WO2018154787A1 - エネルギーデバイス電極用複合樹脂、エネルギーデバイス電極形成用組成物、エネルギーデバイス用正極及びエネルギーデバイス - Google Patents

エネルギーデバイス電極用複合樹脂、エネルギーデバイス電極形成用組成物、エネルギーデバイス用正極及びエネルギーデバイス Download PDF

Info

Publication number
WO2018154787A1
WO2018154787A1 PCT/JP2017/007558 JP2017007558W WO2018154787A1 WO 2018154787 A1 WO2018154787 A1 WO 2018154787A1 JP 2017007558 W JP2017007558 W JP 2017007558W WO 2018154787 A1 WO2018154787 A1 WO 2018154787A1
Authority
WO
WIPO (PCT)
Prior art keywords
energy device
positive electrode
structural unit
resin
unit derived
Prior art date
Application number
PCT/JP2017/007558
Other languages
English (en)
French (fr)
Inventor
広喜 葛岡
鈴木 健司
駿介 長井
Original Assignee
日立化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成株式会社 filed Critical 日立化成株式会社
Priority to PCT/JP2017/007558 priority Critical patent/WO2018154787A1/ja
Priority to JP2019501875A priority patent/JP6988879B2/ja
Priority to US16/488,335 priority patent/US20200235397A1/en
Priority to CN201880014040.8A priority patent/CN110326140B/zh
Priority to TW107106672A priority patent/TWI785014B/zh
Priority to KR1020197024724A priority patent/KR102381115B1/ko
Priority to EP18758204.4A priority patent/EP3588638A4/en
Priority to PCT/JP2018/007323 priority patent/WO2018155714A1/ja
Priority to TW107106667A priority patent/TW201842702A/zh
Priority to PCT/JP2018/007324 priority patent/WO2018155715A1/ja
Publication of WO2018154787A1 publication Critical patent/WO2018154787A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/42Nitriles
    • C08F220/44Acrylonitrile
    • C08F220/46Acrylonitrile with carboxylic acids, sulfonic acids or salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08L27/16Homopolymers or copolymers or vinylidene fluoride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L35/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical, and containing at least one other carboxyl radical in the molecule, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L35/04Homopolymers or copolymers of nitriles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • H01M4/623Binders being polymers fluorinated polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/20Applications use in electrical or conductive gadgets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a composite resin for energy device electrodes, a composition for forming energy device electrodes, a positive electrode for energy devices, and an energy device.
  • Lithium ion secondary batteries which are non-aqueous electrolyte type energy devices having a high energy density, are widely used as power sources for portable information terminals such as notebook computers, mobile phones, and PDAs (Personal Digital Assistants).
  • a carbon material having a multilayer structure capable of inserting lithium ions between layers (forming a lithium intercalation compound) and releasing is mainly used as the negative electrode active material.
  • lithium-containing metal composite oxide is mainly used as the positive electrode active material.
  • the electrode of the lithium ion secondary battery is prepared by kneading these active materials, binder resin, solvent (N-methyl-2-pyrrolidone, water, etc.), etc., and then collecting this with a transfer roll or the like. It is applied to one or both sides of a metal foil, which is a body, and after removing the solvent by drying to form a mixture layer, it is produced by compression molding with a roll press or the like.
  • lithium-containing metal composite oxide examples include lithium cobaltate (LiCoO 2 ), lithium manganate (LiMn 2 O 4 ), nickel manganese lithium cobaltate (LiNi 1/3 Mn 1/3 Co 1/3 O 2 ), phosphorus such as lithium iron (LiFePO 4) and is frequently used, alone one according to the purpose, or used in combination of two or more.
  • PVDF polyvinylidene fluoride
  • the alkali metal hydroxide such as LiOH used when producing the lithium-containing metal composite oxide
  • PVDF which is frequently used as a binder resin
  • the positive electrode for energy devices of a nonaqueous electrolyte system is produced by applying a positive electrode slurry containing a lithium-containing metal composite oxide and PVDF on a current collector.
  • the positive electrode slurry becomes basic.
  • a method for producing a positive electrode active material capable of preventing gelation of the positive electrode slurry a method for producing a positive electrode active material comprising a specific layered compound, in which the synthesized positive electrode active material powder is stirred and mixed in pure water. Thereafter, when the pH of a supernatant obtained by standing is measured, only a positive electrode active material having a pH within a specific range is selected, and a method for producing a positive electrode active material is disclosed (for example, see Patent Document 2.)
  • JP 2008-235147 A Japanese Patent No. 4951823
  • Patent Document 2 may cause a decrease in capacity density or a decrease in cycle characteristics.
  • the present invention has been made in view of the above circumstances, and for an energy device electrode in which gelation of slurry and sedimentation of slurry are suppressed when a lithium-containing metal composite oxide having a high nickel content is used as a positive electrode active material. It aims at providing the composite resin, the composition for energy device electrode formation using the same, the positive electrode for energy devices, and an energy device.
  • a lithium-containing metal composite that contains a resin containing a structural unit derived from a nitrile group-containing monomer and a fluororesin, and that has lithium and nickel, and the proportion of nickel in the metal excluding lithium is 50 mol% or more
  • the mass ratio of the resin containing the structural unit derived from the nitrile group-containing monomer and the fluororesin is 90:10.
  • the resin including a structural unit derived from a nitrile group-containing monomer further includes a structural unit derived from a monomer represented by the following formula (II): Any one of ⁇ 1> to ⁇ 3> The composite resin for energy device electrodes described in 1.
  • R 1 represents a hydrogen atom or a methyl group
  • R 2 represents a hydrogen atom or a monovalent hydrocarbon group
  • n represents an integer of 1 to 50.
  • the resin including a structural unit derived from a nitrile group-containing monomer further includes a structural unit derived from a monomer represented by the following formula (III): Any one of ⁇ 1> to ⁇ 5>
  • R 3 represents a hydrogen atom or a methyl group
  • R 4 represents an alkyl group having 4 to 30 carbon atoms.
  • ⁇ 7> The structure derived from the monomer represented by the formula (III) with respect to 1 mol of the structural unit derived from the nitrile group-containing monomer contained in the resin containing the structural unit derived from the nitrile group-containing monomer.
  • ⁇ 8> The composite resin for energy device electrodes according to any one of ⁇ 1> to ⁇ 7>, wherein the nitrile group-containing monomer includes acrylonitrile.
  • ⁇ 9> The composite resin for energy device electrodes according to any one of ⁇ 1> to ⁇ 8>, wherein the fluororesin includes polyvinylidene fluoride (PVDF).
  • PVDF polyvinylidene fluoride
  • a positive electrode active material comprising a lithium-containing metal composite oxide having lithium and nickel, wherein the proportion of nickel in the metal excluding lithium is 50 mol% or more, and any one of ⁇ 1> to ⁇ 9>
  • a composition for forming an energy device electrode comprising the composite resin for an energy device electrode according to Item.
  • ⁇ 14> The energy device according to ⁇ 13>, wherein the energy device is a lithium ion secondary battery.
  • the gelation of the slurry and the composite resin for an energy device electrode in which the sedimentation of the slurry is suppressed and the energy device using the same
  • An electrode-forming composition, a positive electrode for an energy device, and an energy device are provided.
  • the term “process” includes a process that is independent of other processes and includes the process if the purpose of the process is achieved even if it cannot be clearly distinguished from the other processes. It is.
  • numerical values indicated by using “to” include numerical values described before and after “to” as the minimum value and the maximum value, respectively.
  • the upper limit value or the lower limit value described in one numerical range may be replaced with the upper limit value or the lower limit value of another numerical range. Good. Further, in the numerical ranges described in this specification, the upper limit value or the lower limit value of the numerical range may be replaced with the values shown in the examples.
  • the content of each component in the composition is the sum of the plurality of substances present in the composition unless there is a specific indication when there are a plurality of substances corresponding to each component in the composition. It means the content rate of.
  • the particle diameter of each component in the composition is a mixture of the plurality of types of particles present in the composition unless there is a specific indication when there are a plurality of types of particles corresponding to each component in the composition. Means the value of.
  • the term “layer” or “film” refers to a part of the region in addition to the case where the layer or the film is formed when the region where the layer or film exists is observed. It is also included when it is formed only.
  • (meth) acryl means at least one of acryl and methacryl
  • (meth) acrylate means at least one of acrylate and methacrylate
  • the “binder resin” refers to a resin having a function of binding particles such as an active material.
  • the composite resin for energy device electrodes of the present disclosure contains a resin containing a structural unit derived from a nitrile group-containing monomer and a fluororesin, and the proportion of nickel in the metal excluding lithium having lithium and nickel is 50 mol. % Or more of the lithium-containing metal composite oxide (hereinafter, also referred to as a specific metal oxide) is used to form a positive electrode mixture layer containing a positive electrode active material.
  • slurry sedimentation means that the positive electrode active material settles in a slurry in which a positive electrode active material, a conductive material, a binder resin, etc. are mixed in a solvent such as N-methyl-2-pyrrolidone (NMP). It refers to the phenomenon.
  • NMP N-methyl-2-pyrrolidone
  • a fluororesin such as PVDF tends to be altered by the elimination reaction of HF when it comes into contact with a basic substance such as LiOH. Therefore, when forming a mixture layer using fluororesins, such as PVDF, the slurry containing fluororesins, such as PVDF, tends to gel. In particular, when a positive electrode active material containing a specific metal oxide is used, the slurry is easily gelled.
  • a nitrile group in a resin containing a structural unit derived from a nitrile group-containing monomer is less likely to undergo a elimination reaction when contacting with a basic substance as compared with a fluorine atom. Therefore, a resin containing a structural unit derived from a nitrile group-containing monomer tends to be harder to change when it comes into contact with a basic substance than a fluororesin.
  • a resin containing a structural unit derived from a nitrile group-containing monomer tends to be adsorbed on the particulate conductive material and tends to disperse the particulate conductive material excessively in the slurry.
  • the particulate conductive material is in an excessively dispersed state, it is difficult to form a higher order structure of the conductive material, and it is difficult to hold the positive electrode active material in the higher order structure of the conductive material. Therefore, when forming a mixture layer using a resin containing a structural unit derived from a nitrile group-containing monomer, a slurry using a resin containing a structural unit derived from a nitrile group-containing monomer tends to settle.
  • the slurry tends to settle when the content of the conductive material in the mixture layer is 1.5% by mass or less.
  • a fluororesin such as PVDF does not easily disperse the particulate conductive material because fluorine atoms are contained in the fluororesin, and easily forms a higher order structure of the conductive material. Therefore, the positive electrode active material is easily held in the higher-order structure of the conductive material, and the slurry tends not to settle.
  • the composite resin for energy device electrodes of the present disclosure contains a resin containing a structural unit derived from a nitrile group-containing monomer and a fluororesin
  • a gel of a slurry having a resin containing a structural unit derived from a nitrile group-containing monomer It is presumed that the effect of suppressing the crystallization and the effect of suppressing the sedimentation of the slurry of the fluororesin are exhibited, and the gelation of the slurry and the sedimentation of the slurry are suppressed.
  • the slurry is difficult to gel.
  • the content of the conductive material in the mixture layer is a slurry having a content of 1.5% by mass or less, the slurry is unlikely to settle.
  • the fluororesin refers to a resin including a structural unit in which some or all of the hydrogen atoms in the polyethylene skeleton are substituted with fluorine atoms in the main chain.
  • the resin including a structural unit derived from a nitrile group-containing monomer includes a structural unit derived from a nitrile group-containing monomer in the main chain, and a part or all of the hydrogen atoms in the polyethylene skeleton are fluorine.
  • the composite resin for energy device electrodes of the present disclosure contains a resin containing a structural unit derived from a nitrile group-containing monomer.
  • nitrile group-containing monomer- There is no restriction
  • nitrile group-containing monomers include acrylic nitrile group-containing monomers such as acrylonitrile and methacrylonitrile, cyan nitrile group-containing monomers such as ⁇ -cyanoacrylate and dicyanovinylidene, and fumarate nitrile groups such as fumaronitrile. Containing monomers and the like.
  • acrylonitrile is preferable in terms of ease of polymerization, cost performance, electrode flexibility, flexibility, oxidation resistance, resistance to swelling with respect to an electrolytic solution, and the like.
  • the ratio of acrylonitrile in the nitrile group-containing monomer is, for example, preferably 5% by mass to 100% by mass, more preferably 50% by mass to 100% by mass, and 70% by mass to 100% by mass. More preferably it is.
  • One of these nitrile group-containing monomers may be used alone, or two or more thereof may be used in combination.
  • the content of acrylonitrile is preferably, for example, 5% by mass to 95% by mass with respect to the total amount of the nitrile group-containing monomer. 50 mass% to 95 mass% is more preferable.
  • the resin including a structural unit derived from a nitrile group-containing monomer used in the present disclosure preferably further includes a structural unit derived from a monomer represented by the formula (II) from the viewpoint of flexibility of the electrode.
  • R 1 represents a hydrogen atom or a methyl group.
  • n represents an integer of 1 to 50, preferably an integer of 2 to 30, and more preferably an integer of 2 to 10.
  • R 2 represents a hydrogen atom or a monovalent hydrocarbon group, for example, monovalent hydrocarbon preferably a monovalent hydrocarbon group with a carbon number 1 to 30, carbon atoms is 1 to 25 A hydrogen group is more preferable, and a monovalent hydrocarbon group having 1 to 12 carbon atoms is more preferable.
  • the carbon number of the monovalent hydrocarbon group does not include the carbon number contained in the substituent.
  • R 2 is a hydrogen atom or a monovalent hydrocarbon group having 1 to 30 carbon atoms, sufficient swelling resistance to the electrolytic solution tends to be obtained.
  • the monovalent hydrocarbon group include an alkyl group and a phenyl group.
  • R 2 is preferably an alkyl group having 1 to 12 carbon atoms or a phenyl group.
  • the alkyl group may be linear, branched or cyclic.
  • a part of hydrogen atoms may be substituted with a substituent.
  • R 2 is an alkyl group
  • a halogen atom such as a fluorine atom, a chlorine atom, a bromine atom and an iodine atom
  • a substituent containing a nitrogen atom a substituent containing a phosphorus atom, and an aromatic ring.
  • substituent when R 2 is a phenyl group include a halogen atom such as a fluorine atom, a chlorine atom, a bromine atom and an iodine atom, a substituent containing a nitrogen atom, a substituent containing a phosphorus atom, an aromatic ring, and a carbon number. Examples thereof include 3 to 10 linear, branched or cyclic alkyl groups.
  • a monomer represented by the formula (II) a commercially available product or a synthetic product may be used. Specific examples of commercially available monomers represented by the formula (II) include ethoxydiethylene glycol acrylate (manufactured by Kyoeisha Chemical Co., Ltd., trade name: Light acrylate EC-A), methoxytriethylene, and the like.
  • methoxytriethylene glycol acrylate (R 1 in the general formula (II) is H, R 2 is CH 3 , in terms of reactivity when copolymerized with a nitrile group-containing monomer such as acrylonitrile. n is more preferably 3).
  • R 1 in the general formula (II) is H
  • R 2 is CH 3
  • n is more preferably 3
  • One of these monomers represented by the formula (II) may be used alone, or two or more thereof may be used in combination.
  • the resin including a structural unit derived from a nitrile group-containing monomer used in the present disclosure preferably further includes a structural unit derived from a monomer represented by the formula (III) from the viewpoint of flexibility of the electrode.
  • R 3 represents a hydrogen atom or a methyl group.
  • R 4 has a carbon number represents an alkyl group having 4 to 30, preferably an alkyl group having 5-25 carbon atoms, more preferably an alkyl group having a carbon number of 6 to 20, more preferably carbon number Is an alkyl group of 8 to 16. If the alkyl group represented by R 4 has 4 or more carbon atoms, sufficient flexibility tends to be obtained. If the number of carbon atoms of the alkyl group represented by R 4 is 30 or less, sufficient swelling resistance to the electrolytic solution tends to be obtained. Note that when the alkyl group represented by R 4 has a substituent, the carbon number of the alkyl group does not include the carbon number included in the substituent.
  • the alkyl group represented by R 4 may be linear, branched or cyclic. In the alkyl group represented by R 4 , some hydrogen atoms may be substituted with a substituent.
  • substituents include a halogen atom such as a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom, a substituent containing a nitrogen atom, a substituent containing a phosphorus atom, an aromatic ring, and a cycloalkyl group having 3 to 10 carbon atoms. Can be mentioned.
  • alkyl group represented by R 4 examples include linear, branched or cyclic alkyl groups, and halogenated alkyl groups such as fluoroalkyl groups, chloroalkyl groups, bromoalkyl groups, and alkyl iodide groups. It is done.
  • a commercially available product or a synthetic product may be used.
  • Specific examples of commercially available monomers represented by formula (III) include n-butyl (meth) acrylate, isobutyl (meth) acrylate, t-butyl (meth) acrylate, and amyl (meth) ) Acrylate, isoamyl (meth) acrylate, hexyl (meth) acrylate, heptyl (meth) acrylate, octyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, nonyl (meth) acrylate, decyl (meth) acrylate, isodecyl (meth) ) Acrylate, lauryl (meth) acrylate, tridecyl (meth) acrylate, hexadecyl (meth) acrylate, stearyl (meth) acryl
  • R 4 is a fluoroalkyl group, 1,1-bis (trifluoromethyl) -2,2,2-trifluoroethyl acrylate, 2,2,3,3,4,4,4-heptafluoro Butyl acrylate, 2,2,3,4,4,4-hexafluorobutyl acrylate, nonafluoroisobutyl acrylate, 2,2,3,3,4,4,5,5-octafluoropentyl acrylate, 2,2 , 3,3,4,4,5,5,5-nonafluoropentyl acrylate, 2,2,3,3,4,4,5,5,6,6,6-undecafluorohexyl acrylate, 2, 2,3,3,4,4,5,5,6,6,7,7,8,8,8-pentadecafluorooctyl acrylate, 3,3,4,4,5,5,6,6 7, 7, 8, 8, 9, 9, 10, 10, 10-heptadecafluorodecyl acrylate, 2,2,3,3,4,4,5,5,6,6,7,7,8,8,9
  • the resin including a structural unit derived from a nitrile group-containing monomer used in the present disclosure is derived from a carboxy group-containing monomer and includes a carboxy group from the viewpoint of adhesion between the current collector and the mixture layer. Units may be included.
  • the carboxy group-containing monomer is not particularly limited, and includes acrylic carboxy group-containing monomers such as acrylic acid and methacrylic acid, croton carboxy group-containing monomers such as crotonic acid, maleic acid, and anhydrides thereof.
  • Maleic carboxy group-containing monomers such as itaconic acid and its anhydride, and citraconic carboxy group-containing monomers such as citraconic acid and its anhydride.
  • acrylic acid is preferable in terms of ease of polymerization, cost performance, electrode flexibility, flexibility, and the like.
  • a carboxy group containing monomer may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the acrylic acid content is determined as follows: For example, the content is preferably 5% by mass to 95% by mass, and more preferably 50% by mass to 95% by mass with respect to the total amount.
  • the resin containing a structural unit derived from a nitrile group-containing monomer used in the present disclosure is derived from a structural unit derived from a nitrile group-containing monomer, or a monomer represented by the formula (II) included as necessary.
  • Structural units, structural units derived from the monomer represented by formula (III), and structural units derived from a carboxy group-containing monomer and containing a carboxy group, as well as other single quantities different from these monomers The structural units derived from the body can be appropriately combined.
  • monomers are not particularly limited, and short chain (meth) acrylates such as methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, vinyl chloride, bromide Vinyl halides such as vinyl and vinylidene chloride, maleic acid imide, phenylmaleimide, (meth) acrylamide, styrene, ⁇ -methylstyrene, vinyl acetate, sodium (meth) allylsulfonate, sodium (meth) allyloxybenzenesulfonate , Sodium styrenesulfonate, 2-acrylamido-2-methylpropanesulfonic acid and its salts.
  • These other monomers may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the resin containing a structural unit derived from a nitrile group-containing monomer used in the present disclosure is a structural unit derived from a monomer represented by formula (II), or a structure derived from a monomer represented by formula (III)
  • the ratio to 1 mol of the structural unit derived from the nitrile group-containing monomer is as follows: A molar ratio is preferred.
  • the positive electrode current collector When the ratio of the structural unit derived from the monomer represented by the formula (II) to 1 mol of the structural unit derived from the nitrile group-containing monomer is in the range of 0.001 mol to 0.2 mol, the positive electrode current collector In particular, adhesion to a positive electrode current collector using an aluminum foil and swelling resistance to an electrolytic solution are excellent, and the flexibility and flexibility of the electrode tend to be good.
  • the resin containing a structural unit derived from a nitrile group-containing monomer used in the present disclosure contains a structural unit derived from a monomer represented by the formula (III), 1 mol of the structural unit derived from a nitrile group-containing monomer
  • the ratio of the structural unit derived from the monomer represented by the formula (III) to is preferably 0.001 mol to 0.2 mol, more preferably 0.003 mol to 0.05 mol. More preferably, the amount is 0.005 mol to 0.02 mol.
  • the positive electrode current collector It is excellent in adhesion to a positive electrode current collector using an aluminum body, in particular, an aluminum foil and swelling resistance to an electrolytic solution, and the flexibility and flexibility of the electrode tend to be good.
  • the resin containing a structural unit derived from a nitrile group-containing monomer used in the present disclosure is derived from a carboxy group-containing monomer and contains a structural unit containing a carboxy group
  • the structural unit 1 derived from a nitrile group-containing monomer
  • the ratio of the structural unit derived from the carboxy group-containing monomer to the mole and containing the carboxy group is preferably 0.01 mol to 0.2 mol, and preferably 0.02 mol to 0.1 mol. More preferably, it is 0.03 mol to 0.06 mol.
  • the positive electrode current collector It is excellent in adhesion to a positive electrode current collector using an aluminum body, in particular, an aluminum foil and swelling resistance to an electrolytic solution, and the flexibility and flexibility of the electrode tend to be good.
  • the resin containing a structural unit derived from a nitrile group-containing monomer used in the present disclosure contains a structural unit derived from another monomer, the other monomer with respect to 1 mol of the structural unit derived from the nitrile group-containing monomer
  • the ratio of the derived structural unit is preferably 0.005 mol to 0.1 mol, more preferably 0.01 mol to 0.06 mol, and 0.03 mol to 0.05 mol. More preferably.
  • the content of the structural unit derived from the nitrile group-containing monomer in the resin including the structural unit derived from the nitrile group-containing monomer used in the present disclosure is the same as that of the resin including the structural unit derived from the nitrile group-containing monomer. Based on the total amount, it is preferably 80 mol% or more, and more preferably 90 mol% or more.
  • the resin containing a structural unit derived from a nitrile group-containing monomer used in the present disclosure is a structural unit derived from a cross-linking component for complementing the swelling resistance to the electrolyte solution, to complement the flexibility and flexibility of the electrode.
  • the structural unit derived from the rubber component may be included.
  • Examples of the polymerization mode for synthesizing a resin containing a structural unit derived from a nitrile group-containing monomer used in the present disclosure include precipitation polymerization, bulk polymerization, suspension polymerization, emulsion polymerization, solution polymerization, and the like. There is no. Precipitation polymerization in water is preferred in terms of ease of synthesis, ease of post-treatment such as recovery and purification. Hereinafter, the precipitation polymerization in water will be described in detail.
  • Water-soluble polymerization initiator As the polymerization initiator for carrying out precipitation polymerization in water, a water-soluble polymerization initiator is preferable in view of polymerization initiation efficiency and the like.
  • Water-soluble polymerization initiators include persulfates such as ammonium persulfate, potassium persulfate and sodium persulfate, water-soluble peroxides such as hydrogen peroxide, 2,2′-azobis (2-methylpropionamidine hydrochloride) A combination of water-soluble azo compounds such as persulfate, etc.
  • reducing agents such as sodium bisulfite, ammonium bisulfite, sodium thiosulfate, hydrosulfite and polymerization accelerators such as sulfuric acid, iron sulfate, copper sulfate Redox type (redox type) and the like.
  • persulfates water-soluble azo compounds, and the like are preferable in terms of ease of resin synthesis.
  • ammonium persulfate is particularly preferred.
  • acrylonitrile is selected as the nitrile group-containing monomer
  • acrylic acid is selected as the carboxy group-containing monomer
  • methoxytriethylene glycol acrylate is selected as the monomer represented by the formula (II) to precipitate in water.
  • all the three monomers are water-soluble in the state of monomers (also referred to as monomers), so that the water-soluble polymerization initiator acts effectively and the polymerization starts smoothly. Since the polymer precipitates as the polymerization proceeds, the reaction system becomes suspended, and finally a resin containing a structural unit derived from a nitrile group-containing monomer with little unreacted substance is obtained in a high yield. It is done.
  • the polymerization initiator should be used, for example, in the range of 0.001 mol% to 5 mol% with respect to the total amount of monomers used for the synthesis of the resin including the structural unit derived from the nitrile group-containing monomer. It is preferable to use in the range of 0.01 mol% to 2 mol%.
  • a chain transfer agent when carrying out precipitation polymerization in water, a chain transfer agent can be used for the purpose of adjusting the molecular weight.
  • the chain transfer agent include mercaptan compounds, carbon tetrachloride, ⁇ -methylstyrene dimer and the like. Of these, ⁇ -methylstyrene dimer is preferred from the viewpoint of low odor.
  • a solvent other than water can be added as necessary for adjusting the particle diameter of the resin to be precipitated.
  • solvents other than water include amides such as N-methyl-2-pyrrolidone, N, N-dimethylacetamide, N, N-dimethylformamide, N, N-dimethylethyleneurea, N, N-dimethylpropyleneurea, tetra Ureas such as methylurea, lactones such as ⁇ -butyrolactone and ⁇ -caprolactone, carbonates such as propylene carbonate, ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, methyl acetate, ethyl acetate, n-butyl acetate , Esters such as butyl cellosolve acetate, butyl carbitol acetate, ethyl cellosolve
  • -Polymerization method- Precipitation polymerization in water includes, for example, a nitrile group-containing monomer and a carboxy group-containing monomer used as necessary, a monomer represented by formula (II), a monomer represented by formula (III) And other monomers are introduced into the solvent, and the polymerization temperature is preferably 0 to 100 ° C., more preferably 30 to 95 ° C., preferably 1 to 50 hours, more preferably 2 to 12 hours. Done by holding time.
  • the polymerization temperature is 0 ° C. or higher, the polymerization reaction tends to be accelerated. Further, when the polymerization temperature is 100 ° C. or lower, even when water is used as a solvent, the water tends to evaporate so that it becomes difficult to perform polymerization.
  • the weight average molecular weight of the resin containing a structural unit derived from a nitrile group-containing monomer used in the present disclosure is preferably 10,000 to 1,000,000, more preferably 100,000 to 800,000, and preferably 250,000 to 700,000. Further preferred.
  • the weight average molecular weight is a value measured by the following method. A measurement object is dissolved in N-methyl-2-pyrrolidone, and a PTFE (polytetrafluoroethylene) filter (manufactured by Kurashiki Boseki Co., Ltd., HPLC (high performance liquid chromatography) pretreatment, chromatodisc, model number: 13N, pore size: 0.45 ⁇ m] to remove insoluble matter.
  • PTFE polytetrafluoroethylene
  • GPC Pump: L6200 Pump (manufactured by Hitachi, Ltd.), detector: differential refractive index detector L3300 RI Monitor (manufactured by Hitachi, Ltd.), column: TSKgel-G5000HXL and TSKgel-G2000HXL (both in total) (Manufactured by Co., Ltd.) in series, column temperature: 30 ° C., eluent: N-methyl-2-pyrrolidone, flow rate: 1.0 ml / min, standard material: polystyrene], and the weight average molecular weight is measured.
  • the acid value of the resin containing a structural unit derived from a nitrile group-containing monomer used in the present disclosure is preferably 0 mgKOH / g to 40 mgKOH / g, more preferably 0 mgKOH / g to 10 mgKOH / g, More preferably, it is 0 mgKOH / g to 5 mgKOH / g.
  • the acid value refers to a value measured by the following method. First, after precisely weighing 1 g of a measurement object, 30 g of acetone is added to the measurement object, and the measurement object is dissolved. Next, an appropriate amount of an indicator, phenolphthalein, is added to the solution to be measured and titrated with a 0.1N aqueous KOH solution.
  • an indicator phenolphthalein
  • A The nonvolatile content of the solution to be measured is calculated from the residue mass by weighing about 1 ml of the solution to be measured in an aluminum pan, drying it on a hot plate heated to 160 ° C. for 15 minutes.
  • a nitrile group-containing monomer and a carboxy group-containing monomer used as necessary a monomer represented by formula (II), a monomer represented by formula (III), and other monomers
  • a monomer represented by formula (II) a monomer represented by formula (III)
  • other monomers When polymerizing, since the polymerization heat of the nitrile group-containing monomer and the carboxy group-containing monomer used as necessary is particularly large, it is preferable to proceed the polymerization while dropping these monomers into the solvent.
  • the resin containing a structural unit derived from a nitrile group-containing monomer used in the present disclosure is produced by polymerization as described above, and is usually used in the form of a varnish dissolved in a solvent.
  • the solvent used for the preparation of the resin containing a structural unit derived from a varnish-like nitrile group-containing monomer is not particularly limited.
  • the solvent and water that can be added when the above-described precipitation polymerization in water is performed. Can be used.
  • amides, ureas, lactones, or a mixed solvent containing them is preferable in terms of solubility in a resin including a structural unit derived from a nitrile group-containing monomer used in the present disclosure.
  • N-methyl-2-pyrrolidone, ⁇ -butyrolactone or a mixed solvent containing them is more preferable.
  • These solvent may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the amount of the solvent used is not particularly limited as long as the amount of the resin including the structural unit derived from the nitrile group-containing monomer is not less than a necessary minimum amount capable of maintaining a dissolved state at room temperature (25 ° C.).
  • the viscosity of the slurry is usually adjusted while adding a solvent. Therefore, it is preferable that the amount is not excessively diluted.
  • the composite resin for energy device electrodes of the present disclosure includes a fluororesin.
  • the fluororesin used in the present disclosure is not particularly limited as long as the main chain includes a structural unit in which some or all of the hydrogen atoms in the polyethylene skeleton are substituted with fluorine atoms.
  • Fluororesin includes homopolymers such as polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), polyvinyl fluoride (PVF), polychlorotrifluoroethylene (PCTFE), tetrafluoroethylene-perfluoropropylene copolymer (FEP), tetrafluoroethylene-perfluoropropylene copolymer (PFA), tetrafluoroethylene-ethylene copolymer (ETFE), chlorotrifluoroethylene-ethylene copolymer and the like, and carboxy group And the like.
  • PVDF is preferable from the viewpoint of solubility in a solvent, swelling property in an electrolytic solution, flexibility of a resin, and the like.
  • these fluororesins may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the composition of the composite resin for energy device electrodes of the present disclosure is not particularly limited as long as it includes a resin containing a structural unit derived from a nitrile group-containing monomer and a fluororesin.
  • the mixing ratio of the resin containing the structural unit derived from the nitrile group-containing monomer and the fluororesin based on the mass (resin containing the structural unit derived from the nitrile group-containing monomer: fluororesin) is 90:10 to 50:50. Preferably there is.
  • the property of the slurry containing the composite resin for energy device electrodes of the present disclosure is that the more the proportion of the resin containing a structural unit derived from a nitrile group-containing monomer, the more difficult it is to gel. The active material tends to settle.
  • the resin containing a structural unit derived from a nitrile group-containing monomer and the fluororesin have different swellability with respect to the electrolytic solution, and as a battery characteristic, there are many resins containing a structural unit derived from a nitrile group-containing monomer. As the number of fluororesins increases, the battery resistance tends to decrease.
  • the mass-based mixing ratio of the resin containing the structural unit derived from the nitrile group-containing monomer and the fluororesin is 90:10. More preferably, it is ⁇ 55: 45, more preferably 80:20 to 60:40, and particularly preferably 75:25 to 65:35.
  • composition for energy device electrode formation of this indication contains the positive electrode active material containing a specific metal oxide, and the composite resin for energy device electrodes of this indication. Below, each component contained in the composition for energy device electrode formation of this indication is demonstrated. In addition, the preferable aspect of the composite resin for energy device electrodes of this indication contained in the composition for energy device electrode formation of this indication is as above-mentioned.
  • the positive electrode active material contained in the composition for forming an energy device electrode of the present disclosure contains a specific metal oxide.
  • the specific metal oxide As the positive electrode active material, the energy density of the lithium ion secondary battery can be improved. Even when the specific metal oxide is used as the positive electrode active material, the slurry containing the energy device electrode forming composition of the present disclosure can be obtained by combining the specific metal oxide and the composite resin for the energy device electrode of the present disclosure. Gelation and slurry settling are suppressed.
  • the specific metal oxide preferably contains a compound represented by the following formula (I).
  • the ratio (b) of Ni is preferably 0.5 ⁇ b ⁇ 0.9, more preferably 0.55 ⁇ b ⁇ 0.85, and 0.6 ⁇ b ⁇ 0. More preferably, it is .8. Further, the discharge performance of the positive electrode active material is improved as the ratio of Co increases, and the capacity density of the positive electrode active material tends to increase as the ratio of Co decreases, so the ratio (c) of Co is 0. It is preferable that 1 ⁇ c ⁇ 0.4.
  • At least one element selected from the group consisting of Al, Mn, Mg and Ca can be contained as M in the formula (I).
  • the thermodynamic stability of the positive electrode active material tends to be high, and the resistance increase caused by nickel entering the lithium site tends to be suppressed.
  • the smaller the M ratio the larger the capacity density of the positive electrode active material. From such a viewpoint, the ratio (d) of M is preferably 0 ⁇ d ⁇ 0.2.
  • the compound represented by the formula (I) can be produced by a method commonly used in the field of energy devices. An example of production is shown below.
  • a metal salt solution of a metal to be introduced into the positive electrode active material is prepared.
  • the metal salt those commonly used in the field of energy devices can be used, and examples thereof include sulfates, chloride salts, nitrates, and acetates.
  • nitrate is preferable because it functions as an oxidant in the subsequent firing step, so that the oxidation of the metal in the firing raw material is easily promoted, and since it volatilizes by firing, it is difficult to remain in the positive electrode active material.
  • the molar ratio of each metal contained in the metal salt solution is preferably equal to the molar ratio of each metal of the positive electrode active material to be produced.
  • the lithium source is suspended in pure water.
  • the lithium source those commonly used in the field of energy devices can be used, and lithium carbonate, lithium nitrate, lithium hydroxide, lithium acetate, alkyl lithium, fatty acid lithium, lithium lithium and the like can be mentioned.
  • the metal salt solution of the said metal is added and lithium salt solution slurry is produced.
  • fine lithium-containing carbonate precipitates in the slurry.
  • the average particle diameter of the lithium-containing carbonate in the slurry can be adjusted by the shear rate of the slurry.
  • the precipitated lithium-containing carbonate is filtered off and dried to obtain a precursor of the positive electrode active material.
  • the obtained lithium-containing carbonate is filled in a firing container and fired in a firing furnace. Firing is preferably held in a heated state for a predetermined time in an oxygen-containing atmosphere, preferably in an oxygen atmosphere. Further, the firing is preferably performed under a pressure of 101 kPa to 202 kPa. The amount of oxygen in the composition can be increased by heating under pressure.
  • the firing temperature is preferably 850 ° C. to 1200 ° C., more preferably 850 ° C. to 1100 ° C., and further preferably 850 ° C. to 1000 ° C. When firing in such a temperature range, the crystallinity of the positive electrode active material tends to be improved.
  • the composition for forming an energy device electrode of the present disclosure can be used in combination with a lithium-containing metal composite oxide other than the specific metal oxide commonly used in the field of energy devices as a positive electrode active material.
  • a lithium-containing metal composite oxide other than the specific metal oxide commonly used in the field of energy devices as a positive electrode active material.
  • Commonly used lithium-containing metal composite oxides include LiCoO 2 , LiNiO 2 , LiMnO 2 , LiNi 1/3 Mn 1/3 Co 1/3 O 2 , LiMn 2 O 4 and the like.
  • the ratio of the specific metal oxide in the positive electrode active material is preferably 70% by mass or more, and 80% by mass. More preferably, it is more preferably 90% by mass or more.
  • lithium-containing metal composite oxides can be arbitrarily selected in accordance with characteristics such as capacity, input / output characteristics, cycle life, voltage, and safety of the target energy device.
  • a positive electrode active material may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the composition for forming an energy device electrode of the present disclosure may include a conductive material from the viewpoint of reducing the resistance of the electrode.
  • a conductive material those commonly used in the field of energy devices can be used. Specific examples include carbon black, graphite, carbon fiber, and metal fiber. Examples of carbon black include acetylene black, ketjen black, channel black, furnace black, lamp black, and thermal black. Examples of graphite include natural graphite and artificial graphite.
  • a conductive material may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the composition for forming an energy device electrode of the present disclosure may contain a solvent.
  • a solvent used for a slurry What is necessary is just a solvent which can melt
  • a solvent used for preparing a resin solution by dissolving the composite resin for energy device electrodes of the present disclosure is often used as it is, for example, N-methyl-2-pyrrolidone and ⁇ -Butyrolactone is preferred.
  • These solvent may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the composition for forming an energy device electrode of the present disclosure includes a crosslinking component for complementing swelling resistance to an electrolytic solution, a rubber component for complementing flexibility and flexibility of the electrode, and electrode coating property of the slurry.
  • Various additives such as an anti-settling agent, an antifoaming agent, and a leveling agent for improvement can be blended as necessary.
  • a thickener can be added to the slurry in order to improve the dispersion stability and coating property of the slurry.
  • thickeners include polyacrylic acid and polyacrylic acid derivatives such as alkali metal salts thereof, polyvinyl alcohol copolymers such as ethylene- (meth) acrylic acid copolymer, polyvinyl alcohol, and ethylene-vinyl alcohol copolymer. Examples include coalescence.
  • an appropriate viscosity to be adjusted in the slurry preparation step is 25 ° C. in the case of an N-methyl-2-pyrrolidone (NMP) solution to which 10% by mass of the composite resin for energy device electrodes is added with respect to the total amount.
  • NMP N-methyl-2-pyrrolidone
  • it is preferably 500 mPa ⁇ s to 50000 mPa ⁇ s, more preferably 1000 mPa ⁇ s to 20000 mPa ⁇ s, and still more preferably 2000 mPa ⁇ s to 10000 mPa ⁇ s.
  • the viscosity is measured at 25 ° C. and a shear rate of 1.0 s ⁇ 1 using a rotary shear viscometer.
  • the positive electrode for an energy device of the present disclosure (hereinafter sometimes simply referred to as a positive electrode) is provided on at least one surface of a positive electrode current collector and the positive electrode current collector, and the composition for forming an energy device electrode of the present disclosure A positive electrode material mixture layer containing a product.
  • the positive electrode for an energy device of the present disclosure can be manufactured using a known electrode manufacturing method without particular limitation. For example, a positive electrode slurry containing the active material, the composite resin for energy device electrodes, a conductive material used as necessary, and a solvent is applied onto at least one surface of the positive electrode current collector, and then the solvent is removed by drying. And it can manufacture by rolling as needed and forming a positive mix layer on the positive electrode collector surface.
  • the positive electrode slurry can be applied using, for example, a comma coater.
  • the coating is suitably performed so that the ratio between the positive electrode capacity and the negative electrode capacity (negative electrode capacity / positive electrode capacity) is 1 or more in the opposing electrode.
  • the coating amount of the positive electrode slurry for example, as a dry mass of the positive electrode mixture layer is preferably 5g / m 2 ⁇ 500g / m 2, more preferably from 50g / m 2 ⁇ 300g / m 2, 100g More preferably, it is / m 2 to 200 g / m 2 .
  • the larger the coating amount the easier it is to obtain a large capacity lithium ion secondary battery, and the smaller the coating amount, the easier it is to obtain a high output lithium ion secondary battery.
  • the solvent is removed, for example, preferably by drying at 50 ° C. to 150 ° C., more preferably 80 ° C. to 120 ° C., preferably for 1 minute to 20 minutes, more preferably for 3 minutes to 10 minutes. Rolling is performed using, for example, a roll press.
  • the bulk density of the positive electrode mixture layer is, for example, preferably 2 g / cm 3 to 5 g / cm 3 , and more preferably 2.5 g / cm 3 to 4 g / cm 3 .
  • vacuum drying may be performed at 100 to 150 ° C. for 1 to 20 hours.
  • the positive electrode current collector those commonly used in the field of energy devices can be used. Specifically, a sheet containing stainless steel, aluminum, titanium, or the like, a foil, or the like can be given. Among these, an aluminum sheet or foil is preferable from an electrochemical viewpoint and cost.
  • the thickness of the sheet and foil is not particularly limited and is, for example, preferably 1 ⁇ m to 500 ⁇ m, more preferably 2 ⁇ m to 100 ⁇ m, and still more preferably 5 ⁇ m to 50 ⁇ m.
  • the energy device of this indication contains the positive electrode for energy devices of this indication.
  • Examples of the energy device of the present disclosure include a lithium ion secondary battery, an electric double layer capacitor, a solar cell, and a fuel cell.
  • a lithium ion secondary battery that is an example of the energy device of the present disclosure can be obtained by combining the positive electrode for energy device of the present disclosure, the negative electrode for energy device, and the electrolytic solution.
  • the energy device of the present disclosure is preferably applied to a non-aqueous electrolyte-based energy device.
  • a non-aqueous electrolyte-type energy device refers to an electricity storage or power generation device (apparatus) that uses an electrolyte containing a solvent other than water.
  • the lithium ion secondary battery includes, for example, a positive electrode for energy device, a negative electrode for energy device, a separator interposed between the positive electrode for energy device and the negative electrode for energy device, and an electrolytic solution.
  • the positive electrode for energy devices of this indication is used as a positive electrode for energy devices.
  • the negative electrode for energy devices (hereinafter sometimes simply referred to as a negative electrode) has a negative electrode current collector and a negative electrode mixture layer provided on at least one surface of the negative electrode current collector.
  • the negative electrode mixture layer has a negative electrode active material, a binder resin, and, if necessary, a conductive material.
  • the negative electrode active material those commonly used in the field of energy devices can be used. Specific examples include lithium metal, lithium alloy, metal compound, carbon material, metal complex, and organic polymer compound.
  • a negative electrode active material may be used individually by 1 type, and may be used in combination of 2 or more type. Among these, a carbon material is preferable as the negative electrode active material.
  • Carbon materials include natural graphite (flaky graphite, etc.), graphite such as artificial graphite, carbon black such as acetylene black, ketjen black, channel black, furnace black, lamp black, thermal black, amorphous carbon, carbon fiber Etc.
  • the average particle size of the carbon material is preferably 0.1 ⁇ m to 60 ⁇ m, more preferably 0.3 ⁇ m to 45 ⁇ m, and even more preferably 0.5 ⁇ m to 30 ⁇ m.
  • the BET specific surface area of the carbon material is preferably 1 m 2 / g to 10 m 2 / g.
  • the distance between the carbon hexagonal planes (d 002 ) in the X-ray wide angle diffraction method is 3.35 to 3.40 cm, and the c-axis Graphite having a direction crystallite (Lc) of 100 or more is preferable.
  • amorphous carbon spacing carbon hexagonal plane in the X-ray wide angle diffraction method (d 002) is at 3.50 ⁇ ⁇ 3.95 ⁇ Is preferred.
  • the average particle size is a volume-based particle size distribution measured with a laser diffraction particle size distribution analyzer (for example, SALD-3000J, manufactured by Shimadzu Corporation) by dispersing a sample in purified water containing a surfactant. , The value when the integration from the small diameter side becomes 50% (median diameter (D50)).
  • a BET specific surface area can be measured from nitrogen adsorption capacity according to JIS Z 8830: 2013, for example.
  • the evaluation apparatus for example, AUTOSORB-1 (trade name) manufactured by QUANTACHROME can be used.
  • pretreatment for removing water by heating when measuring the BET specific surface area.
  • a measurement cell charged with 0.05 g of a measurement sample is depressurized to 10 Pa or less with a vacuum pump, heated at 110 ° C. and held for 3 hours or more, and then kept at a normal temperature ( Cool to 25 ° C).
  • the evaluation temperature is 77K
  • the evaluation pressure range is measured as a relative pressure (equilibrium pressure with respect to saturated vapor pressure) of less than 1.
  • the surface spacing d 002 of the 002 plane of the carbon material is such that the diffraction angle 2 ⁇ appears in the vicinity of 24 ° to 26 ° from the diffraction profile obtained by irradiating the sample with X-rays (CuK ⁇ rays) and measuring the diffraction lines with a goniometer. It can be calculated from the diffraction peak corresponding to the carbon 002 plane using the Bragg equation.
  • the negative electrode current collector used for the negative electrode for energy devices those commonly used in the field of energy devices can be used.
  • a sheet containing stainless steel, nickel, copper, or the like, a foil, or the like can be given.
  • the average thickness of the sheet and foil is not particularly limited, and is, for example, preferably 1 ⁇ m to 500 ⁇ m, more preferably 2 ⁇ m to 100 ⁇ m, and further preferably 5 ⁇ m to 50 ⁇ m.
  • a conductive material may be used from the viewpoint of reducing the resistance of the electrode.
  • the conductive material those commonly used in the field of energy devices can be used. Specific examples include carbon black, graphite, carbon fiber, and metal fiber. Examples of carbon black include acetylene black, ketjen black, channel black, furnace black, lamp black, and thermal black. Examples of graphite include natural graphite and artificial graphite.
  • a conductive material may be used individually by 1 type, and may be used in combination of 2 or more type.
  • binder resin used for the negative electrode for energy devices those commonly used in the field of energy devices can be used. Specific examples include polytetrafluoroethylene, polyvinylidene fluoride, styrene butadiene rubber, and acrylic rubber. Among these binder resins, styrene butadiene rubber and acrylic rubber are preferable from the viewpoint of further improving the characteristics of the lithium ion secondary battery.
  • the negative electrode for an energy device can be manufactured using a known electrode manufacturing method without any particular limitation.
  • a negative electrode active material, a binder resin, and a slurry containing a conductive material and a solvent used as necessary are applied on at least one surface of the negative electrode current collector, and then the solvent is removed by drying. It can manufacture by rolling as needed and forming a negative mix layer on the negative electrode collector surface.
  • the solvent used in the negative electrode slurry is not particularly limited as long as it can uniformly dissolve or disperse the binder resin.
  • styrene butadiene rubber is used for the binder resin
  • water widely used as a dispersion medium for the binder resin is preferable.
  • a solvent may be used individually by 1 type and may be used in combination of 2 or more type.
  • a thickener can be added to the negative electrode slurry for producing the negative electrode mixture layer in order to improve the dispersion stability and coating property of the negative electrode slurry.
  • thickeners include carboxymethylcellulose, carboxymethylcellulose derivatives such as sodium carboxymethylcellulose, polyvinyl alcohol, polyvinylpyrrolidone, water-soluble alginic acid derivatives, gelatin, carrageenan, glucomannan, pectin, curdlan, gellan gum, polyacrylic acid and alkali metals thereof.
  • examples thereof include polyacrylic acid derivatives such as salts, ethylene- (meth) acrylic acid copolymers, polyvinyl alcohol copolymers such as polyvinyl alcohol and ethylene-vinyl alcohol copolymers.
  • a carboxymethyl cellulose derivative is preferable.
  • coating of a negative electrode slurry can be performed using a comma coater etc., for example.
  • the coating is suitably performed so that the ratio between the positive electrode capacity and the negative electrode capacity (negative electrode capacity / positive electrode capacity) is 1 or more in the opposing electrode.
  • the coating amount of the negative electrode slurry is, for example, that the dry mass of the negative electrode mixture layer is preferably 5 g / m 2 to 300 g / m 2 , more preferably 25 g / m 2 to 200 g / m 2 , and 50 g More preferably, it is / m 2 to 150 g / m 2 .
  • the larger the coating amount the easier it is to obtain a large capacity lithium ion secondary battery, and the smaller the coating amount, the easier it is to obtain a high output lithium ion secondary battery.
  • the removal of the solvent is performed, for example, preferably by drying at 50 ° C. to 150 ° C., more preferably 80 ° C. to 120 ° C., preferably 1 minute to 20 minutes, more preferably 3 minutes to 10 minutes. Rolling is performed using, for example, a roll press.
  • the bulk density of the negative electrode mixture layer is, for example, is preferably 1g / cm 3 ⁇ 2g / cm 3, more preferably from 1.2g / cm 3 ⁇ 1.8g / cm 3, 1.4g / More preferably, it is cm 3 to 1.6 g / cm 3 .
  • vacuum drying may be performed at 100 ° C. to 150 ° C. for 1 hour to 20 hours.
  • the separator is not particularly limited as long as it has ion permeability while electronically insulating between the positive electrode and the negative electrode, and has resistance to oxidation on the positive electrode side and reducibility on the negative electrode side.
  • a material (material) of the separator that satisfies such characteristics a resin, an inorganic substance, or the like is used.
  • an olefin polymer As the resin, an olefin polymer, a fluorine polymer, a cellulose polymer, polyimide, nylon, or the like is used. Specifically, it is preferable to select from materials that are stable with respect to the electrolytic solution and have excellent liquid retention properties, and it is preferable to use a porous sheet made of polyolefin such as polyethylene and polypropylene, a nonwoven fabric, and the like.
  • inorganic substances include oxides such as alumina and silicon dioxide, nitrides such as aluminum nitride and silicon nitride, sulfates such as barium sulfate and calcium sulfate, and glass.
  • oxides such as alumina and silicon dioxide
  • nitrides such as aluminum nitride and silicon nitride
  • sulfates such as barium sulfate and calcium sulfate
  • glass glass
  • thin film-shaped base materials such as a nonwoven fabric, a woven fabric, and a microporous film
  • the thin film-shaped substrate those having an average pore diameter of 0.01 ⁇ m to 1 ⁇ m and an average thickness of 5 ⁇ m to 50 ⁇ m are preferably used.
  • the composite porous layer using binders, such as resin can be used as a separator.
  • this composite porous layer may be formed on the surface of the positive electrode or the negative electrode to form a separator.
  • this composite porous layer may be formed on the surface of another separator to form a multilayer separator.
  • a separator in which a composite porous layer obtained by binding alumina particles having a 90% diameter (D90) of less than 1 ⁇ m using a fluororesin as a binder may be used as a separator.
  • the electrolyte solution is not particularly limited as long as it functions as a lithium ion secondary battery that is an energy device, for example.
  • an electrolytic solution containing a solvent other than water nonaqueous electrolytic solution
  • non-aqueous electrolytes include carbonates such as propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, and methyl ethyl carbonate, lactones such as ⁇ -butyrolactone, trimethoxymethane, and 1,2-dimethoxy.
  • Ethers such as ethane, diethyl ether, 2-ethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran, sulfoxides such as dimethyl sulfoxide, oxolanes such as 1,3-dioxolane, 4-methyl-1,3-dioxolane, acetonitrile, Nitrogen-containing compounds such as nitromethane and N-methyl-2-pyrrolidone, esters such as methyl formate, methyl acetate, butyl acetate, methyl propionate, ethyl propionate, and phosphate triester, di Glymes such as lime, triglyme and tetraglyme, ketones such as acetone, diethyl ketone, methyl ethyl ketone and methyl isobutyl ketone, sulfones such as sulfolane, oxazolidinones such as 3-methyl-2-
  • the content when vinylene carbonate (VC) is contained is preferably 0.1% by mass to 2% by mass, and more preferably 0.2% by mass to 1.5% by mass with respect to the total amount of the electrolytic solution.
  • two electrodes are wound through a separator made of a polyethylene microporous film.
  • the obtained spiral wound group is inserted into a battery can, and a tab terminal previously welded to a negative electrode current collector is welded to the bottom of the battery can.
  • An electrolytic solution is injected into the obtained battery can.
  • a tab terminal that has been previously welded to the positive electrode current collector is welded to the battery lid, and the lid is placed on the top of the battery can via an insulating gasket.
  • a lithium ion secondary battery is obtained by caulking and sealing.
  • a resin containing a structural unit derived from a nitrile group-containing monomer is referred to as a PAN-based resin.
  • the obtained lithium-containing carbonate was put in a firing furnace, heated to 850 ° C. over 6 hours, then heated and held for 2 hours, and then cooled to obtain an oxide.
  • the obtained oxide was crushed to obtain a positive electrode active material A.
  • the positive electrode active material A is referred to as NCA.
  • the metal salt solution was prepared using a nitrate hydrate of nickel, cobalt, and manganese.
  • a positive electrode active material B was obtained in the same manner as the positive electrode active material A except that the composition ratio was adjusted to mol%: 10 mol%: 10 mol%.
  • the positive electrode active material B is referred to as NMC (811).
  • Example 1 NCA positive electrode active material
  • acetylene black conductive material, Denka Black HS-100, manufactured by Denka Co., Ltd.
  • PAN-based resin resin containing structural unit derived from nitrile group-containing monomer
  • PVDF fluororesin
  • NMP uses an E-type viscometer (manufactured by Toki Sangyo Co., Ltd., TV-35), and the viscosity of the slurry is 2000 mPa ⁇ s to 5000 mPa ⁇ s measured at 25 ° C. and 0.5 rpm. The amount was added. The room temperature and humidity when producing the positive electrode slurry were 55 ⁇ 1% RH at 25 ⁇ 1 ° C.
  • Example 2 The same method as in Example 1 except that NCA, acetylene black, PAN-based resin, and PVDF had a solid content ratio of 98.0% by mass: 1.0% by mass: 0.7% by mass: 0.3% by mass. A positive electrode slurry was prepared.
  • Example 3 The same method as in Example 1 except that NCA, acetylene black, PAN resin, and PVDF had a solid content ratio of 98.0% by mass: 1.0% by mass: 0.6% by mass: 0.4% by mass. A positive electrode slurry was prepared.
  • Example 4 The same method as in Example 1 except that NCA, acetylene black, PAN-based resin, and PVDF had a solid content ratio of 98.0% by mass: 1.0% by mass: 0.5% by mass: 0.5% by mass. A positive electrode slurry was prepared.
  • Example 5 A positive electrode slurry was prepared in the same manner as in Example 1 except that the positive electrode active material was NMC (811).
  • Example 6 A positive electrode slurry was prepared in the same manner as in Example 2 except that the positive electrode active material was NMC (811).
  • Example 7 A positive electrode slurry was prepared in the same manner as in Example 3 except that the positive electrode active material was NMC (811).
  • Example 8 A positive electrode slurry was prepared in the same manner as in Example 4 except that the positive electrode active material was NMC (811).
  • Comparative Example 3 A positive electrode slurry was prepared in the same manner as in Comparative Example 1, except that the positive electrode active material was NMC (811).
  • Comparative Example 4 A positive electrode slurry was prepared in the same manner as in Comparative Example 2, except that NMC (811) was used as the positive electrode active material.
  • Viscosity stability of positive electrode slurry 20 g of the prepared positive electrode slurry was put into a glass sample tube bottle (manufactured by ASONE Co., Ltd., 30 cc) and sealed in a substantially horizontal environment at 25 ⁇ 1 ° C. The mixture was allowed to stand on a table, and the viscosity one day after production was measured using an E-type viscometer (manufactured by Toki Sangyo Co., Ltd., TV-35) at 25 ° C. and 0.5 rpm. The rate of change in viscosity was calculated according to the following equation, and the viscosity stability of the positive electrode slurry was evaluated according to the following criteria.
  • Viscosity change rate (%) [(viscosity after standing-viscosity before standing) / viscosity after standing] ⁇ 100
  • D Viscosity change rate is less than -60% or 300% or more

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Composite Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

エネルギーデバイス電極用複合樹脂は、ニトリル基含有単量体由来の構造単位を含む樹脂及びフッ素樹脂を含有し、リチウムとニッケルとを有しリチウムを除く金属に占めるニッケルの割合が50モル%以上であるリチウム含有金属複合酸化物を含む正極活物質を含有する正極合剤層の形成に用いられる。

Description

エネルギーデバイス電極用複合樹脂、エネルギーデバイス電極形成用組成物、エネルギーデバイス用正極及びエネルギーデバイス
 本発明は、エネルギーデバイス電極用複合樹脂、エネルギーデバイス電極形成用組成物、エネルギーデバイス用正極及びエネルギーデバイスに関する。
 ノート型パソコン、携帯電話、PDA(Personal Digital Assistant)等の携帯情報端末の電源として、高エネルギー密度を有する非水電解液系のエネルギーデバイスであるリチウムイオン二次電池が広く使用されている。
 リチウムイオン二次電池には、負極の活物質として、リチウムイオンの層間への挿入(リチウム層間化合物の形成)及び放出が可能な多層構造を有する炭素材料が主に用いられる。また、正極の活物質としては、リチウム含有金属複合酸化物が主に用いられる。リチウムイオン二次電池の電極は、これらの活物質、バインダ樹脂、溶媒(N-メチル-2-ピロリドン、水等)などを混練してスラリーを調製し、次いで、これを転写ロール等で集電体である金属箔の片面又は両面に塗布し、溶媒を乾燥により除去して合剤層を形成後、ロールプレス機等で圧縮成形して作製される。
 リチウム含有金属複合酸化物としては、コバルト酸リチウム(LiCoO)、マンガン酸リチウム(LiMn)、ニッケルマンガンコバルト酸リチウム(LiNi1/3Mn1/3Co1/3)、リン酸鉄リチウム(LiFePO)等が多用されており、目的に応じて1種を単独で、又は2種以上を組み合わせて使用される。
 バインダ樹脂としては、電気化学的な安定性、電解液への耐溶解性等の観点から、ポリフッ化ビニリデン(以下、PVDFという)が多用されている。
 また、近年、リチウムイオン二次電池のさらなる高エネルギー密度化が求められており、容量密度の大きな正極活物質が提案されている。このような活物質としては、ニッケルの割合を増加させたニッケルマンガンコバルト酸リチウム、ニッケルコバルトアルミニウム酸リチウム等が提案されている(例えば、特許文献1参照。)。
 ニッケルの割合を増加させたリチウム含有金属複合酸化物中には、リチウム含有金属複合酸化物を製造するときに使用されるLiOH等のアルカリ金属水酸化物(塩基性物質)が残存している場合がある。一方、バインダ樹脂として多用されるPVDFは、塩基性物質と接触するとHFの脱離反応により変質することが知られている(例えば、非特許文献1参照。)。通常、非水電解液系のエネルギーデバイス用正極は、リチウム含有金属複合酸化物及びPVDFを含む正極スラリーを集電体上に塗布し作製される。しかし、正極スラリーに水分が混入すると、正極スラリーは塩基性を示すようになる。これは、リチウム含有金属複合酸化物中に含まれるLiOH等のアルカリ金属水酸化物が水を含む溶媒中に溶出してくるためと考えられる。正極スラリーが塩基性を示すことで、PVDFが変質する場合がある。PVDFが変質することで、正極スラリーがゲル化する傾向にある。
 そこで、正極スラリーのゲル化の防止が可能な正極活物質の製造方法として、特定層状化合物からなる正極活物質の製造方法であって、合成後の正極活物質粉末を純水中で撹拌混合した後、静置して得られる上澄みのpHを測定した場合に、該pHが特定の範囲となった正極活物質のみを選択することを特徴とする正極活物質の製造方法が開示されている(例えば、特許文献2参照。)。
特開2008-235147号公報 特許第4951823号公報
電極バインダの各種分析 The TRC News No.117 (Sep.2013)
 しかしながら、特許文献2に記載されている技術では、容量密度の低下又はサイクル特性の低下が生ずる可能性がある。
 本発明は、上記事情に鑑みてなされたものであり、正極活物質としてニッケル含有率の高いリチウム含有金属複合酸化物を用いる場合のスラリーのゲル化及びスラリーの沈降が抑制されるエネルギーデバイス電極用複合樹脂並びにこれを用いたエネルギーデバイス電極形成用組成物、エネルギーデバイス用正極及びエネルギーデバイスを提供することを目的とする。
本発明の一態様は、例えば、以下のものに関する。
  <1> ニトリル基含有単量体由来の構造単位を含む樹脂及びフッ素樹脂を含有し、リチウムとニッケルとを有しリチウムを除く金属に占めるニッケルの割合が50モル%以上であるリチウム含有金属複合酸化物を含む正極活物質を含有する正極合剤層の形成に用いられるエネルギーデバイス電極用複合樹脂。
  <2> 前記ニトリル基含有単量体由来の構造単位を含む樹脂及び前記フッ素樹脂の質量基準の混合比(ニトリル基含有単量体由来の構造単位を含む樹脂:フッ素樹脂)が、90:10~50:50である<1>に記載のエネルギーデバイス電極用複合樹脂。
  <3> 前記リチウム含有金属複合酸化物が、下記式(I)で表される化合物を含む<1>又は<2>に記載のエネルギーデバイス電極用複合樹脂。
LiNiCo2+e  式(I)
(式(I)中、Mは、Al、Mn、Mg及びCaからなる群より選択される少なくとも1種であり、a、b、c、d及びeは、各々0.2≦a≦1.2であり、0.5≦b≦0.9であり、0.1≦c≦0.4であり、0≦d≦0.2であり、-0.2≦e≦0.2であり、b+c+d=1である。)
  <4> 前記ニトリル基含有単量体由来の構造単位を含む樹脂が、下記式(II)で表される単量体由来の構造単位をさらに含む<1>~<3>のいずれか1項に記載のエネルギーデバイス電極用複合樹脂。
Figure JPOXMLDOC01-appb-C000003
(式(II)中、Rは水素原子又はメチル基を示し、Rは水素原子又は1価の炭化水素基を示し、nは1~50の整数を示す。)
  <5> 前記ニトリル基含有単量体由来の構造単位を含む樹脂に含有される前記ニトリル基含有単量体由来の構造単位1モルに対する前記式(II)で表される単量体由来の構造単位の比率が、0.001モル~0.2モルである<4>に記載のエネルギーデバイス電極用複合樹脂。
  <6> 前記ニトリル基含有単量体由来の構造単位を含む樹脂が、下記式(III)で表される単量体由来の構造単位をさらに含む<1>~<5>のいずれか1項に記載のエネルギーデバイス電極用複合樹脂。
Figure JPOXMLDOC01-appb-C000004
(式(III)中、Rは水素原子又はメチル基を示し、Rは炭素数が4~30のアルキル基を示す。)
  <7> 前記ニトリル基含有単量体由来の構造単位を含む樹脂に含有される前記ニトリル基含有単量体由来の構造単位1モルに対する前記式(III)で表される単量体由来の構造単位の比率が、0.001モル~0.2モルである<6>に記載のエネルギーデバイス電極用複合樹脂。
  <8> 前記ニトリル基含有単量体が、アクリロニトリルを含む<1>~<7>のいずれか1項に記載のエネルギーデバイス電極用複合樹脂。
  <9> 前記フッ素樹脂が、ポリフッ化ビニリデン(PVDF)を含む<1>~<8>のいずれか1項に記載のエネルギーデバイス電極用複合樹脂。
  <10> リチウムとニッケルとを有しリチウムを除く金属に占めるニッケルの割合が50モル%以上であるリチウム含有金属複合酸化物を含む正極活物質と、<1>~<9>のいずれか1項に記載のエネルギーデバイス電極用複合樹脂と、を含有するエネルギーデバイス電極形成用組成物。
  <11> 前記リチウム含有金属複合酸化物が、下記式(I)で表される化合物を含む<10>に記載のエネルギーデバイス電極形成用組成物。
LiNiCo2+e  式(I)
(式(I)中、Mは、Al、Mn、Mg及びCaからなる群より選択される少なくとも1種であり、a、b、c、d及びeは、各々0.2≦a≦1.2であり、0.5≦b≦0.9であり、0.1≦c≦0.4であり、0≦d≦0.2であり、-0.2≦e≦0.2であり、b+c+d=1である。)
  <12> 正極集電体と、
 前記正極集電体の少なくとも一方の表面上に設けられ、<10>又は<11>に記載のエネルギーデバイス電極形成用組成物を含む正極合剤層と、
を有するエネルギーデバイス用正極。
  <13> <12>に記載のエネルギーデバイス用正極を含むエネルギーデバイス。
  <14> 前記エネルギーデバイスが、リチウムイオン二次電池である<13>に記載のエネルギーデバイス。
 本発明によれば、正極活物質としてニッケル含有率の高いリチウム含有金属複合酸化物を用いる場合のスラリーのゲル化及びスラリーの沈降が抑制されるエネルギーデバイス電極用複合樹脂並びにこれを用いたエネルギーデバイス電極形成用組成物、エネルギーデバイス用正極及びエネルギーデバイスが提供される。
 以下、本発明の好適な実施形態を説明する。なお、本明細書において特に言及している事項以外の事柄であって本発明の実施に必要な事柄は、エネルギーデバイスの分野における従来技術に基づく当業者の設計事項として把握され得る。本発明は、本明細書に開示されている内容とエネルギーデバイスの分野における技術常識とに基づいて実施することができる。
 本明細書において「工程」との語には、他の工程から独立した工程に加え、他の工程と明確に区別できない場合であってもその工程の目的が達成されれば、当該工程も含まれる。
 本明細書において「~」を用いて示された数値範囲には、「~」の前後に記載される数値がそれぞれ最小値及び最大値として含まれる。
 本明細書中に段階的に記載されている数値範囲において、一つの数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本明細書中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。
 本明細書において組成物中の各成分の含有率は、組成物中に各成分に該当する物質が複数種存在する場合、特に断らない限り、組成物中に存在する当該複数種の物質の合計の含有率を意味する。
 本明細書において組成物中の各成分の粒子径は、組成物中に各成分に該当する粒子が複数種存在する場合、特に断らない限り、組成物中に存在する当該複数種の粒子の混合物についての値を意味する。
 本明細書において「層」又は「膜」との語には、当該層又は膜が存在する領域を観察したときに、当該領域の全体に形成されている場合に加え、当該領域の一部にのみ形成されている場合も含まれる。
 本明細書において「(メタ)アクリル」はアクリル及びメタクリルの少なくとも一方を意味し、「(メタ)アクリレート」はアクリレート及びメタクリレートの少なくとも一方を意味する。
 本明細書において「バインダ樹脂」とは、活物質等の粒子同士を結着させる機能を有する樹脂をいう。
<エネルギーデバイス電極用複合樹脂>
 本開示のエネルギーデバイス電極用複合樹脂は、ニトリル基含有単量体由来の構造単位を含む樹脂及びフッ素樹脂を含有し、リチウムとニッケルとを有しリチウムを除く金属に占めるニッケルの割合が50モル%以上であるリチウム含有金属複合酸化物(以下、特定金属酸化物と称することがある。)を含む正極活物質を含有する正極合剤層の形成に用いられる。
 本開示のエネルギーデバイス電極用複合樹脂を、特定金属酸化物を含む正極活物質を含有する正極合剤層の形成に用いる場合に、スラリーのゲル化及びスラリーの沈降が抑制される。その理由は明確ではないが、以下のように推察される。
 なお、本開示において「スラリーの沈降」とは、N-メチル-2-ピロリドン(NMP)等の溶媒に正極活物質、導電性材料、バインダ樹脂等を混合したスラリー内で、正極活物質が沈降する現象を指す。正極活物質が沈降したスラリーを用いて集電箔上に正極合剤層を形成した場合、正極合剤層の均質性が損なわれることがあり、場合によっては、塗工機の不具合を誘発する恐れがある。
 PVDF等のフッ素樹脂は、LiOH等の塩基性物質と接触するとHFの脱離反応により変質する傾向にある。そのため、PVDF等のフッ素樹脂を用いて合剤層を形成する場合、PVDF等のフッ素樹脂を含むスラリーがゲル化する傾向にある。特に、特定金属酸化物を含む正極活物質を用いた場合に、スラリーがゲル化しやすい。
 一方、ニトリル基含有単量体由来の構造単位を含む樹脂中のニトリル基は、フッ素原子に比較して塩基性物質と接触した際の脱離反応が生じにくい。そのため、ニトリル基含有単量体由来の構造単位を含む樹脂は、フッ素樹脂に比較して、塩基性物質と接触した際に変質しにくい傾向にある。
 また、ニトリル基含有単量体由来の構造単位を含む樹脂は、粒子状の導電性材料に吸着しやすく、スラリー中において粒子状の導電性材料を過度に分散させる傾向にある。粒子状の導電性材料が過度に分散された状態であると、導電性材料の高次構造が形成されにくく、導電性材料の高次構造内で正極活物質が保持されにくくなる。そのため、ニトリル基含有単量体由来の構造単位を含む樹脂を用いて合剤層を形成する場合、ニトリル基含有単量体由来の構造単位を含む樹脂を用いたスラリーが沈降する傾向にある。特に合剤層に占める導電性材料の含有率が1.5質量%以下の場合に、スラリーが沈降しやすい。
 一方、PVDF等のフッ素樹脂は、フッ素樹脂中にフッ素原子が含まれるため粒子状の導電性材料を分散させにくく、導電性材料の高次構造を形成しやすい。そのため、導電性材料の高次構造内で正極活物質が保持されやすくなり、スラリーが沈降しにくい傾向にある。
 本開示のエネルギーデバイス電極用複合樹脂はニトリル基含有単量体由来の構造単位を含む樹脂及びフッ素樹脂を含有することから、ニトリル基含有単量体由来の構造単位を含む樹脂の有するスラリーのゲル化を抑制する効果及びフッ素樹脂の有するスラリーの沈降を抑制する効果が発揮され、スラリーのゲル化及びスラリーの沈降が抑制されると推察される。
 特に、特定金属酸化物を含む正極活物質を用いた場合であっても、スラリーがゲル化しにくい。さらには、合剤層に占める導電性材料の含有率が1.5質量%以下のスラリーであっても、スラリーの沈降が生じにくい。
 本開示においてフッ素樹脂とは、主鎖に、ポリエチレン骨格中における水素原子の一部又は全部をフッ素原子に置換した構造単位を含む樹脂をいう。
 さらに、本開示においてニトリル基含有単量体由来の構造単位を含む樹脂は、ニトリル基含有単量体由来の構造単位を主鎖に含み、且つポリエチレン骨格中における水素原子の一部又は全部をフッ素原子に置換した構造単位を主鎖に含まない樹脂をいう。
 以下に、本開示のエネルギーデバイス電極用複合樹脂を構成する成分について詳細に説明する。なお、正極活物質については、後述する。
(ニトリル基含有単量体由来の構造単位を含む樹脂)
 本開示のエネルギーデバイス電極用複合樹脂は、ニトリル基含有単量体由来の構造単位を含む樹脂を含有する。
-ニトリル基含有単量体-
 本開示で用いられるニトリル基含有単量体としては、特に制限はない。ニトリル基含有単量体としては、アクリロニトリル、メタクリロニトリル等のアクリル系ニトリル基含有単量体、α-シアノアクリレート、ジシアノビニリデン等のシアン系ニトリル基含有単量体、フマロニトリル等のフマル系ニトリル基含有単量体などが挙げられる。
 これらの中では、重合のし易さ、コストパフォーマンス、電極の柔軟性、可とう性、耐酸化性、電解液に対する耐膨潤性等の点で、アクリロニトリルが好ましい。ニトリル基含有単量体に占めるアクリロニトリルの比率は、例えば、5質量%~100質量%であることが好ましく、50質量%~100質量%であることがより好ましく、70質量%~100質量%であることがさらに好ましい。これらのニトリル基含有単量体は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 ニトリル基含有単量体としてアクリロニトリルとメタクリロニトリルとを併用する場合、アクリロニトリルの含有率は、ニトリル基含有単量体の全量に対して、例えば、5質量%~95質量%であることが好ましく、50質量%~95質量%であることがより好ましい。
-式(II)で表される単量体-
 本開示で用いられるニトリル基含有単量体由来の構造単位を含む樹脂は、電極の柔軟性の観点から、式(II)で表される単量体由来の構造単位をさらに含むことが好ましい。
Figure JPOXMLDOC01-appb-C000005
 ここで、Rは水素原子又はメチル基を示す。
 nは1~50の整数を示し、2~30の整数であることが好ましく、2~10の整数であることがより好ましい。
 Rは、水素原子又は1価の炭化水素基を示し、例えば、炭素数が1~30である1価の炭化水素基であることが好ましく、炭素数が1~25である1価の炭化水素基であることがより好ましく、炭素数が1~12である1価の炭化水素基であることがさらに好ましい。なお、1価の炭化水素基が置換基を有する場合、当該1価の炭化水素基の炭素数には、置換基に含まれる炭素数は含まれないものとする。
 Rが水素原子であるか、又は炭素数が1~30である1価の炭化水素基であれば、電解液に対する十分な耐膨潤性を得ることができる傾向にある。ここで、1価の炭化水素基としては、例えば、アルキル基及びフェニル基が挙げられる。Rは、炭素数が1~12のアルキル基又はフェニル基であることが好ましい。アルキル基は、直鎖であっても分岐鎖であっても環状であってもよい。
 Rで示されるアルキル基及びフェニル基は、一部の水素原子が置換基で置換されていてもよい。Rがアルキル基である場合の置換基としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子、窒素原子を含む置換基、リン原子を含む置換基、芳香環などが挙げられる。Rがフェニル基である場合の置換基としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子、窒素原子を含む置換基、リン原子を含む置換基、芳香環、炭素数が3~10の直鎖、分岐鎖又は環状のアルキル基などが挙げられる。
 式(II)で表される単量体としては、市販品を用いても合成品を用いてもよい。市販品として入手可能な式(II)で表される単量体としては、具体的には、例えば、エトキシジエチレングリコールアクリレート(共栄社化学株式会社製、商品名:ライトアクリレートEC-A)、メトキシトリエチレングリコールアクリレート(共栄社化学株式会社製、商品名:ライトアクリレートMTG-A及び新中村化学工業株式会社製、商品名:NKエステルAM-30G)、メトキシポリ(n=9)エチレングリコールアクリレート(共栄社化学株式会社製、商品名:ライトアクリレート130-A及び新中村化学工業株式会社製、商品名:NKエステルAM-90G)、メトキシポリ(n=13)エチレングリコールアクリレート(新中村化学工業株式会社製、商品名:NKエステルAM-130G)、メトキシポリ(n=23)エチレングリコールアクリレート(新中村化学工業株式会社製、商品名:NKエステルAM-230G)、オクトキシポリ(n=18)エチレングリコールアクリレート(新中村化学工業株式会社製、商品名:NKエステルA-OC-18E)、フェノキシジエチレングリコールアクリレート(共栄社化学株式会社製、商品名:ライトアクリレートP-200A及び新中村化学工業株式会社製、商品名:NKエステルAMP-20GY)、フェノキシポリ(n=6)エチレングリコールアクリレート(新中村化学工業株式会社製、商品名:NKエステルAMP-60G)、ノニルフェノールEO付加物(n=4)アクリレート(共栄社化学株式会社製、商品名:ライトアクリレートNP-4EA)、ノニルフェノールEO付加物(n=8)アクリレート(共栄社化学株式会社製、商品名:ライトアクリレートNP-8EA)、メトキシジエチレングリコールメタクリレート(共栄社化学株式会社製、商品名:ライトエステルMC及び新中村化学工業株式会社製、商品名:NKエステルM-20G)、メトキシトリエチレングリコールメタクリレート(共栄社化学株式会社製、商品名:ライトエステルMTG)、メトキシポリ(n=9)エチレングリコールメタクリレート(共栄社化学株式会社製、商品名:ライトエステル130MA及び新中村化学工業株式会社製、商品名:NKエステルM-90G)、メトキシポリ(n=23)エチレングリコールメタクリレート(新中村化学工業株式会社製、商品名:NKエステルM-230G)並びにメトキシポリ(n=30)エチレングリコールメタクリレート(共栄社化学株式会社製、商品名:ライトエステル041MA)が挙げられる。
 これらの中では、アクリロニトリル等のニトリル基含有単量体と共重合させる場合の反応性などの点から、メトキシトリエチレングリコールアクリレート(一般式(II)のRがH、RがCH、nが3)がより好ましい。これらの式(II)で表される単量体は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
-式(III)で表される単量体-
 本開示で用いられるニトリル基含有単量体由来の構造単位を含む樹脂は、電極の柔軟性の観点から、式(III)で表される単量体由来の構造単位をさらに含むことが好ましい。
Figure JPOXMLDOC01-appb-C000006
 ここで、Rは水素原子又はメチル基を示す。Rは、炭素数が4~30のアルキル基を示し、好ましくは炭素数が5~25のアルキル基であり、より好ましくは炭素数が6~20のアルキル基であり、さらに好ましくは炭素数が8~16のアルキル基である。Rで示されるアルキル基の炭素数が4以上であれば、十分な可とう性を得ることができる傾向にある。Rで示されるアルキル基の炭素数が30以下であれば、電解液に対する十分な耐膨潤性を得ることができる傾向にある。なお、Rで示されるアルキル基が置換基を有する場合、当該アルキル基の炭素数には、置換基に含まれる炭素数は含まれないものとする。
 Rで示されるアルキル基は、直鎖状であっても分岐鎖状であっても環状であってもよい。
 Rで示されるアルキル基は、一部の水素原子が置換基で置換されていてもよい。置換基としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子、窒素原子を含む置換基、リン原子を含む置換基、芳香環、炭素数が3~10のシクロアルキル基などが挙げられる。Rで示されるアルキル基としては、直鎖状、分岐鎖状又は環状のアルキル基の他、フルオロアルキル基、クロロアルキル基、ブロモアルキル基、ヨウ化アルキル基等のハロゲン化アルキル基などが挙げられる。
 式(III)で表される単量体としては、市販品を用いても合成品を用いてもよい。市販品として入手可能な式(III)で表される単量体としては、具体的には、n-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、アミル(メタ)アクリレート、イソアミル(メタ)アクリレート、ヘキシル(メタ)アクリレート、ヘプチル(メタ)アクリレート、オクチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ノニル(メタ)アクリレート、デシル(メタ)アクリレート、イソデシル(メタ)アクリレート、ラウリル(メタ)アクリレート、トリデシル(メタ)アクリレート、ヘキサデシル(メタ)アクリレート、ステアリル(メタ)アクリレート、イソステアリル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート等の炭素数が4~30のアルキル基を含む(メタ)アクリル酸エステル類などが挙げられる。
 また、Rがフルオロアルキル基である場合、1,1-ビス(トリフルオロメチル)-2,2,2-トリフルオロエチルアクリレート、2,2,3,3,4,4,4-ヘプタフルオロブチルアクリレート、2,2,3,4,4,4-へキサフルオロブチルアクリレート、ノナフルオロイソブチルアクリレート、2,2,3,3,4,4,5,5-オクタフルオロペンチルアクリレート、2,2,3,3,4,4,5,5,5-ノナフルオロペンチルアクリレート、2,2,3,3,4,4,5,5,6,6,6-ウンデカフルオロヘキシルアクリレート、2,2,3,3,4,4,5,5,6,6,7,7,8,8,8-ペンタデカフルオロオクチルアクリレート、3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-ヘプタデカフルオロデシルアクリレート、2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-ノナデカフルオロデシルアクリレート等のアクリレート化合物、ノナフルオロ-t-ブチルメタクリレート、2,2,3,3,4,4,4-ヘプタフルオロブチルメタクリレート、2,2,3,3,4,4,5,5-オクタフルオロペンチルメタクリレート、2,2,3,3,4,4,5,5,6,6,7,7-ドデカフルオロヘプチルメタクリレート、ヘプタデカフルオロオクチルメタクリレート、2,2,3,3,4,4,5,5,6,6,7,7,8,8,8-ペンタデカフルオロオクチルメタクリレート、2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9-ヘキサデカフルオロノニルメタクリレート等のメタクリレート化合物などが挙げられる。
 式(III)で表されるこれらの単量体は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
-カルボキシ基含有単量体-
 本開示で用いられるニトリル基含有単量体由来の構造単位を含む樹脂は、集電体と合剤層との密着性の観点から、カルボキシ基含有単量体由来であってカルボキシ基を含む構造単位を含んでいてもよい。
 カルボキシ基含有単量体としては、特に制限はなく、アクリル酸、メタクリル酸等のアクリル系カルボキシ基含有単量体、クロトン酸等のクロトン系カルボキシ基含有単量体、マレイン酸及びその無水物等のマレイン系カルボキシ基含有単量体、イタコン酸及びその無水物等のイタコン系カルボキシ基含有単量体、シトラコン酸及びその無水物等のシトラコン系カルボキシ基含有単量体などが挙げられる。
 これらの中では、重合のし易さ、コストパフォーマンス、電極の柔軟性、可とう性等の点で、アクリル酸が好ましい。カルボキシ基含有単量体は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。本開示で用いられるニトリル基含有単量体由来の構造単位を含む樹脂がカルボキシ基含有単量体としてアクリル酸とメタクリル酸とを併用する場合、アクリル酸の含有率は、カルボキシ基含有単量体の全量に対して、例えば、5質量%~95質量%であることが好ましく、50質量%~95質量%であることがより好ましい。
-その他の単量体-
 本開示で用いられるニトリル基含有単量体由来の構造単位を含む樹脂は、ニトリル基含有単量体由来の構造単位、必要に応じて含まれる式(II)で表される単量体由来の構造単位、式(III)で表される単量体由来の構造単位及びカルボキシ基含有単量体由来であってカルボキシ基を含む構造単位の他、これらの単量体とは異なるその他の単量体由来の構造単位を適宜組合せることもできる。
 その他の単量体としては、特に限定されるものではなく、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート等の短鎖(メタ)アクリル酸エステル類、塩化ビニル、臭化ビニル、塩化ビニリデン等のハロゲン化ビニル類、マレイン酸イミド、フェニルマレイミド、(メタ)アクリルアミド、スチレン、α-メチルスチレン、酢酸ビニル、(メタ)アリルスルホン酸ナトリウム、(メタ)アリルオキシベンゼンスルホン酸ナトリウム、スチレンスルホン酸ナトリウム、2-アクリルアミド-2-メチルプロパンスルホン酸及びその塩などが挙げられる。これらその他の単量体は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
-各単量体由来の構造単位の比率-
 本開示で用いられるニトリル基含有単量体由来の構造単位を含む樹脂が、式(II)で表される単量体由来の構造単位、式(III)で表される単量体由来の構造単位及びカルボキシ基含有単量体由来であってカルボキシ基を含む構造単位からなる群より選択される少なくとも1種を含む場合、ニトリル基含有単量体由来の構造単位1モルに対する比率は、以下のモル比であることが好ましい。
 本開示で用いられるニトリル基含有単量体由来の構造単位を含む樹脂が式(II)で表される単量体由来の構造単位を含む場合、ニトリル基含有単量体由来の構造単位1モルに対する式(II)で表される単量体由来の構造単位の比率は、0.001モル~0.2モルであることが好ましく、0.003モル~0.05モルであることがより好ましく、0.005モル~0.02モルであることがさらに好ましい。
 ニトリル基含有単量体由来の構造単位1モルに対する式(II)で表される単量体由来の構造単位の比率が0.001モル~0.2モルの範囲であると、正極集電体、特にアルミニウム箔を用いた正極集電体との接着性及び電解液に対する耐膨潤性に優れ、電極の柔軟性及び可とう性が良好となる傾向にある。
 本開示で用いられるニトリル基含有単量体由来の構造単位を含む樹脂が式(III)で表される単量体由来の構造単位を含む場合、ニトリル基含有単量体由来の構造単位1モルに対する式(III)で表される単量体由来の構造単位の比率は、0.001モル~0.2モルであることが好ましく、0.003モル~0.05モルであることがより好ましく、0.005モル~0.02モルであることがさらに好ましい。
 ニトリル基含有単量体由来の構造単位1モルに対する式(III)で表される単量体由来の構造単位の比率が、0.001モル~0.2モルの範囲であると、正極集電体、特にアルミニウム箔を用いた正極集電体との接着性及び電解液に対する耐膨潤性に優れ、電極の柔軟性及び可とう性が良好となる傾向にある。
 本開示で用いられるニトリル基含有単量体由来の構造単位を含む樹脂がカルボキシ基含有単量体由来であってカルボキシ基を含む構造単位を含む場合、ニトリル基含有単量体由来の構造単位1モルに対するカルボキシ基含有単量体由来であってカルボキシ基を含む構造単位の比率は、0.01モル~0.2モルであることが好ましく、0.02モル~0.1モルであることがより好ましく、0.03モル~0.06モルであることがさらに好ましい。
 ニトリル基含有単量体由来の構造単位1モルに対するカルボキシ基含有単量体由来であってカルボキシ基を含む構造単位の比率が0.01モル~0.2モルの範囲であると、正極集電体、特にアルミニウム箔を用いた正極集電体との接着性及び電解液に対する耐膨潤性に優れ、電極の柔軟性及び可とう性が良好となる傾向にある。
 本開示で用いられるニトリル基含有単量体由来の構造単位を含む樹脂がその他の単量体由来の構造単位を含む場合、ニトリル基含有単量体由来の構造単位1モルに対するその他の単量体由来の構造単位の比率は、0.005モル~0.1モルであることが好ましく、0.01モル~0.06モルであることがより好ましく、0.03モル~0.05モルであることがさらに好ましい。
 また、本開示で用いられるニトリル基含有単量体由来の構造単位を含む樹脂におけるニトリル基含有単量体由来の構造単位の含有率は、ニトリル基含有単量体由来の構造単位を含む樹脂の全量を基準にして、80モル%以上であることが好ましく、90モル%以上であることがより好ましい。
 本開示で用いられるニトリル基含有単量体由来の構造単位を含む樹脂は、電解液に対する耐膨潤性を補完するための架橋成分由来の構造単位、電極の柔軟性及び可とう性を補完するためのゴム成分由来の構造単位等を含んでいてもよい。
-ニトリル基含有単量体由来の構造単位を含む樹脂の製造方法-
 本開示で用いられるニトリル基含有単量体由来の構造単位を含む樹脂を合成するための重合様式としては、沈殿重合、塊状重合、懸濁重合、乳化重合、溶液重合等が挙げられ、特に制限はない。合成のし易さ、回収、精製等の後処理のし易さなどの点で、水中沈殿重合が好ましい。
 以下、水中沈殿重合について詳細に説明する。
-重合開始剤-
 水中沈殿重合を行う際の重合開始剤としては、重合開始効率等の点で水溶性重合開始剤が好ましい。
 水溶性重合開始剤としては、過硫酸アンモニウム、過硫酸カリウム、過硫酸ナトリウム等の過硫酸塩、過酸化水素等の水溶性過酸化物、2,2’-アゾビス(2-メチルプロピオンアミジンハイドロクロライド)等の水溶性アゾ化合物、過硫酸塩等の酸化剤と亜硫酸水素ナトリウム、亜硫酸水素アンモニウム、チオ硫酸ナトリウム、ハイドロサルファイト等の還元剤と硫酸、硫酸鉄、硫酸銅等の重合促進剤とを組合せた酸化還元型(レドックス型)などが挙げられる。
 これらの中では、樹脂合成のし易さ等の点で過硫酸塩、水溶性アゾ化合物等が好ましい。過硫酸塩の中では、過硫酸アンモニウムが特に好ましい。
 なお、ニトリル基含有単量体としてアクリロニトリルを選択し、カルボキシ基含有単量体としてアクリル酸を選択し、式(II)で表される単量体としてメトキシトリエチレングリコールアクリレートを選択して水中沈殿重合を行った場合、単量体(モノマーともいう)の状態では3者ともに水溶性であることから、水溶性重合開始剤が有効に作用し、重合がスムーズに始まる。そして、重合が進むにつれて重合物が析出してくるため、反応系が懸濁状態となり、最終的に未反応物の少ないニトリル基含有単量体由来の構造単位を含む樹脂が高収率で得られる。
 重合開始剤は、ニトリル基含有単量体由来の構造単位を含む樹脂の合成に使用される単量体の総量に対し、例えば、0.001モル%~5モル%の範囲で使用されることが好ましく、0.01モル%~2モル%の範囲で使用されることがより好ましい。
-連鎖移動剤-
 また、水中沈殿重合を行う際には、分子量調節等の目的で、連鎖移動剤を用いることができる。連鎖移動剤としては、メルカプタン化合物、四塩化炭素、α-メチルスチレンダイマー等が挙げられる。これらの中では、臭気が少ない等の点で、α-メチルスチレンダイマーが好ましい。
-溶媒-
 水中沈殿重合を行う際には、析出する樹脂の粒子径の調節等のため、必要に応じて、水以外の溶媒を加えることもできる。
 水以外の溶媒としては、N-メチル-2-ピロリドン、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド等のアミド類、N,N-ジメチルエチレンウレア、N,N-ジメチルプロピレンウレア、テトラメチルウレア等のウレア類、γ-ブチロラクトン、γ-カプロラクトン等のラクトン類、プロピレンカーボネート等のカーボネート類、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン類、酢酸メチル、酢酸エチル、酢酸n-ブチル、ブチルセロソルブアセテート、ブチルカルビトールアセテート、エチルセロソルブアセテート、エチルカルビトールアセテート等のエステル類、ジグライム、トリグライム、テトラグライム等のグライム類、トルエン、キシレン、シクロヘキサン等の炭化水素類、ジメチルスルホキシド等のスルホキシド類、スルホラン等のスルホン類、メタノール、イソプロパノール、n-ブタノール等のアルコール類などが挙げられる。これらの溶媒は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
-重合方法-
 水中沈殿重合は、例えば、ニトリル基含有単量体並びに必要に応じて用いられるカルボキシ基含有単量体、式(II)で表される単量体、式(III)で表される単量体及びその他の単量体を溶媒中に導入し、重合温度を、好ましくは0℃~100℃、より好ましくは30℃~95℃として、好ましくは1時間~50時間、より好ましくは2時間~12時間保持することによって行われる。
 重合温度が0℃以上であれば、重合反応が促進される傾向にある。また、重合温度が100℃以下であれば、溶媒として水を使用したときでも、水が蒸発して重合ができなくなる状態になりにくい傾向にある。
 本開示で用いられるニトリル基含有単量体由来の構造単位を含む樹脂の重量平均分子量は、10000~1000000であることが好ましく、100000~800000であることがより好ましく、250000~700000であることがさらに好ましい。
 本開示において、重量平均分子量は下記方法により測定された値をいう。
 測定対象をN-メチル-2-ピロリドンに溶解し、PTFE(ポリテトラフルオロエチレン)製フィルタ〔倉敷紡績株式会社製、HPLC(高速液体クロマトグラフィー)前処理用、クロマトディスク、型番:13N、孔径:0.45μm〕を通して不溶分を除去する。GPC〔ポンプ:L6200 Pump(株式会社日立製作所製)、検出器:示差屈折率検出器L3300 RI Monitor(株式会社日立製作所製)、カラム:TSKgel-G5000HXLとTSKgel-G2000HXL(計2本)(共に東ソー株式会社製)を直列に接続、カラム温度:30℃、溶離液:N-メチル-2-ピロリドン、流速:1.0ml/分、標準物質:ポリスチレン〕を用い、重量平均分子量を測定する。
 本開示で用いられるニトリル基含有単量体由来の構造単位を含む樹脂の酸価は、0mgKOH/g~40mgKOH/gであることが好ましく、0mgKOH/g~10mgKOH/gであることがより好ましく、0mgKOH/g~5mgKOH/gであることがさらに好ましい。
 本開示において、酸価は下記方法により測定された値をいう。
 まず、測定対象1gを精秤した後、その測定対象にアセトンを30g添加し、測定対象を溶解する。次いで、指示薬であるフェノールフタレインを測定対象の溶液に適量添加して、0.1NのKOH水溶液を用いて滴定する。そして、滴定結果より下記式(A)により酸価を算出する(式中、Vfはフェノールフタレインの滴定量(mL)を示し、Wpは測定対象の溶液の質量(g)を示し、Iは測定対象の溶液の不揮発分の割合(質量%)を示す。)。
 酸価(mgKOH/g)=10×Vf×56.1/(Wp×I)  (A)
 なお、測定対象の溶液の不揮発分は、測定対象の溶液をアルミパンに約1ml量り取り、160℃に加熱したホットプレート上で15分間乾燥させ、残渣質量から算出する。
 ニトリル基含有単量体並びに必要に応じて用いられるカルボキシ基含有単量体、式(II)で表される単量体、式(III)で表される単量体及びその他の単量体を重合する際、特にニトリル基含有単量体及び必要に応じて用いられるカルボキシ基含有単量体の重合熱が大きいため、これらの単量体を溶媒中に滴下しながら重合を進めることが好ましい。
 本開示で用いられるニトリル基含有単量体由来の構造単位を含む樹脂は、上記のように重合して製造され、通常、溶媒に溶解したワニスの形態で使用される。ワニス状のニトリル基含有単量体由来の構造単位を含む樹脂の調製に用いる溶媒としては、特に制限はなく、例えば、先に述べた水中沈殿重合を行う際に加えることのできる溶媒及び水が使用できる。これらのうちでは、本開示で用いられるニトリル基含有単量体由来の構造単位を含む樹脂に対する溶解性等の点で、アミド類、ウレア類、ラクトン類又はそれらを含む混合溶媒が好ましく、これらの中でもN-メチル-2-ピロリドン、γ-ブチロラクトン又はそれらを含む混合溶媒がより好ましい。これらの溶媒は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 上記溶媒の使用量は、常温(25℃)でニトリル基含有単量体由来の構造単位を含む樹脂が溶解状態を保てる必要最低限の量以上であれば、特に制限はない。後述するエネルギーデバイスの電極作製におけるスラリー調製工程では、通常、溶媒を加えながらスラリーの粘度調整を行うため、必要以上に希釈し過ぎない任意の量とすることが好ましい。
(フッ素樹脂)
 本開示のエネルギーデバイス電極用複合樹脂は、フッ素樹脂を含む。本開示で用いられるフッ素樹脂は、主鎖に、ポリエチレン骨格中における水素原子の一部又は全部をフッ素原子に置換した構造単位を含む樹脂であれば、特に制限がない。
 フッ素樹脂としては、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、ポリビニルフルオライド(PVF)、ポリクロロトリフルオロエチレン(PCTFE)等のホモポリマー、テトラフルオロエチレン-パーフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン-パーフルオロプロピレン共重合体(PFA)、テトラフルオロエチレン-エチレン共重合体(ETFE)、クロロトリフルオロエチレン-エチレン共重合体等の共重合体、またこれらにカルボキシ基等を変性した変性物などが挙げられる。これらの中でも、溶媒への溶解性、電解液への膨潤性、樹脂の柔軟性等の観点から、PVDFが好ましい。また、これらフッ素樹脂は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
-各樹脂の配合比率-
 本開示のエネルギーデバイス電極用複合樹脂の組成は、ニトリル基含有単量体由来の構造単位を含む樹脂及びフッ素樹脂を含むものであれば特に限定されるものではない。
 ニトリル基含有単量体由来の構造単位を含む樹脂及びフッ素樹脂の質量基準の混合比(ニトリル基含有単量体由来の構造単位を含む樹脂:フッ素樹脂)は、90:10~50:50であることが好ましい。本開示のエネルギーデバイス電極用複合樹脂を含むスラリーの性状は、ニトリル基含有単量体由来の構造単位を含む樹脂の割合が多いほど、ゲル化しにくい傾向にあり、フッ素樹脂が多いほど、スラリー中の活物質が沈降し難い傾向にある。
 また、ニトリル基含有単量体由来の構造単位を含む樹脂とフッ素樹脂とでは、電解液に対する膨潤性が異なるため、電池特性としては、ニトリル基含有単量体由来の構造単位を含む樹脂が多いほど、サイクル特性が向上する傾向にあり、フッ素樹脂が多いほど、電池抵抗が低くなる傾向にある。これらの傾向から、ニトリル基含有単量体由来の構造単位を含む樹脂及びフッ素樹脂の質量基準の混合比(ニトリル基含有単量体由来の構造単位を含む樹脂:フッ素樹脂)は、90:10~55:45であることがより好ましく、80:20~60:40であることがさらに好ましく、75:25~65:35であることが特に好ましい。
<エネルギーデバイス電極形成用組成物>
 本開示のエネルギーデバイス電極形成用組成物は、特定金属酸化物を含む正極活物質と、本開示のエネルギーデバイス電極用複合樹脂と、を含有する。
 以下に、本開示のエネルギーデバイス電極形成用組成物に含まれる各成分について説明する。なお、本開示のエネルギーデバイス電極形成用組成物に含まれる本開示のエネルギーデバイス電極用複合樹脂の好ましい態様は、上述の通りである。
(正極活物質)
 本開示のエネルギーデバイス電極形成用組成物に含まれる正極活物質は、特定金属酸化物を含む。特定金属酸化物を正極活物質として用いることで、リチウムイオン二次電池のエネルギー密度を向上することができる。
 また、特定金属酸化物を正極活物質として用いた場合でも、特定金属酸化物と本開示のエネルギーデバイス電極用複合樹脂とを組み合わせることで、本開示のエネルギーデバイス電極形成用組成物を含むスラリーのゲル化及びスラリーの沈降が抑制される。
 特に、特定金属酸化物を正極活物質として用いた場合の正極活物質における単位質量当りの充放電容量を高めて、高容量のエネルギーデバイス用正極が得られるようにするためには、特定金属酸化物は、下記式(I)で表される化合物を含むことが好ましい。
LiNiCo2+e  式(I)
 式(I)中、Mは、Al、Mn、Mg及びCaからなる群より選択される少なくとも1種であり、a、b、c、d及びeは、各々0.2≦a≦1.2であり、0.5≦b≦0.9であり、0.1≦c≦0.4であり、0≦d≦0.2であり、-0.2≦e≦0.2であり、b+c+d=1である。また、リチウムのモル比を示すaは、充放電により増減する。
 式(I)で表される化合物において、Niの割合が大きくなるほど、正極活物質の容量密度が大きくなり、Niの割合が小さくなるほど、正極活物質の熱力学的な安定性が高くなる傾向にあることから、Niの割合(b)は、0.5≦b≦0.9であることが好ましく、0.55≦b≦0.85であることがより好ましく、0.6≦b≦0.8であることがさらに好ましい。
 また、Coの割合が大きくなるほど、正極活物質の放電性能が向上し、Coの割合が小さいほど、正極活物質の容量密度が大きくなる傾向にあることから、Coの割合(c)は、0.1≦c≦0.4であることが好ましい。
 また、式(I)中のMとして、Al、Mn、Mg及びCaからなる群より選択される少なくとも1種の元素を含有させることが可能である。このような元素を含有させると、正極活物質の熱力学的な安定性が高くなること及びニッケルがリチウムサイトに入り込むことで起こる抵抗上昇を抑制することが可能になる傾向にある。一方、Mの割合が小さいほど、正極活物質の容量密度は大きくなる傾向にある。このような観点から、Mの割合(d)は、0≦d≦0.2が好ましい。
 式(I)で表される化合物は、エネルギーデバイスの分野で常用される方法で作製できる。作製の一例を以下に示す。
 はじめに正極活物質に導入する金属の金属塩溶液を作製する。金属塩は、エネルギーデバイスの分野で常用されるものを使用でき、硫酸塩、塩化物塩、硝酸塩、酢酸塩等が挙げられる。
 中でも硝酸塩は、後の焼成工程中で酸化剤として機能するため焼成原料中の金属の酸化を促進させやすく、また、焼成により揮発するため正極活物質中に残存し難いことから好ましい。金属塩溶液に含まれる各金属のモル比は、作製する正極活物質の各金属のモル比と同等にすることが好ましい。
 次に、リチウム源を純水に懸濁させる。リチウム源としては、エネルギーデバイスの分野で常用されるものを使用でき、炭酸リチウム、硝酸リチウム、水酸化リチウム、酢酸リチウム、アルキルリチウム、脂肪酸リチウム、ハロゲンリチウム等が挙げられる。その後、上記金属の金属塩溶液を添加し、リチウム塩溶液スラリーを作製する。このとき、スラリー中に微粒子のリチウム含有炭酸塩が析出する。スラリー中のリチウム含有炭酸塩の平均粒子径は、スラリーのせん断速度により調整できる。析出したリチウム含有炭酸塩を濾別した後、乾燥することにより、正極活物質の前躯体が得られる。
 得られたリチウム含有炭酸塩を焼成容器に充填し、焼成炉で焼成する。焼成は、酸素を含む雰囲気下、好ましくは酸素雰囲気下で所定時間加熱した状態で保持することが好ましい。さらに焼成は101kPa~202kPaでの加圧下で行うことが好ましい。加圧下で加熱することで組成中の酸素量を増加できる。焼成温度は、850℃~1200℃の温度で行うことが好ましく、850℃~1100℃の温度で行うことがより好ましく、850℃~1000℃の温度で行うことがさらに好ましい。このような温度範囲で焼成を行うと、正極活物質の結晶性が向上する傾向にある。
 本開示のエネルギーデバイス電極形成用組成物は、正極活物質として、エネルギーデバイスの分野で常用される特定金属酸化物以外のその他のリチウム含有金属複合酸化物を併用できる。常用されるリチウム含有金属複合酸化物としては、LiCoO、LiNiO、LiMnO、LiNi1/3Mn1/3Co1/3、LiMn等が挙げられる。
 本開示のエネルギーデバイス電極形成用組成物がその他のリチウム含有金属複合酸化物を併用する場合、正極活物質に占める特定金属酸化物の割合は、70質量%以上であることが好ましく、80質量%以上であることがより好ましく、90質量%以上であることがさらに好ましい。
 その他のリチウム含有金属複合酸化物は、目的とするエネルギーデバイスの容量、入出力特性、サイクル寿命、電圧、安全性等の特性に合わせて、任意に選択できる。
 正極活物質は1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
-導電性材料-
 本開示のエネルギーデバイス電極形成用組成物は、電極の抵抗を低減する観点から、導電性材料を含んでもよい。導電性材料としては、エネルギーデバイスの分野で常用されるものを使用できる。具体的には、カーボンブラック、黒鉛、炭素繊維、金属繊維等が挙げられる。カーボンブラックとしては、例えば、アセチレンブラック、ケッチェンブラック、チャンネルブラック、ファーネスブラック、ランプブラック及びサーマルブラックが挙げられる。黒鉛としては、例えば、天然黒鉛及び人造黒鉛が挙げられる。導電性材料は1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
-溶媒-
 本開示のエネルギーデバイス電極形成用組成物を電極形成用のスラリーとして用いる場合、エネルギーデバイス電極形成用組成物は溶媒を含んでいてもよい。
 スラリーに用いられる溶媒としては、特に制限はなく、本開示のエネルギーデバイス電極用複合樹脂を均一に溶解又は分散できる溶媒であればよい。このような溶媒としては、本開示のエネルギーデバイス電極用複合樹脂を溶解して樹脂溶液を調製する際に用いられる溶媒がそのまま使用されることが多く、例えば、N-メチル-2-ピロリドン及びγ-ブチロラクトンが好ましい。これらの溶媒は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
-その他の添加剤-
 本開示のエネルギーデバイス電極形成用組成物には、電解液に対する耐膨潤性を補完するための架橋成分、電極の柔軟性及び可とう性を補完するためのゴム成分、スラリーの電極塗工性を向上させるための沈降防止剤、消泡剤、レベリング剤等の各種添加剤を必要に応じて配合することもできる。
 本開示のエネルギーデバイス電極形成用組成物を電極形成用のスラリーとして用いる場合、スラリーには、スラリーの分散安定性及び塗工性を改善するため、増粘剤を添加することができる。増粘剤としては、ポリアクリル酸及びこれらのアルカリ金属塩等のポリアクリル酸誘導体、エチレン-(メタ)アクリル酸共重合体、ポリビニルアルコール、エチレン-ビニルアルコール共重合体等のポリビニルアルコール系共重合体などが挙げられる。
 ここで、スラリー調製工程で調節されるべき適当な粘度としては、総量に対して10質量%のエネルギーデバイス電極用複合樹脂を添加したN-メチル-2-ピロリドン(NMP)溶液の場合、25℃において、500mPa・s~50000mPa・sであることが好ましく、1000mPa・s~20000mPa・sであることがより好ましく、2000mPa・s~10000mPa・sであることがさらに好ましい。
 なお、粘度は回転式せん断粘度計を用いて、25℃、せん断速度1.0s-1で測定される。
<エネルギーデバイス用正極>
 本開示のエネルギーデバイス用正極(以下、単に正極と略すこともある)は、正極集電体と、前記正極集電体の少なくとも一方の表面上に設けられ、本開示のエネルギーデバイス電極形成用組成物を含む正極合剤層と、を有する。
 本開示のエネルギーデバイス用正極は、特に制限なく公知の電極の製造方法を利用して製造することができる。例えば、上記活物質、上記エネルギーデバイス電極用複合樹脂、必要に応じて用いられる導電性材料及び溶媒を含む正極スラリーを正極集電体の少なくとも一方の表面上に塗布し、次いで溶媒を乾燥により除去し、必要に応じて圧延して正極集電体表面に正極合剤層を形成することにより製造することができる。
 正極スラリーの塗布は、例えば、コンマコーター等を用いて行うことができる。塗布は、対向する電極において、正極容量と負極容量との比率(負極容量/正極容量)が1以上になるように行うことが適当である。正極スラリーの塗布量は、例えば、正極合剤層の乾燥質量として、5g/m~500g/mであることが好ましく、50g/m~300g/mであることがより好ましく、100g/m~200g/mであることがさらに好ましい。塗布量が多い程、容量の大きなリチウムイオン二次電池が得られやすく、塗布量が少ない程、出力の高いリチウムイオン二次電池が得られやすい傾向にある。
 溶媒の除去は、例えば好ましくは50℃~150℃、より好ましくは80℃~120℃で、好ましくは1分間~20分間、より好ましくは3分間~10分間乾燥することによって行われる。
 圧延は、例えばロールプレス機を用いて行われる。正極合剤層のかさ密度は、例えば、2g/cm~5g/cmであることが好ましく、2.5g/cm~4g/cmであることがより好ましい。さらに、正極内の残留溶媒、吸着水の除去等のため、例えば、100℃~150℃で1時間~20時間真空乾燥してもよい。
 正極集電体としては、エネルギーデバイスの分野で常用されるものを使用できる。具体的には、ステンレス鋼、アルミニウム、チタン等を含有するシート、箔などが挙げられる。これらの中でも、電気化学的な観点及びコストから、アルミニウムのシート又は箔が好ましい。
 シート及び箔の厚さは、特に限定されず、例えば、1μm~500μmであることが好ましく、2μm~100μmであることがより好ましく、5μm~50μmであることがさらに好ましい。
<エネルギーデバイス>
 本開示のエネルギーデバイスは、本開示のエネルギーデバイス用正極を含む。
 本開示のエネルギーデバイスとしては、リチウムイオン二次電池、電気二重層キャパシタ、太陽電池、燃料電池等が挙げられる。
 本開示のエネルギーデバイス用正極と、エネルギーデバイス用負極と、電解液とを組み合わせることで、本開示のエネルギーデバイスの一例であるリチウムイオン二次電池を得ることができる。
 本開示のエネルギーデバイスは、非水電解液系のエネルギーデバイスに適用されることが好ましい。非水電解液系のエネルギーデバイスとは、水以外の溶媒を含む電解液を用いる蓄電又は発電デバイス(装置)をいう。
 以下、本開示のエネルギーデバイスをリチウムイオン二次電池に適用した場合について説明する。
 リチウムイオン二次電池は、例えば、エネルギーデバイス用正極と、エネルギーデバイス用負極と、エネルギーデバイス用正極とエネルギーデバイス用負極との間に介在するセパレータと、電解液と、を備える。エネルギーデバイス用正極として、本開示のエネルギーデバイス用正極が用いられる。
(エネルギーデバイス用負極)
 エネルギーデバイス用負極(以下、単に負極と略すこともある)は、負極集電体と、負極集電体の少なくとも一方の表面上に設けられた負極合剤層とを有するものである。負極合剤層は、負極活物質とバインダ樹脂と必要に応じて導電性材料とを有するものである。
 負極活物質としては、エネルギーデバイスの分野で常用されるものを使用できる。具体的には、例えば、金属リチウム、リチウム合金、金属化合物、炭素材料、金属錯体、及び有機高分子化合物が挙げられる。負極活物質は1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 これらの中でも、負極活物質としては、炭素材料が好ましい。炭素材料としては、天然黒鉛(鱗片状黒鉛等)、人造黒鉛等の黒鉛、アセチレンブラック、ケッチェンブラック、チャンネルブラック、ファーネスブラック、ランプブラック、サーマルブラック等のカーボンブラック、非晶質炭素、炭素繊維などが挙げられる。
 炭素材料の平均粒子径は、0.1μm~60μmであることが好ましく、0.3μm~45μmであることがより好ましく、0.5μm~30μmであることがさらに好ましい。
 また、炭素材料のBET比表面積は、1m/g~10m/gであることが好ましい。
 炭素材料の中でも特に、リチウムイオン二次電池の放電容量をより向上できる観点からは、X線広角回折法における炭素六角平面の間隔(d002)が3.35Å~3.40Åであり、c軸方向の結晶子(Lc)が100Å以上である黒鉛が好ましい。
 一方、炭素材料の中でも特に、サイクル特性及び安全性をより向上できる観点からは、X線広角回折法における炭素六角平面の間隔(d002)が3.50Å~3.95Åである非晶質炭素が好ましい。
 本開示において平均粒子径は、界面活性剤を含んだ精製水に試料を分散させ、レーザー回折式粒度分布測定装置(例えば、株式会社島津製作所製SALD-3000J)で測定される体積基準の粒度分布において、小径側からの積算が50%となるときの値(メジアン径(D50))とする。
 BET比表面積は、例えば、JIS Z 8830:2013に準じて窒素吸着能から測定することができる。評価装置としては、例えば、QUANTACHROME社製:AUTOSORB-1(商品名)を用いることができる。試料表面及び構造中に吸着している水分がガス吸着能に影響を及ぼすと考えられることから、BET比表面積の測定を行う際には、まず加熱による水分除去の前処理を行うことが好ましい。
 前処理では、0.05gの測定試料を投入した測定用セルを、真空ポンプで10Pa以下に減圧した後、110℃で加熱し、3時間以上保持した後、減圧した状態を保ったまま常温(25℃)まで自然冷却する。この前処理を行った後、評価温度を77Kとし、評価圧力範囲を相対圧(飽和蒸気圧に対する平衡圧力)にて1未満として測定する。
 炭素材料の002面の面間隔d002は、X線(CuKα線)を試料に照射し、回折線をゴニオメーターにより測定し得た回折プロファイルより、回折角2θが24°~26°付近に現れる炭素002面に対応する回折ピークより、ブラッグの式を用いて算出することができる。
 エネルギーデバイス用負極に用いる負極集電体としては、エネルギーデバイスの分野で常用されるものを使用できる。具体的には、ステンレス鋼、ニッケル、銅等を含むシート、箔などが挙げられる。シート及び箔の平均厚さは、特に限定されず、例えば、1μm~500μmであることが好ましく、2μm~100μmであることがより好ましく、5μm~50μmであることがさらに好ましい。
 エネルギーデバイス用負極においては、電極の抵抗を低減する観点から、導電性材料を用いてもよい。導電性材料としては、エネルギーデバイスの分野で常用されるものを使用できる。具体的には、カーボンブラック、黒鉛、炭素繊維、金属繊維等が挙げられる。カーボンブラックとしては、例えば、アセチレンブラック、ケッチェンブラック、チャンネルブラック、ファーネスブラック、ランプブラック及びサーマルブラックが挙げられる。黒鉛としては、例えば、天然黒鉛及び人造黒鉛が挙げられる。導電性材料は1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 エネルギーデバイス用負極に用いるバインダ樹脂としては、エネルギーデバイスの分野で常用されるものを使用できる。具体的には、例えば、ポリテトラフルオロエチレン、ポリフッ化ビニリデン、スチレンブタジエンゴム及びアクリルゴムが挙げられる。これらバインダ樹脂の中でも特に、リチウムイオン二次電池の特性をより向上できる観点からは、スチレンブタジエンゴム及びアクリルゴムが好ましい。
 エネルギーデバイス用負極は、特に制限なく公知の電極の製造方法を利用して製造することができる。例えば、負極活物質、バインダ樹脂並びに必要に応じて用いられる導電性材料及び溶媒を含むスラリー(負極スラリー)を負極集電体の少なくとも一方の表面上に塗布し、次いで溶媒を乾燥により除去し、必要に応じて圧延して負極集電体表面に負極合剤層を形成することにより製造することができる。
 負極スラリーに用いられる溶媒としては、特に制限はなく、バインダ樹脂を均一に溶解又は分散できる溶媒であればよい。バインダ樹脂にスチレンブタジエンゴムを用いる場合には、バインダ樹脂の分散媒として広く用いられている水が好ましい。溶媒は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 負極合剤層を製造するための負極スラリーには、負極スラリーの分散安定性及び塗工性を改善するため増粘剤を添加することができる。増粘剤としては、カルボキシメチルセルロース、カルボキシメチルセルロースナトリウム等のカルボキシメチルセルロース誘導体、ポリビニルアルコール、ポリビニルピロリドン、水溶性アルギン酸誘導体、ゼラチン、カラギーナン、グルコマンナン、ペクチン、カードラン、ジェランガム、ポリアクリル酸及びそのアルカリ金属塩等のポリアクリル酸誘導体、エチレン-(メタ)アクリル酸共重合体、ポリビニルアルコール、エチレン-ビニルアルコール共重合体等のポリビニルアルコール系共重合体などが挙げられる。これらの中でも、カルボキシメチルセルロース誘導体が好ましい。
 負極スラリーの塗布は、例えば、コンマコーター等を用いて行うことができる。塗布は、対向する電極において、正極容量と負極容量との比率(負極容量/正極容量)が1以上になるように行うことが適当である。負極スラリーの塗布量は、例えば、負極合剤層の乾燥質量が、5g/m~300g/mであることが好ましく、25g/m~200g/mであることがより好ましく、50g/m~150g/mであることがさらに好ましい。塗布量が多い程、容量の大きなリチウムイオン二次電池が得られやすく、塗布量が少ない程、出力の高いリチウムイオン二次電池が得られやすい傾向にある。
 溶媒の除去は、例えば、好ましくは50℃~150℃、より好ましくは80℃~120℃で、好ましくは1分間~20分間、より好ましくは3分間~10分間乾燥することによって行われる。
 圧延は、例えばロールプレス機を用いて行われる。負極合剤層のかさ密度は、例えば、1g/cm~2g/cmであることが好ましく、1.2g/cm~1.8g/cmであることがより好ましく、1.4g/cm~1.6g/cmであることがさらに好ましい。さらに、負極内の残留溶媒、吸着水の除去等のため、例えば、100℃~150℃で1時間~20時間真空乾燥してもよい。
-セパレータ-
 セパレータは、正極及び負極間を電子的には絶縁しつつもイオン透過性を有し、かつ、正極側における酸化性及び負極側における還元性に対する耐性を備えるものであれば特に制限はない。このような特性を満たすセパレータの材料(材質)としては、樹脂、無機物等が用いられる。
 上記樹脂としては、オレフィン系ポリマー、フッ素系ポリマー、セルロース系ポリマー、ポリイミド、ナイロン等が用いられる。具体的には、電解液に対して安定で、保液性の優れた材料の中から選ぶのが好ましく、ポリエチレン、ポリプロピレン等のポリオレフィンを原料とする多孔性シート、不織布などを用いることが好ましい。
 無機物としては、アルミナ、二酸化ケイ素等の酸化物類、窒化アルミニウム、窒化ケイ素等の窒化物類、硫酸バリウム、硫酸カルシウム等の硫酸塩類、ガラスなどが用いられる。例えば、繊維形状又は粒子形状の上記無機物を、不織布、織布、微多孔性フィルム等の薄膜形状の基材に付着させたものをセパレータとして用いることができる。
 薄膜形状の基材としては、平均孔径が0.01μm~1μmであり、平均厚さが5μm~50μmのものが好適に用いられる。また、繊維形状又は粒子形状の上記無機物を、樹脂等の結着剤を用いて複合多孔層としたものをセパレータとして用いることができる。さらに、この複合多孔層を、正極又は負極の表面に形成し、セパレータとしてもよい。あるいは、この複合多孔層を他のセパレータの表面に形成し、多層セパレータとしてもよい。例えば、90%径(D90)が1μm未満のアルミナ粒子を、結着剤としてフッ素樹脂を用いて結着させた複合多孔層を正極の表面に形成したものを、セパレータとしてもよい。
-電解液-
 電解液としては、例えば、エネルギーデバイスであるリチウムイオン二次電池としての機能を発揮させるものであれば特に制限はない。電解液としては、水以外の溶媒を含む電解液(非水電解液)を用いることが好ましい。非水電解液の具体例としては、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネート等のカーボネート類、γ-ブチロラクトン等のラクトン類、トリメトキシメタン、1,2-ジメトキシエタン、ジエチルエーテル、2-エトキシエタン、テトラヒドロフラン、2-メチルテトラヒドロフラン等のエーテル類、ジメチルスルホキシド等のスルホキシド類、1,3-ジオキソラン、4-メチル-1,3-ジオキソラン等のオキソラン類、アセトニトリル、ニトロメタン、N-メチル-2-ピロリドン等の含窒素化合物類、ギ酸メチル、酢酸メチル、酢酸ブチル、プロピオン酸メチル、プロピオン酸エチル、リン酸トリエステル等のエステル類、ジグライム、トリグライム、テトラグライム等のグライム類、アセトン、ジエチルケトン、メチルエチルケトン、メチルイソブチルケトン等のケトン類、スルホラン等のスルホン類、3-メチル-2-オキサゾリジノン等のオキサゾリジノン類、1,3-プロパンスルトン、4-ブタンスルトン、ナフタスルトン等のスルトン類などの有機溶媒に、LiClO、LiBF、LiI、LiPF、LiCFSO、LiCFCO、LiAsF、LiSbF、LiAlCl、LiCl、LiBr、LiB(C、LiCHSO、LiCSO、Li(CFSON、Li[(COB等の電解質を溶解した溶液などが挙げられる。これらの中では、カーボネート類にLiPFを溶解した電解液が好ましい。
 電解液は、例えば有機溶媒と電解質とを、それぞれ1種を単独で又は2種以上組み合わせて用いることで調製される。
 また、リチウムイオン二次電池の特性をより向上できる観点から、電解液にビニレンカーボネート(VC)を含有することが好ましい。
 ビニレンカーボネート(VC)を含有する場合の含有率は、電解液全量に対して、0.1質量%~2質量%が好ましく、0.2質量%~1.5質量%がより好ましい。
 リチウムイオン二次電池の製造方法については特に制約はなく、公知の方法を利用できる。
 例えば、まず、正極と負極の2つの電極を、ポリエチレン微多孔膜からなるセパレータを介して捲回する。得られたスパイラル状の捲回群を電池缶に挿入し、予め負極の集電体に溶接しておいたタブ端子を電池缶底に溶接する。得られた電池缶に電解液を注入する。さらに予め正極の集電体に溶接しておいたタブ端子を電池の蓋に溶接し、蓋を絶縁性のガスケットを介して電池缶の上部に配置し、蓋と電池缶とが接した部分をかしめて密閉することによってリチウムイオン二次電池を得る。
 以下、実験例により本発明をさらに詳しく説明するが、本発明はこれらによって制限されるものではない。
<ニトリル基含有単量体由来の構造単位を含む樹脂の調製>
 撹拌機、温度計及び冷却管を装着した0.5リットルのセパラブルフラスコ内に、精製水(和光純薬工業株式会社製)397.2gを加えた後、系内を窒素置換し、72.0℃まで昇温した。系内の水温が72.0℃になっていることを確認後、精製水2.5gに重合開始剤の過硫酸アンモニウム(和光純薬工業株式会社製)347.0mgを溶解した溶液を系内に加えた後、250回転/分で撹拌した。次いで、系内にモノマー(ニトリル基含有単量体のアクリロニトリル(和光純薬工業株式会社製)41.4g(0.78モル)及びメトキシトリエチレングリコールアクリレート(新中村化学工業株式会社製、NKエステルAM-30G)1.4g(0.006モル))を2時間かけて滴下し、1時間かけて反応させた。次いで、精製水7.8gに重合開始剤の過硫酸アンモニウム(和光純薬工業株式会社製)420mgを溶解した溶液を系内に加えた後、1時間反応させた。次いで、系内の温度を92.0℃まで昇温し、1時間かけて反応させた。次いで、精製水1.5gに重合開始剤の過硫酸アンモニウム(和光純薬工業株式会社製)210mgを溶解した溶液を系内に加えた後、1時間反応させた。上記工程中は、系内を窒素雰囲気で保ち、250回転/分で撹拌を続けた。室温(25℃)に冷却後、反応液を吸引ろ過し、析出した樹脂をろ別した。ろ別した樹脂を精製水(和光純薬工業株式会社製)1000gで洗浄した。洗浄した樹脂を60℃、150Paに設定した真空管乾燥機で24時間乾燥して、ニトリル基含有単量体由来の構造単位を含む樹脂を得た。以下、ニトリル基含有単量体由来の構造単位を含む樹脂をPAN系樹脂と記載する。撹拌機、温度計及び冷却管を装着した0.5リットルのセパラブルフラスコ内に、NMP423gを加え、100±5℃に昇温した後、PAN系樹脂の粉末27gを加え、300回転/分で5時間撹拌し、PAN系樹脂のNMP溶液とした。
<正極活物質の作製>
(1)正極活物質Aの作製
 炭酸リチウム1390gを純水に懸濁させた後、金属塩溶液を1.6L/時間で投入した。金属塩溶液は、ニッケル、コバルト及びアルミニウムの硝酸塩の水和物を用いて調製した。正極活物質Aとして得られる化合物がLiNi0.8Co0.15Al0.05となるように、金属塩溶液に含まれるニッケル、コバルト及びアルミニウムの比率を、Ni:Co:Al=80モル%:15モル%:5モル%の組成比に調整した。
 この処理により、溶液中に微粒子状のリチウム含有炭酸塩が析出した。この析出物を、飽和炭酸リチウム溶液で2回洗浄し、フィルタープレスを使用して濾別した。続いて析出物を乾燥して、正極活物質の前躯体であるリチウム含有炭酸塩を得た。
 次に得られたリチウム含有炭酸塩を焼成炉に入れて、850℃まで6時間かけて昇温させ、続いて2時間加熱保持した後、冷却して酸化物を得た。得られた酸化物を解砕し、正極活物質Aを得た。以下、正極活物質AをNCAと記載する。
(2)正極活物質Bの作製
 金属塩溶液は、ニッケル、コバルト及びマンガンの硝酸塩の水和物を用いて調製した。正極活物質Bとして得られる化合物がLiNi0.8Co0.1Mn0.1となるように、金属塩溶液に含まれるニッケル、コバルト及びマンガンの比率を、Ni:Co:Mn=80モル%:10モル%:10モル%の組成比に調整した以外は、正極活物質Aと同様の方法で正極活物質Bを得た。以下、正極活物質BをNMC(811)と記載する。
<正極スラリーの作製>
(実施例1)
 NCA(正極活物質)とアセチレンブラック(導電性材料、デンカ株式会社製、デンカブラック HS-100)とPAN系樹脂(ニトリル基含有単量体由来の構造単位を含む樹脂)とPVDF(フッ素樹脂)を固形分の比率が98.0質量%:1.0質量%:0.8質量%:0.2質量%となるよう混合し、さらに粘度調整のためにNMPを加えて正極スラリーを作製した。NMPは、E型粘度計(東機産業株式会社製、TV-35)を用いて、25℃、0.5回転/分の条件で測定したスラリーの粘度が2000mPa・s~5000mPa・sとなる量を加えた。
 正極スラリーを作製した際の室温及び湿度は、25±1℃で55±1%RHであった。
(実施例2)
 NCAとアセチレンブラックとPAN系樹脂とPVDFを固形分比率が98.0質量%:1.0質量%:0.7質量%:0.3質量%とした以外は実施例1と同様の方法で正極スラリーを作製した。
(実施例3)
 NCAとアセチレンブラックとPAN系樹脂とPVDFを固形分比率が98.0質量%:1.0質量%:0.6質量%:0.4質量%とした以外は実施例1と同様の方法で正極スラリーを作製した。
(実施例4)
 NCAとアセチレンブラックとPAN系樹脂とPVDFを固形分比率が98.0質量%:1.0質量%:0.5質量%:0.5質量%とした以外は実施例1と同様の方法で正極スラリーを作製した。
(実施例5)
 正極活物質をNMC(811)とした以外は、実施例1と同様の方法で正極スラリーを作製した。
(実施例6)
 正極活物質をNMC(811)とした以外は、実施例2と同様の方法で正極スラリーを作製した。
(実施例7)
 正極活物質をNMC(811)とした以外は、実施例3と同様の方法で正極スラリーを作製した。
(実施例8)
 正極活物質をNMC(811)とした以外は、実施例4と同様の方法で正極スラリーを作製した。
(比較例1)
 NCAとアセチレンブラックとPAN系樹脂とPVDFを固形分比率が98.0質量%:1.0質量%:1.0質量%:0質量%とした以外は実施例1と同様の方法で正極スラリーを作製した。
(比較例2)
 NCAとアセチレンブラックとPAN系樹脂とPVDFを固形分比率が98.0質量%:1.0質量%:0質量%:1.0質量%とした以外は実施例1と同様の方法で正極スラリーを作製した。
(比較例3)
 正極活物質をNMC(811)とした以外は、比較例1と同様の方法で正極スラリーを作製した。
(比較例4)
 正極活物質をNMC(811)とした以外は、比較例2と同様の方法で正極スラリーを作製した。
<正極スラリーの評価>
(1)正極スラリーのゲル化有無
 作製した正極スラリーのゲル化有無は、正極スラリーの粘度及び希釈の可否で判定した。作製した正極スラリーの粘度をE型粘度計(東機産業株式会社製、TV-35)を用いて、25℃、0.5回転/分の条件で測定した。正極スラリーの粘度が5000mPa・sよりも高く、また、NMPでの希釈が困難な正極スラリーをゲル化有と判定した。
(2)正極スラリーの沈降有無
 作製した正極スラリー20gをガラス製のサンプル管瓶(アズワン株式会社製、30cc)に入れ密閉した状態で、25±1℃の環境下において実質的に水平な台に静置し、作製1日後のスラリーの外観を観察した。スラリーが上澄みと沈殿物とに分離したスラリーは沈降ありと判断した。沈降の起きたスラリーは安定性が低いと判定した。
(3)正極スラリーの粘度安定性
 作製した正極スラリー20gをガラス製のサンプル管瓶(アズワン株式会社製、30cc)に入れ、密閉した状態で、25±1℃の環境下において実質的に水平な台に静置し、作製1日後の粘度をE型粘度計(東機産業株式会社製、TV-35)を用いて、25℃、0.5回転/分の条件で測定した。粘度の変化率を下式により算出し、以下の基準で正極スラリーの粘度安定性を評価した。
粘度変化率(%)=[(静置後粘度-静置前粘度)/静置後粘度] × 100
A:粘度変化率が-20%以上100%未満
B:粘度変化率が-40%以上-20%未満又は100%以上200%未満
C:粘度変化率が-60%以上-40%未満又は200%以上300%未満
D:粘度変化率が-60%未満又は300%以上
得られた結果を表1及び表2に示す。
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
 実施例1~8及び比較例1~4の結果から、バインダ樹脂として、ニトリル基含有単量体由来の構造単位を含む樹脂及びフッ素樹脂を使用した場合、正極スラリーのゲル化及び沈降は起きておらず、良好な安定性を示した。一方、バインダ樹脂として、ニトリル基含有単量体由来の構造単位を含む樹脂のみを使用した場合、正極活物質の種類に関わらず、正極スラリーのゲル化は起こらなかったが、正極スラリーの沈降が起こった。また、バインダ樹脂として、フッ素樹脂のみを使用した場合、正極活物質の種類に関わらず、正極スラリーはゲル化した。
 以上の結果から、本開示によれば、正極活物質として、特定金属酸化物を含む正極活物質を用いる場合において、正極スラリーのゲル化及び沈降が抑制できるエネルギーデバイス電極用複合樹脂を提供できることが示唆された。
 本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。

Claims (14)

  1.  ニトリル基含有単量体由来の構造単位を含む樹脂及びフッ素樹脂を含有し、リチウムとニッケルとを有しリチウムを除く金属に占めるニッケルの割合が50モル%以上であるリチウム含有金属複合酸化物を含む正極活物質を含有する正極合剤層の形成に用いられるエネルギーデバイス電極用複合樹脂。
  2.  前記ニトリル基含有単量体由来の構造単位を含む樹脂及び前記フッ素樹脂の質量基準の混合比(ニトリル基含有単量体由来の構造単位を含む樹脂:フッ素樹脂)が、90:10~50:50である請求項1に記載のエネルギーデバイス電極用複合樹脂。
  3.  前記リチウム含有金属複合酸化物が、下記式(I)で表される化合物を含む請求項1又は請求項2に記載のエネルギーデバイス電極用複合樹脂。
    LiNiCo2+e  式(I)
    (式(I)中、Mは、Al、Mn、Mg及びCaからなる群より選択される少なくとも1種であり、a、b、c、d及びeは、各々0.2≦a≦1.2であり、0.5≦b≦0.9であり、0.1≦c≦0.4であり、0≦d≦0.2であり、-0.2≦e≦0.2であり、b+c+d=1である。)
  4.  前記ニトリル基含有単量体由来の構造単位を含む樹脂が、下記式(II)で表される単量体由来の構造単位をさらに含む請求項1~請求項3のいずれか1項に記載のエネルギーデバイス電極用複合樹脂。
    Figure JPOXMLDOC01-appb-C000001

    (式(II)中、Rは水素原子又はメチル基を示し、Rは水素原子又は1価の炭化水素基を示し、nは1~50の整数を示す。)
  5.  前記ニトリル基含有単量体由来の構造単位を含む樹脂に含有される前記ニトリル基含有単量体由来の構造単位1モルに対する前記式(II)で表される単量体由来の構造単位の比率が、0.001モル~0.2モルである請求項4に記載のエネルギーデバイス電極用複合樹脂。
  6.  前記ニトリル基含有単量体由来の構造単位を含む樹脂が、下記式(III)で表される単量体由来の構造単位をさらに含む請求項1~請求項5のいずれか1項に記載のエネルギーデバイス電極用複合樹脂。
    Figure JPOXMLDOC01-appb-C000002

    (式(III)中、Rは水素原子又はメチル基を示し、Rは炭素数が4~30のアルキル基を示す。)
  7.  前記ニトリル基含有単量体由来の構造単位を含む樹脂に含有される前記ニトリル基含有単量体由来の構造単位1モルに対する前記式(III)で表される単量体由来の構造単位の比率が、0.001モル~0.2モルである請求項6に記載のエネルギーデバイス電極用複合樹脂。
  8.  前記ニトリル基含有単量体が、アクリロニトリルを含む請求項1~請求項7のいずれか1項に記載のエネルギーデバイス電極用複合樹脂。
  9.  前記フッ素樹脂が、ポリフッ化ビニリデン(PVDF)を含む請求項1~請求項8のいずれか1項に記載のエネルギーデバイス電極用複合樹脂。
  10.  リチウムとニッケルとを有しリチウムを除く金属に占めるニッケルの割合が50モル%以上であるリチウム含有金属複合酸化物を含む正極活物質と、請求項1~請求項9のいずれか1項に記載のエネルギーデバイス電極用複合樹脂と、を含有するエネルギーデバイス電極形成用組成物。
  11.  前記リチウム含有金属複合酸化物が、下記式(I)で表される化合物を含む請求項10に記載のエネルギーデバイス電極形成用組成物。
    LiNiCo2+e  式(I)
    (式(I)中、Mは、Al、Mn、Mg及びCaからなる群より選択される少なくとも1種であり、a、b、c、d及びeは、各々0.2≦a≦1.2であり、0.5≦b≦0.9であり、0.1≦c≦0.4であり、0≦d≦0.2であり、-0.2≦e≦0.2であり、b+c+d=1である。)
  12.  正極集電体と、
     前記正極集電体の少なくとも一方の表面上に設けられ、請求項10又は請求項11に記載のエネルギーデバイス電極形成用組成物を含む正極合剤層と、
    を有するエネルギーデバイス用正極。
  13.  請求項12に記載のエネルギーデバイス用正極を含むエネルギーデバイス。
  14.  前記エネルギーデバイスが、リチウムイオン二次電池である請求項13に記載のエネルギーデバイス。
PCT/JP2017/007558 2017-02-27 2017-02-27 エネルギーデバイス電極用複合樹脂、エネルギーデバイス電極形成用組成物、エネルギーデバイス用正極及びエネルギーデバイス WO2018154787A1 (ja)

Priority Applications (10)

Application Number Priority Date Filing Date Title
PCT/JP2017/007558 WO2018154787A1 (ja) 2017-02-27 2017-02-27 エネルギーデバイス電極用複合樹脂、エネルギーデバイス電極形成用組成物、エネルギーデバイス用正極及びエネルギーデバイス
JP2019501875A JP6988879B2 (ja) 2017-02-27 2018-02-27 エネルギーデバイス電極用樹脂混合物、エネルギーデバイス電極形成用組成物、エネルギーデバイス用正極及びエネルギーデバイス
US16/488,335 US20200235397A1 (en) 2017-02-27 2018-02-27 Composite resin for energy device electrode, composition for forming energy device electrode, positive electrode for energy device, and energy device
CN201880014040.8A CN110326140B (zh) 2017-02-27 2018-02-27 能量装置电极用复合树脂、能量装置电极形成用组合物、能量装置用正极以及能量装置
TW107106672A TWI785014B (zh) 2017-02-27 2018-02-27 能源裝置電極用複合樹脂、能源裝置電極形成用組成物、能源裝置用正極及能源裝置
KR1020197024724A KR102381115B1 (ko) 2017-02-27 2018-02-27 에너지 디바이스 전극용 복합 수지, 에너지 디바이스 전극 형성용 조성물, 에너지 디바이스용 정극 및 에너지 디바이스
EP18758204.4A EP3588638A4 (en) 2017-02-27 2018-02-27 COMPOSITE RESIN FOR ENERGY DEVICE ELECTRODE, COMPOSITION FOR FORMING AN ENERGY DEVICE ELECTRODE, POSITIVE ELECTRODE FOR ENERGY DEVICE, AND ENERGY DEVICE
PCT/JP2018/007323 WO2018155714A1 (ja) 2017-02-27 2018-02-27 エネルギーデバイス電極用複合樹脂、エネルギーデバイス電極形成用組成物、エネルギーデバイス用正極及びエネルギーデバイス
TW107106667A TW201842702A (zh) 2017-02-27 2018-02-27 能源裝置電極形成用組成物、能源裝置用正極及能源裝置
PCT/JP2018/007324 WO2018155715A1 (ja) 2017-02-27 2018-02-27 エネルギーデバイス電極形成用組成物、エネルギーデバイス用正極及びエネルギーデバイス

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/007558 WO2018154787A1 (ja) 2017-02-27 2017-02-27 エネルギーデバイス電極用複合樹脂、エネルギーデバイス電極形成用組成物、エネルギーデバイス用正極及びエネルギーデバイス

Publications (1)

Publication Number Publication Date
WO2018154787A1 true WO2018154787A1 (ja) 2018-08-30

Family

ID=63252545

Family Applications (3)

Application Number Title Priority Date Filing Date
PCT/JP2017/007558 WO2018154787A1 (ja) 2017-02-27 2017-02-27 エネルギーデバイス電極用複合樹脂、エネルギーデバイス電極形成用組成物、エネルギーデバイス用正極及びエネルギーデバイス
PCT/JP2018/007324 WO2018155715A1 (ja) 2017-02-27 2018-02-27 エネルギーデバイス電極形成用組成物、エネルギーデバイス用正極及びエネルギーデバイス
PCT/JP2018/007323 WO2018155714A1 (ja) 2017-02-27 2018-02-27 エネルギーデバイス電極用複合樹脂、エネルギーデバイス電極形成用組成物、エネルギーデバイス用正極及びエネルギーデバイス

Family Applications After (2)

Application Number Title Priority Date Filing Date
PCT/JP2018/007324 WO2018155715A1 (ja) 2017-02-27 2018-02-27 エネルギーデバイス電極形成用組成物、エネルギーデバイス用正極及びエネルギーデバイス
PCT/JP2018/007323 WO2018155714A1 (ja) 2017-02-27 2018-02-27 エネルギーデバイス電極用複合樹脂、エネルギーデバイス電極形成用組成物、エネルギーデバイス用正極及びエネルギーデバイス

Country Status (7)

Country Link
US (1) US20200235397A1 (ja)
EP (1) EP3588638A4 (ja)
JP (1) JP6988879B2 (ja)
KR (1) KR102381115B1 (ja)
CN (1) CN110326140B (ja)
TW (2) TW201842702A (ja)
WO (3) WO2018154787A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018154786A1 (ja) * 2017-02-27 2018-08-30 日立化成株式会社 エネルギーデバイス電極用樹脂、エネルギーデバイス電極形成用組成物、エネルギーデバイス電極及びエネルギーデバイス
WO2023282248A1 (ja) * 2021-07-06 2023-01-12 日産化学株式会社 電極形成用組成物
KR20240027797A (ko) * 2021-07-06 2024-03-04 닛산 가가쿠 가부시키가이샤 전극형성용 조성물

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006033173A1 (ja) * 2004-09-22 2006-03-30 Hitachi Chemical Company, Ltd. 非水電解液系エネルギーデバイス電極用バインダ樹脂組成物、非水電解液系エネルギーデバイス電極及び非水電解液系エネルギーデバイス
JP2008293719A (ja) * 2007-05-23 2008-12-04 Sony Corp ゲル状電解質二次電池
JP2009117159A (ja) * 2007-11-06 2009-05-28 Sony Corp 正極及びリチウムイオン二次電池
JP2010251280A (ja) * 2009-03-23 2010-11-04 Sanyo Electric Co Ltd 非水電解質二次電池
JP2012028225A (ja) * 2010-07-26 2012-02-09 Hitachi Vehicle Energy Ltd 非水電解質二次電池及び正極合剤の製造方法
WO2012114651A1 (ja) * 2011-02-25 2012-08-30 株式会社豊田自動織機 硫黄変性ポリアクリロニトリルおよびその評価方法ならびに硫黄変性ポリアクリロニトリルを用いた正極、非水電解質二次電池、および車両
WO2014142281A1 (ja) * 2013-03-15 2014-09-18 日産自動車株式会社 非水電解質二次電池用正極およびこれを用いた非水電解質二次電池

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4951823A (ja) 1972-09-19 1974-05-20
JP4433509B2 (ja) * 1999-04-15 2010-03-17 日本ゼオン株式会社 リチウムイオン二次電池電極用バインダー組成物及びその利用
JP4951823B2 (ja) 2001-07-17 2012-06-13 住友金属鉱山株式会社 非水電解質二次電池用正極活物質の製造方法
JP4311002B2 (ja) * 2002-11-29 2009-08-12 日本ゼオン株式会社 電極用スラリー組成物、電極および二次電池
JP2007194202A (ja) * 2005-12-20 2007-08-02 Sony Corp リチウムイオン二次電池
JP5116329B2 (ja) 2007-03-23 2013-01-09 三洋電機株式会社 非水電解質二次電池
JP5412853B2 (ja) * 2009-01-30 2014-02-12 ダイキン工業株式会社 リチウム二次電池の正極の製造方法および正極ならびにリチウム二次電池
KR101666877B1 (ko) * 2011-10-12 2016-10-18 삼성에스디아이 주식회사 리튬 이차 전지
JP6048070B2 (ja) * 2012-10-29 2016-12-21 日本ゼオン株式会社 リチウムイオン二次電池負極用スラリー組成物及びその製造方法、リチウムイオン二次電池用負極、並びにリチウムイオン二次電池
WO2015046304A1 (ja) * 2013-09-26 2015-04-02 宇部興産株式会社 蓄電デバイス用ポリイミドバインダー、それを用いた電極シート及び蓄電デバイス
WO2016068142A1 (ja) * 2014-10-27 2016-05-06 日立化成株式会社 リチウムイオン電池
CN107408700A (zh) * 2015-03-18 2017-11-28 日立化成株式会社 粘合剂树脂组合物、锂离子二次电池用电极和锂离子二次电池
JP2016213027A (ja) * 2015-05-07 2016-12-15 日立化成株式会社 非水電解液系エネルギーデバイス電極用バインダ樹脂組成物、これを用いた非水電解液系エネルギーデバイス電極及び非水電解液系エネルギーデバイス
HUE056779T2 (hu) * 2015-06-29 2022-03-28 Zeon Corp Kötõanyag-összetétel újratölthetõ telep elektródhoz, szuszpenzió-összetétel újratölthetõ telep elektródhoz, elektród újratölthetõ telephez, továbbá újratölthetõ telep

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006033173A1 (ja) * 2004-09-22 2006-03-30 Hitachi Chemical Company, Ltd. 非水電解液系エネルギーデバイス電極用バインダ樹脂組成物、非水電解液系エネルギーデバイス電極及び非水電解液系エネルギーデバイス
JP2008293719A (ja) * 2007-05-23 2008-12-04 Sony Corp ゲル状電解質二次電池
JP2009117159A (ja) * 2007-11-06 2009-05-28 Sony Corp 正極及びリチウムイオン二次電池
JP2010251280A (ja) * 2009-03-23 2010-11-04 Sanyo Electric Co Ltd 非水電解質二次電池
JP2012028225A (ja) * 2010-07-26 2012-02-09 Hitachi Vehicle Energy Ltd 非水電解質二次電池及び正極合剤の製造方法
WO2012114651A1 (ja) * 2011-02-25 2012-08-30 株式会社豊田自動織機 硫黄変性ポリアクリロニトリルおよびその評価方法ならびに硫黄変性ポリアクリロニトリルを用いた正極、非水電解質二次電池、および車両
WO2014142281A1 (ja) * 2013-03-15 2014-09-18 日産自動車株式会社 非水電解質二次電池用正極およびこれを用いた非水電解質二次電池

Also Published As

Publication number Publication date
US20200235397A1 (en) 2020-07-23
CN110326140A (zh) 2019-10-11
TWI785014B (zh) 2022-12-01
KR102381115B1 (ko) 2022-03-30
WO2018155715A1 (ja) 2018-08-30
TW201842702A (zh) 2018-12-01
CN110326140B (zh) 2023-01-13
EP3588638A4 (en) 2021-01-13
JPWO2018155714A1 (ja) 2019-12-26
WO2018155714A1 (ja) 2018-08-30
EP3588638A1 (en) 2020-01-01
TW201838234A (zh) 2018-10-16
KR20190103451A (ko) 2019-09-04
JP6988879B2 (ja) 2022-01-05

Similar Documents

Publication Publication Date Title
KR100935986B1 (ko) 비수전해액계 에너지장치 전극용 바인더 수지 조성물, 비수전해액계 에너지장치 전극 및 비수전해액계 에너지장치
JP2011134492A (ja) 非水電解液系エネルギーデバイス電極用バインダ樹脂組成物、非水電解液系エネルギーデバイス電極及び非水電解液系エネルギーデバイス
JP6789498B2 (ja) エネルギーデバイス電極形成用組成物、エネルギーデバイス用正極及びエネルギーデバイス
KR102381115B1 (ko) 에너지 디바이스 전극용 복합 수지, 에너지 디바이스 전극 형성용 조성물, 에너지 디바이스용 정극 및 에너지 디바이스
JP6908102B2 (ja) エネルギーデバイス電極用樹脂、エネルギーデバイス電極形成用組成物、エネルギーデバイス電極及びエネルギーデバイス
JP6885411B2 (ja) エネルギーデバイス用電極及びエネルギーデバイス
JP2015003998A (ja) アクリルポリマー粒子の製造方法及びそれにより得られるアクリルポリマー粒子
JP7091602B2 (ja) エネルギーデバイス用電極及びエネルギーデバイス
JP2013098139A (ja) エネルギーデバイス電極用バインダ樹脂材料、エネルギーデバイス電極及びエネルギーデバイス
WO2018087897A1 (ja) エネルギーデバイス電極用樹脂、エネルギーデバイス電極形成用組成物、エネルギーデバイス電極及びエネルギーデバイス

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17897228

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17897228

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP