WO2018155337A1 - 電極用リング - Google Patents

電極用リング Download PDF

Info

Publication number
WO2018155337A1
WO2018155337A1 PCT/JP2018/005499 JP2018005499W WO2018155337A1 WO 2018155337 A1 WO2018155337 A1 WO 2018155337A1 JP 2018005499 W JP2018005499 W JP 2018005499W WO 2018155337 A1 WO2018155337 A1 WO 2018155337A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon
ring
members
electrode ring
embedded
Prior art date
Application number
PCT/JP2018/005499
Other languages
English (en)
French (fr)
Inventor
敦 碇
藤井 智
Original Assignee
日本新工芯技株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本新工芯技株式会社 filed Critical 日本新工芯技株式会社
Priority to KR1020197027746A priority Critical patent/KR102575442B1/ko
Priority to CN201880012590.6A priority patent/CN110537250B/zh
Priority to US16/488,384 priority patent/US11348764B2/en
Publication of WO2018155337A1 publication Critical patent/WO2018155337A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32532Electrodes
    • H01J37/32541Shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32623Mechanical discharge control means
    • H01J37/32642Focus rings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31105Etching inorganic layers
    • H01L21/31111Etching inorganic layers by chemical means
    • H01L21/31116Etching inorganic layers by chemical means by dry-etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/3213Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer
    • H01L21/32133Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only
    • H01L21/32135Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only by vapour etching only
    • H01L21/32136Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only by vapour etching only using plasmas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68721Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by edge clamping, e.g. clamping ring
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy

Definitions

  • the present invention relates to an electrode ring.
  • a dry etching apparatus using plasma is used as a substrate processing apparatus in manufacturing semiconductor integrated devices such as LSI.
  • a dry etching apparatus a high frequency voltage is applied between a counter electrode (anode) and a cathode by a high frequency oscillator in a state where a wafer to be etched is placed on a cathode of a planar electrode and an etching gas is introduced into the apparatus.
  • an etching gas plasma is generated between the electrodes.
  • the positive ions which are active gases in the plasma, enter the wafer surface and perform etching.
  • silicon parts are used.
  • a typical silicon part for example, there is a doughnut-shaped focus ring surrounding a wafer to be etched (Patent Document 1).
  • the focus ring needs to have a larger diameter than the wafer to be etched.
  • Current silicon parts for 300 mm wafers are expensive because they are made from a silicon crystal ingot having a diameter of 320 mm or more.
  • a silicon part can be manufactured by joining a plurality of silicon members instead of a single piece, it can be manufactured from a silicon crystal ingot having a smaller diameter, and various advantages such as reduction in manufacturing costs are expected.
  • An object of the present invention is to provide an electrode ring in which a plurality of silicon members are joined.
  • An electrode ring according to the present invention is an electrode ring installed in a processing chamber in which the substrate of a substrate processing apparatus that performs plasma processing on a substrate is accommodated, and a plurality of first silicon members that are butted in one direction; An embedded silicon member embedded in a position straddling the plurality of first silicon members that are abutted with each other, and the plurality of first silicon members between the plurality of first silicon members and the embedded silicon member; A bonding portion for bonding the embedded silicon member is provided.
  • An electrode ring according to the present invention is an electrode ring installed in a processing chamber in which a substrate of a substrate processing apparatus that performs plasma processing on a substrate is accommodated, and a plurality of silicon members and a plurality of silicon members are connected to each other. It is characterized by comprising a bonding portion to be bonded and a silicon bonding portion that closes between the plurality of silicon members.
  • a plurality of silicon members cut out from a wafer smaller than the outer diameter of the focus ring can be combined and manufactured. Therefore, since it is not necessary to use a wafer larger than the outer diameter of the focus ring, the electrode ring can reduce the cost accordingly.
  • FIG. 6A is a cross-sectional view showing a butt surface according to the second embodiment
  • FIG. 6A is a butt surface between first silicon members
  • FIG. 6B is a butt surface between second silicon members.
  • FIG. 7A is an upper surface side
  • FIG. 7B is a lower surface side.
  • FIG. 9A is a plan view showing an embedded silicon member
  • FIG. 9A is a modification (1)
  • FIG. 9B is a modification (2).
  • FIG. 10A is a modification (1)
  • FIG. 10B is a modification (2).
  • a dry etching apparatus 10 shown in FIG. 1 includes a vacuum chamber 12 as a processing chamber, an upper electrode plate 14, a base 16, and a focus ring 18.
  • the upper electrode plate 14 is a disk-shaped member, and is fixed to the upper part in the vacuum chamber 12 by a support ring 20.
  • the support ring 20 is formed of silicon which is an insulating member.
  • the upper electrode plate 14 has a plurality of through holes 15 penetrating in the thickness direction.
  • the upper electrode plate 14 is electrically connected to a high frequency power source 26.
  • a gas supply pipe 24 is connected to the upper electrode plate 14. The etching gas supplied from the gas supply pipe 24 flows into the vacuum chamber 12 from the through hole 15 of the upper electrode plate 14 and can be discharged to the outside from the discharge port 28.
  • the base 16 is installed in the lower part of the vacuum chamber 12 and is surrounded by a ground ring 30.
  • the ground ring 30 is formed of silicon which is an insulating member and is grounded.
  • a focus ring 18 is provided on the base 16.
  • the focus ring 18 is formed of silicon as an insulating member, and a recess 19 that supports the periphery of a wafer 22 as a substrate is formed over the entire inner periphery.
  • the dry etching apparatus 10 generates plasma between the upper electrode plate 14 and the wafer 22 when an etching gas is supplied through the upper electrode plate 14 and a high frequency voltage is applied from a high frequency power source 26.
  • the surface of the wafer 22 is etched by this plasma.
  • the electrode ring according to the present embodiment can be applied to the focus ring 18, the support ring 20, and the ground ring 30.
  • the electrode ring is not limited to the focus ring 18, the support ring 20, and the ground ring 30.
  • the electrode ring is installed in the vacuum chamber 12 of the dry etching apparatus 10 and can be applied to a silicon member to which a voltage is applied or grounded.
  • the electrode ring according to this embodiment which is a member for the focus ring 18, will be described with reference to FIG.
  • the electrode ring 32 includes a plurality of (three in the present example) first silicon members 34, 36, and 38.
  • the plurality of first silicon members 34, 36, 38 are collectively referred to as silicon members unless otherwise distinguished.
  • the silicon member has an arc shape and is integrated in a ring shape by joining in one direction via a joining portion (not shown in the figure) at the butting surface 37 which is an end face in the longitudinal direction.
  • the silicon member may be single crystal or polycrystalline, and is not limited in its manufacturing method, purity, crystal orientation, and the like.
  • size of a silicon member is not specifically limited, For example, it is about 1 mm or more and 50 mm or less in thickness, and can be about 10 mm or more and 100 mm or less in width.
  • FIG. 3 shows a butting surface 37 between the first silicon members 34 and 36.
  • the direction of the arrow in the drawing indicates the outward direction of the electrode ring 32 in the radial direction.
  • the joint portion 39 is provided in the central portion excluding the range of several mm from the outer edge of the butting surface 37, preferably in the central portion excluding the range of 1 mm or more.
  • the joint portion 39 is a eutectic alloy with silicon containing a metal that forms a eutectic alloy with silicon.
  • the metal that forms a eutectic alloy with silicon is any one of Al, Ga, Ge, and Sn (hereinafter also referred to as “alloy-forming metal”).
  • Al, Ga, Ge, and Sn have low diffusion coefficients in silicon crystals, low diffusion in silicon members, difficulty in creating deep levels that cause electrical problems, and no environmental problems Therefore, it is preferable.
  • Al is most preferable because of its low price.
  • the purity of the alloy-forming metal is not particularly limited as long as it can form a eutectic with silicon, and is preferably 98% or more.
  • the silicon bonding portion 40 is provided on the outer edge of the abutting surface 37 and closes the space between the abutting surfaces 37.
  • the silicon bonding portion 40 is not in contact with the wafer 22 and the base 16, is exposed in the vacuum chamber 12, and is exposed to plasma during dry etching, that is, of the outer edge of the butt surface 37, the electrode ring 32. Is preferably provided on the upper surface side.
  • the silicon bonding portion 40 is provided on the outer peripheral surface side in addition to the upper surface side of the outer edge of the abutting surface 37.
  • the silicon bonding portion 40 can prevent the eutectic alloy from being exposed at the bonding portion 39 by closing the space between the butting surfaces 37 irradiated with plasma.
  • the surface treatment is performed on the silicon member.
  • the surface of the silicon member is processed by grinding and polishing, and preferably has a mirror surface.
  • the surface of the silicon member may be etched with a mixed solution of hydrofluoric acid and nitric acid.
  • the three first silicon members 34, 36, and 38 are arranged in a ring shape.
  • An alloy-formed metal foil is disposed between the butted surfaces 37 of the first silicon members 34, 36, and 38.
  • the thickness of the alloy-forming metal foil is preferably thin in that less energy is required for melting.
  • the alloy-forming metal foil is preferably 0.1 to 100 ⁇ m, more preferably 0.5 to 20 ⁇ m in order to obtain bonding strength. If the alloy-formed metal foil is thinner than the lower limit value, the alloy-formed metal foil is likely to be damaged when the alloy-formed metal foil is disposed on the joint surface. If the alloy-formed metal foil is thicker than the above upper limit value, a portion where the bonding with silicon is not sufficient is likely to occur.
  • heating is performed from the outside of the silicon member to generate a melt containing silicon and an alloy-forming metal.
  • the heating method is not particularly limited, and can be performed by resistance heating, light heating, or the like.
  • Light heating is preferable in that the heating part can be easily moved and the amount of heating can be easily changed according to the power to be supplied. For example, various lamps and lasers are used.
  • the apparatus shown in FIG. 4 can be used.
  • the apparatus shown in the figure includes at least one lamp 42 and an elliptical mirror 44 as a condensing unit that collects light emitted from the lamp 42.
  • As the lamp 42 a xenon lamp or a halogen lamp generally used in an infrared crystal growth apparatus can be used.
  • the output is preferably about 1 to 30 kW.
  • the heating may be from the outside of the butting surface 37, and is not limited to the vertical direction with respect to the silicon member, but may be from an oblique direction.
  • the alloy-forming metal foil is melted by heating to form a metal melt.
  • the abutting surface 37 of the silicon member in contact with the metal melt is attacked by the metal melt, and a melt containing silicon is generated.
  • the heating is stopped and the temperature is lowered, the melt is solidified while forming an alloy phase containing a eutectic, and it is considered that the joining is completed.
  • the silicon members can be sufficiently bonded to each other by heating up to about 800 ° C.
  • the condensing area is usually about 10 to 30 mm in diameter.
  • the condensing region is expanded to about 30 to 100 mm by shifting the light emission position of the lamp 42 from the focus of the elliptical mirror 44. By expanding the condensing region, the heating range can be expanded.
  • the condensing region is preferably heated by scanning over the entire upper surface of the electrode ring 32 of the butting surface 37.
  • the joint 39 containing the eutectic alloy is generated by cooling and solidifying the melt containing silicon and the alloy-forming metal.
  • the alloy-forming metal is Al
  • a joint 39 containing an Al—silicon eutectic (12.2 atomic% Al) is generated.
  • the cooling rate varies depending on the alloy-forming metal to be used, but when Al is used as the alloy-forming metal, it is preferably controlled to be 10 to 100 ° C./min.
  • the cooling rate is less than the lower limit, the cooling time becomes long and the efficiency is poor.
  • strain tends to remain in the joint portion 39.
  • the cooling rate is such that, after the melting of the alloy-forming metal foil is completed, the output of the heating means is gradually reduced, and the heating is stopped when it is estimated that the temperature of the joint 39 is lower than the melting temperature of the eutectic.
  • Such control of the heating temperature is performed by, for example, installing a thermocouple having the same shape as that of the silicon member to be actually bonded between the silicon members and measuring the relationship between the power and temperature of the heating means in advance. This can be done based on the results.
  • Generation of the melt by heating and generation of the joint 39 including the eutectic alloy by cooling are performed in a 10 to 200 torr (about 1333 to 26664 Pa) argon atmosphere chamber in order to prevent oxidation of the alloy-forming metal and silicon. It is preferable. Oxidation can be prevented by reducing the pressure without using argon gas. However, if the pressure is reduced, evaporation of silicon occurs and the inside of the chamber may be contaminated. Nitrogen gas can also prevent oxidation, but is not preferable because nitridation of silicon occurs at 1200 ° C. or higher.
  • the silicon bonding portion 40 between the butted surfaces 37 of the first silicon members 34, 36, and 38 is formed by heating and melting silicon in the vicinity of the butted surfaces 37.
  • the lamp position is adjusted so that the focal position of the elliptical mirror 44 matches the position of the light emitting portion of the lamp 42, and the height of the upper surface of the silicon member is adjusted to be another focal position of the elliptical mirror 44.
  • the expansion of the elliptical mirror 44 at the irradiation position is set to about 3 mm. In this state, the elliptic mirror 44 is aligned with the position of the butting surface 37 to increase the power of the lamp 42.
  • the surface side of the butt surface 37 is melted and a silicon melt is generated.
  • the surface starts to melt at 60% of the lamp rating (surface temperature is estimated to be 1420 ° C.), and the silicon melt flows between the butting surfaces 37 at 90% of the lamp rating, so that the space between the butting surfaces 37 Block a part of.
  • the space between the butting surfaces 37 can be filled and closed with molten silicon. It is preferable that the elliptical mirror 44 is heated by scanning over the upper surface side and the outer peripheral surface side of the electrode ring 32 in the outer edge of the abutting surface 37.
  • the surface of the molten butted surface 37 is cooled, and the silicon melt is crystallized according to the crystal of the silicon member. Specifically, the power of the lamp 42 is lowered in 2 minutes to 55% of the lamp rating at which the silicon melt starts to solidify, and the state is maintained for 5 minutes.
  • the first silicon members 34, 36, and 38 are joined to each other to form the electrode ring 32 by forming the joint portion 39 and the silicon bonding portion 40 in the same manner on all the abutting surfaces 37 by the above procedure. Can do.
  • the electrode ring 32 obtained as described above can be the focus ring 18 by forming a recess over the entire inner circumference by machining.
  • the electrode ring 32 can be manufactured by combining three or more silicon members cut out from a silicon crystal ingot for a wafer smaller than the outer diameter of the focus ring 18. Therefore, the electrode ring 32 does not need to use a silicon crystal ingot for a wafer that is larger than the outer diameter of the focus ring 18, and the cost can be reduced accordingly.
  • the electrode ring 32 can prevent the eutectic alloy from being exposed at the joint portion 39 because the silicon bonding portion 40 is provided on the abutting surface 37. Therefore, the electrode ring 32 can prevent the inside of the vacuum chamber 12 from being contaminated by the eutectic alloy even when the plasma is irradiated in the vacuum chamber 12.
  • the electrode ring 46 shown in FIG. 5 includes a first ring body 32 and a second ring body 47.
  • the first ring body 32 is the same as the electrode ring of the first embodiment.
  • the second ring body 47 includes a plurality of (three in the present case) second silicon members 48, 50, 52.
  • the second silicon members 48, 50, 52 are the same as the first silicon members 34, 36, 38, although the symbols are changed for convenience of explanation.
  • the first ring body 32 and the second ring body 47 are coaxially overlapped on the joint surface 54 in a state where the butted surfaces 37 of the silicon members are displaced in the circumferential direction.
  • a joining portion 39 and a silicon bonding portion 40 are provided between the butting surfaces 37 of the first silicon members 34, 36, and 38.
  • FIG. 6A shows a butting surface 37 between the first silicon members 34 and 36
  • FIG. 6B shows a butting surface 37 between the second silicon members 48 and 52.
  • the direction of the arrow in the figure indicates the outward direction of the electrode ring 46 in the radial direction.
  • the joint portion 39 is provided at the central portion excluding the range of several mm from the outer edge of the abutting surface 37, preferably at the central portion excluding the range of 1 mm or more.
  • a joint portion 55 is also provided on the joint surface 54 of the first ring body 32 and the second ring body 47. Note that a joining portion 39 may also be provided on the abutting surface 37 between the second silicon members 48, 50, 52.
  • the silicon bonding portion 40 is provided on the outer edge of the abutting surface 37 and the outer edge of the joint surface 54 of the first ring body 32 and the second ring body 47.
  • the silicon bonding portion 40 is preferably not provided in contact with the wafer 22 and the base 16 and is provided on the exposed portion in the vacuum chamber 12, that is, on the upper surface side and the outer peripheral surface side of the electrode ring 46.
  • the silicon bonding portion 40 is an electrode on the upper surface side and the outer peripheral surface side of the electrode ring 46 among the outer edges of the butting surface 37 in the first ring body 32 and on the outer edge of the butting surface 37 in the second ring body 47. It is preferable to be provided on the outer peripheral surface side of the electrode ring 46 and the outer peripheral surface side of the electrode ring 46 among the outer edges of the bonding ring 54.
  • the silicon bonding portion 40 is formed between the first silicon members 34, 36, 38 and the butted surfaces 37 of the second silicon members 48, 50, 52, and between the first ring body 32 and the second ring body 47.
  • the space between the joint surfaces 54 is closed.
  • the three second silicon members 48, 50, 52 after the surface treatment are arranged in a ring shape.
  • an alloy-formed metal foil is disposed on the surfaces of the second silicon members 48, 50, 52.
  • three first silicon members 34, 36, and 38 are placed on the alloy-formed metal foil.
  • An alloy-formed metal foil is disposed between the three first silicon members 34, 36, and 38.
  • the first silicon members 34, 36, and 38 are arranged so as to be shifted from the previously arranged second silicon members 48, 50, and 52 by half the length in the longitudinal direction.
  • the first silicon members 34, 36, and 38 are stacked on the second silicon members 48, 50, and 52 via the alloy-formed metal foil.
  • heating is performed from the first silicon members 34, 36, and 38, and between the first ring body 32 and the second ring body 47 and between the butted surfaces 37 of the first silicon members 34, 36, and 38.
  • a melt containing silicon and an alloying metal is generated to form joints 39 and 55.
  • the heating condition and the cooling condition can be the same as those in the first embodiment.
  • the silicon between the butting surfaces 37 of the first ring body 32 and the second ring body 47 and between the joint surfaces 54 is heated and melted to form the silicon bonding portion 40.
  • the silicon bonding portion 40 is provided between the butting surfaces 37 and between the bonding surfaces 54, the same effects as those of the first embodiment can be obtained.
  • the electrode ring 56 shown in FIGS. 7A and 7B is embedded at a position straddling a plurality of (three in the present case) first silicon members 58, 60, 62 and the first silicon members 58, 60, 62. And a plurality (three) of embedded silicon members 64A.
  • the embedded silicon member 64A is provided on the side opposite to the plasma irradiation side of the electrode ring 56, in the case of this figure, on the back side.
  • the embedded silicon member 64A is preferably formed of the same material as the silicon member.
  • the four corners of the embedded silicon member 64A are preferably R processed.
  • the embedded silicon member 64A can prevent damage such as chipping because the four corners are rounded.
  • R is preferably 3 mm or more.
  • the embedded silicon member 64A is preferably formed such that the bottom surface is substantially the same height as the back surface of the silicon member.
  • the thickness of the embedded silicon member 64A is preferably 20 to 80%, more preferably 40 to 60% of the thickness of the silicon member.
  • the embedded silicon member 64A is preferably made of a rectangular plate-like member and has a size that does not protrude from the electrode ring 56 in plan view.
  • the length of the embedded silicon member 64A in the longitudinal direction is preferably 2 to 10% of the outer peripheral length of the electrode ring 56.
  • the silicon member can be divided into three rings each having an inner diameter of 296 mm, an outer diameter of 380 mm, and a thickness of 4 mm.
  • the embedded silicon member 64A can have a length of 60 mm, a width of 25 mm, and a thickness of 2 mm with R processing of 5 mm at four corners.
  • the hole formed in the back surface of the silicon member has a shape corresponding to the shape of the silicon piece, and the depth is 2 mm.
  • the thickness of the embedded silicon member 64A is 50% of the thickness of the silicon member, and the length of the embedded silicon member 64A in the longitudinal direction is 5% of the outer peripheral length of the electrode ring 56.
  • FIG. 8 shows a butting surface 63 ⁇ / b> A between the first silicon members 58 and 60.
  • the direction of the arrow in the figure indicates the outward direction of the electrode ring 56 in the radial direction.
  • the embedded silicon member 64A is embedded in the hole.
  • a joint portion 68 is provided between the upper surface of the embedded silicon member 64A and the first silicon member (bottom surface of the hole).
  • the silicon bonding portion 70 is preferably provided on the upper surface side and the outer peripheral surface side of the electrode ring 56 in the outer edge of the butting surface 63A.
  • the electrode ring 56 according to the present embodiment can form the joint portion 68 by heating from the upper surface side of the silicon member and generating a melt containing silicon and an alloy-forming metal. Further, the silicon bonding portion 70 on the butting surface 63A can be formed by the same method as in the first embodiment.
  • the electrode ring 56 of the present embodiment since the embedded silicon member 64A is provided, the bonding area between the silicon members can be increased, so that the mechanical strength can be further increased. Further, the electrode ring 56 can obtain the same effect as that of the first embodiment because the gap between the butting surfaces 63A is closed by the silicon bonding portion 70.
  • the embedded silicon member 64A does not have to be rectangular.
  • the longitudinal ends of the embedded silicon members 64B and 64C may be semicircular as shown in FIG.
  • a joint portion 72 may be provided between the butted surfaces 63B of the silicon members.
  • the silicon bonding portion 70 is provided between the butted surfaces 63A of the first silicon members 58, 60, 62 , but the present invention is not limited to this. As shown in FIG. 10B, it is not necessary to provide a silicon bonding portion between the butted surfaces 63C.
  • the present invention is not limited to the above-described embodiment, and can be appropriately changed within the scope of the gist of the present invention.
  • the joint portion includes an alloy-forming metal
  • the present invention is not limited thereto, and may include boron oxide.
  • a method for manufacturing an electrode ring in the case where the joint portion contains boron oxide will be described below using the joint surface as an example.
  • the silicon member is heated to a first temperature (180 to 280 ° C.), and a starting material made of particulate boric acid (B (OH) 3 ) is supplied to at least a part of the bonding surface of the silicon member. .
  • the silicon member can be heated by a heating means using a general electric resistance heater. Since the temperature of the bonding surface is 180 to 280 ° C., dehydration reaction of boric acid occurs on this bonding surface. Water is released from boric acid in about 10 to 60 seconds to produce metaboric acid (HBO 2 ). Metaboric acid dissolves in the desorbed water, resulting in a liquid product with high fluidity.
  • the temperature of the silicon member is too low, metaboric acid cannot be obtained by desorbing water from boric acid. On the other hand, if the temperature of the silicon member is too high, water is rapidly desorbed from boric acid. As a result, boric acid supplied to the bonding surface of the silicon member scatters or solidified metaboric acid is immediately generated. If the first temperature is 180 to 280 ° C., metaboric acid can be obtained more reliably.
  • the first temperature is preferably 200 to 240 ° C.
  • a starting material made of particulate boric acid a granular commercial product having a diameter of 0.1 to 2 mm can be used as it is.
  • a layer containing metaboric acid as described later can be formed. Boric acid is preferably supplied in small portions to a part of the surface of the silicon member.
  • a layer containing metaboric acid can be obtained by extending a liquid material generated by removing water from boric acid with a spatula.
  • a uniform metaboric acid-containing layer can be formed on the bonding surface by supplying a small amount of boric acid as a starting material to the bonding surface of the silicon member and extending the resulting liquid material each time. it can.
  • a spatula obtained by cutting a wafer it is possible to avoid mixing impurities into the layer containing metaboric acid.
  • the thickness of the layer containing metaboric acid is preferably 1 mm or less, and more preferably 0.1 to 0.5 mm. As the thickness of the layer containing metaboric acid is thinner, generation of bubbles due to a dehydration reaction can be suppressed when heated in a later step.
  • the thickness of the layer containing metaboric acid can be adjusted by controlling the amount of boric acid as a starting material to be supplied.
  • the silicon member in which the layer containing metaboric acid is formed on the bonding surface is heated to raise the temperature to the second temperature (500 to 700 ° C.). As a result, water is further desorbed from metaboric acid, and a melt containing boron oxide (B 2 O 3 ) is obtained. If the second temperature is too high, the silicon member may be cracked due to the difference in thermal expansion coefficient between boron oxide and silicon when cooled in a later step. If the second temperature is 500 to 700 ° C., a melt containing boron oxide can be obtained more reliably.
  • the second temperature is preferably 550 to 600 ° C.
  • ⁇ Another silicon member subjected to surface treatment is pressure-bonded onto the melt containing boron oxide generated in the bonding region of the silicon member.
  • the pressure at the time of pressure bonding is not particularly limited, and can be set as appropriate. In the case where the width of the silicon member is about 30 mm, the silicon member and another silicon member can be joined by pressing by hand with a heat insulating material interposed therebetween.
  • the silicon member and another silicon member are joined by the boron oxide layer.
  • the melt is solidified by being left at room temperature, for example.
  • An electrode ring can be manufactured by producing a joint as described above.
  • the layer containing metaboric acid may be formed in a frame shape along the outer edge of the bonding surface instead of the entire bonding surface of the silicon member.
  • the width of the layer containing frame-shaped metaboric acid can be 5 to 10 mm.
  • An alloy-forming metal foil is disposed in a region inside the layer containing frame-shaped metaboric acid. Before placing the alloy-forming metal foil in the inner region, the layer containing frame-shaped metaboric acid may be cooled to polish the surface and reduce the thickness.
  • a layer containing frame-shaped metaboric acid is formed on the bonding surface of the silicon member, and after the alloy-formed metal foil is disposed, another silicon member is disposed and heated to the eutectic temperature or higher and 700 ° C. or lower.
  • the alloy-forming metal forms a eutectic with silicon by heating, the silicon members can be bonded more firmly.
  • the eutectic alloy formed here is surrounded by a frame-shaped boron oxide layer. Further, by providing a silicon adhesive portion on the outer edge of the joint surface, the same effect as in the first embodiment can be obtained.
  • the present invention is not limited to this, and may be provided on the entire periphery of the outer edge of the abutting surface. Moreover, in the case of the said 2nd Embodiment, you may provide a silicon
  • Dry etching equipment (substrate processing equipment) 12 Vacuum chamber (processing room) 32, 46, 56 Ring 34, 36, 38, 58, 60, 62 for electrode 1st silicon member 37 Butting surface 39, 55, 68, 72 Joint part 40, 70 Silicon adhesion part 48, 50, 52 2nd silicon member 54 Bonding surfaces 63A, 63B, 63C Butting surfaces 64A, 64B, 64C Embedded silicon member

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Electromagnetism (AREA)
  • Inorganic Chemistry (AREA)
  • Plasma Technology (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

複数のシリコン部材を接合した電極用リングを提供する。基板にプラズマ処理をする基板処理装置の前記基板が収容される処理室内に設置する電極用リングであって、一方向に突き合わせた複数の第1シリコン部材34と、突き合わされた前記複数の第1シリコン部材34同士を跨ぐ位置に埋め込まれた埋込みシリコン部材64Aとを備え、前記複数の第1シリコン部材34と、前記埋込みシリコン部材64の間に、前記複数の第1シリコン部材34と前記埋込みシリコン部材64Aを接合する接合部68が設けられたことを特徴とする。

Description

電極用リング
 本発明は、電極用リングに関するものである。
 LSI等の半導体集積デバイス製造における基板処理装置として、プラズマを用いたドライエッチング装置が用いられている。ドライエッチング装置は、エッチング対象のウエハが平面電極のカソード上に配置され、装置内にエッチングガスが導入された状態で、高周波発振器により対向電極(アノード)とカソードの間に高周波電圧が印加されることにより、電極間にエッチングガスのプラズマを生じる。プラズマ中の活性ガスであるプラスイオンがウエハ表面に入射しエッチングをする。
 ドライエッチング装置内部では、金属製部品を用いると金属汚染が起こるので、シリコン製部品が用いられる。代表的なシリコン製部品としては、例えばエッチング対象のウエハを囲むドーナツ状の形状をしたフォーカスリングがある(特許文献1)。フォーカスリングは、エッチング対象のウエハより大きな直径を有することが必要である。現在主流の300mmウエハ用のシリコン製部品は、320mm以上の直径を有するシリコン結晶インゴットから作製されるため、高価である。
特開2002-190466号公報
 シリコン製部品を、一体物ではなく、複数のシリコン部材を接合することにより製造できれば、より小さい直径を有するシリコン結晶インゴットから作製できるため、製造コストの削減等の種々のメリットが期待される。
 本発明は、複数のシリコン部材を接合した電極用リングを提供することを目的とする。
 本発明に係る電極用リングは、基板にプラズマ処理をする基板処理装置の前記基板が収容される処理室内に設置する電極用リングであって、一方向に突き合わせた複数の第1シリコン部材と、突き合わされた前記複数の第1シリコン部材同士を跨ぐ位置に埋め込まれた埋込みシリコン部材とを備え、前記複数の第1シリコン部材と、前記埋込みシリコン部材の間に、前記複数の第1シリコン部材と前記埋込みシリコン部材を接合する接合部が設けられたことを特徴とする。
 本発明に係る電極用リングは、基板にプラズマ処理をする基板処理装置の前記基板が収容される処理室内に設置する電極用リングであって、複数のシリコン部材と、前記複数のシリコン部材同士を接合する接合部と、前記複数のシリコン部材同士の間を塞ぐシリコン接着部とを備えることを特徴とする。
 本発明によれば、フォーカスリングの外径より小さいウエハから切り出した複数のシリコン部材を組み合わせて製造することができる。したがって電極用リングは、フォーカスリングの外径より大きいウエハを用いる必要がないので、その分コストを低減することができる。
第1実施形態に係る電極用リングから作製したフォーカスリングを備えたドライエッチング装置の構成を模式的に示す断面図である。 第1実施形態に係る電極用リングを示す斜視図である。 第1実施形態に係る突き合わせ面を示す断面図である。 電極用リングを製造する装置を模式的に示す断面図である。 第2実施形態に係る電極用リングを示す斜視図である。 第2実施形態に係る突き合わせ面を示す断面図であり、図6Aは第1シリコン部材の間の突き合わせ面、図6Bは第2シリコン部材の間の突き合わせ面である。 第3実施形態に係る電極用リングを示す斜視図であり、図7Aは上面側、図7Bは下面側である。 第3実施形態に係る突き合わせ面を示す断面図である。 埋込みシリコン部材を示す平面図であり、図9Aは変形例(1)、図9Bは変形例(2)である。 第3実施形態に係る突き合わせ面の変形例を示す断面図であり、図10Aは変形例(1)、図10Bは変形例(2)である。
 以下、図面を参照して本発明の実施形態について詳細に説明する。
1.第1実施形態
(1)全体構成
 図1に示すドライエッチング装置10は、処理室としての真空チャンバー12と、上部電極板14と、基台16と、フォーカスリング18とを備える。上部電極板14は、円板状の部材であり、支持リング20によって真空チャンバー12内の上部に固定されている。支持リング20は、絶縁部材であるシリコンで形成されている。上部電極板14は、厚さ方向に貫通した複数の貫通穴15を有する。上部電極板14は、高周波電源26が電気的に接続されている。上部電極板14は、ガス供給管24が接続されている。ガス供給管24から供給されたエッチングガスは、上部電極板14の貫通穴15から真空チャンバー12内へ流れ込み、排出口28から外部に排出され得る。
 基台16は、真空チャンバー12内の下部に設置されており、その周囲はグラウンドリング30で囲まれている。グラウンドリング30は絶縁部材であるシリコンで形成されており、接地されている。基台16上には、フォーカスリング18が設けられている。フォーカスリング18は、絶縁部材であるシリコンで形成され、基板としてのウエハ22の周縁を支持する凹部19が内側の全周に渡って形成されている。
 ドライエッチング装置10は、上部電極板14を通じてエッチングガスが供給され、高周波電源26から高周波電圧が印加されると、上部電極板14とウエハ22の間でプラズマを生じる。このプラズマによってウエハ22表面がエッチングされる。
 本実施形態に係る電極用リングは、上記フォーカスリング18、支持リング20、グラウンドリング30に適用可能である。電極用リングは、上記フォーカスリング18、支持リング20、グラウンドリング30に限定されない。電極用リングは、ドライエッチング装置10の真空チャンバー12内に設置され、電圧が印加され、又は接地されるシリコン部材に適用することができる。
 フォーカスリング18用の部材となる本実施形態に係る電極用リングについて、図2を参照して説明する。電極用リング32は、複数(本図の場合、3個)の第1シリコン部材34,36,38を備える。なお、以下の説明において、複数の第1シリコン部材34,36,38を特に区別しない場合、総称してシリコン部材と呼ぶ。シリコン部材は、円弧状であり、長手方向の端面である突き合わせ面37において、接合部(本図には図示しない)を介して一方向に接合することにより、リング状に一体化されている。シリコン部材は、単結晶でも多結晶でもよく、その製造方法、純度、結晶方位等において限定されない。シリコン部材の大きさは、特に限定されないが、例えば、厚さ1mm以上50mm以下、幅10mm以上100mm以下程度とすることができる。
 図3に示すように、シリコン部材同士の突き合わせ面37には、接合部39と、シリコン接着部40とが設けられている。図3には、第1シリコン部材34,36の間の突き合わせ面37を示している。図中矢印の向きは、電極用リング32の半径方向の外側向きを示す。
 接合部39は、突き合わせ面37の外縁から数mmの範囲を除く中央部分、好ましくは1mm以上の範囲を除く中央部分に設けられている。接合部39は、シリコンと共晶合金を形成する金属を含むシリコンとの共晶合金である。シリコンと共晶合金を形成する金属は、Al、Ga、Ge、及びSnのいずれか(以下、「合金形成金属」ともいう)である。Al、Ga、Ge、及びSnは、シリコン結晶中での拡散係数が低く、シリコン部材内での拡散が少ないこと、電気的に問題になるディープレベルを作りにくいこと、及び環境への問題がないので好ましい。Alは、低価格であることから最も好ましい。合金形成金属の純度は、シリコンと共晶を形成することが可能であれば特に限定されず、好ましくは98%以上である。
 シリコン接着部40は、突き合わせ面37の外縁に設けられており、突き合わせ面37の間を塞いでいる。シリコン接着部40は、ウエハ22及び基台16に接しておらず、真空チャンバー12内で露出し、かつドライエッチング時にプラズマが照射される部分、すなわち突き合わせ面37の外縁のうち、電極用リング32における上面側に設けられるのが好ましい。さらにシリコン接着部40は、突き合わせ面37の外縁のうち、上面側に加え、外周面側にも設けられるのがより好ましい。シリコン接着部40は、プラズマが照射される突き合わせ面37の間を塞ぐことにより、接合部39における共晶合金が露出することを防ぐことができる。
(2)製造方法
 次に電極用リング32を製造する方法について説明する。まずシリコン部材に対し表面処理をする。具体的には、シリコン部材の表面を研削及び研磨などにより加工し、好ましくは鏡面にする。シリコン部材の表面を、弗酸と硝酸の混合液などによりエッチングしてもよい。混合液としてはJIS規格H0609に規定の化学研磨液(弗酸(49%):硝酸(70%):酢酸(100%)=3:5:3)などを用いることができる。
 続いて、3個の第1シリコン部材34,36,38をリング状に並べる。第1シリコン部材34,36,38同士の突き合わせ面37同士の間には、合金形成金属箔を配置する。合金形成金属箔の厚みは、融解させるためのエネルギーが少なくて済む点では薄い方がよい。合金形成金属箔は、接合強度を得るために0.1~100μmであることが好ましく、0.5~20μmであることがより好ましい。合金形成金属箔は、上記下限値より薄いと接合面に合金形成金属箔を配置する際に破損し易い。合金形成金属箔は、上記上限値より厚いと、シリコンとの接合が十分ではない部分が生じやすい。
 次に、シリコン部材の外側から加熱して、シリコンと合金形成金属を含む融解物を生成する。加熱方法は特に限定されず、抵抗加熱、光加熱等により行うことができる。加熱部位を容易に移動でき、かつ供給する電力に応じて加熱量を変化させることが容易である点で、光加熱が好ましく、例えば各種ランプ、レーザーが使用される。
 本実施形態の場合、図4に示す装置を用いることができる。本図に示す装置は、少なくとも一つの、ランプ42及び当該ランプ42が出射する光を集光する集光部としての楕円ミラー44を備える。ランプ42としては、赤外線結晶成長装置に一般的に用いられるキセノンランプやハロゲンランプを用いることができる。出力としては1~30kW程度のものが好ましい。
 加熱は、突き合わせ面37の外側からであればよく、シリコン部材に対して垂直方向には限られず、斜めからであってもよい。加熱により先ず合金形成金属箔が融解し金属融解物が生成する。次いで、該金属融解物に接しているシリコン部材の突き合わせ面37がこの金属融解物に侵され、シリコンを含む融解物が生成される。加熱を止めて温度が低下すると、該融解物が共晶を含む合金相を形成しながら凝固し、接合が完成するものと考えられる。例えば、合金形成金属箔としてAl箔を用いた場合、800℃程度までの加熱で十分にシリコン部材同士を接合することができる。
 集光領域は、通常直径10~30mm程度である。集光領域は、ランプ42の発光位置を楕円ミラー44の焦点からずらすことにより、30~100mm程度に広がる。集光領域が広がることにより、加熱範囲をひろげることができる。集光領域を、突き合わせ面37の電極用リング32における上面の全域に亘って走査させて加熱するのが好ましい。
 次に、シリコンと合金形成金属とを含む融解物を冷却し固化させることにより、共晶合金を含む接合部39を生成する。合金形成金属がAlの場合、約577℃まで冷却すると、Al-シリコン共晶物(12.2原子%Al)を含む接合部39が生成する。冷却速度は、使用する合金形成金属に応じて異なるが、合金形成金属としてAlを使用する場合には10~100℃/分となるように制御することが好ましい。冷却速度が前記下限値未満では冷却時間が長くなり、効率が悪い。冷却速度が前記上限値より大きいと接合部39中に歪が残る傾向がある。冷却速度は、合金形成金属箔の融解が完了した後、加熱手段の出力を徐々に低下させて、接合部39の温度が共晶物の融解温度より低くなったと推測されたときに加熱を停止することによって制御することができる。このような加熱温度の制御は、例えば実際に貼り合わせるシリコン部材と同様な形状の熱電対をシリコン部材同士の間に設置し、あらかじめ加熱手段のパワーと温度の関係を測定しておき、該測定結果に基づき行うことができる。
 上記の加熱による融解物の生成、冷却による共晶合金を含む接合部39の生成は、合金形成金属及びシリコンの酸化を防ぐために10~200torr(約1333~26664Pa)のアルゴン雰囲気のチャンバー内で行うことが好ましい。アルゴンガスを使用せずに、減圧することによって酸化を防ぐこともできるが、減圧にするとシリコンの蒸発が起き、チャンバー内が汚染される場合があるので好ましくない。また窒素ガスによっても酸化を防ぐことはできるが、1200℃以上でシリコンの窒化が起こるため、好ましくない。
 次いで、シリコン接着部40について説明する。第1シリコン部材34,36,38同士の突き合わせ面37の間のシリコン接着部40は、突き合わせ面37近傍のシリコンを加熱して溶融して形成される。まず、楕円ミラー44の焦点位置とランプ42の発光部の位置を合致させるようランプ位置を調整し、シリコン部材の上表面の高さを楕円ミラー44のもう一つの焦点位置になるように調整することにより、照射位置での楕円ミラー44の広がりを約3mmとする。この状態で、楕円ミラー44を突き合わせ面37の位置に合わせランプ42のパワーを上げる。加熱を開始すると、突き合わせ面37の表面側が融解してシリコン融解物が生成する。具体的には、ランプ定格の60%で表面が解け始める(表面温度が1420℃と推定される)、ランプ定格の90%で突き合わせ面37の間にシリコン融解物が流れ込んで突き合わせ面37の間の一部を塞ぐ。この状態で、楕円ミラー44を突き合わせ面37に沿って一定の速度、例えば5mm/分の速度で走査することにより、突き合わせ面37の間を溶融シリコンで埋め、塞ぐことができる。楕円ミラー44を突き合わせ面37の外縁のうち、電極用リング32における上面側及び外周面側に亘って走査させて加熱するのが好ましい。
 次いで、融解した突き合わせ面37の表面を冷却し、シリコン融解物をシリコン部材の結晶に従って結晶化させる。具体的にはシリコン融解物が固まり始めるランプ定格の55%まで2分でランプ42のパワーを下げ、その状態で5分保持する。
 上記の手順によって、全ての突き合わせ面37において、接合部39及びシリコン接着部40を同様に形成することにより、第1シリコン部材34,36,38同士を接合し、電極用リング32を形成することができる。
 上記のようにして得られた電極用リング32は、機械加工により内側の全周に渡って凹部を形成することにより、フォーカスリング18となり得る。
 電極用リング32は、フォーカスリング18の外径より小さいウエハ用シリコン結晶インゴットから切り出した3個以上のシリコン部材を組み合わせて製造することができる。したがって電極用リング32は、フォーカスリング18の外径より大きいウエハ用シリコン結晶インゴットを用いる必要がないので、その分コストを低減することができる。
 本実施形態に係る電極用リング32は、突き合わせ面37にシリコン接着部40が設けられているので、接合部39における共晶合金が露出することを防ぐことができる。したがって電極用リング32は、真空チャンバー12内においてプラズマが照射されても、共晶合金によって真空チャンバー12内が汚染されるのを防ぐことができる。
2.第2実施形態
 次に第2実施形態に係る電極用リングについて説明する。なお、上記第1実施形態と同様の構成については同様の符号を付し、説明を省略する。図5に示す電極用リング46は、第1リング体32と、第2リング体47とを備える。第1リング体32は、上記第1実施形態の電極用リングと同じである。第2リング体47は、複数(本図の場合3個)の第2シリコン部材48,50,52を備える。第2シリコン部材48,50,52は、説明の便宜上、符号を変えているが、第1シリコン部材34,36,38と同じである。第1リング体32と第2リング体47は、シリコン部材同士の突き合わせ面37が円周方向にずれた状態で接合面54において同軸上に重ねられている。
 図6A,6Bに示すように、第1シリコン部材34,36,38同士の突き合わせ面37の間には、接合部39と、シリコン接着部40とが設けられている。図6Aには第1シリコン部材34,36の間の突き合わせ面37、図6Bには、第2シリコン部材48,52の間の突き合わせ面37を示している。図中矢印の向きは、電極用リング46の半径方向の外側向きを示す。接合部39は、突き合わせ面37の外縁から数mmの範囲を除く中央部分、好ましくは1mm以上の範囲を除く中央部分に設けられている。さらに、第1リング体32と第2リング体47の接合面54にも接合部55が設けられている。なお、第2シリコン部材48,50,52同士の突き合わせ面37にも、接合部39を設けてもよい。
 シリコン接着部40は、突き合わせ面37の外縁、及び第1リング体32と第2リング体47の接合面54の外縁に設けられている。シリコン接着部40は、ウエハ22及び基台16に接しておらず、真空チャンバー12内で露出している部分、すなわち電極用リング46における上面側及び外周面側に設けられるのが好ましい。具体的には、シリコン接着部40は、第1リング体32における突き合わせ面37の外縁のうち電極用リング46における上面側及び外周面側、第2リング体47における突き合わせ面37の外縁のうち電極用リング46における外周面側、接合面54の外縁のうち電極用リング46における外周面側57に設けられるのが好ましい。
 このようにしてシリコン接着部40は、第1シリコン部材34,36,38同士及び第2シリコン部材48,50,52同士の突き合わせ面37の間、及び第1リング体32と第2リング体47の接合面54の間を塞いでいる。
 次に、本実施形態の電極用リング46の製造方法について説明する。なお、上記第1実施形態と同様の工程については適宜説明を省略する。まず表面処理後の3個の第2シリコン部材48,50,52をリング状に並べる。次いで、第2シリコン部材48,50,52の表面に、合金形成金属箔を配置する。続いて、合金形成金属箔上に、3個の第1シリコン部材34,36,38を置く。3個の第1シリコン部材34,36,38同士の間には、合金形成金属箔を配置する。第1シリコン部材34,36,38は、先に配置された第2シリコン部材48,50,52に対し、長手方向の長さの半分だけずらして配置する。上記のようにして、第2シリコン部材48,50,52上に、合金形成金属箔を介して、第1シリコン部材34,36,38が積まれた状態となる。
 次に、第1シリコン部材34,36,38側から加熱して、第1リング体32と第2リング体47の間、及び第1シリコン部材34,36,38同士の突き合わせ面37の間にシリコンと合金形成金属を含む融解物を生成し、接合部39,55を形成する。加熱条件、冷却条件は、上記第1実施形態と同様とすることができる。
 次いで、第1リング体32及び第2リング体47の突き合わせ面37の間、及び、接合面54の間のシリコンを加熱して溶融して、シリコン接着部40を形成する。
 本実施形態の電極用リング46は、突き合わせ面37の間、及び、接合面54の間にシリコン接着部40が設けられているので、上記第1実施形態と同様の効果を得ることができる。
3.第3実施形態
 次に第3実施形態に係る電極用リングについて説明する。図7A,7Bに示す電極用リング56は、複数(本図の場合、3個)の第1シリコン部材58,60,62と、第1シリコン部材58,60,62同士を跨ぐ位置に埋め込まれた複数(3個)の埋込みシリコン部材64Aとを備える。埋込みシリコン部材64Aは、電極用リング56のプラズマが照射される側と反対側、本図の場合、裏面側に設けられる。
 埋込みシリコン部材64Aは、シリコン部材と同じ材料で形成されるのが好ましい。埋込みシリコン部材64Aの四隅は、R加工されているのが好ましい。埋込みシリコン部材64Aは、四隅がR加工されていることにより、欠けなどの損傷を防止することができる。Rは、3mm以上であるのが好ましい。
 埋込みシリコン部材64Aは、下面が、シリコン部材の裏面と略同じ高さとなるように形成されるのが好ましい。埋込みシリコン部材64Aの厚さは、シリコン部材の厚さの20~80%が好ましく、40~60%がより好ましい。
 埋込みシリコン部材64Aは、矩形の板状部材からなり、平面視において電極用リング56から突出しない大きさであるのが好ましい。埋込みシリコン部材64Aの長手方向の長さは、電極用リング56の外周長さの2~10%であるのが好ましい。
 より具体的なシリコン部材のサイズは、内周直径296mm、外周直径380mm、厚み4mmのリングを、3分割した大きさとすることができる。埋込みシリコン部材64Aは、長さ60mm、幅25mm、4隅に5mmのR加工を施した厚さ2mmとすることができる。シリコン部材の裏面に形成される穴は、シリコンの小片の形状に対応した形状とし、深さは2mmとする。この場合、埋込みシリコン部材64Aの厚さはシリコン部材の厚さの50%、埋込みシリコン部材64Aの長手方向の長さは電極用リング56の外周長さの5%である。
 図8に示すように、シリコン部材の裏面には、長手方向の端部に、底面を有する穴が形成されている。図8には、第1シリコン部材58,60の間の突き合わせ面63Aを示している。図中矢印の向きは、電極用リング56の半径方向の外側向きを示す。埋込みシリコン部材64Aは、当該穴に埋め込まれる。埋込みシリコン部材64Aの上面と第1シリコン部材(穴の底面)の間には、接合部68が設けられている。第1シリコン部材58,60,62同士の突き合わせ面63Aの間には、シリコン接着部70を設けるのが好ましい。シリコン接着部70は、突き合わせ面63Aの外縁のうち、電極用リング56における上面側及び外周面側に設けられるのが好ましい。
 本実施形態に係る電極用リング56は、シリコン部材の上面側から加熱して、シリコンと合金形成金属を含む融解物を生成することで、接合部68を形成することができる。また突き合わせ面63Aにおけるシリコン接着部70は、上記第1実施形態と同様の方法により、形成することができる。
 本実施形態の電極用リング56は、埋込みシリコン部材64Aを設けたことにより、シリコン部材同士の間の接合面積を大きくすることができるので、機械的強度をより大きくすることができる。また、電極用リング56は、突き合わせ面63Aの間がシリコン接着部70で塞がれていることにより、上記第1実施形態と同様の効果を得ることができる。
 埋込みシリコン部材64Aは、矩形状である必要はなく、例えば、図9A,9Bに示すように、長円形状の埋込みシリコン部材64B(図9A)、円弧形状の埋込みシリコン部材64C(図9B)でもよい。また埋込みシリコン部材64B,64Cの長手方向端部は、同図に示すように、半円形状でもよい。
 本実施形態の場合、接合部68は、埋込みシリコン部材64Aとシリコン部材(穴の底面)の間に設ける場合について説明したが、本発明はこれに限らない。図10Aに示すように、シリコン部材同士の突き合わせ面63Bの間にも接合部72を設けることとしてもよい。
 また本実施形態の場合、第1シリコン部材58,60,62同士の突き合わせ面63Aの間には、シリコン接着部70が設けられている場合について説明したが、本発明はこれに限らない。図10Bに示すように、突き合わせ面63Cの間にシリコン接着部を設けなくてもよい。
4.変形例
 本発明は上記実施形態に限定されるものではなく、本発明の趣旨の範囲内で適宜変更することが可能である。
 上記実施形態の場合、接合部は、合金形成金属を含む場合について説明したが、本発明はこれに限らず、酸化ホウ素を含むこととしてもよい。接合部が酸化ホウ素を含む場合の電極用リングの製造方法について以下、接合面を例に説明する。
 まず、上記実施形態と同様に表面処理をした3個のシリコン部材をリング状に並べる。次いで、当該シリコン部材を第1の温度(180~280℃)に加熱し、シリコン部材の接合面の少なくとも一部に、粒子状のホウ酸(B(OH))からなる出発原料を供給する。シリコン部材は、一般的な電気抵抗ヒーターを用いた加熱手段により加熱することができる。接合面の温度が180~280℃であるので、この接合面上ではホウ酸の脱水反応が生じる。水は、10~60秒程度でホウ酸から脱離し、メタホウ酸(HBO)を生じる。脱離した水にメタホウ酸が溶解し、流動性に富む液体状物になる。
 シリコン部材の温度が低すぎる場合には、ホウ酸から水を脱離させてメタホウ酸を得ることができない。一方、シリコン部材の温度が高すぎると、ホウ酸から水が急激に脱離する。それによって、シリコン部材の接合面に供給されたホウ酸が飛び散ったり、固化したメタホウ酸が直ちに生じてしまう。第1の温度が180~280℃であれば、より確実にメタホウ酸を得ることができる。第1の温度は、200~240℃が好ましい。
 粒子状のホウ酸からなる出発原料としては、直径0.1~2mmの顆粒状の市販品を、そのまま用いることができる。直径が0.1~2mmのホウ酸からなる出発原料を、第1の温度に加熱されたシリコン部材の表面に供給することによって、後述するようなメタホウ酸を含む層を形成することができる。ホウ酸は、シリコン部材の表面の一部に少量ずつ供給することが好ましい。
 ホウ酸から水が脱離して生じた液体状物をヘラで延ばすことによって、メタホウ酸を含む層が得られる。上述したようにシリコン部材の接合面に、出発原料としてのホウ酸を少量ずつ供給し、生じた液体状物をその都度延ばすことによって、均一なメタホウ酸を含む層を接合面に形成することができる。ヘラとしては、ウエハを切断して得られたものを用いることで、メタホウ酸を含む層への不純物の混入は避けられる。
 メタホウ酸を含む層の厚さは、1mm以下であることが好ましく、0.1~0.5mmがより好ましい。メタホウ酸を含む層の厚さが薄いほど、後の工程で加熱された際に、脱水反応による泡の発生を抑制することができる。メタホウ酸を含む層の厚さは、供給する出発原料としてのホウ酸の量を制御して、調整することができる。
 接合面にメタホウ酸を含む層が形成されたシリコン部材を加熱して、第2の温度(500~700℃)に昇温する。その結果、メタホウ酸から水がさらに脱離して、酸化ホウ素(B)を含む溶融物が得られる。第2の温度が高すぎる場合には、後の工程で冷却した際に、酸化ホウ素とシリコンとの熱膨張係数の違いによって、シリコン部材に割れが生じるおそれがある。第2の温度が500~700℃であれば、より確実に酸化ホウ素を含む溶融物を得ることができる。第2の温度は、550~600℃が好ましい。
 シリコン部材の接合領域に生じた酸化ホウ素を含む溶融物の上に、表面処理をした別のシリコン部材を圧着する。圧着の際の圧力は特に限定されず、適宜設定することができる。シリコン部材の幅が30mm程度の場合には、断熱材を挟んで手で押し付けて、シリコン部材と別のシリコン部材とを接合することができる。
 酸化ホウ素の溶融物を固化させることで、シリコン部材と別のシリコン部材とが酸化ホウ素の層によって接合される。溶融物は、例えば室温で放置することで、固化する。以上のようにして接合部を生成することにより、電極用リングを製造することができる。
 メタホウ酸を含む層を、シリコン部材の接合面の全域ではなく、接合面の外縁に沿って枠状に形成してもよい。枠状のメタホウ酸を含む層の幅は、5~10mmとすることができる。枠状のメタホウ酸を含む層の内側の領域には、合金形成金属箔を配置する。合金形成金属箔を内側の領域に配置する前に、枠状のメタホウ酸を含む層を冷却して、表面を研磨して厚さを低減してもよい。シリコン部材の接合面に枠状のメタホウ酸を含む層を形成し、合金形成金属箔を配置した後、別のシリコン部材を配置して、共晶温度以上700℃以下に加熱する。加熱によって合金形成金属がシリコンと共晶を形成することで、シリコン部材同士を、よりいっそう強固に接合することができる。ここで形成された共晶合金は、枠状の酸化ホウ素の層で囲まれることになる。さらに接合面の外縁に、シリコン接着部を設けることにより、上記第1実施形態と同様の効果を得ることができる。
 シリコン接着部は、プラズマが照射される電極用リングの上面及び外周面に設けられる場合について説明したが、本発明はこれに限らず、突き合わせ面の外縁の全周に設けてもよい。また、上記第2実施形態の場合、シリコン接着部は、接合面の外周縁に加えて内周縁に設けてもよい。
10 ドライエッチング装置(基板処理装置)
12 真空チャンバー(処理室)
32,46,56 電極用リング
34,36,38,58,60,62 第1シリコン部材
37 突き合わせ面
39,55,68,72 接合部
40,70 シリコン接着部
48,50,52 第2シリコン部材
54 接合面
63A,63B,63C 突き合わせ面
64A、64B,64C 埋込みシリコン部材

Claims (6)

  1. 基板にプラズマ処理をする基板処理装置の前記基板が収容される処理室内に設置する電極用リングであって、
    一方向に突き合わせた複数の第1シリコン部材と、
    突き合わされた前記複数の第1シリコン部材同士を跨ぐ位置に埋め込まれた埋込みシリコン部材と
    を備え、
    前記複数の第1シリコン部材と、前記埋込みシリコン部材の間に、前記複数の第1シリコン部材と前記埋込みシリコン部材を接合する接合部が設けられたことを特徴とする電極用リング。
  2. 前記複数の第1シリコン部材同士の間を塞ぐシリコン接着部が設けられたことを特徴とする請求項1記載の電極用リング。
  3. 前記シリコン接着部は、プラズマが照射される前記複数の第1シリコン部材同士の間に設けられていることを特徴とする請求項2記載の電極用リング。
  4. 前記接合部は、Al、Ga、Ge、及びSnのいずれかを含有し、シリコンとの共晶合金であることを特徴とする請求項1~3のいずれか1項記載の電極用リング。
  5. 前記接合部は、酸化ホウ素を含有することを特徴とする請求項1~3のいずれか1項記載の電極用リング。
  6. 前記接合部は、Al、Ga、Ge、及びSnのいずれかを含有し、シリコンとの共晶合金を含むことを特徴とする請求項5記載の電極用リング。
PCT/JP2018/005499 2017-02-23 2018-02-16 電極用リング WO2018155337A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020197027746A KR102575442B1 (ko) 2017-02-23 2018-02-16 전극용 링
CN201880012590.6A CN110537250B (zh) 2017-02-23 2018-02-16 电极环
US16/488,384 US11348764B2 (en) 2017-02-23 2018-02-16 Electrode ring

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-032598 2017-02-23
JP2017032598A JP6198168B1 (ja) 2017-02-23 2017-02-23 電極用リング

Publications (1)

Publication Number Publication Date
WO2018155337A1 true WO2018155337A1 (ja) 2018-08-30

Family

ID=59895655

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/005499 WO2018155337A1 (ja) 2017-02-23 2018-02-16 電極用リング

Country Status (5)

Country Link
US (1) US11348764B2 (ja)
JP (1) JP6198168B1 (ja)
KR (1) KR102575442B1 (ja)
CN (1) CN110537250B (ja)
WO (1) WO2018155337A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110416149A (zh) * 2019-07-17 2019-11-05 上海华岭集成电路技术股份有限公司 一种减薄晶圆加固装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7132584B2 (ja) 2016-12-15 2022-09-07 日本油圧工業株式会社 交流電動機の始動と運転のための装置
JP6270191B1 (ja) * 2017-05-17 2018-01-31 日本新工芯技株式会社 保護材用リング

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010114313A (ja) * 2008-11-07 2010-05-20 Tokyo Electron Ltd リング状部材及びその製造方法
JP2011003730A (ja) * 2009-06-18 2011-01-06 Mitsubishi Materials Corp プラズマ処理装置用シリコンリング
JP2015065024A (ja) * 2013-09-25 2015-04-09 株式会社ニコン プラズマ処理装置、プラズマ処理方法および環状部材
JP2015159202A (ja) * 2014-02-25 2015-09-03 コバレントマテリアル株式会社 フォーカスリング

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3443561B2 (ja) * 2000-08-25 2003-09-02 日清紡績株式会社 シリコンウェハー搭載用ガラス状カーボン−グラファイト複合リング及びそれを装着したドライエッチング装置
US6284997B1 (en) * 2000-11-08 2001-09-04 Integrated Materials, Inc. Crack free welding of silicon
JP3393118B2 (ja) 2000-12-21 2003-04-07 株式会社半導体先端テクノロジーズ プラズマエッチング装置および半導体装置の製造方法
JP2003100713A (ja) * 2001-09-26 2003-04-04 Kawasaki Microelectronics Kk プラズマ電極用カバー
JP3767525B2 (ja) * 2002-07-08 2006-04-19 松下電器産業株式会社 ウェハシートのエキスパンド装置
JP2004296553A (ja) 2003-03-25 2004-10-21 Ngk Insulators Ltd 半導体製造装置用部材
US7074693B2 (en) * 2003-06-24 2006-07-11 Integrated Materials, Inc. Plasma spraying for joining silicon parts
US7787101B2 (en) * 2006-02-16 2010-08-31 International Business Machines Corporation Apparatus and method for reducing contamination in immersion lithography
KR100722200B1 (ko) * 2007-01-12 2007-05-29 에이피텍(주) 웨이퍼 받침장치
JP2008300425A (ja) * 2007-05-29 2008-12-11 Union Material Kk シリコン結晶の接合方法、及びシリコン結晶製品
WO2009091189A2 (en) * 2008-01-16 2009-07-23 Sosul Co., Ltd. Substrate holder, substrate supporting apparatus, substrate processing apparatus, and substrate processing method using the same
JP2009290087A (ja) * 2008-05-30 2009-12-10 Tokyo Electron Ltd フォーカスリング及びプラズマ処理装置
CN101625958A (zh) * 2008-07-09 2010-01-13 世界先进积体电路股份有限公司 半导体工艺装置及其聚焦环
JP5618505B2 (ja) * 2009-07-30 2014-11-05 テクノクオーツ株式会社 石英ガラス部材の再生方法
JP3155802U (ja) * 2009-09-17 2009-12-03 日本碍子株式会社 ウエハー載置装置
JP2011181677A (ja) * 2010-03-01 2011-09-15 Tokyo Electron Ltd フォーカスリング及び基板載置システム
JP5730638B2 (ja) * 2011-03-28 2015-06-10 東京エレクトロン株式会社 基板処理装置の処理室内構成部材及びその温度測定方法
US9187827B2 (en) * 2012-03-05 2015-11-17 Applied Materials, Inc. Substrate support with ceramic insulation
JP5978105B2 (ja) * 2012-11-08 2016-08-24 株式会社東芝 炭化ケイ素セラミックス接合体及び炭化ケイ素セラミックス接合体の製造方法
US9916994B2 (en) * 2013-03-06 2018-03-13 Applied Materials, Inc. Substrate support with multi-piece sealing surface
TWI506828B (zh) * 2013-11-20 2015-11-01 Lextar Electronics Corp 發光裝置
US20170056994A1 (en) * 2015-08-28 2017-03-02 Lam Research Corporation Liquid phase bonding of a silicon or silicon carbide component to another silicon or silicon carbide component
WO2018139649A1 (ja) * 2017-01-30 2018-08-02 京セラ株式会社 熱交換器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010114313A (ja) * 2008-11-07 2010-05-20 Tokyo Electron Ltd リング状部材及びその製造方法
JP2011003730A (ja) * 2009-06-18 2011-01-06 Mitsubishi Materials Corp プラズマ処理装置用シリコンリング
JP2015065024A (ja) * 2013-09-25 2015-04-09 株式会社ニコン プラズマ処理装置、プラズマ処理方法および環状部材
JP2015159202A (ja) * 2014-02-25 2015-09-03 コバレントマテリアル株式会社 フォーカスリング

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110416149A (zh) * 2019-07-17 2019-11-05 上海华岭集成电路技术股份有限公司 一种减薄晶圆加固装置

Also Published As

Publication number Publication date
KR102575442B1 (ko) 2023-09-07
KR20190129878A (ko) 2019-11-20
US20200194237A1 (en) 2020-06-18
JP2018137404A (ja) 2018-08-30
US11348764B2 (en) 2022-05-31
CN110537250B (zh) 2023-11-17
CN110537250A (zh) 2019-12-03
JP6198168B1 (ja) 2017-09-20

Similar Documents

Publication Publication Date Title
WO2018155337A1 (ja) 電極用リング
WO2018025780A1 (ja) 電極用リング
US10553405B2 (en) Ring-shaped electrode
JP6176620B1 (ja) 電極用リング
JP6270191B1 (ja) 保護材用リング
JP6146840B1 (ja) 電極板
JP6278498B1 (ja) リング状部材の製造方法及びリング状部材

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18757679

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197027746

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18757679

Country of ref document: EP

Kind code of ref document: A1