WO2018154659A1 - バイアス回路 - Google Patents

バイアス回路 Download PDF

Info

Publication number
WO2018154659A1
WO2018154659A1 PCT/JP2017/006612 JP2017006612W WO2018154659A1 WO 2018154659 A1 WO2018154659 A1 WO 2018154659A1 JP 2017006612 W JP2017006612 W JP 2017006612W WO 2018154659 A1 WO2018154659 A1 WO 2018154659A1
Authority
WO
WIPO (PCT)
Prior art keywords
amplifier
voltage
gate
power supply
power amplifier
Prior art date
Application number
PCT/JP2017/006612
Other languages
English (en)
French (fr)
Inventor
英樹 丹後
達也 橋長
晴寿 辻
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to US16/480,754 priority Critical patent/US10924064B2/en
Priority to PCT/JP2017/006612 priority patent/WO2018154659A1/ja
Priority to JP2019500913A priority patent/JP6806231B2/ja
Priority to CN202310653400.1A priority patent/CN116700413A/zh
Priority to CN201780084323.5A priority patent/CN110214415B/zh
Publication of WO2018154659A1 publication Critical patent/WO2018154659A1/ja
Priority to US17/147,845 priority patent/US11444575B2/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/46Regulating voltage or current wherein the variable actually regulated by the final control device is dc
    • G05F1/56Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices
    • G05F1/561Voltage to current converters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/24Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages
    • H03F3/245Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages with semiconductor devices only
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • H03F1/0205Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
    • H03F1/0211Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers with control of the supply voltage or current
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/30Modifications of amplifiers to reduce influence of variations of temperature or supply voltage or other physical parameters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/30Modifications of amplifiers to reduce influence of variations of temperature or supply voltage or other physical parameters
    • H03F1/301Modifications of amplifiers to reduce influence of variations of temperature or supply voltage or other physical parameters in MOSFET amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/189High-frequency amplifiers, e.g. radio frequency amplifiers
    • H03F3/19High-frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/447Indexing scheme relating to amplifiers the amplifier being protected to temperature influence
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/451Indexing scheme relating to amplifiers the amplifier being a radio frequency amplifier
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/468Indexing scheme relating to amplifiers the temperature being sensed
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/66Digital/analogue converters

Definitions

  • the present invention relates to a bias circuit.
  • a TDD (Time Division Duplex) system that switches transmission and reception in a time division manner may be adopted.
  • An amplifier for a wireless communication apparatus used in the TDD system is on / off controlled so that an on state in which a transmission / reception signal is amplified and output and an off state in which transmission / reception signal output is stopped are switched according to a transmission / reception cycle.
  • Patent Document 1 as a method for on / off control of an amplifier using a field effect transistor (FET), a switch is provided between a power supply for supplying a drain voltage and a drain terminal, and this switch is intermittently connected. And a method for controlling the on / off of the amplifier by controlling a gate bias voltage supplied to the gate terminal.
  • FET field effect transistor
  • the method of intermittently connecting the switch between the power source and the drain terminal a large and expensive switching element that can handle a large amount of power must be used as the switch.
  • the method of controlling the gate bias voltage supplied to the gate terminal has an advantage that a small, inexpensive and high-speed switching element can be used because the power to be controlled is relatively small.
  • a bias circuit is a bias circuit that supplies a gate bias voltage for controlling on / off of an amplifier to the amplifier, and is connected in series to a gate terminal of the amplifier to turn on the amplifier.
  • a first power source that outputs a voltage necessary for the first gate bias voltage and a second power source that is connected in series to the gate terminal of the amplifier and outputs a voltage necessary for the second gate bias voltage for turning the amplifier off.
  • a power source is connected between the first power source and the amplifier, and the first power source and the amplifier are switched between an open state and a short-circuit state based on a control signal related to on / off control of the amplifier.
  • a changeover switch for supplying either the first gate bias voltage or the second gate bias voltage to the amplifier; Connected between the power supply and the amplifier, the resistance value is provided with a resistance value variable portion that is variable.
  • a bias circuit is a bias circuit that supplies a gate bias voltage for controlling on / off of the amplifier to the amplifier, and is connected in series to the gate terminal of the amplifier, and the amplifier is turned on.
  • a first power supply that outputs a voltage necessary for the first gate bias voltage for the power supply, and a second gate bias voltage that is connected in series to the gate terminal of the amplifier and outputs the voltage necessary for turning the amplifier off.
  • Connected between the second power source and the second power source and the amplifier, and the second power source and the amplifier are either in an open state or a short-circuit state based on a control signal related to on / off control of the amplifier.
  • the switching switch for supplying either the first gate bias voltage or the second gate bias voltage to the amplifier.
  • FIG. 1 is a circuit diagram showing a bias circuit according to the first embodiment.
  • FIG. 2 is a graph showing an example of the relationship between the gate-source voltage and the drain-source current in the power amplifier 2.
  • FIG. 3 is a diagram illustrating an example of a numerical change in each part of the power amplifier when the power amplifier is on / off controlled based on the control signal.
  • FIG. 4 is a graph showing a change in the gate current with respect to the internal temperature of the power amplifier.
  • FIG. 5 is a diagram showing changes in the gate-source voltage and the drain-source current when the power amplifier is on / off controlled by the bias circuit of this embodiment and the conventional bias circuit, respectively.
  • FIG. 6 is a circuit diagram showing a bias circuit according to the second embodiment.
  • FIG. 6 is a circuit diagram showing a bias circuit according to the second embodiment.
  • FIG. 7 is a circuit diagram showing a bias circuit according to the third embodiment.
  • FIG. 8 is a circuit diagram showing a bias circuit according to the fourth embodiment.
  • FIG. 9 is a circuit diagram showing a bias circuit according to the fifth embodiment.
  • FIG. 10 is a circuit diagram showing a bias circuit according to the sixth embodiment.
  • FIG. 11 is a circuit diagram showing a bias circuit according to the seventh embodiment.
  • FIG. 12 is a diagram showing changes in the gate-source voltage and the drain-source current when the power amplifier is on / off controlled by the bias circuit of the seventh embodiment and the conventional bias circuit, respectively.
  • FIG. 13 is a circuit diagram showing a bias circuit according to the eighth embodiment.
  • FIG. 14 is a diagram showing an example of a conventional bias circuit for controlling the gate bias voltage supplied to the gate terminal.
  • FIG. 14 is a diagram showing an example of a conventional bias circuit for controlling the gate bias voltage supplied to the gate terminal.
  • a bias circuit 100 is a circuit that supplies a gate bias voltage to an amplifier 101 for amplifying an RF (Radio Frequency) signal.
  • the first power supply 102 connected in series to the amplifier 101 and the amplifier 101
  • a second power supply 103 connected in series, a switch 104, a first resistor 105, a second resistor 106, and a coil 107 for blocking the RF signal of the amplifier 101 from entering the bias circuit 100 are provided. Yes.
  • the amplifier 101 is turned on when the gate-source voltage is a voltage Von higher than the pinch-off voltage, and is turned off when the gate-source voltage is a voltage Voff lower than the pinch-off voltage.
  • the switch 104 is connected between the first power supply 102 and the amplifier 101, and shorts or opens between the first power supply 102 and the amplifier 101 in accordance with a control signal for on / off control of the amplifier 101.
  • the amplifier 101 When the first power supply 102 and the amplifier 101 are short-circuited, the amplifier 101 is connected to both the first power supply 102 and the second power supply 103 and supplied with a gate bias voltage. At this time, the supplied gate bias voltage is set to a voltage that allows the gate-source voltage of the amplifier 101 to be a voltage Von higher than the pinch-off voltage.
  • the supplied gate bias voltage is set to a voltage that can make the gate-source voltage a voltage Voff lower than the pinch-off voltage.
  • the first resistor 105 and the second resistor 106 are set to have resistance values so that both power supplies are protected and the gate bias voltage supplied to the amplifier 101 becomes an appropriate value.
  • the bias circuit 100 performs on / off control of the amplifier 101 by switching the switch 104.
  • the internal temperature of the amplifier 101 may rise and the gate current may increase.
  • the gate current increases, a voltage is divided between the amplifier 101 connected in series with each other and the resistor 105 (resistor 106), and the gate-source voltage is set to the preset voltages Von and Voff. Sometimes fluctuated.
  • the amplifier 101 When the gate-source voltage fluctuates, the amplifier 101 does not turn off even when the switch 104 is open, or an excessive current flows between the drain and source when the switch 104 is short-circuited. There is a possibility that the amplifier 101 cannot be appropriately controlled on and off.
  • the present disclosure has been made in view of such circumstances, and an object thereof is to provide a bias circuit capable of appropriately controlling on / off of an amplifier.
  • the amplifier can be appropriately controlled on and off.
  • a bias circuit is a bias circuit that supplies a gate bias voltage for controlling on / off of an amplifier to the amplifier, and is connected in series to a gate terminal of the amplifier (an RF signal enters the bias circuit).
  • a first power source that outputs a voltage required for a first gate bias voltage for turning on the amplifier, and a series connection (RF) to the gate terminal of the amplifier.
  • a second power source that outputs a voltage required for a second gate bias voltage for turning off the amplifier, and a first power source that is turned off via a coil that shuts off the signal from entering the bias circuit.
  • the switch is connected between the changeover switch for supplying either the first gate bias voltage or the second gate bias voltage to the amplifier, and the second power source and the amplifier.
  • a resistance value variable section whose resistance value is variable.
  • a bias circuit is a bias circuit that supplies a gate bias voltage for controlling on / off of an amplifier to the amplifier, and is connected in series to the gate terminal of the amplifier, A first power supply that outputs a voltage necessary for the first gate bias voltage for turning on the state and a gate terminal of the amplifier are connected in series, and are necessary for the second gate bias voltage for turning the amplifier off.
  • a second power source that outputs a voltage, and is connected between the second power source and the amplifier, and is open or short-circuited between the second power source and the amplifier based on a control signal relating to on / off control of the amplifier.
  • the resistance value of the resistance value variable unit is variable, even if the gate current of the amplifier increases when the changeover switch is open, the resistance value of the resistance value variable unit is reduced.
  • the resistance value of the resistance value variable unit is reduced.
  • the resistance value of the resistance value variable unit is smaller when the changeover switch is in the open state than when the changeover switch is in the short-circuit state.
  • variable resistance unit includes a resistor connected between the first power source or the second power source and the amplifier, and both ends of the resistor based on the control signal. It is preferable to provide an intermittent switch that is short-circuited or opened.
  • the resistance value of the resistance value variable unit can be switched by the intermittent switch in a case where the changeover switch is in an open state and in a case where the switch is in a short circuit state. Therefore, the resistance value of the resistance value variable unit when the changeover switch is in the open state can be made smaller than the resistance value of the resistance value variable unit when the changeover switch is in the short circuit state. In other words, when the changeover switch is in an open state, the intermittent switch shorts both ends of the resistor, so that even if the gate current of the amplifier increases, voltage division between the amplifier and the resistor occurs. Can be suppressed. As a result, fluctuations in the gate-source voltage when the gate bias voltage is supplied can be suppressed.
  • variable resistance unit is connected in parallel to the variable resistor connected between the first power supply or the second power supply and the amplifier, and the variable resistor.
  • variable resistor may be a temperature sensitive resistor. In this case, even if the internal temperature of the amplifier is increased and the gate current of the amplifier is increased, if the resistance value of the temperature sensitive resistor is decreased in accordance with the increase of the internal temperature, between the amplifier and the resistor. It is possible to suppress the occurrence of partial pressure, and it is possible to suppress fluctuations in the gate-source voltage.
  • the bias circuit of (1) to (4) may further include a control unit that controls the changeover switch and the resistance value variable unit based on the control signal. In this case, fluctuations in the gate-source voltage can be suppressed by appropriately controlling the resistance value of the variable resistor.
  • the bias circuit of (5) may further include a control unit that controls the changeover switch based on the control signal.
  • the first power source and the second power source may be configured by an operational amplifier or a digital-analog converter.
  • FIG. 1 is a circuit diagram showing a bias circuit according to the first embodiment.
  • the bias circuit 1 is a circuit used in a radio communication apparatus such as a base station apparatus in a mobile communication system, and supplies a control voltage for controlling the power amplifier 2.
  • the power amplifier 2 is given a radio frequency transmission signal (RF signal), and amplifies and outputs the given RF signal.
  • RF signal radio frequency transmission signal
  • the bias circuit 1 is connected to the gate terminal g of the power amplifier 2 and supplies the power amplifier 2 with a gate bias voltage for on / off control of the power amplifier 2.
  • the bias circuit 1 includes a first power supply 3, a second power supply 4, and a changeover switch 5.
  • the first power supply 3 is connected in series to the gate terminal g of the power amplifier 2.
  • the second power supply 4 is connected in series to the gate terminal g.
  • the first power supply 3 is connected to the gate terminal g of the power amplifier 2 through a line 17 extending from the gate terminal g of the power amplifier 2 and a first branch line 18 branched from the end of the line 17.
  • the second power supply 4 is connected to the gate terminal g of the power amplifier 2 via a line 17 extending from the gate terminal g of the power amplifier 2 and a second branch line 19 branched from the end of the line 17.
  • Each of the first power supply 3 and the second power supply 4 has a minus terminal connected to the gate terminal g of the power amplifier 2 and a plus terminal grounded.
  • the RF signal applied to the power amplifier 2 enters the bias circuit 1 in the line 17 shared by both the connection between the first power supply 3 and the power amplifier 2 and the connection between the second power supply 4 and the power amplifier 2.
  • a coil 14 for blocking the RF signal is connected so as not to occur.
  • the changeover switch 5 is connected between the first power supply 3 and the power amplifier 2.
  • the changeover switch 5 is configured to be switchable to either a short circuit state or an open state.
  • the change-over switch 5 short-circuits between the first power supply 3 and the power amplifier 2 in a short-circuited state, and opens between the first power supply 3 and the power amplifier 2 in an open-state.
  • the bias circuit 1 uses the first voltage V1 for turning on the power amplifier 2 in a state where both the first power source 3 and the second power source 4 are connected to the power amplifier 2.
  • the power is supplied to the power amplifier 2 as a gate bias voltage (first gate bias voltage).
  • the bias circuit 1 connects the second power source 4 to the power amplifier 2 and uses the second voltage V2 for turning off the power amplifier 2 as the gate bias voltage (second gate). Bias voltage) is supplied to the power amplifier 2.
  • the first power supply 3 outputs a voltage necessary for supplying the power amplifier 2 with the first voltage V1 for turning on the power amplifier 2 (voltage necessary for the first voltage V1).
  • the second power supply 4 has a voltage (the voltage necessary for supplying the power amplifier 2 with the first voltage V1 for turning the power amplifier 2 on and the second voltage V2 for turning the power amplifier 2 off ( The voltage required for the second voltage V2 is output.
  • FIG. 2 is a graph showing an example of the relationship between the gate-source voltage and the drain-source current in the power amplifier 2.
  • the power amplifier 2 is turned on in the range of the gate-source voltage higher than the pinch-off voltage where the drain-source current becomes 0, and the range of the gate-source voltage lower than the pinch-off voltage. Turns off. In the on state, the power amplifier 2 amplifies and outputs a given RF signal, while in the off state, the power amplifier 2 is in a stopped state without outputting a signal.
  • the gate-source voltage of the power amplifier 2 becomes a voltage Von higher than the pinch-off voltage.
  • the second voltage V2 is supplied as the gate bias voltage to the power amplifier 2, the gate-source voltage of the power amplifier 2 becomes a voltage Voff lower than the pinch-off voltage.
  • the bias circuit 1 switches the gate-source voltage of the power amplifier 2 to the voltage Von by switching the gate bias voltage supplied to the power amplifier 2 to one of the first voltage V1 and the second voltage V2 by the changeover switch 5. Or it switches to either of the voltage Voff, and the power amplifier 2 is switched to either an on state or an off state.
  • the changeover switch 5 and the first power supply 3 are connected without a resistor or the like.
  • a resistance variable unit 15 is connected between the second power supply 4 and the power amplifier 2.
  • the variable resistance unit 15 is connected to the second branch line 19 and includes a second resistor 8 and a second bypass switch 9.
  • the second resistor 8 is connected in series between the second power supply 4 and the power amplifier 2.
  • the second bypass switch 9 is connected to a bypass path that bypasses both ends of the second resistor 8, and is connected to the second resistor 8 in parallel.
  • the second bypass switch 9 is configured to be switchable to either a short circuit state or an open state.
  • the second bypass switch 9 short-circuits both ends of the second resistor 8 in a short-circuit state, and opens both ends of the second resistor 8 in an open state.
  • the second bypass switch 9 opens both ends of the second resistor 8
  • the second power supply 4 and the power amplifier 2 are connected via the second resistor 8.
  • the second bypass switch 9 short-circuits both ends of the second resistor 8, the second power supply 4 and the power amplifier 2 are connected without passing through the second resistor 8.
  • the changeover switch 5 and the second bypass switch 9 are configured to be switched to either a short-circuit state or an open / close state based on a control signal relating to on / off control of the power amplifier 2 applied to the input terminal 11.
  • the wireless communication device using the bias circuit 1 of the present embodiment employs the TDD method.
  • TDD scheme a transmission time for a wireless communication device to transmit a wireless signal and a reception time for receiving a wireless signal from another communication device are alternately switched in a time division manner.
  • the control signal supplied to the input terminal 11 is a rectangular wave signal indicating the transmission time and reception time of the wireless communication device, and the high level (H level) period is the transmission time and the low level (L level) period is the reception. Shows time.
  • the control signal is given to the changeover switch 5 and the second bypass switch 9 through the signal line 12 extending from the input terminal 11.
  • An inverter 13 is connected between the branch point connected to the changeover switch 5 in the signal line 12 and the second bypass switch 9. Therefore, a control signal is given to the changeover switch 5, while an inverted signal obtained by inverting the control signal is given to the second bypass switch 9.
  • the changeover switch 5 and the second bypass switch 9 are in an open state when the control signal supplied to the changeover switch 5 and the second bypass switch 9 is at L level, and are in a short circuit state when the control signal is at H level. Therefore, when the L level is switched to the H level, the open state is switched to the short circuit state, and when the H level is switched to the L level, the short circuit state is switched to the open state. Therefore, when the control signal is at the L level at the input terminal 11, the changeover switch 5 is in an open state, an inversion signal is given to the second bypass switch 9, and the second bypass switch 9 is in a short circuit state. Conversely, when the control signal is at the H level at the input terminal 11, the changeover switch 5 is in a short circuit state and the second bypass switch 9 is in an open state.
  • the signal line 12 and the inverter 13 provide a control signal to the changeover switch 5 and the second bypass switch 9, and constitute a control unit that controls the changeover operation of the changeover switch 5 and the second bypass switch 9. ing.
  • the changeover switch 5 is switched from the short circuit state to the open state, and the second bypass switch 9 is switched from the open state to the short circuit state. That is, the state of each switch is as shown in FIG. At this time, the first power supply 3 and the power amplifier 2 are opened, and the second power supply 4 and the power amplifier 2 are connected without passing through the second resistor 8. In this case, the power amplifier 2 is supplied with the second voltage V2. Therefore, when the control signal is switched to the L level, the bias circuit 1 controls the power amplifier 2 to be turned off.
  • the bias circuit 1 switches the changeover switch 5 to the short-circuit state and turns on the power amplifier 2.
  • the bias circuit 1 switches the changeover switch 5 to the open state and turns off the power amplifier 2 when the control signal is at the L level (reception time).
  • the changeover switch 5 when the changeover switch 5 is in a short circuit state, the second power source 4 and the power amplifier 2 are connected via the second resistor 8.
  • the changeover switch 5 when the changeover switch 5 is in the open state, the second power source 4 and the power amplifier 2 are connected without the second resistor 8 interposed therebetween.
  • resistance value variable part 15 differs in resistance value R1 by the case where change-over switch 5 is an open state, and the case of a short circuit state.
  • the resistance value R1 when the changeover switch 5 is in the open state is the resistance value when the changeover switch 5 is in the short-circuit state because the second resistor 8 is bypassed by the second bypass switch 9. It is set to be smaller than the value R1.
  • the changeover switch 5 when the changeover switch 5 is in the open state, the second resistor 8 is bypassed by the second bypass switch 9 (intermittent switch), so that the internal temperature of the power amplifier 2 rises and the gate of the power amplifier 2 is increased. Even if the current increases, it is possible to suppress the occurrence of voltage division between the power amplifier 2 and the second resistor 8. Therefore, it is possible to suppress the fluctuation from occurring with respect to the voltage Voff which is the gate-source voltage when the gate bias voltage is supplied.
  • the changeover switch 5 when the changeover switch 5 is in a short circuit state, the first power source 3 is connected to the power amplifier 2 without going through a resistor or the like, so that even if the gate current of the power amplifier 2 increases, the above-mentioned As in the conventional example, voltage generation between the power amplifier 2 and the resistor can be suppressed, and fluctuation occurs with respect to the voltage Von which is the gate-source voltage when the gate bias voltage is supplied. Can be suppressed.
  • FIG. 3 is a diagram illustrating an example of a numerical change in each part of the power amplifier 2 when the power amplifier 2 is on / off controlled based on the control signal.
  • the horizontal axis represents time, and each diagram is shown in association with the horizontal axis direction.
  • a diagram L1 shows a change in voltage of the control signal.
  • a diagram L2 shows a change in the gate bias voltage by the bias circuit 1
  • a diagram L3 shows a change in the ideal absolute value
  • a diagram L4 shows a change in the ideal gate-source voltage Vgs
  • a diagram L5 represents an ideal change in the drain-source current Ids
  • a line L6 represents a change in the internal temperature of the power amplifier 2
  • a line L7 represents a change in the absolute value
  • the control signal is a rectangular wave whose voltage level is switched between the H level and the L level, the H level period indicates the transmission time, and the L level period indicates the reception time.
  • of the gate current which is the current flowing through the gate terminal, changes ideally in response to the voltage change of the control signal as shown in the diagram L3
  • the inter-current Ids ideally changes in a rectangular wave shape corresponding to the control signal as shown in the diagrams L4 and L5.
  • the gate-source voltage Vgs is alternately switched between the voltage Von and the voltage Voff according to the control signal as shown in a diagram L4.
  • the drain-source current Ids is repeatedly output and stopped according to the gate-source voltage Vgs, and the power amplifier 2 is turned on and off according to the H level and L level of the control signal. It has been switched appropriately.
  • the internal temperature of the power amplifier 2 increases when the drain-source current Ids flows in the on state, and the internal temperature decreases because the amplification stops in the off state. For this reason, as shown in a diagram L6, the internal temperature of the power amplifier 2 rises when switched from the off state to the on state, and falls when switched from the on state to the off state. The internal temperature of the power amplifier 2 repeatedly rises and falls according to the voltage change of the control signal.
  • FIG. 4 is a graph showing changes in the gate current Ig with respect to the internal temperature of the power amplifier 2.
  • the horizontal axis indicates the gate-source voltage Vgs
  • the vertical axis indicates the absolute value
  • a diagram L11 shows the relationship when the internal temperature of the power amplifier 2 is 200 ° C.
  • the diagram L12 is the relationship when the internal temperature is 150 ° C.
  • the diagram L12 is the relationship when the internal temperature is 150 ° C.
  • the diagram L13 is the relationship when the internal temperature is 100 ° C.
  • the diagram L14 is the internal The relationship when the temperature is 50 ° C.
  • the diagram L15 is the relationship when the internal temperature is 25 ° C.
  • the diagram L16 is the relationship when the internal temperature is 0 ° C.
  • the diagram L17 is the relationship when the internal temperature is ⁇ 30 ° C. Showing the relationship.
  • of the gate current of the power amplifier 2 may increase as the internal temperature of the power amplifier 2 increases even if the gate-source voltage Vgs is the same. I understand.
  • of the actual gate current of the power amplifier 2 is such that the control signal is switched from the L level to the H level, and the changeover switch 5 is switched from the open state to the short circuit state.
  • the power amplifier 2 gradually increases as the internal temperature of the power amplifier 2 increases.
  • of the actual gate current of the power amplifier 2 gradually decreases as the internal temperature decreases due to the decrease in the internal temperature. That is, as shown in FIG. 3, it can be seen that the absolute value
  • FIG. 5 is a diagram showing changes in the gate-source voltage Vgs and the drain-source current Ids when the power amplifier 2 is on / off controlled by the bias circuit 1 of the present embodiment and the conventional bias circuit, respectively.
  • a diagram L20 shows a control signal
  • a diagram L21 shows a change in an actual absolute value
  • the diagram L22 shows the change in the gate-source voltage Vgs when the power amplifier is on / off controlled by the conventional bias circuit shown in FIG. 14, and the diagram L23 shows the drain when the power amplifier is on / off controlled by the conventional bias circuit. The change of the source current Ids is shown.
  • the gate-source voltage Vgs is the gate current immediately after the control signal is switched from the L level to the H level (immediately after the changeover switch 5 is switched from the open state to the short circuit state).
  • increases, the voltage gradually increases and is higher than the voltage Von.
  • the gate-source voltage Vgs does not immediately switch to the voltage Voff but goes from the voltage Von to the voltage Voff. Gradually decreasing. This is because even if the control signal is switched from the H level to the L level, the increase in the absolute value
  • the gate-source voltage Vgs becomes higher than the voltage Von and the voltage Voff. Will fluctuate. More specifically, when the changeover switch 104 (FIG. 14) is switched to the open state, a gate-source voltage Vgs higher than the voltage Voff is supplied, or the changeover switch 5 is switched to the short circuit state. In some cases, a gate-source voltage Vgs higher than a preset voltage Von may be supplied.
  • the bias circuit 1 of the present embodiment when the changeover switch 5 is in the open state, the second resistor 8 is bypassed, so that the internal temperature of the power amplifier 2 rises and the power Even if the gate current Ig of the amplifier 2 increases, it is possible to suppress voltage division between the power amplifier 2 and the second resistor 8, and the gate-source voltage when the gate bias voltage is supplied. It can suppress that Vgs increases and fluctuates.
  • the changeover switch 5 when the changeover switch 5 is in a short-circuited state, the first power source 3 is connected to the power amplifier 2 without going through a resistor or the like, so that the internal temperature of the power amplifier 2 rises and the power amplifier Even if the gate current Ig of 2 increases, it is possible to suppress the voltage division between the power amplifier 2 and the resistor as in the conventional example, and the gate-source when the gate bias voltage is supplied. It is possible to suppress the inter-voltage Vgs from increasing and changing.
  • the resistance value R1 at both ends of the resistance value variable unit 15 is variable, it is assumed that the gate current Ig of the power amplifier 2 increases when the changeover switch 5 is open.
  • the resistance value R1 can be reduced, and the occurrence of voltage division due to the resistor for power supply protection as in the above-described conventional example can be suppressed.
  • fluctuations in the gate-source voltage Vgs when the gate bias voltage is supplied can be suppressed, and the gate-source voltage Vgs can be set to a value close to the voltage Voff.
  • the changeover switch 5 when the changeover switch 5 is in a short circuit state, the first power source 3 is connected to the power amplifier 2 and the second power source 4 is connected to the power amplifier 2 via the second resistor 8. At this time, the resistance value of the second resistor 8 is appropriately set so that the gate-source voltage Vgs becomes the voltage Von.
  • the gate-source voltage Vgs and the drain-source current Ids of the present embodiment change in a substantially rectangular wave shape corresponding to the control signal as shown in a diagram L24 and a diagram L25 in FIG. . That is, the power amplifier 2 is appropriately switched between the on state and the off state according to the H level and L level of the control signal.
  • the bias circuit 1 of the present embodiment the power amplifier 2 can be appropriately controlled on and off.
  • FIG. 6 is a circuit diagram showing the bias circuit 1 according to the second embodiment.
  • the changeover switch 5 is connected between the second power supply 4 and the power amplifier 2
  • the resistance variable unit 16 is connected between the first power supply 3 and the power amplifier 2. This is different from the first embodiment.
  • the changeover switch 5 and the second power supply 4 are connected without a resistor or the like.
  • a resistance variable unit 16 is connected between the first power supply 3 and the power amplifier 2.
  • the resistance variable unit 16 is connected to the first branch line 18 and includes a first resistor 6 and a first bypass switch 7.
  • the first resistor 6 is connected in series between the first power supply 3 and the power amplifier 2.
  • the first bypass switch 7 is connected to a bypass path that bypasses both ends of the first resistor 6, and is connected to the first resistor 6 in parallel.
  • the first bypass switch 7 is configured to be switchable to either a short circuit state or an open state.
  • the first bypass switch 7 short-circuits both ends of the first resistor 6 in a short-circuit state, and opens both ends of the first resistor 6 in an open state.
  • the first bypass switch 7 opens both ends of the first resistor 6, the first power supply 3 and the power amplifier 2 are connected via the first resistor 6. Further, when the first bypass switch 7 short-circuits both ends of the first resistor 6, the first power supply 3 and the power amplifier 2 are connected without passing through the first resistor 6.
  • the first bypass switch 7 is in an open state when the control signal supplied to the first bypass switch 7 is at an L level, and is in a short circuit state when the control signal is at an H level.
  • the inverter 13 is connected between the branch point connected to the resistance value variable unit 16 (first bypass switch 7) in the signal line 12 and the changeover switch 5. Thereby, a control signal is given to the resistance value variable section 16, while an inverted signal obtained by inverting the control signal is given to the changeover switch 5.
  • the changeover switch 5 is switched from the open state to the short circuit state, and the first bypass switch 7 is opened from the short circuit state. Switch to state. That is, the state of each switch is as shown in FIG.
  • the second voltage V2 is supplied to the power amplifier 2 as a gate bias voltage in a state where both the first power supply 3 and the second power supply 4 are connected to the power amplifier 2. Therefore, the bias circuit 1 controls the power amplifier 2 to be turned off.
  • the first power supply 3 is connected to the power amplifier 2 via the first resistor 6. Note that the resistance value of the first resistor 6 is set so that the gate bias voltage supplied to the power amplifier 2 becomes the second voltage V2.
  • the changeover switch 5 is switched from the short circuit state to the open state, and the first bypass switch 7 is switched from the open state to the short circuit state.
  • the second power supply 4 and the power amplifier 2 are opened, and the first power supply 3 and the power amplifier 2 are connected without passing through the first resistor 6.
  • the first voltage V ⁇ b> 1 is supplied to the power amplifier 2. Therefore, the bias circuit 1 controls the power amplifier 2 to be in an on state.
  • the first power supply 3 supplies the power amplifier 2 with the first voltage V1 for turning on the power amplifier 2 and the second voltage V2 for turning off the power amplifier 2. Is output (voltage required for the first voltage V1).
  • the second power supply 4 outputs a voltage necessary for supplying the power amplifier 2 with the second voltage V2 for turning off the power amplifier 2 (voltage necessary for the second voltage V2).
  • the resistance value R2 at both ends of the resistance value variable unit 16 differs depending on whether the changeover switch 5 is in an open state or in a short-circuit state when the first bypass switch 7 is switched. Can be switched as follows.
  • the resistance value variable unit 16 has a different resistance value R2 when the changeover switch 5 is in the open state and when it is in the short-circuit state.
  • the resistance value R2 when the changeover switch 5 is open is bypassed by the first resistor 6 by the first bypass switch 7 (intermittent switch). In this case, the resistance value R2 is set to be smaller.
  • the resistance value R2 at both ends of the resistance value variable unit 16 is variable, it is assumed that the gate current Ig of the power amplifier 2 increases when the changeover switch 5 is in the open state.
  • the resistance value R2 can be reduced, and the occurrence of voltage division due to the resistor for power supply protection as in the conventional example can be suppressed. As a result, it is possible to suppress the fluctuation in the gate-source voltage Vgs when the gate bias voltage is supplied, and to appropriately control the on / off of the power amplifier 2.
  • FIG. 7 is a circuit diagram showing the bias circuit 1 according to the third embodiment.
  • the bias circuit 1 according to the third embodiment is different from the second embodiment in that an operational amplifier 20 is connected to the changeover switch 5 instead of the second power supply 4. Other points are the same as in the second embodiment.
  • the operational amplifier 20 is set to output a voltage similar to that of the second power supply 4 in the second embodiment.
  • the power amplifier 2 can be appropriately on / off controlled as in the second embodiment.
  • FIG. 8 is a circuit diagram showing the bias circuit 1 according to the fourth embodiment.
  • the bias circuit 1 according to the fourth embodiment is different from the first embodiment in that an operational amplifier 21 is connected to the changeover switch 5 instead of the first power supply 3. Other points are the same as in the first embodiment.
  • the operational amplifier 21 is set to output a voltage similar to that of the first power supply in the first embodiment.
  • the power amplifier 2 can be appropriately on / off controlled as in the first embodiment.
  • the operational amplifiers 20 and 21 used in the third and fourth embodiments are only required to output a constant voltage, and for example, a digital analog converter may be used.
  • FIG. 9 is a circuit diagram showing the bias circuit 1 according to the fifth embodiment.
  • the fifth embodiment differs from the first embodiment in that the resistance variable unit 16 shown in the second embodiment is connected between the changeover switch 5 and the first power supply 3 in the bias circuit 1 of the first embodiment. It is different. Other points are the same as in the first embodiment.
  • the control signal supplied to the input terminal 11 is supplied to the first bypass switch 7 of the resistance value variable unit 16 as it is without being inverted. Therefore, the 1st bypass switch 7 will be in a short circuit state, if the changeover switch 5 is a short circuit state, and will be in an open state, if the changeover switch 5 is an open state.
  • the first bypass switch 7 is also in a short circuit state. Therefore, when the voltage from the first power source 3 is supplied to the power amplifier 2, the first resistor 6 is always bypassed. Will be.
  • the first resistor 6 of the resistance value variable unit 16 is a protective resistor for protecting the first power supply 3 when a situation occurs in which a large current flows through the first power supply 3 for some reason. Can function as.
  • the power amplifier 2 can be appropriately on / off controlled.
  • the case where the first resistor 6 and the first bypass switch 7 are connected between the changeover switch 5 and the first power supply 3 is shown, but the first bypass switch 7 is omitted.
  • the changeover switch 5 and the first power supply 3 may be connected via a bypass path that bypasses the first resistor 6 and both ends of the first resistor 6.
  • FIG. 10 is a circuit diagram showing the bias circuit 1 according to the sixth embodiment.
  • the sixth embodiment differs from the second embodiment in that the variable resistance unit 15 shown in the first embodiment is connected between the changeover switch 5 and the second power supply 4 in the bias circuit 1 of the second embodiment. It is different. About another point, it is the same as that of 2nd Embodiment.
  • the inverted signal obtained by inverting the control signal applied to the input terminal 11 is applied to the second bypass switch 9 of the resistance value variable unit 15. Therefore, the 2nd bypass switch 9 will be in a short circuit state, if the changeover switch 5 is a short circuit state, and will be in an open state, if the changeover switch 5 is an open state.
  • the second bypass switch 9 is also in a short circuit state. Therefore, when the voltage from the second power supply 4 is supplied to the power amplifier 2, the second resistor 8 is always bypassed. Will be.
  • the second resistor 8 of the variable resistance unit 15 is a protective resistor for protecting the second power supply 4 when a situation occurs in which a large current flows through the second power supply 4 for some reason. Can function as.
  • the power amplifier 2 can be appropriately on / off controlled.
  • the case where the second resistor 8 and the second bypass switch 9 are connected between the changeover switch 5 and the second power supply 4 is shown, but the second bypass switch 9 is omitted.
  • the changeover switch 5 and the second power supply 4 may be connected via a bypass path that bypasses the second resistor 8 and both ends of the second resistor 8.
  • FIG. 11 is a circuit diagram showing the bias circuit 1 according to the seventh embodiment.
  • the resistance value variable unit 16 in the bias circuit 1 of the fifth embodiment includes a first temperature sensitive resistor 25 instead of the first bypass switch 7, and the resistance value variable unit 15 is a second bypass switch.
  • the second embodiment is different from the fifth embodiment in that a second temperature sensitive resistor 26 is provided instead of the ninth embodiment.
  • the variable resistance unit 16 includes a second resistor 8 and a second temperature sensitive resistor 26 connected in parallel to each other.
  • the resistance value variable unit 15 includes a first resistor 6 and a first temperature sensitive resistor 25 connected in parallel to each other.
  • the 1st temperature sensitive resistor 25 and the 2nd temperature sensitive resistor 26 have the characteristic that resistance value falls according to the rise in temperature.
  • the first temperature sensitive resistor 25 and the second temperature sensitive resistor 26 have substantially the same resistance value as that of the first resistor 6 and the second resistor 8 at room temperature, and when the internal temperature of the power amplifier 2 rises, As the internal temperature increases, the resistance value decreases.
  • the resistance value R2 at both ends of the resistance value variable unit 16 is variable. Further, the resistance value R1 at both ends of the resistance value variable unit 15 is also variable.
  • the resistance value R2 is decreased by the second temperature-sensitive resistor 26 of the resistance value variable unit 16. Therefore, it is possible to suppress the occurrence of voltage division due to the resistor for power supply protection as in the above-described conventional example, and it is possible to suppress the fluctuation in the gate-source voltage Vgs. it can.
  • the changeover switch 5 when the changeover switch 5 is in a short circuit state, even if the gate current Ig of the power amplifier 2 is increased, the resistance value R1 can be decreased by the first temperature sensitive resistor 25. As a result, it is possible to suppress the occurrence of voltage division due to the resistor for protecting the power supply, and it is possible to suppress the fluctuation in the gate-source voltage Vgs.
  • FIG. 12 is a diagram showing changes in the gate-source voltage Vgs and the drain-source current Ids when the power amplifier 2 is on / off controlled by the bias circuit 1 of the present embodiment and the conventional bias circuit, respectively.
  • a diagram L31 shows a control signal
  • a diagram L32 shows a change in an actual absolute value
  • a solid line L33 indicates a change in the gate-source voltage Vgs of the present embodiment.
  • a broken line diagram L34 superimposed on the diagram L33 shows an ideal change in the gate-source voltage Vgs. Looking at the diagram L33, it can be seen that although the distortion is slightly seen with respect to the ideal change, it changes to a substantially rectangular wave shape corresponding to the control signal.
  • a solid line L35 shows a change in the drain-source current Ids of the present embodiment.
  • a broken line diagram L36 superimposed on the diagram L35 shows an ideal change in the drain-source current Ids.
  • the drain-source current Ids is also slightly distorted with respect to an ideal change, but it can be seen that the drain-source current Ids changes to a substantially rectangular wave shape corresponding to the control signal.
  • the power amplifier 2 can be appropriately controlled to be turned on / off.
  • FIG. 13 is a circuit diagram showing the bias circuit 1 according to the eighth embodiment.
  • the eighth embodiment includes a first variable resistor 31 as the resistance value variable unit 15 in the bias circuit 1 of the fifth embodiment and a second variable resistor 32 as the resistance value variable unit 16. This is different from the fifth embodiment.
  • the bias circuit 1 of the present embodiment further includes a control unit 33 for controlling the first variable resistor 31 and the second variable resistor 32.
  • the control unit 33 receives a control signal given to the input terminal 11 and controls the first variable resistor 31 and the second variable resistor 32 based on the control signal.
  • the second variable resistor 32 and the control unit 33 are connected between the second power supply 4 and the power amplifier 2 and have variable resistance values.
  • the control unit 33 reduces the resistance value of the second variable resistor 32 to almost zero when the changeover switch 5 is in the open state. As a result, even if the internal temperature of the power amplifier 2 rises and the gate current Ig of the power amplifier 2 increases, the occurrence of voltage division due to the resistor for power supply protection as in the above-described conventional example is suppressed. It is possible to suppress fluctuations in the gate-source voltage Vgs.
  • the control unit 33 reduces the resistance value of the first variable resistor 31 to substantially 0 and sets the resistance value of the second variable resistor 32 to the second power source. Raise 4 to a value that can be adequately protected. As a result, even if the internal temperature of the power amplifier 2 rises and the gate current Ig of the power amplifier 2 increases, it is possible to suppress the occurrence of voltage division due to the resistor for power supply protection. -It is possible to suppress fluctuations in the source-to-source voltage Vgs.
  • control unit 33 appropriately controls the first variable resistor 31 and the second variable resistor 32 based on the control signal, thereby suppressing fluctuations in the gate-source voltage Vgs. Can do.
  • the bias circuit 1 that controls the power amplifier 2 for amplifying the transmission signal is illustrated, but the present embodiment can also be applied to a power amplifier that amplifies the reception signal.
  • the case where the power amplifier 2 is controlled to be in the on state during the period when the control signal is at the H level and the power amplifier 2 is controlled to be in the off state during the period during which the control signal is at the L level the same configuration can be employed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Amplifiers (AREA)

Abstract

電力増幅器2をオン状態とするための第1ゲートバイアス電圧に必要な電圧を出力する第1電源3と、電力増幅器2をオフ状態とするための第2ゲートバイアス電圧に必要な電圧を出力する第2電源4と、第1電源3と電力増幅器2との間に接続され、電力増幅器2のオンオフ制御に関する制御信号に基づいて第1電源3と電力増幅器2との間を開放状態又は短絡状態のいずれかに切り替わることで、前記第1ゲートバイアス電圧又は前記第2ゲートバイアス電圧のいずれか一方を電力増幅器2へ供給する切替スイッチ5と、第2電源4と、電力増幅器2との間に接続され、抵抗値が可変とされている抵抗値可変部15と、を備えている。

Description

バイアス回路
 本発明は、バイアス回路に関する。
 携帯電話等の無線通信においては、送受信を時分割で切り替えるTDD(Time Division Duplex)方式が採用されることがある。
 TDD方式で用いられる無線通信装置用の増幅器は、送受信信号を増幅して出力するオン状態と、送受信信号の出力を停止するオフ状態とが送受信の周期に応じて切り替わるようにオンオフ制御される。
 下記特許文献1には、電界効果トランジスタ(FET:Field effect transistor)を用いた増幅器をオンオフ制御するための方法として、ドレイン電圧を供給する電源とドレイン端子との間にスイッチを設けこのスイッチを断続させることで増幅器をオンオフ制御する方法と、ゲート端子に供給するゲートバイアス電圧を制御することで増幅器をオンオフ制御する方法とが開示されている。
 電源とドレイン端子との間のスイッチを断続させる方法では、前記スイッチとして大電力を扱える大型で高価なスイッチング素子を使用しなければならない。
 その一方、ゲート端子に供給するゲートバイアス電圧を制御する方法では、制御の対象となる電力が比較的小さいため、小型で安価かつ高速なスイッチング素子を用いることができるという利点がある。
特開2010-103796号公報
 一実施形態であるバイアス回路は、増幅器をオンオフ制御するためのゲートバイアス電圧を前記増幅器に供給するバイアス回路であって、前記増幅器のゲート端子に直列接続され、前記増幅器をオン状態とするための第1ゲートバイアス電圧に必要な電圧を出力する第1電源と、前記増幅器のゲート端子に直列接続され、前記増幅器をオフ状態とするための第2ゲートバイアス電圧に必要な電圧を出力する第2電源と、前記第1電源と前記増幅器との間に接続され、前記増幅器のオンオフ制御に関する制御信号に基づいて前記第1電源と前記増幅器との間を開放状態又は短絡状態のいずれかに切り替わることで、前記第1ゲートバイアス電圧又は前記第2ゲートバイアス電圧のいずれか一方を前記増幅器へ供給する切替スイッチと、前記第2電源と前記増幅器との間に接続され、抵抗値が可変とされている抵抗値可変部と、を備えている。
 また、他の実施形態であるバイアス回路は、増幅器をオンオフ制御するためのゲートバイアス電圧を前記増幅器に供給するバイアス回路であって、前記増幅器のゲート端子に直列接続され、前記増幅器をオン状態とするための第1ゲートバイアス電圧に必要な電圧を出力する第1電源と、前記増幅器のゲート端子に直列接続され、前記増幅器をオフ状態とするための第2ゲートバイアス電圧に必要な電圧を出力する第2電源と、前記前記第2電源と前記増幅器との間に接続され、前記増幅器のオンオフ制御に関する制御信号に基づいて前記第2電源と前記増幅器との間を開放状態又は短絡状態のいずれかに切り替わることで、前記第1ゲートバイアス電圧又は前記第2ゲートバイアス電圧のいずれか一方を前記増幅器へ供給する切替スイッチと、前記第1電源と、前記増幅器との間に接続され、抵抗値が可変とされている抵抗値可変部と、を備えている。
図1は、第1実施形態に係るバイアス回路を示す回路図である。 図2は、電力増幅器2における、ゲート-ソース間電圧と、ドレイン-ソース間電流との関係の一例を示すグラフである。 図3は、制御信号に基づいて電力増幅器をオンオフ制御したときの電力増幅器の各部の数値変化の一例を示した図である。 図4は、電力増幅器の内部温度に対するゲート電流の変化を示したグラフである。 図5は、本実施形態のバイアス回路及び従来のバイアス回路それぞれによって電力増幅器をオンオフ制御したときのゲート-ソース間電圧及びドレイン-ソース間電流の変化を示した図である。 図6は、第2実施形態に係るバイアス回路を示す回路図である。 図7は、第3実施形態に係るバイアス回路を示す回路図である。 図8は、第4実施形態に係るバイアス回路を示す回路図である。 図9は、第5実施形態に係るバイアス回路を示す回路図である。 図10は、第6実施形態に係るバイアス回路を示す回路図である。 図11は、第7実施形態に係るバイアス回路を示す回路図である。 図12は、第7実施形態のバイアス回路、及び従来のバイアス回路それぞれによって電力増幅器をオンオフ制御したときのゲート-ソース間電圧及びドレイン-ソース間電流の変化を示した図である。 図13は、第8実施形態に係るバイアス回路を示す回路図である。 図14は、ゲート端子に供給するゲートバイアス電圧を制御するための従来のバイアス回路の一例を示す図である。
[本開示が解決しようとする課題]
 図14は、ゲート端子に供給するゲートバイアス電圧を制御するための従来のバイアス回路の一例を示す図である。
 図14中、バイアス回路100は、RF(Radio Frequency)信号を増幅するための増幅器101にゲートバイアス電圧を供給する回路であり、増幅器101に直列に接続された第1電源102と、増幅器101に直列に接続された第2電源103と、スイッチ104と、第1抵抗器105と、第2抵抗器106と、増幅器101のRF信号がバイアス回路100に入り込むのを遮断するコイル107とを備えている。
 増幅器101は、ゲート-ソース間電圧がピンチオフ電圧よりも高い電圧Vonである場合、オン状態となり、ゲート-ソース間電圧がピンチオフ電圧よりも低い電圧Voffである場合、オフ状態となる。
 スイッチ104は、第1電源102と増幅器101との間に接続されており、増幅器101のオンオフ制御のための制御信号に応じて第1電源102と増幅器101との間を短絡又は開放する。
 第1電源102と増幅器101との間を短絡する場合、増幅器101には、第1電源102と、第2電源103の両方が接続されゲートバイアス電圧が供給される。このとき、供給されるゲートバイアス電圧は、増幅器101のゲート-ソース間電圧をピンチオフ電圧よりも高い電圧Vonにし得る電圧に設定されている。
 また、第1電源102と増幅器101との間を開放する場合、増幅器101には、第2電源103のみが接続されゲートバイアス電圧が供給される。このとき、供給されるゲートバイアス電圧は、ゲート-ソース間電圧をピンチオフ電圧よりも低い電圧Voffにし得る電圧に設定されている。
 第1抵抗器105、及び第2抵抗器106は、両電源を保護するとともに、増幅器101に供給されるゲートバイアス電圧が適切な値となるように抵抗値が設定されている。
 スイッチ104が開放状態の場合、ゲート-ソース間電圧が電圧Voffとなり、増幅器101はオフ状態となる。
 一方、スイッチ104が短絡状態の場合、ゲート-ソース間電圧が電圧Vonとなり、増幅器101はオン状態となる。
 このように、バイアス回路100は、スイッチ104を切り替えることで増幅器101をオンオフ制御する。
 ここで、オンオフ制御しつつ継続的に増幅器101を動作させた場合、増幅器101の内部温度が上昇し、ゲート電流が増加する場合がある。
 ゲート電流が増加すると、互いに直列に接続されている増幅器101と、抵抗器105(抵抗器106)との間で分圧が生じ、ゲート-ソース間電圧が予め設定された電圧Von,Voffに対して変動してしまうことがあった。
 ゲート-ソース間電圧に変動が生じると、スイッチ104が開放状態であっても増幅器101がオフ状態にならなかったり、スイッチ104が短絡状態の場合にはドレイン-ソース間に過大な電流が流れてしまったりし、増幅器101を適切にオンオフ制御することができないおそれが生じる。
 本開示はこのような事情に鑑みてなされたものであり、増幅器を適切にオンオフ制御することができるバイアス回路を提供することを目的とする。
[本開示の効果]
 本開示に係るバイアス回路によれば、適切に増幅器をオンオフ制御することができる。
[実施形態の説明]
 まず最初に実施形態の内容を列記して説明する。
(1)一実施形態であるバイアス回路は、増幅器をオンオフ制御するためのゲートバイアス電圧を前記増幅器に供給するバイアス回路であって、前記増幅器のゲート端子に直列接続(RF信号がバイアス回路に入り込むことがないように遮断するコイルを介して)され、前記増幅器をオン状態とするための第1ゲートバイアス電圧に必要な電圧を出力する第1電源と、前記増幅器のゲート端子に直列接続(RF信号がバイアス回路に入り込むことがないように遮断するコイルを介して)され、前記増幅器をオフ状態とするための第2ゲートバイアス電圧に必要な電圧を出力する第2電源と、前記第1電源と前記増幅器との間に接続され、前記増幅器のオンオフ制御に関する制御信号に基づいて前記第1電源と前記増幅器との間を開放状態又は短絡状態のいずれかに切り替わることで、前記第1ゲートバイアス電圧又は前記第2ゲートバイアス電圧のいずれか一方を前記増幅器へ供給する切替スイッチと、前記第2電源と前記増幅器との間に接続され、抵抗値が可変とされている抵抗値可変部と、を備えている。
(2)また、他の実施形態であるバイアス回路は、増幅器をオンオフ制御するためのゲートバイアス電圧を前記増幅器に供給するバイアス回路であって、前記増幅器のゲート端子に直列接続され、前記増幅器をオン状態とするための第1ゲートバイアス電圧に必要な電圧を出力する第1電源と、前記増幅器のゲート端子に直列接続され、前記増幅器をオフ状態とするための第2ゲートバイアス電圧に必要な電圧を出力する第2電源と、前記前記第2電源と前記増幅器との間に接続され、前記増幅器のオンオフ制御に関する制御信号に基づいて前記第2電源と前記増幅器との間を開放状態又は短絡状態のいずれかに切り替わることで、前記第1ゲートバイアス電圧又は前記第2ゲートバイアス電圧のいずれか一方を前記増幅器へ供給する切替スイッチと、前記第1電源と、前記増幅器との間に接続され、抵抗値が可変とされている抵抗値可変部と、を備えている。
 上記構成のバイアス回路によれば、抵抗値可変部の抵抗値が可変とされているので、切替スイッチが開放状態のときに増幅器のゲート電流が増加したとしても、抵抗値可変部の抵抗値を小さくすることができ、上記従来例のように電源保護のための抵抗器に起因して分圧が生じるのを抑制することができる。この結果、ゲートバイアス電圧を供給したときのゲート-ソース間電圧に変動が生じるのを抑制することができる。これにより、適切に増幅器をオンオフ制御することができる。
(3)よって、上記バイアス回路において、前記抵抗値可変部の抵抗値は、前記切替スイッチが開放状態の場合の方が、前記切替スイッチが短絡状態の場合よりも小さくなることが好ましい。
(4)上記バイアス回路において、前記抵抗値可変部は、前記第1電源又は前記第2電源と前記増幅器との間に接続された抵抗器と、前記制御信号に基づいて前記抵抗器の両端を短絡又は開放する断続スイッチと、を備えていることが好ましい。
 この場合、断続スイッチによって、切替スイッチが開放状態の場合と、短絡状態の場合とで、抵抗値可変部の抵抗値を異なるように切り替えることができる。
 よって、切替スイッチが開放状態の場合における抵抗値可変部の抵抗値を、切替スイッチが短絡状態の場合における抵抗値可変部の抵抗値よりも小さくすることができる。つまり、切替スイッチが開放状態の場合においては、断続スイッチが抵抗器の両端を短絡することで、増幅器のゲート電流が増加したとしても、増幅器と、抵抗器との間で分圧が生じるのを抑制することができる。この結果、ゲートバイアス電圧を供給したときのゲート-ソース間電圧に変動が生じるのを抑制することができる。
(5)また、上記バイアス回路において、前記抵抗値可変部は、前記第1電源又は前記第2電源と前記増幅器との間に接続された可変抵抗器と、前記可変抵抗器に並列に接続された抵抗器と、を備え、前記可変抵抗器は、感温抵抗器であってもよい。
 この場合、増幅器の内部温度が上昇し、増幅器のゲート電流が増加したとしても、感温抵抗器の抵抗値を内部温度の上昇に応じて低下させれば、増幅器と、抵抗器との間で分圧が生じるのを抑制することができ、ゲート-ソース間電圧に変動が生じるのを抑制することができる。
(6)上記(1)から(4)のバイアス回路において、前記制御信号に基づいて前記切替スイッチ及び前記抵抗値可変部を制御する制御部をさらに備えていてもよい。
 この場合、可変抵抗器の抵抗値を適切に制御することで、ゲート-ソース間電圧に変動が生じるのを抑制することができる。
(7)上記(5)のバイアス回路において、前記制御信号に基づいて前記切替スイッチを制御する制御部をさらに備えていてもよい。
(8)上記バイアス回路において、前記第1電源及び前記第2電源は、オペアンプ又はデジタルアナログ変換器によって構成されていてもよい。
[実施形態の詳細]
 以下、好ましい実施形態について図面を参照しつつ説明する。
 なお、以下に記載する各実施形態の少なくとも一部を任意に組み合わせてもよい。
〔バイアス回路の構成〕
 図1は、第1実施形態に係るバイアス回路を示す回路図である。
 このバイアス回路1は、移動体通信システムにおける基地局装置などの無線通信装置に用いられる回路であり、電力増幅器2を制御するための制御電圧の供給を行う。
 電力増幅器2は、無線周波数の送信信号(RF信号)が与えられ、与えられたRF信号を増幅して出力する。
 バイアス回路1は、電力増幅器2のゲート端子gに接続されており、電力増幅器2をオンオフ制御するためのゲートバイアス電圧を電力増幅器2へ供給する。
 バイアス回路1は、第1電源3と、第2電源4と、切替スイッチ5とを備えている。
 第1電源3は、電力増幅器2のゲート端子gに直列に接続されている。第2電源4も、第1電源3と同様、ゲート端子gに直列に接続されている。
 第1電源3は、電力増幅器2のゲート端子gから延びている線路17と、線路17の端部から分岐している第1分岐線路18とを介して電力増幅器2のゲート端子gに接続されている。
 第2電源4は、電力増幅器2のゲート端子gから延びている線路17と、線路17の端部から分岐している第2分岐線路19とを介して電力増幅器2のゲート端子gに接続されている。
 第1電源3及び第2電源4は、それぞれ、マイナス端子が電力増幅器2のゲート端子gに接続され、プラス端子が接地されている。
 第1電源3と電力増幅器2との接続、及び第2電源4と電力増幅器2との接続の両方で共用されている線路17には、電力増幅器2に与えられるRF信号がバイアス回路1に入り込むことがないように当該RF信号を遮断するコイル14が接続されている。
 切替スイッチ5は、第1電源3と、電力増幅器2との間に接続されている。
 切替スイッチ5は、短絡状態又は開放状態のいずれかに切り替え可能に構成されている。切替スイッチ5は、短絡状態で第1電源3と、電力増幅器2との間を短絡し、開放状態で第1電源3と、電力増幅器2との間を開放する。
 切替スイッチ5が短絡状態の場合、バイアス回路1は、第1電源3及び第2電源4の両方を電力増幅器2に接続した状態で、電力増幅器2をオン状態とするための第1電圧V1をゲートバイアス電圧(第1ゲートバイアス電圧)として電力増幅器2へ供給する。
 また、切替スイッチ5が開放状態の場合、バイアス回路1は、第2電源4を電力増幅器2に接続し、電力増幅器2をオフ状態とするための第2電圧V2をゲートバイアス電圧(第2ゲートバイアス電圧)として電力増幅器2へ供給する。
 よって、第1電源3は、電力増幅器2をオン状態とするための第1電圧V1を電力増幅器2へ供給するために必要な電圧(第1電圧V1に必要な電圧)を出力する。
 また、第2電源4は、電力増幅器2をオン状態とするための第1電圧V1及び電力増幅器2をオフ状態とするための第2電圧V2を電力増幅器2へ供給するために必要な電圧(第2電圧V2に必要な電圧)を出力する。
 図2は、電力増幅器2における、ゲート-ソース間電圧と、ドレイン-ソース間電流との関係の一例を示すグラフである。
 図2に示すように、電力増幅器2は、ドレイン-ソース間電流が0となるピンチオフ電圧よりも高いゲート-ソース間電圧の範囲でオン状態となり、ピンチオフ電圧よりも低いゲート-ソース間電圧の範囲でオフ状態となる。
 電力増幅器2は、オン状態においては、与えられたRF信号を増幅し出力する一方、オフ状態においては、信号を出力せずに停止状態となる。
 本実施形態において、第1電圧V1がゲートバイアス電圧として電力増幅器2へ供給されると、電力増幅器2のゲート-ソース間電圧は、ピンチオフ電圧よりも高い電圧Vonとなる。また、第2電圧V2がゲートバイアス電圧として電力増幅器2へ供給されると、電力増幅器2のゲート-ソース間電圧は、ピンチオフ電圧よりも低い電圧Voffとなる。
 バイアス回路1は、電力増幅器2へ供給するゲートバイアス電圧を、切替スイッチ5によって、第1電圧V1及び第2電圧V2のいずれかに切り替えることで、電力増幅器2のゲート-ソース間電圧を電圧Von又は電圧Voffのいずれかに切り替え、電力増幅器2をオン状態又はオフ状態のいずれかに切り替える。
 図1に示すように、切替スイッチ5と、第1電源3とは、抵抗器等を介することなく接続されている。
 一方、第2電源4と、電力増幅器2との間には、抵抗値可変部15が接続されている。
 抵抗値可変部15は、第2分岐線路19に接続されており、第2抵抗器8と、第2バイパススイッチ9とを備えている。
 第2抵抗器8は、第2電源4と、電力増幅器2との間に直列に接続されている。
 第2バイパススイッチ9は、第2抵抗器8の両端をバイパスするバイパス経路に接続されており、第2抵抗器8に並列に接続されている。
 第2バイパススイッチ9は、短絡状態又は開放状態のいずれかに切り替え可能に構成されている。第2バイパススイッチ9は、短絡状態で第2抵抗器8の両端を短絡し、開放状態で第2抵抗器8の両端を開放する。
 第2バイパススイッチ9が第2抵抗器8の両端を開放する場合、第2電源4と電力増幅器2とが第2抵抗器8を介して接続される。また、第2バイパススイッチ9が第2抵抗器8の両端を短絡する場合、第2電源4と電力増幅器2とが第2抵抗器8を介することなく接続される。
 切替スイッチ5、及び第2バイパススイッチ9は、入力端子11へ与えられる電力増幅器2のオンオフ制御に関する制御信号に基づいて短絡状態又は開閉状態のいずれかに切り替わるように構成されている。
 本実施形態のバイアス回路1が用いられる無線通信装置は、TDD方式が採用されている。TDD方式では、無線通信装置が無線信号を送信する送信時間と、他の通信装置からの無線信号を受信する受信時間とを時分割で交互に切り替える。
 入力端子11に与えられる制御信号は、無線通信装置の送信時間及び受信時間を示す矩形波の信号であり、ハイレベル(Hレベル)の期間が送信時間、ローレベル(Lレベル)の期間が受信時間を示している。
 制御信号は、入力端子11から延びている信号線路12を通じて、切替スイッチ5、及び第2バイパススイッチ9に与えられる。
 また、信号線路12において切替スイッチ5へ繋がる分岐点と、第2バイパススイッチ9との間には、反転器13が接続されている。よって、切替スイッチ5に対しては制御信号が与えられる一方、第2バイパススイッチ9に対しては制御信号を反転した反転信号が与えられる。
 切替スイッチ5、及び第2バイパススイッチ9は、切替スイッチ5、及び第2バイパススイッチ9それぞれに与えられる制御信号がLレベルの場合、開放状態となり、Hレベルの場合短絡状態となる。よって、LレベルからHレベルへ切り替わると開放状態から短絡状態へ切り替わり、HレベルからLレベルへ切り替わると短絡状態から開放状態へ切り替わる。
 よって、制御信号が入力端子11においてLレベルの場合、切替スイッチ5は開放状態であり、第2バイパススイッチ9に対しては反転信号が与えられ、第2バイパススイッチ9は短絡状態となる。
 逆に、制御信号が入力端子11においてHレベルの場合、切替スイッチ5は短絡状態であり、第2バイパススイッチ9は開放状態となる。
 このように、信号線路12及び反転器13は、切替スイッチ5、及び第2バイパススイッチ9に制御信号を与え、切替スイッチ5、及び第2バイパススイッチ9の切替動作を制御する制御部を構成している。
〔バイアス回路の動作について〕
 次に、制御信号に応じたバイアス回路1の動作について説明する。
 バイアス回路1に与えられる制御信号が入力端子11においてLレベルからHレベルへ切り替わると、切替スイッチ5は開放状態から短絡状態へ切り替わり、第2バイパススイッチ9は短絡状態から開放状態へ切り替わる。
 このとき、第1電源3及び第2電源4の両方を電力増幅器2に接続した状態で、第1電圧V1がゲートバイアス電圧として電力増幅器2へ供給される。
 よって、制御信号がHレベルに切り替わると、バイアス回路1は、電力増幅器2をオン状態に制御する。
 また、第2電源4は、第2抵抗器8を介して電力増幅器2に接続される。なお、第2抵抗器8は、電力増幅器2に供給されるゲートバイアス電圧が第1電圧V1となるように、抵抗値が設定されている。
 一方、制御信号が入力端子11においてHレベルからLレベルへ切り替わると、切替スイッチ5は短絡状態から開放状態へ切り替わり、第2バイパススイッチ9は開放状態から短絡状態へ切り替わる。すなわち、各スイッチの状態が図1に示す状態となる。
 このとき、第1電源3と、電力増幅器2との間は開放され、第2電源4と、電力増幅器2とが第2抵抗器8を介することなく接続される。この場合、電力増幅器2には、第2電圧V2が供給される。
 よって、制御信号がLレベルに切り替わると、バイアス回路1は、電力増幅器2をオフ状態に制御する。
 以上のように、バイアス回路1は、制御信号がHレベル(送信時間)のときに、切替スイッチ5を短絡状態へ切り替え、電力増幅器2をオン状態にする。また、バイアス回路1は、制御信号がLレベル(受信時間)のときに、切替スイッチ5を開放状態へ切り替え、電力増幅器2をオフ状態にする。
 また、本実施形態において、切替スイッチ5が短絡状態の場合、第2電源4と、電力増幅器2との間は、第2抵抗器8を介して接続される。
 また、切替スイッチ5が開放状態の場合、第2電源4と、電力増幅器2との間は、第2抵抗器8を介することなく接続される。
 つまり、抵抗値可変部15の両端の抵抗値R1は、第2バイパススイッチ9が切り替えられることにより、切替スイッチ5が開放状態の場合と、短絡状態の場合とで異なるように切り替えることができる。
 このように、抵抗値可変部15は、切替スイッチ5が開放状態の場合と、短絡状態の場合とで抵抗値R1が異なっている。
 本実施形態のバイアス回路1において、切替スイッチ5が開放状態の場合の抵抗値R1は、第2抵抗器8が第2バイパススイッチ9によってバイパスされるため、切替スイッチ5が短絡状態の場合の抵抗値R1よりも小さくなるように設定されている。
 これにより、切替スイッチ5が開放状態の場合においては、第2抵抗器8が第2バイパススイッチ9(断続スイッチ)によってバイパスされるので、電力増幅器2の内部温度が上昇し、電力増幅器2のゲート電流が増加したとしても、電力増幅器2と第2抵抗器8との間で分圧が生じるのを抑制することができる。よって、ゲートバイアス電圧を供給したときのゲート-ソース間電圧である電圧Voffに対して変動が生じるのを抑制することができる。
 また、同様に、切替スイッチ5が短絡状態の場合においては、第1電源3が抵抗器等を介することなく電力増幅器2に接続されるので、電力増幅器2のゲート電流が増加したとしても、上記従来例のように電力増幅器2と抵抗器との間で分圧が生じるのを抑制することができゲートバイアス電圧を供給したときのゲート-ソース間電圧である電圧Vonに対して変動が生じるのを抑制することができる。
 図3は、制御信号に基づいて電力増幅器2をオンオフ制御したときの電力増幅器2の各部の数値変化の一例を示した図である。
 図3中、横軸は時間であり、各線図はそれぞれ横軸方向に対応付けて示している。
 図3中、線図L1は制御信号の電圧変化を示している。線図L2はバイアス回路1によるゲートバイアス電圧の変化、線図L3は理想的なゲート電流の絶対値|Ig|の変化、線図L4は理想的なゲート-ソース間電圧Vgsの変化、線図L5は理想的なドレイン-ソース間電流Idsの変化、線図L6は電力増幅器2の内部温度の変化、線図L7は実際のゲート電流の絶対値|Ig|の変化を示している。
 本実施形態において、制御信号は、上述したように、電圧レベルがHレベルとLレベルとで切り替わる矩形波であり、Hレベルの期間は送信時間を示し、Lレベルの期間は受信時間を示している。
 ゲート端子に流れる電流であるゲート電流の絶対値|Ig|が、線図L3に示すように制御信号の電圧変化に対応して理想的に変化する場合、ゲート-ソース間電圧Vgs及びドレイン-ソース間電流Idsは、線図L4及び線図L5に示すように制御信号に対応して矩形波状に理想的に変化する。
 ゲート-ソース間電圧Vgsは、線図L4に示すように制御信号に応じて電圧Von及び電圧Voffに交互に切り替えられる。ドレイン-ソース間電流Idsは、ゲート-ソース間電圧Vgsに応じて、出力と停止を繰り返しており、電力増幅器2が、制御信号のHレベル及びLレベルに応じてオン状態と、オフ状態とに適切に切り替えられている。
 ここで、電力増幅器2は、オン状態ではドレイン-ソース間電流Idsが流れることで内部温度が上昇し、また、オフ状態では増幅を停止するので内部温度が降下する。このため、電力増幅器2の内部温度は、線図L6に示すように、オフ状態からオン状態に切り替わると上昇し、オン状態からオフ状態に切り替わると降下する。電力増幅器2の内部温度は、制御信号の電圧変化に応じて上昇、降下を繰り返す。
 また、電力増幅器2は、内部温度が変化すると、ゲート電流Igに変化が生じる。
 図4は、電力増幅器2の内部温度に対するゲート電流Igの変化を示したグラフである。図4中、横軸はゲート-ソース間電圧Vgs、縦軸はゲート電流の絶対値|Ig|を示している。
 また、線図L11は電力増幅器2の内部温度が200℃のときの関係を示している。同様に、線図L12は内部温度が150℃のときの関係、線図L12は内部温度が150℃のときの関係、線図L13は内部温度が100℃のときの関係、線図L14は内部温度が50℃のときの関係、線図L15は内部温度が25℃のときの関係、線図L16は内部温度が0℃のときの関係、線図L17は内部温度が-30℃のときの関係を示している。
 図4に示すように、電力増幅器2のゲート電流の絶対値|Ig|は、ゲート-ソース間電圧Vgsが同じ値であっても、電力増幅器2の内部温度の上昇に伴って大きくなることが判る。
 従って、図3中の線図L7に示すように、実際の電力増幅器2のゲート電流の絶対値|Ig|は、制御信号がLレベルからHレベルに切り替わり、切替スイッチ5が開放状態から短絡状態へ切り替わった直後から電力増幅器2の内部温度の上昇に伴って漸次増加する。
 また、制御信号がHレベルからLレベルに切り替わると、実際の電力増幅器2のゲート電流の絶対値|Ig|は、Hレベルのときの増加分が内部温度の降下によって漸次減少する。
 つまり、図3に示すように、ゲート電流Igの絶対値|Ig|は、電力増幅器2の内部温度の上昇による増加分が増加と減少を繰り返すことで変動していることが判る。
 図5は、本実施形態のバイアス回路1及び従来のバイアス回路それぞれによって電力増幅器2をオンオフ制御したときのゲート-ソース間電圧Vgs及びドレイン-ソース間電流Idsの変化を示した図である。
 図5中、線図L20は制御信号、線図L21は実際のゲート電流の絶対値|Ig|の変化を示しており、図3中の線図L1及び線図L7と同じ線図である。
 線図L22は図14に示した従来のバイアス回路によって電力増幅器をオンオフ制御したときのゲート-ソース間電圧Vgsの変化、線図L23は従来のバイアス回路によって電力増幅器をオンオフ制御したときのドレイン-ソース間電流Idsの変化を示している。
 従来のバイアス回路において、電力増幅器の内部温度の上昇によって、線図L21のようにゲート電流Igの絶対値|Ig|が増加すると、直列に接続されている増幅器101と、抵抗器105(抵抗器106)との間で分圧が生じ(図14)、ゲートバイアス電圧によって電圧Von又は電圧Voffとなるように制御されるゲート-ソース間電圧Vgsが変動してしまう。
 図5中の線図L22に示すように、ゲート-ソース間電圧Vgsは、制御信号がLレベルからHレベルに切り替わった直後(切替スイッチ5が開放状態から短絡状態へ切り替わった直後)からゲート電流の絶対値|Ig|の増加に応じて漸次増加し、電圧Vonよりも高い値となっている。
 また、制御信号がHレベルからLレベルに切り替わり、切替スイッチ5が短絡状態から開放状態へ切り替わると、ゲート-ソース間電圧Vgsは、すぐに電圧Voffに切り替わらずに、電圧Vonから電圧Voffに向かって漸次減少している。これは、制御信号がHレベルからLレベルに切り替わっても、Hレベルのときのゲート電流の絶対値|Ig|の増加分が漸次減少することに起因している。
 このように、電力増幅器101(図14)は内部温度の上昇によってゲート電流Igの絶対値|Ig|が増加すると、従来のバイアス回路では、ゲート-ソース間電圧Vgsが電圧Von及び電圧Voffに対して変動してしまう。
 より具体的には、切替スイッチ104(図14)が開放状態に切り替えられているときに、電圧Voffよりも高いゲート-ソース間電圧Vgsが供給されたり、切替スイッチ5が短絡状態に切り替えられているときに、予め設定した電圧Vonよりも高いゲート-ソース間電圧Vgsが供給されてしまうことがある。
 この結果、図5中の線図L23に示すように、制御信号がLレベルの場合には、本来オフ状態に制御されるにも関わらず電力増幅器101が信号を出力してしまったり、制御信号がHレベルの場合には、過大な電流がドレイン-ソース間に流れてしまうことがあった。
 これに対して、本実施形態のバイアス回路1によれば、切替スイッチ5が開放状態である場合においては、第2抵抗器8がバイパスされるので、電力増幅器2の内部温度が上昇し、電力増幅器2のゲート電流Igが増加したとしても、電力増幅器2と第2抵抗器8との間で分圧が生じるのを抑制することができ、ゲートバイアス電圧を供給したときのゲート-ソース間電圧Vgsが増加し変動するのを抑制することができる。
 また、同様に、切替スイッチ5が短絡状態である場合においては、第1電源3が抵抗器等を介することなく電力増幅器2に接続されるので、電力増幅器2の内部温度が上昇し、電力増幅器2のゲート電流Igが増加したとしても、上記従来例のように電力増幅器2と抵抗器との間で分圧が生じるのを抑制することができ、ゲートバイアス電圧を供給したときのゲート-ソース間電圧Vgsが増加し変動するのを抑制することができる。
 つまり、本実施形態のバイアス回路1は、抵抗値可変部15の両端の抵抗値R1が可変とされているので、切替スイッチ5が開放状態のときに電力増幅器2のゲート電流Igが増加したとしても、抵抗値R1を小さくすることができ、上記従来例のように電源保護のための抵抗器に起因して分圧が生じるのを抑制することができる。この結果、ゲートバイアス電圧を供給したときのゲート-ソース間電圧Vgsに変動が生じるのを抑制でき、ゲート-ソース間電圧Vgsを電圧Voffに近い値に設定することができる。
 一方、切替スイッチ5が短絡状態である場合、第1電源3が電力増幅器2に接続されるとともに第2電源4が第2抵抗器8を介して電力増幅器2に接続されることになる。このとき、第2抵抗器8の抵抗値は、ゲート-ソース間電圧Vgsが電圧Vonになるように適切に設定される。
 このため、本実施形態のゲート-ソース間電圧Vgs及びドレイン-ソース間電流Idsは、図5中の線図L24及び線図L25に示すように、制御信号に対応してほぼ矩形波状に変化する。つまり、電力増幅器2は、制御信号のHレベル及びLレベルに応じてオン状態と、オフ状態とに適切に切り替えられている。
 このように、本実施形態のバイアス回路1によれば、適切に電力増幅器2をオンオフ制御することができる。
〔他の実施形態について〕
 図6は、第2実施形態に係るバイアス回路1を示す回路図である。
 本実施形態は、切替スイッチ5が第2電源4と、電力増幅器2との間に接続されている点、及び抵抗値可変部16が第1電源3と、電力増幅器2との間に接続されている点において第1実施形態と相違している。
 図6に示すように、切替スイッチ5と、第2電源4とは、抵抗器等を介することなく接続されている。
 一方、第1電源3と、電力増幅器2との間には、抵抗値可変部16が接続されている。
 抵抗値可変部16は、第1分岐線路18に接続されており、第1抵抗器6と、第1バイパススイッチ7とを備えている。
 第1抵抗器6は、第1電源3と、電力増幅器2との間に直列に接続されている。
 第1バイパススイッチ7は、第1抵抗器6の両端をバイパスするバイパス経路に接続されており、第1抵抗器6に並列に接続されている。
 第1バイパススイッチ7は、短絡状態又は開放状態のいずれかに切り替え可能に構成されている。第1バイパススイッチ7は、短絡状態で第1抵抗器6の両端を短絡し、開放状態で第1抵抗器6の両端を開放する。
 第1バイパススイッチ7が第1抵抗器6の両端を開放する場合、第1電源3と電力増幅器2とが第1抵抗器6を介して接続される。また、第1バイパススイッチ7が第1抵抗器6の両端を短絡する場合、第1電源3と電力増幅器2とが第1抵抗器6を介することなく接続される。
 第1バイパススイッチ7は、切替スイッチ5や第2バイパススイッチ9と同様、当該第1バイパススイッチ7に与えられる制御信号がLレベルの場合、開放状態となり、Hレベルの場合短絡状態となる。
 反転器13は、信号線路12において抵抗値可変部16(第1バイパススイッチ7)へ繋がる分岐点と、切替スイッチ5との間に接続されている。これにより、抵抗値可変部16に対しては制御信号が与えられる一方、切替スイッチ5に対しては制御信号を反転した反転信号が与えられる。
 よって、本実施形態のバイアス回路1に与えられる制御信号が入力端子11においてHレベルからLレベルへ切り替わると、切替スイッチ5は開放状態から短絡状態へ切り替わり、第1バイパススイッチ7は短絡状態から開放状態へ切り替わる。すなわち、各スイッチの状態が図6に示す状態となる。
 このとき、第1電源3及び第2電源4の両方を電力増幅器2に接続した状態で、第2電圧V2がゲートバイアス電圧として電力増幅器2へ供給される。よって、バイアス回路1は、電力増幅器2をオフ状態に制御する。
 また、第1電源3は、第1抵抗器6を介して電力増幅器2に接続される。なお、第1抵抗器6は、電力増幅器2に供給されるゲートバイアス電圧が第2電圧V2となるように、抵抗値が設定されている。
 一方、制御信号が入力端子11においてLレベルからHレベルへ切り替わると、切替スイッチ5は短絡状態から開放状態へ切り替わり、第1バイパススイッチ7は開放状態から短絡状態へ切り替わる。
 このとき、第2電源4と、電力増幅器2との間は開放され、第1電源3と、電力増幅器2とが第1抵抗器6を介することなく接続される。この場合、電力増幅器2には、第1電圧V1が供給される。よって、バイアス回路1は、電力増幅器2をオン状態に制御する。
 よって、本実施形態において、第1電源3は、電力増幅器2をオン状態とするための第1電圧V1及び電力増幅器2をオフ状態とするための第2電圧V2を電力増幅器2へ供給するために必要な電圧(第1電圧V1に必要な電圧)を出力する。
 また、第2電源4は、電力増幅器2をオフ状態とするための第2電圧V2を電力増幅器2へ供給するために必要な電圧(第2電圧V2に必要な電圧)を出力する。
 本実施形態のバイアス回路1において、抵抗値可変部16の両端の抵抗値R2は、第1バイパススイッチ7が切り替えられることにより、切替スイッチ5が開放状態の場合と、短絡状態の場合とで異なるように切り替えることができる。
 このように、抵抗値可変部16は、切替スイッチ5が開放状態の場合と、短絡状態の場合とで抵抗値R2が異なっている。
 本実施形態のバイアス回路1において、切替スイッチ5が開放状態の場合の抵抗値R2は、第1抵抗器6が第1バイパススイッチ7(断続スイッチ)によってバイパスされるため、切替スイッチ5が短絡状態の場合の抵抗値R2よりも小さくなるように設定されている。
 本実施形態のバイアス回路1においても、抵抗値可変部16の両端の抵抗値R2が可変とされているので、切替スイッチ5が開放状態である場合に電力増幅器2のゲート電流Igが増加したとしても、抵抗値R2を小さくすることができ、上記従来例のように電源保護のための抵抗器に起因して分圧が生じるのを抑制することができる。この結果、ゲートバイアス電圧を供給したときのゲート-ソース間電圧Vgsに変動が生じるのを抑制することができ、適切に電力増幅器2をオンオフ制御することができる。
 図7は、第3実施形態に係るバイアス回路1を示す回路図である。
 第3実施形態に係るバイアス回路1は、第2電源4に代えてオペアンプ20が切替スイッチ5に接続されている点において第2実施形態と相違している。その他の点については第2実施形態と同様である。
 本実施形態において、オペアンプ20は、第2実施形態における第2電源4と同様の電圧を出力するように設定されている。
 これら構成においても、第2実施形態と同様、適切に電力増幅器2をオンオフ制御することができる。
 図8は、第4実施形態に係るバイアス回路1を示す回路図である。
 第4実施形態に係るバイアス回路1は、第1電源3に代えてオペアンプ21が切替スイッチ5に接続されている点において第1実施形態と相違している。その他の点については第1実施形態と同様である。
 本実施形態において、オペアンプ21は、第1実施形態における第1電源と同様の電圧を出力するように設定されている。
 これら構成においても、第1実施形態と同様、適切に電力増幅器2をオンオフ制御することができる。
 なお、第3実施形態及び第4実施形態において用いたオペアンプ20、21は、一定の電圧を出力することができればよく、例えば、デジタルアナログコンバータを用いてもよい。
 図9は、第5実施形態に係るバイアス回路1を示す回路図である。
 第5実施形態は、第1実施形態のバイアス回路1における切替スイッチ5と第1電源3との間に、第2実施形態において示した抵抗値可変部16を接続した点において第1実施形態と相違している。その他の点については、第1実施形態と同様である。
 抵抗値可変部16の第1バイパススイッチ7には、入力端子11に与えられる制御信号が反転されることなくそのまま与えられる。よって、第1バイパススイッチ7は、切替スイッチ5が短絡状態であれば短絡状態となり、切替スイッチ5が開放状態であれば開放状態となる。
 本実施形態において、切替スイッチ5が短絡状態であれば第1バイパススイッチ7も短絡状態となるため、第1電源3による電圧が電力増幅器2へ供給される場合、第1抵抗器6は常にバイパスされることになる。
 この場合、抵抗値可変部16の第1抵抗器6は、何らかの原因によって第1電源3に大きな電流が流れるような事態が生じたときに第1電源3を保護するための保護用の抵抗器として機能させることができる。
 この構成においても、第1実施形態と同様、適切に電力増幅器2をオンオフ制御することができる。
 なお、本実施形態では、切替スイッチ5と、第1電源3との間に第1抵抗器6と、第1バイパススイッチ7とを接続した場合を示したが、第1バイパススイッチ7を省略し、第1抵抗器6及び第1抵抗器6の両端をバイパスするバイパス経路を介して切替スイッチ5と、第1電源3とを接続する構成としてもよい。
 図10は、第6実施形態に係るバイアス回路1を示す回路図である。
 第6実施形態は、第2実施形態のバイアス回路1における切替スイッチ5と第2電源4との間に、第1実施形態において示した抵抗値可変部15を接続した点において第2実施形態と相違している。その他の点については、第2実施形態と同様である。
 抵抗値可変部15の第2バイパススイッチ9には、入力端子11に与えられる制御信号が反転された反転信号が与えられる。よって、第2バイパススイッチ9は、切替スイッチ5が短絡状態であれば短絡状態となり、切替スイッチ5が開放状態であれば開放状態となる。
 本実施形態において、切替スイッチ5が短絡状態であれば第2バイパススイッチ9も短絡状態となるため、第2電源4による電圧が電力増幅器2へ供給される場合、第2抵抗器8は常にバイパスされることになる。
 この場合、抵抗値可変部15の第2抵抗器8は、何らかの原因によって第2電源4に大きな電流が流れるような事態が生じたときに第2電源4を保護するための保護用の抵抗器として機能させることができる。
 この構成においても、第2実施形態と同様、適切に電力増幅器2をオンオフ制御することができる。
 なお、本実施形態では、切替スイッチ5と、第2電源4との間に第2抵抗器8と、第2バイパススイッチ9とを接続した場合を示したが、第2バイパススイッチ9を省略し、第2抵抗器8及び第2抵抗器8の両端をバイパスするバイパス経路を介して切替スイッチ5と、第2電源4とを接続する構成としてもよい。
 図11は、第7実施形態に係るバイアス回路1を示す回路図である。
 第7実施形態は、第5実施形態のバイアス回路1における抵抗値可変部16が第1バイパススイッチ7に代えて第1感温抵抗器25を備えるとともに、抵抗値可変部15が第2バイパススイッチ9に代えて第2感温抵抗器26を備えている点において第5実施形態と相違している。
 抵抗値可変部16は、互いに並列に接続された第2抵抗器8及び第2感温抵抗器26を含んでいる。また、抵抗値可変部15は、互いに並列に接続された第1抵抗器6及び第1感温抵抗器25を含んでいる。
 第1感温抵抗器25及び第2感温抵抗器26は、温度の上昇に応じて抵抗値が低下する特性を有している。
 第1感温抵抗器25及び第2感温抵抗器26は、例えば常温における抵抗値が第1抵抗器6及び第2抵抗器8とほぼ同じであり、電力増幅器2の内部温度が上昇すると、内部温度の上昇に応じて抵抗値が低下する。
 よって、抵抗値可変部16の両端の抵抗値R2は可変とされている。また、抵抗値可変部15の両端の抵抗値R1も可変とされている。
 本実施形態によれば、電力増幅器2の内部温度が上昇し、電力増幅器2のゲート電流Igが増加したとしても、抵抗値可変部16の第2感温抵抗器26によって抵抗値R2を低下させることができるので、上記従来例のように電源保護のための抵抗器に起因して分圧が生じるのを抑制することができ、ゲート-ソース間電圧Vgsに変動が生じるのを抑制することができる。
 なお、切替スイッチ5が開放状態である場合において、電力増幅器2の内部温度が低下したときは、電力増幅器2のゲート電流Igの増加も見られなくなる。よって、電力増幅器2の内部温度が低下し第2感温抵抗器26の抵抗値が高くなったとしても、そのまま第2電源4によってゲートバイアス電圧を供給すれば、電力増幅器2を適切に制御することができる。
 また、同様に、切替スイッチ5が短絡状態である場合においては、電力増幅器2のゲート電流Igが増加したとしても、第1感温抵抗器25によって抵抗値R1を低下させることができる。これによって、電源保護のための抵抗器に起因して分圧が生じるのを抑制することができ、ゲート-ソース間電圧Vgsに変動が生じるのを抑制することができる。
 図12は、本実施形態のバイアス回路1、及び従来のバイアス回路それぞれによって電力増幅器2をオンオフ制御したときのゲート-ソース間電圧Vgs及びドレイン-ソース間電流Idsの変化を示した図である。
 図12中、線図L31は制御信号、線図L32は実際のゲート電流の絶対値|Ig|の変化を示しており、図3中の線図L1及び線図L7と同じ線図である。
 また、図12中、実線の線図L33は本実施形態のゲート-ソース間電圧Vgsの変化を示している。また、線図L33に重ねて示している破線の線図L34は理想的なゲート-ソース間電圧Vgsの変化を示している。
 線図L33を見ると、理想的な変化に対してやや歪が見られるが、制御信号に対応してほぼ矩形波状に変化することが判る。
 図12中、実線の線図L35は本実施形態のドレイン-ソース間電流Idsの変化を示している。また、線図L35に重ねて示している破線の線図L36は理想的なドレイン-ソース間電流Idsの変化を示している。
 ドレイン-ソース間電流Idsについても、理想的な変化に対してやや歪が見られるが、制御信号に対応してほぼ矩形波状に変化することが判る。
 このように、本実施形態のバイアス回路1においても、適切に電力増幅器2をオンオフ制御することができる。
 図13は、第8実施形態に係るバイアス回路1を示す回路図である。
 第8実施形態は、第5実施形態のバイアス回路1における抵抗値可変部15として第1可変抵抗器31を備えるとともに、抵抗値可変部16として第2可変抵抗器32を備えている点において第5実施形態と相違している。
 本実施形態のバイアス回路1は、さらに第1可変抵抗器31及び第2可変抵抗器32を制御するための制御部33を備えている。
 制御部33は、入力端子11に与えられる制御信号を受け付け、制御信号に基づいて第1可変抵抗器31及び第2可変抵抗器32を制御する。
 このように、第2可変抵抗器32及び制御部33は、第2電源4と電力増幅器2との間に接続され抵抗値が可変とされている。
 制御部33は、切替スイッチ5が開放状態である場合においては、第2可変抵抗器32の抵抗値をほぼ0にまで低下させる。これにより、電力増幅器2の内部温度が上昇し、電力増幅器2のゲート電流Igが増加したとしても、上記従来例のように電源保護のための抵抗器に起因して分圧が生じるのを抑制することができ、ゲート-ソース間電圧Vgsに変動が生じるのを抑制することができる。
 また、制御部33は、切替スイッチ5が短絡状態である場合においては、第1可変抵抗器31の抵抗値をほぼ0にまで低下させるとともに、第2可変抵抗器32の抵抗値を第2電源4を適切に保護しうる値に上昇させる。これにより、電力増幅器2の内部温度が上昇し、電力増幅器2のゲート電流Igが増加したとしても、電源保護のための抵抗器に起因して分圧が生じるのを抑制することができ、ゲート-ソース間電圧Vgsに変動が生じるのを抑制することができる。
 このように、制御部33が制御信号に基づいて、第1可変抵抗器31及び第2可変抵抗器32を適切に制御することで、ゲート-ソース間電圧Vgsに変動が生じるのを抑制することができる。
 なお、今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。
 本実施形態では、送信信号を増幅するための電力増幅器2を制御するバイアス回路1を例示したが、受信信号を増幅する電力増幅器についても本実施形態は適用可能である。
 また、本実施形態では、制御信号がHレベルの期間において電力増幅器2をオン状態に制御しLレベルの期間において電力増幅器2をオフ状態に制御する場合を示したが、制御信号がHレベルの期間において電力増幅器2をオフ状態に制御し、Lレベルの期間において電力増幅器2をオン状態に制御する場合においても、同様の構成を採用することができる。
 本発明の範囲は、上記した意味ではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味、及び範囲内でのすべての変更が含まれることが意図される。
 1 バイアス回路
 2 電力増幅器
 3 第1電源
 4 第2電源
 5 切替スイッチ
 6 第1抵抗器
 7 第1バイパススイッチ
 8 第2抵抗器
 9 第2バイパススイッチ
 11 入力端子
 12 信号線路
 13 反転器
 14 コイル
 15 抵抗値可変部
 16 抵抗値可変部
 17 線路
 18 第1分岐線路
 19 第2分岐線路
 20 オペアンプ
 21 オペアンプ
 25 第1感温抵抗器
 26 第2感温抵抗器
 31 第1可変抵抗器
 32 第2可変抵抗器
 33 制御部

Claims (8)

  1.  増幅器をオンオフ制御するためのゲートバイアス電圧を前記増幅器に供給するバイアス回路であって、
     前記増幅器のゲート端子に直列接続され、前記増幅器をオン状態とするための第1ゲートバイアス電圧に必要な電圧を出力する第1電源と、
     前記増幅器のゲート端子に直列接続され、前記増幅器をオフ状態とするための第2ゲートバイアス電圧に必要な電圧を出力する第2電源と、
     前記第1電源と前記増幅器との間に接続され、前記増幅器のオンオフ制御に関する制御信号に基づいて前記第1電源と前記増幅器との間を開放状態又は短絡状態のいずれかに切り替わることで、前記第1ゲートバイアス電圧又は前記第2ゲートバイアス電圧のいずれか一方を前記増幅器へ供給する切替スイッチと、
     前記第2電源と前記増幅器との間に接続され、抵抗値が可変とされている抵抗値可変部と、を備えている
    バイアス回路。
  2.  増幅器をオンオフ制御するためのゲートバイアス電圧を前記増幅器に供給するバイアス回路であって、
     前記増幅器のゲート端子に直列接続され、前記増幅器をオン状態とするための第1ゲートバイアス電圧に必要な電圧を出力する第1電源と、
     前記増幅器のゲート端子に直列接続され、前記増幅器をオフ状態とするための第2ゲートバイアス電圧に必要な電圧を出力する第2電源と、
     前記前記第2電源と前記増幅器との間に接続され、前記増幅器のオンオフ制御に関する制御信号に基づいて前記第2電源と前記増幅器との間を開放状態又は短絡状態のいずれかに切り替わることで、前記第1ゲートバイアス電圧又は前記第2ゲートバイアス電圧のいずれか一方を前記増幅器へ供給する切替スイッチと、
     前記第1電源と、前記増幅器との間に接続され、抵抗値が可変とされている抵抗値可変部と、を備えている
    バイアス回路。
  3.  前記抵抗値可変部の抵抗値は、前記切替スイッチが開放状態の場合の方が、前記切替スイッチが短絡状態の場合よりも小さくなる
    請求項1又は2に記載のバイアス回路。
  4.  前記抵抗値可変部は、
     前記第1電源又は前記第2電源と前記増幅器との間に接続された抵抗器と、
     前記制御信号に基づいて前記抵抗器の両端を短絡又は開放する断続スイッチと、を備えている
    請求項1から請求項3のいずれか一項に記載のバイアス回路。
  5.  前記抵抗値可変部は、
     前記第1電源又は前記第2電源と前記増幅器との間に接続された可変抵抗器と、
     前記可変抵抗器に並列に接続された抵抗器と、を備え、
     前記可変抵抗器は、感温抵抗器である
    請求項1から請求項3のいずれか一項に記載のバイアス回路。
  6.  前記制御信号に基づいて前記切替スイッチ及び前記抵抗値可変部を制御する制御部をさらに備えている
    請求項1から請求項4のいずれか一項に記載のバイアス回路。
  7.  前記制御信号に基づいて前記切替スイッチを制御する制御部をさらに備えている
    請求項5に記載のバイアス回路。
  8.  前記第1電源及び前記第2電源は、オペアンプ又はデジタルアナログ変換器によって構成されている
    請求項1から請求項7のいずれか一項に記載のバイアス回路。
PCT/JP2017/006612 2017-02-22 2017-02-22 バイアス回路 WO2018154659A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US16/480,754 US10924064B2 (en) 2017-02-22 2017-02-22 Bias circuit
PCT/JP2017/006612 WO2018154659A1 (ja) 2017-02-22 2017-02-22 バイアス回路
JP2019500913A JP6806231B2 (ja) 2017-02-22 2017-02-22 バイアス回路
CN202310653400.1A CN116700413A (zh) 2017-02-22 2017-02-22 偏置电路
CN201780084323.5A CN110214415B (zh) 2017-02-22 2017-02-22 偏置电路
US17/147,845 US11444575B2 (en) 2017-02-22 2021-01-13 Bias circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/006612 WO2018154659A1 (ja) 2017-02-22 2017-02-22 バイアス回路

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/480,754 A-371-Of-International US10924064B2 (en) 2017-02-22 2017-02-22 Bias circuit
US17/147,845 Continuation US11444575B2 (en) 2017-02-22 2021-01-13 Bias circuit

Publications (1)

Publication Number Publication Date
WO2018154659A1 true WO2018154659A1 (ja) 2018-08-30

Family

ID=63252552

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/006612 WO2018154659A1 (ja) 2017-02-22 2017-02-22 バイアス回路

Country Status (4)

Country Link
US (2) US10924064B2 (ja)
JP (1) JP6806231B2 (ja)
CN (2) CN116700413A (ja)
WO (1) WO2018154659A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0583041A (ja) * 1990-11-30 1993-04-02 Nec Corp ゲートバイアス制御回路
JP2001284974A (ja) * 2000-03-30 2001-10-12 Nec Corp Fet増幅器
JP2003008358A (ja) * 2001-06-22 2003-01-10 Japan Radio Co Ltd Fetバイアス回路
JP2005524310A (ja) * 2002-04-30 2005-08-11 レイセオン カンパニー プロセス変動補償を行うアクティブバイアス回路用電流停止回路
JP2009044281A (ja) * 2007-08-07 2009-02-26 Japan Radio Co Ltd Fet増幅回路

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2505028Y2 (ja) * 1989-11-30 1996-07-24 日本電気株式会社 増幅回路
WO1995010050A1 (en) * 1993-10-06 1995-04-13 Philips Electronics N.V. Arrangement for reading information from a track on a record carrier comprising a fast settling read amplifier for magneto-resistive heads
JPH10290129A (ja) * 1997-04-11 1998-10-27 Sony Corp 高周波増幅器
JPH10322144A (ja) * 1997-05-16 1998-12-04 Matsushita Electric Ind Co Ltd 電力増幅器及びその調整方法
JP2001068950A (ja) * 1999-08-31 2001-03-16 Nec Corp ゲートバイアス回路
JP3883037B2 (ja) * 2001-02-28 2007-02-21 株式会社日立製作所 媒体記録再生システム
US6882226B2 (en) * 2002-05-16 2005-04-19 Integrant Technologies Inc. Broadband variable gain amplifier with high linearity and variable gain characteristic
CN101156316B (zh) * 2005-04-08 2011-09-07 松下电器产业株式会社 高频放大器以及收发系统
JP4811192B2 (ja) * 2006-08-24 2011-11-09 ソニー株式会社 駆動回路
JP5219736B2 (ja) 2008-10-24 2013-06-26 新日本無線株式会社 高周波回路のスイッチング方法及び高周波回路
JP5245887B2 (ja) * 2009-02-09 2013-07-24 富士通セミコンダクター株式会社 増幅器
FR2951575B1 (fr) * 2009-10-20 2011-12-16 St Microelectronics Rousset Amplificateur de lecture ayant des moyens de precharge de bitline rapides
WO2012111451A1 (ja) * 2011-02-15 2012-08-23 日本電気株式会社 利得・歪み特性安定化方法および回路
WO2016125424A1 (ja) * 2015-02-06 2016-08-11 日本電気株式会社 電源供給回路、増幅器、通信装置、基地局、電源供給方法
CN110690862A (zh) * 2018-07-06 2020-01-14 天工方案公司 放大器线性度提升电路和用于后失真反馈消除的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0583041A (ja) * 1990-11-30 1993-04-02 Nec Corp ゲートバイアス制御回路
JP2001284974A (ja) * 2000-03-30 2001-10-12 Nec Corp Fet増幅器
JP2003008358A (ja) * 2001-06-22 2003-01-10 Japan Radio Co Ltd Fetバイアス回路
JP2005524310A (ja) * 2002-04-30 2005-08-11 レイセオン カンパニー プロセス変動補償を行うアクティブバイアス回路用電流停止回路
JP2009044281A (ja) * 2007-08-07 2009-02-26 Japan Radio Co Ltd Fet増幅回路

Also Published As

Publication number Publication date
CN116700413A (zh) 2023-09-05
US20210135629A1 (en) 2021-05-06
US20190393840A1 (en) 2019-12-26
JPWO2018154659A1 (ja) 2019-12-12
CN110214415B (zh) 2023-06-27
US11444575B2 (en) 2022-09-13
US10924064B2 (en) 2021-02-16
JP6806231B2 (ja) 2021-01-06
CN110214415A (zh) 2019-09-06

Similar Documents

Publication Publication Date Title
US8395448B2 (en) Apparatus and method for miller compensation for multi-stage amplifier
US8994454B2 (en) Amplifier circuit
US9590576B2 (en) Differential amplifier
US7538605B2 (en) Amplifier device capable of reducing offset voltage
JP4583967B2 (ja) 高周波電力増幅器及びその出力電力調整方法
US10411703B1 (en) Impedance matched clock driver with amplitude control
KR101952857B1 (ko) 스위칭 회로 및 이를 포함하는 고주파 스위치
JP2008028908A (ja) 利得可変型低雑音増幅器
US20170047901A1 (en) Protection circuit for power amplifier
US7724039B2 (en) Conversion circuit for converting differential signal into signal-phase signal
WO2018154659A1 (ja) バイアス回路
KR101823268B1 (ko) 고주파 스위치 회로
JP2024038764A (ja) 増幅回路および通信装置
US8022758B2 (en) Impedance matching circuit and method thereof
US9197176B2 (en) Amplification device and transmitter
US11539332B2 (en) Amplification circuit with over power protection
JP7384206B2 (ja) バイアス回路、増幅器及びバイアス電圧制御方法
JP2010109710A (ja) 利得可変型増幅器
US11502656B2 (en) Variable gain amplifier
US20070080737A1 (en) Switch
JP2005323030A (ja) スイッチ半導体集積回路
WO2013157039A1 (ja) 経路切替電力増幅器
US10826497B2 (en) Impedance matched clock driver with amplitude control
KR100709326B1 (ko) 가변이득증폭기
JPWO2018037688A1 (ja) 信号増幅装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17897904

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019500913

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17897904

Country of ref document: EP

Kind code of ref document: A1