WO2018154973A1 - 結晶化ガラス - Google Patents

結晶化ガラス Download PDF

Info

Publication number
WO2018154973A1
WO2018154973A1 PCT/JP2017/047245 JP2017047245W WO2018154973A1 WO 2018154973 A1 WO2018154973 A1 WO 2018154973A1 JP 2017047245 W JP2017047245 W JP 2017047245W WO 2018154973 A1 WO2018154973 A1 WO 2018154973A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
crystallized glass
base material
glass
mgo
Prior art date
Application number
PCT/JP2017/047245
Other languages
English (en)
French (fr)
Inventor
八木俊剛
山下豊
後藤直雪
Original Assignee
株式会社 オハラ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 オハラ filed Critical 株式会社 オハラ
Priority to KR1020197024799A priority Critical patent/KR102434097B1/ko
Priority to CN201780085860.1A priority patent/CN110267924B/zh
Priority to JP2019501099A priority patent/JP6953101B2/ja
Priority to US16/488,248 priority patent/US11104607B2/en
Publication of WO2018154973A1 publication Critical patent/WO2018154973A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/078Glass compositions containing silica with 40% to 90% silica, by weight containing an oxide of a divalent metal, e.g. an oxide of zinc
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C10/00Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
    • C03C10/0036Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing SiO2, Al2O3 and a divalent metal oxide as main constituents
    • C03C10/0045Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing SiO2, Al2O3 and a divalent metal oxide as main constituents containing SiO2, Al2O3 and MgO as main constituents
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C21/00Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C21/00Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface
    • C03C21/001Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions
    • C03C21/002Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions to perform ion-exchange between alkali ions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • C03C3/087Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal containing calcium oxide, e.g. common sheet or container glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/0092Compositions for glass with special properties for glass with improved high visible transmittance, e.g. extra-clear glass

Definitions

  • the present invention relates to a crystallized glass having a compressive stress layer on the surface.
  • the present invention relates to crystallized glass suitable for protective members such as portable electronic devices and optical devices.
  • Cover glass for protecting the display is used for portable electronic devices such as smartphones and tablet PCs.
  • a protector for protecting a lens is also used in an in-vehicle optical device.
  • These cover glass and protector materials are required to have high visible light transmittance and excellent color balance. In recent years, there is an increasing demand for materials having higher hardness in cover glass and protector applications so that these devices can withstand more severe use.
  • Crystallized glass in which crystals are precipitated inside the glass in order to increase the strength of the glass.
  • Crystallized glass can have higher mechanical properties than amorphous glass, but conventional crystallized glass is not suitable for use in the protective member because of its poor visible light transmission.
  • Patent Document 1 discloses crystallized glass for information recording media. This crystallized glass has poor visible light permeability. When chemical strengthening is performed, a sufficient compressive stress value cannot be obtained, and the stress layer is not formed deeply.
  • An object of the present invention is to obtain a crystallized glass having a high visible light transmittance and a high hardness.
  • the present inventors specify the components constituting the crystallized glass and the content thereof, and further adjust the crystallization conditions and the chemical strengthening conditions. It has been found that a very hard transparent crystallized glass can be obtained, and the present invention has been completed. Specifically, the present invention provides the following.
  • (Configuration 1) With crystallized glass as the base material, it has a compressive stress layer on the surface, A crystallized glass having a light transmittance of 80% including reflection loss at a thickness of 10 mm, a wavelength of 400 to 669 nm, and a Vickers hardness [Hv] of 835 to 1300.
  • (Configuration 2) The crystallized glass according to Configuration 1, wherein the compressive stress layer has a thickness of 20 ⁇ m or more.
  • the crystallized glass base material is weight% in terms of oxide, 40.0% to 70.0% of SiO 2 component, Al 2 O 3 component from 11.0% to 25.0%, Na 2 O component of 5.0% to 19.0%, K 2 O component from 0% to 9.0%, 1.0% to 18.0% of MgO component, CaO component 0% to 3.0%, TiO 2 component 0.5% to 12.0%, Containing
  • the crystallized glass according to Configuration 1 or 2 which contains 90% or more of the SiO 2 component, Al 2 O 3 component, Na 2 O component, K 2 O component, MgO component, and TiO 2 component.
  • the crystallized glass base material is weight% in terms of oxide, 4 to 65.0% of SiO 2 component, Al 2 O 3 component of 13.0% to 23.0%, 8.0% -16.0% Na 2 O component, 1.0% to 7.0% K 2 O component, 2.0% to 15.0% MgO component, CaO component 0.1% to 2.0%, 1.0% to 10.0% of TiO 2 component, and 0.1% to 2.0% of one or more selected from the group consisting of Sb 2 O 3 component, SnO 2 component and CeO 2 component, Containing 4.
  • Configuration 5 The crystallized glass according to any one of constitutions 1 to 4, wherein the average crystal diameter of the precipitated crystals is 4 to 15 nm.
  • crystallized glass having high visible light transmittance and high hardness can be obtained.
  • the crystallized glass of the present invention can be used as a material for optical members such as optical lenses. Moreover, it can also be used for the outer frame member of a portable electronic device, and other decoration applications, taking advantage of the appearance peculiar to glass materials.
  • the crystallized glass of the present invention uses a crystallized glass as a base material (also referred to as a crystallized glass base material) and has a compressive stress layer on the surface.
  • the compressive stress layer can be formed on the crystallized glass base material by ion exchange treatment, and strengthens the crystallized glass base material.
  • the wavelength at which the light transmittance including reflection loss at a thickness of 10 mm (also simply referred to as transmittance) is 80% is 400 to 669 nm, preferably 400 to 620 nm, more preferably Is 400 to 600 nm.
  • transmittance can be measured by the method described in the examples.
  • Such a transmittance is influenced by the crystal particle diameter, the amount of crystals, the nucleating agent, and the like, and can be obtained by adjusting the crystallization temperature and the crystallization time in particular. When the crystallization temperature is increased, the wavelength tends to increase.
  • the Vickers hardness [Hv] is 835 to 1300.
  • the Vickers hardness is preferably 840 to 1300. If the hardness is high, it is difficult to scratch and crack. Vickers hardness can be measured by the method described in Examples. Such hardness can be obtained especially by adjusting the chemical strengthening time and temperature with respect to the thickness of the substrate.
  • the thickness of the compressive stress layer of crystallized glass is preferably 20 ⁇ m or more.
  • the compressive stress layer has such a thickness, even if a deep crack occurs in the crystallized glass substrate, it is possible to prevent the crack from extending or the substrate from cracking. More preferably, it is 43 ⁇ m or more, and most preferably 45 ⁇ m or more.
  • an upper limit is not limited, Usually, it is 350 micrometers or less.
  • the compressive stress value on the surface of the compressive stress layer is preferably 850 MPa or more. By having such a compressive stress value, extension of cracks can be suppressed and mechanical strength can be increased. More preferably, it is 950 MPa or more, more preferably 1000 MPa or more, and most preferably 1050 MPa or more. Although an upper limit is not limited, Usually, it is 1200 MPa or less.
  • the central stress CT (MPa) is generally expressed by the following equation when the surface compressive stress is CS (MPa), the substrate thickness is T ( ⁇ m), and the stress depth is t ( ⁇ m).
  • the CT [CS ⁇ t] / [T-2t]
  • the CT value increases as the CS value increases and the stress depth t increases.
  • CS t increases, the surface hardness and Vickers hardness tend to increase, and the CT value also increases.
  • the crystallized glass base material constituting the crystallized glass is a material having a crystal phase and a glass phase, and is distinguished from an amorphous solid.
  • the crystal phase of crystallized glass is discriminated using the angle of a peak appearing in an X-ray diffraction pattern of X-ray diffraction analysis and, if necessary, TEMDX.
  • Crystallized glass is, for example, MgAl 2 O 4 , MgTi 2 O 5 , MgTi 2 O 4 , Mg 2 TiO 4 , Mg 2 SiO 4 , MgAl 2 Si 2 O 8 and Mg 2 Al 4 Si 5 O 18 as crystal phases. 1 type or more chosen from.
  • the average crystal diameter in the crystallized glass is, for example, 4 to 15 nm, and can be 5 to 13 nm or 6 to 10 nm.
  • the average crystal diameter can be measured by the method described in the examples. When the average crystal diameter is small, the surface roughness Ra after polishing can be smoothly processed to a few tens of levels. Further, the transmittance is increased.
  • the average crystal diameter can be adjusted by the composition and crystallization conditions.
  • composition range of each component constituting the crystallized glass is described below.
  • content of each component is expressed in terms of weight% in terms of oxide unless otherwise specified.
  • oxide conversion means that in the crystallized glass when the total weight of the oxide is 100% by weight, assuming that the crystallized glass constituents are all decomposed and changed to oxides.
  • the amount of oxide of each component contained is expressed in weight%.
  • the crystallized glass as a base material (hereinafter also simply referred to as crystallized glass) is preferably weight% in terms of oxide, 40.0% to 70.0% of SiO 2 component, Al 2 O 3 component from 11.0% to 25.0%, Na 2 O component of 5.0% to 19.0%, K 2 O component from 0% to 9.0%, 1.0% to 18.0% of MgO component, CaO component 0% to 3.0%, TiO 2 component 0.5% to 12.0%, Containing.
  • the crystallized glass is more preferably in oxide-based weight%,
  • the crystallized glass preferably further contains 0.01% to 3.0% of one or more selected from the group consisting of Sb 2 O 3 component, SnO 2 component and CeO 2 component.
  • the SiO 2 component is contained in an amount of 45.0% to 65.0%, more preferably 50.0% to 60.0%. More preferably, the Al 2 O 3 component is contained in an amount of 13.0% to 23.0%.
  • the Na 2 O component is more preferably contained in an amount of 8.0% to 18.0%, further preferably 9.0% to 17.0%, and particularly preferably 10.5% to 16.0%.
  • the K 2 O component is more preferably contained in an amount of 1.0% to 7.0%, more preferably 1.0% to 5.0%.
  • the MgO component is more preferably contained in an amount of 2.0% to 15.0%, further preferably 3.0% to 13.0%, and particularly preferably 5.0% to 11.0%. More preferably, the CaO component is contained in an amount of 0.1% to 2.0%.
  • the TiO 2 component is more preferably contained in an amount of 1.0% to 10.0%, more preferably 2.0% to 8.0%.
  • the Sb 2 O 3 component, SnO 2 component and CeO 2 component are contained in a total amount of preferably 0.1% to 2.0%, more preferably 0.3% to 1.0%. The above compounding amounts can be appropriately combined.
  • the SiO 2 component, Al 2 O 3 component, Na 2 O component, K 2 O component, MgO component, and TiO 2 component together are 90% or more, preferably 95% or more, more preferably 98% or more, and still more preferably 99 % Or more.
  • 90% or more in total of SiO 2 component, Al 2 O 3 component, Na 2 O component, K 2 O component, MgO component, CaO component, TiO 2 component, Sb 2 O 3 component, SnO 2 component and CeO 2 component Preferably it is 95% or more, More preferably, it can be 98% or more, More preferably, it can be 99% or more. You may occupy 100% with these components.
  • the crystallized glass may or may not contain a ZnO component and a ZrO 2 component as long as the effects of the present invention are not impaired.
  • the blending amount can be 0 to 5.0%, 0 to 3.0%, or 0 to 2.0%. When these components are added, the specific gravity increases. Furthermore, crystallized glass, within a range not to impair the effects of the present invention, B 2 O 3 component, P 2 O 5 component, BaO component, FeO component, Li 2 O component, SrO component, La 2 O 3 component, Y 2 O 3 component, Nb 2 O 5 component, Ta 2 O 5 component, WO 3 component, TeO 2 component, Bi 2 O 3 component may or may not be included.
  • the blending amounts can be 0% or more and 2.0% or less, 0% or more and less than 2.0%, or 0% or more and 1.0% or less, respectively.
  • the crystallized glass of the present invention in addition to Sb 2 O 3 component, SnO 2 component, CeO 2 component, As 2 O 3 component, a kind selected from the group of F, Cl, NOx, SOx Or you may contain 2 or more types.
  • the upper limit of the content of the fining agent is preferably 5.0%, more preferably 2.0%, and most preferably 1.0%.
  • the crystallized glass as the base material is preferably mol% in terms of oxide, 43.0 mol% to 73.0 mol% of SiO 2 component, 4.0 mol% to 18.0 mol% of Al 2 O 3 component, Na 2 O component in an amount of 5.0 mol% to 19.0 mol%, 0.1 mol% to 9.0 mol% of K 2 O component, 2.0 mol% to 22.0 mol% of MgO component, 0.01 mol% to 3.0 mol% of CaO component, 0.5 mol% to 11.0 mol% of TiO 2 component and 0.01 mol% to 3.0 mol of one or more selected from the group consisting of Sb 2 O 3 component, SnO 2 component and CeO 2 component Mol%, Containing.
  • SiO 2 component, Al 2 O 3 component, Na 2 O component, K 2 O component, MgO component, TiO 2 component are combined in 90 mol% or more, preferably 95 mol% or more, more preferably 98 mol% or more, Preferably it can be 99 mol% or more.
  • the value of the molar ratio [Al 2 O 3 / MgO] expressed on an oxide basis may be 0.5 or more and 2.0 or less.
  • the value of the molar ratio [TiO 2 / Na 2 O] expressed on an oxide basis may be 0 or more and 0.41 or less.
  • the value of the molar ratio [MgO / Na 2 O] expressed on an oxide basis may be 0 or more and 1.60 or less.
  • transition metal components such as V, Cr, Mn, Co, Ni, Cu, Ag and Mo, excluding Ti, Fe, Zr, Nb, W, La, Gd, Y, Yb and Lu, are colored by glass. Therefore, it is preferable not to include substantially.
  • each component of Pb, Th, Cd, Tl, Os, Be and Se tends to be refrained from being used as a harmful chemical material in recent years, it is preferable that these components are not substantially contained.
  • the crystallized glass of the present invention can be produced, for example, by the following method. That is, raw materials are uniformly mixed so that the above components are within a predetermined content range, and melt-molded to produce an original glass. Next, this raw glass is crystallized to produce a crystallized glass base material. Furthermore, the crystallized glass base material is chemically strengthened.
  • the original glass is heat-treated to uniformly precipitate crystals inside the glass.
  • This heat treatment may be performed in one stage or at two stages.
  • a nucleation step is performed by heat treatment at a first temperature
  • a crystal growth step is performed by heat treatment at a second temperature higher than the nucleation step.
  • the nucleation step and the crystal growth step are continuously performed at one step temperature.
  • the temperature is raised to a predetermined heat treatment temperature, and after reaching the heat treatment temperature, the temperature is maintained for a certain time, and then the temperature is lowered.
  • the first temperature of the two-stage heat treatment is preferably 600 ° C. to 750 ° C.
  • the holding time at the first temperature is preferably 30 minutes to 2000 minutes, and most preferably 180 minutes to 1440 minutes.
  • the second temperature of the two-stage heat treatment is preferably 650 ° C. to 850 ° C.
  • the holding time at the second temperature is preferably 30 minutes to 600 minutes, and most preferably 60 minutes to 300 minutes.
  • the heat treatment temperature is preferably 600 ° C. to 800 ° C., more preferably 630 ° C. to 770 ° C.
  • the holding time at the heat treatment temperature is preferably 30 minutes to 500 minutes, more preferably 60 minutes to 300 minutes.
  • a molded body can be produced from the crystallized glass base material by means of, for example, grinding and polishing. By processing the molded body into a thin plate shape, a thin plate-like crystallized glass base material can be produced.
  • a compressive stress layer is formed on the crystallized glass base material.
  • the compressive stress layer is a reinforcing layer formed by ion exchange by a chemical strengthening method.
  • the crystallized glass base material can be chemically strengthened by contacting or dipping it in a salt containing potassium or sodium, for example, a molten salt such as potassium nitrate (KNO 3 ) or sodium nitrate (NaNO 3 ).
  • a molten salt such as potassium nitrate (KNO 3 ) or sodium nitrate (NaNO 3 ).
  • the crystallized glass base material is added to a molten salt obtained by heating potassium nitrate (KNO 3 ) to 350 to 600 ° C. (more preferably 400 to 500 ° C.) for 90 minutes or more, for example, 90 minutes to 60 hours, preferably 90 Immerse for 50 minutes.
  • KNO 3 potassium nitrate
  • the crystallized glass base material is added to a molten salt obtained by heating potassium nitrate (KNO 3 ) to 350 to 600 ° C. (more preferably 400 to 500 ° C.) for 90 minutes or more, for example, 90 minutes to 60 hours, preferably
  • Examples 1 to 29, Comparative Example 1 Select raw materials such as oxide, hydroxide, carbonate, nitrate, fluoride, chloride, hydroxide, metaphosphate compound as raw materials for each component of crystallized glass. They were weighed so as to have a composition ratio and mixed uniformly. (Weight% in terms of oxide) 55% SiO 2 component, 18% Al 2 O 3 component, 12% Na 2 O component, 2 % K 2 O component, 8% MgO component, 1% CaO component, 5% TiO 2 component , 0.1% of Sb 2 O 3 component
  • the mixed raw materials were put into a platinum crucible and melted. Thereafter, the molten glass was agitated and homogenized, cast into a mold, etc., and slowly cooled to produce an original glass.
  • the obtained raw glass was subjected to a one-step heat treatment for nucleation and crystallization to produce a crystallized glass as a base material.
  • the heat treatment temperature was 660 to 740 ° C., and the holding time at that temperature was 5 hours.
  • the produced crystallized glass base material was cut and ground so as to have a shape of 40 mm square and a thickness of more than 10 mm, and face-to-face parallel polishing was performed so as to obtain a substrate having a thickness of 1 mm and 10 mm.
  • the spectral transmittance of 240 to 800 nm is measured with a U-4000 spectrophotometer manufactured by Hitachi High Technology, and the wavelength at which the transmittance including reflection loss is 80% is obtained. It was. The results are shown in Tables 1 and 2.
  • the crystal phase of the crystallized glass base material is determined by measuring the angle of the peak appearing in the X-ray diffraction pattern measured by an X-ray diffraction analyzer (X'PERT-PRO-MPD manufactured by Philips), and if necessary, TEMDX (JEOL JEM2100F) was used for determination.
  • X'PERT-PRO-MPD manufactured by Philips
  • TEMDX JEOL JEM2100F
  • the average crystal diameter of the crystal particles precipitated on the crystallized glass base material was measured from a scanning electron microscope (TEM) photograph image (JEM2100F manufactured by JEOL Ltd.) of 3 million times. Specifically, the crystal diameter of the crystal particles within the range of 180 ⁇ 180 nm 2 was obtained and the average value was calculated. The average crystal diameter is shown in Tables 1 and 2.
  • Chemical strengthening is performed by immersing the crystallized glass base material (substrate) face-parallel polished to the thickness shown in Tables 1 and 2 in KNO 3 molten salt at the salt bath temperature and immersion time shown in Tables 1 and 2. Thus, crystallized glass was obtained.
  • the specific gravity of the crystallized glass of Example 1 was 2.54. The transmittance and average crystal diameter did not change after chemical strengthening.
  • the Vickers hardness (Hv) of the crystallized glass was determined and shown in Tables 1 and 2.
  • the Vickers hardness is a value obtained by dividing the load when a pyramid-shaped depression is made on the test surface using a diamond quadrangular pyramid indenter with a facing angle of 136 ° divided by the surface area (mm 2 ) calculated from the length of the depression. Indicated. Using a micro hardness tester MVK-E manufactured by Akashi Seisakusho, measurement was performed with a test load of 100 gf and a holding time of 15 seconds.
  • the thickness (stress depth) (DOL) of the compressive stress layer of the crystallized glass and the compressive stress value (CS) of the surface thereof were measured using a glass surface stress meter FSM-6000LE manufactured by Orihara Seisakusho.
  • the refractive index was 1.54 and the optical elastic constant was 29.658 [(nm / cm) / MPa].

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Glass Compositions (AREA)
  • Surface Treatment Of Glass (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)

Abstract

結晶化ガラスを母材とし、表面に圧縮応力層を有し、厚さ10mmにおける反射損失を含む光線透過率が80%である波長が400~669nmであり、ビッカース硬度[Hv]が835~1300であることを特徴とする結晶化ガラス。前記圧縮応力層の厚さが20μm以上である前記結晶化ガラス。前記結晶化ガラス母材が、酸化物換算の重量%で、SiO2成分を40.0%~70.0%、Al2O3成分を11.0%~25.0%、Na2O成分を5.0%~19.0%、K2O成分を0%~9.0%、MgO成分を1.0%~18.0%、CaO成分を0%~3.0%、およびTiO2成分を0.5%~12.0%、を含有し、 SiO2成分、Al2O3成分、Na2O成分、K2O成分、MgO成分、TiO2成分を合わせて90%以上含有する前記結晶化ガラス。

Description

結晶化ガラス
 本発明は、表面に圧縮応力層を有する結晶化ガラスに関する。特に、本発明は、携帯電子機器や光学機器などの保護部材に適する結晶化ガラスに関する。
 スマートフォン、タブレット型PCなどの携帯電子機器には、ディスプレイを保護するためのカバーガラスが使用されている。また、車載用の光学機器にも、レンズを保護するためのプロテクターが使用されている。これらのカバーガラスやプロテクター用途の材料は、高い可視光の透過率および優れたカラーバランスが求められている。そして、近年、これらの機器がより過酷な使用に耐えうるよう、カバーガラスやプロテクター用途において、より高い硬度を有する材料の要求が強まっている。
 従来から、前記保護部材用途の材料として化学強化ガラスが用いられている。しかし、従来の化学強化ガラスは、ガラス表面から垂直に入る亀裂に非常に弱いため、携帯機器が落下した際に破損する事故が多く発生し、問題となっている。
 また、ガラスより硬度が高く、透明性を有する材料としてサファイアが注目されているが、サファイアの製造は、ガラスに比べ生産性が悪く、また加工性も悪い。
 前記の材料以外では、ガラスの強度を高めるために、ガラス内部に結晶を析出させた結晶化ガラスがある。結晶化ガラスは、アモルファスガラスよりも高い機械的特性を有することができるが、従来の結晶化ガラスは、可視光の透過性が悪いため、前記保護部材用途への使用には適さなかった。
 特許文献1には、情報記録媒体用結晶化ガラスが開示されている。この結晶化ガラスは、可視光透過性が悪い。また化学強化を施す場合、十分な圧縮応力値が得られず、応力層が深くまで形成されない。
特開2014-114200号公報
 本発明は、上記問題点に鑑みてなされたものである。本発明の目的は、高い可視光の透過率および高い硬度を有する結晶化ガラスを得ることにある。
 本発明者らは、上記課題を解決するために鋭意試験研究を重ねた結果、結晶化ガラスを構成する成分およびその含有量を特定し、さらに結晶化条件および化学強化条件を調整することにより、非常に硬い透明な結晶化ガラスが得られることを見出し、本発明を完成するに至った。具体的には、本発明は以下を提供する。
(構成1)
 結晶化ガラスを母材とし、表面に圧縮応力層を有し、
 厚さ10mmにおける反射損失を含む光線透過率が80%である波長が400~669nmであり、ビッカース硬度[Hv]が835~1300である結晶化ガラス。
(構成2)
 前記圧縮応力層の厚さが20μm以上である構成1に記載の結晶化ガラス。
(構成3)
 前記結晶化ガラス母材が、酸化物換算の重量%で、
SiO成分を40.0%~70.0%、
Al成分を11.0%~25.0%、
NaO成分を5.0%~19.0%、
O成分を0%~9.0%、
MgO成分を1.0%~18.0%、
CaO成分を0%~3.0%、および
TiO成分を0.5%~12.0%、
を含有し、
 SiO成分、Al成分、NaO成分、KO成分、MgO成分、TiO成分を合わせて90%以上含有する構成1または2に記載の結晶化ガラス。
(構成4)
 前記結晶化ガラス母材が、酸化物換算の重量%で、
SiO成分を45.0%~65.0%、
Al成分を13.0%~23.0%、
NaO成分を8.0%~16.0%、
O成分を1.0%~7.0%、
MgO成分を2.0%~15.0%、
CaO成分を0.1%~2.0%、
TiO成分を1.0%~10.0%、並びに
Sb成分、SnO成分およびCeO成分からなる群より選択される1種以上を0.1%~2.0%、
を含有し、
 SiO成分、Al成分、NaO成分、KO成分、MgO成分、TiO成分を合わせて90%以上含有する構成1から3のいずれかに記載の結晶化ガラス。
(構成5)
 析出結晶の平均結晶径が、4~15nmである構成1から4のいずれかに記載の結晶化ガラス。
 本発明によれば、高い可視光の透過率および高い硬度を有する結晶化ガラスを得ることができる。
 本発明の結晶化ガラスは、光学レンズ等の光学部材の材料として使用することができる。また、ガラス系材料特有の外観を活かした、携帯電子機器の外枠部材その他の装飾用途に使用することも可能である。
 以下、本発明の結晶化ガラスの実施形態および実施例について詳細に説明するが、本発明は、以下の実施形態および実施例に何ら限定されるものではなく、本発明の目的の範囲内において、適宜変更を加えて実施することができる。
[結晶化ガラス]
 本発明の結晶化ガラスは、結晶化ガラスを母材(結晶化ガラス母材ともいう)とし、表面に圧縮応力層を有する。圧縮応力層は、結晶化ガラス母材にイオン交換処理により形成することができ、結晶化ガラス母材を強化する。
 本発明の結晶化ガラスは、厚さ10mmにおける、反射損失を含む光線透過率(単に透過率ともいう)が80%である波長が400~669nmであり、好ましくは400~620nmであり、さらに好ましくは400~600nmでる。所定光線透過率に対する波長が上記の範囲であると透明性が高くカラーバランスに優れる。透過率は実施例に記載の方法で測定できる。このような透過率は結晶粒子径、結晶の量、核剤などにより影響を受け、特に結晶化温度と結晶化時間を調整して得ることができる。結晶化温度を高くすると波長が大きくなる傾向がある。
 また、ビッカース硬度[Hv]は835~1300である。ビッカース硬度は、好ましくは840~1300である。硬度が高いと傷がつき難く割れ難い。ビッカース硬度は実施例に記載の方法で測定できる。このような硬度は特に基板の厚さに対し化学強化時間と温度を調整して得ることができる。
 結晶化ガラスの圧縮応力層の厚さは、20μm以上であることが好ましい。圧縮応力層がこのような厚さを有することで、結晶化ガラス基板に深いクラックが生じてもクラックが延伸したり、基板が割れたりするのを抑えることができる。43μm以上であることがさらに好ましく、45μm以上であることが最も好ましい。上限は限定されないが通常350μm以下である。
 圧縮応力層の表面の圧縮応力値は850MPa以上が好ましい。このような圧縮応力値を有することでクラックの延伸を抑え機械的強度を高めることができる。950MPa以上であることがより好ましく、1000MPa以上であることがさらに好ましく、1050MPa以上であることが最も好ましい。上限は限定されないが通常1200MPa以下である。
 また、中心応力CT(MPa)は、一般的には、表面圧縮応力をCS(MPa)と基板厚みをT(μm)、応力深さをt(μm)とした場合、以下の式で表される。
   CT=[CS×t]/[T-2t]
 CT値は、CSの値が大きく、そして、応力深さtが大きいほど高い値となる。CS、tが大きいほど表面硬さとビッカース硬度は増大する傾向となり、CT値も上昇する。
[結晶化ガラスを構成する成分]
 結晶化ガラスを構成する結晶化ガラス母材は、結晶相とガラス相を有する材料であり、非晶質固体とは区別される。一般的に、結晶化ガラスの結晶相は、X線回折分析のX線回折図形において現れるピークの角度、および必要に応じてTEMEDXを用いて判別される。
 結晶化ガラスは、例えば、結晶相としてMgAl、MgTi、MgTi、MgTiO、MgSiO、MgAlSiおよびMgAlSi18から選ばれる1種以上を含有する。
 結晶化ガラスにおける平均結晶径は、例えば4~15nmであり、5~13nmまたは6~10nmとすることができる。平均結晶径は実施例に記載の方法で測定できる。平均結晶径が小さいと研磨後の表面粗さRaを数Åレベルにスムーズに加工しやすくできる。また、透過率が高くなる。平均結晶径は組成や結晶化条件により調整できる。
 結晶化ガラスを構成する各成分の組成範囲について以下に述べる。本明細書中において、各成分の含有量は、特に断りがない場合、全て酸化物換算の重量%で表示する。ここで、「酸化物換算」とは、結晶化ガラス構成成分が全て分解され酸化物へ変化すると仮定した場合に、当該酸化物の総重量を100重量%としたときの、結晶化ガラス中に含有される各成分の酸化物の量を、重量%で表記したものである。
 母材となる結晶化ガラス(以下、単に結晶化ガラスともいう)は、好ましくは、酸化物換算の重量%で、
SiO成分を40.0%~70.0%、
Al成分を11.0%~25.0%、
NaO成分を5.0%~19.0%、
O成分を0%~9.0%、
MgO成分を1.0%~18.0%、
CaO成分を0%~3.0%、および
TiO成分を0.5%~12.0%、
を含有する。
 結晶化ガラスは、より好ましくは、酸化物換算の重量%で、
SiO成分を40.0%~70.0%、
Al成分を11.0%~25.0%、
NaO成分を5.0%~19.0%、
O成分を0.1%~9.0%、
MgO成分を1.0%~18.0%、
CaO成分を0.01%~3.0%、および
TiO成分を0.5%~12.0%、
を含有する。
 結晶化ガラスは、好ましくは、さらに、Sb成分、SnO成分およびCeO成分からなる群より選択される1種以上を0.01%~3.0%含有する。
 SiO成分は、より好ましくは45.0%~65.0%、さらに好ましくは50.0%~60.0%含まれる。
 Al成分は、より好ましくは13.0%~23.0%含まれる。
 NaO成分は、より好ましくは8.0%~18.0%、さらに好ましくは9.0%~17.0%、特に好ましくは10.5%~16.0%含まれる。
 KO成分は、より好ましくは1.0%~7.0%、さらに好ましくは1.0%~5.0%含まれる。
 MgO成分は、より好ましくは2.0%~15.0%、さらに好ましくは3.0%~13.0%、特に好ましくは5.0%~11.0%含まれる。
 CaO成分は、より好ましくは0.1%~2.0%含まれる。
 TiO成分は、より好ましくは1.0%~10.0%、さらに好ましくは2.0%~8.0%含まれる。
 Sb成分、SnO成分およびCeO成分は、合計で、より好ましくは0.1%~2.0%、さらに好ましくは0.3%~1.0%含まれる。
 上記の配合量は適宜組み合わせることができる。
 SiO成分、Al成分、NaO成分、KO成分、MgO成分、TiO成分を合わせて90%以上、好ましくは95%以上、より好ましくは98%以上、さらに好ましくは99%以上とできる。
 SiO成分、Al成分、NaO成分、KO成分、MgO成分、CaO成分、TiO成分、Sb成分、SnO成分およびCeO成分を合わせて90%以上、好ましくは95%以上、より好ましくは98%以上、さらに好ましくは99%以上とできる。これら成分で100%を占めてもよい。
 結晶化ガラスは、本発明の効果を損なわない範囲で、ZnO成分、ZrO成分をそれぞれ含んでもよいし、含まなくてもよい。配合量は、0~5.0%、0~3.0%または0~2.0%とできる。これらの成分は添加されることで比重が重くなる。
 また、結晶化ガラスは、本発明の効果を損なわない範囲で、B成分、P成分、BaO成分、FeO成分、LiO成分、SrO成分、La成分、Y成分、Nb成分、Ta成分、WO成分、TeO成分、Bi成分をそれぞれ含んでもよいし、含まなくてもよい。配合量は、各々、0%以上2.0%以下、0%以上2.0%未満または0%以上1.0%以下とできる。
 本発明の結晶化ガラスには、清澄剤として、Sb成分、SnO成分、CeO成分の他、As成分、ならびにF、Cl、NOx、SOxの群から選択された一種または二種以上を含有させてもよい。ただし、清澄剤の含有量は、好ましくは5.0%、より好ましくは2.0%、最も好ましくは1.0%を上限とする。
 また、母材となる結晶化ガラスは、好ましくは、酸化物換算のモル%で、
SiO成分を43.0モル%~73.0モル%、
Al成分を4.0モル%~18.0モル%、
NaO成分を5.0モル%~19.0モル%、
O成分を0.1モル%~9.0モル%、
MgO成分を2.0モル%~22.0モル%、
CaO成分を0.01モル%~3.0モル%、
TiO成分を0.5モル%~11.0モル%、並びに
Sb成分、SnO成分およびCeO成分からなる群より選択される1種以上を0.01モル%~3.0モル%、
を含有する。
 SiO成分、Al成分、NaO成分、KO成分、MgO成分、TiO成分を合わせて90モル%以上、好ましくは95モル%以上、より好ましくは98モル%以上、さらに好ましくは99モル%以上とできる。
 酸化物基準で表されたモル比[Al/MgO]の値が0.5以上2.0以下であってよい。
 酸化物基準で表されたモル比[TiO/NaO]の値が0以上0.41以下であってよい。
 酸化物基準で表されたモル比[MgO/NaO]の値が0以上1.60以下であってよい。
 本発明の結晶化ガラスには、上述されていない他の成分を、本発明の結晶化ガラスの特性を損なわない範囲で、必要に応じ、添加することができる。ただし、Ti、Fe、Zr、Nb、W、La、Gd、Y、YbおよびLuを除く、V、Cr、Mn、Co、Ni、Cu、AgおよびMo等の各遷移金属成分は、ガラスが着色するため、実質的に含まないことが好ましい。
 さらに、Pb、Th、Cd、Tl、Os、BeおよびSeの各成分は、近年有害な化学物資として使用を控える傾向にあるため、これらを実質的に含有しないことが好ましい。
[製造方法]
 本発明の結晶化ガラスは、例えば以下の方法で作製できる。すなわち、上記各成分が所定の含有量の範囲内になるように原料を均一に混合し、熔解成形して原ガラスを製造する。次にこの原ガラスを結晶化して結晶化ガラス母材を作製する。さらに結晶化ガラス母材を化学強化する。
 原ガラスは、熱処理し、ガラス内部に均一に結晶を析出させる。この熱処理は、1段階でもよく、2段階の温度で熱処理してもよい。
 2段階熱処理では、まず第1の温度で熱処理することにより核形成工程を行い、この核形成工程の後に、核形成工程より高い第2の温度で熱処理することにより結晶成長工程を行う。
 1段階熱処理では、1段階の温度で核形成工程と結晶成長工程を連続的に行う。通常、所定の熱処理温度まで昇温し、当該熱処理温度に達した後に一定時間その温度を保持し、その後、降温する。
 2段階熱処理の第1の温度は600℃~750℃が好ましい。第1の温度での保持時間は30分~2000分が好ましく、180分~1440分が最も好ましい。
 2段階熱処理の第2の温度は650℃~850℃が好ましい。第2の温度での保持時間は30分~600分が好ましく、60分~300分が最も好ましい。
 1段階の温度で熱処理する場合、熱処理の温度は600℃~800℃が好ましく、630℃~770℃がより好ましい。また、熱処理の温度での保持時間は、30分~500分が好ましく、60分~300分がより好ましい。
 結晶化ガラス母材から、例えば研削および研磨加工の手段等を用いて、成形体を作製することができる。成形体を薄板状に加工することにより、薄板状結晶化ガラス母材を作製できる。
 本発明では、この後、結晶化ガラス母材に圧縮応力層を形成する。圧縮応力層は、化学強化法によるイオン交換により形成された強化層である。
 例えば、結晶化ガラス母材は、カリウムまたはナトリウムを含有する塩、例えば硝酸カリウム(KNO)、硝酸ナトリウム(NaNO)などの溶融塩に、接触または浸漬させて化学強化することができる。好ましくは、結晶化ガラス母材を、硝酸カリウム(KNO)を350~600℃(より好ましくは400~500℃)に加熱した溶融塩に、90分以上、例えば90分~60時間、好ましくは90分~50時間浸漬させる。これにより、表面付近のガラス相に存在する成分と、溶融塩に含まれる成分とのイオン交換反応が進行する。この結果、表面部に圧縮応力層が形成される。本発明では長時間浸漬することにより、硬い結晶化ガラスが得られる。
実施例1~29、比較例1
 結晶化ガラスの各成分の原料として各々相当する酸化物、水酸化物、炭酸塩、硝酸塩、弗化物、塩化物、水酸化物、メタ燐酸化合物等の原料を選定し、これらの原料を以下の組成の割合になるように秤量して均一に混合した。
(酸化物換算の重量%)
SiO成分を55%、Al成分を18%、NaO成分を12%、KO成分を2%、MgO成分を8%、CaO成分を1%、TiO成分を5%、Sb成分を0.1%
 次に、混合した原料を白金坩堝に投入し溶融した。その後、溶融したガラスを攪拌して均質化してから金型等に鋳込み、徐冷して原ガラスを作製した。
 得られた原ガラスに対し、核形成および結晶化のために、1段階の熱処理を施して母材となる結晶化ガラスを作製した。熱処理の温度は660~740℃であり、その温度での保持時間は5時間であった。
 作製した結晶化ガラス母材に対し、40mm角、厚さ10mm超の形状となるように、切断および研削を行い、厚さ1mmおよび10mmの基板となるように対面平行研磨した。
 1mm厚および10mm厚の結晶化ガラス母材について、日立ハイテクノロジー製U-4000形分光光度計により240~800nmの分光透過率を測定し、反射損失を含む透過率が80%になる波長を求めた。結果を表1,2に示す。
 また、結晶化ガラス母材の結晶相を、X線回折分析装置(Philips製X’PERT-PRO-MPD)により測定したX線回折図形において現れるピークの角度、および必要に応じてTEMEDX(日本電子製JEM2100F)を用いて判別した。MgAl,MgTiの結晶相が確認された。
 さらに、結晶化ガラス母材に析出した結晶粒子の平均結晶径を300万倍の走査型電子顕微鏡(TEM)写真像(日本電子製JEM2100F)から測定した。具体的には、180×180nmの範囲内の結晶粒子の結晶径を求め平均値を計算した。平均結晶径を表1,2に示す。
 表1,2に示す厚さに対面平行研磨した結晶化ガラス母材(基板)をKNO溶融塩中に、表1,2に示す塩浴温度と浸漬時間で浸漬することで化学強化を行って、結晶化ガラスを得た。実施例1の結晶化ガラスの比重は2.54であった。尚、透過率と平均結晶径は化学強化後も変わりなかった。
 結晶化ガラスのビッカース硬度(Hv)を求め、表1,2に示す。ビッカース硬度は、対面角が136°のダイヤモンド四角錐圧子を用いて、試験面にピラミッド形状のくぼみをつけたときの荷重を、くぼみの長さから算出した表面積(mm)で割った値で示した。明石製作所製微小硬度計MVK-Eを用い、試験荷重100gf、保持時間15秒で測定した。
 また、結晶化ガラスの圧縮応力層の厚さ(応力深さ)(DOL)とその表面の圧縮応力値(CS)を、折原製作所製のガラス表面応力計FSM-6000LEを用いて測定した。試料の屈折率1.54、光学弾性定数29.658[(nm/cm)/MPa]で算出した。中心応力値(CT)は、式CT=CS×DOL/(T-DOL×2)(式中、Tはガラス基板の厚さ(μm)である。)から求めた。結果を表1,2に示す。




















Figure JPOXMLDOC01-appb-T000001




































Figure JPOXMLDOC01-appb-T000002


 上記に本発明の実施形態及び/又は実施例を幾つか詳細に説明したが、当業者は、本発明の新規な教示及び効果から実質的に離れることなく、これら例示である実施形態及び/又は実施例に多くの変更を加えることが容易である。従って、これらの多くの変更は本発明の範囲に含まれる。
 この明細書に記載の文献および本願のパリ優先の基礎となる日本出願明細書の内容を全てここに援用する。

Claims (5)

  1.  結晶化ガラスを母材とし、表面に圧縮応力層を有し、
     厚さ10mmにおける反射損失を含む光線透過率が80%である波長が400~669nmであり、ビッカース硬度[Hv]が835~1300である結晶化ガラス。
  2.  前記圧縮応力層の厚さが20μm以上である請求項1に記載の結晶化ガラス。
  3.  前記結晶化ガラス母材が、酸化物換算の重量%で、
    SiO成分を40.0%~70.0%、
    Al成分を11.0%~25.0%、
    NaO成分を5.0%~19.0%、
    O成分を0%~9.0%、
    MgO成分を1.0%~18.0%、
    CaO成分を0%~3.0%、および
    TiO成分を0.5%~12.0%、
    を含有し、
     SiO成分、Al成分、NaO成分、KO成分、MgO成分、TiO成分を合わせて90%以上含有する請求項1または2に記載の結晶化ガラス。
  4.  前記結晶化ガラス母材が、酸化物換算の重量%で、
    SiO成分を45.0%~65.0%、
    Al成分を13.0%~23.0%、
    NaO成分を8.0%~16.0%、
    O成分を1.0%~7.0%、
    MgO成分を2.0%~15.0%、
    CaO成分を0.1%~2.0%、
    TiO成分を1.0%~10.0%、並びに
    Sb成分、SnO成分およびCeO成分からなる群より選択される1種以上を0.1%~2.0%、
    を含有し、
     SiO成分、Al成分、NaO成分、KO成分、MgO成分、TiO成分を合わせて90%以上含有する請求項1から3のいずれかに記載の結晶化ガラス。
  5.  析出結晶の平均結晶径が、4~15nmである請求項1から4のいずれかに記載の結晶化ガラス。
PCT/JP2017/047245 2017-02-24 2017-12-28 結晶化ガラス WO2018154973A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020197024799A KR102434097B1 (ko) 2017-02-24 2017-12-28 결정화 유리
CN201780085860.1A CN110267924B (zh) 2017-02-24 2017-12-28 结晶化玻璃
JP2019501099A JP6953101B2 (ja) 2017-02-24 2017-12-28 結晶化ガラス
US16/488,248 US11104607B2 (en) 2017-02-24 2017-12-28 Crystallized glass

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-032825 2017-02-24
JP2017032825 2017-02-24

Publications (1)

Publication Number Publication Date
WO2018154973A1 true WO2018154973A1 (ja) 2018-08-30

Family

ID=63252668

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/047245 WO2018154973A1 (ja) 2017-02-24 2017-12-28 結晶化ガラス

Country Status (6)

Country Link
US (1) US11104607B2 (ja)
JP (1) JP6953101B2 (ja)
KR (1) KR102434097B1 (ja)
CN (1) CN110267924B (ja)
TW (2) TWI796316B (ja)
WO (1) WO2018154973A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020031340A1 (ja) * 2018-08-09 2020-02-13 株式会社 オハラ 結晶化ガラス基板
WO2020031341A1 (ja) * 2018-08-09 2020-02-13 株式会社 オハラ 結晶化ガラス基板
WO2020129230A1 (ja) * 2018-12-21 2020-06-25 株式会社 オハラ 結晶化ガラス基板
JPWO2020031339A1 (ja) * 2018-08-09 2021-05-13 株式会社オハラ 結晶化ガラス基板
JP2021075463A (ja) * 2021-02-17 2021-05-20 株式会社オハラ 結晶化ガラス基板
JP2022506640A (ja) * 2018-11-05 2022-01-17 コーニング インコーポレイテッド 三次元ガラスセラミック物品の製造方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI817970B (zh) * 2018-12-26 2023-10-11 日商小原股份有限公司 結晶化玻璃基板
WO2021044841A1 (ja) * 2019-09-05 2021-03-11 株式会社 オハラ 結晶化ガラスおよび強化結晶化ガラス
JP7296306B2 (ja) * 2019-11-27 2023-06-22 株式会社オハラ 光フィルター用ガラスセラミックスおよび光フィルター
JP2021172547A (ja) * 2020-04-23 2021-11-01 日本電気硝子株式会社 結晶化ガラス
JP7189181B2 (ja) * 2020-08-07 2022-12-13 株式会社オハラ ガラスおよび結晶化ガラス
WO2022050104A1 (ja) * 2020-09-04 2022-03-10 株式会社 オハラ 結晶化ガラスおよび強化結晶化ガラス
CN114262155A (zh) * 2021-11-11 2022-04-01 深圳旭安光学有限公司 一种结晶玻璃、强化结晶玻璃及其制备方法
CN115745409B (zh) * 2022-11-28 2024-04-19 武汉理工大学 一种具有多层结构的高硬度微晶玻璃、其制备方法及应用
CN115925260A (zh) * 2022-11-28 2023-04-07 武汉理工大学 一种具有多晶相结构的高强度微晶玻璃、其制备方法及应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08151228A (ja) * 1994-11-25 1996-06-11 Asahi Glass Co Ltd 表面結晶化高強度ガラス、その製法及びその用途
JP2014001094A (ja) * 2012-06-18 2014-01-09 Nippon Electric Glass Co Ltd 非接触給電用支持部材
JP2014114200A (ja) * 2012-11-16 2014-06-26 Ohara Inc 結晶化ガラスおよび情報記録媒体用結晶化ガラス基板
US20160102010A1 (en) * 2014-10-08 2016-04-14 Corning Incorporated High strength glass-ceramics having petalite and lithium silicate structures
JP2017001937A (ja) * 2015-06-04 2017-01-05 株式会社オハラ 結晶化ガラス及び結晶化ガラス基板

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4168931B2 (ja) 2001-05-29 2008-10-22 旭硝子株式会社 光フィルタ基板用結晶化ガラスおよび光フィルタ
TW200724506A (en) * 2005-10-07 2007-07-01 Ohara Kk Inorganic composition
JP4976058B2 (ja) * 2006-06-06 2012-07-18 株式会社オハラ 結晶化ガラスおよび結晶化ガラスの製造方法
JP4467597B2 (ja) * 2007-04-06 2010-05-26 株式会社オハラ 無機組成物物品
JP4774466B1 (ja) * 2009-06-04 2011-09-14 株式会社オハラ 情報記録媒体用結晶化ガラス基板およびその製造方法
JP2011040145A (ja) * 2009-07-17 2011-02-24 Ohara Inc 情報記録媒体用基板の製造方法
CN104619666B (zh) * 2013-01-18 2017-05-31 日本电气硝子株式会社 结晶性玻璃基板及结晶化玻璃基板、以及扩散板及具备其的照明装置
WO2016017435A1 (ja) * 2014-07-30 2016-02-04 日本電気硝子株式会社 結晶化ガラス

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08151228A (ja) * 1994-11-25 1996-06-11 Asahi Glass Co Ltd 表面結晶化高強度ガラス、その製法及びその用途
JP2014001094A (ja) * 2012-06-18 2014-01-09 Nippon Electric Glass Co Ltd 非接触給電用支持部材
JP2014114200A (ja) * 2012-11-16 2014-06-26 Ohara Inc 結晶化ガラスおよび情報記録媒体用結晶化ガラス基板
US20160102010A1 (en) * 2014-10-08 2016-04-14 Corning Incorporated High strength glass-ceramics having petalite and lithium silicate structures
JP2017001937A (ja) * 2015-06-04 2017-01-05 株式会社オハラ 結晶化ガラス及び結晶化ガラス基板

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020031340A1 (ja) * 2018-08-09 2020-02-13 株式会社 オハラ 結晶化ガラス基板
WO2020031341A1 (ja) * 2018-08-09 2020-02-13 株式会社 オハラ 結晶化ガラス基板
US11926561B2 (en) 2018-08-09 2024-03-12 Ohara Inc. Crystallized glass substrate
JPWO2020031339A1 (ja) * 2018-08-09 2021-05-13 株式会社オハラ 結晶化ガラス基板
US11926562B2 (en) 2018-08-09 2024-03-12 Ohara Inc. Crystallized glass substrate
JP7433309B2 (ja) 2018-11-05 2024-02-19 コーニング インコーポレイテッド 三次元ガラスセラミック物品の製造方法
JP2022506640A (ja) * 2018-11-05 2022-01-17 コーニング インコーポレイテッド 三次元ガラスセラミック物品の製造方法
US11554976B2 (en) 2018-11-05 2023-01-17 Corning Incorporated Methods of making three dimensional glass ceramic articles
CN113039167A (zh) * 2018-12-21 2021-06-25 株式会社小原 结晶化玻璃基板
KR20210100643A (ko) * 2018-12-21 2021-08-17 가부시키가이샤 오하라 결정화 유리 기판
KR102627593B1 (ko) * 2018-12-21 2024-01-19 가부시키가이샤 오하라 결정화 유리 기판
JPWO2020129230A1 (ja) * 2018-12-21 2021-05-20 株式会社オハラ 結晶化ガラス基板
WO2020129230A1 (ja) * 2018-12-21 2020-06-25 株式会社 オハラ 結晶化ガラス基板
US11926563B2 (en) 2018-12-21 2024-03-12 Ohara Inc. Crystallized glass substrate
JP7136947B2 (ja) 2021-02-17 2022-09-13 株式会社オハラ 結晶化ガラス基板
JP2021075463A (ja) * 2021-02-17 2021-05-20 株式会社オハラ 結晶化ガラス基板

Also Published As

Publication number Publication date
US20190375680A1 (en) 2019-12-12
CN110267924B (zh) 2021-12-31
JPWO2018154973A1 (ja) 2019-12-12
CN110267924A (zh) 2019-09-20
TW202204280A (zh) 2022-02-01
KR102434097B1 (ko) 2022-08-18
US11104607B2 (en) 2021-08-31
TWI796316B (zh) 2023-03-21
JP6953101B2 (ja) 2021-10-27
TW201837004A (zh) 2018-10-16
KR20190113850A (ko) 2019-10-08

Similar Documents

Publication Publication Date Title
WO2018154973A1 (ja) 結晶化ガラス
US10899658B2 (en) Crystallized glass and crystallized glass substrate
JP7183230B2 (ja) 結晶化ガラスおよび強化結晶化ガラス
WO2019003565A1 (ja) 結晶化ガラス基板
JP7118530B2 (ja) 強化結晶化ガラス
JP7183275B2 (ja) 結晶化ガラス基板
WO2020031338A1 (ja) 結晶化ガラス基板
WO2020031341A1 (ja) 結晶化ガラス基板
CN116057020A (zh) 玻璃以及结晶化玻璃
JP7460586B2 (ja) 結晶化ガラス
WO2020031339A1 (ja) 結晶化ガラス基板
WO2024062797A1 (ja) 結晶化ガラス
WO2022080226A1 (ja) 結晶化ガラス
WO2024014500A1 (ja) 無機組成物物品
WO2020129230A1 (ja) 結晶化ガラス基板
WO2024014507A1 (ja) 無機組成物物品
WO2023145965A1 (ja) 結晶化された無機組成物物品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17897714

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019501099

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197024799

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17897714

Country of ref document: EP

Kind code of ref document: A1