fluoride.
  • rolling property is about 2.7 g / cm 3, there is no practical problem.
  • the energy device electrode resin becomes highly rollable as the amount of methoxytriethylene glycol acrylate is increased. This was thought to be because the flexibility of the energy device electrode resin was improved by using methoxytriethylene glycol acrylate.
  • Example 11A Production of positive electrode [Example 11A] Obtained in Example 1A were lithium manganate, which is a positive electrode active material, and acetylene black (trade name: HS-100, average particle size 48 nm (Denka Corporation catalog value), manufactured by Denka Corporation) as conductive particles. After mixing the resin for energy device electrode so that the mass ratio of solid content (total mass ratio becomes 100 mass%) is 94.0 mass%: 4.5 mass%: 1.5 mass%, Further, NMP was added for viscosity adjustment to prepare a positive electrode mixture slurry.
  • This slurry was applied substantially uniformly and uniformly to one surface of a 20 ⁇ m thick aluminum foil serving as a positive electrode current collector so that the coating amount after drying was 150.0 g / m 2 . Then, the drying process was performed and the sheet-like electrode was produced. The obtained electrode was pressed with a roll press so that the density of the mixture layer was 2.7 g / cm 3, and then cut into a 10.0 cm ⁇ 7.5 cm rectangle. Then, in order to remove the residual solvent and adsorbed water in the electrode, vacuum drying was performed at 120 ° C. for 16 hours to obtain a positive electrode for battery characteristic evaluation.
  • Example 12A to 15A and Examples 19B to 27B A positive electrode was obtained in the same manner as in Example 11A, except that the energy device electrode resins obtained in Examples 2A to 5A and Examples 1B to 9B were used.
  • Example 16A ⁇ Production of positive electrode evaluation battery> [Example 16A] The surface of the metallic lithium was polished until it became glossy, and the metallic lithium was pressed substantially uniformly and uniformly on a copper mesh as a negative electrode current collector to obtain a 10.2 cm ⁇ 7.7 cm rectangular negative electrode. Next, the positive electrode and the negative electrode prepared in Example 11A were opposed to each other via a rectangular separator of 12.0 cm ⁇ 10.0 cm, and then a current collecting tab wire was connected to each of the positive electrode and the negative electrode, and an electrode group Got. The obtained electrode group was put in a laminate, and 1000 ⁇ L of an electrolyte solution was injected, and then vacuum-sealed to obtain a laminate type battery.
  • Example 17A to 20A and Examples 28B to 36B A positive electrode evaluation battery was produced in the same manner as in Example 16A, except that the positive electrode produced in Examples 12A to 15A and Examples 19B to 27B was used.
  • Examples 16A to 20A and Examples 28B to 36B using the energy device electrode resins obtained in Examples 1A to 5A and Examples 1B to 9B as binder resins show cycle characteristics. Excellent. The reason is guessed as follows.
  • the binder resin adheres to the surface of the active material or the like and exhibits adhesiveness.
  • the polyvinylidene fluoride generally used as the binder resin for the positive electrode adheres to the surface of the active material or the like (point binding). . Therefore, when polyvinylidene fluoride is used, the active material tends to be exposed, and the contact area between the active material and the electrolytic solution tends to increase.
  • This treatment precipitated fine lithium-containing carbonate in the solution.
  • the precipitate was washed twice with a saturated lithium carbonate solution and filtered off using a filter press. Subsequently, the precipitate was dried to obtain a lithium-containing carbonate which is a precursor of the positive electrode active material.
  • the obtained lithium-containing carbonate was put in a firing furnace, heated to 850 ° C. over 6 hours, then heated and held for 2 hours, and then cooled to obtain an oxide.
  • the obtained oxide was crushed to obtain a positive electrode active material.
  • the positive electrode active material is referred to as NMC (811).
  • NMC 811
  • acetylene black trade name: HS-100, average particle size 48 nm (Denka Corporation catalog value), manufactured by Denka Corporation
  • NMP was added for viscosity adjustment to prepare a positive electrode mixture slurry. This slurry was applied substantially uniformly and uniformly to one surface of a 20 ⁇ m thick aluminum foil serving as a positive electrode current collector so that the coating amount after drying was 150.0 g / m 2 .
  • the drying process was performed and the sheet-like electrode was produced.
  • the obtained electrode was pressed by a roll press so that the density of the mixture layer was 2.7 g / cm 3, and then cut into a 9.0 cm ⁇ 6.5 cm rectangle.
  • vacuum drying was performed at 120 ° C. for 16 hours to obtain a positive electrode for battery characteristic evaluation.
  • Examples 22A to 25A and Examples 37B to 45B A positive electrode and a laminate type battery were produced and evaluated in the same manner as in Example 21A, except that the energy device electrode resins obtained in Examples 2A to 5A and Examples 1B to 9B were used. The evaluation results are shown in Table 7 and Table 8.
  • the battery capacity is improved by using NMC (811) instead of lithium manganate as the positive electrode active material. These phenomena are considered to be based on the large capacity of NMC (811) used as the positive electrode active material.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

エネルギーデバイス電極用樹脂は、ニトリル基含有単量体由来の構造単位と、下記式(I)で表される単量体由来の構造単位と、を含み、カルボキシ基含有単量体由来であってカルボキシ基を含む構造単位を含まないか又は前記ニトリル基含有単量体由来の構造単位1モルに対する前記カルボキシ基含有単量体由来であってカルボキシ基を含む構造単位の比率が、0.01モル以下であり、各単量体由来の構造単位の合計に占める前記ニトリル基含有単量体由来の構造単位の比率が、90モル%以上100モル%未満の樹脂である。ここで、式(I)中、R1は水素原子又はメチル基を示し、R2は1価の炭化水素基を示し、nは1~50の整数を示す。

Description

エネルギーデバイス電極用樹脂、エネルギーデバイス電極形成用組成物、エネルギーデバイス電極及びエネルギーデバイス
 本発明は、エネルギーデバイス電極用樹脂、エネルギーデバイス電極形成用組成物、エネルギーデバイス電極及びエネルギーデバイスに関する。
 ノート型パソコン、携帯電話、PDA(Personal Digital Assistant)等の携帯情報端末の電源として、高いエネルギー密度を有するエネルギーデバイスであるリチウムイオン二次電池が広く使われている。
 このリチウムイオン二次電池には、負極の活物質として、リチウムイオンの層間への挿入(リチウム層間化合物の形成)及び放出が可能な多層構造を有する炭素材料が用いられる。また、正極の活物質としては、リチウム含有金属複合酸化物が主に用いられる。リチウムイオン二次電池の電極は、これらの活物質、バインダ樹脂、溶媒(N-メチル-2-ピロリドン、水等)などを混練してスラリーを調製し、次いで、これを転写ロール等で集電体である金属箔の片面又は両面に塗布し、溶媒を乾燥し除去して合剤層を形成後、ロールプレス機等で圧縮成形して作製される。
 バインダ樹脂としては、ポリフッ化ビニリデン(以下、PVDFという)が多用されている。しかし、PVDFは、集電体との接着性に乏しいため、PVDFを用いて電極を作製する場合、合剤層と集電体との界面の接着性を確保するには、活物質に対してPVDFを多量に配合しなければならず、リチウムイオン二次電池の高容量化を妨げる要因となっている。
 これらの問題の解決策として、特開2003-132893号公報には、炭素数が2~4の1-オレフィン及びアルキル基の炭素数が3以下のアルキル(メタ)アクリレートの少なくとも一方といった単量体を共重合させた変性ポリ(メタ)アクリロニトリル系バインダ樹脂が開示されている。
 また、Journal of Power Sources 109(2002)422-426にも、アクリロニトリルと鎖長の短いメチルメタクリレートの2元共重合体をバインダ樹脂として用いることが提案されている。
 さらには、国際公開第2006/033173号には、エチレングリコール(メタ)アクリレート及びアルキル(メタ)アクリレートの少なくとも一方を共重合させた変性ポリ(メタ)アクリロニトリル系バインダ樹脂が開示されている。
 圧縮成形により電極密度を高めるには、バインダ樹脂に優れた圧延性が求められる。なお、本開示において「圧延性」とは、電極を形成する際の圧縮成形により電極密度が向上しやすい特性をいう。圧縮成形により電極密度を高めることで、リチウムイオン二次電池の高容量化が可能になる。
 しかし、元来、ポリ(メタ)アクリロニトリルは、剛直な分子構造を有するポリマーである。そのため、上記文献に記載されている共重合体は圧延性に乏しく、圧縮成形による電極密度の向上を図ることが困難な場合があった。
 本発明の一態様は、上記事情に鑑みてなされたものであり、接着性及び圧延性を両立できるエネルギーデバイス電極用樹脂及びエネルギーデバイス電極形成用組成物並びにエネルギーデバイス電極用樹脂を用いたエネルギーデバイス電極及びエネルギーデバイスを提供することを目的とする。
 本発明の一態様は、例えば、以下のものに関する。
<1> ニトリル基含有単量体由来の構造単位と、
 下記式(I)で表される単量体由来の構造単位と、
を含み、
 カルボキシ基含有単量体由来であってカルボキシ基を含む構造単位を含まないか又は前記ニトリル基含有単量体由来の構造単位1モルに対する前記カルボキシ基含有単量体由来であってカルボキシ基を含む構造単位の比率が、0.01モル以下であり、
 各単量体由来の構造単位の合計に占める前記ニトリル基含有単量体由来の構造単位の比率が、90モル%以上100モル%未満であるエネルギーデバイス電極用樹脂。
Figure JPOXMLDOC01-appb-C000003
[式(I)中、Rは水素原子又はメチル基を示し、Rは1価の炭化水素基を示し、nは1~50の整数を示す。]
<2> 前記ニトリル基含有単量体由来の構造単位1モルに対する前記式(I)で表される単量体由来の構造単位の比率が、0.001モル~0.2モルである<1>に記載のエネルギーデバイス電極用樹脂。
<3> 下記式(II)で表される単量体由来の構造単位をさらに含む<1>又は<2>に記載のエネルギーデバイス電極用樹脂。
Figure JPOXMLDOC01-appb-C000004
[式(II)中、Rは水素原子又はメチル基を示し、Rは炭素数が4~100のアルキル基を示す。]
<4> 前記ニトリル基含有単量体由来の構造単位1モルに対する前記式(II)で表される単量体由来の構造単位の比率が、0.001モル~0.2モルである<3>に記載のエネルギーデバイス電極用樹脂。
<5> 前記ニトリル基含有単量体が、アクリロニトリルを含む<1>~<4>のいずれか1項に記載のエネルギーデバイス電極用樹脂。
<6> 前記式(I)で表される単量体におけるRが、炭素数が1~12のアルキル基又はフェニル基である<1>~<5>のいずれか1項に記載のエネルギーデバイス電極用樹脂。
<7> 前記式(I)で表される単量体におけるnが、2~50の整数を示す<1>~<6>のいずれか1項に記載のエネルギーデバイス電極用樹脂。
<8> 前記式(I)で表される単量体が、メトキシトリエチレングリコールアクリレートを含む<1>~<7>のいずれか1項に記載のエネルギーデバイス電極用樹脂。
<9> <1>~<8>のいずれか1項に記載のエネルギーデバイス電極用樹脂を含むエネルギーデバイス電極形成用組成物。
<10> リチウムとニッケルとを有しリチウムを除く金属に占めるニッケルの割合が50モル%以上であるリチウム含有金属複合酸化物を含む正極活物質をさらに含む<9>に記載のエネルギーデバイス電極形成用組成物。
<11> 前記正極活物質が、下記式(III)で表される化合物を含む<10>に記載のエネルギーデバイス電極形成用組成物。
  LiaNiCo2+e  式(III)
[式(III)中、Mは、Al、Mn、Mg及びCaからなる群より選択される少なくとも1種であり、a、b、c、d及びeは、各々0.2≦a≦1.2であり、0.5≦b≦0.9であり、0.05≦c≦0.4であり、0≦d≦0.2であり、-0.2≦e≦0.2であり、b+c+d=1である。]
<12> 集電体と、
 前記集電体の少なくとも一方の表面上に設けられ、<9>~<11>のいずれか1項に記載のエネルギーデバイス電極形成用組成物を含む電極合剤層と、
を有するエネルギーデバイス電極。
<13> <12>に記載のエネルギーデバイス電極を備えるエネルギーデバイス。
<14> リチウムイオン二次電池である<13>に記載のエネルギーデバイス。
 本発明の一態様によれば、接着性及び圧延性を両立できるエネルギーデバイス電極用樹脂及びエネルギーデバイス電極形成用組成物並びにエネルギーデバイス電極用樹脂を用いたエネルギーデバイス電極及びエネルギーデバイスが提供される。
本開示を適用したリチウムイオン二次電池の断面図である。
 以下、本発明を実施するための形態について詳細に説明する。但し、本発明は以下の実施形態に限定されるものではない。以下の実施形態において、その構成要素(要素ステップ等も含む)は、特に明示した場合を除き、必須ではない。数値及びその範囲についても同様であり、本発明を制限するものではない。
 本明細書において「工程」との語には、他の工程から独立した工程に加え、他の工程と明確に区別できない場合であってもその工程の目的が達成されれば、当該工程も含まれる。
 本明細書において「~」を用いて示された数値範囲には、「~」の前後に記載される数値がそれぞれ最小値及び最大値として含まれる。
 本明細書中に段階的に記載されている数値範囲において、一つの数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本明細書中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。
 本明細書において組成物中の各成分の含有率は、組成物中に各成分に該当する物質が複数種存在する場合、特に断らない限り、組成物中に存在する当該複数種の物質の合計の含有率を意味する。
 本明細書において組成物中の各成分の粒子径は、組成物中に各成分に該当する粒子が複数種存在する場合、特に断らない限り、組成物中に存在する当該複数種の粒子の混合物についての値を意味する。
 本明細書において「層」又は「膜」との語には、当該層又は膜が存在する領域を観察したときに、当該領域の全体に形成されている場合に加え、当該領域の一部にのみ形成されている場合も含まれる。
 本明細書において「積層」との語は、層を積み重ねることを示し、二以上の層が結合されていてもよく、二以上の層が着脱可能であってもよい。
 本明細書において「(メタ)アクリル」はアクリル及びメタクリルの少なくとも一方を意味し、「(メタ)アクリレート」はアクリレート及びメタクリレートの少なくとも一方を意味し、「(メタ)アリル」はアリル及びメタリルの少なくとも一方を意味する。
<エネルギーデバイス電極用樹脂>
 本開示のエネルギーデバイス電極用樹脂は、ニトリル基含有単量体由来の構造単位と、下記式(I)で表される単量体由来の構造単位と、を含み、カルボキシ基含有単量体由来であってカルボキシ基を含む構造単位を含まないか又は前記ニトリル基含有単量体由来の構造単位1モルに対する前記カルボキシ基含有単量体由来であってカルボキシ基を含む構造単位の比率が、0.01モル以下のものである。
Figure JPOXMLDOC01-appb-C000005
 式(I)中、Rは水素原子又はメチル基を示し、Rは水素原子又は1価の炭化水素基を示し、nは1~50の整数を示す。
 本開示のエネルギーデバイス電極用樹脂は、接着性及び圧延性を両立することができる。その理由は明確ではないが、以下のように推察される。
 例えばリチウムイオン二次電池用の電極を形成する場合、集電体上に形成されたエネルギーデバイス電極用樹脂、活物質等を含む合剤層に対して、ロールプレス機等で圧縮成形が施される。合剤層では、活物質同士がエネルギーデバイス電極用樹脂によって結着されていると考えられる。そのため、圧縮成形の際には、加圧によりエネルギーデバイス電極用樹脂により結着していた活物質同士が一旦乖離し、合剤層の密度が上昇した状態で再度活物質同士が結着することで、活物質が圧縮された状態で合剤層内において再配列され、合剤層(つまりは電極)の密度が向上すると考えられる。
 ここで、樹脂中に含まれるカルボキシ基は、活物質等の被着体に含まれる水酸基等の極性基と水素結合を形成することで接着力を発揮すると考えられる。そのため、カルボキシ基の含有量の多い樹脂は被着体とより強い接着力を発揮すると考えられる。
 本開示のエネルギーデバイス電極用樹脂はバインダ樹脂として十分な接着性を有するものの、カルボキシ基含有単量体由来であってカルボキシ基を含む構造単位を含まないか又はニトリル基含有単量体由来の構造単位1モルに対するカルボキシ基含有単量体由来であってカルボキシ基を含む構造単位の比率が0.01モル以下であるため、カルボキシ基含有単量体由来であってカルボキシ基を含む構造単位の比率が0.01モルを超えるエネルギーデバイス電極用樹脂に比較して被着体に対する接着力が低いと考えられる。接着力の低いエネルギーデバイス電極用樹脂をバインダ樹脂として用いることで、圧縮成形の際に活物質同士が乖離しやすくなると考えられる。活物質同士が乖離しやすくなることで活物質が再配列されやすくなるため、合剤層(つまりは電極)の密度が向上しやすくなり、圧延性が向上すると推察される。そのため、本開示のエネルギーデバイス電極用樹脂は、接着性及び圧延性を両立することができると推察される。
 なお、本開示において「バインダ樹脂」とは、活物質等の粒子同士を結着させる機能を有する樹脂をいう。
 以下に、本開示のエネルギーデバイス電極用樹脂を構成する成分について詳細に説明する。
-ニトリル基含有単量体-
 本開示で用いられるニトリル基含有単量体としては、特に制限はない。例えば、アクリロニトリル、メタクリロニトリル等のアクリル系ニトリル基含有単量体、α-シアノアクリレート、ジシアノビニリデン等のシアン系ニトリル基含有単量体、フマロニトリル等のフマル系ニトリル基含有単量体などが挙げられる。
 これらの中では、重合のし易さ、コストパフォーマンス、電極の柔軟性、可とう性等の点で、アクリロニトリルであることが好ましい。ニトリル基含有単量体に占めるアクリロニトリルの比率は、5質量%~100質量%であることが好ましく、50質量%~100質量%であることがより好ましく、70質量%~100質量%であることがさらに好ましい。これらのニトリル基含有単量体は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 ニトリル基含有単量体としてアクリロニトリルとメタクリロニトリルとを併用する場合、アクリロニトリルの含有率は、ニトリル基含有単量体の全量に対して、例えば、5質量%~95質量%であることが好ましく、50質量%~95質量%であることがより好ましい。
-式(I)で表される単量体-
 本開示で用いられる式(I)で表される単量体としては、特に制限はない。
Figure JPOXMLDOC01-appb-C000006
 式(I)中、Rは水素原子又はメチル基を示し、Rは水素原子又は1価の炭化水素基を示し、nは1~50の整数を示す。
 式(I)中、nは1~50の整数であり、ある態様では、2~30の整数であることが好ましく、2~15の整数であることがより好ましく、2~10の整数であることがさらに好ましい。また、その他の態様では、nは1~30の整数であることが好ましく、1~15の整数であることがより好ましく、1~10の整数であることがさらに好ましい。
 式(I)中、Rは、水素原子又は1価の炭化水素基であり、例えば、1価の炭化水素基であることが好ましく、炭素数が1~50である1価の炭化水素基であることがより好ましく、炭素数が1~25である1価の炭化水素基であることがさらに好ましく、炭素数が1~12である1価の炭化水素基であることが特に好ましい。
 Rが水素原子であるか、又は炭素数が1~50である1価の炭化水素基であれば、電解液に対する十分な耐膨潤性を得ることができる傾向にある。ここで、炭化水素基としては、例えば、アルキル基及びフェニル基が挙げられる。Rは、特に、炭素数が1~12のアルキル基又はフェニル基であることが適当である。アルキル基は、直鎖状であっても分岐鎖状であっても環状であってもよい。
 Rで示されるアルキル基及びフェニル基は、一部の水素原子が置換基で置換されていてもよい。Rがアルキル基である場合の置換基としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子、窒素原子を含む置換基、リン原子を含む置換基、芳香環などが挙げられる。Rがフェニル基である場合の置換基としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子、窒素原子を含む置換基、リン原子を含む置換基、芳香環、炭素数が3~10のシクロアルキル基などが挙げられる。
 式(I)で表される単量体としては、市販品を用いても合成品を用いてもよい。市販品として入手可能な式(I)で表される単量体としては、具体的には、例えば、2-メトキシエチルアクリレート、エトキシジエチレングリコールアクリレート(共栄社化学株式会社製、商品名:ライトアクリレートEC-A)、メトキシトリエチレングリコールアクリレート(共栄社化学株式会社製、商品名:ライトアクリレートMTG-A及び新中村化学工業株式会社製、商品名:NKエステルAM-30G)、メトキシポリ(n=9)エチレングリコールアクリレート(共栄社化学株式会社製、商品名:ライトアクリレート130-A及び新中村化学工業株式会社製、商品名:NKエステルAM-90G)、メトキシポリ(n=13)エチレングリコールアクリレート(新中村化学工業株式会社製、商品名:NKエステルAM-130G)、メトキシポリ(n=23)エチレングリコールアクリレート(新中村化学工業株式会社製、商品名:NKエステルAM-230G)、オクトキシポリ(n=18)エチレングリコールアクリレート(新中村化学工業株式会社製、商品名:NKエステルA-OC-18E)、フェノキシジエチレングリコールアクリレート(共栄社化学株式会社製、商品名:ライトアクリレートP-200A及び新中村化学工業株式会社製、商品名:NKエステルAMP-20GY)、フェノキシポリ(n=6)エチレングリコールアクリレート(新中村化学工業株式会社製、商品名:NKエステルAMP-60G)、ノニルフェノールEO付加物(n=4)アクリレート(共栄社化学株式会社製、商品名:ライトアクリレートNP-4EA)、ノニルフェノールEO付加物(n=8)アクリレート(共栄社化学株式会社製、商品名:ライトアクリレートNP-8EA)、メトキシジエチレングリコールメタクリレート(共栄社化学株式会社製、商品名:ライトエステルMC及び新中村化学工業株式会社製、商品名:NKエステルM-20G)、メトキシトリエチレングリコールメタクリレート(共栄社化学株式会社製、商品名:ライトエステルMTG)、メトキシポリ(n=9)エチレングリコールメタクリレート(共栄社化学株式会社製、商品名:ライトエステル130MA及び新中村化学工業株式会社製、商品名:NKエステルM-90G)、メトキシポリ(n=23)エチレングリコールメタクリレート(新中村化学工業株式会社製、商品名:NKエステルM-230G)並びにメトキシポリ(n=30)エチレングリコールメタクリレート(共栄社化学株式会社製、商品名:ライトエステル041MA)が挙げられる。
 これらの中では、ニトリル基含有単量体と共重合させる場合の反応性等の点から、メトキシトリエチレングリコールアクリレート(一般式(I)のRが水素原子で、Rがメチル基で、nが3の化合物)がより好ましい。これらの一般式(I)で表される単量体は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
-カルボキシ基含有単量体-
 カルボキシ基含有単量体の具体例としては特に制限はなく、例えば、アクリル酸、メタクリル酸等のアクリル系カルボキシ基含有単量体、クロトン酸等のクロトン系カルボキシ基含有単量体、マレイン酸及びその無水物等のマレイン系カルボキシ基含有単量体、イタコン酸及びその無水物等のイタコン系カルボキシ基含有単量体、シトラコン酸及びその無水物等のシトラコン系カルボキシ基含有単量体などが挙げられる。
-式(II)で表される単量体-
 本開示では、必要に応じて式(II)で表される単量体を用いてもよい。本開示で用いられる式(II)で表される単量体としては、特に制限はない。
Figure JPOXMLDOC01-appb-C000007
 式(II)中、Rは水素原子又はメチル基を示し、Rは炭素数が4~100のアルキル基を示す。
 式(II)中、Rは、炭素数が4~100のアルキル基であり、好ましくは炭素数が4~50のアルキル基であり、より好ましくは炭素数が6~30のアルキル基であり、さらに好ましくは炭素数が8~15のアルキル基である。
 Rが、炭素数が4以上のアルキル基であれば、十分な可とう性を得ることができる傾向にある。Rが、炭素数が100以下のアルキル基であれば、電解液に対する十分な耐膨潤性を得ることができる傾向にある。
 Rで表されるアルキル基は、直鎖状であっても分岐鎖状であっても環状であってもよい。
 Rで示されるアルキル基は、一部の水素原子が置換基で置換されていてもよい。置換基としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子、窒素原子を含む置換基、リン原子を含む置換基、芳香環などが挙げられる。例えば、Rで示されるアルキル基としては、直鎖状、分岐鎖状又は環状の飽和アルキル基の他、フルオロアルキル基、クロロアルキル基、ブロモアルキル基、ヨウ化アルキル基等のハロゲン化アルキル基などが挙げられる。
 式(II)で表される単量体としては、市販品を用いても合成品を用いてもよい。市販品として入手可能な式(II)で表される単量体としては、具体的には、n-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、アミル(メタ)アクリレート、イソアミル(メタ)アクリレート、ヘキシル(メタ)アクリレート、ヘプチル(メタ)アクリレート、オクチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ノニル(メタ)アクリレート、デシル(メタ)アクリレート、イソデシル(メタ)アクリレート、ラウリル(メタ)アクリレート、トリデシル(メタ)アクリレート、ヘキサデシル(メタ)アクリレート、ステアリル(メタ)アクリレート、イソステアリル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート等の炭素数が4~100のアルキル基を含む(メタ)アクリル酸のエステル類が挙げられる。
 また、Rがフルオロアルキル基である場合、1,1-ビス(トリフルオロメチル)-2,2,2-トリフルオロエチルアクリレート、2,2,3,3,4,4,4-ヘプタフルオロブチルアクリレート、2,2,3,4,4,4-へキサフルオロブチルアクリレート、ノナフルオロイソブチルアクリレート、2,2,3,3,4,4,5,5-オクタフルオロペンチルアクリレート、2,2,3,3,4,4,5,5,5-ノナフルオロペンチルアクリレート、2,2,3,3,4,4,5,5,6,6,6-ウンデカフルオロヘキシルアクリレート、2,2,3,3,4,4,5,5,6,6,7,7,8,8,8-ペンタデカフルオロオクチルアクリレート、3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-ヘプタデカフルオロデシルアクリレート、2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-ノナデカフルオロデシルアクリレート等のアクリレート化合物、ノナフルオロ-t-ブチルメタクリレート、2,2,3,3,4,4,4-ヘプタフルオロブチルメタクリレート、2,2,3,3,4,4,5,5-オクタフルオロペンチルメタクリレート、2,2,3,3,4,4,5,5,6,6,7,7-ドデカフルオロヘプチルメタクリレート、ヘプタデカフルオロオクチルメタクリレート、2,2,3,3,4,4,5,5,6,6,7,7,8,8,8-ペンタデカフルオロオクチルメタクリレート、2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9-ヘキサデカフルオロノニルメタクリレート等のメタクリレート化合物などが挙げられる。
 これらの一般式(II)で表される単量体は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
-その他の単量体-
 本開示のエネルギーデバイス電極用樹脂は、ニトリル基含有単量体由来の構造単位と、式(I)で表される単量体由来の構造単位と、を含み、カルボキシ基含有単量体由来であってカルボキシ基を含む構造単位を含まないか又はニトリル基含有単量体由来の構造単位1モルに対するカルボキシ基含有単量体由来であってカルボキシ基を含む構造単位の比率が0.01モル以下であれば、これらの単量体とは異なるその他の単量体由来の構造単位を適宜組合せることもできる。
 その他の単量体としては、特に限定されるものではなく、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート等の炭素数が1~3のアルキル基を含む(メタ)アクリル酸エステル類、塩化ビニル、臭化ビニル、塩化ビニリデン等のハロゲン化ビニル類、マレイン酸イミド、フェニルマレイミド、(メタ)アクリルアミド、スチレン、α-メチルスチレン、酢酸ビニル、(メタ)アリルスルホン酸ナトリウム、(メタ)アリルオキシベンゼンスルホン酸ナトリウム、スチレンスルホン酸ナトリウム、2-アクリルアミド-2-メチルプロパンスルホン酸及びその塩などが挙げられる。これらその他の単量体は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
-各単量体由来の構造単位の比率-
 本開示のエネルギーデバイス電極用樹脂に含まれる上記各単量体由来の構造単位の比率は、カルボキシ基含有単量体由来であってカルボキシ基を含む構造単位を除き、特に限定されるものではない。
 本開示のエネルギーデバイス電極用樹脂に含まれる上記各単量体由来の構造単位の合計に占めるニトリル基含有単量体由来の構造単位の比率は、50モル%以上100モル%未満であることが好ましく、80モル%以上100モル%未満であることがより好ましく、90モル%以上100モル%未満であることがさらに好ましい。
 各単量体由来の構造単位の合計に占めるニトリル基含有単量体由来の構造単位の比率が90モル%以上100モル%未満である場合、式(I)で表される単量体におけるnは、2~50の整数を示すものであってもよい。
 ニトリル基含有単量体由来の構造単位1モルに対するカルボキシ基含有単量体由来であってカルボキシ基を含む構造単位の比率は、0.005モル以下であることが好ましく、0.001モル以下であることがより好ましい。
 ニトリル基含有単量体由来の構造単位1モルに対する式(I)で表される単量体由来の構造単位の比率は、例えば、0.001モル~0.2モルであることが好ましく、0.003モル~0.05モルであることがより好ましく、0.005モル~0.035モルであることがさらに好ましい。ニトリル基含有単量体由来の構造単位1モルに対する式(I)で表される単量体由来の構造単位の比率が0.001モル~0.2モルであれば、集電体、特にアルミニウム箔を用いた正極集電体との接着性及び電解液に対する耐膨潤性を損ねることなく、電極の柔軟性及び可とう性がより良好となる傾向にある。
 本開示のエネルギーデバイス電極用樹脂に式(II)で表される単量体由来の構造単位が含まれる場合、ニトリル基含有単量体由来の構造単位1モルに対する式(II)で表される単量体由来の構造単位の比率は、例えば、0.001モル~0.2モルであることが好ましく、0.003モル~0.05モルであることがより好ましく、0.005モル~0.02モルであることがさらに好ましい。式(II)で表される単量体由来の構造単位の比率が0.001モル~0.2モルであれば、集電体、特にアルミニウム箔を用いた正極集電体との接着性及び電解液に対する耐膨潤性を損ねることなく、電極の柔軟性及び可とう性がより良好となる傾向にある。
 本開示のエネルギーデバイス電極用樹脂に式(II)で表される単量体由来の構造単位が含まれる場合、ニトリル基含有単量体由来の構造単位1モルに対する式(I)で表される単量体由来の構造単位及び式(II)で表される単量体由来の構造単位の合計の比率は、例えば、0.001モル~0.2モルであることが好ましく、0.003モル~0.05モルであることがより好ましく、0.005モル~0.035モルであることがさらに好ましい。
 本開示のエネルギーデバイス電極用樹脂にその他の単量体由来の構造単位が含まれる場合、ニトリル基含有単量体由来の構造単位1モルに対するその他の単量体由来の構造単位の比率は、例えば、0.005モル~0.1モルであることが好ましく、0.01モル~0.06モルであることがより好ましく、0.03モル~0.05モルであることがさらに好ましい。
-エネルギーデバイス電極用樹脂の製造方法-
 本開示のエネルギーデバイス電極用樹脂の製造方法は特に限定されるものではない。水中沈殿重合、塊状重合、懸濁重合、乳化重合、溶液重合等の重合方法を適用することが可能である。樹脂合成のし易さ、回収、精製等といった後処理のし易さなどの点で、水中沈殿重合が好ましい。
 以下、水中沈殿重合について詳細に説明する。
-重合開始剤-
 水中沈殿重合を行う際の重合開始剤としては、重合開始効率等の点で水溶性重合開始剤を用いることが好ましい。
 水溶性重合開始剤としては、過硫酸アンモニウム、過硫酸カリウム、過硫酸ナトリウム等の過硫酸塩、過酸化水素等の水溶性過酸化物、2,2’-アゾビス(2-メチルプロピオンアミジンハイドロクロライド)等の水溶性アゾ化合物、過硫酸塩等の酸化剤と亜硫酸水素ナトリウム、亜硫酸水素アンモニウム、チオ硫酸ナトリウム、ハイドロサルファイト等の還元剤と硫酸、硫酸鉄、硫酸銅等の重合促進剤とを組合せた酸化還元型(レドックス型)などが挙げられる。
 これらの中では、樹脂合成のし易さ等の点で過硫酸塩、水溶性アゾ化合物等が好ましい。過硫酸塩の中では、過硫酸アンモニウムが特に好ましい。
 なお、ニトリル基含有単量体としてアクリロニトリルを選択し、式(I)で表される単量体としてメトキシトリエチレングリコールアクリレートを選択して水中沈殿重合を行った場合、単量体の状態では両者とも水溶性であることから、水溶性重合開始剤が有効に作用し、重合がスムーズに始まる。そして、重合が進むにつれて重合物が析出してくるため、反応系が懸濁状態となり、最終的に未反応物の少ないエネルギーデバイス電極用樹脂が高収率で得られる。
 重合開始剤は、エネルギーデバイス電極用樹脂の合成に使用される単量体の総量に対し、例えば、0.001モル%~5モル%の範囲で使用されることが好ましく、0.01モル%~2モル%の範囲で使用されることがより好ましい。
-連鎖移動剤-
 水中沈殿重合を行う際には、分子量調節等の目的で、連鎖移動剤を用いることができる。連鎖移動剤としては、チオグリコール等のメルカプタン化合物、四塩化炭素、α-メチルスチレンダイマーなどが挙げられる。これらの中では、臭気が少ない等の点で、α-メチルスチレンダイマー等が好ましい。
-溶媒-
 水中沈殿重合を行う際には、析出する樹脂の粒子径の調節等、必要に応じて、水以外の溶媒を加えることもできる。
 水以外の溶媒としては、N-メチル-2-ピロリドン、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド等のアミド類、N,N-ジメチルエチレンウレア、N,N-ジメチルプロピレンウレア、テトラメチルウレア等のウレア類、γ-ブチロラクトン、γ-カプロラクトン等のラクトン類、プロピレンカーボネート等のカーボネート類、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン類、酢酸メチル、酢酸エチル、酢酸n-ブチル、ブチルセロソルブアセテート、ブチルカルビトールアセテート、エチルセロソルブアセテート、エチルカルビトールアセテート等のエステル類、ジグライム、トリグライム、テトラグライム等のグライム類、トルエン、キシレン、シクロヘキサン等の炭化水素類、ジメチルスルホキシド等のスルホキシド類、スルホラン等のスルホン類、メタノール、イソプロパノール、n-ブタノール等のアルコール類などが挙げられる。これらの溶媒は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
-重合条件-
 水中沈殿重合は、例えば、単量体を溶媒中に導入し、重合温度を好ましくは0℃~100℃、より好ましくは30℃~90℃として、好ましくは1時間~50時間、より好ましくは2時間~12時間保持することによって行われる。
 重合温度が0℃以上であれば、重合反応が促進される傾向にある。また、重合温度が100℃以下であれば、溶媒として水を使用したときでも、水が蒸発して重合ができなくなりにくい傾向にある。
 特に、ニトリル基含有単量体の重合熱が大きい傾向にあるため、ニトリル基含有単量体を溶媒中に滴下しながら重合を進めることが好ましい。
 本開示のエネルギーデバイス電極用樹脂の重量平均分子量は、10000~1000000であることが好ましく、100000~800000であることがより好ましく、250000~700000であることがさらに好ましい。
 本開示において、重量平均分子量は下記方法により測定された値をいう。
 測定対象をN-メチル-2-ピロリドンに溶解し、PTFE(ポリテトラフルオロエチレン)製フィルタ〔倉敷紡績株式会社製、HPLC(高速液体クロマトグラフィー)前処理用、クロマトディスク、型番:13N、孔径:0.45μm〕を通して不溶分を除去する。GPC〔ポンプ:L6200 Pump(株式会社日立製作所製)、検出器:示差屈折率検出器L3300 RI Monitor(株式会社日立製作所製)、カラム:TSKgel-G5000HXLとTSKgel-G2000HXL(計2本)(共に東ソー株式会社製)を直列に接続、カラム温度:30℃、溶離液:N-メチル-2-ピロリドン、流速:1.0mL/分、標準物質:ポリスチレン〕を用い、重量平均分子量を測定する。
 本開示のエネルギーデバイス電極用樹脂の酸価は、0mgKOH/g~70mgKOH/gであることが好ましく、0mgKOH/g~20mgKOH/gであることがより好ましく、0mgKOH/g~5mgKOH/gであることがさらに好ましい。
 本開示において、酸価は下記方法により測定された値をいう。
 まず、測定対象1gを精秤した後、その測定対象にアセトンを30g添加し、測定対象を溶解する。次いで、指示薬であるフェノールフタレインを測定対象の溶液に適量添加して、0.1NのKOH水溶液を用いて滴定する。そして、滴定結果より下記式(A)により酸価を算出する(式中、Vfはフェノールフタレインの滴定量(mL)を示し、Wpは測定対象の溶液の質量(g)を示し、Iは測定対象の溶液の不揮発分の割合(質量%)を示す。)。
 酸価(mgKOH/g)=10×Vf×56.1/(Wp×I)  (A)
 なお、測定対象の溶液の不揮発分は、測定対象の溶液をアルミパンに約1mL量り取り、160℃に加熱したホットプレート上で15分間乾燥させ、残渣重量から算出する。
-エネルギーデバイス電極用樹脂の用途-
 本開示のエネルギーデバイス電極用樹脂は、エネルギーデバイス、特に非水電解液系のエネルギーデバイスに好適に利用される。非水電解液系エネルギーデバイスとは、水以外の電解液を用いる蓄電又は発電デバイス(装置)をいう。
 エネルギーデバイスとしては、リチウムイオン二次電池、電気二重層キャパシタ、太陽電池、燃料電池等が挙げられる。本開示のエネルギーデバイス電極用樹脂は、水以外の有機溶媒のような非水電解液に対する耐膨潤性が高く、リチウムイオン二次電池の電極に使用することが好ましい。
 なお、本開示のエネルギーデバイス電極用樹脂は、エネルギーデバイスのみならず、塗料、接着剤、硬化剤、印刷インキ、ソルダーレジスト、研磨剤、電子部品の封止剤、半導体の表面保護膜及び層間絶縁膜、電気絶縁用ワニス、バイオマテリアル等の各種コーティングレジン、成形材料、繊維などに幅広く利用できる。
<エネルギーデバイス電極形成用組成物>
 本開示のエネルギーデバイス電極形成用組成物は、本開示のエネルギーデバイス電極用樹脂を含むものである。
 本開示のエネルギーデバイス電極形成用組成物は、本開示のエネルギーデバイス電極用樹脂を含むものであればよく、必要に応じて各種その他の成分を含有していてもよい。
-溶媒-
 本開示のエネルギーデバイス電極形成用組成物をワニスとして取り扱う場合には、本開示のエネルギーデバイス電極形成用組成物は溶媒を含むことが好ましい。
 ワニス状のエネルギーデバイス電極形成用組成物の調製に用いる溶媒としては、特に制限はなく、例えば、先に述べた水中沈殿重合を行う際に加えることのできる溶媒、水等を使用できる。これらのうちでは、エネルギーデバイス電極用樹脂の溶解性等の点で、アミド系溶媒、ウレア系溶媒、ラクトン系溶媒等又はそれらを含む混合溶媒が好ましく、N-メチル-2-ピロリドン、γ-ブチロラクトン又はそれらを含む混合溶媒がより好ましい。これらの溶媒は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 溶媒の含有量は、常温(例えば、25℃)でエネルギーデバイス電極用樹脂が溶解状態を保てる必要最低限の量以上であれば、特に制限はない。なお、エネルギーデバイスの電極作製におけるスラリー調製工程では、通常、溶媒を加えながら粘度調整を行うため、必要以上に希釈し過ぎない任意の量とすることが好ましい。
 本開示のエネルギーデバイス電極形成用組成物が溶媒を含む場合、25℃における粘度は、500mPa・s~50000mPa・sであることが好ましく、1000mPa・s~20000mPa・sであることがより好ましく、2000mPa・s~10000mPa・sであることがさらに好ましい。
 なお、粘度は回転式せん断粘度計を用いて、25℃、せん断速度1.0s-1で測定される。
-活物質-
 本開示のエネルギーデバイス電極形成用組成物は、活物質を含有していてもよい。本開示で用いられる活物質は、例えば、エネルギーデバイスであるリチウムイオン二次電池の充放電により可逆的にリチウムイオンを挿入及び放出できるものであれば特に制限はない。なお、正極は、充電時にリチウムイオンを放出し、放電時にリチウムイオンを受け取るという機能を有する一方、負極は、充電時にリチウムイオンを受け取り、放電時にリチウムイオンを放出するという正極とは逆の機能を有する。そのため、正極及び負極で使用される活物質は、通常、それぞれの有する機能にあわせて、異なる材料が使用される。
 リチウムイオン二次電池の負極に用いられる活物質(負極活物質)としては、リチウムイオンを吸蔵及び放出可能な材料であって、リチウムイオン二次電池の分野で常用されるものを使用できる。負極活物質としては、例えば、金属リチウム、リチウム合金、金属間化合物、炭素材料、金属錯体、有機高分子化合物等が挙げられる。負極活物質は1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。これらの中でも、炭素材料が好ましい。炭素材料としては、天然黒鉛(鱗片状黒鉛等)、人造黒鉛等の黒鉛、アセチレンブラック、ケッチェンブラック、チャンネルブラック、ファーネスブラック、ランプブラック、サーマルブラック等のカーボンブラック、炭素繊維などが挙げられる。炭素材料の平均粒子径は、0.1μm~60μmであることが好ましく、0.5μm~30μmであることがより好ましい。また、炭素材料のBET比表面積は、1m/g~10m/gであることが好ましい。
 炭素材料の中でも特に、電池特性をより向上できる観点から、X線広角回折法における炭素六角平面の間隔(d002)が3.35Å~3.40Åであり、c軸方向の結晶子(Lc)が100Å以上である黒鉛が好ましい。
 また、炭素材料の中でも特に、サイクル特性及び安全性をより向上できる観点からは、X線広角回折法における炭素六角平面の間隔(d002)が3.50Å~3.95Åである非晶質炭素が好ましい。
 本明細書において平均粒子径は、界面活性剤を含んだ精製水に試料を分散させ、レーザー回折式粒度分布測定装置(例えば、株式会社島津製作所製SALD-3000J)で測定される体積基準の粒度分布において、小径側からの積算が50%となるときの値(メジアン径(D50))とする。
 BET比表面積は、例えば、JIS Z 8830:2013に準じて窒素吸着能から測定することができる。評価装置としては、例えば、QUANTACHROME社製:AUTOSORB-1(商品名)を用いることができる。試料表面及び構造中に吸着している水分がガス吸着能に影響を及ぼすと考えられることから、BET比表面積の測定を行う際には、まず加熱による水分除去の前処理を行うことが好ましい。
 前処理では、0.05gの測定試料を投入した測定用セルを、真空ポンプで10Pa以下に減圧した後、110℃で加熱し、3時間以上保持した後、減圧した状態を保ったまま常温(25℃)まで自然冷却する。この前処理を行った後、評価温度を77Kとし、評価圧力範囲を相対圧(飽和蒸気圧に対する平衡圧力)にて1未満として測定する。
 一方、リチウムイオン二次電池の正極に用いられる活物質(正極活物質)としては、この分野で常用されるものを使用でき、例えば、リチウム含有金属複合酸化物、オリビン型リチウム塩、カルコゲン化合物、二酸化マンガン等が挙げられる。リチウム含有金属複合酸化物は、リチウムと遷移金属とを含む金属酸化物又は該金属酸化物中の遷移金属の一部が異種元素によって置換された金属酸化物である。ここで、異種元素としては、例えば、Na、Mg、Sc、Y、Mn、Fe、Co、Ni、Cu、Zn、Al、Cr、Pb、Sb、V、B等が挙げられ、Mn、Al、Co、Ni、Mg等が好ましい。異種元素は1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 リチウム含有金属複合酸化物としては、例えば、LiCoO、LiNiO、LiMnO、LiCoNi1-y、LiCo 1-y(LiCo 1-y中、MはNa、Mg、Sc、Y、Mn、Fe、Cu、Zn、Al、Cr、Pb、Sb、V及びBからなる群より選ばれる少なくとも1種の元素を示す。)、LiNi1-y (LiNi1-y 中、MはNa、Mg、Sc、Y、Mn、Fe、Co、Cu、Zn、Al、Cr、Pb、Sb、V及びBからなる群より選ばれる少なくとも1種の元素を示す。)、LiMn、LiMn2-y (LiMn2-y 中、MはNa、Mg、Sc、Y、Fe、Co、Ni、Cu、Zn、Al、Cr、Pb、Sb、V及びBからなる群より選ばれる少なくとも1種の元素を示す。)等が挙げられる。ここで、xは0<x≦1.2の範囲であり、yは0~0.9の範囲であり、zは2.0~2.3の範囲である。また、リチウムのモル比を示すx値は、充放電により増減する。
 また、オリビン型リチウム塩としては、例えば、LiFePO等が挙げられる。カルコゲン化合物としては、例えば、二硫化チタン及び二硫化モリブデンが挙げられる。また、その他の正極活物質としては、LiMPOF(LiMPOF中、MはNa、Mg、Sc、Y、Mn、Fe、Co、Ni、Cu、Zn、Al、Cr、Pb、Sb、V及びBからなる群より選ばれる少なくとも1種の元素を示す。)が挙げられる。正極活物質は1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 正極活物質としては、リチウムとニッケルとを有しリチウムを除く金属に占めるニッケルの割合が50モル%以上であるリチウム含有金属複合酸化物を含む正極活物質を用いることが好ましい。
 リチウムを除く金属に占めるニッケルの割合が50モル%以上である正極活物質に、バインダ樹脂として汎用されるPVDFを適用して樹脂組成物を調製すると、樹脂組成物がゲル化する場合がある。一方、本開示のエネルギーデバイス電極用樹脂をバインダ樹脂として用いると、樹脂組成物のゲル化の発生が抑制される傾向にある。
 特に、上記の正極活物質における単位質量当りの充放電容量を高めて、高容量のエネルギーデバイス用正極が得られるようにするためには、正極活物質として、下記式(III)で表される正極活物質を用いることが好ましい。
LiaNiCo2+e  式(III)
 式(III)中、Mは、Al、Mn、Mg及びCaからなる群より選択される少なくとも1種であり、a、b、c、d及びeは、各々0.2≦a≦1.2であり、0.5≦b≦0.9であり、0.05≦c≦0.4であり、0≦d≦0.2であり、-0.2≦e≦0.2であり、b+c+d=1である。
 Niの割合が大きくなるほど、正極活物質の容量密度が大きくなる傾向にあり、Niの割合が小さくなるほど、正極活物質の熱力学的な安定性が高くなる傾向にあることから、Niの割合は0.5≦b≦0.9であることが好ましく、0.55≦b≦0.85であることがより好ましく、0.6≦b≦0.8であることがさらに好ましい。また、Coの割合が大きくなるほど、正極活物質の放電性能が向上する傾向にあり、Coの割合が小さい程、正極活物質の容量密度が大きくなる傾向にあることから、0.05≦c≦0.4であることが好ましく、0.1≦c≦0.4であることがより好ましい。
 また、式(III)中のMは、Al、Mn、Mg及びCaからなる群より選択される少なくとも1種を含有させることが可能である。このような元素を含有させると、正極活物質の熱力学的な安定性が高くなる傾向にあり、さらにはニッケルがリチウムサイトに入り込むことで起こる抵抗上昇を抑制することができる傾向にある。一方、Mの割合が小さいほど、正極活物質の容量密度は大きくなる傾向にある。このような観点から、Mの割合は、0≦d≦0.2であることが好ましい。
 式(III)で表される正極活物質は、当該分野で常用される方法で調製できる。調製の一例を以下に示す。
 はじめに正極活物質に導入する金属の金属塩溶液を作製する。金属塩は、エネルギーデバイスの分野で常用されるものを使用でき、硫酸塩、塩化物塩、硝酸塩、酢酸塩等が挙げられる。
 中でも硝酸塩は、後の焼成工程中で酸化剤として機能するため焼成原料中の金属の酸化を促進させやすく、また、焼成により揮発するため正極活物質中に残存し難いことから好ましい。金属塩溶液に含まれる各金属のモル比は、作製する正極活物質の各金属のモル比と同等にすることが好ましい。
 次に、リチウム源を純水に懸濁させる。リチウム源としては、エネルギーデバイスの分野で常用されるものを使用でき、炭酸リチウム、硝酸リチウム、水酸化リチウム、酢酸リチウム、アルキルリチウム、脂肪酸リチウム、ハロゲンリチウム等が挙げられる。その後、上記金属の金属塩溶液を添加し、リチウム塩溶液スラリーを作製する。このとき、スラリー中に微粒子のリチウム含有炭酸塩が析出する。スラリー中のリチウム含有炭酸塩の平均粒子径は、スラリーのせん断速度により調整できる。析出したリチウム含有炭酸塩を濾別した後、乾燥することにより、正極活物質の前躯体が得られる。
 得られたリチウム含有炭酸塩を焼成容器に充填し、焼成炉で焼成する。焼成は、酸素を含む雰囲気下、好ましくは酸素雰囲気下で所定時間加熱した状態で保持することが好ましい。さらに焼成は101kPa~202kPaでの加圧下で行うことが好ましい。加圧下で加熱することで組成中の酸素量を増加できる。焼成温度は、850℃~1200℃の温度で行うことが好ましく、850℃~1100℃の温度で行うことがより好ましく、850℃~1000℃の温度で行うことがさらに好ましい。このような温度範囲で焼成を行うと、正極活物質の結晶性が向上する傾向にある。
 正極活物質の平均粒子径は、0.1μm~60μmであることが好ましく、0.5μm~30μmであることがより好ましい。また、正極活物質のBET比表面積は、1m/g~10m/gであることが好ましい。
-導電剤-
 活物質には、導電剤が併用されてもよい。
 導電剤としては、カーボンブラック、黒鉛、炭素繊維、金属繊維等を使用できる。カーボンブラックとしては、アセチレンブラック、ケッチェンブラック、チャンネルブラック、ファーネスブラック、ランプブラック、サーマルブラック等が挙げられる。黒鉛としては、天然黒鉛、人造黒鉛等が挙げられる。導電剤は1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
-その他の添加剤-
 本開示のエネルギーデバイス電極形成用組成物には、必要に応じてその他の材料として、電解液に対する耐膨潤性を補完するための架橋成分、電極の柔軟性及び可とう性を補完するためのゴム成分、スラリーの電極塗工性を向上させるための沈降防止剤、消泡剤、レベリング剤等といった各種添加剤などを配合することもできる。
<エネルギーデバイス電極>
 本開示のエネルギーデバイス電極は、集電体と、前記集電体の少なくとも一方の表面上に設けられ、本開示のエネルギーデバイス電極形成用組成物を含む電極合剤層と、を有する。
 本開示のエネルギーデバイス電極は、リチウムイオン二次電池、電気二重層キャパシタ、太陽電池、燃料電池等の電極として用いることができる。
 以下に、本開示のエネルギーデバイス電極をリチウムイオン二次電池の電極に適用した場合について詳細に説明するが、本開示のエネルギーデバイス電極は下記内容に限定されるものではない。
-集電体-
 本開示で用いられる集電体としては、特に限定されるものではなく、リチウムイオン二次電池の分野で常用されるものを使用できる。
 リチウムイオン二次電池の正極に用いられる集電体(正極集電体)としては、ステンレス鋼、アルミニウム、チタン等を含有するシート、箔などが挙げられる。
 これらの中でも、アルミニウムを含有するシート又は箔が好ましい。シート及び箔の厚さは特に限定されず、集電体として必要な強度及び加工性を確保する観点から、例えば、1μm~500μmであることが好ましく、2μm~80μmであることがより好ましく、5μm~50μmであることがさらに好ましい。
 リチウムイオン二次電池の負極に用いられる集電体(負極集電体)としては、ステンレス鋼、ニッケル、銅等を含むシート、箔などが挙げられる。
 これらの中でも、銅を含有するシート又は箔が好ましい。シート及び箔の厚さは特に限定されず、集電体として必要な強度及び加工性を確保する観点から、例えば、1μm~500μmであることが好ましく、2μm~100μmであることがより好ましく、5μm~50μmであることがさらに好ましい。
-電極合剤層-
 リチウムイオン二次電池に用いられる電極合剤層は、活物質、溶媒等を含むエネルギーデバイス電極形成用組成物を用いて形成することができる。
 正極活物質を含むエネルギーデバイス電極形成用組成物を用いることで正極合剤層が形成される。一方、負極活物質を含むエネルギーデバイス電極形成用組成物を用いることで負極合剤層が形成される。
 電極合剤層は、例えば、エネルギーデバイス電極形成用組成物のスラリーを調製し、このスラリーを集電体の少なくとも一方の表面上に塗布し、次いで溶媒を乾燥して除去し、必要に応じて圧延して形成することができる。
 スラリーの塗布は、例えば、コンマコーター等を用いて行うことができる。塗布は、対向する電極において、正極容量と負極容量との比率(負極容量/正極容量)が1以上になるように行うことが適当である。
 スラリーの塗布量は、例えば、電極合剤層の片面当たりの乾燥質量が、5g/m~500g/mであることが好ましく、50g/m~300g/mであることがより好ましい。
 溶媒の除去は、例えば、50℃~150℃、好ましくは、80℃~120℃で、1分~20分間、好ましくは、3分~10分間乾燥することによって行われる。
 圧延は、例えばロールプレス機を用いて行われ、合剤層の密度が、負極の合剤層の場合、例えば、1g/cm~2g/cm、好ましくは、1.2g/cm~1.8g/cmとなるように、正極の合剤層の場合、例えば、2g/cm~5g/cm、好ましくは、2g/cm~4g/cmとなるようにプレスされる。
 さらに、電極内の残留溶媒、吸着水の除去等のため、例えば、100℃~150℃で1時間~20時間真空乾燥してもよい。
<エネルギーデバイス>
 本開示のエネルギーデバイスは、本開示のエネルギーデバイス電極を備える。本開示のエネルギーデバイスとしては、リチウムイオン二次電池、電気二重層キャパシタ、太陽電池、燃料電池等が挙げられる。
 以下に、エネルギーデバイスがリチウムイオン二次電池の場合について詳細に説明するが、本開示のエネルギーデバイスは下記内容に限定されるものではない。
 リチウムイオン二次電池は、例えば、正極と、負極と、正極と負極との間に介在するセパレータと、電解液と、を備える。
 正極及び負極の少なくとも一方として、本開示のエネルギーデバイス電極が用いられる。本開示のエネルギーデバイス電極はバインダ樹脂として本開示のエネルギーデバイス電極用樹脂を含むため、放電容量が向上し、ガスの発生が抑制される傾向にある。その理由は明確ではないが、活物質、導電剤等の合剤層の構成成分に対してバインダ樹脂がイオン透過性のよい被膜を形成し、電解液の分解を抑制しているためと推察される。
 なお、正極又は負極の一方として、本開示のエネルギーデバイス電極以外の電極が用いられる場合、この分野で常用されるものを使用できる。
-セパレータ-
 セパレータは、正極及び負極間を電子的には絶縁しつつもイオン透過性を有し、かつ、正極側における酸化性及び負極側における還元性に対する耐性を備えるものであれば特に制限はない。このような特性を満たすセパレータの材料(材質)としては、樹脂、無機物等が用いられる。
 上記樹脂としては、オレフィン系ポリマー、フッ素系ポリマー、セルロース系ポリマー、ポリイミド、ナイロン等が用いられる。具体的には、電解液に対して安定で、保液性の優れた材料の中から選ぶのが好ましく、ポリエチレン、ポリプロピレン等のポリオレフィンを原料とする多孔性シート、不織布などを用いることが好ましい。
 無機物としては、アルミナ、二酸化ケイ素等の酸化物類、窒化アルミニウム、窒化ケイ素等の窒化物類、硫酸バリウム、硫酸カルシウム等の硫酸塩類、ガラスなどが用いられる。例えば、繊維形状又は粒子形状の上記無機物を、不織布、織布、微多孔性フィルム等の薄膜形状の基材に付着させたものをセパレータとして用いることができる。
 薄膜形状の基材としては、孔径が0.01μm~1μmであり、厚さが5μm~50μmのものが好適に用いられる。また、例えば、繊維形状又は粒子形状の上記無機物を、樹脂等の結着剤を用いて複合多孔層としたものをセパレータとして用いることができる。さらに、この複合多孔層を、正極又は負極の表面に形成し、セパレータとしてもよい。あるいは、この複合多孔層を他のセパレータの表面に形成し、多層セパレータとしてもよい。例えば、90%粒子径(D90)が1μm未満のアルミナ粒子を、フッ素樹脂を結着剤として結着させた複合多孔層を、正極の表面に形成してもよい。
-電解液-
 電解液は、溶質(支持塩)と非水溶媒とを含み、さらに必要に応じて各種添加剤を含む。溶質は通常非水溶媒中に溶解する。電解液は、例えば、セパレータに含浸される。
 溶質としては、この分野で常用されるものを使用でき、例えば、LiClO、LiBF、LiPF、LiAlCl、LiSbF、LiSCN、LiCFSO、LiCFCO、LiAsF、LiB10Cl10、低級脂肪族カルボン酸リチウム、LiCl、LiBr、LiI、クロロボランリチウム、ホウ酸塩類、イミド塩類等が挙げられる。ホウ酸塩類としては、ビス(1,2-ベンゼンジオレート(2-)-O,O’)ホウ酸リチウム、ビス(2,3-ナフタレンジオレート(2-)-O,O’)ホウ酸リチウム、ビス(2,2’-ビフェニルジオレート(2-)-O,O’)ホウ酸リチウム、ビス(5-フルオロ-2-オレート-1-ベンゼンスルホン酸-O,O’)ホウ酸リチウム等が挙げられる。イミド塩類としては、ビストリフルオロメタンスルホン酸イミドリチウム((CFSONLi)、トリフルオロメタンスルホン酸ノナフルオロブタンスルホン酸イミドリチウム((CFSO)(CSO)NLi)、ビスペンタフルオロエタンスルホン酸イミドリチウム((CSONLi)等が挙げられる。溶質は1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。溶質の非水溶媒に対する溶解量は、0.5モル/L~2モル/Lとすることが好ましい。
 非水溶媒としては、この分野で常用されるものを使用でき、例えば、環状炭酸エステル、鎖状炭酸エステル、環状カルボン酸エステル等が挙げられる。環状炭酸エステルとしては、プロピレンカーボネート(PC)、エチレンカーボネート(EC)等が挙げられる。鎖状炭酸エステルとしては、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、ジメチルカーボネート(DMC)等が挙げられる。環状カルボン酸エステルとしては、γ-ブチロラクトン(GBL)、γ-バレロラクトン(GVL)等が挙げられる。非水溶媒は1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 また、電池特性をより向上できる観点から、非水溶媒はビニレンカーボネート(VC)を含有することが好ましい。
 ビニレンカーボネート(VC)を含有する場合の含有率は、非水溶媒全量に対して、0.1質量%~2質量%であることが好ましく、0.2質量%~1.5質量%であることがより好ましい。
 以下に、本開示をラミネート型のリチウムイオン二次電池に適用した実施の形態について説明する。
 ラミネート型のリチウムイオン二次電池は、例えば、次のようにして作製できる。まず、正極と負極を角形に切断し、それぞれの電極にタブを溶接し正極端子及び負極端子を作製する。正極と負極との間にセパレータを介在させ積層した電極積層体を作製し、その状態でアルミニウム製のラミネートパック内に収容し、正極端子及び負極端子をアルミラミネートパックの外に出し密封する。次いで、電解液をアルミラミネートパック内に注液し、アルミラミネートパックの開口部を密封する。これにより、リチウムイオン二次電池が得られる。
 次に、図面を参照して、本開示を18650タイプの円柱状リチウムイオン二次電池に適用した実施の形態について説明する。
 図1は、本開示を適用したリチウムイオン二次電池の断面図を示す。
 図1に示すように、本開示のリチウムイオン二次電池1は、ニッケルメッキが施されたスチール製で有底円筒状の電池容器6を有している。電池容器6には、帯状の正極板2及び負極板3がセパレータ4を介して断面渦巻状に捲回された電極群5が収容されている。セパレータ4は、例えば、幅が58mm、厚さが30μmに設定される。電極群5の上端面には、一端部を正極板2に固定されたアルミニウム製でリボン状の正極タブ端子が導出されている。正極タブ端子の他端部は、電極群5の上側に配置され正極外部端子となる円盤状の電池蓋の下面に超音波溶接で接合されている。一方、電極群5の下端面には、一端部を負極板3に固定された銅製でリボン状の負極タブ端子が導出されている。負極タブ端子の他端部は、電池容器6の内底部に抵抗溶接で接合されている。従って、正極タブ端子及び負極タブ端子は、それぞれ電極群5の両端面の互いに反対側に導出されている。なお、電極群5の外周面全周には、図示を省略した絶縁被覆が施されている。電池蓋は、絶縁性の樹脂製ガスケットを介して電池容器6の上部にカシメ固定されている。このため、リチウムイオン二次電池1の内部は密封されている。また、電池容器6内には、図示しない電解液が注液されている。
 以下、本発明を実施例により具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
[実施例1A]
 撹拌機、温度計及び冷却管を装着した1.0リットルのセパラブルフラスコ内に、窒素雰囲気下、ニトリル基含有単量体のアクリロニトリル(和光純薬工業株式会社製)41.8g、式(I)で表される単量体のメトキシトリエチレングリコールアクリレート(新中村化学工業株式会社製、商品名:NKエステルAM-30G)1.4g(アクリロニトリル1モルに対して0.008モルの割合)、重合開始剤の過硫酸カリウム(和光純薬工業株式会社製)767mg、連鎖移動剤のα-メチルスチレンダイマー(和光純薬工業株式会社製)及び精製水(和光純薬工業株式会社製)450mLを加えて反応液を調製した。反応液を激しく撹拌しながら、60℃で3時間、次いで80℃で3時間撹拌した。室温(25℃)に冷却後、反応液を吸引ろ過し、析出した樹脂をろ別した。ろ別した樹脂を精製水(和光純薬工業株式会社製)300mL、アセトン(和光純薬工業株式会社製)300mLで順に洗浄した。洗浄した樹脂を60℃/1torrの真空乾燥機で24時間乾燥して、エネルギーデバイス電極用樹脂を得た。
[実施例2A~5A]
 単量体及び重合開始剤の組成を表1に示した値に変えた以外は実施例1Aに示した方法でエネルギーデバイス電極用樹脂を合成した。
 実施例1A~5Aの組成及び収率をまとめて表1に示す。
Figure JPOXMLDOC01-appb-T000008
[実施例1B]
 撹拌機、温度計及び冷却管を装着した0.5リットルのセパラブルフラスコ内に、窒素雰囲気下、精製水(和光純薬工業株式会社製)400mLを加え、73℃で撹拌しながら重合開始剤の過硫酸アンモニウム(和光純薬工業株式会社製)347mgを加えた。過硫酸アンモニウムが溶解したことを確認したのち、ニトリル基含有単量体のアクリロニトリル(和光純薬工業株式会社製)41.8g及び式(I)で表される単量体のメトキシトリエチレングリコールアクリレート(新中村化学工業株式会社製、商品名:NKエステルAM-30G)1.4g(アクリロニトリル1モルに対して0.008モルの割合)の混合溶液を、2時間かけて滴下した。1時間撹拌後、過硫酸アンモニウムを420mg投入し、さらに1時間撹拌した。次いで、反応溶液を90℃まで昇温し、過硫酸アンモニウムを210mg投入し、さらに1時間撹拌した。その後、室温(25℃)に冷却後、反応液を吸引ろ過し、析出した樹脂をろ別した。ろ別した樹脂を精製水(和光純薬工業株式会社製)300mLで洗浄した。洗浄した樹脂を100℃の乾燥機で12時間乾燥して、エネルギーデバイス電極用樹脂を得た。
[実施例2B~9B]
 単量体及び重合開始剤の組成を表2に示した値に変えた以外は実施例1Bに示した方法でエネルギーデバイス電極用樹脂を合成した。なお、表2中、AM-90Gは、新中村化学工業株式会社製のNKエステルAM-90G(メトキシポリ(n=9)エチレングリコールアクリレート)を、2-MTAは、2-メトキシエチルアクリレートを意味する。
 実施例2B~9Bの組成及び収率をまとめて表2に示す。
Figure JPOXMLDOC01-appb-T000009
(1)電解液に対する耐膨潤性
 実施例1A~5A及び実施例1B~9Bで得られたエネルギーデバイス電極用樹脂並びにポリフッ化ビニリデン(比較例1)とN-メチル-2-ピロリドン(以下、NMPという)とを混合し、全体に対して10質量%のエネルギーデバイス電極用樹脂を含むワニスを作製した。このワニスを乾燥後の膜厚が約10μmになるようにガラス基板上に塗布し、120℃の送風型乾燥機で2時間乾燥したのち、真空乾燥機(120℃/1torr)で10時間乾燥して樹脂膜を作製した。アルゴン雰囲気のグローブボックス中で、得られた樹脂膜を2cm角に裁断し、質量を測定した。その後、密閉可能な容器に、裁断した樹脂膜と、樹脂膜を浸漬するのに十分な量の電解液(1MのLiPFを含むエチレンカーボネート/ジエチルカーボネート/ジメチルカーボネート=1/1/1混合溶液(体積比))とを加え、密閉した。この樹脂膜と電解液の入った密閉容器を25℃と、50℃の恒温槽に入れて24時間放置した。密閉容器を再びアルゴン雰囲気のグローブボックスに入れたのち、樹脂膜を取り出し、表面についた電解液をろ紙で拭き取ってから浸漬後の質量を測定した。下記計算式から膨潤度を算出し、結果を表3及び表4にまとめた。膨潤度が低いものほど耐膨潤性に優れると考える。
  膨潤度(%)=[(浸漬後の質量(g)-浸漬前の質量(g))/(浸漬前の質量)]×100
(2)集電体との接着性
[実施例6A]
 正極活物質であるマンガン酸リチウムと、導電性粒子としてアセチレンブラック(商品名:HS-100、平均粒径48nm(デンカ株式会社カタログ値)、デンカ株式会社製)と、実施例1Aで得られたエネルギーデバイス電極用樹脂とを、固形分の質量比(トータルの質量比が100質量%となる)で90.5質量%~94.5質量%(正極活物質):4.5質量%(導電性粒子):5.0質量%~1.0質量%(エネルギーデバイス電極用樹脂)となるよう混合したのち、さらに粘度調整のためにNMPを加えて正極合剤スラリーを作製した。このスラリーを正極用の集電体である厚さ20μmのアルミニウム箔の片面に、乾燥後の塗布量が150.0g/mとなるよう実質的に均等かつ均質に塗布した。その後、乾燥処理を施し、シート状の電極を作製した。得られた電極をロールプレス機でプレスして合剤層の密度が2.7g/cmの電極を作製した。このとき、合剤層の剥離の有無を目視で確認し、樹脂分(質量%)との関係を調べた。より少ない樹脂分で合剤層の剥離が起きないものほど、接着力が高いと考える。結果を表3に示す。
(3)圧延性
 正極活物質であるマンガン酸リチウムと、導電性粒子としてアセチレンブラック(商品名:HS-100、平均粒径48nm(デンカ株式会社カタログ値)、デンカ株式会社製)と、実施例1Aで得られたエネルギーデバイス電極用樹脂とを、固形分の質量比(トータルの質量比が100質量%となる)で94.0質量%:4.5質量%:1.5質量%となるよう混合したのち、さらに粘度調整のためにNMPを加えて正極合剤スラリーを作製した。このスラリーを正極用の集電体である厚さ20μmのアルミニウム箔の片面に、乾燥後の塗布量が150.0g/mとなるよう実質的に均等かつ均質に塗布した。その後、乾燥処理を施し、シート状の電極を作製した。得られた電極を500mm長さ、53mm幅の短冊状に裁断した後、室温(25℃)において、プレスロールを用いてプレスし、電極密度を測定した。プレスロールにおけるロールギャップは10μmとし、プレス荷重は70kNとした。得られた結果に基づいて、プレス後の電極密度が高いほど圧延性に優れると判断した。結果を表3に示す。なお、電極密度は、合剤層の厚さと合剤層の塗布量から算出した。
[実施例7A~10A及び比較例2]
 実施例2A~5Aで得られたエネルギーデバイス電極用樹脂及びポリフッ化ビニリデン(比較例1)を使用した以外は、実施例6Aと同様にして電極を作製し、評価した。
Figure JPOXMLDOC01-appb-T000010
[実施例10B~18B]
 実施例1B~9Bで得られたエネルギーデバイス電極用樹脂を使用した以外は、実施例6Aと同様にして電極を作製し、評価した。
Figure JPOXMLDOC01-appb-T000011
 表3及び表4の結果より、ポリフッ化ビニリデンに比較して実施例1A~5B及び実施例1B~9Bで得られたエネルギーデバイス電極用樹脂は接着性に優れる。また、ポリフッ化ビニリデンに比較して同程度か、または、やや劣る程度の圧延性を示すことがわかる。なお、圧延性が2.7g/cm程度であれば、実用上差し支えない。また、メトキシトリエチレングリコールアクリレートの使用量を増やすほど、エネルギーデバイス電極用樹脂は高圧延性になることが示唆された。これは、メトキシトリエチレングリコールアクリレートを用いることで、エネルギーデバイス電極用樹脂の柔軟性が向上したためであると考えた。一方、メトキシトリエチレングリコールアクリレートの使用量を増やすほど、膨潤度が高くなる傾向が見られた。これは、メトキシトリエチレングリコールアクリレートが電解液との親和性が高いためであると考えた。膨潤度が高くなる傾向は、メトキシポリ(n=9)エチレングリコールアクリレートを用いた実施例16B~18Bでも見られた。つまり、メトキシポリ(n=9)エチレングリコールアクリレートの使用量が実施例8B、7B及び9Bの順で増加しており、実施例17B、16B及び18Bの順で膨潤度が高くなった。なお、いずれの実施例においてもバインダ樹脂の含有率が1.0質量%以上であれば剥離がなく、比較例に比べて優位性があることが示唆された。
<電池特性の評価>
(1)正極電極の作製
[実施例11A]
 正極活物質であるマンガン酸リチウムと、導電性粒子としてアセチレンブラック(商品名:HS-100、平均粒径48nm(デンカ株式会社カタログ値)、デンカ株式会社製)と、実施例1Aで得られたエネルギーデバイス電極用樹脂とを、固形分の質量比(トータルの質量比が100質量%となる)で94.0質量%:4.5質量%:1.5質量%となるよう混合したのち、さらに粘度調整のためにNMPを加えて正極合剤スラリーを作製した。このスラリーを正極用の集電体である厚さ20μmのアルミニウム箔の片面に、乾燥後の塗布量が150.0g/mとなるよう実質的に均等かつ均質に塗布した。その後、乾燥処理を施し、シート状の電極を作製した。得られた電極を合剤層の密度が2.7g/cmとなるようロールプレス機でプレスしたのち、10.0cm×7.5cmの長方形に切断した。その後、電極内の残留溶媒及び吸着水の除去のため、120℃で16時間真空乾燥して、電池特性評価用の正極電極を得た。
[実施例12A~15A及び実施例19B~27B]
 実施例2A~5A及び実施例1B~9Bで得られたエネルギーデバイス電極用樹脂を使用した以外は、実施例11Aと同様にして正極電極を得た。
<正極評価用電池の作製>
[実施例16A]
 金属リチウムの表面を光沢が出るまで磨き、この金属リチウムを負極集電体である銅メッシュに実質的に均等かつ均質に圧着して10.2cm×7.7cmの長方形の負極電極を得た。次いで、実施例11Aで作製した正極と負極とを、12.0cm×10.0cmの長方形のセパレータを介して対向させた後、正極及び負極それぞれに集電用のタブ線を接続し、電極群を得た。得られた電極群をラミネートに入れ、電解液を1000μL注液した後、真空シールし、ラミネート型電池を得た。電解液には、1.0MのLiPFを含むエチレンカーボネート/ジエチルカーボネート/ジメチルカーボネート=1/1/1混合溶液(体積比)に混合溶液全量に対してビニレンカーボネートを1.0質量%添加したものを使用した。セパレータにはポリエチレンの多孔性シートを使用した。
[実施例17A~20A及び実施例28B~36B]
 実施例12A~15A及び実施例19B~27Bで作製した正極電極を使用した以外は、実施例16Aと同様にして正極評価用電池を作製した。
<容量の測定>
 実施例16A~20A及び実施例28B~36Bの方法で作製した電池を25℃に設定した恒温槽内に入れ、充放電装置(東洋システム株式会社製、商品名:TOSCAT-3200)を用いて25℃の環境下で、以下の条件で充放電した。4.2V、0.1Cで定電流定電圧(CCCV)充電(充電終止条件:0.01C)を行った後、0.1Cで2.7Vまで定電流(CC)放電した。この操作を1サイクルとし、同様の条件で4回(4サイクル)充放電を繰り返し、4サイクル目が終了した際の放電容量を測定し、電池容量とした。
<サイクル特性の評価>
 恒温槽の温度を50℃に変更した以外は容量の測定と同様の条件で、50サイクル後の放電容量を測定した。この値を4サイクル目の放電容量に対する百分率で表し、サイクル特性を評価した。値が大きいほどサイクル特性に優れることを示す。
<入出力特性の評価>
 容量の測定と同様の条件で充放電を4サイクル行ったのち、1Cでの放電容量を測定した。この値を4サイクル目の放電容量に対する百分率で表し、入出力特性を評価した。値が大きいほど入出力特性に優れることを示す。
 評価結果をまとめて表5及び表6に示す。
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
 表5及び表6の結果より、バインダ樹脂として実施例1A~5A及び実施例1B~9Bで得られたエネルギーデバイス電極用樹脂を用いる実施例16A~20A及び実施例28B~36Bは、サイクル特性に優れる。その理由は、以下のように推察される。
 バインダ樹脂は活物質等の表面に付着して接着性を示すものであるところ、正極のバインダ樹脂として一般に用いられるポリフッ化ビニリデンは活物質等の表面と点で接着(点結着)すると考えられる。そのため、ポリフッ化ビニリデンを用いると活物質がむき出しの状態になりやすく、活物質と電解液との間の接触面積が増大する傾向にある。その結果、活物質の表面で電解液の分解によるガスの発生等を誘発することになり、サイクル特性の低下を招くと考えられる。
 一方、実施例1A~5A及び実施例1B~9Bで得られたエネルギーデバイス電極用樹脂は活物質の表面全体を覆って接着(面結着)すると考えられ、活物質がむき出しの状態になるのを抑制できているため活物質の表面で電解液の分解によるガスの発生等が抑制され、高いサイクル特性を維持できていると考えられる。
[実施例21A]
(正極活物質の作製)
 炭酸リチウム1390gを純水に懸濁させた後、金属塩溶液を1.6L/時間で投入した。金属塩溶液は、ニッケル、マンガン及びコバルトの硝酸塩の水和物を用いて調製した。正極活物質として得られる化合物がLiNi0.8Mn0.1Co0.1となるように、金属塩溶液に含まれるニッケル、コバルト及びアルミニウムの比率を、Ni:Mn:Co=80モル%:10モル%:10モル%の組成比に調整した。
 この処理により、溶液中に微粒子のリチウム含有炭酸塩が析出した。この析出物を、飽和炭酸リチウム溶液で2回洗浄し、フィルタープレスを使用してろ別した。続いて析出物を乾燥して、正極活物質の前躯体であるリチウム含有炭酸塩を得た。
 次に得られたリチウム含有炭酸塩を焼成炉に入れて、850℃まで6時間かけて昇温させ、続いて2時間加熱保持した後、冷却して酸化物を得た。得られた酸化物を解砕し、正極活物質を得た。以下、正極活物質をNMC(811)と記載する。
(正極電極の作製)
 正極活物質であるNMC(811)と、導電性粒子としてアセチレンブラック(商品名:HS-100、平均粒径48nm(デンカ株式会社カタログ値)、デンカ株式会社製)と、実施例1Aで得られたエネルギーデバイス電極用樹脂とを、固形分の質量比(トータルの質量比が100質量%となる)で94.0質量%:4.5質量%:1.5質量%となるよう混合したのち、さらに粘度調整のためにNMPを加えて正極合剤スラリーを作製した。このスラリーを正極用の集電体である厚さ20μmのアルミニウム箔の片面に、乾燥後の塗布量が150.0g/mとなるよう実質的に均等かつ均質に塗布した。その後、乾燥処理を施し、シート状の電極を作製した。得られた電極を合剤層の密度が2.7g/cmとなるようロールプレス機でプレスしたのち、9.0cm×6.5cmの長方形に切断した。その後、電極内の残留溶媒及び吸着水の除去のため、120℃で16時間真空乾燥して、電池特性評価用の正極電極を得た。
(正極評価用電池の作製)
 金属リチウムの表面を光沢が出るまで磨き、この金属リチウムを負極集電体である銅メッシュに実質的に均等かつ均質に圧着して9.2cm×6.7cmの長方形の負極電極を得た。次いで、上述のようにして作製した正極と負極とを、12.0cm×10.0cmの長方形のセパレータを介して対向させた後、正極及び負極それぞれに集電用のタブ線を接続し、電極群を得た。得られた電極群をラミネートに入れ、電解液を1000μL注液した後、真空シールし、ラミネート型電池を得た。電解液には、1.0MのLiPFを含むエチレンカーボネート/ジエチルカーボネート/ジメチルカーボネート=1/1/1混合溶液(体積比)に混合溶液全量に対してビニレンカーボネートを1.0質量%添加したものを使用した。セパレータにはポリエチレンの多孔性シートを使用した。
[実施例22A~25A及び実施例37B~45B]
 実施例2A~5A及び実施例1B~9Bで得られたエネルギーデバイス電極用樹脂を使用した以外は、実施例21Aと同様にして正極電極及びラミネート型電池を作製し、評価した。評価結果を表7及び表8に示す。
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
 表7及び表8の結果より、正極活物質としてマンガン酸リチウムに替えてNMC(811)を用いることにより、電池容量が向上する。これらの現象は、正極活物質として用いられたNMC(811)の容量が大きいことに基づくものと考えられる。
 2017年2月27日に出願された国際出願番号PCT/JP2017/007557の開示は、その全体が参照により本明細書に取り込まれる。
 本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。

Claims (14)

  1.  ニトリル基含有単量体由来の構造単位と、
     下記式(I)で表される単量体由来の構造単位と、
    を含み、
     カルボキシ基含有単量体由来であってカルボキシ基を含む構造単位を含まないか又は前記ニトリル基含有単量体由来の構造単位1モルに対する前記カルボキシ基含有単量体由来であってカルボキシ基を含む構造単位の比率が、0.01モル以下であり、
     各単量体由来の構造単位の合計に占める前記ニトリル基含有単量体由来の構造単位の比率が、90モル%以上100モル%未満であるエネルギーデバイス電極用樹脂。
    Figure JPOXMLDOC01-appb-C000001

     
    [式(I)中、Rは水素原子又はメチル基を示し、Rは1価の炭化水素基を示し、nは1~50の整数を示す。]
  2.  前記ニトリル基含有単量体由来の構造単位1モルに対する前記式(I)で表される単量体由来の構造単位の比率が、0.001モル~0.2モルである請求項1に記載のエネルギーデバイス電極用樹脂。
  3.  下記式(II)で表される単量体由来の構造単位をさらに含む請求項1又は請求項2に記載のエネルギーデバイス電極用樹脂。
    Figure JPOXMLDOC01-appb-C000002

     
    [式(II)中、Rは水素原子又はメチル基を示し、Rは炭素数が4~100のアルキル基を示す。]
  4.  前記ニトリル基含有単量体由来の構造単位1モルに対する前記式(II)で表される単量体由来の構造単位の比率が、0.001モル~0.2モルである請求項3に記載のエネルギーデバイス電極用樹脂。
  5.  前記ニトリル基含有単量体が、アクリロニトリルを含む請求項1~請求項4のいずれか1項に記載のエネルギーデバイス電極用樹脂。
  6.  前記式(I)で表される単量体におけるRが、炭素数が1~12のアルキル基又はフェニル基である請求項1~請求項5のいずれか1項に記載のエネルギーデバイス電極用樹脂。
  7.  前記式(I)で表される単量体におけるnが、2~50の整数を示す請求項1~請求項6のいずれか1項に記載のエネルギーデバイス電極用樹脂。
  8.  前記式(I)で表される単量体が、メトキシトリエチレングリコールアクリレートを含む請求項1~請求項7のいずれか1項に記載のエネルギーデバイス電極用樹脂。
  9.  請求項1~請求項8のいずれか1項に記載のエネルギーデバイス電極用樹脂を含むエネルギーデバイス電極形成用組成物。
  10.  リチウムとニッケルとを有しリチウムを除く金属に占めるニッケルの割合が50モル%以上であるリチウム含有金属複合酸化物を含む正極活物質をさらに含む請求項9に記載のエネルギーデバイス電極形成用組成物。
  11.  前記正極活物質が、下記式(III)で表される化合物を含む請求項10に記載のエネルギーデバイス電極形成用組成物。
      LiaNiCo2+e  式(III)
    [式(III)中、Mは、Al、Mn、Mg及びCaからなる群より選択される少なくとも1種であり、a、b、c、d及びeは、各々0.2≦a≦1.2であり、0.5≦b≦0.9であり、0.05≦c≦0.4であり、0≦d≦0.2であり、-0.2≦e≦0.2であり、b+c+d=1である。]
  12.  集電体と、
     前記集電体の少なくとも一方の表面上に設けられ、請求項9~請求項11のいずれか1項に記載のエネルギーデバイス電極形成用組成物を含む電極合剤層と、
    を有するエネルギーデバイス電極。
  13.  請求項12に記載のエネルギーデバイス電極を備えるエネルギーデバイス。
  14.  リチウムイオン二次電池である請求項13に記載のエネルギーデバイス。
PCT/JP2018/007322 2017-02-27 2018-02-27 エネルギーデバイス電極用樹脂、エネルギーデバイス電極形成用組成物、エネルギーデバイス電極及びエネルギーデバイス WO2018155713A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2019501874A JP6908102B2 (ja) 2017-02-27 2018-02-27 エネルギーデバイス電極用樹脂、エネルギーデバイス電極形成用組成物、エネルギーデバイス電極及びエネルギーデバイス
EP18757587.3A EP3588637A4 (en) 2017-02-27 2018-02-27 RESIN FOR ENERGY DEVICE ELECTRODE, ENERGY DEVICE ELECTRODE FORMING COMPOSITION, ENERGY DEVICE ELECTRODE, AND ENERGY DEVICE
US16/488,318 US11482706B2 (en) 2017-02-27 2018-02-27 Resin for energy device electrode, composition for forming energy device electrode, energy device electrode, and energy device
CN201880013726.5A CN110326138A (zh) 2017-02-27 2018-02-27 能量装置电极用树脂、能量装置电极形成用组合物、能量装置电极以及能量装置
KR1020197024723A KR20190103450A (ko) 2017-02-27 2018-02-27 에너지 디바이스 전극용 수지, 에너지 디바이스 전극 형성용 조성물, 에너지 디바이스 전극 및 에너지 디바이스

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PCT/JP2017/007557 WO2018154786A1 (ja) 2017-02-27 2017-02-27 エネルギーデバイス電極用樹脂、エネルギーデバイス電極形成用組成物、エネルギーデバイス電極及びエネルギーデバイス
JPPCT/JP2017/007557 2017-02-27

Publications (1)

Publication Number Publication Date
WO2018155713A1 true WO2018155713A1 (ja) 2018-08-30

Family

ID=63252531

Family Applications (3)

Application Number Title Priority Date Filing Date
PCT/JP2017/007557 WO2018154786A1 (ja) 2017-02-27 2017-02-27 エネルギーデバイス電極用樹脂、エネルギーデバイス電極形成用組成物、エネルギーデバイス電極及びエネルギーデバイス
PCT/JP2018/007321 WO2018155712A1 (ja) 2017-02-27 2018-02-27 エネルギーデバイス電極用樹脂、エネルギーデバイス電極形成用組成物、エネルギーデバイス電極及びエネルギーデバイス
PCT/JP2018/007322 WO2018155713A1 (ja) 2017-02-27 2018-02-27 エネルギーデバイス電極用樹脂、エネルギーデバイス電極形成用組成物、エネルギーデバイス電極及びエネルギーデバイス

Family Applications Before (2)

Application Number Title Priority Date Filing Date
PCT/JP2017/007557 WO2018154786A1 (ja) 2017-02-27 2017-02-27 エネルギーデバイス電極用樹脂、エネルギーデバイス電極形成用組成物、エネルギーデバイス電極及びエネルギーデバイス
PCT/JP2018/007321 WO2018155712A1 (ja) 2017-02-27 2018-02-27 エネルギーデバイス電極用樹脂、エネルギーデバイス電極形成用組成物、エネルギーデバイス電極及びエネルギーデバイス

Country Status (7)

Country Link
US (2) US11482706B2 (ja)
EP (2) EP3588637A4 (ja)
JP (2) JP6904413B2 (ja)
KR (2) KR102340089B1 (ja)
CN (2) CN110326138A (ja)
TW (2) TWI774732B (ja)
WO (3) WO2018154786A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023276709A1 (ja) * 2021-06-30 2023-01-05 日本ゼオン株式会社 電気化学素子用バインダー組成物、電気化学素子用導電材分散液、電気化学素子電極用スラリー、電気化学素子用電極及び電気化学素子

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018154786A1 (ja) * 2017-02-27 2018-08-30 日立化成株式会社 エネルギーデバイス電極用樹脂、エネルギーデバイス電極形成用組成物、エネルギーデバイス電極及びエネルギーデバイス
TWI743683B (zh) * 2020-02-14 2021-10-21 碩禾電子材料股份有限公司 用於hjt太陽能電池的導電漿料、hjt太陽能電池與電極結構

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003132893A (ja) 2001-10-26 2003-05-09 Nippon Zeon Co Ltd 電極用スラリー組成物、電極およびリチウムイオン二次電池
JP2004185826A (ja) * 2002-11-29 2004-07-02 Nippon Zeon Co Ltd 電極用スラリー組成物、電極および二次電池
WO2006033173A1 (ja) 2004-09-22 2006-03-30 Hitachi Chemical Company, Ltd. 非水電解液系エネルギーデバイス電極用バインダ樹脂組成物、非水電解液系エネルギーデバイス電極及び非水電解液系エネルギーデバイス
WO2014142281A1 (ja) * 2013-03-15 2014-09-18 日産自動車株式会社 非水電解質二次電池用正極およびこれを用いた非水電解質二次電池

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4325061B2 (ja) * 2000-03-09 2009-09-02 日本ゼオン株式会社 リチウムイオン二次電池電極用バインダーおよびその利用
JP4415453B2 (ja) * 2000-05-22 2010-02-17 日本ゼオン株式会社 リチウムイオン二次電池電極用バインダーおよびその利用
JP4273687B2 (ja) * 2001-09-21 2009-06-03 日本ゼオン株式会社 二次電池電極用バインダー組成物および二次電池
US7172850B2 (en) * 2002-04-10 2007-02-06 Eastman Kodak Company Preparation of solvent-resistant binder for an imageable element
JP2010251280A (ja) * 2009-03-23 2010-11-04 Sanyo Electric Co Ltd 非水電解質二次電池
US9093702B2 (en) * 2009-09-03 2015-07-28 Samsung Sdi Co., Ltd. Electrolytic solution for lithium battery, lithium battery employing the same and method for operating the lithium battery
JP5790193B2 (ja) * 2011-06-20 2015-10-07 日立化成株式会社 エネルギーデバイス電極用バインダ樹脂材料、エネルギーデバイス電極及びエネルギーデバイス
JP5760966B2 (ja) * 2011-11-04 2015-08-12 日立化成株式会社 エネルギーデバイス電極用バインダ樹脂材料、エネルギーデバイス電極及びエネルギーデバイス
WO2013150778A1 (ja) * 2012-04-03 2013-10-10 株式会社Gsユアサ 電池用正極及び電池
WO2014181449A1 (ja) * 2013-05-10 2014-11-13 株式会社 日立製作所 リチウムニ次電池用負極、およびリチウムニ次電池
KR20170086652A (ko) * 2014-12-08 2017-07-26 히타치가세이가부시끼가이샤 리튬 이온 이차 전지용 정극 및 그것을 사용한 리튬 이온 이차 전지
WO2016147857A1 (ja) * 2015-03-18 2016-09-22 日立化成株式会社 バインダ樹脂組成物、リチウムイオン二次電池用電極、及びリチウムイオン二次電池
US20190097234A1 (en) * 2015-10-05 2019-03-28 Hitachi Chemical Company, Ltd. Resin for energy device electrode, composition for forming energy device electrode, positive electrode for energy device, and energy device
CN110199409A (zh) * 2017-01-23 2019-09-03 日立化成株式会社 能量装置用电极和能量装置
WO2018154787A1 (ja) * 2017-02-27 2018-08-30 日立化成株式会社 エネルギーデバイス電極用複合樹脂、エネルギーデバイス電極形成用組成物、エネルギーデバイス用正極及びエネルギーデバイス
WO2018154786A1 (ja) * 2017-02-27 2018-08-30 日立化成株式会社 エネルギーデバイス電極用樹脂、エネルギーデバイス電極形成用組成物、エネルギーデバイス電極及びエネルギーデバイス

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003132893A (ja) 2001-10-26 2003-05-09 Nippon Zeon Co Ltd 電極用スラリー組成物、電極およびリチウムイオン二次電池
JP2004185826A (ja) * 2002-11-29 2004-07-02 Nippon Zeon Co Ltd 電極用スラリー組成物、電極および二次電池
WO2006033173A1 (ja) 2004-09-22 2006-03-30 Hitachi Chemical Company, Ltd. 非水電解液系エネルギーデバイス電極用バインダ樹脂組成物、非水電解液系エネルギーデバイス電極及び非水電解液系エネルギーデバイス
WO2014142281A1 (ja) * 2013-03-15 2014-09-18 日産自動車株式会社 非水電解質二次電池用正極およびこれを用いた非水電解質二次電池

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JOURNAL OF POWER SOURCES, vol. 109, 2002, pages 422 - 426
LI ET AL.: "Study of the Failure Mechanisms of LiNi0.8Mn0.1Co0.1O2 Cathode Material for Lithium Ion Batteries", JOURNAL OF THE ELECTROCHEMICAL SOCIETY, vol. 162, no. 7, 2015, pages A1401 - A1408, XP055535218 *
See also references of EP3588637A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023276709A1 (ja) * 2021-06-30 2023-01-05 日本ゼオン株式会社 電気化学素子用バインダー組成物、電気化学素子用導電材分散液、電気化学素子電極用スラリー、電気化学素子用電極及び電気化学素子

Also Published As

Publication number Publication date
US11482706B2 (en) 2022-10-25
CN110326139A (zh) 2019-10-11
JPWO2018155712A1 (ja) 2019-12-26
EP3588637A1 (en) 2020-01-01
EP3588637A4 (en) 2020-10-28
EP3588635A1 (en) 2020-01-01
TW201841958A (zh) 2018-12-01
KR102340089B1 (ko) 2021-12-15
TWI774732B (zh) 2022-08-21
US20190379051A1 (en) 2019-12-12
WO2018154786A1 (ja) 2018-08-30
JP6908102B2 (ja) 2021-07-21
JP6904413B2 (ja) 2021-07-14
KR20190112035A (ko) 2019-10-02
KR20190103450A (ko) 2019-09-04
CN110326138A (zh) 2019-10-11
EP3588635A4 (en) 2020-10-28
TWI785013B (zh) 2022-12-01
TW201838233A (zh) 2018-10-16
WO2018155712A1 (ja) 2018-08-30
US20190379052A1 (en) 2019-12-12
JPWO2018155713A1 (ja) 2020-04-23

Similar Documents

Publication Publication Date Title
KR100935986B1 (ko) 비수전해액계 에너지장치 전극용 바인더 수지 조성물, 비수전해액계 에너지장치 전극 및 비수전해액계 에너지장치
WO2016129459A1 (ja) リチウムイオン二次電池用正極、リチウムイオン二次電池用電極、及びリチウムイオン二次電池
WO2016093095A1 (ja) リチウムイオン二次電池用正極及びそれを用いたリチウムイオン二次電池
CN110326140B (zh) 能量装置电极用复合树脂、能量装置电极形成用组合物、能量装置用正极以及能量装置
WO2018155713A1 (ja) エネルギーデバイス電極用樹脂、エネルギーデバイス電極形成用組成物、エネルギーデバイス電極及びエネルギーデバイス
JP6789498B2 (ja) エネルギーデバイス電極形成用組成物、エネルギーデバイス用正極及びエネルギーデバイス
JP7283137B2 (ja) 電極用バインダー、電極合剤、エネルギーデバイス用電極及びエネルギーデバイス
JP6885411B2 (ja) エネルギーデバイス用電極及びエネルギーデバイス
WO2014098233A1 (ja) エネルギーデバイス電極用バインダ樹脂材料、エネルギーデバイス電極及びエネルギーデバイス
WO2018087897A1 (ja) エネルギーデバイス電極用樹脂、エネルギーデバイス電極形成用組成物、エネルギーデバイス電極及びエネルギーデバイス
JP7192224B2 (ja) 電極用バインダー、電極合剤、エネルギーデバイス用電極及びエネルギーデバイス
JP7091602B2 (ja) エネルギーデバイス用電極及びエネルギーデバイス

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18757587

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019501874

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197024723

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018757587

Country of ref document: EP

Effective date: 20190927