WO2022050104A1 - 結晶化ガラスおよび強化結晶化ガラス - Google Patents

結晶化ガラスおよび強化結晶化ガラス Download PDF

Info

Publication number
WO2022050104A1
WO2022050104A1 PCT/JP2021/030788 JP2021030788W WO2022050104A1 WO 2022050104 A1 WO2022050104 A1 WO 2022050104A1 JP 2021030788 W JP2021030788 W JP 2021030788W WO 2022050104 A1 WO2022050104 A1 WO 2022050104A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
less
crystallized glass
content
glass
Prior art date
Application number
PCT/JP2021/030788
Other languages
English (en)
French (fr)
Inventor
吉川早矢
小笠原康平
八木俊剛
Original Assignee
株式会社 オハラ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 オハラ filed Critical 株式会社 オハラ
Priority to US18/024,490 priority Critical patent/US20230312402A1/en
Priority to KR1020237007179A priority patent/KR102685143B1/ko
Priority to CN202180054457.9A priority patent/CN116057024A/zh
Priority to EP21864162.9A priority patent/EP4209467A1/en
Priority to JP2021549977A priority patent/JP7013623B1/ja
Priority to JP2021199774A priority patent/JP2022044054A/ja
Publication of WO2022050104A1 publication Critical patent/WO2022050104A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C10/00Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
    • C03C10/0018Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing SiO2, Al2O3 and monovalent metal oxide as main constituents
    • C03C10/0027Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing SiO2, Al2O3 and monovalent metal oxide as main constituents containing SiO2, Al2O3, Li2O as main constituents
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C10/00Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
    • C03C10/0009Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing silica as main constituent
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C10/00Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
    • C03C10/0054Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing PbO, SnO2, B2O3
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C21/00Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C21/00Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface
    • C03C21/001Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions
    • C03C21/002Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions to perform ion-exchange between alkali ions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • C03C3/093Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium containing zinc or zirconium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/097Glass compositions containing silica with 40% to 90% silica, by weight containing phosphorus, niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2204/00Glasses, glazes or enamels with special properties

Definitions

  • the present invention relates to crystallized glass and reinforced crystallized glass.
  • cover glass or housing can be used as cover glass or housing to protect the display of portable electronic devices such as smartphones and tablet PCs, as well as protectors and interior bezels to protect the lenses of in-vehicle optical devices. It is expected to be used as a console panel, touch panel material, smart key, etc. These devices are required to be used in harsh environments, and there is an increasing demand for glass having higher strength.
  • Crystallized glass is one that enhances the strength of glass. Crystallized glass is a glass in which crystals are precipitated, and is known to have higher mechanical strength than amorphous glass.
  • chemical strengthening is known as a method of increasing the strength of glass.
  • the alkaline component existing in the surface layer of the glass is exchanged with the alkaline component having a larger ionic radius to form a compressive stress layer on the surface layer.
  • the compressive stress layer has a high compressive stress value, it is possible to suppress the growth of cracks and increase the mechanical strength.
  • Patent Document 1 discloses a material composition of a chemically strengthenable crystallized glass substrate for an information recording medium. It is stated that the ⁇ -cristobalite-based crystallized glass described in Patent Document 1 can be chemically strengthened and can be used as a high-strength material substrate. However, the crystallized glass for information recording media represented by a hard disk substrate was not intended for use in a harsh environment.
  • crystallized glass As the use of crystallized glass has expanded, it has been required that crystallized glass can be easily produced and that crystallized glass can be processed into various three-dimensional shapes.
  • An object of the present invention is to provide an easy-to-process crystallized glass capable of obtaining a high compressive stress value on the surface and a strengthened crystallized glass thereof.
  • the present invention provides: (Structure 1) A crystallized glass containing at least one selected from ⁇ -cristobalite and ⁇ -cristobalite solid solution as the main crystal phase.
  • the content of SiO 2 component is 50.0% to 75.0%
  • the content of Li 2 O component is 3.0% to 10.0%
  • Al 2 O 3 component content is 5.0% or more and less than 15.0%
  • (Structure 2) By mass% in terms of oxide, ZrO2 component content is more than 0% and 10.0% or less, The crystallized glass according to Configuration 1, wherein the total content of the Al 2 O 3 component and the Zr O 2 component is 10.0% or more.
  • (Structure 3) By mass% in terms of oxide, The content of K2O component is 0 % to 5.0%, The content of P 2 O 5 component is 0% to 10.0% The crystallized glass according to the configuration 1 or the configuration 2.
  • the content of Na 2 O component is 0% to 4.0%
  • the content of MgO component is 0% to 4.0%
  • the content of CaO component is 0% to 4.0%
  • the content of SrO component is 0% to 4.0%
  • BaO component content is 0% to 5.0%
  • ZnO component content is 0% to 10.0%
  • the content of Sb 2 O 3 component is 0% to 3.0%
  • (Structure 5) By mass% in terms of oxide, The content of Nb 2 O 5 component is 0% to 5.0%, The content of Ta 2 O 5 component is 0% to 6.0%, The crystallized glass according to any one of Structures 1 to 4, wherein the content of the TiO 2 component is 0% or more and less than 1.0%.
  • (Structure 6) The crystallized glass according to any one of configurations 1 to 5, wherein the glass transition temperature (Tg) is 610 ° C. or lower.
  • (Structure 7) A reinforced crystallized glass obtained by strengthening the crystallized glass according to any one of configurations 1 to 6, which has a compressive stress layer on its surface.
  • an easy-to-process crystallized glass capable of obtaining a high compressive stress value on the surface and a strengthened crystallized glass thereof.
  • the crystallized glass and the strengthened crystallized glass of the present invention can be used as a protective member for equipment by taking advantage of the fact that they are glass-based materials having high strength and workability.
  • Used as a cover glass and housing for smartphones as a member of portable electronic devices such as tablet PCs and wearable terminals, and as a member of protective protectors and head-up display boards used in transport aircraft such as cars and airplanes. It is possible.
  • it can be used for other electronic devices, machinery and equipment, building members, solar panel members, projector members, cover glasses (windshields) for eyeglasses and watches, and the like.
  • the crystallized glass of the present invention is a crystallized glass containing at least one selected from ⁇ -Christovalite and ⁇ -Christovalite solid solution as the main crystal phase.
  • the content of SiO 2 component is 50.0% to 75.0%
  • the content of Li 2 O component is 3.0% to 10.0%
  • Al 2 O 3 component content is 5.0% or more and less than 15.0%
  • B 2 O 3 component content is more than 0% and 10.0% or less, Is.
  • Tg is preferably 610 ° C. or lower, more preferably 600 ° C. or lower, and even more preferably 590 ° C. or lower.
  • the crystallized glass of the present invention contains at least one selected from ⁇ -cristobalite and ⁇ -cristobalite solid solution as the main crystal phase.
  • the crystallized glass that precipitates these crystal phases has high mechanical strength.
  • the "main crystal phase" in the present specification corresponds to the crystal phase most contained in the crystallized glass determined from the peak of the X-ray diffraction pattern.
  • each component is indicated by mass% in terms of oxide unless otherwise specified.
  • oxide conversion is used in the crystallized glass when it is assumed that all the constituents of the crystallized glass are decomposed and changed into an oxide, and the total mass of the oxide is 100% by mass.
  • the amount of oxide of each component contained is expressed in% by mass.
  • A% to B% represent A% or more and B% or less.
  • the SiO 2 component is an essential component necessary for constituting one or more kinds selected from ⁇ -cristobalite and ⁇ -cristobalite solid solution. If the content of the SiO 2 component exceeds 75.0%, the viscosity may be excessively increased and the meltability may be deteriorated, and if it is less than 50.0%, the devitrification resistance may be deteriorated. ..
  • the upper limit is preferably 75.0% or less, 74.0% or less, 73.0% or less, 72.0% or less, or 70.0% or less. Further, the lower limit is preferably 50.0% or more, 55.0% or more, 58.0% or more, or 60.0% or more.
  • the Li 2 O component is a component that improves the meltability of the raw glass, but if the amount is less than 3.0%, the above effect may not be obtained and the melting of the raw glass may become difficult, and 10 If it exceeds 0.0%, the formation of lithium disilicate crystals may increase.
  • the Li 2 O component is a component involved in chemical strengthening.
  • the lower limit is 3.0% or more, 3.5% or more, 4.0% or more, 4.5% or more, 5.0% or more, or 5.5% or more.
  • the upper limit is preferably 10.0% or less, 9.0% or less, 8.5% or less, or 8.0% or less.
  • the Al 2 O 3 component is a component suitable for improving the mechanical strength of the crystallized glass. If the content of the Al 2 O 3 component is 15.0% or more, the meltability and devitrification resistance may be deteriorated, and if it is less than 5.0%, the effect of improving the mechanical strength may be poor. There is.
  • the upper limit is preferably less than 15.0%, 14.5% or less, 14.0% or less, 13.5% or less, or 13.0% or less. Further, the lower limit can be 5.0% or more, 5.5% or more, 5.8% or more, 6.0% or more, 6.5% or more, or 8.0% or more.
  • the B 2 O 3 component is a component suitable for lowering the glass transition temperature of crystallized glass, but if the amount exceeds 10.0%, the chemical durability may be easily lowered.
  • the upper limit is preferably 10.0% or less, 8.0% or less, 7.0% or less, 5.0% or less, or 4.0% or less.
  • the lower limit is preferably more than 0%, 0.001% or more, 0.01% or more, 0.05% or more, 0.10% or more, or 0.30% or more.
  • the ZrO 2 component is a component that can improve the mechanical strength, but if the amount exceeds 10.0%, the meltability may be deteriorated.
  • the upper limit is preferably 10.0% or less, 9.0% or less, 8.5% or less, or 8.0% or less.
  • the lower limit can be more than 0%, 1.0% or more, 1.5% or more, or 2.0% or more.
  • the compressive stress on the surface becomes large when the material is strengthened.
  • the lower limit of [Al 2 O 3 + ZrO 2 ] is 10.0% or more, 11.0% or more, 12.0% or more, or 13.0% or more.
  • the upper limit of [Al 2 O 3 + ZrO 2 ] is preferably 22.0% or less, 21.0% or less, 20.0% or less, or 19.0% or less.
  • the lower limit of the total content of the SiO 2 component, Li 2 O component, Al 2 O 3 component and B 2 O 3 component is preferably 75.0% or more, 80.0% or more, 83.0% or more, or 85. It can be 0.0% or more.
  • the P 2 O 5 component is an optional component that can be added to act as a crystal nucleation agent for glass, but if the amount exceeds 10.0%, devitrification resistance deteriorates and glass phase separation occurs. It may be easier.
  • the upper limit is preferably 10.0% or less, 8.0% or less, 6.0% or less, 5.0% or less, or 4.0% or less. Further, the lower limit can be 0% or more, 0.5% or more, 1.0% or more, or 1.5% or more.
  • the K2O component is an optional component involved in chemical fortification.
  • the lower limit can be 0% or more, 0.1% or more, 0.3% or more, or 0.5% or more. Further, if it is contained in an excessive amount, it may be difficult for crystals to precipitate. Therefore, the upper limit can be preferably 5.0% or less, 4.0% or less, 3.5% or less, or 3.0% or less.
  • the Na 2 O component is an optional component involved in chemical fortification. If it is contained in an excessive amount, it may be difficult to obtain a desired crystal phase.
  • the upper limit can be preferably 4.0% or less, 3.5% or less, more preferably 3.0% or less, still more preferably 2.5% or less.
  • the MgO component, CaO component, SrO component, BaO component, and ZnO component are optional components that improve low-temperature meltability, and can be contained within a range that does not impair the effects of the present invention. Therefore, the upper limit of the MgO component can be preferably 4.0% or less, 3.5% or less, 3.0% or less, or 2.5% or less. Further, the lower limit of the MgO component can be preferably 0% or more, more than 0%, 0.3% or more, and 0.4% or more.
  • the CaO component can preferably have an upper limit of 4.0% or less, 3.0% or less, 2.5% or less, or 2.0% or less.
  • the SrO component can preferably have an upper limit of 4.0% or less, 3.0% or less, 2.5% or less, or 2.0% or less.
  • the upper limit of the BaO component can be preferably 5.0% or less, 4.0% or less, 3.0% or less, 2.5% or less, or 2.0% or less.
  • the ZnO component can preferably have an upper limit of 10.0% or less, 9.0% or less, 8.5% or less, 8.0% or less, or 7.5% or less. Further, the ZnO component can preferably have a lower limit of 0% or more, more than 0%, 0.5% or more, and 1.0% or more.
  • the crystallized glass may or may not contain the Nb 2 O 5 component, the Ta 2 O 5 component, and the TiO 2 component, respectively, as long as the effects of the present invention are not impaired.
  • the Nb 2 O 5 component is an optional component that improves the mechanical strength of the crystallized glass when it is contained in excess of 0%.
  • the upper limit can be 5.0% or less, 4.0% or less, 3.5% or less, or 3.0% or less.
  • the Ta 2 O 5 component is an optional component that improves the mechanical strength of the crystallized glass when it is contained in excess of 0%.
  • the upper limit can be 6.0% or less, 5.5% or less, 5.0% or less, or 4.0% or less.
  • the TiO 2 component is an optional component that improves the chemical durability of the crystallized glass when it is contained in an amount of more than 0%.
  • the upper limit can be less than 1.0%, 0.8% or less, 0.5% or less, or 0.1% or less.
  • the crystallized glass may contain La 2 O 3 component, Gd 2 O 3 component, Y 2 O 3 component, WO 3 component, TeO 2 component, and Bi 2 O 3 component, respectively, as long as the effect of the present invention is not impaired. It may or may not be included.
  • the blending amount can be 0% to 2.0%, 0% to less than 2.0%, or 0% to 1.0%, respectively.
  • the crystallized glass may or may not contain other components not described above as long as the characteristics of the crystallized glass of the present invention are not impaired.
  • metal components such as Yb, Lu, V, Cr, Mn, Fe, Co, Ni, Cu, Ag and Mo (including these metal oxides) and the like.
  • the Sb 2 O 3 component may be contained as a glass clarifying agent.
  • the upper limit can be preferably 3.0% or less, more preferably 2.0% or less, more preferably 1.0% or less, still more preferably 0.6% or less.
  • the glass clarifying agent in addition to the Sb 2 O 3 component, the SnO 2 component, the CeO 2 component, the As 2 O 3 component, and one or more selected from the group of F, NOx, and SOx may be contained. However, it does not have to be included. However, the content of the clarifying agent can be preferably an upper limit of 2.0% or less, more preferably 1.0% or less, and most preferably 0.6% or less.
  • the crystallized glass of the present invention can form a compressive stress layer on the surface.
  • the compressive stress CS (MPa) of the compressive stress layer is preferably 650 MPa or more, more preferably 680 MPa or more, and further preferably 700 MPa or more.
  • the upper limit is, for example, 1400 MPa or less, 1300 MPa or less, 1200 MPa or less, or 1100 MPa or less. Having such a compressive stress value can suppress the growth of cracks and increase the mechanical strength.
  • the thickness of the compressive stress layer DOLzero is not limited because it depends on the thickness of the crystallized glass, but for example, when the thickness of the crystallized glass substrate is 0.70 mm, the thickness of the compressive stress layer has a lower limit. It can be 70 ⁇ m or more, or 100 ⁇ m or more. The upper limit is, for example, 180 ⁇ m or less, or 150 ⁇ m or less.
  • the lower limit of the thickness of the substrate is preferably 0.10 mm or more, more preferably 0.30 mm or more, more preferably 0.40 mm or more, still more preferably 0.50 mm or more.
  • the upper limit of the thickness of the crystallized glass is preferably 2.00 mm or less, more preferably 1.50 mm or less, more preferably 1.10 mm or less, more preferably 1.00 mm or less, more preferably 0.90 mm or less, and further. It is preferably 0.80 mm or less.
  • Crystallized glass can be produced by the following method. That is, the raw materials are uniformly mixed so that each component is within a predetermined content range, and melt-molded to produce raw glass. Next, this raw glass is crystallized to produce crystallized glass.
  • the heat treatment for crystal precipitation may be a one-step heat treatment or a two-step temperature heat treatment.
  • a nucleation step is first performed by heat-treating at a first temperature, and after this nucleation step, a crystal growth step is performed by heat-treating at a second temperature higher than that of the nucleation step.
  • the first temperature of the two-step heat treatment is preferably 450 ° C. to 750 ° C., more preferably 500 ° C. to 720 ° C., and even more preferably 550 ° C. to 680 ° C.
  • the holding time at the first temperature is preferably 30 minutes to 2000 minutes, more preferably 180 minutes to 1440 minutes.
  • the second temperature of the two-step heat treatment is preferably 550 ° C to 850 ° C, more preferably 600 ° C to 800 ° C.
  • the holding time at the second temperature is preferably 30 minutes to 600 minutes, more preferably 60 minutes to 400 minutes.
  • the nucleation step and the crystal growth step are continuously performed at the one-step temperature.
  • the temperature is raised to a predetermined heat treatment temperature, the temperature is maintained for a certain period of time after reaching the heat treatment temperature, and then the temperature is lowered.
  • the heat treatment temperature is preferably 600 ° C. to 800 ° C., more preferably 630 ° C. to 770 ° C.
  • the holding time at the heat treatment temperature is preferably 30 minutes to 500 minutes, more preferably 60 minutes to 400 minutes.
  • an alkaline component existing in the surface layer of the crystallized glass is exchanged with an alkaline component having a larger ion radius to form a compressive stress layer on the surface layer.
  • a chemical strengthening method to do there are a heat strengthening method in which the crystallized glass is heated and then rapidly cooled, and an ion implantation method in which ions are implanted into the surface layer of the crystallized glass.
  • the chemical fortification method can be carried out, for example, in the following steps. Crystallized glass is contacted or immersed in a salt containing potassium or sodium, such as potassium nitrate (KNO 3 ), sodium nitrate (NaNO 3 ) or a mixed salt thereof or a molten salt of a complex salt.
  • a salt containing potassium or sodium such as potassium nitrate (KNO 3 ), sodium nitrate (NaNO 3 ) or a mixed salt thereof or a molten salt of a complex salt.
  • KNO 3 potassium nitrate
  • NaNO 3 sodium nitrate
  • the treatment of contacting or immersing the molten salt may be performed in one step or in two steps.
  • a sodium salt heated at 350 ° C. to 550 ° C. or a mixed salt of potassium and sodium is contacted or immersed for 1 to 1440 minutes, preferably 30 to 500 minutes.
  • a potassium salt heated at 350 ° C. to 550 ° C. or a mixed salt of potassium and sodium for 1 to 1440 minutes, preferably 60 to 600 minutes.
  • it is contacted or immersed in a salt containing potassium or sodium heated at 350 ° C to 550 ° C, or a mixed salt thereof for 1 to 1440 minutes.
  • the chemical strengthening of the crystallized glass of the present invention may be performed in one step or in multiple steps, but in order to efficiently increase the surface compressive stress and increase the thickness of the compressive stress layer, first, sodium alone or in order to increase the thickness of the compressive stress layer.
  • a two-step fortification treatment is preferable in which after fortification with a molten salt of a mixture of sodium and potassium, secondly, fortification with a molten salt of potassium alone is performed.
  • the heat strengthening method is not particularly limited, but for example, the temperature difference between the surface and the inside of the glass is obtained by heating the crystallized glass to 300 ° C to 600 ° C and then performing rapid cooling such as water cooling and / or air cooling. Allows a compressive stress layer to be formed. By combining with the above chemical treatment method, the compressive stress layer can be formed more effectively.
  • the ion implantation method is not particularly limited, but for example, ions are implanted into the surface of the crystallized glass by colliding it with an acceleration energy and an acceleration voltage that does not destroy the surface. After that, by performing heat treatment as necessary, a compressive stress layer can be formed on the surface in the same manner as in other methods.
  • Examples 1 to 25 Reference Example 1, Comparative Examples 1 and 2.
  • Raw materials such as oxides, hydroxides, carbonates, nitrates, fluorides, chlorides, and metaphosphate compounds corresponding to each of the raw materials of each component of the crystallized glass are selected, and these raw materials are listed in Tables 1 to 4. Weighed and mixed uniformly so as to have the composition of.
  • the mixed raw materials were put into a platinum crucible and melted in an electric furnace at 1300 ° C to 1600 ° C for 2 to 24 hours depending on the difficulty of melting the glass composition. Then, the molten glass was stirred and homogenized, the temperature was lowered to 1000 ° C. to 1450 ° C., the glass was cast into a mold, and the glass was slowly cooled to prepare a raw glass. The obtained raw glass was heated under the crystallization conditions shown in Tables 1 to 4 to prepare a crystallized glass.
  • the crystal phase of the crystallized glass was determined from the angle of the peak appearing in the X-ray diffraction pattern using an X-ray diffraction analyzer (D8Discover manufactured by Bruker).
  • X-ray diffraction analyzer D8Discover manufactured by Bruker.
  • all of them had a main peak at a position corresponding to the peak pattern of the ⁇ -cristobalite and / or the ⁇ -cristobalite solid solution. Since the peak with the highest intensity and the largest peak area) was observed, it was determined that ⁇ -cristobalite and / or ⁇ -cristobalite solid solution was precipitated as the main crystal phase.
  • the glass transition point (Tg) of the crystallized glass of Examples 1 to 25, Comparative Examples 1 and 2, and Reference Example 1 was measured according to the Japan Optical Glass Industry Association standard JOBIS08-2019 "Measuring method of thermal expansion of optical glass". did.
  • the results are shown in Tables 1 to 4. From Tables 1 to 4, it can be seen that the crystallized glass of Examples has a lower Tg than that of Reference Examples.
  • Example 2 to 4, 6 to 12, and Comparative Examples 1 and 2 the produced crystallized glass was cut and ground, and further face-to-face parallel polishing was performed so as to have the material thickness shown in Table 5 to obtain a crystallized glass substrate.
  • this crystallized glass substrate was used as a base material and strengthened in two steps to obtain a chemically strengthened crystallized glass substrate. Specifically, it was immersed in the NaNO 3 molten salt at the temperature and time shown in Table 5 (first step), and then immersed in the KNO 3 molten salt at the temperature and time shown in Table 5 (second step).
  • Comparative Examples 1 and 2 were immersed in KNO 3 molten salt at the temperature and time shown in Table 5 to be strengthened by one step.
  • Comparative Examples 1 and 2 are chemically strengthened crystallized glass substrates corresponding to Examples 25 and 27 described in Patent Document 1.
  • the compressive stress value (CS) on the outermost surface was measured using a glass surface stress meter FSM-6000LE series manufactured by Orihara Seisakusho. A light source having a wavelength of 596 nm was used as the light source of the measuring machine.
  • the refractive index used for CS measurement the value of the refractive index of 596 nm was used.
  • the refractive index value is a quadratic approximation formula from the measured values of the refractive index at the wavelengths of C line, d line, F line, and g line according to the V block method specified in JIS B 7071-2: 2018. Was calculated using.
  • the value of the photoelastic constant used for CS measurement the value of the photoelastic constant of 596 nm was used.
  • the photoelastic constant can be calculated from the measured values of the photoelastic constant at a wavelength of 435.8 nm, a wavelength of 546.1 nm, and a wavelength of 643.9 nm by using a quadratic approximation formula.
  • 29.6 was used as a representative value as the photoelastic constant.
  • the photoelastic constant ( ⁇ ) is obtained by face-to-face polishing the sample shape into a disk shape with a diameter of 25 mm and a thickness of 8 mm, applying a compressive load in a predetermined direction, and measuring the optical path difference generated in the center of the glass. It was obtained by the relational expression of d ⁇ F.
  • the optical path difference is expressed as ⁇ (nm)
  • the glass thickness is expressed as d (mm)
  • the stress is expressed as F (MPa).
  • the depth DOLzero ( ⁇ m) when the compressive stress of the compressive stress layer was 0 MPa was measured using a scattered light photoelastic stress meter SLP-1000.
  • a measurement light source a light source having a wavelength of 640 nm was used.
  • the value of the refractive index at a wavelength of 640 nm is a quadratic approximation from the measured values of the refractive index at the wavelengths of C-line, d-line, F-line, and g-line according to the V-block method specified in JIS B 7071-2: 2018. Calculated using the formula.
  • the photoelastic constant at a wavelength of 640 nm used for DOLzero measurement can be calculated using a quadratic approximation formula from the measured values of the photoelastic constant at a wavelength of 435.8 nm, a wavelength of 546.1 nm, and a wavelength of 643.9 nm. In the examples, 29.2 was used as a representative value.
  • Comparative Examples 1 and 2 were measured by the same method as Comparative Examples 1 and 2 of PCT / JP2020 / 9459.
  • the tempered crystallized glass of the present invention has a deep compressive stress layer having a high CS on the surface and has high strength.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Glass Compositions (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

表面に高い圧縮応力値を得ることが可能な加工しやすい結晶化ガラスおよびその強化結晶化ガラスを得ること。 主結晶相として、α-クリストバライトおよびα-クリストバライト固溶体から選ばれる一種類以上を含有する結晶化ガラスであり、酸化物換算の質量%で、SiO成分の含量が50.0%~75.0%、LiO成分の含量が3.0%~10.0%、Al成分の含量が5.0%以上15.0%未満、B成分の含量が0%超10.0%以下である結晶化ガラス。

Description

結晶化ガラスおよび強化結晶化ガラス
 本発明は、結晶化ガラスおよび強化結晶化ガラスに関する。
 種々のガラスが、スマートフォン、タブレット型PCなどの携帯電子機器のディスプレイを保護するためのカバーガラスや筐体として、また、車載用の光学機器のレンズを保護するためのプロテクターや内装用のベゼルやコンソールパネル、タッチパネル素材、スマートキーなどとしての使用が期待されている。そして、これらの機器は、過酷な環境での使用が求められ、より高い強度を有するガラスに対する要求が強まっている。
 ガラスの強度を高めたものとして、結晶化ガラスがある。結晶化ガラスはガラス内部に結晶を析出させたものであり、アモルファスガラスよりも機械的強度が優れていることで知られている。
 一方、ガラスの強度を高める方法として、化学強化が知られている。ガラスの表面層に存在するアルカリ成分を、それよりもイオン半径の大きなアルカリ成分と交換反応させ、表面層に圧縮応力層を形成する。圧縮応力層が高い圧縮応力値を有すると、クラックの進展を抑え機械的強度を高めることができる。
 特許文献1には、化学強化可能な情報記録媒体用結晶化ガラス基板の材料組成が開示されている。特許文献1に記載のα-クリストバライト系結晶化ガラスは化学強化が可能であり、強度の高い材料基板として利用できると述べられている。しかし、ハードディスク用基板を代表とする情報記録媒体用結晶化ガラスについては、過酷な環境での使用を想定したものではなかった。
 また、結晶化ガラスの用途が広がるのに伴い、容易に結晶化ガラスを製造できて、さらに結晶化ガラスを種々の立体形状に加工できることが求められてきた。
特開2008-254984
 本発明の目的は、表面に高い圧縮応力値を得ることが可能な加工しやすい結晶化ガラスおよびその強化結晶化ガラスを提供することにある。
 本発明は以下を提供する。
(構成1)
 主結晶相として、α-クリストバライトおよびα-クリストバライト固溶体から選ばれる一種類以上を含有する結晶化ガラスであり、
 酸化物換算の質量%で、
SiO成分の含量が50.0%~75.0%、
LiO成分の含量が3.0%~10.0%、
Al成分の含量が5.0%以上15.0%未満、
成分の含量が0%超10.0%以下
である結晶化ガラス。
(構成2)
 酸化物換算の質量%で、
ZrO成分の含量が0%超10.0%以下、
Al成分とZrO成分の合計含量が10.0%以上
である構成1に記載の結晶化ガラス。
(構成3)
 酸化物換算の質量%で、
O成分の含量が0%~5.0%、
成分の含量が0%~10.0%
である構成1または構成2に記載の結晶化ガラス。
(構成4)
 酸化物換算の質量%で、
NaO成分の含量が0%~4.0%、
MgO成分の含量が0%~4.0%、
CaO成分の含量が0%~4.0%、
SrO成分の含量が0%~4.0%、
BaO成分の含量が0%~5.0%、
ZnO成分の含量が0%~10.0%、
Sb成分の含量が0%~3.0%
である構成1から構成3のいずれかに記載の結晶化ガラス。
(構成5)
 酸化物換算の質量%で、
Nb成分の含量が0%~5.0%、
Ta成分の含量が0%~6.0%、
TiO成分の含量が0%以上1.0%未満
である構成1から構成4のいずれかに記載の結晶化ガラス。
(構成6)
 ガラス転移温度(Tg)が、610℃以下である構成1から構成5のいずれかに記載の結晶化ガラス。
(構成7)
 表面に圧縮応力層を有する、構成1から構成6のいずれかに記載の結晶化ガラスを強化した強化結晶化ガラス。
 本発明によれば、表面に高い圧縮応力値を得ることが可能な加工しやすい結晶化ガラスおよびその強化結晶化ガラスを提供できる。
 本発明の結晶化ガラスおよび強化結晶化ガラスは、高い強度と加工性を有するガラス系材料であることを活かして機器の保護部材などに使用することができる。スマートフォンのカバーガラスや筐体、タブレット型PCやウェアラブル端末などの携帯電子機器の部材として利用したり、車や飛行機などの輸送機体で使用される保護プロテクターやヘッドアップディスプレイ用基板などの部材として利用可能である。また、その他の電子機器や機械器具類、建築部材、太陽光パネル用部材、プロジェクタ用部材、眼鏡や時計用のカバーガラス(風防)などに使用可能である。
 以下、本発明の結晶化ガラスおよび強化結晶化ガラスの実施形態および実施例について詳細に説明するが、本発明は、以下の実施形態および実施例に何ら限定されるものではなく、本発明の目的の範囲内において、適宜変更を加えて実施することができる。
 本発明の結晶化ガラスは、主結晶相として、α-クリストバライトおよびα-クリストバライト固溶体から選ばれる一種類以上を含有する結晶化ガラスであり、
 酸化物換算の質量%で、
SiO成分の含量が50.0%~75.0%、
LiO成分の含量が3.0%~10.0%、
Al成分の含量が5.0%以上15.0%未満、
成分の含量が0%超10.0%以下、
である。
 この主結晶相および組成を有することにより、ガラス転移温度が低くなり、原料の熔解性が高まり製造しやすくなり、また得られた結晶化ガラスが3D加工など加工しやすくなる。さらに、この結晶化ガラスを強化すると、表面に形成される圧縮応力層の圧縮応力値が高い強化結晶化ガラスを得ることができる。
 Tgは好ましくは610℃以下であり、より好ましくは600℃以下であり、さらに好ましくは590℃以下である。
 本発明の結晶化ガラスは、主結晶相としてα-クリストバライトおよびα-クリストバライト固溶体から選ばれる一種類以上を含有する。これらの結晶相を析出する結晶化ガラスは高い機械的強度を有する。
 ここで本明細書における「主結晶相」とは、X線回折図形のピークから判定される結晶化ガラス中に最も多く含有する結晶相に相応する。
 本明細書中において、各成分の含有量は、特に断りがない場合、全て酸化物換算の質量%で表示する。ここで、「酸化物換算」とは、結晶化ガラス構成成分が全て分解され酸化物へ変化すると仮定した場合に、当該酸化物の総質量を100質量%としたときの、結晶化ガラス中に含有される各成分の酸化物の量を、質量%で表記したものである。本明細書において、A%~B%はA%以上B%以下を表す。
 SiO成分は、α-クリストバライトおよびα-クリストバライト固溶体から選ばれる一種類以上を構成するために必要な必須成分である。SiO成分の含有量が75.0%を超えると、過剰な粘性の上昇や熔解性の悪化を招く恐れがあり、また、50.0%未満では、耐失透性が悪化する恐れがある。
 好ましくは上限を75.0%以下、74.0%以下、73.0%以下、72.0%以下、または70.0%以下とする。また好ましくは下限を50.0%以上、55.0%以上、58.0%以上、または60.0%以上とする。
 LiO成分は、原ガラスの熔融性を向上させる成分であるが、その量が3.0%未満では、上記効果が得られず原ガラスの熔融が困難となる恐れがあり、また、10.0%を超えると二珪酸リチウム結晶の生成が増加する恐れがある。また、LiO成分は化学強化に関与する成分である。
 好ましくは下限を3.0%以上、3.5%以上、4.0%以上、4.5%以上、5.0%以上、または5.5%以上とする。また好ましくは上限を10.0%以下、9.0%以下、8.5%以下、または8.0%以下とする。
 Al成分は、結晶化ガラスの機械的強度を向上させるのに好適な成分である。Al成分の含有量が15.0%以上では熔解性や耐失透性が悪化しやすくなる恐れがあり、また、5.0%未満では機械的強度を向上させる効果に乏しくなる恐れがある。
 好ましくは上限を15.0%未満、14.5%以下、14.0%以下、13.5%以下、または13.0%以下とする。また下限を5.0%以上、5.5%以上、5.8%以上、6.0%以上、6.5%以上、または8.0%以上とできる。
 B成分は、結晶化ガラスのガラス転移温度を低下させるのに好適な成分であるが、その量が10.0%を超えると、化学的耐久性が低下しやすくなる恐れがある。
 好ましくは上限を10.0%以下、8.0%以下、7.0%以下、5.0%以下、または4.0%以下とする。また好ましくは下限を0%超、0.001%以上、0.01%以上、0.05%以上、0.10%以上、または0.30%以上とする。
 ZrO成分は、機械的強度を向上させ得る成分であるが、その量が10.0%を超えると、熔解性の悪化を招く恐れがある。
 好ましくは上限を10.0%以下、9.0%以下、8.5%以下、または8.0%以下とする。また下限は0%超、1.0%以上、1.5%以上、または2.0%以上とできる。
 Al成分とZrO成分の含有量の和である[Al+ZrO]が多いと、強化をした際に表面の圧縮応力が大きくなる。好ましくは[Al+ZrO]の下限を10.0%以上、11.0%以上、12.0%以上、または13.0%以上とする。
 一方で、過剰に含有させると、熔解性が悪化しやすくなる恐れがある。従って、[Al+ZrO]の上限は、好ましくは22.0%以下、21.0%以下、20.0%以下、または19.0%以下とする。
 SiO成分、LiO成分、Al成分およびB成分の合計含有量の下限を、好ましくは75.0%以上、80.0%以上、83.0%以上、または85.0%以上とすることができる。
 P成分は、ガラスの結晶核形成剤として作用させるために添加できる任意成分であるが、その量が10.0%を超えると、耐失透性の悪化やガラスの分相が生じやすくなる恐れがある。
 好ましくは上限を10.0%以下、8.0%以下、6.0%以下、5.0%以下、または4.0%以下とする。また下限を0%以上、0.5%以上、1.0%以上、または1.5%以上とできる。
 KO成分は、化学強化に関与する任意成分である。下限を0%以上、0.1%以上、0.3%以上、または0.5%以上とできる。
 また過剰に含有すると結晶が析出し難くなる場合がある。よって、好ましくは上限を5.0%以下、4.0%以下、3.5%以下、または3.0%以下とできる。
 NaO成分は、化学強化に関与する任意成分である。過剰に含有すると所望の結晶相が得難くなる場合がある。好ましくは上限を4.0%以下、3.5%以下、より好ましくは3.0%以下、さらに好ましくは2.5%以下とできる。
 MgO成分、CaO成分、SrO成分、BaO成分、ZnO成分は低温熔融性を向上させる任意成分であり、本発明の効果を損なわない範囲で含有できる。そのため、MgO成分は、好ましくは上限を4.0%以下、3.5%以下、3.0%以下、または2.5%以下とできる。また、MgO成分は、好ましくは下限を0%以上、0%超、0.3%以上、0.4%以上とすることができる。CaO成分は、好ましくは上限を4.0%以下、3.0%以下、2.5%以下、または2.0%以下とできる。SrO成分は、好ましくは上限を4.0%以下、3.0%以下、2.5%以下、または2.0%以下とできる。BaO成分は、好ましくは上限を5.0%以下、4.0%以下、3.0%以下、2.5%以下、または2.0%以下とできる。ZnO成分は、好ましくは上限を10.0%以下、9.0%以下、8.5%以下、8.0%以下、または7.5%以下とできる。また、ZnO成分は、好ましくは下限を0%以上、0%超、0.5%以上、1.0%以上とすることができる。
 結晶化ガラスは、本発明の効果を損なわない範囲で、Nb成分、Ta成分、TiO成分をそれぞれ含んでもよいし、含まなくてもよい。Nb成分は、0%超含有する場合に、結晶化ガラスの機械的強度を向上させる任意成分である。好ましくは上限を5.0%以下、4.0%以下、3.5%以下、または3.0%以下とできる。Ta成分は、0%超含有する場合に、結晶化ガラスの機械的強度を向上させる任意成分である。好ましくは上限を6.0%以下、5.5%以下、5.0%以下、または4.0%以下とできる。TiO成分は、0%超含有する場合に、結晶化ガラスの化学的耐久性を向上させる任意成分である。好ましくは上限を1.0%未満、0.8%以下、0.5%以下、または0.1%以下とできる。
 また結晶化ガラスは、本発明の効果を損なわない範囲でLa成分、Gd成分、Y成分、WO成分、TeO成分、Bi成分をそれぞれ含んでもよいし、含まなくてもよい。配合量は、各々、0%~2.0%、0%~2.0%未満、または0%~1.0%とできる。
 さらに結晶化ガラスには、上述されていない他の成分を、本発明の結晶化ガラスの特性を損なわない範囲で、含んでもよいし、含まなくてもよい。例えば、Yb、Lu、V、Cr、Mn、Fe、Co、Ni、Cu、AgおよびMoなどの金属成分(これらの金属酸化物を含む)などである。
 ガラスの清澄剤としてSb成分を含有させてもよい。一方で、Sb成分を過剰に含有すると、可視光領域の短波長領域における透過率が悪くなる恐れがある。従って、好ましくは上限を3.0%以下、より好ましくは2.0%以下、より好ましくは1.0%以下、さらに好ましくは0.6%以下とできる。
 またガラスの清澄剤として、Sb成分の他、SnO成分、CeO成分、As成分、およびF、NOx、SOxの群から選択された一種または二種以上を含んでもよいし、含まなくてもよい。ただし、清澄剤の含有量は、好ましくは上限を2.0%以下、より好ましくは1.0%以下、最も好ましくは0.6%以下とできる。
 一方、Pb、Th、Tl、Os、Be、ClおよびSeの各成分は、近年有害な化学物質として使用を控える傾向にあるため、これらを実質的に含有しないことが好ましい。
 本発明の結晶化ガラスは、表面に圧縮応力層を形成することができる。圧縮応力層の圧縮応力CS(MPa)は、好ましくは650MPa以上、より好ましくは680MPa以上、さらに好ましくは700MPa以上である。上限は例えば、1400MPa以下、1300MPa以下、1200MPa以下、または1100MPa以下である。このような圧縮応力値を有することでクラックの進展を抑え機械的強度を高めることができる。
 圧縮応力層の厚さDOLzero(μm)は、結晶化ガラスの厚みにも依存するため限定はされないが、例えば結晶化ガラス基板の厚みが0.70mmの場合の圧縮応力層の厚さは下限を70μm以上、または100μm以上とすることができる。上限は例えば、180μm以下、または150μm以下である。
 結晶化ガラスを基板とするとき、基板の厚さの下限は、好ましくは0.10mm以上、より好ましくは0.30mm以上、より好ましくは0.40mm以上、さらに好ましくは0.50mm以上であり、結晶化ガラスの厚さの上限は、好ましくは2.00mm以下、より好ましくは1.50mm以下、より好ましくは1.10mm以下、より好ましくは1.00mm以下、より好ましくは0.90mm以下、さらに好ましくは0.80mm以下である。
 結晶化ガラスは、以下の方法で作製できる。すなわち、各成分が所定の含有量の範囲内になるように原料を均一に混合し、熔解成形して原ガラスを製造する。次にこの原ガラスを結晶化して結晶化ガラスを作製する。
 結晶析出のための熱処理は、1段階でもよく2段階の温度で熱処理してもよい。
 2段階熱処理では、まず第1の温度で熱処理することにより核形成工程を行い、この核形成工程の後に、核形成工程より高い第2の温度で熱処理することにより結晶成長工程を行う。
 2段階熱処理の第1の温度は450℃~750℃が好ましく、より好ましくは500℃~720℃、さらに好ましくは550℃~680℃とできる。第1の温度での保持時間は30分~2000分が好ましく、180分~1440分がより好ましい。
 2段階熱処理の第2の温度は550℃~850℃が好ましく、より好ましくは600℃~800℃とできる。第2の温度での保持時間は30分~600分が好ましく、60分~400分がより好ましい。
 1段階熱処理では、1段階の温度で核形成工程と結晶成長工程を連続的に行う。通常、所定の熱処理温度まで昇温し、当該熱処理温度に達した後に一定時間その温度を保持し、その後、降温する。
 1段階熱処理する場合、熱処理の温度は600℃~800℃が好ましく、630℃~770℃がより好ましい。また、熱処理の温度での保持時間は30分~500分が好ましく、60分~400分がより好ましい。
 強化結晶化ガラスにおける圧縮応力層の形成方法としては、例えば結晶化ガラスの表面層に存在するアルカリ成分を、それよりもイオン半径の大きなアルカリ成分と交換反応させ、表面層に圧縮応力層を形成する化学強化法がある。また、結晶化ガラスを加熱し、その後急冷する熱強化法、結晶化ガラスの表面層にイオンを注入するイオン注入法がある。
 化学強化法は、例えば次のような工程で実施することができる。結晶化ガラスを、カリウムまたはナトリウムを含有する塩、例えば硝酸カリウム(KNO)、硝酸ナトリウム(NaNO)またはその混合塩や複合塩の溶融塩に接触または浸漬させる。この溶融塩に接触または浸漬させる処理(化学強化処理)は、1段階でもよく2段階で処理してもよい。
 例えば2段階化学強化処理の場合、第1に350℃~550℃で加熱したナトリウム塩またはカリウムとナトリウムの混合塩に1~1440分、好ましくは30~500分接触または浸漬させる。続けて第2に350℃~550℃で加熱したカリウム塩またはカリウムとナトリウムの混合塩に1~1440分、好ましくは60~600分接触または浸漬させる。
 1段階化学強化処理の場合、350℃~550℃で加熱したカリウムまたはナトリウムを含有する塩、またはその混合塩に1~1440分接触または浸漬させる。
 本発明の結晶化ガラスの化学強化は1段階でも多段階で処理してもよいが、効率よく表面圧縮応力を高め、圧縮応力層の厚さを大きくするためには、第1にナトリウム単独またはナトリウムとカリウムの混合の溶融塩による強化をしたのちに、第2にカリウム単独の溶融塩による強化をする二段階強化処理が好ましい。
 熱強化法については、特に限定されないが、例えば結晶化ガラスを、300℃~600℃に加熱した後に、水冷および/または空冷などの急速冷却を実施することにより、ガラスの表面と内部の温度差によって、圧縮応力層を形成することができる。なお、上記化学処理法と組み合わせることにより、圧縮応力層をより効果的に形成することもできる。
 イオン注入法については、特に限定されないが、例えば結晶化ガラス表面に任意のイオンを表面が破壊しない程度の加速エネルギー、加速電圧にて衝突させることで表面にイオンを注入する。その後必要に応じて熱処理を行うことにより、他方法と同様に表面に圧縮応力層を形成することができる。
実施例1~25、参考例1、比較例1,2
 結晶化ガラスの各成分の原料として各々相当する酸化物、水酸化物、炭酸塩、硝酸塩、弗化物、塩化物、メタ燐酸化合物などの原料を選定し、これらの原料を表1~4に記載の組成になるように秤量して均一に混合した。
 次に、混合した原料を白金坩堝に投入し、ガラス組成の熔融難易度に応じて電気炉で1300℃~1600℃で、2~24時間熔融した。その後、熔融したガラスを攪拌して均質化してから1000℃~1450℃に温度を下げてから金型に鋳込み、徐冷して原ガラスを作製した。得られた原ガラスを表1~4に示す結晶化条件で加熱して結晶化ガラスを作製した。
 結晶化ガラスの結晶相はX線回折分析装置(ブルカー社製、D8Discover)を用いたX線回折図形において現れるピークの角度から判別した。実施例1~25、参考例1および比較例1,2の結晶化ガラスのX線回折図形を確認すると、全てα-クリストバライトおよび/またはα-クリストバライト固溶体のピークパターンに相応する位置にメインピーク(最も強度が高くピーク面積が大きいピーク)が認められたことから、全てα-クリストバライトおよび/またはα-クリストバライト固溶体が主結晶相として析出していたと判別した。
 実施例1~25、比較例1,2および参考例1の結晶化ガラスのガラス転移点(Tg)を、日本光学硝子工業会規格JOGIS08-2019「光学ガラスの熱膨張の測定方法」に従い、測定した。結果を表1~4に示す。表1~4から実施例の結晶化ガラスは参考例よりTgが低いことが分る。
 実施例2~4,6~12、比較例1,2では、作製した結晶化ガラスを切断および研削し、さらに表5に示す材厚となるように対面平行研磨し、結晶化ガラス基板を得た。実施例では、この結晶化ガラス基板を母材として用いて2段階強化して化学強化結晶化ガラス基板を得た。具体的には、表5に示す温度と時間でNaNO溶融塩に浸した(1段階目)後に、表5に示す温度と時間でKNO溶融塩に浸した(2段階目)。
 なお、比較例1,2で得た基板は、表5に示す温度と時間でKNO溶融塩に浸して1段階強化した。比較例1,2は、特許文献1に記載する実施例25および実施例27に相当する化学強化結晶化ガラス基板である。
 最表面の圧縮応力値(CS)は、折原製作所製のガラス表面応力計FSM-6000LEシリーズを用いて測定した。測定機の光源として596nmの波長の光源を使用した。
 CS測定に用いる屈折率は、596nmの屈折率の値を使用した。なお、屈折率の値は、JIS B 7071-2:2018に規定されるVブロック法に準じてC線、d線、F線、g線の波長における屈折率の測定値から二次の近似式を用いて算出した。
 CS測定に用いる光弾性定数は、596nmの光弾性定数の値を使用した。なお、光弾性定数は、波長435.8nm、波長546.1nm、波長643.9nmにおける光弾性定数の測定値から二次の近似式を用いて算出できる。実施例では光弾性定数として29.6を代表値として使用した。
 光弾性定数(β)は、試料形状を対面研磨して直径25mm、厚さ8mmの円板状とし、所定方向に圧縮荷重を加え、ガラスの中心に生じる光路差を測定し、δ=β・d・Fの関係式により求めた。この関係式では、光路差をδ(nm)、ガラスの厚さをd(mm)、応力をF(MPa)として表記している。
 圧縮応力層の圧縮応力が0MPaのときの深さDOLzero(μm)は、散乱光光弾性応力計SLP-1000を用いて測定した。測定光源は、640nmの波長の光源を使用した。
 波長640nmにおける屈折率の値は、JIS B 7071-2:2018に規定されるVブロック法に準じてC線、d線、F線、g線の波長における屈折率の測定値から二次の近似式を用いて算出した。
 DOLzero測定に用いる波長640nmにおける光弾性定数は、波長435.8nm、波長546.1nm、波長643.9nmにおける光弾性定数の測定値から二次の近似式を用いて算出できる。実施例では29.2を代表値として使用した。
 比較例1,2は、PCT/JP2020/9459の比較例1,2と同じ方法で測定した。
 結果を表5に示す。表5から、本発明の強化結晶化ガラスは、表面にCSが高い圧縮応力層を深く有し、強度が高いことが分る。
 
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005

Claims (7)

  1.  主結晶相として、α-クリストバライトおよびα-クリストバライト固溶体から選ばれる一種類以上を含有する結晶化ガラスであり、
     酸化物換算の質量%で、
    SiO成分の含量が50.0%~75.0%、
    LiO成分の含量が3.0%~10.0%、
    Al成分の含量が5.0%以上15.0%未満、
    成分の含量が0%超10.0%以下
    である結晶化ガラス。
  2.  酸化物換算の質量%で、
    ZrO成分の含量が0%超10.0%以下、
    Al成分とZrO成分の合計含量が10.0%以上
    である請求項1に記載の結晶化ガラス。
  3.  酸化物換算の質量%で、
    O成分の含量が0%~5.0%、
    成分の含量が0%~10.0%
    である請求項1または請求項2に記載の結晶化ガラス。
  4.  酸化物換算の質量%で、
    NaO成分の含量が0%~4.0%、
    MgO成分の含量が0%~4.0%、
    CaO成分の含量が0%~4.0%、
    SrO成分の含量が0%~4.0%、
    BaO成分の含量が0%~5.0%、
    ZnO成分の含量が0%~10.0%、
    Sb成分の含量が0%~3.0%
    である請求項1から請求項3のいずれかに記載の結晶化ガラス。
  5.  酸化物換算の質量%で、
    Nb成分の含量が0%~5.0%、
    Ta成分の含量が0%~6.0%、
    TiO成分の含量が0%以上1.0%未満
    である請求項1から請求項4のいずれかに記載の結晶化ガラス。
  6.  ガラス転移温度(Tg)が、610℃以下である請求項1から請求項5のいずれかに記載の結晶化ガラス。
  7.  表面に圧縮応力層を有する、請求項1から請求項6のいずれかに記載の結晶化ガラスを強化した強化結晶化ガラス。
     
PCT/JP2021/030788 2020-09-04 2021-08-23 結晶化ガラスおよび強化結晶化ガラス WO2022050104A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US18/024,490 US20230312402A1 (en) 2020-09-04 2021-08-23 Crystallized glass and reinforced crystallized glass
KR1020237007179A KR102685143B1 (ko) 2020-09-04 2021-08-23 결정화 유리 및 강화 결정화 유리
CN202180054457.9A CN116057024A (zh) 2020-09-04 2021-08-23 结晶化玻璃以及强化结晶化玻璃
EP21864162.9A EP4209467A1 (en) 2020-09-04 2021-08-23 Crystallized glass and reinforced crystallized glass
JP2021549977A JP7013623B1 (ja) 2020-09-04 2021-08-23 結晶化ガラスおよび強化結晶化ガラス
JP2021199774A JP2022044054A (ja) 2020-09-04 2021-12-09 結晶化ガラスおよび強化結晶化ガラス

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020149054 2020-09-04
JP2020-149054 2020-09-04

Publications (1)

Publication Number Publication Date
WO2022050104A1 true WO2022050104A1 (ja) 2022-03-10

Family

ID=80490897

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/030788 WO2022050104A1 (ja) 2020-09-04 2021-08-23 結晶化ガラスおよび強化結晶化ガラス

Country Status (7)

Country Link
US (1) US20230312402A1 (ja)
EP (1) EP4209467A1 (ja)
JP (2) JP7013623B1 (ja)
KR (1) KR102685143B1 (ja)
CN (1) CN116057024A (ja)
TW (1) TW202216626A (ja)
WO (1) WO2022050104A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024014507A1 (ja) * 2022-07-15 2024-01-18 株式会社オハラ 無機組成物物品
WO2024014500A1 (ja) * 2022-07-15 2024-01-18 株式会社オハラ 無機組成物物品
WO2024143174A1 (ja) * 2022-12-28 2024-07-04 株式会社オハラ 無機組成物物品

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002203309A (ja) * 2000-11-08 2002-07-19 Minolta Co Ltd 情報記録媒体用の結晶化ガラス基板
JP2008254984A (ja) 2007-04-06 2008-10-23 Ohara Inc 無機組成物物品
JP2017530933A (ja) * 2014-10-08 2017-10-19 コーニング インコーポレイテッド ペタライト及びリチウムシリケート構造を有する高強度ガラスセラミック

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4976058B2 (ja) * 2006-06-06 2012-07-18 株式会社オハラ 結晶化ガラスおよび結晶化ガラスの製造方法
KR102297729B1 (ko) 2014-04-09 2021-09-03 니폰 덴키 가라스 가부시키가이샤 유리의 제조방법 및 유리
JP6765748B2 (ja) * 2015-06-04 2020-10-07 株式会社オハラ 結晶化ガラス及び結晶化ガラス基板
CN110267924B (zh) * 2017-02-24 2021-12-31 株式会社小原 结晶化玻璃
WO2019003565A1 (ja) * 2017-06-26 2019-01-03 株式会社 オハラ 結晶化ガラス基板
CN111099825B (zh) * 2018-10-26 2021-02-02 成都光明光电股份有限公司 微晶玻璃、微晶玻璃制品及其制造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002203309A (ja) * 2000-11-08 2002-07-19 Minolta Co Ltd 情報記録媒体用の結晶化ガラス基板
JP2008254984A (ja) 2007-04-06 2008-10-23 Ohara Inc 無機組成物物品
JP2017530933A (ja) * 2014-10-08 2017-10-19 コーニング インコーポレイテッド ペタライト及びリチウムシリケート構造を有する高強度ガラスセラミック

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024014507A1 (ja) * 2022-07-15 2024-01-18 株式会社オハラ 無機組成物物品
WO2024014500A1 (ja) * 2022-07-15 2024-01-18 株式会社オハラ 無機組成物物品
WO2024143174A1 (ja) * 2022-12-28 2024-07-04 株式会社オハラ 無機組成物物品

Also Published As

Publication number Publication date
TW202216626A (zh) 2022-05-01
JP7013623B1 (ja) 2022-02-15
JPWO2022050104A1 (ja) 2022-03-10
US20230312402A1 (en) 2023-10-05
CN116057024A (zh) 2023-05-02
KR102685143B1 (ko) 2024-07-16
KR20230059795A (ko) 2023-05-03
EP4209467A1 (en) 2023-07-12
JP2022044054A (ja) 2022-03-16

Similar Documents

Publication Publication Date Title
JP6995459B1 (ja) 無機組成物物品および結晶化ガラス
JP7013623B1 (ja) 結晶化ガラスおよび強化結晶化ガラス
JP7189181B2 (ja) ガラスおよび結晶化ガラス
WO2022050106A1 (ja) 無機組成物物品
JP7460586B2 (ja) 結晶化ガラス
WO2022050105A1 (ja) 強化結晶化ガラス
WO2023145956A1 (ja) 無機組成物物品
WO2023095454A1 (ja) 無機組成物物品
WO2024014500A1 (ja) 無機組成物物品
WO2024014507A1 (ja) 無機組成物物品
WO2024143174A1 (ja) 無機組成物物品
WO2023145965A1 (ja) 結晶化された無機組成物物品
WO2024062797A1 (ja) 結晶化ガラス
JP2024036512A (ja) 結晶化ガラスおよび強化結晶化ガラス

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021549977

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21864162

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021864162

Country of ref document: EP

Effective date: 20230404