WO2018150793A1 - インバータ装置および電動車両 - Google Patents

インバータ装置および電動車両 Download PDF

Info

Publication number
WO2018150793A1
WO2018150793A1 PCT/JP2018/001329 JP2018001329W WO2018150793A1 WO 2018150793 A1 WO2018150793 A1 WO 2018150793A1 JP 2018001329 W JP2018001329 W JP 2018001329W WO 2018150793 A1 WO2018150793 A1 WO 2018150793A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
pwm pulse
pwm
pulse
wave
Prior art date
Application number
PCT/JP2018/001329
Other languages
English (en)
French (fr)
Inventor
安島 俊幸
純希 磯部
碧 高岡
明広 蘆田
浩志 田村
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Priority to DE112018000395.7T priority Critical patent/DE112018000395T5/de
Priority to US16/485,366 priority patent/US10826410B2/en
Priority to CN201880011693.0A priority patent/CN110291709B/zh
Publication of WO2018150793A1 publication Critical patent/WO2018150793A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • H02M7/53875Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current with analogue control of three-phase output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/02Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles characterised by the form of the current used in the control circuit
    • B60L15/08Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles characterised by the form of the current used in the control circuit using pulses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/61Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/539Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency
    • H02M7/5395Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency by pulse-width modulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • B60L2210/14Boost converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/40DC to AC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/91Electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/92Hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2400/00Special features of vehicle units
    • B60Y2400/61Arrangements of controllers for electric machines, e.g. inverters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/046Controlling the motor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present invention relates to an inverter device and an electric vehicle.
  • Patent Document 1 describes a technique for generating a PWM pulse in an angle section that is linearly approximated around a zero-cross point of an output voltage of an inverter to minimize an output voltage error.
  • Patent Document 1 either the central time interval of on-pulses or the central time interval of off-pulses of a plurality of PWM pulses is changed based on a motor output request in an angle section that is linearly approximated around the zero-cross point of the output voltage. Generate a PWM pulse. By doing so, a phenomenon in which an output voltage error of the inverter occurs is prevented.
  • Patent Document 1 does not consider a PWM pulse near the center of the peak of the inverter output voltage (fundamental wave). Therefore, there is a problem that a voltage error occurs before and after entering the overmodulation region from the sine wave modulation.
  • An inverter device includes a PWM pulse generator that generates a PWM pulse for converting a DC voltage into an AC voltage based on a motor output request, and a DC voltage generated by the PWM pulse generated by the PWM pulse generator.
  • An inverter circuit that converts the AC voltage to drive the motor, and the PWM pulse generator performs a trapezoidal wave modulation using the trapezoidal wave in the overmodulation region at a predetermined timing on the upper side of the trapezoidal wave. The pulse width of the PWM pulse is changed.
  • An electric vehicle includes a PWM pulse generator that generates a PWM pulse for converting a DC voltage into an AC voltage based on a motor output request, and a DC voltage generated by the PWM pulse generated by the PWM pulse generator.
  • An inverter circuit that converts the AC voltage into a motor to drive the motor and a DC / DC converter that boosts the DC voltage, and the PWM pulse generator performs a trapezoidal wave modulation using a trapezoidal wave in an overmodulation region.
  • the pulse width of the PWM pulse is changed based on the output voltage of the DC / DC converter at a predetermined timing on the upper side of the trapezoidal wave.
  • the output voltage error of the inverter circuit can be reduced, and the motor can be stably controlled up to high speed rotation.
  • the block diagram which shows the structure of the inverter apparatus of this invention The wave form diagram which shows the modulation wave in one Embodiment.
  • the wave form diagram which shows the pulse generation in one Embodiment The wave form diagram which shows the pulse generation in one Embodiment.
  • the block diagram of the electric power steering device with which the inverter apparatus by this invention was applied.
  • the block diagram of the electric vehicle to which the inverter apparatus by this invention was applied.
  • the present invention relates to an inverter device configured to drive a semiconductor switch element by PWM control, and when performing a trapezoidal wave modulation using a trapezoidal wave in an overmodulation region where the modulation factor is a predetermined value or more, the phase of the trapezoidal wave
  • a high-power inverter device is provided by changing the pulse width of the PWM pulse at a predetermined timing on the upper side of the trapezoidal wave.
  • FIG. 1 is a block diagram showing a configuration of a motor device 500 having an inverter device 100 according to the present invention.
  • the motor device 500 includes a motor 300 and an inverter device 100.
  • the motor device 500 is suitable for applications in which the motor 300 is driven with high efficiency by detecting an attachment position error of the rotational position sensor of the motor 300 and correcting it when the motor is driven.
  • the inverter device 100 includes a current detector 180, a current controller 120, a PWM controller 145, a drive signal generator 140, an inverter circuit 110, and a rotational position detector 130.
  • the battery 200 is a DC voltage source of the inverter device 100, and the DC voltage DCV of the battery 200 is converted into a variable voltage and variable frequency three-phase AC by the inverter circuit 110 of the inverter device 100 and applied to the motor 300.
  • the motor 300 is a synchronous motor that is rotationally driven by supplying three-phase alternating current.
  • a rotation position sensor 320 is attached to the motor 300 in order to control the phase of the three-phase AC applied voltage in accordance with the phase of the induced voltage of the motor 300.
  • the detection position ⁇ s is calculated from the input signal.
  • winding is more suitable for a rotation position sensor, the sensor using a GMR sensor and a Hall element can be used.
  • the inverter device 100 has a current control function for controlling the output of the motor 300.
  • the current detection unit 180 detects a three-phase motor current with a current sensor Ict, and detects a dq current detection value (Id ′, Iq) obtained by dq conversion from the three-phase current detection value (Iu, Iv, Iw) and the rotational position ⁇ .
  • Dq current converter 160 for outputting ') and a current filter 170 for smoothing the dq current detection values (Id', Iq ') and outputting the current detection values (Id, Iq).
  • the current controller 120 outputs a voltage command (Vd *, Vq *) so that the detected current value (Id, Iq) matches the input current command value (Id *, Iq *).
  • the voltage command (Vd *, Vq *) is converted into two-phase / three-phase based on the rotation angle ⁇ , and the three-phase voltage command (Vu *, Vv *, Vw *) on which the third harmonic is superimposed.
  • a PWM pulse is generated by performing pulse width modulation (PWM) using a modulated wave according to the above.
  • PWM pulse width modulation
  • the modulation wave is linearly approximated to generate a PWM pulse, and when performing trapezoidal wave modulation, which is PWM using a trapezoidal modulation wave, PWM is performed at the upper side of the trapezoidal wave.
  • a voltage adjustment pulse for changing the pulse width of the pulse is generated.
  • the PWM pulse generated by the PWM controller 145 is converted into a drive signal DR by the drive signal generator 140 and output to the inverter circuit 110.
  • the semiconductor switch element of the inverter circuit 110 is on / off controlled by the drive signal DR, and the output voltage of the inverter circuit 110 is adjusted.
  • the motor rotational speed ⁇ r is calculated from the time change of the rotational position ⁇ , and the voltage command or current is set so as to coincide with the speed command from the host controller. Create directives.
  • a current command (Id *, Iq *) is created using a relational expression or map of the motor current (Id, Iq) and the motor torque.
  • FIG. 2A shows a modulation signal waveform and a carrier signal waveform.
  • a modulation signal (modulation wave 1) having a relatively low modulation rate, a maximum modulation wave (modulation wave 2) that can be sinusoidally modulated, and sine wave modulation are shown.
  • a linearly approximated trapezoidal modulation wave (modulation wave 3), a modulation wave (modulation wave 4) in which the inverter output is maximized, and a carrier signal that generates a PWM pulse by comparing with the modulation wave signal It shows.
  • 2B shows a PWM pulse signal when the modulation wave 2 is used, and FIG.
  • FIG. 2C shows a PWM pulse signal when the modulation wave 3 is used.
  • FIG. 2 (c) almost 100% of the PWM pulse is continuously on in the section of the electrical angle of 30 to 150 degrees.
  • FIG. 2 (d) shows a PWM pulse signal of the modulated wave 4, and this PWM pulse signal is on in all sections of electrical angle 0 to 180 degrees.
  • the modulated wave H ( ⁇ ) on which the third harmonic is superimposed can be linearly approximated near the zero cross. Further, as the modulation rate increases, the modulation wave H ( ⁇ ) approaches a trapezoidal wave such as the modulation wave 3 from a shape such as the modulation wave 2. Therefore, in a region where the modulation factor is equal to or higher than a predetermined value, for example, 1.15 or higher, it is possible to generate a PWM pulse by calculation by using a trapezoidal wave such as the modulation wave 3. As a result, the PWM modulation process using a microcomputer or the like can be simplified, and at the same time, the voltage error of the PWM pulse caused by the modulation wave H ( ⁇ ) and the carrier signal being asynchronous can be controlled.
  • a predetermined value for example, 1.15 or higher
  • an angle interval of ⁇ 30 degrees in electrical angle can be linearly approximated around the zero cross of the modulated wave.
  • the electrical angle is ⁇ 35 degrees. It is preferable that the angle section be
  • the slope A of the modulated wave in a section that can be linearly approximated near the zero cross is proportional to the modulation factor corresponding to the voltage command value, and the modulated wave is proportional to the angular position ⁇ .
  • the modulated wave H ( ⁇ ′) near the zero cross can be expressed by Equation (1).
  • H ( ⁇ ′) A ⁇ ⁇ ′ (1)
  • the inverter output pulse near the zero cross is derived from the slope A of the modulation wave. Can be determined.
  • the inverter output pulse may be determined as 100% if 0 ⁇ ⁇ 180 and 0% if 180 ⁇ ⁇ 360 under the condition of
  • FIG. 3A shows a trapezoidal modulated wave (for U phase), that is, the modulated wave 3 in FIG.
  • FIG. 3B shows a PWM pulse (for U phase) generated by trapezoidal wave modulation using the modulated wave of FIG.
  • FIG. 3C shows the seventh harmonic (for U phase) in the modulated wave of FIG.
  • FIG. 3D shows a voltage adjustment pulse (for U phase) generated by being superimposed on the upper side of the trapezoid in the modulated wave of FIG.
  • FIG. 3E shows a PWM pulse of the inverter output of each of the three phases in which the voltage adjustment pulse of FIG. 3D is superimposed on the PWM pulse of FIG.
  • an angle interval of approximately 30 to 150 degrees and an angle interval of approximately 210 to 330 degrees are portions corresponding to the upper side of the trapezoidal wave.
  • the level of the modulated wave is the highest or lowest and does not change, so the PWM pulse does not change as shown in FIG.
  • all the PWM pulses generated in the upper side portion of the trapezoidal wave are on pulses (or off pulses), and no off pulse (or on pulse) is generated.
  • the error of the inverter output with respect to the voltage command becomes larger.
  • a voltage adjustment pulse as shown in FIG. 3 (d) is generated at a predetermined timing in the upper side portion of the trapezoidal wave, and is output superimposed on the PWM pulse. To do. As a result, the pulse width of the PWM pulse is forcibly changed to reduce the inverter output error.
  • the voltage adjustment pulse in the upper side portion of the trapezoidal modulated wave is generated at a timing different from the generation timing of the PWM pulse.
  • the timing according to the seventh harmonic in FIG. 3C specifically, the timing of the phase ⁇ p1 and the phase ⁇ p2 that are the timing of the opposite phase of the seventh harmonic as shown in FIG. 3D.
  • the voltage adjustment pulse is generated at the same time.
  • FIG. 3C shows only the phase ⁇ p1 and ⁇ p2 of the voltage adjustment pulse in the upper side corresponding to the angle interval of 30 to 150 degrees, but the upper side portion corresponding to the angle interval of 210 to 330 degrees.
  • a PWM pulse is generated near the center portion between two peaks in the modulated wave 2.
  • a PWM pulse is generated using a carrier signal having a carrier frequency that is asynchronous with respect to the frequency of the AC voltage output from the inverter circuit 110. Therefore, there is a relationship between the phase of the modulated wave and the phase of the carrier signal. It is not constant. Therefore, depending on the timing, the phase of the PWM pulse may change near the center of the modulated wave, or the PWM pulse may disappear.
  • the frequency of the carrier signal (carrier frequency) is 10 kHz and the frequency of the modulation wave is 800 Hz
  • the electrical angle per one cycle of the carrier signal is about 28 degrees, and depending on the timing, PWM is performed near the center of the modulation wave.
  • the pulse may disappear. Therefore, in the asynchronous PWM using the modulated wave 2, a phenomenon that the motor current becomes unstable occurs.
  • the PWM pulse may be generated at a desired timing by determining the phase of the PWM pulse based on the phase of the modulated wave. For example, a PWM pulse is generated at a timing opposite to the seventh harmonic of the modulated wave, and a voltage adjustment pulse is superimposed on the PWM pulse and output. In this way, the inverter circuit 110 can be stably controlled and the seventh harmonic can be reduced.
  • a method called pulse shift for shifting the position of a PWM pulse from a position corresponding to a carrier signal is known.
  • the PWM controller 145 shifts the ON / OFF timing of the PWM pulse from the timing at which the modulated wave and the carrier signal intersect in order to generate the PWM pulse at the timing corresponding to the desired phase of the modulated wave.
  • the PWM pulse can be generated at an arbitrary timing different from the timing based on the carrier signal by adjusting the shift amount according to the phase of the modulated wave.
  • asynchronous PWM In the above description, the case of asynchronous PWM is taken as an example. However, PWM control using a trapezoidal modulated wave can be performed by a similar method even in synchronous PWM. Unlike the asynchronous PWM, the synchronous PWM maintains the relationship between the phase of the modulated wave and the phase of the carrier signal, and the period of the modulated wave is set to an integral multiple of the period of the carrier signal, for example. Except this point, the same applies to both synchronous PWM and asynchronous PWM.
  • the PWM controller 145 changes the pulse width of the PWM pulse at the upper side of the trapezoidal modulated wave regardless of whether the PWM control method is asynchronous PWM or synchronous PWM.
  • the voltage adjustment pulse is generated as follows.
  • the time interval at the center of the ON pulse or the time interval at the center of the OFF pulse in the plurality of PWM pulses is controlled to be different from the time interval corresponding to the period of the carrier signal.
  • the PWM controller 145 generates the voltage adjustment pulse at a timing different from the generation timing of the PWM pulse in the section of the upper side portion of the trapezoidal modulation wave, thereby The pulse width of the PWM pulse is changed at a predetermined timing.
  • the inverter output frequency is relatively large with respect to the carrier frequency. If the inverter output frequency is reduced, it can be handled in the same manner as in FIG. 3 except that the number of PWM pulses near the zero cross of the trapezoidal modulated wave and the number of pulses superimposed on the upper side portion are increased.
  • FIG. 4A shows a case where the PWM pulse is turned on in the first half of the triangular wave carrier, that is, in the rising section of the triangular wave carrier signal, from the phase relationship between the modulated wave and the triangular wave carrier.
  • the signal waveform in FIG. 4A is referred to as a zero-crossing timing 1 signal waveform.
  • FIG. 4B shows a case where the PWM pulse is turned on in the latter half of the triangular wave carrier, that is, in the falling section of the triangular wave carrier signal, from the phase relationship between the modulated wave and the triangular wave carrier.
  • 4B is referred to as a zero-crossing timing 2 signal waveform.
  • 4 (A) and 4 (B) are examples when the motor is rotating at a constant speed, and the angle change width ⁇ when the motor rotates during a constant PWM carrier cycle is substantially constant, This angle change width ⁇ is equal to the carrier period.
  • a case where two to three PWM pulses are generated in a section in which a modulation wave is linearly approximated near the zero cross is shown.
  • the signal waveform of zero cross timing 1 in FIG. 4A is the case where the PWM pulse is turned on in the rising section of the triangular wave carrier signal as described above, and is an angle separated by ⁇ / 2 or more from the timing of the angular position ⁇ r.
  • the case where the modulated wave reaches the overmodulation level 1 at the position ⁇ a is shown.
  • the PWM pulse is set to High only for the interval ⁇ 2 after the timing of the angular position ⁇ r + ⁇ . Thereafter, the Low pulse is output until the angle ⁇ c at which the modulated wave H ( ⁇ ) becomes zero.
  • the PWM pulse is set to High at the timing of the angle ⁇ c, and after the angle ⁇ c, the Low pulse is output for the section ⁇ 5. Thereafter, the modulated wave reaches the overmodulation level 2 at the timing of the angle ⁇ b.
  • a PWM pulse is output by providing a middle level value of 50% duty in a transition section between a high level value where the modulated wave is 100% duty and a low level value where the duty is 0%. By doing so, the crossing with the PWM carrier that occurs when the slope of the modulation wave is steep becomes discontinuous (see FIG. 7), thereby preventing the phenomenon that the pulse component disappears.
  • the duty since the duty is 50% near the zero crossing of the inverter output voltage, the average voltage during that time becomes 0 V, and there is a problem that the inverter output decreases.
  • the electrical angle range before and after the electrical angle at which the modulated wave crosses zero for example, in the range of ⁇ 30 degrees, the output voltage on the positive side in the range of ⁇ 30 degrees and the range of +30 degrees
  • the negative output voltage is made equal to suppress the output drop in the electrical angle range of ⁇ 30 degrees.
  • the PWM pulse can accurately generate a magnitude corresponding to the modulation wave, it is possible to prevent a decrease in the inverter output.
  • the PWM pulse width to be output by the PWM controller 145 will be described using a section of the rotation angle ⁇ b reaching the overmodulation level 2 from the rotation angle ⁇ c of the zero cross point of the modulated wave.
  • the modulation wave is normalized from -1 (overmodulation level 1) to +1 (overmodulation level 2)
  • the area becomes 1/2.
  • the OnDuty that can be output in the normalized modulated wave ⁇ 1 to +1 interval is 100%
  • the PWM controller 145 generates the PWM pulse so that the integrated values of the on-pulse and off-pulse areas of the PWM pulse are equal in the angle interval ⁇ a to ⁇ b linearly approximated around the zero cross point ⁇ c of the output voltage. To do.
  • the signal waveform at zero cross timing 2 in FIG. 4B is a case where the PWM pulse is turned on in the falling section of the triangular wave carrier signal as described above, and an angle within ⁇ / 2 from the timing of the angular position ⁇ r.
  • the case where the modulated wave reaches the overmodulation level 1 at the position ⁇ a is shown.
  • the signal waveform of zero cross timing 2 it becomes equal to the overmodulation level 1 at the angular position ⁇ a.
  • FIG. 4A it is the same as FIG. 4A except that the PWM pulse becomes High on the latter half of the triangular wave carrier, that is, on the falling slope side, from the phase relationship between the modulated wave and the triangular wave carrier.
  • the PWM controller 145 generates the PWM pulse so that the pulse width changes in the vicinity of the zero cross of the modulated wave within the asynchronous PWM period. Alternatively, control is performed so that the time interval at the center of the OFF pulse is different. In other words, the PWM controller 145 has a central time interval between the on-pulses of the plurality of PWM pulses and a central time of the off-pulses at timings different from the timing based on the carrier signal in an angle interval linearly approximated around the zero-cross point of the output voltage. PWM pulses are generated such that the intervals differ based on the operating state of the inverter circuit 110, that is, the motor output request.
  • the unbalance between the positive side voltage integration (positive side voltage) and the negative side voltage integration (negative side voltage) that changes in a half cycle of the AC output is eliminated, and the inverter circuit 110
  • a stable voltage adjustment pulse can be generated in the upper side portion of the trapezoidal modulation wave that determines the output voltage of the inverter circuit 110. Therefore, it is possible to stably control the motor current by reducing the voltage error before and after entering the overmodulation region from the sine wave modulation.
  • FIG. 4 shows a PWM pulse for one phase, but the other two phases in the overmodulation mode are in the overmodulation level 1 or overmodulation level 2 state.
  • FIG. 4 shows a case where the rising edge and falling edge of the PWM pulse are synchronized with the timing of the PWM carrier cycle.
  • the rising edge and falling edge of the PWM pulse do not have to coincide with the timing of the PWM carrier cycle, and it is desirable to make the waveform of the output voltage symmetrical with respect to the angle ⁇ c.
  • the motor 300 is rotating at a constant speed
  • PWM is performed with the same logic. Pulses can be created.
  • the inverter device 100 described above includes a PWM controller 145 that generates a PWM pulse for converting a DC voltage into an AC voltage based on a motor output request, that is, based on an inverter operation state, and a PWM controller 145. And an inverter circuit 110 that drives a motor 300 by converting a DC voltage into an AC voltage using the generated PWM pulse.
  • the PWM controller 145 outputs PWM pulses generated by sine wave modulation and trapezoidal wave modulation according to the modulation factor so that the motor 300 is driven at a predetermined torque and a predetermined rotation speed in response to a motor output request.
  • the pulse width of the PWM pulse is changed at a predetermined timing on the upper side of the trapezoidal wave.
  • the voltage adjustment pulse is shifted at a predetermined timing in the upper side portion of the trapezoidal modulation wave based on the phase difference amount between the trapezoidal modulation wave and the carrier signal by shifting the timer comparison value according to the inverter operating state.
  • the pulse width of the PWM pulse can be changed. Note that the pulse width of the PWM pulse may be changed by other methods.
  • a PWM pulse can be generated with a phase that reduces low-order harmonic components included in the inverter output voltage.
  • FIG. 5 is a configuration diagram of an electric power steering apparatus to which the motor driving apparatus shown in one embodiment of the present invention is applied.
  • the electric actuator of the electric power steering is composed of a torque transmission mechanism 902, a motor 300, and an inverter device 100 as shown in FIG.
  • the electric power steering apparatus includes an electric actuator, a handle (steering) 900, a steering detector 901, and an operation amount command unit 903, and the operation force of the handle 900 steered by the driver is torque-assisted using the electric actuator.
  • the torque command ⁇ * of the electric actuator is created by the operation amount command unit 903 as a steering assist torque command for the handle 900.
  • the steering force of the driver is reduced by using the output of the electric actuator driven by the torque command ⁇ *.
  • Inverter device 100 receives torque command ⁇ * as an input command, and controls the motor current so as to follow the torque command value from the torque constant of motor 300 and torque command ⁇ *.
  • the motor output ⁇ m output from the output shaft directly connected to the rotor of the motor 300 transmits torque to the rack 910 of the steering device via the torque transmission mechanism 902 using a reduction mechanism such as a worm, a wheel or a planetary gear, or a hydraulic mechanism. To do. Due to the torque transmitted to the rack 910, the steering force (operating force) of the driver's handle 900 is reduced (assisted) by the electric force, and the steering angles of the wheels 920 and 921 are operated.
  • a reduction mechanism such as a worm, a wheel or a planetary gear, or a hydraulic mechanism.
  • This assist amount is determined as follows. That is, a steering angle and a steering torque are detected by a steering detector 901 incorporated in the steering shaft, and a torque command ⁇ * is calculated by an operation amount command unit 903 taking into account state quantities such as vehicle speed and road surface condition.
  • the inverter device 100 has an advantage that low vibration and low noise can be achieved by averaging the inverter output voltage even when rotating at high speed.
  • FIG. 6 is a diagram showing an electric vehicle 600 to which the inverter device 100 according to the present invention is applied.
  • Electric vehicle 600 has a power train in which motor 300 is applied as a motor / generator.
  • a front wheel axle 601 is rotatably supported at the front portion of the electric vehicle 600, and front wheels 602 and 603 are provided at both ends of the front wheel axle 601.
  • a rear wheel axle 604 is rotatably supported at the rear portion of the electric vehicle 600, and rear wheels 605 and 606 are provided at both ends of the rear wheel axle 604.
  • a differential gear 611 that is a power distribution mechanism is provided at the center of the front wheel axle 601, and the rotational driving force transmitted from the engine 610 via the transmission 612 is distributed to the left and right front wheel axles 601. ing.
  • the engine 610 and the motor 300 are mechanically connected via a belt provided between a pulley provided on the crankshaft of the engine 610 and a pulley provided on a rotation shaft of the motor 300.
  • the rotational driving force of the motor 300 can be transmitted to the engine 610, and the rotational driving force of the engine 610 can be transmitted to the motor 300, respectively.
  • the three-phase AC power controlled by the inverter device 100 is supplied to the stator coil of the stator, whereby the rotor rotates and generates a rotational driving force corresponding to the three-phase AC power.
  • the motor 300 operates as a motor controlled by the inverter device 100, and operates as a generator that generates three-phase AC power when the rotor rotates by receiving the rotational driving force of the engine 610.
  • the inverter device 100 is a power conversion device that converts DC power supplied from a high-voltage battery 622, which is a high-voltage (42V or 300V) system power supply, into three-phase AC power, and is based on the operation command value and the magnetic pole position of the rotor.
  • the three-phase alternating current flowing in the stator coil of the motor 300 is controlled.
  • the three-phase AC power generated by the motor 300 is converted into DC power by the inverter device 100 and charges the high voltage battery 622.
  • the high voltage battery 622 is electrically connected to the low voltage battery 623 via a DC-DC converter 624.
  • the low voltage battery 623 constitutes a low voltage (14v) power source of the electric vehicle 600, and is used as a power source for a starter 625, a radio, a light, and the like that initially start (cold start) the engine 610.
  • the engine 610 When the electric vehicle 600 is in a stop state (idle stop mode) such as waiting for a signal, the engine 610 is stopped, and when the engine 610 is restarted (hot start) when the vehicle reoccurs, the motor 300 is driven by the inverter device 100, The engine 610 is restarted.
  • a stop state such as waiting for a signal
  • the engine 610 is stopped, and when the engine 610 is restarted (hot start) when the vehicle reoccurs, the motor 300 is driven by the inverter device 100, The engine 610 is restarted.
  • the auxiliary machine is driven by driving the motor 300.
  • the motor 300 is driven to assist the driving of the engine 610 even in the acceleration mode or the high load operation mode. Conversely, when the high voltage battery 622 is in a charge mode that requires charging, the engine 610 causes the motor 300 to generate power and charge the high voltage battery 622. That is, the motor 300 is regeneratively operated when the electric vehicle 600 is braked or decelerated.
  • the electric vehicle 600 generates a PWM pulse for converting a DC voltage into an AC voltage based on a motor output request, and converts the DC voltage into an AC voltage using the generated PWM pulse to drive the motor.
  • a DC / DC converter 624 that boosts the DC voltage.
  • Inverter device 100 performs either the central time interval of the on-pulses of the plurality of PWM pulses or the central time interval of the off-pulses in an angle interval that is linearly approximated around the zero cross point of the output voltage by the processing of PWM controller 145 as described above. One of them is changed based on the output voltage of the DC / DC converter 624 to generate a PWM pulse.
  • the pulse width of the PWM pulse is changed based on the output voltage of the DC / DC converter 624 at a predetermined timing on the upper side of the trapezoidal wave.
  • linear approximation is performed around the zero cross point of the inverter output voltage (corresponding to ⁇ c shown in FIG. 4) according to the output voltage of the DC / DC converter 624 that controls the DC voltage.
  • the time interval at the center of the ON pulse of the PWM pulse in the angle interval (corresponding to ⁇ a to ⁇ b shown in FIG. 4) or the time interval at the center of the OFF pulse is changed.
  • the pulse width of the PWM pulse is changed based on the output voltage of the DC / DC converter 624 at a predetermined timing on the upper side of the trapezoidal wave.
  • the inverter device 100 of the present invention includes a PWM pulse generator that generates a PWM pulse for converting a DC voltage into an AC voltage based on a motor output request, that is, a PWM controller 145 and a PWM controller 145. And an inverter circuit 110 that drives a motor 300 by converting a DC voltage into an AC voltage using the generated PWM pulse.
  • the PWM controller 145 changes the pulse width of the PWM pulse at a predetermined timing on the upper side of the trapezoidal wave when performing the trapezoidal wave modulation using the trapezoidal wave in the overmodulation region.
  • the PWM controller 145 generates a PWM pulse by asynchronous PWM using a carrier signal having a carrier frequency asynchronous to the frequency of the AC voltage. Since it did in this way, stable control of a motor is attained also in asynchronous PWM with few processing loads.
  • the PWM controller 145 generates a PWM pulse at a timing based on the carrier signal, and changes the pulse width of the PWM pulse at a timing different from the generation timing of the PWM pulse. Generate a voltage regulation pulse. Since this is done, the pulse width of the PWM pulse can be changed at a desired timing regardless of the carrier frequency.
  • the PWM controller 145 generates a voltage adjustment pulse at a timing corresponding to a predetermined harmonic of a trapezoidal wave, for example, a seventh harmonic. Since it did in this way, the stable motor control by the inverter output which reduced the harmonic can be implement
  • a predetermined harmonic of a trapezoidal wave for example, a seventh harmonic.
  • the PWM controller 145 generates a PWM pulse at a timing different from the timing based on the carrier signal in an angle section that is linearly approximated around the zero cross point of the trapezoidal wave. Therefore, even when the motor rotates at high speed, the PWM pulse can be generated at an optimal timing from the zero cross point of the trapezoidal wave to the vicinity of the peak, and the voltage error and phase error of the inverter output can be reduced.
  • the electric vehicle 600 of the present invention includes a PWM pulse generator that generates a PWM pulse for converting a DC voltage into an AC voltage based on a motor output request, that is, a PWM controller 145 and a PWM controller 145.
  • An inverter circuit 110 that drives a motor 300 by converting a DC voltage into an AC voltage using the generated PWM pulse, and a DC / DC converter 624 that boosts the DC voltage.
  • the PWM controller 145 changes the pulse width of the PWM pulse based on the output voltage of the DC / DC converter 624 at a predetermined timing on the upper side of the trapezoidal wave when performing the trapezoidal wave modulation using the trapezoidal wave in the overmodulation region.
  • the electric vehicle 600 of the embodiment is a hybrid vehicle
  • the same effect can be obtained in the case of a plug-in hybrid vehicle, an electric vehicle, or the like.
  • the inverter device alone has been described.
  • the present invention can also be applied to a motor drive system in which an inverter device and a motor are integrated as long as the inverter device has the above-described function.

Abstract

本発明の課題は、インバータ回路の出力電圧誤差を低減し、モータを高速回転まで安定して制御することである。 インバータ装置100は、モータ出力要求に基づいて、直流電圧を交流電圧に変換するためのPWMパルスを生成するPWM制御器145と、PWM制御器145で生成されたPWMパルスにより直流電圧を交流電圧に変換してモータ300を駆動するインバータ回路110とを備える。PWM制御器145は、過変調領域において台形波を用いた台形波変調を行う際に、台形波の上辺における所定のタイミングでPWMパルスのパルス幅を変化させる。

Description

インバータ装置および電動車両
 本発明は、インバータ装置および電動車両に関する。
 PWM(パルス幅変調)制御してモータ駆動するインバータ駆動装置では、インバータの可変出力周波数に対し、キャリア周波数を一定にしてPWM制御する非同期PWM方式が多く採用されている。このため、インバータ出力周波数が高周波数になった場合、PWMパルス数が減少し、インバータの出力誤差が増大する。また、インバータの出力電圧指令が、インバータの最大出力レベル(正弦波)を上回る過変調モード時に出力電圧誤差が増大する。
 特許文献1には、インバータの出力電圧のゼロクロス点を中心に直線近似した角度区間にPWMパルスを生成して出力電圧誤差を最小限にする技術が記載されている。
特開2015-19458号公報
 特許文献1では、出力電圧のゼロクロス点を中心に直線近似した角度区間において複数のPWMパルスのオンパルスの中心時間間隔、およびオフパルスの中心時間間隔のいずれか一方をモータ出力要求に基づいて変化させてPWMパルスを生成する。このようにすることで、インバータの出力電圧誤差が生じる現象を防止している。しかしながら、特許文献1では、インバータ出力電圧(基本波)のピーク中央付近でのPWMパルスは考慮されていない。そのため、正弦波変調から過変調領域に入る前後で電圧誤差が生じてしまう課題がある。
 本発明によるインバータ装置は、モータ出力要求に基づいて、直流電圧を交流電圧に変換するためのPWMパルスを生成するPWMパルス生成部と、前記PWMパルス生成部で生成されたPWMパルスにより直流電圧を交流電圧に変換してモータを駆動するインバータ回路とを備え、前記PWMパルス生成部は、過変調領域において台形波を用いた台形波変調を行う際に、前記台形波の上辺における所定のタイミングで前記PWMパルスのパルス幅を変化させる。
 本発明による電動車両は、モータ出力要求に基づいて、直流電圧を交流電圧に変換するためのPWMパルスを生成するPWMパルス生成部と、前記PWMパルス生成部で生成されたPWMパルスにより直流電圧を交流電圧に変換してモータを駆動するインバータ回路と、前記直流電圧を昇圧するDC/DCコンバータとを備え、前記PWMパルス生成部は、過変調領域において台形波を用いた台形波変調を行う際に、前記台形波の上辺における所定のタイミングで前記PWMパルスのパルス幅を前記DC/DCコンバータの出力電圧に基づいて変化させる。
 本発明によれば、インバータ回路の出力電圧誤差を低減することができ、モータを高速回転まで安定して制御することができる。
本発明のインバータ装置の構成を示すブロック図。 一実施形態における変調波を示す波形図。 一実施形態におけるパルス生成を示す波形図。 一実施形態におけるパルス生成を示す波形図。 本発明によるインバータ装置が適用された電動パワーステアリング装置の構成図。 本発明によるインバータ装置が適用された電動車両の構成図。 従来のゼロクロス近傍を示す波形図。
 本発明は、PWM制御で半導体スイッチ素子を駆動するようにしたインバータ装置であって、変調率が所定値以上の過変調領域において台形波を用いた台形波変調を行う際に、台形波の位相に基づいて台形波の上辺における所定のタイミングでPWMパルスのパルス幅を変化させて高出力なインバータ装置を提供するものである。以下、本発明の一実施形態について図面を用いて説明する。
 図1は、本発明によるインバータ装置100を有するモータ装置500の構成を示すブロック図である。モータ装置500は、モータ300とインバータ装置100を有している。モータ装置500は、モータ300の回転位置センサの取付位置誤差を検出して、モータ駆動の際に補正することでモータ300を高効率に駆動する用途に適したものである。
 インバータ装置100は、電流検出部180、電流制御器120、PWM制御器145、ドライブ信号生成器140、インバータ回路110、および回転位置検出器130を有している。バッテリ200は、インバータ装置100の直流電圧源であり、バッテリ200の直流電圧DCVは、インバータ装置100のインバータ回路110によって可変電圧、可変周波数の3相交流に変換され、モータ300に印加される。
 モータ300は、3相交流の供給により回転駆動される同期モータである。モータ300には、モータ300の誘起電圧の位相に合わせて3相交流の印加電圧の位相を制御するために回転位置センサ320が取り付けられており、回転位置検出器130にて回転位置センサ320の入力信号から検出位置θsを演算する。ここで、回転位置センサには、鉄心と巻線とから構成されるレゾルバがより好適であるが、GMRセンサや、ホール素子を用いたセンサを用いることができる。
 インバータ装置100は、モータ300の出力を制御するための電流制御機能を有している。電流検出部180は、3相のモータ電流を電流センサIctで検出し、3相の電流検出値(Iu,Iv,Iw)と回転位置θとからdq変換したdq電流検出値(Id’,Iq’)を出力するdq電流変換器160と、dq電流検出値(Id’,Iq’)を平滑して電流検出値(Id,Iq)を出力する電流フィルタ170とを有する。電流制御器120は、電流検出値(Id,Iq)と、入力された電流指令値(Id*,Iq*)とが一致するように電圧指令(Vd*,Vq*)を出力する。
 PWM制御器145では、電圧指令(Vd*,Vq*)を回転角度θに基づき2相/3相変換し、第三高調波を重畳した3相電圧指令(Vu*,Vv*、Vw*)に応じた変調波を用いてパルス幅変調(PWM)を行うことで、PWMパルスを生成する。このとき後述するように、ゼロクロス付近では変調波を直線近似してPWMパルスを生成すると共に、台形状の変調波を用いたPWMである台形波変調を行う場合は、台形波の上辺部分においてPWMパルスのパルス幅を変化させるための電圧調整パルスを生成する。PWM制御器145により生成されたPWMパルスは、ドライブ信号生成器140にてドライブ信号DRに変換され、インバータ回路110に出力される。インバータ回路110の半導体スイッチ素子はドライブ信号DRによりオン/オフ制御され、インバータ回路110の出力電圧が調整される。
 なお、モータ装置500において、モータ300の回転速度を制御する場合には、モータ回転速度ωrを回転位置θの時間変化により演算し、上位制御器からの速度指令と一致するように電圧指令あるいは電流指令を作成する。また、モータ出力トルクを制御する場合には、モータ電流(Id,Iq)とモータトルクの関係式あるいはマップを用いて、電流指令(Id*、Iq*)を作成する。
 次に、図2を用いて、一実施形態における変調波を示す波形図について説明する。図2(a)は変調信号波形とキャリア信号波形を示し、変調率が比較的低い変調信号(変調波1)と、正弦波変調できる最大の変調波(変調波2)と、正弦波変調を直線近似した台形状の変調波(変調波3)と、インバータ出力が最大となる矩形波状態となる変調波(変調波4)、および変調波信号と大小比較してPWMパルスを生成するキャリア信号とを示している。図2(b)は、変調波2のときのPWMパルス信号を示し、図2(c)は、変調波3のときのPWMパルス信号を示す。図2(c)では、電気角度30~150度の区間でほぼ100%のPWMパルスが連続してオンである。図2(d)は、変調波4のPWMパルス信号を示し、このPWMパルス信号は、電気角度0~180度全区間でオンである。
 それぞれの変調波は、3相電圧指令(Vuc,Vvc、Vwc)の1相分の変調波H(θ)と等価であり、デッドタイムを無視すればU相の変調波Hu(θ)=Vuc/(DCV/2)にほぼ等しい。インバータ出力が飽和しない変調率=1となる時の正弦波の実効値を1とすれば、第3高調波を重畳した変調波H(θ)に含まれる基本波成分は1.15倍(115%)である(変調波2)。すなわち、変調率が1.15となる電圧指令まではインバータ出力は飽和しない。
 図2に示すように、第3高調波を重畳させた変調波H(θ)は、ゼロクロス付近で直線近似することができる。また、変調率が大きくなるほど、変調波H(θ)は変調波2のような形状から変調波3のような台形波に近づいていく。そのため、変調率が所定値以上、例えば1.15以上の領域では、変調波3のような台形波を用いることで演算によるPWMパルスの生成が可能となる。これにより、マイコン等を用いたPWM変調処理を簡素化できると同時に、変調波H(θ)とキャリア信号が非同期であることに起因するPWMパルスの電圧誤差を制御することが可能となる。なお、変調波2のときを考えれば変調波のゼロクロスを中心に電気角度で±30度の角度区間を直線近似することができるが、飽和付近の電圧誤差を考慮すれば電気角度で±35度の角度区間とするのが好ましい。
 台形波変調を用いたPWMパルス演算では、ゼロクロス付近の直線近似できる区間の変調波の傾きAは、電圧指令値に応じた変調率に比例し、変調波は角度位置θに比例する。例えば、ゼロクロス付近の角度をθ’とし、θ’を-30≦θ’≦30とすると、ゼロクロス付近の変調波H(θ’)は式(1)で表すことができる。
H(θ’)=A・θ’   (1)
 すなわち、ゼロクロス付近の変調波H(θ)は、変調率の代わりに変調波の傾きAを用いて表すことができるので、ゼロクロス付近のインバータ出力パルス、すなわちPWMパルスは、変調波の傾きAから決定することができる。
 なお、|H(θ)|<|A・θ|となる条件で、0<θ<180であれば100%、180<θ<360であれば0%としてインバータ出力パルスを決定すれば良い。
 次に、図3を用いて、一実施形態におけるパルス生成を示す波形図について説明する。図3(a)は、台形波状の変調波(U相分)、すなわち図2(a)の変調波3を示している。図3(b)は、図3(a)の変調波を用いた台形波変調により生成されるPWMパルス(U相分)を示している。図3(c)は、図3(a)の変調波における7次高調波(U相分)を示している。図3(d)は、図3(a)の変調波における台形上辺部分に重畳して生成される電圧調整パルス(U相分)を示している。図3(e)は、図3(b)のPWMパルスに図3(d)の電圧調整パルスを重畳した三相各相のインバータ出力のPWMパルスを示している。
 図3(a)の台形変調波において、概ね30~150度の角度区間と、概ね210~330度の角度区間とは、台形波の上辺に対応する部分である。この上辺部分では、変調波のレベルが最高または最低であり変化しないため、図3(b)の様にPWMパルスが変化しない。換言すると、台形波の上辺部分において発生するPWMパルスは全てオンパルス(またはオフパルス)となり、オフパルス(またはオンパルス)が発生しない。このようにPWMパルスが変化しない期間が長くなると、電圧指令に対するインバータ出力の誤差が大きくなる。そこで本実施形態では、PWM制御器145において台形波変調を行う際に、台形波の上辺部分における所定のタイミングで図3(d)のような電圧調整パルスを生成し、PWMパルスに重ねて出力する。これにより、PWMパルスのパルス幅を強制的に変化させ、インバータ出力の誤差を低減する。
 なお、台形変調波の上辺部分における電圧調整パルスは、PWMパルスの生成タイミングとは異なるタイミングで生成される。好ましくは、図3(c)の7次高調波に応じたタイミング、具体的には図3(d)に示すように、7次高調波の逆位相のタイミングである位相θp1および位相θp2のタイミングに合わせて、電圧調整パルスを生成するようにする。この電圧調整パルスを台形波変調による本来のPWMパルスに重ねてPWM制御器145から出力することで、図3(e)に示すようなインバータ出力のPWMパルスを生成することができる。その結果、電圧誤差と位相誤差の影響が大きな過変調領域においても、非同期PWMで電流制御を安定継続することができる。
 なお、図3(c)では、30~150度の角度区間に対応する上辺部分での電圧調整パルスの位相θp1、θp2のみを示しているが、210~330度の角度区間に対応する上辺部分での電圧調整パルスの位相についても同様である。また、7次高調波に限らず、他の次数の高調波に応じたタイミングで電圧調整パルスを生成してもよい。その場合は、台形波の上辺部分において、位相θp1、θp2とは異なるタイミングで電圧調整パルスが生成されることになる。
 従来のPWM制御では、図2(a)のような変調波2を用いた場合に、変調波2における2つのピークの間にある中央部付近でPWMパルスが生成されることが好ましい。しかしながら、非同期PWMでは、インバータ回路110が出力する交流電圧の周波数に対して非同期のキャリア周波数を有するキャリア信号を用いてPWMパルスを生成するため、変調波の位相とキャリア信号の位相との関係が一定ではない。したがって、タイミングによっては、変調波の中央部付近でPWMパルスの位相が変化したり、PWMパルスが消失することがある。例えば、キャリア信号の周波数(キャリア周波数)が10kHzで、変調波の周波数が800Hzの場合には、キャリア信号一周期あたりの電気角度は約28度となり、タイミングによっては変調波の中央部付近でPWMパルスが消失してしまうことがある。そのため、変調波2を用いた非同期PWMでは、モータ電流が不安定になる現象が発生してしまう。
 そこで、本発明の一実施形態では、非同期PWMであっても変調波の位相に基づいてPWMパルスの位相を決定することで、所望のタイミングでPWMパルスを生成するようにしてもよい。例えば、変調波の7次高調波に対して逆位相となるタイミングでPWMパルスを生成し、このPWMパルスに電圧調整パルスを重畳して出力する。このようにすれば、インバータ回路110を安定制御できると共に、7次高調波を低減できる効果もある。
 上記のようにPWMパルスを所望のタイミングで出力する方法として、PWMパルスの位置をキャリア信号に応じた位置からシフトさせるパルスシフトと呼ばれる手法が知られている。この手法では、PWM制御器145において、変調波の所望の位相に応じたタイミングでPWMパルスを生成するために、PWMパルスのON/OFFタイミングを、変調波とキャリア信号が交差するタイミングからシフトさせる。このとき、変調波の位相に応じてシフト量を調整することで、キャリア信号に基づくタイミングとは異なる任意のタイミングでPWMパルスを生成することができる。
 なお、上記の説明では非同期PWMの場合を例としたが、同期PWMでも同様の手法により、台形変調波を用いたPWM制御を行うことができる。同期PWMでは非同期PWMとは異なり、変調波の位相とキャリア信号の位相との関係が一定に保たれており、変調波の周期は例えばキャリア信号の周期の整数倍に設定されている。この点以外は、同期PWMでも非同期PWMでも同様である。
 以上説明したように、本発明の一実施形態では、PWM制御器145において、PWM制御の方式が非同期PWMか同期PWMかに関わらず、台形変調波の上辺部分でPWMパルスのパルス幅が変化するように電圧調整パルスを生成する。その結果、複数のPWMパルスにおけるONパルス中心の時間間隔、またはOFFパルス中心の時間間隔は、キャリア信号の周期に対応する時間間隔とは異なるように制御される。すなわち、本発明の一実施形態によるPWM制御器145は、台形変調波の上辺部分の区間において、PWMパルスの生成タイミングとは異なるタイミングで電圧調整パルスを生成することで、台形変調波の上辺における所定のタイミングでPWMパルスのパルス幅を変化させる。
 なお、図3では、キャリア周波数に対してインバータ出力周波数の比較的大きな状態を図示している。インバータ出力周波数が小さくなれば、台形変調波のゼロクロス付近におけるPWMパルス数と、上辺部分に重畳するパルス数とが増えることを除けば、図3と同様に扱うことができる。
 次に、図4を用いて、一実施形態におけるパルス生成を示す波形図について説明する。図4(A)は、変調波と三角波キャリアとの位相関係から、三角波キャリアの前半、すなわち三角波キャリア信号の立ち上がり区間にPWMパルスがオンとなる場合を示す。図4(A)の信号波形をゼロクロス・タイミング1の信号波形と呼ぶ。図4(B)は、変調波と三角波キャリアとの位相関係から、三角波キャリアの後半、すなわち三角波キャリア信号の立ち下がり区間にPWMパルスがオンとなる場合を示している。図4(B)の信号波形をゼロクロス・タイミング2の信号波形と呼ぶ。
 図4(A)、(B)ともに、モータが一定速度で回転しているときの一例であり、一定のPWMキャリア周期の間にモータが回転した時の角度変化幅Δθがほぼ一定であり、この角度変化幅△θがキャリア周期と同等である。また、変調波をゼロクロス近傍で直線近似した区間において、PWMパルスが2~3パルス発生する場合を示す。
 図4(A),(B)において、(a)は変調波と三角波キャリア信号を示し、(b)は1PWM周期で出力すべきPWMパルスを示し、(c)は、マイコンを使ってPWMパルスを生成する場合のPWMタイマ値を示し、この実施形態では、鋸波状のPWMタイマを示している。
 図4(A)のゼロクロス・タイミング1の信号波形は、上述したように、三角波キャリア信号の立ち上がり区間にPWMパルスがオンとなる場合であり、角度位置θrのタイミングからΔθ/2以上離れた角度位置θaで変調波が過変調レベル1に達する場合を示している。ゼロクロス・タイミング1の信号波形では、角度位置θr+Δθのタイミング以降でPWMパルスを区間θ2だけHighにする。その後、変調波H(θ)がゼロになる角度θcまでLowパルスを出力する。そして、角度θcのタイミングでPWMパルスをHighにし、角度θc以降にPWMパルスを区間θ5だけLowパルスを出力する。その後、変調波は角度θbのタイミングで過変調レベル2に達する。
 従来では、過変調モードにおいて、変調波がduty100%となるハイレベル値及びduty0%となるローレベル値との遷移区間に、duty50%となるミドルレベル値を設けてPWMパルスを出力していた。このようにすることで、変調波の傾斜が急峻な場合に生じるPWMキャリアとの交差が不連続になって(図7参照)パルス成分が消失する現象を防止していた。しかしながら、この方式ではインバータ出力電圧のゼロクロス付近でduty50%とするため、その間の平均電圧は0Vになり、インバータ出力が低下してしまうという課題がある。
 そこで、本発明の一実施形態では、変調波がゼロクロスする電気角度の前後の電気角度範囲、たとえば、±30度範囲では、-30度範囲での正側の出力電圧と、+30度範囲での負側の出力電圧が等しくなるようにして、±30度の電気角度範囲での出力低下を抑制する。
 図4(A),(B)において、θ2=θ5とすれば、変調波のゼロクロスを中心に負側電圧と正側電圧の大きさを平衡にできる。また、変調波のゼロクロス付近において、θc-θa=θb-θcに調整してパルスエッジを発生できるため、インバータ出力の位相誤差を低減できる。更に、PWMパルスは変調波に応じた大きさを正確に発生できるため、インバータ出力の低下も防止できる。
 ここで、PWM制御器145が出力すべきPWMパルス幅について、変調波のゼロクロス点の回転角度θcから過変調レベル2に達する回転角度θbの区間を用いて説明する。変調波を規格化して-1(過変調レベル1)から+1(過変調レベル2)とした場合、回転角度θcの規格化値=0から回転角度θbの規格化値=1との変調波の面積は、1/2になる。一方、規格化した変調波-1~+1の区間(回転角度θa~θb)で出力できるOnDutyを100%とすると、規格化した変調波0~1の区間(回転角度θc~θb)でのOnDutyは50~100%(Δ50%)に相当する。すなわち、図4(A)における回転角度θc~θbの区間平均OnDutyは75%になり、回転角度θc~θbの区間でPWMパルスの1.5パルス分で、OnDuty=75%となるように、θ4、θ5、θ6を決定する。θ4とθ6はOnDutyであるので、好ましくは、θ5=25%のOffDutyを設定すればよい。また、回転角度θa~θcの区間は同様に、θ1とθ3はOffDutyを設定し、θ2にOnDuty=25%を設定すればよい。
 このように、PWM制御器145は、出力電圧のゼロクロス点θcを中心に直線近似した角度区間θa~θbにおいて、PWMパルスのオンパルスとオフパルスの面積を積分した値が等しくなるようにPWMパルスを生成する。
 図4(B)のゼロクロス・タイミング2の信号波形は、上述したように、三角波キャリア信号の立ち下がり区間にPWMパルスがオンとなる場合であり、角度位置θrのタイミングからΔθ/2以内の角度位置θaで変調波が過変調レベル1に達する場合を示している。ゼロクロス・タイミング2の信号波形では、角度位置θaで過変調レベル1と等しくなる。この点が図4(A)と異なる。したがって、変調波と三角波キャリアとの位相関係から三角波キャリアの後半、すなわち立ち下がりスロープ側でPWMパルスがHighになる点以外は図4(A)と同様である。
 本発明の一実施形態では、PWM制御器145において、非同期PWMの周期内で変調波のゼロクロス付近でパルス幅が変化するようにPWMパルスを生成するため、PWMパルスのONパルス中心の時間間隔、またはOFFパルス中心の時間間隔が異なるように制御することになる。すなわち、PWM制御器145は、出力電圧のゼロクロス点を中心に直線近似した角度区間において、キャリア信号に基づくタイミングとは異なるタイミングで、複数のPWMパルスのオンパルスの中心時間間隔と、オフパルスの中心時間間隔がインバータ回路110の運転状態、すなわち、モータ出力要求に基づいて異なるようにPWMパルスが生成される。その結果、本実施形態では、交流出力の1/2周期で変化する正側の電圧積分(正側電圧)と負側の電圧積分(負側電圧)のアンバランスを解消して、インバータ回路110の出力電圧誤差が生じる現象を防止するとともに、インバータ回路110の出力電圧を決定する台形変調波の上辺部分において安定した電圧調整パルスを生成できる。そのため、正弦波変調から過変調領域に入る前後の電圧誤差を低減してモータ電流を安定して制御することができる。
 ここで、図4では、1相分のPWMパルスを示しているが、過変調モードにある場合の他の2相は過変調レベル1あるいは過変調レベル2の状態にある。
 なお、図4では、PWMパルスの立ち上がりエッジおよび立ち下がりエッジをPWMキャリア周期のタイミングに同期させた場合を示している。しかし、PWMパルスの立ち上がりエッジおよび立ち下がりエッジを、PWMキャリア周期のタイミングに一致させなくても良く、角度θcを基準に出力電圧の波形を対称波形とすること望ましい。また、モータ300が一定速度で回転している場合について説明したが、モータ300が加減速している場合には、加速度あるいは減速度を考慮してΔθを演算すれば、同様のロジックにてPWMパルスが作成できる。
 以上説明したインバータ装置100は、モータ出力要求に基づいて、すなわち、インバータ運転状態に基づいて、直流電圧を交流電圧に変換するためのPWMパルスを生成するPWM制御器145と、PWM制御器145で生成されたPWMパルスにより直流電圧を交流電圧に変換してモータ300を駆動するインバータ回路110とを備える。PWM制御器145は、モータ出力要求に応じてモータ300が所定トルクと所定回転速度で駆動されるように、正弦波変調と台形波変調で生成したPWMパルスを変調率に応じて出力する。また、変調率が所定の変調率となる過変調領域において台形波を用いた台形波変調を行う際に、台形波の上辺における所定のタイミングでPWMパルスのパルス幅を変化させる。
 以上説明した実施形態では、インバータ運転状態に応じてタイマ比較値をシフトさせることにより台形変調波とキャリア信号間の位相差分量に基いて、台形変調波の上辺部分において所定のタイミングで電圧調整パルスを生成することで、PWMパルスのパルス幅を変化させることができる。なお、この方式以外でPWMパルスのパルス幅を変化させてもよい。
 本発明の一実施形態では、PWMキャリア周期内で任意のタイミングにパルスシフトして、台形変調波の上辺部分とゼロクロス付近のPWMパルスタイミングを調整することができるため、非同期PWM制御においてもインバータ出力電圧(位相含む)誤差の影響を低減したインバータ出力が得られる。また、同期PWM制御に比べてマイコン負荷の増大を抑制することができるといった効果がある。
 本発明の一実施形態では、インバータ出力電圧に含まれる低次の高調波成分を低減する位相でPWMパルスを生成できると言った効果がある。
 次に、図5を用いて、本発明の一実施形態に示したモータ駆動装置を適用した電動パワーステアリング装置の構成について説明する。
 図5は、本発明の一実施形態に示したモータ駆動装置を適用した電動パワーステアリング装置の構成図である。
 電動パワーステアリングの電動アクチュエータは、図5に示すように、トルク伝達機構902と、モータ300と、インバータ装置100とから構成される。電動パワーステアリング装置は、電動アクチュエータと、ハンドル(ステアリング)900と、操舵検出器901および操作量指令器903を備え、運転者が操舵するハンドル900の操作力は電動アクチュエータを用いてトルクアシストする構成を有する。
 電動アクチュエータのトルク指令τ*は、ハンドル900の操舵アシストトルク指令として操作量指令器903にて作成される。トルク指令τ*により駆動される電動アクチュエータの出力を用いて運転者の操舵力が軽減される。インバータ装置100は、入力指令としてトルク指令τ*を受け、モータ300のトルク定数とトルク指令τ*とからトルク指令値に追従するようにモータ電流を制御する。
 モータ300のロータに直結された出力軸から出力されるモータ出力τmはウォーム、ホイールや遊星ギヤなどの減速機構あるいは油圧機構を用いたトルク伝達機構902を介し、ステアリング装置のラック910にトルクを伝達する。ラック910に伝達されたトルクにより、運転者のハンドル900の操舵力(操作力)が電動力にて軽減(アシスト)され、車輪920,921の操舵角が操作される。
 このアシスト量は次のようにして決定される。すなわち、ステアリングシャフトに組み込まれた操舵検出器901により操舵角や操舵トルクが検出され、車両速度や路面状態などの状態量を加味して操作量指令器903によりトルク指令τ*が算出される。
 本発明の一実施形態によるインバータ装置100は、高速回転した場合にもインバータ出力電圧の平均化により、低振動・低騒音化できる利点がある。
 図6は、本発明によるインバータ装置100が適用された電動車両600を示す図である。電動車両600は、モータ300をモータ/ジェネレータとして適用したパワートレインを有する。
 電動車両600のフロント部には、前輪車軸601が回転可能に軸支されており、前輪車軸601の両端には、前輪602,603が設けられている。電動車両600のリア部には、後輪車軸604が回転可能に軸支されており、後輪車軸604の両端には後輪605,606が設けられている。
 前輪車軸601の中央部には、動力分配機構であるデファレンシャルギア611が設けられており、エンジン610から変速機612を介して伝達された回転駆動力を左右の前輪車軸601に分配するようになっている。エンジン610とモータ300とは、エンジン610のクランクシャフトに設けられたとモータ300の回転軸に設けられたプーリーの間に架け渡されたベルトを介して機械的に連結されている。
 これにより、モータ300の回転駆動力がエンジン610に、エンジン610の回転駆動力がモータ300にそれぞれ伝達できるようになっている。モータ300は、インバータ装置100によって制御された3相交流電力がステータのステータコイルに供給されることによって、ロータが回転し、3相交流電力に応じた回転駆動力を発生する。
 すなわち、モータ300は、インバータ装置100によって制御されて電動機として動作する一方、エンジン610の回転駆動力を受けてロータが回転することによって、3相交流電力を発生する発電機として動作する。
 インバータ装置100は、高電圧(42Vあるいは300V)系電源である高圧バッテリ622から供給された直流電力を3相交流電力に変換する電力変換装置であり、運転指令値とロータの磁極位置とに基づいて、モータ300のステータコイルに流れる3相交流電流を制御する。
 モータ300によって発電された3相交流電力は、インバータ装置100によって直流電力に変換されて高圧バッテリ622を充電する。高圧バッテリ622にはDC-DCコンバータ624を介して低圧バッテリ623に電気的に接続されている。低圧バッテリ623は、電動車両600の低電圧(14v)系電源を構成するものであり、エンジン610を初期始動(コールド始動)させるスタータ625,ラジオ,ライトなどの電源に用いられている。
 電動車両600が信号待ちなどの停車時(アイドルストップモード)にあるとき、エンジン610を停止させ、再発車時にエンジン610を再始動(ホット始動)させる時には、インバータ装置100でモータ300を駆動し、エンジン610を再始動させる。
 なお、アイドルストップモードにおいて、高圧バッテリ622の充電量が不足している場合や、エンジン610が十分に温まっていない場合などにおいては、エンジン610を停止せず駆動を継続する。また、アイドルストップモード中においては、エアコンのコンプレッサなど、エンジン610を駆動源としている補機類の駆動源を確保する必要がある。この場合、モータ300を駆動させて補機類を駆動する。
 加速モード時や高負荷運転モードにある時にも、モータ300を駆動させてエンジン610の駆動をアシストする。逆に、高圧バッテリ622の充電が必要な充電モードにある時には、エンジン610によってモータ300を発電させて高圧バッテリ622を充電する。すなわち、モータ300は、電動車両600の制動時や減速時などでは回生運転される。
 電動車両600は、モータ出力要求に基づいて、直流電圧を交流電圧に変換するためのPWMパルスを生成し、生成されたPWMパルスにより直流電圧を交流電圧に変換してモータを駆動するインバータ装置100と、直流電圧を昇圧するDC/DCコンバータ624とを備えている。インバータ装置100は、前述したようなPWM制御器145の処理により、出力電圧のゼロクロス点を中心に直線近似した角度区間において複数のPWMパルスのオンパルスの中心時間間隔、およびオフパルスの中心時間間隔のいずれか一方をDC/DCコンバータ624の出力電圧に基づいて変化させてPWMパルスを生成する。また、過変調領域において台形波を用いた台形波変調を行う際に、台形波の上辺における所定のタイミングでPWMパルスのパルス幅をDC/DCコンバータ624の出力電圧に基づいて変化させる。
 本発明によるインバータ駆動装置を用いた電動車両では、直流電圧を制御するDC/DCコンバータ624の出力電圧に応じて、インバータ出力電圧のゼロクロス点(図4に示すθcに相当)を中心に直線近似した角度区間(図4に示すθa~θbに相当)のPWMパルスのONパルス中心の時間間隔、またはOFFパルス中心の時間間隔を変化させる。また、過変調領域において台形波を用いた台形波変調を行う際に、台形波の上辺における所定のタイミングでPWMパルスのパルス幅をDC/DCコンバータ624の出力電圧に基づいて変化させる。これにより、電動車両600のDC/DCコンバータ624の出力電圧を調整してインバータ装置100の出力範囲を拡大する制御を安定的に行うことができる。
 以上説明した本発明によるインバータ装置によれば、以下のような作用効果を奏する。(1)本発明のインバータ装置100は、モータ出力要求に基づいて、直流電圧を交流電圧に変換するためのPWMパルスを生成するPWMパルス生成部、すなわちPWM制御器145と、PWM制御器145で生成されたPWMパルスにより直流電圧を交流電圧に変換してモータ300を駆動するインバータ回路110とを備える。PWM制御器145は、過変調領域において台形波を用いた台形波変調を行う際に、台形波の上辺における所定のタイミングでPWMパルスのパルス幅を変化させる。このようにしたので、正弦波変調と台形波変調との電圧誤差を調整し、インバータ装置100の運転状態によって生じる出力電圧や位相の誤差を低減できる。その結果、モータを高速回転まで安定して制御することができる。
(2)本発明のインバータ装置100において、PWM制御器145は、交流電圧の周波数に対して非同期のキャリア周波数を有するキャリア信号を用いた非同期PWMにより、PWMパルスを生成する。このようにしたので、処理負荷の少ない非同期PWMにおいても、モータの安定制御が可能となる。
(3)本発明のインバータ装置100において、PWM制御器145は、キャリア信号に基づくタイミングでPWMパルスを生成し、PWMパルスの生成タイミングとは異なるタイミングで、PWMパルスのパルス幅を変化させるための電圧調整パルスを生成する。このようにしたので、キャリア周波数に関わらず、所望のタイミングでPWMパルスのパルス幅を変化させることができる。
(4)本発明のインバータ装置100において、PWM制御器145は、台形波の所定次数の高調波、例えば7次高調波に応じたタイミングで電圧調整パルスを生成する。このようにしたので、インバータ装置100の運転状態によらず、高調波を低減したインバータ出力による安定したモータ制御を実現できる。
(5)本発明のインバータ装置100において、PWM制御器145は、台形波のゼロクロス点を中心に直線近似した角度区間において、キャリア信号に基づくタイミングとは異なるタイミングで、PWMパルスを生成する。これにより、モータ高速回転時にも台形波のゼロクロス点からピーク付近まで最適なタイミングでPWMパルスを生成することができ、インバータ出力の電圧誤差と位相誤差を低減することができる。
(6)本発明の電動車両600は、モータ出力要求に基づいて、直流電圧を交流電圧に変換するためのPWMパルスを生成するPWMパルス生成部、すなわちPWM制御器145と、PWM制御器145で生成されたPWMパルスにより直流電圧を交流電圧に変換してモータ300を駆動するインバータ回路110と、直流電圧を昇圧するDC/DCコンバータ624とを備える。PWM制御器145は、過変調領域において台形波を用いた台形波変調を行う際に、台形波の上辺における所定のタイミングでPWMパルスのパルス幅をDC/DCコンバータ624の出力電圧に基づいて変化させる。このようにしたので、正弦波変調と台形波変調との電圧誤差を調整し、DC/DCコンバータ624の運転状態によって生じる出力電圧や位相の誤差を低減できる。その結果、モータを高速回転まで安定して制御すると共に、電動車両600のDC/DCコンバータ624の出力電圧を調整してインバータ装置100の出力範囲を拡大する制御を安定的に行うことができる。
 一実施形態の電動車両600はハイブリッド自動車である場合について説明したが、プラグインハイブリッド自動車、電気自動車などの場合においても同様な効果が得られる。
 また、上述の実施形態では、インバータ装置単体について説明したが、当該上述の機能を有していれば、インバータ装置とモータとが一体化したモータ駆動システムにも本発明を適用できる。
 なお、本発明は、上述の実施の形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々の変更が可能である。
100…インバータ装置
110…インバータ回路
120…電流制御器
130…回転位置検出器
140…ドライブ信号生成器
145…PWM制御器
160…dq電流変換器
170…電流フィルタ
180…電流検出部
200…バッテリ
300…モータ
320…回転位置センサ
500…モータ装置
600…電動車両

Claims (6)

  1.  モータ出力要求に基づいて、直流電圧を交流電圧に変換するためのPWMパルスを生成するPWMパルス生成部と、
     前記PWMパルス生成部で生成されたPWMパルスにより直流電圧を交流電圧に変換してモータを駆動するインバータ回路とを備え、
     前記PWMパルス生成部は、過変調領域において台形波を用いた台形波変調を行う際に、前記台形波の上辺における所定のタイミングで前記PWMパルスのパルス幅を変化させるインバータ装置。 
  2.  請求項1に記載のインバータ装置において、
     前記PWMパルス生成部は、前記交流電圧の周波数に対して非同期のキャリア周波数を有するキャリア信号を用いた非同期PWMにより、前記PWMパルスを生成するインバータ装置。
  3.  請求項2に記載のインバータ装置において、
     前記PWMパルス生成部は、
     前記キャリア信号に基づくタイミングで前記PWMパルスを生成し、
     前記PWMパルスの生成タイミングとは異なるタイミングで、前記PWMパルスのパルス幅を変化させるための電圧調整パルスを生成するインバータ装置。
  4.  請求項3に記載のインバータ装置において、
     前記PWMパルス生成部は、前記台形波の所定次数の高調波に応じたタイミングで前記電圧調整パルスを生成するインバータ装置。
  5.  請求項2から請求項4までのいずれか一項に記載のインバータ装置において、
     前記PWMパルス生成部は、前記台形波のゼロクロス点を中心に直線近似した角度区間において、前記キャリア信号に基づくタイミングとは異なるタイミングで、前記PWMパルスを生成するインバータ装置。
  6.  モータ出力要求に基づいて、直流電圧を交流電圧に変換するためのPWMパルスを生成するPWMパルス生成部と、
     前記PWMパルス生成部で生成されたPWMパルスにより直流電圧を交流電圧に変換してモータを駆動するインバータ回路と、
     前記直流電圧を昇圧するDC/DCコンバータとを備え、
     前記PWMパルス生成部は、過変調領域において台形波を用いた台形波変調を行う際に、前記台形波の上辺における所定のタイミングで前記PWMパルスのパルス幅を前記DC/DCコンバータの出力電圧に基づいて変化させる電動車両。
PCT/JP2018/001329 2017-02-16 2018-01-18 インバータ装置および電動車両 WO2018150793A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112018000395.7T DE112018000395T5 (de) 2017-02-16 2018-01-18 Wechselrichtervorrichtung und Elektrofahrzeug
US16/485,366 US10826410B2 (en) 2017-02-16 2018-01-18 Inverter device and electric vehicle
CN201880011693.0A CN110291709B (zh) 2017-02-16 2018-01-18 逆变器装置以及电动车辆

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017026756A JP6765985B2 (ja) 2017-02-16 2017-02-16 インバータ装置および電動車両
JP2017-026756 2017-02-16

Publications (1)

Publication Number Publication Date
WO2018150793A1 true WO2018150793A1 (ja) 2018-08-23

Family

ID=63169743

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/001329 WO2018150793A1 (ja) 2017-02-16 2018-01-18 インバータ装置および電動車両

Country Status (5)

Country Link
US (1) US10826410B2 (ja)
JP (1) JP6765985B2 (ja)
CN (1) CN110291709B (ja)
DE (1) DE112018000395T5 (ja)
WO (1) WO2018150793A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7247065B2 (ja) 2019-09-20 2023-03-28 日立Astemo株式会社 インバータ制御装置
JP7382890B2 (ja) * 2020-04-08 2023-11-17 日立Astemo株式会社 インバータ制御装置、電動車両システム
CN111682783A (zh) * 2020-06-01 2020-09-18 新风光电子科技股份有限公司 一种采用梯形调制波的高压变频一体机及其控制方法
JP2023041564A (ja) * 2021-09-13 2023-03-24 日立Astemo株式会社 インバータ制御装置、電動パワーステアリングシステム、電動車両システム
JPWO2023037589A1 (ja) 2021-09-13 2023-03-16
TWI830224B (zh) * 2022-05-11 2024-01-21 茂達電子股份有限公司 具穩定轉速調控機制的馬達控制器電路
TWI819689B (zh) * 2022-07-06 2023-10-21 致新科技股份有限公司 馬達控制器

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6216076A (ja) * 1985-07-10 1987-01-24 Hitachi Ltd 電流形インバ−タの制御装置
JP2015019458A (ja) * 2013-07-09 2015-01-29 日立オートモティブシステムズ株式会社 インバータ装置および電動車両

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0426378A (ja) * 1990-05-19 1992-01-29 Yuasa Corp インバータ装置
US6023417A (en) * 1998-02-20 2000-02-08 Allen-Bradley Company, Llc Generalized discontinuous pulse width modulator
AU2007241931B2 (en) * 2006-04-20 2010-08-12 Daikin Industries, Ltd. Power converter apparatus and power converter apparatus control method
CN101895222B (zh) * 2010-06-02 2012-06-20 黑龙江科技学院 基于反相交叉的多载波tpwm调制方法
US8488345B2 (en) * 2010-12-01 2013-07-16 Rockwell Automation Technologies, Inc. Pulse width modulation control method and system for mitigating reflected wave effects in over-modulation region
JP5873716B2 (ja) * 2011-12-28 2016-03-01 日立アプライアンス株式会社 モータ制御装置
WO2013157303A1 (ja) * 2012-04-20 2013-10-24 三菱電機株式会社 電力変換装置、その電力変換装置を備えたモータ駆動制御装置、そのモータ駆動制御装置を備えた送風機および圧縮機、ならびに、その送風機あるいは圧縮機を備えた空気調和機

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6216076A (ja) * 1985-07-10 1987-01-24 Hitachi Ltd 電流形インバ−タの制御装置
JP2015019458A (ja) * 2013-07-09 2015-01-29 日立オートモティブシステムズ株式会社 インバータ装置および電動車両

Also Published As

Publication number Publication date
US10826410B2 (en) 2020-11-03
CN110291709A (zh) 2019-09-27
CN110291709B (zh) 2021-04-02
JP6765985B2 (ja) 2020-10-07
JP2018133935A (ja) 2018-08-23
DE112018000395T5 (de) 2019-09-26
US20190363646A1 (en) 2019-11-28

Similar Documents

Publication Publication Date Title
JP6062327B2 (ja) インバータ装置および電動車両
WO2018150793A1 (ja) インバータ装置および電動車両
JP4329880B1 (ja) 交流電動機の制御装置および電動車両
US7443116B2 (en) Electrically powered vehicle mounting electric motor and control method therefor
JP5633639B2 (ja) 電動機の制御装置およびそれを備える電動車両、ならびに電動機の制御方法
WO2021053974A1 (ja) インバータ制御装置
JP2010272395A (ja) 電動車両のモータ制御装置
US10873285B2 (en) Inverter drive device and electrically driven vehicle system using the same
US8258728B2 (en) Rotary electric machine control system
JP2012060710A (ja) モータ制御システム
JP2012095390A (ja) モータ制御システム
JP2011067010A (ja) 車両のモータ駆動装置
JP6489110B2 (ja) 駆動装置
WO2021205709A1 (ja) インバータ制御装置、電動車両システム
WO2023223773A1 (ja) モータ制御装置、ハイブリッドシステム、機電一体ユニット、電動車両システム
WO2023053490A1 (ja) インバータ制御装置、ハイブリッドシステム、機電一体ユニット、電動車両システム、インバータ制御方法
US20230141601A1 (en) Motor control device, electromechanical unit, electric vehicle system, and motor control method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18753715

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18753715

Country of ref document: EP

Kind code of ref document: A1