WO2018147379A1 - 化合物単結晶製造装置、化合物単結晶の製造方法、及びGaN単結晶 - Google Patents

化合物単結晶製造装置、化合物単結晶の製造方法、及びGaN単結晶 Download PDF

Info

Publication number
WO2018147379A1
WO2018147379A1 PCT/JP2018/004436 JP2018004436W WO2018147379A1 WO 2018147379 A1 WO2018147379 A1 WO 2018147379A1 JP 2018004436 W JP2018004436 W JP 2018004436W WO 2018147379 A1 WO2018147379 A1 WO 2018147379A1
Authority
WO
WIPO (PCT)
Prior art keywords
crucible
single crystal
metal
gas
temperature
Prior art date
Application number
PCT/JP2018/004436
Other languages
English (en)
French (fr)
Inventor
大至 木村
中村 大輔
Original Assignee
株式会社豊田中央研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社豊田中央研究所 filed Critical 株式会社豊田中央研究所
Priority to US16/344,455 priority Critical patent/US11091851B2/en
Publication of WO2018147379A1 publication Critical patent/WO2018147379A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides
    • C30B29/406Gallium nitride
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B23/00Single-crystal growth by condensing evaporated or sublimed materials
    • C30B23/002Controlling or regulating
    • C30B23/005Controlling or regulating flux or flow of depositing species or vapour
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B23/00Single-crystal growth by condensing evaporated or sublimed materials
    • C30B23/02Epitaxial-layer growth
    • C30B23/06Heating of the deposition chamber, the substrate or the materials to be evaporated
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/10Heating of the reaction chamber or the substrate
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/14Feed and outlet means for the gases; Modifying the flow of the reactive gases
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/16Controlling or regulating
    • C30B25/165Controlling or regulating the flow of the reactive gases
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/38Nitrides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B35/00Apparatus not otherwise provided for, specially adapted for the growth, production or after-treatment of single crystals or of a homogeneous polycrystalline material with defined structure
    • C30B35/002Crucibles or containers

Definitions

  • the present invention relates to a compound single crystal manufacturing apparatus, a compound single crystal manufacturing method, and a GaN single crystal. More specifically, the present invention relates to a seed crystal surface using a metal-containing gas (a gas containing a metal vapor) and a reaction gas. The present invention relates to a compound single crystal production apparatus for growing a single crystal made of an inorganic compound, a method for producing a compound single crystal using the same, and a GaN single crystal obtained by such a method.
  • a metal-containing gas a gas containing a metal vapor
  • Bulk single crystals made of inorganic compounds are often produced industrially by solidification (such as the Czochralski method or Bridgman method) from a coincident melt.
  • solidification such as the Czochralski method or Bridgman method
  • not all inorganic compounds have a congruent melt within an industrially realistic temperature and pressure range. In such a case, a flux method or a vapor phase growth method is used.
  • Compound single crystal is composed of two or more elements.
  • the vapor phase growth of the compound single crystal is realized by supplying gas species containing each element to the seed crystal surface (or the growth crystal surface) and reacting them on the surface.
  • gas species containing each element In this case, a halide, an organometallic compound, or the like is often used as a gas species containing the target element.
  • these gas species increase the device cost due to safety concerns, and the raw material cost itself is high, which increases the production cost of the compound single crystal.
  • a gas is generated by evaporation of molten metal or sublimation or decomposition of an inorganic compound, and the resulting metal vapor or sublimation gas and reaction gas are reacted on the surface of the seed crystal, thereby producing a seed.
  • a method for growing a single crystal or polycrystal of an inorganic compound on the surface of a crystal (hereinafter referred to as “vapor phase growth method”) has been proposed.
  • Non-Patent Document 1 discloses a method of growing a GaN crystal on a substrate surface using a sublimation sandwich technique.
  • Non-Patent Document 2 discloses a method of growing a GaN single crystal on a substrate surface by sublimating a cold-formed GaN pellet or evaporating Ga metal in an ammonia atmosphere.
  • Non-Patent Document 3 discloses a method of growing a GaN single crystal on a substrate surface using a gallium hydride vapor phase epitaxy (GaH-VPE) method.
  • Non-Patent Document 4 discloses a method of growing a thick GaN polycrystalline film on a substrate surface in a nitrogen atmosphere using a vapor phase growth method that does not use halogen.
  • Non-Patent Document 5 discloses a method (growth rate: 1.6 to 7.2 ⁇ m / h) in which a GaN single crystal is grown on a substrate surface using a vapor phase growth method that does not use halogen. .
  • a metal source that is liquid or solid at room temperature (for example, Al, Ga, Zn, In, Cd, Hg, Si, Ge, Sn, Mg, Mn, Cu, Ag, etc.) or metal A compound is used.
  • the reactive gas may be a hydride gas (for example, H 2 O, hydrocarbon gas, NH 3 , H 2 S, H 2 Se, H 2 Te, PH 3 , AsH 3 ) or diatomic molecular gas ( For example, O 2 and N 2 are used.
  • the problem to be solved by the present invention is a compound single crystal manufacturing apparatus capable of growing a single crystal made of an inorganic compound on the surface of a seed crystal over a long period of time using a metal-containing gas and a reactive gas. It is to provide. Another problem to be solved by the present invention is to provide a compound single crystal production apparatus capable of reducing the production cost of the compound single crystal and increasing the crystal size. Another problem to be solved by the present invention is to provide a method for producing a compound single crystal using such a compound single crystal production apparatus. Furthermore, another problem to be solved by the present invention is to provide a GaN single crystal having a lower impurity concentration than conventional ones.
  • the compound single crystal production apparatus comprises: A crystal growth section having a susceptor for holding a seed crystal; A gas supply unit for supplying a metal-containing gas (a gas containing a metal vapor) generated from a metal source and a reaction gas that reacts with the gas to generate an inorganic compound toward the seed crystal; A heating unit including a heating device for heating the seed crystal and the metal source.
  • the gas supply unit A crucible for holding the metal source, spaced apart from the susceptor; A carrier gas supply device for supplying a carrier gas into the crucible and supplying a mixed gas of the metal-containing gas and the carrier gas toward the seed crystal; A reaction gas supply device for supplying the reaction gas toward the seed crystal; It has.
  • a porous baffle plate is provided at the opening of the crucible. (4) The porous baffle plate satisfies the relationship of the following formulas (1) and (2).
  • V B is the apparent volume of the perforated baffle plate
  • V H is the total volume of holes contained in the perforated baffle plate
  • a is the diameter of the hole
  • L is the length of the hole.
  • the crucible preferably has a relative density of 99% or more or an average pore diameter of 100 ⁇ m or more.
  • the crucible is (A) an inner crucible for holding the metal source, and an outer crucible for accommodating the inner crucible, (B) Between the outer wall surface of the inner crucible and the inner wall surface of the outer crucible, a carrier gas flow path is provided for flowing a carrier gas toward the inside of the inner crucible. (C) It is preferable that the bottom or side surface of the outer crucible is provided with a carrier gas introduction hole for introducing the carrier gas into the carrier gas channel.
  • the crucible is a laminated crucible stacked in the order of the first crucible, the second crucible,. 1) the opening and the carrier gas introduction hole of the (k + 1) th crucible are connected,
  • the perforated baffle plate may be provided at least in the opening of the nth crucible at the top.
  • the first method for producing a compound single crystal according to the present invention comprises using the compound single crystal production apparatus according to the present invention, under the condition that the temperature of each part satisfies the following formula (10),
  • the gist is to grow a single crystal made of the inorganic compound.
  • T G is the growth temperature
  • T S is the temperature of the metal source
  • T D is the decomposition temperature of the inorganic compound
  • T B is the temperature of the apertured baffle plate provided on the opening portion of the crucible.
  • the second method for producing a compound single crystal according to the present invention uses the compound single crystal production apparatus according to the present invention, and under the condition that the temperature of each part satisfies the following formulas (11) and (12):
  • the gist is to grow a single crystal made of the inorganic compound on the surface of the seed crystal.
  • T G is the growth temperature
  • T Sn is the temperature of the nth metal source filled in the nth crucible
  • T D is the decomposition temperature of the inorganic compound
  • T Dmax is the maximum value of the decomposition temperature of the inorganic compound produced from any one or more metal elements contained in the first to n-th metal sources and the reaction gas
  • T Sk is the temperature of the kth metal source filled in the kth crucible
  • T Sk + 1 is the temperature of the (k + 1) th metal source filled in the (k + 1) crucible
  • T B is the temperature of the apertured baffle plate provided on the opening portion of the n-th crucible.
  • the GaN single crystal according to the present invention has a C impurity amount of less than 8 ⁇ 10 15 cm ⁇ 3 , an H impurity amount of less than 3 ⁇ 10 16 cm ⁇ 3 , and an O impurity amount of 6 ⁇ 10 6. It is summarized as being less than 15 cm ⁇ 3 .
  • the metal vapor or the sublimation gas reaches the growth surface in an atomic or molecular form, and the metal vapor or the sublimation gas and the reaction gas are formed on the growth surface. It is necessary to react. However, it is generally difficult to stably grow a bulk single crystal by such a method.
  • a porous baffle plate is provided in the opening of a crucible filled with a metal source, and a carrier gas flows through the crucible.
  • the mixed gas is discharged from the crucible, and at the same time, the backflow of the reaction gas into the crucible is suppressed. For this reason, the supply of the metal-containing gas is stabilized.
  • generation of compound powder in the gas phase and liquefaction or solidification of metal at an unintended site can be suppressed. Therefore, it is possible to reduce the manufacturing cost of the compound single crystal and increase the crystal size.
  • the shape of the porous baffle plate is optimized, crystals can be stably grown even when the outlet gas flow rate is less than 20 m / sec. Further, when the relative density or average pore diameter of the crucible is optimized, the liquid metal can be prevented from scooping up the crucible wall surface when the liquid metal is used as the metal source. When such an apparatus is used, a GaN single crystal having an extremely low concentration of C, H, and O impurities can be obtained.
  • HVPE Hydrogen Vapor Phase Epitaxy
  • vapor phase growth method which does not use the conventional halogen.
  • It is a figure which shows the average pore diameter dependence of Ga climbing height. It is a diagram showing the relationship between the diameter and the volume ratio of the porous baffle plate (1-V H / V B ) ⁇ 100. It is a figure which shows the carrier gas flow rate dependence of the GaN growth rate. It is a diagram showing the a 2 / L dependence of the crucible outlet gas flow rates. It is a figure which shows S B / S L ratio dependence of the normalization growth rate. It is a figure which shows an example of the hole structure of a porous baffle board.
  • FIG. 1 the cross-sectional schematic diagram of the compound single crystal manufacturing apparatus which concerns on the 1st Embodiment of this invention is shown.
  • the compound single crystal manufacturing apparatus 10 has the following configuration. (1) The compound single crystal manufacturing apparatus 10 A crystal growth unit 20 including a susceptor 24 for holding a seed crystal 22; A gas supply unit 40 for supplying a metal-containing gas (a gas containing a metal vapor) generated from the metal source 50 and a reaction gas that reacts therewith to generate an inorganic compound toward the seed crystal 22; And a heating unit 60 including a heating device 62 for heating the seed crystal 22 and the metal source 50.
  • a metal-containing gas a gas containing a metal vapor
  • the gas supply unit 40 A crucible 42 for holding the metal source 50, spaced apart from the susceptor 24; A carrier gas supply device for supplying a carrier gas into the crucible 42 and supplying a mixed gas of the metal-containing gas and the carrier gas toward the seed crystal 22; A reaction gas supply device for supplying the reaction gas toward the seed crystal 22; It has. (3) A porous baffle plate 48 is provided at the opening of the crucible 42.
  • the compound single crystal manufacturing apparatus 10 is (A) a first movable device 28 for changing a vertical distance or a horizontal distance between the perforated baffle plate 48 and the susceptor 24; (B) a second movable device 64 for changing the vertical distance or horizontal distance between the heating device 62 and the crucible 42, and / or (C) Angle changing device 30 for changing the tilt angle of the surface of seed crystal 22 May be further provided.
  • the crystal growth unit 20 includes a susceptor 24 for holding the seed crystal 22.
  • the susceptor 24 is installed in the reaction vessel 26.
  • the atmosphere and pressure can be controlled in the reaction vessel 26 by using an exhaust device (not shown).
  • the structure of the susceptor 24 is not particularly limited, and an optimal structure can be selected according to the purpose.
  • the material of the reaction vessel 26 is not particularly limited, and an optimum material can be selected according to the purpose.
  • An example of the reaction vessel 26 is a quartz chamber.
  • the susceptor 24 is installed at a position where the mixed gas discharged through the perforated baffle plate 48 can be supplied to the surface of the seed crystal 22.
  • the positional relationship between the susceptor 24 and the crucible 42 is not particularly limited, and an optimal positional relationship can be selected according to the structure of the crucible 42. In the example shown in FIG. 1, the susceptor 24 is disposed above the crucible 42. The mixed gas discharged through the perforated baffle plate 48 rises toward the susceptor 24.
  • the susceptor 24 and the crucible 42 can be arranged in the horizontal direction.
  • the present invention (A) A vertical furnace in which the reaction vessel 26 is installed so that the longitudinal direction of the reaction vessel 26 is vertical, and the crucible 42 and the susceptor 24 are arranged in the vertical direction, or (B) a horizontal furnace in which the reaction vessel 26 is installed so that the longitudinal direction of the reaction vessel 26 is horizontal, and the crucible 42 and the susceptor 24 are arranged in the horizontal direction; It can be applied to any of these.
  • the susceptor 24 (or seed crystal 22) is arranged at a predetermined distance from the perforated baffle plate 48 (or the opening of the crucible 42).
  • the distance between the perforated baffle plate 48 and the surface of the susceptor 24 (hereinafter also referred to as “baffle-susceptor distance”) may be fixed or changeable.
  • baffle-grown crystal distance When the distance between the baffle and the susceptor is fixed, the distance between the perforated baffle plate 48 and the surface of the grown crystal (hereinafter also referred to as “baffle-grown crystal distance”) becomes shorter as the single crystal grows. .
  • baffle-grown crystal distance In general, in order to stably continue the growth of a single crystal, it is preferable to maintain the distance between the baffle and the grown crystal within a predetermined range. Therefore, when a thick single crystal is grown, it is preferable to include the first movable device 28 for changing the vertical distance or horizontal distance between the baffle and the susceptor.
  • the first movable device 28 may be provided in either the crystal growth unit 20 or the gas supply unit 40, or may be provided in both. That is, the first movable device 28 is (A) The susceptor 24 is movable with the crucible 42 fixed. (B) The crucible 42 can be moved with the susceptor 24 fixed, or (C) Any of those that can move both the susceptor 24 and the crucible 42 may be used.
  • the first movable device 28 is preferably capable of moving the susceptor 24. As shown in FIG. 1, in the case of a vertical furnace in which the susceptor 24 is disposed above the crucible 42, the first movable device 28 is preferably capable of moving the susceptor 24 in the vertical direction.
  • the tilt angle of the surface of the seed crystal may be fixed or may be changeable.
  • the “tilt angle of the surface of the seed crystal (hereinafter also simply referred to as“ tilt angle ”)” refers to an angle formed by the normal direction of the surface of the seed crystal 22 and the supply direction of the mixed gas.
  • the mixed gas is usually supplied from the normal direction of the surface of the seed crystal 22. However, if the mixed gas is supplied from the oblique direction with respect to the surface of the seed crystal 22, the growth rate may increase. In such a case, it is preferable to provide the crystal growth unit 20 with an angle changing device 30 for changing the tilt angle.
  • the structure of the angle changing device 30 is not particularly limited, and an optimal structure can be selected according to the purpose.
  • the change range of the tilt angle is not particularly limited, and an optimum angle can be selected according to the purpose.
  • the inclination angle is 0 to 60 °.
  • the gas supply unit 40 supplies a metal-containing gas and a reaction gas that reacts with the metal-containing gas and generates an inorganic compound toward the seed crystal 22.
  • the metal-containing gas is generated by heating the metal source 50 to a predetermined temperature.
  • metal-containing gas refers to a gas containing metal vapor obtained by evaporating molten metal.
  • the metal source 50 may be made of only a metal, or may be a mixture of a metal and a metal compound. When the metal source 50 contains an appropriate amount of a metal compound, the element contained in the metal compound can be doped into the growth crystal.
  • the gas supply unit 40 A crucible 42 for holding the metal source 50, spaced apart from the susceptor 24; A carrier gas supply device for supplying a carrier gas into the crucible 42 and supplying a mixed gas of the metal-containing gas and the carrier gas toward the seed crystal 22; A reaction gas supply device for supplying the reaction gas toward the seed crystal 22; It has.
  • a porous baffle plate 48 is provided in the opening of the crucible 42.
  • a porous baffle plate 48 is provided in the opening of the crucible 42.
  • the “perforated baffle plate” refers to a plate-like member in which a plurality of small-diameter through holes are formed.
  • the perforated baffle plate 48 is (A) a function of discharging the mixed gas from the inside of the crucible 42 to the outside; and (B) It is necessary to have a function of suppressing the backflow of the reaction gas from the outside to the inside of the crucible 42. Therefore, it is preferable to select the diameter and number of the through holes so that these functions are compatible.
  • the smaller the opening area of the porous baffle plate 48 ( area per through hole ⁇ number of through holes), the smaller the flow rate of the mixed gas passing through the porous baffle plate 48 (hereinafter referred to as “crucible outlet gas flow rate”). (Also referred to as)), the reaction gas backflow prevention function is improved. On the other hand, if the opening area becomes too small, the resistance when the mixed gas passes through the perforated baffle plate 48 increases, so that the discharge function of the mixed gas decreases.
  • the temperature of the perforated baffle plate 48 decreases.
  • the temperature of the metal-containing gas passing through the perforated baffle plate 48 decreases, and metal droplets may be generated on the grown crystal.
  • the reaction gas that has flowed back may be mixed in the crucible 42 without being decomposed when passing through the perforated baffle plate 48, and may react with the metal source in the crucible 42. Therefore, it is preferable that the perforated baffle plate 48 satisfies the following conditions.
  • the perforated baffle plate 48 preferably satisfies the relationship of the following formula (1). 80% ⁇ (1-V H / V B ) ⁇ 100 ⁇ 100% (1)
  • V B is the apparent volume of the perforated baffle plate 48
  • V H is the total volume of holes contained in the perforated baffle plate 48.
  • the “apparent volume” refers to the volume of the porous baffle plate 48 including the porous portion.
  • the volume ratio ([1-V H / V B ] ⁇ 100 ratio) is small (that is, when the number of holes per unit area is large), in order to prevent the reaction gas from entering the crucible 42, the crucible outlet gas It is necessary to increase the flow velocity. However, as the crucible outlet gas flow rate increases, the temperature of the porous baffle plate 48 tends to decrease. In order to prevent mixing of the metal-containing gas without excessively reducing the temperature of the porous baffle plate 48, the volume ratio is preferably 80% or more. The volume ratio is preferably 85% or more. On the other hand, when the volume ratio becomes excessively large, it becomes difficult to discharge the metal-containing gas from the crucible. Therefore, the volume ratio needs to be less than 100%. The volume ratio is preferably 95% or less.
  • the crucible outlet gas flow velocity can be made less than 20 m / sec. This is because the reaction gas (for example, NH 3 ) is decomposed when passing through the holes of the porous baffle plate 48 by suppressing the temperature drop of the porous baffle plate 48, and the reactive gas is not supplied to the metal source 50. Because.
  • the perforated baffle plate 48 further satisfies the relationship of the following formula (2) in addition to the formula (1). 0.0003 ⁇ a 2 /L ⁇ 1.1 (2)
  • a is the diameter of the hole in the perforated baffle plate 48
  • L is the length of the hole in the perforated baffle plate 48.
  • the crucible outlet gas flow velocity is proportional to the reciprocal of the opening area (S p ) of the porous baffle plate 48.
  • the gas conductance C of the perforated baffle plate 48 is expressed by the following equation (3).
  • C ⁇ ⁇ (a / 2) 4 ⁇ P ⁇ n / (8 ⁇ ⁇ ⁇ L) (3)
  • P is the process pressure (Pa)
  • is the viscosity coefficient ( ⁇ P) of the gas.
  • the crucible outlet gas flow rate does not increase as the opening area (S p ) decreases.
  • the opening area of the perforated baffle plate 48 becomes smaller than a certain value, the crucible outlet gas flow velocity becomes smaller due to a decrease in gas conductance (see FIG. 10). From FIG. 10, it can be seen that the range of a 2 / L that satisfies the crucible outlet gas flow rate of 1 m / sec or more is expressed by the equation (2).
  • the ratio of the area (S B ) of the porous baffle plate 48 to the surface area (S L ) of the metal source 50 is preferably 0.1 or more.
  • the S B / S L ratio is preferably 0.3 or more, and more preferably 0.5 or more.
  • the S B / S L ratio is preferably 2.5 or less.
  • the S B / S L ratio is preferably 2.0 or less, and more preferably 1.5 or less.
  • the holes formed in the perforated baffle plate 48 may be holes having a uniform diameter (for example, a columnar shape, a prismatic shape, etc.), or have different diameters along the thickness direction of the perforated baffle plate 48. What has a location may be sufficient. If the diameter of the hole is partially reduced, the opening area is reduced and the crucible outlet gas flow rate is improved. Therefore, by changing the hole structure of the perforated baffle plate 48, the gas flow rate can be locally increased, and gas mixing becomes easy.
  • FIG. 12 shows an example of the hole structure of the porous baffle plate 48.
  • FIG. 12A shows an example of a hole having a uniform diameter along the thickness direction.
  • FIG. 12B is an example of a hole having a diameter that is inversely tapered from the metal source 50 toward the seed crystal 22.
  • FIG. 12C is an example of a hole whose diameter decreases in a curve from the metal source 50 toward the seed crystal 22.
  • 12D and 12E are examples of holes each having a diameter that is narrowed in the middle.
  • FIG. 12F is an example of a hole whose diameter increases in a tapered shape from the metal source 50 toward the seed crystal 22.
  • the gas that has passed through the perforated baffle plate 48 spreads in the in-plane direction, so that gas mixing is facilitated.
  • Such an effect can also be realized with a structure as shown in FIGS.
  • the diameter is constant, by adopting the structure as shown in FIG. 12 (i), the diffusion of gas in the in-plane direction can be promoted as in FIGS. 12 (f) to 12 (h). it can.
  • the formation of polycrystals and particles on the porous baffle plate 48 is suppressed, and the quality of the grown crystal is improved.
  • FIG. 12 (j) and 12 (k) are examples in which conical or columnar protrusions are formed on the upper surface of the porous baffle plate 48.
  • FIG. 12 (l) shows an example of a hole in which a protrusion is formed in the middle of the hole and the diameter is narrowed in the middle.
  • the structure of the crucible 42 is not particularly limited as long as it has the functions described above.
  • an inner crucible 42a for holding the metal source 50 and an outer crucible 42b for accommodating the inner crucible 42a;
  • a carrier gas flow path 42c is provided between the outer wall surface of the inner crucible 42a and the inner wall surface of the outer crucible 42b for flowing the carrier gas toward the inside of the inner crucible 42a.
  • a carrier gas introduction hole 42d for introducing a carrier gas into the carrier gas channel 42c is provided on the bottom or side surface of the outer crucible 42b.
  • the carrier gas introduction hole 42d is provided on the bottom surface of the outer crucible 42b, but can also be provided on the side surface of the outer crucible 42b.
  • the carrier gas flow path 42c only needs to be able to flow the carrier gas toward the inside of the inner crucible 42a. However, if the flow of the carrier gas inside the inner crucible 42a is far away from the surface of the metal source 50, the discharge amount of the metal-containing gas decreases. Therefore, it is preferable that the carrier gas flow path 42 c be capable of flowing a carrier gas toward the surface of the metal source 50, or be capable of flowing the carrier gas along the vicinity of the surface of the metal source 50.
  • the carrier gas channel 42c is configured to allow the carrier gas to flow toward the tip of the inner crucible 42a.
  • a carrier gas flow direction adjuster 42e for changing the flow of the carrier gas reaching the tip of the inner crucible 42a to a direction toward the metal source 50 is preferably provided on the upper portion of the outer crucible 42b.
  • the carrier gas channel 42c formed in the gap between the inner crucible 42a and the outer crucible 42b When the shape of the carrier gas channel 42c formed in the gap between the inner crucible 42a and the outer crucible 42b is optimized, the carrier gas can flow toward the tip of the inner crucible 42a.
  • the carrier gas flow direction adjuster 42e only needs to be capable of changing the upward carrier gas flow reaching the tip of the inner crucible 42a downward or obliquely downward.
  • a vertically upward carrier gas flow is generated.
  • the carrier gas whose flow direction is changed vertically downward is sprayed on the surface of the metal source 50 to become a mixed gas containing a metal-containing gas.
  • the carrier gas (mixed gas) that has collided with the surface of the metal source 50 is again changed in the direction of the flow upward in the vertical direction, and is discharged to the outside through the perforated baffle plate 48.
  • the material of the crucible 42 is not particularly limited, and an optimum material can be selected according to the type of the metal source 50.
  • Examples of the material for the crucible 42 include graphite, SiC-coated graphite, pBN-coated graphite, and TaC-coated graphite.
  • the metal source 50 is a liquid metal and the metal source 50 has good wettability to the surface of the inner crucible 42a, the liquid metal may creep up the wall surface of the inner crucible 42a during crystal growth. . If this creeping occurs during crystal growth, the supply of raw material to the surface of the seed crystal 22 becomes unstable. Further, depending on conditions, the liquid metal may get over the side wall of the inner crucible 42a, and the liquid metal may leak out of the inner crucible 42a. Therefore, the creeping up causes an increase in the impurity concentration in the grown crystal. In the case of using a liquid metal as the metal source 50, it is preferable to suppress creeping in order to obtain a growth crystal with few impurities.
  • the inner crucible 42a As a method of suppressing creeping, there are (a) a method of increasing the relative density of the inner crucible 42a and (b) a method of increasing the average pore diameter of the inner crucible 42a.
  • the former is a method of suppressing creeping itself due to capillary action by eliminating pores.
  • the inner crucible 42a In order to suppress creeping up, the inner crucible 42a preferably has a relative density of 99% or more.
  • the scooping height h is expressed by the following formula (4).
  • is the contact angle
  • ⁇ L is the surface tension of the molten metal
  • r is the inner diameter of the tube (pore)
  • is the density of the molten metal
  • g is the gravitational acceleration.
  • the surface tension ⁇ L and the density ⁇ are determined by the molten metal.
  • the contact angle ⁇ is determined by the interfacial tension between the molten metal and the inner crucible 42a
  • the inner diameter r of the tube is determined by the surface of the inner crucible 42a and the internal pore structure. Therefore, the scooping height h is determined according to the equation (4), and when the height is higher than the depth of the inner crucible 42a, the liquid metal leaks outside the inner crucible 42a. Therefore, it is preferable to use a material that does not easily cause such a phenomenon for the inner crucible 42a.
  • the average pore diameter is preferably 100 ⁇ m or more (see FIG. 7). It should be noted that the condition that the relative density is 99% or more or the average pore diameter is 100 ⁇ m or more is sufficient as long as the inner crucible 42a is satisfied, but the outer crucible 42b may be further satisfied.
  • the carrier gas supply device supplies the carrier gas into the crucible 42 and supplies a mixed gas of the metal-containing gas and the carrier gas toward the seed crystal 22.
  • the structure of the carrier gas supply device is not particularly limited, and an optimal structure can be selected according to the purpose.
  • the carrier gas supply device includes a pipe 44 for flowing a carrier gas, one end of which is connected to the carrier gas introduction hole 42 d of the outer crucible 42 b and the other end is a carrier gas supply source ( (Not shown).
  • the reactive gas supply device is for supplying the reactive gas toward the seed crystal 22.
  • the reaction gas supply device may supply only the reaction gas, or may supply a mixture of the reaction gas and the dilution gas (carrier gas).
  • the reaction gas supply device includes a pipe 46 for supplying a reaction gas, one end of which is inserted into the reaction vessel 26 and the other end is a reaction gas supply source (not shown). And a dilution gas supply source (not shown).
  • the reaction gas supply device is preferably capable of supplying the reaction gas toward the mixed gas discharged through the perforated baffle plate 48.
  • the flow direction of the reaction gas is changed between the susceptor 24 and the crucible 42 to the direction toward the mixed gas, and the reaction gas flow direction adjuster 52 for promoting the mixing of the mixed gas and the reaction gas.
  • the reaction gas flow direction adjuster 52 for promoting the mixing of the mixed gas and the reaction gas.
  • a hollow disk (reactive gas flow direction adjuster 52) is inserted between the susceptor 24 and the crucible 42.
  • the mixed gas of the metal-containing gas and the carrier gas rises toward the seed crystal 22 as it is through the through hole of the porous baffle plate 48.
  • the reaction gas introduced into the reaction vessel 26 rises in the reaction vessel 26 and collides with the lower surface of the hollow disk through the side of the crucible 42.
  • the reaction gas that collides with the lower surface of the hollow disk is changed in the flow direction to the horizontal direction (the direction of the opening of the crucible 42), and merges with the mixed gas above the porous baffle plate 48.
  • the combined gas (mixture of the mixed gas and the reactive gas) is supplied to the surface of the seed crystal 22 by changing the flow direction upward again at the opening of the hollow disk.
  • reaction gas flow direction adjuster 52 Even if the reaction gas flow direction adjuster 52 is not provided, the reaction gas can be supplied to the surface of the seed crystal 22, but by providing the reaction gas flow direction adjuster 52, a combined gas having a uniform composition can be obtained. Can be generated. Further, since the combined gas having a uniform composition is supplied to the surface of the seed crystal 22, the growth of the single crystal is stabilized.
  • the heating unit 60 includes a heating device 62 for heating the seed crystal 22 (or the susceptor 24) and the metal source 50 (or the crucible 42).
  • the structure of the heating device 62 is not particularly limited, and an optimal structure can be selected according to the purpose.
  • the heating device 62 for example, (A) a resistance heating device that heats the seed crystal 22 and the metal source 50 using a heater; (B) There is a high-frequency heating device that heats the seed crystal 22 and the metal source 50 using an RF coil.
  • the resistance heating device heats not only the seed crystal 22 and the metal source 50 but also the reaction vessel 26 that shields them from the outside air. Therefore, the resistance heating device is effective only when the growth temperature of the single crystal is lower than the heat resistance temperature of the reaction vessel 26.
  • the high-frequency heating device can directly heat the seed crystal 22 and the metal source 50 without directly heating the reaction vessel 26 by optimizing the material of the reaction vessel 26. Therefore, the high-frequency heating device is effective particularly when the growth temperature of the single crystal is higher than the heat resistance temperature of the reaction vessel 26.
  • the number of heating devices 62 may be one, or two or more. When a plurality of heating devices 62 are used, independent control of the temperature of each part is easy, but the structure of the device may be complicated, and it may be complicated to actively control the temperature of each part. On the other hand, when one heating device 62 is used, the structure of the device is relatively simple, but it is difficult to actively control the temperature of each part. In this case, it is preferable to control the position between the heating device 62 and the crucible 42 using a second movable device 64 described later.
  • the heating device 62 is disposed outside the reaction vessel 26 and around the seed crystal 22 and the crucible 42.
  • the distance between the heating device 62 and the crucible 42 (hereinafter referred to as “distance between the heating device and the crucible”) may be fixed, or may be changeable.
  • “distance between heating device and crucible” (A) In the case of a vertical furnace as shown in FIG. 1, the vertical reference point of the heating device 62 (for example, the lower end of the RF coil whose central axis is arranged in the vertical direction) and the vertical of the crucible 42.
  • a distance (vertical distance) from a direction reference point (eg, the surface of the metal source 50 in the crucible 42); (B) Although not shown, in the case of a horizontal furnace, the horizontal reference point of the heating device 62 (for example, one end of the RF coil whose central axis is arranged in the horizontal direction) and the horizontal reference point of the crucible 42 are shown. Distance (horizontal distance) between points (for example, central axis of crucible 42) Say.
  • the temperature of each part may deviate from the optimum value as the single crystal grows, and it may be difficult to continue the growth. Therefore, when a thick single crystal is grown, it is preferable to include a second movable device 64 for changing a vertical distance or a horizontal distance between the heating device and the crucible.
  • the 2nd movable device 64 may be provided in any one of the heating part 60 or the gas supply part 40, or may be provided in both. That is, the second movable device 64 is (A) A device capable of moving the heating device 62 with the crucible 42 fixed. (B) The crucible 42 can be moved with the heating device 62 fixed, or (C) Any of those that can move both the heating device 62 and the crucible 42 may be used.
  • the second movable device 64 is preferably capable of moving the heating device 62.
  • the second movable device 64 can move the heating device 62 in the vertical direction. preferable.
  • the compound single crystal manufacturing apparatus 10 includes a control unit (not shown) for controlling the temperature of the susceptor 24 (or the grown crystal), the temperature of the crucible 42, the carrier gas flow rate, the reaction gas flow rate, and the like.
  • the control unit also controls these operations.
  • the crucible 42 including the metal source 50 and the susceptor 24 holding the seed crystal 22 are heated by the heating device 62.
  • Temperature of metal source 50 or temperature of inner crucible 42a: T S
  • growth temperature temperature of growth crystal or seed crystal 22 or susceptor 24
  • T G growth temperature
  • temperature of perforated baffle plate 48 T B Is monitored by a radiation thermometer or thermocouple.
  • the growth pressure (pressure in the reaction vessel 26) is monitored by a pressure gauge (for example, a Baratron pressure gauge).
  • the growth pressure can be controlled by the pumping speed (determined by the number of rotations of the vacuum pump and the conductance valve opening) and the gas flow rate.
  • FIG. 2 is a schematic sectional view for explaining the positional relationship between the susceptor 24 and the crucible 42.
  • FIG. 2 shows an example of a vertical furnace, that is, an example in which the susceptor 24 and the crucible 42 are arranged in the vertical direction.
  • the compound single crystal manufacturing apparatus 10 preferably includes the first movable device 28 for changing the baffle-susceptor distance. .
  • the movable width of the susceptor 24 affects the thickness of the single crystal 32 that can be manufactured.
  • the movable width of the susceptor 24 is preferably 20 mm or more.
  • the movable width is preferably 100 mm or more.
  • the changing speed of the baffle-susceptor distance can be freely adjusted in the range of 0.1 mm / h to 5 mm / sec.
  • FIG. 3 is a schematic sectional view for explaining the positional relationship between the crucible 42 and the heating device (RF coil) 62.
  • FIG. 3 shows an example of a vertical furnace in which the reaction vessel 26 is arranged so that the longitudinal direction of the reaction vessel 26 is a vertical direction.
  • the second movable device 64 for changing the distance between the heating device and the crucible.
  • the movable width of the heating device 62 affects the quality and growth rate of the single crystal 32.
  • the movable width of the second movable device 62 is: (A) The lower end position of the heating device 62 is movable downward by 20 mm or more from the upper end position of the metal source 50, (B) The lower end position of the heating device 62 is movable upward by 10 mm or more from the upper end position of the metal source 50, and (B) The total movable width of the lower end of the heating device 62 is preferably 50 mm or more.
  • the total movable width of the heating device 62 is preferably 200 mm or more. Further, it is preferable that the changing speed of the distance between the heating device and the crucible (driving speed of the second movable device 64) can be freely adjusted in the range of 0.1 mm / h to 5 mm / sec.
  • FIG. 4 the cross-sectional schematic diagram of the compound single crystal manufacturing apparatus which concerns on the 2nd Embodiment of this invention is shown.
  • the compound single crystal manufacturing apparatus 12 has the following configuration. (1) The compound single crystal production apparatus 12 A crystal growth unit 20 including a susceptor 24 for holding a seed crystal 22; The first metal source 74 (1), the second metal source 74 (2),... The metal-containing gas generated from the nth metal source 74 (n) and the reaction gas that reacts with this to produce an inorganic compound A gas supply unit 40 for supplying toward the crystal 22; And a heating unit 60 including a heating device 62 for heating the seed crystal 22 and the first metal source 74 (1), the second metal source 74 (2), ...
  • the gas supply unit 40 A crucible 72 for holding the first metal source 74 (1), the second metal source 74 (2),... The nth metal source 74 (n), spaced apart from the susceptor 24; A carrier gas supply device for supplying a carrier gas into the crucible 72 and supplying a mixed gas of the metal-containing gas and the carrier gas toward the seed crystal 22; A reaction gas supply device for supplying the reaction gas toward the seed crystal 22; It has. (3) A porous baffle plate 48 is provided at the opening of the crucible 72.
  • the compound single crystal production apparatus 12 is (A) a first movable device 28 for changing a vertical distance or a horizontal distance between the perforated baffle plate 48 and the susceptor 24; (B) a second movable device 64 for changing the vertical distance or horizontal distance between the heating device 62 and the crucible 42, and / or (C) Angle changing device 30 for changing the tilt angle of the surface of seed crystal 22 May be further provided.
  • the crucible 72 is A first crucible 72 (1), a second crucible 72 (2),... An nth crucible 72 (n) (n ⁇ 2) in this order from the bottom to the top,
  • the k-th crucible 72 (k) (1 ⁇ k ⁇ n ⁇ 1) opening is connected to the carrier gas introduction hole of the (k + 1) -th crucible 72 (k + 1).
  • the perforated baffle plate 48 is provided at least in the opening of the nth crucible 72 (n) at the top. This point is different from the first embodiment.
  • FIG. 4 only the first crucible 72 (1) and the second crucible 72 (2) are shown, but this is merely an example.
  • the first-th crucible 72 (1) at the bottom is connected to the n-th crucible 72 at the top.
  • the carrier gas can be made to flow at a stretch until (n).
  • the perforated baffle plate 48 may be provided at the opening of each k-th crucible 72 (k) or only at the opening of the n-th crucible 72 (n) at the top. May be. Even when the porous baffle plate 48 is provided only in the opening of the n-th crucible 72 (n) at the uppermost part, the backflow of the reaction gas can be prevented.
  • the other points regarding the crucible (laminated crucible) 72 and the perforated baffle plate 48 are the same as those in the first embodiment, and thus the description thereof is omitted.
  • the first crucible 72 (1), the second crucible 72 (2),..., The n th crucible 72 (n) have a first metal source 74 (1), a second metal source 74 (2),.
  • a metal source 74 (n) is filled.
  • each k-th metal source 74 (k) may be the same material or a different material.
  • the evaporation rate of the metal vapor is mainly proportional to the area of the molten metal surface. Therefore, when each k-th crucible 72 (k) is filled with the same type of molten metal, the evaporation rate of the metal vapor can be increased as compared with the case where one crucible is used. On the other hand, when each k-th crucible 72 (k) is filled with a different metal source, a metal-containing gas containing two or more kinds of metal elements is generated, that is, two or more kinds of metal elements are formed on the surface of the seed crystal 22. A single crystal made of a multi-element inorganic compound containing can be grown. Other points regarding the metal source are the same as those in the first embodiment, and thus the description thereof is omitted.
  • the compound single crystal manufacturing apparatus 12 shown in FIG. 4 may include a first movable device 28 for changing the baffle-susceptor distance.
  • the “perforated baffle plate” serving as a reference for the distance between the baffle and the susceptor refers to the perforated baffle plate 48 provided in the opening of the n-th crucible 72 (n) at the top. Since the other points regarding the first movable device 28 are the same as those of the first embodiment, description thereof will be omitted.
  • the compound single crystal manufacturing apparatus 12 shown in FIG. 4 may further include a second movable device 64 for changing the distance between the heating device and the crucible.
  • the movable width of the second movable device is (A) The lower end position of the heating device 62 is movable downward by 20 mm or more from the upper end position of the first metal source 74 (1) filled in the first crucible 72 (1) at the lowest part, (B) The lower end position of the heating device 62 is movable upward by 10 mm or more from the upper end position of the nth metal source 74 (n) filled in the nth crucible 72 (n) at the top, and , (B) It is preferable that the total movable width of the lower end of the heating device 62 is not less than the height of the crucible 72 +50 mm. Other points regarding the second movable device are the same as those in the first embodiment, and thus the description thereof is omitted.
  • the method for producing a compound single crystal according to the first embodiment of the present invention uses the compound single crystal production apparatus 10 according to the first embodiment of the present invention to perform seed crystal 22 under a predetermined temperature condition.
  • a single crystal 32 made of an inorganic compound is grown on the surface of the substrate.
  • the type of the metal source 50 filled in the crucible 42 is not particularly limited, and an optimal one can be selected according to the purpose.
  • the term “metal” includes semimetals such as Si and Ge.
  • the metal source 50 a metal that is liquid or solid at room temperature can be used.
  • metals include B, Al, Ga, In, Zn, Cd, Hg, Si, Ge, Sn, Mg, Mn, Ti, V, Fe, Co, Ni, Cu, Y, Zr, and Nb. , Mo, Ag and the like.
  • the metal source 50 may contain compounds of these metals (oxides, nitrides, carbides, etc.).
  • an element other than the metal elements e.g., oxygen
  • the metal used as the metal source 50 may be a pure metal, or a mixture or alloy containing two or more metals. In order to stabilize the composition of the metal-containing gas, it is preferable to use pure metal for the metal source 50.
  • the metal source 50 is a metal containing at least one metal element selected from the group consisting of Al, Ga, In, Zn, Cd, Hg, Si, Ge, Sn, Mg, Mn, Cu, and Ag. Is preferred. Since these can generate metal vapor at a low temperature ( ⁇ 1500 ° C.), they are suitable as the metal source 50.
  • a standard for a metal that is easy to evaporate is one whose boiling point is about 2500 ° C. or less.
  • reaction gas is an element that constitutes an inorganic compound and is used to supply an element other than the element supplied from the metal source 50.
  • the type of reaction gas is not particularly limited, and an optimum gas can be selected according to the purpose.
  • the reaction gas is preferably a gas containing at least one element selected from the group consisting of C, B, N, P, As, Sb, O, S, Se, and Te.
  • a reaction gas (A) hydride gas (for example, H 2 O, NH 3 , hydrocarbon gas, BH 3 , PH 3 , AsH 3 , H 2 Sb, H 2 S, H 2 Se, H 2 Te, etc.), (B) Diatomic molecular gas (for example, O 2 , N 2, etc.) and so on.
  • a highly reactive hydride gas for example, H 2 O, NH 3 , hydrocarbon gas, BH 3 , PH 3 , AsH 3 , H 2 Sb, H 2 S, H 2 Se, H 2 Te, etc.
  • Diatomic molecular gas for example, O 2 , N 2, etc.
  • Carrier gas (or dilution gas)
  • the type of carrier gas is not particularly limited, and an optimal one can be selected according to the purpose.
  • the carrier gas include N 2 , Ar, H 2 , He, Ne, and the like. These gases can be used as a carrier gas (or dilution gas) for both the metal-containing gas and the reactive gas.
  • an organometallic compound gas or the like may be used as appropriate as an impurity addition gas.
  • the material of the seed crystal 22 is not particularly limited, and an optimum material is selected according to the composition of the single crystal 32.
  • a sapphire substrate, a SiC substrate, or a GaN substrate is usually used as the seed crystal 22.
  • the seed crystal 22 is preferably washed to remove impurities and the like before crystal growth. Examples of cleaning methods include carros cleaning, RCA cleaning, and organic cleaning.
  • the growth of the single crystal 32 is performed under the condition that the temperature of each part satisfies the following formula (10).
  • T G is the growth temperature
  • T S is the temperature of the metal source
  • T D is the decomposition temperature of the inorganic compound
  • T B is the temperature of the apertured baffle plate provided on the opening portion of the crucible.
  • the “growth temperature T G ” refers to the most advanced temperature of growth, that is, the temperature of the seed crystal 22 or the susceptor 24 in the early stage of growth, and the temperature in the vicinity of the tip of the grown crystal in the middle to late stage of growth.
  • Expression (10) represents conditions for smoothly generating a metal-containing gas from the crucible 42 and conditions for stably growing the single crystal 32 on the surface of the seed crystal 22. If the growth temperature TG is too high, the single crystal 32 grown on the surface of the seed crystal 22 may be decomposed. In order to suppress decomposition of the grown crystal on the surface of the seed crystal 22, it is necessary that T G ⁇ T D. If the growth temperature TG is too low, the surface roughness of the single crystal 32 may occur. In order to suppress surface roughness, T G ⁇ 0.85T D is preferable.
  • the temperature T S of the metal source 50 is too low, an inorganic compound may be generated in the crucible 42.
  • an inorganic compound is generated in the crucible 42, a bumping phenomenon, formation of a passive film, etc. may occur, and the supply of the metal-containing gas may become unstable.
  • T D ⁇ T S.
  • the temperature T B of the porous baffle plate 48 is too low, the metal is liquefied or solidified in the perforated baffle plate 48 surface, causing particles mixed into the growing crystal.
  • T S ⁇ T B In order to suppress liquefaction or solidification of the metal on the surface of the porous baffle plate 48, it is necessary that T S ⁇ T B. If the temperature T S of the metal source 50 is too high, the growth rate of the single crystal 32 may become extremely slow. In order to maintain a high growth rate, T S ⁇ 1.12T D is preferable.
  • the metal source 50 is isolated from the reaction gas by providing the porous baffle plate 48 at the opening of the crucible 42. Further, the inside of the crucible 42 is purged with the carrier gas, thereby suppressing the reaction gas from being mixed into the crucible 42. In order to suppress the mixing of the reaction gas into the crucible 42, the faster the mixed gas flow rate (crucible outlet gas flow rate) when passing through the porous baffle plate 48, the better.
  • V B (T B / 300) ⁇ Q ⁇ (P 0 / P) ⁇ (1 / S p ) (5)
  • T B is the temperature (K) of the perforated baffle plate
  • Q is the carrier gas flow rate (m 3 / sec)
  • P 0 atmospheric pressure (101.325 kPa)
  • P is the process pressure (kPa)
  • S p is the opening area (m 2 ) of the porous baffle plate.
  • V B is too slow, the reaction gas flows back into the crucible 42 by gas phase diffusion, and the reaction gas directly reacts with the surface of the metal source 50. As a result, a passive film is formed on the surface of the metal source 50, or a bumping phenomenon occurs due to a rapid reaction, so that the supply of the metal-containing gas becomes unstable.
  • V B is preferably as large as possible.
  • V B (less than a few m / sec in normal CVD)
  • the time until the metal-containing gas reaches the growth surface is shortened. Therefore, it is possible to suppress the metal-containing gas and the reactive gas from reacting in the gas phase to produce a compound powder, or to suppress the metal-containing gas from condensing as droplets in the gas phase. Thereby, mixing of particles (different orientation crystals, droplets) into the grown crystal can be suppressed, and the crystal quality can be improved.
  • V B the temperature of the porous baffle plate 48 tends to decrease.
  • the temperature of the perforated baffle plate 48 is lowered, the temperature of the metal-containing gas passing through the perforated baffle plate 48 is lowered.
  • a metal liquid film may be formed on the surface of the grown crystal.
  • the temperature of the porous baffle plate 48 is low, when the reaction gas passes through the porous baffle plate 48, the reaction gas is mixed into the crucible 42 without being decomposed. As a result, the reaction gas and the metal source 50 may react vigorously in the crucible 42.
  • the “raw material yield” refers to the ratio of the weight of the metal source 50 taken into the growth crystal to the weight of the evaporated metal source 50.
  • the growth rate is desirably 200 ⁇ m / h or more.
  • the growth rate is preferably 2 mm / h or less.
  • the compound single crystal manufacturing apparatus When the compound single crystal manufacturing apparatus according to the present invention is used, a single crystal having a growth height of several centimeters and a crystal diameter (diameter) of several inches (tens of centimeters) is obtained. From the viewpoint of manufacturing costs (including cutting costs), the growth height is preferably 20 mm or more. Further, from the viewpoint of device cost, the crystal diameter is desirably 50 mm or more.
  • the method for producing a compound single crystal according to the second embodiment of the present invention uses a compound single crystal production apparatus 12 according to the second embodiment of the present invention, under a predetermined temperature condition, and a seed crystal 22.
  • a single crystal 32 made of an inorganic compound is grown on the surface of the substrate.
  • each k-th crucible 72 (k) may be filled with the same type of metal source or with a different type of metal source.
  • the carrier gas flows from the first crucible 72 (1) at the bottom to the nth crucible 72 (2) at the top, a metal source that hardly generates metal-containing gas is generated in the crucible at the bottom.
  • the metal-containing gas may be liquefied or solidified in the upper crucible.
  • each of the kth metal sources 72 (k) (1 ⁇ k ⁇ n) is made of only metal
  • the boiling point of the k + 1) metal source 72 (k + 1) is preferably equal to or higher than the boiling point of the kth metal source 72 (k).
  • Other points regarding the metal source are the same as those in the first embodiment, and thus the description thereof is omitted.
  • T G is the growth temperature
  • T Sn is the temperature of the nth metal source filled in the nth crucible
  • T D is the decomposition temperature of the first inorganic compound
  • T Dmax is the maximum value of the decomposition temperature of the inorganic compound produced from any one or more metal elements contained in the first to n-th metal sources and the reaction gas
  • T Sk is the temperature of the kth metal source charged in the kth crucible
  • T Sk + 1 is the temperature of the (k + 1) th metal source filled in the (k + 1) crucible
  • T B is the temperature of the apertured baffle plate provided on the opening portion of the
  • Expression (11) represents conditions for smoothly generating a metal-containing gas from the crucible 72 and conditions for stably growing the single crystal 32 on the surface of the seed crystal 22.
  • T Dmax ⁇ T Sn is for suppressing the formation of an unintended inorganic compound (not necessarily the same as the inorganic compound constituting the single crystal 32) in the nth crucible 72 (n).
  • Equation (12) represents a condition for smoothly generating a metal-containing gas from each of the plurality of k-th crucibles 72 (k). The carrier gas flows from the first crucible 72 (1) toward the nth crucible 72 (n).
  • a nitride single crystal is known as a representative compound that is difficult to grow a single crystal.
  • detailed growth conditions for growing a nitride single crystal using the present invention will be described.
  • GaN single crystal [5.1. Suitable growth conditions for GaN single crystal] [5.1.1. material]
  • metal Ga as the metal source and NH 3 as the reaction gas.
  • the carrier gas (dilution gas) for transporting the metal vapor and the reaction gas is preferably an inert gas such as N 2 or Ar.
  • GaN or Ga 2 O 3 can also be used as the metal source.
  • GaN decomposes with the passage of growth time, changes the evaporation rate, and the supply becomes unstable.
  • oxygen impurities in the grown crystal increase, which is not suitable for high purity.
  • an appropriate amount (1 to 20 mass%) of Ga 2 O 3 can be added to the metal Ga.
  • the temperature T S of the metal Ga is preferably 1200 ° C. ⁇ T S ⁇ 1350 ° C.
  • the temperature (decomposition temperature T D ) at which decomposition of GaN becomes remarkably remarkable is ⁇ 1200 ° C. Therefore, if the temperature T S of the metal Ga is equal to or lower than the decomposition temperature T D , the reaction gas mixed in a small amount in the crucible reacts with the metal Ga, and a passive film (film with a low evaporation rate) is formed on the surface of the metal Ga. Formed and the growth rate is reduced. Therefore, the temperature T S of the metal Ga is preferably T S > 1200 ° C.
  • the temperature T S of the metal Ga is preferably T S ⁇ 1350 ° C.
  • the growth temperature T G is preferably 1000 ° C. ⁇ T G ⁇ 1200 ° C. If the growth temperature (the temperature of the seed crystal surface or the growth crystal surface) TG is too low, the crystal quality is deteriorated. Therefore, the growth temperature T G is preferably T G > 1000 ° C. On the other hand, if the growth temperature TG is too high, the GaN crystal is decomposed on the growth crystal surface, and a Ga liquid film is formed. Therefore, T G is preferably T G ⁇ 1200 ° C.
  • Temperature T B of the porous baffle plate it is essential to exceed the temperature T S of the metal source.
  • the temperature T B of the porous baffle plate is particularly preferably T B ⁇ T S + 50 ° C.
  • the temperature T B of the porous baffle plate With such a range, it is possible to Ga droplets or polycrystalline GaN is completely prevented from adhering to the porous baffle plate.
  • metal In As a metal source and NH 3 as a reaction gas.
  • the carrier gas (dilution gas) for transporting the metal vapor and the reaction gas is preferably an inert gas such as N 2 or Ar.
  • InN or In 2 O 3 can also be used as the metal source.
  • InN decomposes as the growth time elapses and the evaporation rate changes, and the supply becomes unstable.
  • In 2 O 3 oxygen impurities in the grown crystal increase, which is not suitable for high purity.
  • an appropriate amount (1 to 20 mass%) of In 2 O 3 can be added to the metal In.
  • the temperature T S of the metal In is preferably 800 ° C. ⁇ T S ⁇ 1000 ° C.
  • the temperature (decomposition temperature T D ) at which the decomposition of InN becomes remarkably remarkable is 800 ° C. Therefore, when the temperature T S of the metal In is equal to or lower than the decomposition temperature T D , the reaction gas mixed in a small amount in the crucible reacts with the metal In, and a passive film (film with a low evaporation rate) is formed on the surface of the metal In. Formed and the growth rate is reduced. Therefore, the temperature T S of the metal In is preferably T S > 800 ° C.
  • the temperature T S of the metal In is preferably T S ⁇ 1000 ° C.
  • the growth temperature T G is preferably 700 ° C. ⁇ T G ⁇ 800 ° C. If the growth temperature (the temperature of the seed crystal surface or the growth crystal surface) TG is too low, the crystal quality is deteriorated. Therefore, the growth temperature T G is preferably T G > 700 ° C. On the other hand, if the growth temperature TG is too high, the InN crystal is decomposed on the surface of the growth crystal, and an In liquid film is formed. Therefore, T G is preferably T G ⁇ 800 ° C.
  • Temperature T B of the porous baffle plate it is essential to exceed the temperature T S of the metal source.
  • the temperature T B of the porous baffle plate is particularly preferably T B ⁇ T S + 50 ° C.
  • the temperature T B of the porous baffle plate With such a range, it is possible In the droplet and InN polycrystalline completely prevented from adhering to the porous baffle plate.
  • metal Al As the metal source and NH 3 and N 2 as the reaction gas.
  • a carrier gas (dilution gas) for transporting the metal vapor and the reaction gas is preferably a rare gas such as Ar.
  • AlN or Al 2 O 3 can also be used as the metal source. However, these have a low evaporation rate and are not suitable for high-speed growth.
  • the temperature T S of the metal Al is preferably 1500 ° C. ⁇ T S ⁇ 1800 ° C.
  • the temperature at which the decomposition of AlN becomes remarkably remarkable (decomposition temperature T D ) is 1500 to 1520 ° C. Therefore, if the temperature T S of the metal Al is below the decomposition temperature T D , the reaction gas mixed in a small amount in the crucible reacts with the metal Al, and a passive film (film with a low evaporation rate) is formed on the surface of the metal Al. Formed and the growth rate is reduced. Therefore, the temperature T S of the metal Al is preferably T S > 1500 ° C. On the other hand, if the temperature T S of the metal Al is too high, the furnace structure material (quartz chamber or the like) is damaged by radiant heat. Therefore, the temperature T S of the metal Al is preferably T S ⁇ 1800 ° C.
  • the growth temperature T G is preferably 1300 ° C. ⁇ T G ⁇ 1800 ° C. If the growth temperature (the temperature of the seed crystal surface or the growth crystal surface) TG is too low, the crystal quality is deteriorated. Therefore, the growth temperature T G is preferably T G > 1300 ° C. On the other hand, if the growth temperature TG is too high, the growth rate decreases. Therefore, T G is preferably T G ⁇ 1800 ° C.
  • Temperature T B of the porous baffle plate it is essential to exceed the temperature T S of the metal source.
  • the temperature T B of the porous baffle plate is particularly preferably T B ⁇ T S + 50 ° C.
  • the temperature T B of the porous baffle plate With such a range, it is possible to Al droplets or polycrystalline AlN is completely prevented from adhering to the porous baffle plate.
  • a laminated crucible is used as the crucible. Further, it is preferable to use metal In as the first metal source, use metal Ga as the second metal source, and use NH 3 as the reaction gas.
  • the carrier gas (dilution gas) for transporting the metal vapor and the reaction gas is preferably an inert gas such as N 2 or Ar.
  • the temperature T S1 of the metal In is [5.2.2. ], The reason is preferably 800 ° C. ⁇ T S1 ⁇ 1000 ° C.
  • the temperature T S2 of the metal Ga is preferably 1200 ° C. ⁇ T S2 ⁇ 1350 ° C.
  • GaN decomposition is significantly significantly temperature (decomposition temperature T D2) is 1200 ° C., higher than the decomposition temperature T D of the decomposition temperature T D1 and InGaN of InN.
  • the temperature T S2 of the metal Ga is preferably T S2 > 1200 ° C.
  • the temperature T S2 of the metal Ga is preferably T S2 ⁇ 1350 ° C.
  • the growth temperature T G is preferably 700 ° C. ⁇ T G ⁇ 1200 ° C. If the growth temperature (the temperature of the seed crystal surface or the growth crystal surface) TG is too low, the crystal quality is deteriorated. Therefore, the growth temperature T G is preferably T G > 700 ° C. On the other hand, if the growth temperature TG is too high, the crystal is decomposed. Therefore, T G is preferably T G ⁇ 1200 ° C.
  • Suitable growth conditions for AlGaN single crystal [5.5.1. material]
  • a laminated crucible is used as the crucible. It is also preferable to use metal Ga as the first metal source, metal Al as the second metal source, and NH 3 and N 2 as the reaction gas.
  • a carrier gas (dilution gas) for transporting the metal vapor and the reaction gas is preferably a rare gas such as Ar.
  • the temperature T S1 of the metal Ga is [5.1.2. ] For the same reason as above, 1200 ° C. ⁇ T S1 ⁇ 1350 ° C. is preferable.
  • the temperature T S2 of the metal Al is preferably 1500 ° C. ⁇ T S2 ⁇ 1800 ° C.
  • Temperature at which the decomposition of AlN is markedly significantly is 1500 ° C., higher than the decomposition temperature T D of GaN decomposition temperature T D1 and AlGaN.
  • the temperature T S2 of the metal Al is preferably T S2 > 1500 ° C.
  • the temperature T S2 of the metal Al is preferably T S ⁇ 1800 ° C.
  • the growth temperature T G is preferably 1000 ° C. ⁇ T G ⁇ 1500 ° C. If the growth temperature (the temperature of the seed crystal surface or the growth crystal surface) TG is too low, the crystal quality is deteriorated. Therefore, the growth temperature T G is preferably T G > 1000 ° C. On the other hand, if the growth temperature TG is too high, the crystal is decomposed. Therefore, T G is preferably T G ⁇ 1500 ° C.
  • the partial pressure P NH3 of NH 3 in the growth atmosphere is preferably 0.1 kPa ⁇ P NH3 ⁇ 1 kPa.
  • P NH3 is preferably P NH3 > 0.1 kPa.
  • P NH3 is preferably P NH3 ⁇ 1 kPa.
  • the GaN single crystal according to the present invention has a C impurity amount of less than 8 ⁇ 10 15 cm ⁇ 3 , an H impurity amount of less than 3 ⁇ 10 16 cm ⁇ 3 , and an O impurity amount of 6 ⁇ 10 15 cm 3. Less than -3 .
  • impurity refers to a value measured using secondary ion mass spectrometry.
  • HVPE Hydrogen Vapor Phase Epitaxy
  • the HVPE method can easily achieve a growth rate of about 100 ⁇ m / h.
  • HCl gas is used to transport group III elements, and ammonia is used as a raw material for group IV elements, so ammonium chloride is generated as a by-product. Ammonium chloride causes the exhaust pipe to become clogged. Therefore, the HVPE method is not suitable for long-time growth.
  • GaN crystal is grown using metal Ga or GaN powder as a raw material and NH 3 as a reaction gas (see FIG. 6).
  • NH 3 as a reaction gas
  • the vapor phase growth method using no halogen enables high-speed growth similar to that of the HVPE method, but there is no report that a large crystal having a thickness exceeding 1 mm is obtained. This is because when only GaN is used as a raw material, the supply of the raw material is interrupted during the growth because GaN is decomposed and denatured into metal Ga as the growth time elapses.
  • Ga overflows from the crucible during growth when metal Ga is used as a raw material, Ga overflows from the crucible during growth, and the entire apparatus is covered with Ga.
  • the reason why Ga overflows is that GaN is deposited on the surface of the crucible holding metal Ga. Molten Ga wets very well with GaN, so when GaN precipitates on the crucible surface, the molten Ga creeps up easily. For this reason, there is no example in which long-term growth of 2 hours or more is stably realized using metal Ga. Furthermore, although the yield of Ga in these methods has not been reported, it is considered to be very small (about 15%).
  • a metal vapor or a sublimation gas reaches the growth surface in an atomic or molecular form, and a metal is formed on the growth surface. It is necessary to react the vapor or sublimation gas with the reaction gas. However, it is generally difficult to stably grow a bulk single crystal by such a method.
  • a porous baffle plate is provided in the opening of a crucible filled with a metal source, and a carrier gas flows through the crucible.
  • the mixed gas is discharged from the crucible, and at the same time, the backflow of the reaction gas into the crucible is suppressed. For this reason, the supply of the metal-containing gas is stabilized.
  • generation of compound powder in the gas phase and liquefaction or solidification of metal at an unintended site can be suppressed. Therefore, it is possible to reduce the manufacturing cost of the compound single crystal and increase the crystal size.
  • the shape of the porous baffle plate is optimized, crystals can be stably grown even when the outlet gas flow rate is less than 20 m / sec. Further, when the relative density or average pore diameter of the crucible is optimized, the liquid metal can be prevented from scooping up the crucible wall surface when the liquid metal is used as the metal source. When such an apparatus is used, a GaN single crystal having an extremely low concentration of C, H, and O impurities can be obtained.
  • Example 1 Crawling height
  • Test method Using a crucible having an average pore diameter of about 10 ⁇ m, the rising height of the liquid Ga was measured. Moreover, the creeping height (h) was calculated using Formula (4). [2. result] FIG. 7 shows the average pore diameter dependence of the Ga creeping height. FIG. 7 shows that the average pore diameter should be 100 ⁇ m or more in order to make the creeping height (h) be several cm or less.
  • Examples 2 to 4 Comparative Examples 1 to 2: volume ratio
  • a GaN single crystal was grown using the compound single crystal growth apparatus shown in FIG.
  • Metal Ga was used as the metal source, and NH 3 was used as the reaction gas.
  • a sapphire template with a MOCVD-GaN film (thickness 2 ⁇ m) having a diameter of 2 inches (5.08 cm) was used as the seed crystal.
  • N 2 was used as a carrier gas for transporting Ga vapor and a diluent gas (carrier gas) for NH 3 , respectively.
  • the porous baffle plate 48 having a diameter of 15 mm (Comparative Example 1), 20 mm (Comparative Example 2), 30 mm (Example 2), 40 mm (Example 3), or 50 mm (Example 4) was used. .
  • Each perforated baffle plate 48 was formed with 45 holes each having a cylindrical shape with a diameter of 2 mm and a length of 4 mm. Growth conditions were adjusted so that the crucible outlet gas flow rate was 0.9 m / sec, and growth was performed for 1 h.
  • FIG. 8 shows the relationship between the diameter of the perforated baffle plate and the volume ratio (1-V H / V B ) ⁇ 100.
  • the volume ratio of the porous baffle plate 48 is preferably 80% or more.
  • Examples 5 to 9 Crucible outlet gas flow rate dependence
  • a GaN single crystal was produced in the same manner as in Example 2 except that the crucible outlet gas flow rate was 0.3 to 15 m / sec.
  • a porous baffle plate 48 having a diameter of 40 mm, a hole size of 2 mm in diameter ⁇ 4 mm in length, a number of holes of 45, and a volume ratio of 88.75% was used.
  • the crucible outlet gas flow rate decreased, the amount of Ga vapor supplied also decreased.
  • the growth rate was less than 100 ⁇ m / h.
  • the growth rate is preferably 100 ⁇ m / h or more. From the above results, it was found that the crucible outlet gas flow rate is preferably 1 m / sec or more.
  • Example 10 a 2 / L ratio
  • Test method Porous baffle plates 48 having different a 2 / L ratios were produced, and the relationship between the a 2 / L ratio and the crucible outlet gas flow rate was examined.
  • the temperature of the perforated baffle plate 48 was 1300 ° C., and the process pressure was 4 kPa.
  • FIG. 10 shows the a 2 / L dependency of the crucible outlet gas flow rate. 10 that the crucible outlet gas flow velocity is 1 m / sec or more when the a 2 / L ratio of the porous baffle plate 48 is in the range of 0.00033 ⁇ a 2 /L ⁇ 1.1.
  • Example 11 S B / S L ratio
  • Test method GaN single crystals were grown under different conditions of S B / S L ratio. The conditions other than the S B / S L ratio were the same as in Example 2.
  • FIG. 11 shows the dependency of the normalized growth rate on the S B / S L ratio.
  • Example 12 Comparative Example 3: GaN single crystal
  • the compound single crystal manufacturing apparatus can be used as an apparatus for manufacturing a nitride single crystal such as GaN, InN, AlN, InGaN, or AlGaN.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

化合物単結晶製造装置10は、種結晶22を保持するための結晶成長部20と、金属含有ガス及び反応ガスを種結晶22に向かって供給するためのガス供給部40と、種結晶22及び金属源50を加熱するための加熱部60とを備えている。ガス供給部40は、金属源50を保持するルツボ42と、キャリアガス供給装置と、反応ガス供給装置とを備えている。ルツボ42の開口部には、多孔バッフル板48が設けられている。多孔バッフル板48は、80%≦(1-VH/VB)×100<100%、及び0.0003<a2/L<1.1の関係を満たす。但し、VBは多孔バッフル板48の見かけの体積、VHは多孔バッフル板48に含まれる孔の総体積、aは孔の直径、Lは孔の長さ。

Description

化合物単結晶製造装置、化合物単結晶の製造方法、及びGaN単結晶
 本発明は、化合物単結晶製造装置、化合物単結晶の製造方法、及びGaN単結晶に関し、さらに詳しくは、金属含有ガス(金属蒸気を含むガス)と反応ガスとを用いて、種結晶の表面に無機化合物からなる単結晶を成長させる化合物単結晶製造装置、これを用いた化合物単結晶の製造方法、及びこのような方法により得られたGaN単結晶に関する。
 無機化合物(GaAs、InP、酸化物など)からなるバルク単結晶は、工業的には一致融液からの固化(チョクラルスキー法やブリッジマン法等)により製造される場合が多い。しかし、すべての無機化合物が工業的に現実的な温度・圧力範囲内で一致融液を持つわけではない。そのような場合、フラックス法や気相成長法が用いられる。
 化合物単結晶は、2種以上の元素から構成される。化合物単結晶の気相成長は、各々の元素を含むガス種を種結晶表面(又は、成長結晶表面)に供給し、当該表面上でこれらを反応させることにより実現する。その際の対象とする元素を含むガス種として、ハロゲン化物、有機金属化合物等がしばしば用いられる。しかし、これらのガス種は、安全性の懸念から装置コストを増大させ、原料コストそのものも高いため、化合物単結晶の製造コストが高くなる。
 この問題を解決するために、溶融金属の蒸発、又は無機化合物の昇華若しくは分解によりガスを発生させ、得られた金属蒸気又は昇華ガスと反応ガスとを種結晶の表面において反応させることにより、種結晶の表面に無機化合物の単結晶又は多結晶を成長させる方法(以下、「気相成長法」という)が提案されている。
 例えば、非特許文献1には、昇華サンドイッチ法(Sublimation Sandwich Technique)を用いて、基板表面にGaN結晶を成長させる方法が開示されている。
 非特許文献2には、アンモニア雰囲気下において、冷間成形したGaNペレットを昇華させ、又は、Ga金属を蒸発させることにより、基板表面にGaN単結晶を成長させる方法が開示されている。
 非特許文献3には、水素化ガリウム気相エピタキシー(GaH-VPE)法を用いて、基板表面にGaN単結晶を成長させる方法が開示されている。
 非特許文献4には、ハロゲンを用いない気相成長法を用いて、窒素雰囲気下において、基板表面にGaN多結晶の厚膜を成長させる方法が開示されている。
 さらに、非特許文献5には、ハロゲンを用いない気相成長法を用いて、基板表面にGaN単結晶を成長させる方法(成長速度: 1.6~7.2μm/h)が開示されている。
 気相成長法では、金属源として、常温で液体若しくは固体の金属(例えば、Al、Ga、Zn、In、Cd、Hg、Si、Ge、Sn、Mg、Mn、Cu、Agなど)、又は金属化合物が用いられる。また、反応ガスには、水素化物ガス(例えば、H2O、炭化水素ガス、NH3、H2S、H2Se、H2Te、PH3、AsH3など)、又は二原子分子ガス(例えば、O2、N2など)が用いられる。
 これらの金属源及び反応ガスの多くは、比較的取扱いが容易で、かつ、安価であることから、この種の原料を用いることで、化合物単結晶の製造コストを低減することができる。しかしながら、この種の原料の組み合わせで、安定的にバルク単結晶の成長を実現できた例はほとんどない。
P. G. Baranov et al., MRS intenet J. Nitride Semicond. Res., Vol. 3(1998)50 C. M. Balkas et al., J. Cryst. Growth, Vol. 208(2000)pp. 100-106 M. Imade et al., Jpn. J. Appl. Phys., Vol. 45(2006)pp. L878-L880 H.-J. Rost et al., Phys. Stat. Sol., Vol. 4(2007)pp. 2219-2222 G. Lukin et al., Pys. Status Solidi C 11, No. 3-4, 491-494(2014)
 本発明が解決しようとする課題は、金属含有ガスと反応ガスとを用いて、種結晶の表面に無機化合物からなる単結晶を長時間に渡って成長させることが可能な化合物単結晶製造装置を提供することにある。
 また、本発明が解決しようとする他の課題は、化合物単結晶の製造コストの低減、及び、結晶サイズの大型化が可能な化合物単結晶製造装置を提供することにある。
 また、本発明が解決しようとする他の課題は、このような化合物単結晶製造装置を用いた化合物単結晶の製造方法を提供することにある。
 さらに、本発明が解決しようとする他の課題は、従来に比べて不純物濃度の低いGaN単結晶を提供することにある。
 上記課題を解決するために本発明に係る化合物単結晶製造装置は、以下の構成を備えていることを要旨とする。
(1)前記化合物単結晶製造装置は、
 種結晶を保持するためのサセプタを備えた結晶成長部と、
 金属源から発生させた金属含有ガス(金属蒸気を含むガス)、及びこれと反応して無機化合物を生成する反応ガスを前記種結晶に向かって供給するためのガス供給部と、
 前記種結晶及び前記金属源を加熱するための加熱装置を備えた加熱部と
を備えている。
(2)前記ガス供給部は、
 前記サセプタから離間して配置された、前記金属源を保持するためのルツボと、
 前記ルツボ内にキャリアガスを供給し、前記金属含有ガスと前記キャリアガスとの混合ガスを前記種結晶に向かって供給するためのキャリアガス供給装置と、
 前記反応ガスを前記種結晶に向かって供給するための反応ガス供給装置と、
を備えている。
(3)前記ルツボの開口部には、多孔バッフル板が設けられている。
(4)前記多孔バッフル板は、次の式(1)及び式(2)の関係を満たす。
 80%≦(1-VH/VB)×100<100%   ・・・(1)
 0.0003<a2/L<1.1   ・・・(2)
 但し、
 VBは、前記多孔バッフル板の見かけの体積、
 VHは、前記多孔バッフル板に含まれる孔の総体積。
 aは、前記孔の直径、
 Lは、前記孔の長さ。
 前記ルツボは、相対密度が99%以上であるもの、又は、平均細孔径が100μm以上であるものが好ましい。
 前記ルツボは、
(a)前記金属源を保持するための内ルツボと、前記内ルツボを収容するための外ルツボとを備えており、
(b)前記内ルツボの外壁面と前記外ルツボの内壁面との間には、キャリアガスを前記内ルツボの内部に向かって流すためのキャリアガス流路が設けられ、
(c)前記外ルツボの底面又は側面には、前記キャリアガス流路に前記キャリアガスを導入するためのキャリアガス導入孔が設けられている
ものが好ましい。
 また、前記ルツボは、下から上に向かって第1ルツボ、第2ルツボ、…第nルツボ(n≧2)の順に積み重ねられた積層ルツボであって、第kルツボ(1≦k≦n-1)の前記開口部と、第(k+1)ルツボの前記キャリアガス導入孔とが接続されたものからなり、
 前記多孔バッフル板は、少なくとも最上部にある前記第nルツボの開口部に設けられているものでも良い。
 本発明に係る第1の化合物単結晶の製造方法は、本発明に係る化合物単結晶製造装置を用いて、各部の温度が次の式(10)を満たす条件下において、前記種結晶の表面に前記無機化合物からなる単結晶を成長させることを要旨とする。
 TG<TD<TS<TB   ・・・(10)
 但し、
 TGは、成長温度、
 TSは、前記金属源の温度、
 TDは、前記無機化合物の分解温度、
 TBは、前記ルツボの開口部に設けられた前記多孔バッフル板の温度。
 本発明に係る第2の化合物単結晶の製造方法は、本発明に係る化合物単結晶製造装置を用いて、各部の温度が次の式(11)及び式(12)を満たす条件下において、前記種結晶の表面に前記無機化合物からなる単結晶を成長させることを要旨とする。
 TG<TD≦TDmax<TSn<TB   ・・・(11)
 TSk≦TSk+1(1≦k≦n-1)    ・・・(12)
 但し、
 TGは、成長温度、
 TSnは、前記第nルツボに充填された第n金属源の温度、
 TDは、前記無機化合物の分解温度、
 TDmaxは、前記第1金属源~第n金属源に含まれるいずれか1以上の金属元素と前記反応ガスから生成する無機化合物の分解温度の最大値、
 TSkは、前記第kルツボに充填された第k金属源の温度、
 TSk+1は、前記第(k+1)ルツボに充填された第(k+1)金属源の温度、
 TBは、前記第nルツボの開口部に設けられた前記多孔バッフル板の温度。
 さらに、本発明に係るGaN単結晶は、C不純物量が8×1015cm-3未満であり、H不純物量が3×1016cm-3未満であり、かつ、O不純物量が6×1015cm-3未満であることを要旨とする。
 気相成長法を用いて良好な結晶成長を実現するには、金属蒸気又は昇華ガスが成長表面まで原子状又は分子状で到達すること、及び、成長表面において金属蒸気又は昇華ガスと反応ガスとを反応させること、が必要がある。しかし、一般に、このような方法でバルク単結晶を安定的に成長させるのは困難である。これは、
(a)気相反応により気相中で化合物粉末が生成すること、
(b)気相中、成長結晶の表面、又は他の構造部材上で金属が液化又は固化すること、
(c)反応ガスがルツボ内の金属源と直接反応し、金属源の表面に不働態膜を形成したり、あるいは、急激な反応により突沸現象がおきるために、金属蒸気又は昇華ガスの供給が不安定となること、
などが主要な原因と考えられる。
 これに対し、本発明に係るハロゲンを用いない気相成長法を用いて結晶成長を行う場合において、金属源を充填したルツボの開口部に多孔バッフル板を設け、ルツボ内にキャリアガスを流すと、ルツボから混合ガスが排出されると同時に、ルツボ内への反応ガスの逆流が抑制される。そのため、金属含有ガスの供給が安定化する。
 また、単結晶を成長させる場合において、各部の温度を最適化すると、気相中での化合物粉末の生成や、意図しない部位での金属の液化又は固化を抑制することができる。そのため、化合物単結晶の製造コストの低減や結晶サイズの大型化が可能となる。
 さらに、多孔バッフル板の形状を最適化すると、出口ガス流速が20m/sec未満であっても、安定して結晶を成長させることができる。また、ルツボの相対密度又は平均細孔径を最適化すると、金属源として液体金属を用いた場合において、液体金属がルツボ壁面を這い上がるのを防ぐことができる。このような装置を用いると、C、H、O不純物の濃度が極めて少ないGaN単結晶が得られる。
本発明の第1の実施の形態に係る化合物単結晶製造装置の断面模式図である。 サセプタとルツボの位置関係を説明するための断面模式図である。 ルツボとRFコイルの位置関係を説明するための断面模式図である。 本発明の第2の実施の形態に係る化合物単結晶製造装置の断面模式図である。
HVPE(Hydride Vapor Phase Epitaxy)法を説明するための断面模式図である。 従来のハロゲンを用いない気相成長法を説明するための断面模式図である。 Ga這い上がり高さの平均細孔径依存性を示す図である。 多孔バッフル板の直径と体積比(1-VH/VB)×100との関係を示す図である。 GaN成長速度のキャリアガス流速依存性を示す図である。 ルツボ出口ガス流速のa2/L依存性を示す図である。 規格化成長速度のSB/SL比依存性を示す図である。 多孔バッフル板の孔構造の一例を示す図である。
 以下に、本発明の一実施の形態について詳細に説明する。
[1. 化合物単結晶製造装置(1)]
 図1に、本発明の第1の実施の形態に係る化合物単結晶製造装置の断面模式図を示す。図1において、化合物単結晶製造装置10は、以下の構成を備えている。
(1)化合物単結晶製造装置10は、
 種結晶22を保持するためのサセプタ24を備えた結晶成長部20と、
 金属源50から発生させた金属含有ガス(金属蒸気を含むガス)、及びこれと反応して無機化合物を生成する反応ガスを種結晶22に向かって供給するためのガス供給部40と、
 種結晶22及び金属源50を加熱するための加熱装置62を備えた加熱部60と
を備えている。
(2)ガス供給部40は、
 サセプタ24から離間して配置された、金属源50を保持するためのルツボ42と、
 ルツボ42内にキャリアガスを供給し、金属含有ガスとキャリアガスとの混合ガスを種結晶22に向かって供給するためのキャリアガス供給装置と、
 反応ガスを種結晶22に向かって供給するための反応ガス供給装置と、
を備えている。
(3)ルツボ42の開口部には、多孔バッフル板48が設けられている。
 化合物単結晶製造装置10は、
(a)多孔バッフル板48とサセプタ24との間の垂直方向距離又は水平方向距離を変更するための第1可動装置28、
(b)加熱装置62とルツボ42との間の垂直方向距離又は水平方向距離を変更するための第2可動装置64、及び/又は、
(c)種結晶22の表面の傾き角度を変更する角度変更装置30
をさらに備えていても良い。
[1.1. 結晶成長部]
[1.1.1. サセプタ]
 結晶成長部20は、種結晶22を保持するためのサセプタ24を備えている。サセプタ24は、反応容器26内に設置されている。反応容器26内は、排気装置(図示せず)を用いて雰囲気や圧力を制御できるようになっている。
 サセプタ24の構造は、特に限定されるものではなく、目的に応じて、最適な構造を選択することができる。また、反応容器26の材料は、特に限定されるものではなく、目的に応じて最適な材料を選択することができる。反応容器26としては、例えば、石英チャンバーなどがある。
 サセプタ24は、多孔バッフル板48を通って排出される混合ガスを、種結晶22の表面に供給することが可能な位置に設置される。サセプタ24とルツボ42の位置関係は、特に限定されるものではなく、ルツボ42の構造に応じて最適な位置関係を選択することができる。
 図1に示す例において、サセプタ24は、ルツボ42の上方に配置されている。多孔バッフル板48を通って排出された混合ガスは、サセプタ24に向かって上昇する。
 一方、図示はしないが、ルツボ42から排出される混合ガスの流れを水平方向に変更する手段をさらに備えている場合、サセプタ24とルツボ42とを水平方向に配置することもできる。
 すなわち、本発明は、
(a)反応容器26の長手方向が垂直方向となるように反応容器26を設置し、ルツボ42とサセプタ24を垂直方向に配置した縦型炉、あるいは、
(b)反応容器26の長手方向が水平方向となるように反応容器26を設置し、ルツボ42とサセプタ24を水平方向に配置したた横型炉、
のいずれに対しても適用することができる。
[1.1.2. 第1可動装置]
 サセプタ24(又は、種結晶22)は、多孔バッフル板48(又は、ルツボ42の開口部)から所定の距離だけ離して配置される。多孔バッフル板48とサセプタ24の表面との間の距離(以下、「バッフル-サセプタ間距離」ともいう)は、固定されていても良く、あるいは、変更可能であっても良い。
 バッフル-サセプタ間距離が固定されている場合、単結晶の成長に伴い、多孔バッフル板48と成長結晶の表面との間の距離(以下、「バッフル-成長結晶間距離」ともいう)が短くなる。一般に、単結晶の成長を安定して継続するためには、バッフル-成長結晶間距離を所定の範囲に維持するのが好ましい。そのため、厚い単結晶を成長させる場合、バッフル-サセプタ間の垂直方向距離又は水平方向距離を変更するための第1可動装置28を備えているのが好ましい。
 第1可動装置28は、結晶成長部20又はガス供給部40のいずれか一方に設けられていても良く、あるいは、双方に設けられていても良い。すなわち、第1可動装置28は、
(a)ルツボ42を固定した状態で、サセプタ24を移動可能なもの、
(b)サセプタ24を固定した状態で、ルツボ42を移動可能なもの、あるいは、
(c)サセプタ24とルツボ42の双方を移動可能なもの
のいずれであっても良い。
 単結晶の成長を安定して継続するためには、各部の温度をアクティブに制御するのが好ましい。そのためには、第1可動装置28は、サセプタ24を移動可能なものが好ましい。図1に示すように、サセプタ24がルツボ42の上方に配置されている縦型炉の場合、第1可動装置28は、サセプタ24を垂直方向に移動可能なものが好ましい。
[1.1.3. 角度変更装置]
 種結晶の表面の傾き角度は、固定されていても良く、あるいは、変更可能であっても良い。ここで、「種結晶の表面の傾き角度(以下、単に「傾き角度」ともいう)」とは、種結晶22の表面の法線方向と混合ガスの供給方向とのなす角をいう。
 混合ガスは、通常、種結晶22の表面の法線方向から供給される。しかし、種結晶22の表面に対して斜め方向から混合ガスを供給すると、成長速度が増大する場合がある。このような場合、結晶成長部20に、傾き角度を変更するための角度変更装置30を設けるのが好ましい。
 角度変更装置30の構造は、特に限定されるものではなく、目的に応じて最適な構造を選択することができる。また、傾き角度の変更範囲は、特に限定されるものではなく、目的に応じて最適な角度を選択することができる。通常、傾き角度は、0~60°である。
[1.2. ガス供給部]
 ガス供給部40は、金属含有ガス、及びこれと反応して無機化合物を生成する反応ガスを種結晶22に向かって供給するためのものである。金属含有ガスは、金属源50を所定の温度に加熱することにより発生させる。
 ここで、「金属含有ガス」とは、溶融金属を蒸発させることにより得られる金属蒸気を含むガスをいう。金属源50は、金属のみからなるものでも良く、あるいは、金属と金属化合物の混合物でも良い。金属源50に適量の金属化合物が含まれる場合、金属化合物に含まれる元素を成長結晶にドープすることができる。
 ガス供給部40は、上述したように、
 サセプタ24から離間して配置された、金属源50を保持するためのルツボ42と、
 ルツボ42内にキャリアガスを供給し、金属含有ガスとキャリアガスとの混合ガスを種結晶22に向かって供給するためのキャリアガス供給装置と、
 反応ガスを種結晶22に向かって供給するための反応ガス供給装置と、
を備えている。
 また、ルツボ42の開口部には、多孔バッフル板48が設けられている。
[1.2.1. 多孔バッフル板]
 本発明において、ルツボ42の開口部には、多孔バッフル板48が設けられている。この点が従来とは異なる。ここで、「多孔バッフル板」とは、複数の小径の貫通孔が形成された板状部材をいう。多孔バッフル板48は、
(a)混合ガスをルツボ42の内部から外部に排出する機能、及び、
(b)ルツボ42の外部から内部への反応ガスの逆流を抑制する機能
を備えている必要がある。そのため、これらの機能が両立するように、貫通孔の直径及び数を選択するのが好ましい。
 一般に、多孔バッフル板48の開口面積(=貫通孔1個当たりの面積×貫通孔の数)が小さくなるほど、混合ガスが多孔バッフル板48を通過する際の流速(以下、「ルツボ出口ガス流速」ともいう)が速くなるので、反応ガスの逆流防止機能が向上する。一方、開口面積が小さくなりすぎると、混合ガスが多孔バッフル板48を通過する際の抵抗が増大するので、混合ガスの排出機能が低下する。
 さらに、ルツボ出口ガス流速が速すぎると、多孔バッフル板48の温度が低下する。その結果、多孔バッフル板48を通過する金属含有ガスの温度が低下し、成長結晶上に金属の液滴が発生することがある。また、逆流した反応ガスは、多孔バッフル板48を通過する際に分解されることなくそのままルツボ42内に混入し、ルツボ42内で金属源と反応する場合がある。そのため、多孔バッフル板48は、以下の条件を満たしているのが好ましい。
[A. 体積比([1-VH/VB]×100比)]
 多孔バッフル板48は、次の式(1)の関係を満たしているのが好ましい。
 80%≦(1-VH/VB)×100<100%   ・・・(1)
 但し、
 VBは、多孔バッフル板48の見かけの体積、
 VHは、多孔バッフル板48に含まれる孔の総体積。
 「見かけの体積」とは、多孔部を含めた多孔バッフル板48の体積をいう。
 体積比([1-VH/VB]×100比)が小さい場合(すなわち、単位面積当たりの孔の数が多い場合)、反応ガスのルツボ42への混入を防ぐためには、ルツボ出口ガス流速を大きくする必要がある。しかし、ルツボ出口ガス流速が速くなるほど、多孔バッフル板48の温度が低下しやすくなる。多孔バッフル板48の温度を過度に低下させることなく、金属含有ガスの混入を防ぐためには、体積比は、80%以上が好ましい。体積比は、好ましくは、85%以上である。
 一方、体積比が過度に大きくなると、金属含有ガスをルツボから排出するのが困難となる。従って、体積比は、100%未満である必要がある。体積比は、好ましくは、95%以下である。
 式(1)を満たす多孔バッフル板48を用いることにより、ルツボ出口ガス流速を20m/sec未満にすることができる。これは、多孔バッフル板48の温度低下が抑制されることにより、反応ガス(例えば、NH3)が多孔バッフル板48の孔を通過する際に分解され、金属源50に反応ガスが供給されなくなるためである。
[B. a2/L比]
 多孔バッフル板48は、式(1)に加えて、次の式(2)の関係をさらに満しているのが好ましい。
 0.0003<a2/L<1.1   ・・・(2)
 但し、
 aは、多孔バッフル板48の孔の直径、
 Lは、多孔バッフル板48の孔の長さ。
 後述するように、ルツボ出口ガス流速は、多孔バッフル板48の開口面積(Sp)の逆数に比例する。一方、多孔バッフル板48のガスコンダクタンスCは、次の式(3)で表される。
 C=π×(a/2)4×P×n/(8×η×L)   ・・・(3)
 但し、
 Pは、プロセス圧力(Pa)、
 ηは、ガスの粘性係数(μP)。
 ルツボ出口ガス流速の式、及びガスコンダクタンスの式より、ルツボ出口ガス流速は、開口面積(Sp)が小さくなるほど、上昇するわけではないことがわかる。例えば、多孔バッフル板48の開口面積がある値より小さくなると、ガスコンダクタンスの減少により、ルツボ出口ガス流速は小さくなる(図10参照)。図10より、ルツボ出口ガス流速1m/sec以上を満たすa2/Lの範囲は、式(2)で表されることがわかる。
[C. SB/SL比(溶湯面積比)]
 上述したように、体積比やa2/L比に最適値があることを示したが、多孔バッフル板48の面積(SB)についても、ある一定以上の面積が必要である。ここで、金属源50が溶融金属である場合において、その表面積(溶湯面積)をSLとする。
 金属源50の溶湯面積SLに比べて多孔バッフル板48の面積SBが小さすぎると、成長速度が低下する。従って、金属源50の表面積(SL)に対する多孔バッフル板48の面積(SB)の比(=SB/SL比)は、0.1以上が好ましい。SB/SL比は、好ましくは、0.3以上、さらに好ましくは、0.5以上である。
 一方、後述するように、二重ルツボを用いる場合、SBをSLより大きくすることもできる。しかし、必要以上にSBを大きくしても実益がない。従って、SB/SL比は、2.5以下が好ましい。SB/SL比は、好ましくは、2.0以下、さらに好ましくは、1.5以下である。
[D. 孔形状]
 多孔バッフル板48に形成される孔は、直径が一様である孔(例えば、円柱状、角柱状など)であっても良く、あるいは、多孔バッフル板48の厚さ方向に沿って直径の異なる箇所を有しているものでも良い。孔の直径を部分的に小さくすると、開口面積が小さくなり、ルツボ出口ガス流速は向上する。そのため、多孔バッフル板48の孔構造を変更することで、ガス流速を局所的に上げることができ、ガス混合が容易となる。
 図12に、多孔バッフル板48の孔構造の一例を示す。図12(a)は、厚さ方向に沿って直径が一様である孔の例である。図12(b)は、金属源50から種結晶22に向かって、逆テーパ状に直径が小さくなっている穴の例である。図12(c)は、金属源50から種結晶22に向かって、直径が曲線的に小さくなっている穴の例である。図12(d)(e)は、それぞれ、直径が途中で狭窄している孔の例である。
 一方、図12(f)は、金属源50から種結晶22に向かって、テーパ状に直径が大きくなっている穴の例である。このような構造であっても、多孔バッフル板48を通過したガスが面内方向に広がるので、ガスの混合が容易化する。このような効果は、図12(g)(h)のような構造でも実現可能である。さらに、直径が一定であっても、図12(i)の様な構造を取ることで、図12(f)から(h)と同様に、ガスの面内方向への拡散を促進させることができる。その結果、多孔バッフル板48上での多結晶やパーティクルの形成が抑制され、成長結晶の品質が向上する。
 図12(j)及び図12(k)は、多孔バッフル板48の上面に円錐状、又は円柱状の突起を形成した例である。一方、図12(l)は、孔の途中に突起を形成し、直径を途中で狭窄させた孔の例である。
[1.2.2. ルツボ]
[A. ルツボの構造]
 ルツボ42の構造は、上述した機能を奏するものである限りにおいて、特に限定されない。図1に示す例において、ルツボ42は、
(a)金属源50を保持するための内ルツボ42aと、内ルツボ42aを収容するための外ルツボ42bとを備えており、
(b)内ルツボ42aの外壁面と外ルツボ42bの内壁面との間には、キャリアガスを内ルツボ42aの内部に向かって流すためのキャリアガス流路42cが設けられ、
(c)外ルツボ42bの底面又は側面には、キャリアガス流路42cにキャリアガスを導入するためのキャリアガス導入孔42dが設けられている。
 なお、図1に示す例において、キャリアガス導入孔42dは、外ルツボ42bの底面に設けられているが、外ルツボ42bの側面に設けることもできる。
 キャリアガス流路42cは、キャリアガスを内ルツボ42aの内部に向かって流すことが可能なものであればよい。しかし、内ルツボ42aの内部におけるキャリアガスの流れが金属源50の表面から大きく離れていると、金属含有ガスの排出量が低下する。そのため、キャリアガス流路42cは、金属源50の表面に向かってキャリアガスを流すことが可能なもの、あるいは、金属源50の表面近傍に沿ってキャリアガスを流すことが可能なものが好ましい。
 ルツボ42の構造を複雑化することなく、金属含有ガスの排出量を増大させるためには、キャリアガス流路42cは、内ルツボ42aの先端に向かってキャリアガスを流すことが可能なものからなり、かつ、外ルツボ42bの上部には、内ルツボ42aの先端に達したキャリアガスの流れを金属源50に向かう方向に変更するためのキャリアガス流方向調整器42eが設けられているのが好ましい。
 内ルツボ42aと外ルツボ42bの隙間に形成されるキャリアガス流路42cの形状を最適化すると、内ルツボ42aの先端に向かってキャリアガスを流すことができる。キャリアガス流方向調整器42eは、内ルツボ42aの先端に達した上向きのキャリアガス流を下向き又は斜め下向きに変更可能なものであれば良い。
 例えば、図1に示すように、外ルツボ42bの先端に、内ルツボ42aの内径より小さい外径を有する円筒状部材(キャリアガス流方向調整器42e)を設けると、鉛直上向きのキャリアガス流を鉛直下向きに変更することができる。鉛直下向きに流れの方向が変えられたキャリアガスは、金属源50の表面に吹き付けられ、金属含有ガスを含む混合ガスとなる。金属源50の表面に衝突したキャリアガス(混合ガス)は、流れの方向が再び鉛直上向き方向に変えられ、多孔バッフル板48を通って外部に排出される。
[B. ルツボの材料]
 ルツボ42の材料は、特に限定されるものではなく、金属源50の種類に応じて、最適な材料を選択することができる。
 ルツボ42の材料としては、例えば、黒鉛、SiCコート黒鉛、pBNコート黒鉛、TaCコート黒鉛などがある。
[C. 相対密度、及び平均細孔径]
 金属源50が液体金属である場合において、金属源50が内ルツボ42aの表面への濡れ性が良いものである時は、結晶成長中に液体金属が内ルツボ42aの壁面を這い上がることがある。結晶成長中にこの這い上がりが生じると、種結晶22表面への原料供給が不安定となる。また、条件によっては、液体金属が内ルツボ42aの側壁を乗り越え、液体金属が内ルツボ42aの外に漏出することがある。そのため、這い上がりは、成長結晶中の不純物濃度を増加させる原因ともなる。金属源50として液体金属を用いる場合において、不純物の少ない成長結晶を得るためには、這い上がりを抑制するのが好ましい。
 這い上がりを抑制する方法としては、(a)内ルツボ42aの相対密度を高くする方法と、(b)内ルツボ42aの平均細孔径を大きくする方法と、がある。
 前者は、細孔を無くすことによって、毛細管現象による這い上がりそのものを抑制する方法である。這い上がりを抑制するためには、内ルツボ42aは、相対密度が99%以上であるものが好ましい。
 後者は、内ルツボ42aが多孔質である場合(すなわち、種々の制約から内ルツボ42aを緻密化することが困難である場合)において、平均細孔径を大きくすることによって、這い上がり高さを低くする方法である。
 這い上がり高さhは、次の式(4)で表される。
 h=2γLcosθ/ρgr   ・・・(4)
 ここで、θは接触角、γLは溶融金属の表面張力、rは管(細孔)の内径、ρは溶融金属の密度、gは重力加速度である。
 これらの内、表面張力γLと密度ρは、溶融金属によって決定される。一方、接触角θは溶融金属と内ルツボ42aの界面張力により、管の内径rは内ルツボ42aの表面及び内部の細孔構造によって、それぞれ、決定される。そのため、式(4)に応じて、這い上がり高さhが決定され、その高さが内ルツボ42aの深さより高い場合には、液体金属が内ルツボ42aの外側に漏出してしまう。そのため、内ルツボ42aには、このような現象を起こしにくい材料を用いるのが好ましい。這い上がり高さを数cm以下にするためには、平均細孔径は、100μm以上が好ましい(図7参照)。
 なお、相対密度99%以上、あるいは、平均細孔径100μm以上という条件は、少なくとも内ルツボ42aが満たしていれば良いが、さらに外ルツボ42bが満たしていても良い。
[1.2.3. キャリアガス供給装置]
 キャリアガス供給装置は、ルツボ42内にキャリアガスを供給し、金属含有ガスとキャリアガスとの混合ガスを種結晶22に向かって供給するためのものである。キャリアガス供給装置の構造は、特に限定されるものではなく、目的に応じて最適な構造を選択することができる。図1に示す例において、キャリアガス供給装置は、キャリアガスを流すための配管44を備えており、その一端は外ルツボ42bのキャリアガス導入孔42dに接続され、他端はキャリアガス供給源(図示せず)に接続されている。
[1.2.4. 反応ガス供給装置]
 反応ガス供給装置は、反応ガスを種結晶22に向かって供給するためのものである。反応ガス供給装置は、反応ガスのみを供給するものでも良く、あるいは、反応ガスと希釈ガス(キャリアガス)との混合物を供給するものでも良い。
 種結晶22の表面において、無機化合物からなる単結晶を成長させるためには、種結晶22の表面近傍において、金属含有ガスと反応ガスとが均一に混合している必要がある。反応ガス供給装置は、このような機能を奏する限りにおいて、特に限定されない。図1に示す例において、反応ガス供給装置は、反応ガスを供給するための配管46を備えており、その一端は反応容器26内に挿入され、他端は反応ガス供給源(図示せず)及び希釈ガス供給源(図示せず)に接続されている。
 反応ガス供給装置は、多孔バッフル板48を通って排出される混合ガスに向かって、反応ガスを供給可能なものが好ましい。そのためには、サセプタ24とルツボ42との間に、反応ガスの流れの方向を混合ガスに向かう方向に変更し、混合ガスと反応ガスとの混合を促進するための反応ガス流方向調整器52を設けるのが好ましい。
 例えば、図1に示すように、ルツボ42の鉛直上方にサセプタ24を離間して配置した場合、サセプタ24とルツボ42との間に中空円板(反応ガス流方向調整器52)を挿入する。この場合、金属含有ガスとキャリアガスの混合ガスは、多孔バッフル板48の貫通孔を通ってそのまま種結晶22に向かって上昇する。
 一方、反応容器26内に導入された反応ガスは、反応容器26内を上昇し、ルツボ42の側方を通って中空円板の下面に衝突する。中空円板の下面に衝突した反応ガスは、流れの方向が水平方向(ルツボ42の開口部の方向)に変えられ、多孔バッフル板48の上方において混合ガスと合流する。合流ガス(混合ガスと反応ガスの混合物)は、中空円板の開口部で再び流れの方向が鉛直上方に変えられ、種結晶22の表面に供給される。
 反応ガス流方向調整器52がない場合であっても、種結晶22の表面に反応ガスを供給することができるが、反応ガス流方向調整器52を備えることによって、組成が均一な合流ガスを生成させることができる。また、組成が均一な合流ガスが種結晶22の表面に供給されるため、単結晶の成長が安定化する。
[1.3. 加熱部]
[1.3.1. 加熱装置]
 加熱部60は、種結晶22(又は、サセプタ24)及び金属源50(又は、ルツボ42)を加熱するための加熱装置62を備えている。加熱装置62の構造は特に限定されるものではなく、目的に応じて最適な構造を選択することができる。
 加熱装置62としては、例えば、
(a)ヒーターを用いて種結晶22及び金属源50を加熱する抵抗加熱装置、
(b)RFコイルを用いて種結晶22及び金属源50を加熱する高周波加熱装置
などがある。
 これらの内、抵抗加熱装置は、種結晶22及び金属源50だけでなく、これらを外気から遮断する反応容器26も同時に加熱される。そのため、抵抗加熱装置は、単結晶の成長温度が反応容器26の耐熱温度より低い場合にのみ有効である。
 一方、高周波加熱装置は、反応容器26の材料を最適化することにより、反応容器26を直接加熱することなく、種結晶22及び金属源50を直接加熱することができる。そのため、高周波加熱装置は、特に単結晶の成長温度が反応容器26の耐熱温度より高い場合に有効である。
 加熱装置62は、1個でも良く、あるいは、2個以上でも良い。複数個の加熱装置62を用いる場合、各部の温度の独立制御は容易であるが、装置の構造が複雑となったり、各部の温度をアクティブに制御するのが煩雑となる場合がある。
 一方、1個の加熱装置62を用いる場合、装置の構造は比較的単純となるが、各部の温度をアクティブに制御するのが難しい。この場合、後述する第2可動装置64を用いて、加熱装置62とルツボ42との間の位置を制御するのが好ましい。
[1.3.2. 第2可動装置]
 加熱装置62は、反応容器26の外部であって、種結晶22及びルツボ42の周囲に配置される。加熱装置62とルツボ42との間の距離(以下、「加熱装置-ルツボ間距離」という)は、固定されていても良く、あるいは、変更可能になっていても良い。
 ここで、「加熱装置-ルツボ間距離」とは、
(a)図1に示すような縦型炉の場合にあっては、加熱装置62の垂直方向の基準点(例えば、中心軸が垂直方向に配置されたRFコイルの下端)とルツボ42の垂直方向の基準点(例えば、ルツボ42内の金属源50の表面)との間の距離(垂直方向距離)、
(b)図示はしないが横型炉の場合にあっては、加熱装置62の水平方向の基準点(例えば、中心軸が水平方向に配置されたRFコイルの一端)とルツボ42の水平方向の基準点(例えば、ルツボ42の中心軸)との間の距離(水平方向距離)
をいう。
 加熱装置-ルツボ間距離が固定されている場合、単結晶の成長に伴い、各部の温度が最適値から外れ、成長の継続が困難となる場合がある。そのため、厚い単結晶を成長させる場合には、加熱装置-ルツボ間の垂直方向距離又は水平方向距離を変更するための第2可動装置64を備えているのが好ましい。
 第2可動装置64は、加熱部60又はガス供給部40のいずれか一方に設けられていても良く、あるいは、双方に設けられていても良い。すなわち、第2可動装置64は、
(a)ルツボ42を固定した状態で、加熱装置62を移動可能なもの、
(b)加熱装置62を固定した状態で、ルツボ42を移動可能なもの、あるいは、
(c)加熱装置62とルツボ42の双方を移動可能なもの
のいずれであっても良い。
 単結晶の成長を安定して継続するためには、各部の温度をアクティブに制御するのが好ましい。そのためには、第2可動装置64は、加熱装置62を移動可能なものが好ましい。例えば、図1に示すように反応容器26の長手方向が垂直方向となるように反応容器26が配置されている場合、第2可動装置64は、加熱装置62を垂直方向に移動可能なものが好ましい。
[1.4. 制御部]
 化合物単結晶製造装置10は、サセプタ24(又は、成長結晶)の温度、ルツボ42の温度、キャリアガス流量、反応ガス流量などを制御するための制御部(図示せず)を備えている。化合物単結晶製造装置10が第1可動装置28、第2可動装置64、あるいは角度変更装置30を備えている場合、制御部は、これらの動作の制御も行う。
[1.4.1. 温度及び圧力の制御]
 金属源50を含むルツボ42、及び、種結晶22を保持するサセプタ24は、加熱装置62により加熱される。金属源50の温度(又は、内ルツボ42aの温度):TS、成長温度(成長結晶、又は、種結晶22若しくはサセプタ24の温度):TG、及び、多孔バッフル板48の温度:TBは、放射温度計や熱電対によりモニターされる。これらの温度は、加熱装置62に印加されるパワー、加熱装置62の位置、及びサセプタ24の位置にフィードバックを掛けることで、制御することができる。
 成長圧力(反応容器26内の圧力)は、圧力計(例えば、バラトロン圧力計)によりモニターされる。成長圧力は、排気速度(真空ポンプの回転数、及びコンダクタンスバルブ開度で決定される)及びガス流量により制御することができる。
[1.4.2. 第1可動装置の制御]
 図2に、サセプタ24とルツボ42の位置関係を説明するための断面模式図を示す。図2には、縦型炉の例、すなわち、サセプタ24とルツボ42が垂直方向に配置されている例が示されている。上述したように、単結晶32の成長を安定して継続するためには、化合物単結晶製造装置10は、バッフル-サセプタ間距離を変更するための第1可動装置28を備えているのが好ましい。
 サセプタ24(又は、種結晶22)の可動幅は、製造可能な単結晶32の厚さに影響を与える。厚い単結晶32を得るためには、サセプタ24の可動幅は、20mm以上が好ましい。可動幅は、好ましくは、100mm以上である。
 また、バッフル-サセプタ間距離の変更速度(第1可動装置28の駆動速度)は、0.1mm/h~5mm/secの範囲で自由に調節できることが好ましい。
[1.4.3. 第2可動装置の制御]
 図3に、ルツボ42と加熱装置(RFコイル)62の位置関係を説明するための断面模式図を示す。図3には、反応容器26の長手方向が垂直方向となるように反応容器26が配置されている縦型炉の例が示されている。上述したように、厚い単結晶32を成長させる場合には、加熱装置-ルツボ間距離を変更するための第2可動装置64を備えているのが好ましい。
 加熱装置62の可動幅は、単結晶32の品質や成長速度に影響を与える。縦型炉において高品質で厚い単結晶32を得るためには、第2可動装置62の可動幅は、
(a)加熱装置62の下端位置が、金属源50の上端位置より20mm以上、下方に移動可能であること、
(b)加熱装置62の下端位置が、金属源50の上端位置より10mm以上、上方に移動可能であること、及び、
(b)加熱装置62の下端の総可動幅が50mm以上であること
が好ましい。加熱装置62の総可動幅は、好ましくは、200mm以上である。
 また、加熱装置-ルツボ間距離の変更速度(第2可動装置64の駆動速度)は、0.1mm/h~5mm/secの範囲で自由に調節できることが好ましい。
[2. 化合物単結晶製造装置(2)]
 図4に、本発明の第2の実施の形態に係る化合物単結晶製造装置の断面模式図を示す。図4において、化合物単結晶製造装置12は、以下の構成を備えている。
(1)化合物単結晶製造装置12は、
 種結晶22を保持するためのサセプタ24を備えた結晶成長部20と、
 第1金属源74(1)、第2金属源74(2)、…第n金属源74(n)から発生させた金属含有ガス、及びこれと反応して無機化合物を生成する反応ガスを種結晶22に向かって供給するためのガス供給部40と、
 種結晶22及び第1金属源74(1)、第2金属源74(2)、…第n金属源74(n)を加熱するための加熱装置62を備えた加熱部60と
を備えている。
(2)ガス供給部40は、
 サセプタ24から離間して配置された、第1金属源74(1)、第2金属源74(2)、…第n金属源74(n)を保持するためのルツボ72と、
 ルツボ72内にキャリアガスを供給し、金属含有ガスとキャリアガスとの混合ガスを種結晶22に向かって供給するためのキャリアガス供給装置と、
 反応ガスを種結晶22に向かって供給するための反応ガス供給装置と、
を備えている。
(3)ルツボ72の開口部には、多孔バッフル板48が設けられている。
 化合物単結晶製造装置12は、
(a)多孔バッフル板48とサセプタ24との間の垂直方向距離又は水平方向距離を変更するための第1可動装置28、
(b)加熱装置62とルツボ42との間の垂直方向距離又は水平方向距離を変更するための第2可動装置64、及び/又は、
(c)種結晶22の表面の傾き角度を変更する角度変更装置30
をさらに備えていても良い。
[2.1. 積層ルツボ及び多孔バッフル板]
 本実施の形態において、ルツボ72は、
 下から上に向かって第1ルツボ72(1)、第2ルツボ72(2)、…第nルツボ72(n)(n≧2)の順に積み重ねられた積層ルツボであって、
 第kルツボ72(k)(1≦k≦n-1)の開口部と、第(k+1)ルツボ72(k+1)のキャリアガス導入孔とが接続されたもの
からなる。
 また、多孔バッフル板48は、少なくとも最上部にある第nルツボ72(n)の開口部に設けられている。この点が、第1の実施の形態とは異なる。なお、図4では、第1ルツボ72(1)及び第2ルツボ72(2)のみが示されているが、これは単なる例示である。
 第kルツボ72(k)の開口部と第(k+1)ルツボ72(k+1)のキャリアガス導入孔とを接続すると、最下部にある第1ルツボ72(1)から最上部にある第nルツボ72(n)に至るまで、キャリアガスを一気に流すことができる。キャリアガス導入孔が各第kルツボ72(k)の底面にある場合、このような接続が容易となる。
 積層ルツボにおいて、多孔バッフル板48は、個々の第kルツボ72(k)の開口部に設けられていても良く、あるいは、最上部にある第nルツボ72(n)の開口部にのみ設けられていても良い。最上部にある第nルツボ72(n)の開口部のみに多孔バッフル板48を設けた場合であっても、反応ガスの逆流を防止することができる。
 ルツボ(積層ルツボ)72及び多孔バッフル板48に関するその他の点については、第1の実施の形態と同様であるので、説明を省略する。
[2.2. 金属源]
 第1ルツボ72(1)、第2ルツボ72(2)、…第nルツボ72(n)には、それぞれ、第1金属源74(1)、第2金属源74(2)、…第n金属源74(n)が充填されている。積層ルツボにおいて、各第k金属源74(k)は、それぞれ、同種材料であっても良く、あるいは、異種材料であっても良い。
 溶融金属から金属蒸気を発生させる場合、金属蒸気の蒸発速度は、主として溶湯表面の面積に比例する。そのため、各第kルツボ72(k)に同種の溶融金属が充填されている場合、1個のルツボを用いた場合に比べて金属蒸気の蒸発速度を増大させることができる。
 一方、各第kルツボ72(k)に異種の金属源を充填した場合、2種以上の金属元素を含む金属含有ガスを発生させること、すなわち、種結晶22の表面に2種以上の金属元素を含む多元系無機化合物からなる単結晶を成長させることができる。
 金属源に関するその他の点については、第1の実施の形態と同様であるので、説明を省略する。
[2.3. 第1可動装置]
 図4に示す化合物単結晶製造装置12は、バッフル-サセプタ間距離を変更するための第1可動装置28を備えていても良い。
 この場合、バッフル-サセプタ間距離の基準となる「多孔バッフル板」とは、最上部にある第nルツボ72(n)の開口部に設けられた多孔バッフル板48をいう。
 第1可動装置28に関するその他の点については、第1の実施の形態と同様であるので、説明を省略する。
[2.4. 第2可動装置]
 図4に示す化合物単結晶製造装置12は、加熱装置-ルツボ間距離を変更するための第2可動装置64をさらに備えていても良い。
 縦型炉の場合、第2可動装置の可動幅は、
(a)加熱装置62の下端位置が、最下部にある第1ルツボ72(1)に充填された第1金属源74(1)の上端位置より20mm以上、下方に移動可能であること、
(b)加熱装置62の下端位置が、最上部にある第nルツボ72(n)に充填された第n金属源74(n)の上端位置より10mm以上、上方に移動可能であること、及び、
(b)加熱装置62の下端の総可動幅がルツボ72の高さ+50mm以上であること
が好ましい。
 第2可動装置に関するその他の点については、第1の実施の形態と同様であるので、説明を省略する。
[2.5. その他の構成]
 化合物単結晶製造装置12に関するその他の構成については、第1の実施の形態と同様であるので、説明を省略する。
[3. 化合物単結晶の製造方法(1)]
 本発明の第1の実施の形態に係る化合物単結晶の製造方法は、本発明の第1の実施の形態に係る化合物単結晶製造装置10を用いて、所定の温度条件下において、種結晶22の表面に無機化合物からなる単結晶32を成長させることを特徴とする。
[3.1. 金属源]
 本発明において、ルツボ42に充填される金属源50の種類は、特に限定されるものではなく、目的に応じて最適なものを選択することができる。なお、本発明において「金属」というときは、SiやGeなどの半金属も含まれる。
 金属源50としては、常温で液体又は固体の金属を用いることができる。このような金属としては、例えば、B、Al、Ga、In、Zn、Cd、Hg、Si、Ge、Sn、Mg、Mn、Ti、V、Fe、Co、Ni、Cu、Y、Zr、Nb、Mo、Agなどがある。
 また、金属源50には、これらの金属に加えて、これらの金属の化合物(酸化物、窒化物、炭化物等)が含まれていても良い。金属源50が適量の金属化合物を含む場合、これを分解温度TD以上の温度に加熱すると、金属元素以外の構成元素(例えば、酸素)を含む金属含有ガスを発生させることができる。
 金属源50として用いる金属は、純金属であってもよく、あるいは、2種以上の金属を含む混合物又は合金でも良い。金属含有ガスの組成を安定化させるためには、金属源50には、純金属を用いるのが好ましい。
 金属源50は、特に、Al、Ga、In、Zn、Cd、Hg、Si、Ge、Sn、Mg、Mn、Cu、及びAgからなる群から選ばれるいずれか1種以上の金属元素を含む金属が好ましい。これらは、低温(<1500℃)で金属蒸気を発生させることが可能であるため、金属源50として好適である。蒸発容易な金属の目安は、沸点が2500℃以下程度以下であるものである。
[3.2. 反応ガス]
 反応ガスは、無機化合物を構成する元素であって、金属源50から供給される元素以外の元素を供給するためのものである。本発明において、反応ガスの種類は、特に限定されるものではなく、目的に応じて最適なものを選択することができる。
 反応ガスは、C、B、N、P、As、Sb、O、S、Se、及びTeからなる群から選ばれるいずれか1種以上の元素を含むガスが好ましい。反応ガスとしては、具体的には、
(a)水素化物ガス(例えば、、H2O、NH3、炭化水素ガス、BH3、PH3、AsH3、H2Sb、H2S、H2Se、H2Teなど)、
(b)2原子分子ガス(例えば、O2、N2など)
などがある。高速成長や金属源50を用いて、高収率で単結晶を成長させるためには、反応ガスとして、反応性の高い水素化物ガスを用いるのが好ましい。
[3.3. キャリアガス(又は、希釈ガス)]
 本発明において、キャリアガスの種類は、特に限定されるものではなく、目的に応じて最適なものを選択することができる。キャリアガスとしては、例えば、N2、Ar、H2、He、Neなどがある。これらのガスは、金属含有ガス又は反応ガスの双方のキャリアガス(又は、希釈ガス)として使用可能である。
 さらに、反応ガスやキャリアガスに加えて、不純物添加用のガスとして、適宜、有機金属化合物ガス等を使用しても良い。
[3.4. 種結晶]
 種結晶22の材料は、特に限定されるものではなく、単結晶32の組成に応じて最適な材料を選択する。例えば、GaN単結晶を成長させる場合、種結晶22には、通常、サファイア基板、SiC基板、又はGaN基板が用いられている。種結晶22は、結晶成長の前に、不純物等を取り除くために洗浄を行うのが好ましい。洗浄方法としては、例えば、キャロス洗浄、RCA洗浄、有機洗浄などがある。
[3.5. 式(10):温度制御]
 本実施の形態において、単結晶32の成長は、各部の温度が次の式(10)を満たす条件下において行われる。
 TG<TD<TS<TB   ・・・(10)
 但し、
 TGは、成長温度、
 TSは、前記金属源の温度、
 TDは、前記無機化合物の分解温度、
 TBは、前記ルツボの開口部に設けられた前記多孔バッフル板の温度。
 ここで、「成長温度TG」とは、成長の最先端の温度、すなわち、成長初期においては種結晶22又はサセプタ24の温度をいい、成長中期~後期においては成長結晶の先端近傍の温度をいう。
 式(10)は、ルツボ42から金属含有ガスを円滑に発生させるための条件、及び、種結晶22の表面において単結晶32を安定して成長させるための条件を表す。
 成長温度TGが高すぎると、種結晶22の表面に成長した単結晶32が分解するおそれがある。種結晶22の表面における成長結晶の分解を抑制するためには、TG<TDである必要がある。
 なお、成長温度TGが低すぎると、単結晶32の表面荒れが生じる場合がある。表面荒れを抑制するには、TG≧0.85TDが好ましい。
 また、金属源50の温度TSが低すぎると、ルツボ42内において無機化合物が生成するおそれがある。ルツボ42内で無機化合物が生成すると、突沸現象や不働態膜の形成などが起こり、金属含有ガスの供給が不安定となるおそれがある。ルツボ42内における意図しない無機化合物の生成を抑制するためには、TD<TSである必要がある。
 さらに、多孔バッフル板48の温度TBが低すぎると、多孔バッフル板48表面において金属が液化又は固化し、成長結晶へのパーティクル混入の原因となる。多孔バッフル板48表面における金属の液化又は固化を抑制するためには、TS<TBである必要がある。
 なお、金属源50の温度TSが高すぎると、単結晶32の成長速度が極端に遅くなる場合がある。高い成長速度を維持するためには、TS≦1.12TDが好ましい。
[3.6. ルツボ出口ガス流速]
 本発明において、ルツボ42の開口部に多孔バッフル板48を設けることで、金属源50を反応ガスから隔離している。また、ルツボ42の内部をキャリアガスでパージすることで、ルツボ42内への反応ガスの混入を抑制している。ルツボ42内への反応ガスの混入を抑制するためには、多孔バッフル板48を通過する際の混合ガスの流速(ルツボ出口ガス流速)は、速いほど良い。
 ここで、ルツボ出口ガス流速(VB)とは、次の式(5)で表される値をいう。
 VB=(TB/300)×Q×(P0/P)×(1/Sp)  ・・・(5)
 但し、
 TBは、多孔バッフル板の温度(K)、
 Qは、キャリアガス流量(m3/sec)、
 P0は、大気圧(101.325kPa)、
 Pは、プロセス圧力(kPa)、
 Spは、多孔バッフル板の開口面積(m2)。
 VBが遅すぎると、気相拡散により反応ガスがルツボ42内へ逆流し、反応ガスが金属源50の表面と直接反応する。その結果、金属源50の表面に不働態膜が形成されたり、あるいは、急激な反応により突沸現象が起きるために、金属含有ガスの供給が不安定となる。ルツボ42内への反応ガスの混入を抑制するためには、VBは、大きいほど良い。
 また、VBを大きくすることで(通常のCVDでは、数m/sec未満)、金属含有ガスが成長表面に到達するまでの時間が短くなる。そのため、気相中で金属含有ガスと反応ガスとが反応して化合物粉末を生成したり、金属含有ガスが気相中で液滴として凝結することを抑制できる。これにより、成長結晶中へのパーティクル(異方位結晶、液滴)の混入を抑制でき、結晶品質を向上させることができる。
 一方、VBが大きくなるほど、多孔バッフル板48の温度が低下しやすくなる。多孔バッフル板48の温度が低下すると、多孔バッフル板48を通過する金属含有ガスの温度が低下する。その結果、成長結晶表面で金属の液膜が生成することがある。また、多孔バッフル板48の温度が低い場合において、反応ガスが多孔バッフル板48を通過すると、反応ガスが分解されることなく、そのままルツボ42内に混入する。その結果、ルツボ42内において、反応ガスと金属源50とが激しく反応する場合がある。
 これに対し、上述した条件を満たす多孔バッフル板48を用いると、相対的に低いVBであっても、高成長速度、成長結晶表面への液膜の生成防止、及び反応ガスのルツボ42内への混入防止を同時に達成することができる。具体的には、VBが1m/sec以上20m/sec未満の範囲にある場合であっても、上記の問題を解決することができる。
[3.7. 成長圧力、及びバッフル-成長結晶間距離]
 原料収率を向上させることは、コスト低減の観点から非常に重要である。本願発明者らは、成長圧力Pとバッフル-成長結晶間距離Dが原料収率に影響を与える重要なパラメータであることを見出した。
 ここで、「原料収率」とは、蒸発した金属源50の重量に対する成長結晶に取り込まれた金属源50の重量の割合をいう。
 高い原料収率を得るためには、成長圧力Pが式(6)を満たし、かつ、バッフル-成長結晶間距離Dが式(7)式を満たすように、単結晶を成長させるのが好ましい。P及びDがこの範囲を上回る場合は、原料収率が著しく低下する。一方、P及びDがこの範囲を下回る場合は、圧力等の成長パラメータの制御が困難となる。
 0.1kPa<P<6kPa   ・・・(6)
 0.5cm≦D<5cm     ・・・(7)
[3.8. 成長速度]
 本発明に係る化合物単結晶製造装置を用いた場合、結晶の成長速度として、~100μm/hを容易に実現できる。製造コストの観点から、成長速度は、200μm/h以上が望ましい。
 一方、成長速度が速すぎると、多結晶化や結晶欠陥の増殖が起こり、結晶品質が低下する。従って、成長速度は、2mm/h以下が好ましい。
[3.9. 成長結晶サイズ]
 本発明に係る化合物単結晶製造装置を用いた場合、成長高さが数センチメートル、結晶口径(直径)が数インチ(十数センチメートル)である単結晶が得られる。製造コスト(切削コスト等を含む)の観点から、成長高さは、20mm以上が好ましい。また、デバイスコストの観点から、結晶口径は、50mm以上が望ましい。
[4. 化合物単結晶の製造方法(2)]
 本発明の第2の実施の形態に係る化合物単結晶の製造方法は、本発明の第2の実施の形態に係る化合物単結晶製造装置12を用いて、所定の温度条件下において、種結晶22の表面に無機化合物からなる単結晶32を成長させることを特徴とする。
[4.1. 金属源]
 上述したように、ルツボ(積層ルツボ)72を用いる場合、各第kルツボ72(k)には、同種の金属源を充填しても良く、あるいは、異種の金属源を充填してもよい。しかし、キャリアガスは、最下部にある第1ルツボ72(1)から最上部にある第nルツボ72(2)に向かって流れるため、下部にあるルツボに金属含有ガスを発生しにくい金属源を充填すると、上部にあるルツボ内において金属含有ガスが液化又は固化するおそれがある。
 従って、下部のルツボに気化しやすい金属源を充填し、上部のルツボに気化しにくい金属源を充填するのが好ましい。
 例えば、第k金属源72(k)(1≦k≦n)がいずれも金属のみからなる場合において、各第kルツボ72(k)から所定量の金属蒸気を発生させるためには、第(k+1)金属源72(k+1)の沸点は、第k金属源72(k)の沸点以上であるのが好ましい。
 金属源に関するその他の点については、第1の実施の形態と同様であるので、説明を省略する。
[4.2. 式(11)及び式(12):温度制御]
 本実施の形態において、単結晶32の成長は、各部の温度が次の式(11)及び式(12)を満たす条件下において行われる。
 TG<TD≦TDmax<TSn<TB   ・・・(11)
 TSk≦TSk+1(1≦k≦n-1)    ・・・(12)
 但し、
 TGは成長温度、
 TSnは前記第nルツボに充填された第n金属源の温度、
 TDは前記第無機化合物の分解温度、
 TDmaxは、前記第1金属源~第n金属源に含まれるいずれか1以上の金属元素と前記反応ガスから生成する無機化合物の分解温度の最大値、
 TSkは前記第kルツボに充填された第k金属源の温度、
 TSk+1は前記第(k+1)ルツボに充填された第(k+1)金属源の温度、
 TBは前記第nルツボの開口部に設けられた前記多孔バッフル板の温度。
 式(11)は、ルツボ72から金属含有ガスを円滑に発生させるための条件、及び、種結晶22の表面において単結晶32を安定して成長させるための条件を表す。式(11)中、TDmax<TSnは、第nルツボ72(n)内における意図しない無機化合物(必ずしも、単結晶32を構成する無機化合物と同一とは限らない)の生成を抑制するための条件を表す。その他の点については、式(10)と同様の意味を持つ。
 式(12)は、複数の第kルツボ72(k)から、それぞれ、金属含有ガスを円滑に発生させるための条件を表す。キャリアガスは、第1ルツボ72(1)から第nルツボ72(n)に向かって流れる。そのため、下流側にある第(k+1)ルツボ72(k+1)の温度が上流側にある第kルツボ72(k)の温度より低いと、上流側で発生させた金属含有ガスが液化又は固化するおそれがある。従って、TSk≦TSk+1である必要がある。
[4.3. その他の構成]
 第2の実施の形態に係る化合物単結晶の製造方法に関するその他の点については、第1の実施の形態と同様であるので、説明を省略する。
[5. 好適な成長条件]
 単結晶成長の難しい化合物の代表として、窒化物単結晶が知られている。以下に、本発明を用いて窒化物単結晶を成長させるための詳細な成長条件について説明する。
[5.1. GaN単結晶の好適な成長条件]
[5.1.1. 原料]
 GaN単結晶を成長させるためには、金属源として金属Gaを用い、反応ガスとしてNH3を用いるのが好適である。金属蒸気及び反応ガスの輸送のためのキャリアガス(希釈ガス)は、N2、Ar等の不活性ガスが良い。
 金属源として、GaNやGa23を用いることもできる。しかし、GaNは、成長時間の経過とともに分解して蒸発レートが変わり、供給が不安定となる。また、Ga23を用いると、成長結晶中の酸素不純物が多くなり、高純度化には向かない。但し、意図的に酸素をドープする際には、適量(1~20mass%)のGa23を金属Gaに添加することも可能である。
[5.1.2. 金属源の温度]
 金属Gaの温度TSは、1200℃<TS<1350℃が好ましい。
 GaNの分解が顕著に著しくなる温度(分解温度TD)は、~1200℃である。そのため、金属Gaの温度TSが分解温度TD以下であると、ルツボ内に微量に混入した反応ガスが金属Gaと反応し、金属Gaの表面に不動態膜(蒸発速度の低い膜)が形成され、成長速度が低下する。従って、金属Gaの温度TSは、TS>1200℃が好ましい。
 一方、金属Gaの温度TSが高すぎると、多孔バッフル板を通過した混合ガス(金属蒸気+キャリアガス)と反応ガスが合流した際に、反応ガスの分解が促進され過ぎ、成長表面での実質的な反応ガス分圧が下がりすぎてしまう。従って、金属Gaの温度TSは、TS<1350℃が好ましい。
[5.1.3. 成長温度]
 成長温度TGは、1000℃<TG<1200℃が好ましい。
 成長温度(種結晶表面又は成長結晶表面の温度)TGが低すぎると、結晶品質が低下する。従って、成長温度TGは、TG>1000℃が好ましい。
 一方、成長温度TGが高すぎると、成長結晶表面においてGaN結晶が分解し、Ga液膜が形成される。従って、TGは、TG<1200℃が好ましい。
[5.1.4. 多孔バッフル板の温度]
 多孔バッフル板の温度TBは、金属源の温度TSを超えることが必須である。多孔バッフル板の温度TBは、特に、TB≧TS+50℃が好ましい。多孔バッフル板の温度TBをこのような範囲とすることで、多孔バッフル板上にGa液滴やGaN多結晶が付着するのを完全に防止することができる。
[5.2. InN単結晶の好適な成長条件]
[5.2.1. 原料]
 InN単結晶を成長させるためには、金属源として金属Inを用い、反応ガスとしてNH3を用いるのが好適である。金属蒸気及び反応ガスの輸送のためのキャリアガス(希釈ガス)は、N2、Ar等の不活性ガスが良い。
 金属源として、InNやIn23を用いることもできる。しかし、InNは、成長時間の経過とともに分解して蒸発レートが変わり、供給が不安定となる。また、In23を用いると、成長結晶中の酸素不純物が多くなり、高純度化には向かない。但し、意図的に酸素をドープする際には、適量(1~20mass%)のIn23を金属Inに添加することも可能である。
[5.2.2. 金属源の温度]
 金属Inの温度TSは、800℃<TS<1000℃が好ましい。
 InNの分解が顕著に著しくなる温度(分解温度TD)は、800℃である。そのため、金属Inの温度TSが分解温度TD以下であると、ルツボ内に微量に混入した反応ガスが金属Inと反応し、金属Inの表面に不動態膜(蒸発速度の低い膜)が形成され、成長速度が低下する。従って、金属Inの温度TSは、TS>800℃が好ましい。
 一方、金属Inの温度TSが高すぎると、多孔バッフル板を通過した混合ガス(金属蒸気+キャリアガス)が成長結晶の表面温度を上昇させ、表面温度が適切な温度範囲から逸脱することがある。従って、金属Inの温度TSは、TS<1000℃が好ましい。
[5.2.3. 成長温度]
 成長温度TGは、700℃<TG<800℃が好ましい。
 成長温度(種結晶表面又は成長結晶表面の温度)TGが低すぎると、結晶品質が低下する。従って、成長温度TGは、TG>700℃が好ましい。
 一方、成長温度TGが高すぎると、成長結晶表面においてInN結晶が分解し、In液膜が形成される。従って、TGは、TG<800℃が好ましい。
[5.2.4. 多孔バッフル板の温度]
 多孔バッフル板の温度TBは、金属源の温度TSを超えることが必須である。多孔バッフル板の温度TBは、特に、TB≧TS+50℃が好ましい。多孔バッフル板の温度TBをこのような範囲とすることで、多孔バッフル板上にIn液滴やInN多結晶が付着するのを完全に防止することができる。
[5.3. AlN単結晶の好適な成長条件]
[5.3.1. 原料]
 AlN単結晶を成長させるためには、金属源として金属Alを用い、反応ガスとしてNH3及びN2を用いるのが好適である。金属蒸気及び反応ガスの輸送のためのキャリアガス(希釈ガス)は、Ar等の希ガスが良い。
 金属源として、AlNやAl23を用いることもできる。しかし、これらは、蒸発レートが小さく、高速成長には向かない。
[5.3.2. 金属源の温度]
 金属Alの温度TSは、1500℃<TS<1800℃が好ましい。
 AlNの分解が顕著に著しくなる温度(分解温度TD)は、1500~1520℃である。そのため、金属Alの温度TSが分解温度TD以下であると、ルツボ内に微量に混入した反応ガスが金属Alと反応し、金属Alの表面に不動態膜(蒸発速度の低い膜)が形成され、成長速度が低下する。従って、金属Alの温度TSは、TS>1500℃が好ましい。
 一方、金属Alの温度TSが高すぎると、輻射熱により炉構造材(石英チャンバー等)に損傷を与える。従って、金属Alの温度TSは、TS<1800℃が好ましい。
[5.3.3. 成長温度]
 成長温度TGは、1300℃<TG<1800℃が好ましい。
 成長温度(種結晶表面又は成長結晶表面の温度)TGが低すぎると、結晶品質が低下する。従って、成長温度TGは、TG>1300℃が好ましい。
 一方、成長温度TGが高すぎると、成長速度が低下する。従って、TGは、TG<1800℃が好ましい。
[5.3.4. 多孔バッフル板の温度]
 多孔バッフル板の温度TBは、金属源の温度TSを超えることが必須である。多孔バッフル板の温度TBは、特に、TB≧TS+50℃が好ましい。多孔バッフル板の温度TBをこのような範囲とすることで、多孔バッフル板上にAl液滴やAlN多結晶が付着するのを完全に防止することができる。
[5.4. InGaN単結晶の好適な成長条件]
[5.4.1. 原料]
 InGaN単結晶を成長させる場合、ルツボには、積層ルツボを用いる。また、第1金属源として金属Inを用い、第2金属源として金属Gaを用い、反応ガスとしてNH3を用いるのが好適である。金属蒸気及び反応ガスの輸送のためのキャリアガス(希釈ガス)は、N2、Ar等の不活性ガスが良い。
[5.4.2. 金属源の温度]
 金属Inの温度TS1は、[5.2.2.]と同様の理由から、800℃<TS1<1000℃が好ましい。
 金属Gaの温度TS2は、1200℃<TS2<1350℃が好ましい。
 GaNの分解が顕著に著しくなる温度(分解温度TD2)は、1200℃であり、InNの分解温度TD1及びInGaNの分解温度TDより高い。そのため、金属Gaの温度TS2が分解温度TD2以下であると、ルツボ内に微量に混入した反応ガスが金属Gaと反応し、金属Gaの表面に不動態膜(蒸発速度の低い膜)を形成してしまい、成長速度が低下する。従って、金属Gaの温度TS2は、TS2>1200℃が好ましい。
 一方、金属Gaの温度TS2が高すぎると、多孔バッフル板を通過した混合ガス(金属蒸気+キャリアガス)と反応ガスが合流した際に、反応ガスの分解が促進され過ぎ、成長表面での実質的な反応ガス分圧が下がりすぎてしまう。従って、金属Gaの温度TS2は、TS2<1350℃が好ましい。
[5.4.3. 成長温度]
 成長温度TGは、700℃<TG<1200℃が好ましい。
 成長温度(種結晶表面又は成長結晶表面の温度)TGが低すぎると、結晶品質が低下する。従って、成長温度TGは、TG>700℃が好ましい。
 一方、成長温度TGが高すぎると、結晶が分解する。従って、TGは、TG<1200℃が好ましい。
[5.5. AlGaN単結晶の好適な成長条件]
[5.5.1. 原料]
 AlGaN単結晶を成長させる場合、ルツボには、積層ルツボを用いる。また、第1金属源として金属Gaを用い、第2金属源として金属Alを用い、反応ガスとしてNH3及びN2を用いるのが好適である。金属蒸気及び反応ガスの輸送のためのキャリアガス(希釈ガス)は、Ar等の希ガスが良い。
[5.5.2. 金属源の温度]
 金属Gaの温度TS1は、[5.1.2.]と同様の理由から、1200℃<TS1<1350℃が好ましい。
 金属Alの温度TS2は、1500℃<TS2<1800℃が好ましい。
 AlNの分解が顕著に著しくなる温度(分解温度TD2)は、1500℃であり、GaNの分解温度TD1及びAlGaNの分解温度TDより高い。そのため、金属Alの温度TS2が分解温度TD2以下であると、ルツボ内に微量に混入した反応ガスが金属Alと反応し、金属Alの表面に不動態膜(蒸発速度の低い膜)を形成してしまい、成長速度が低下する。従って、金属Alの温度TS2は、TS2>1500℃が好ましい。
 一方、金属Alの温度TS2が高すぎると、輻射熱により炉構造材(石英チャンバー等)に損傷を与える。従って、金属Alの温度TS2は、TS<1800℃が好ましい。
[5.5.3. 成長温度]
 成長温度TGは、1000℃<TG<1500℃が好ましい。
 成長温度(種結晶表面又は成長結晶表面の温度)TGが低すぎると、結晶品質が低下する。従って、成長温度TGは、TG>1000℃が好ましい。
 一方、成長温度TGが高すぎると、結晶が分解する。従って、TGは、TG<1500℃が好ましい。
[5.6. NH3分圧]
 窒化物単結晶を成長させる際に反応ガスとしてNH3を用いる場合、成長雰囲気中のNH3の分圧PNH3は、0.1kPa<PNH3<1kPaが好ましい。
 NH3の分圧PNH3が低すぎると、成長結晶表面に金属含有ガスが凝結して液膜を形成する。従って、PNH3は、PNH3>0.1kPaが好ましい。
 一方、PNH3が高すぎると、気相中で金属含有ガスとNH3とが反応し、窒化物粉末を生成させる可能性が増大する。気相中に生成した窒化物粉末は、成長結晶へのパーティクル混入の原因となり得る。従って、PNH3は、PNH3<1kPaが好ましい。
[6. GaN単結晶]
 本発明に係るGaN単結晶は、C不純物量が8×1015cm-3未満であり、H不純物量が3×1016cm-3未満であり、かつ、O不純物量が6×1015cm-3未満である。ここで、「不純物」とは、2次イオン質量分析法を用いて測定された値をいう。
 上述したように、本発明に係る装置を用いてGaN単結晶を成長させる場合において、多孔バッフル板48及びルツボ42を最適化すると、従来に比べて高品質な単結晶を従来と同等以上の成長速度で成長させることができる。これは、
(a)多孔バッフル板48の構造を最適化することによって、成長速度を低下させることなく、多孔バッフル板48の温度低下を抑制できるため、及び、
(b)ルツボ42の材質を最適化することによって、結晶成長中における液体Gaのルツボの壁面への這い上がりが抑制されるため、
と考えられる。
[7. 作用]
 一般的に、バルク状の窒化物単結晶(成長高さ:~10mm以下)を得るために、HVPE(Hydride Vapor Phase Epitaxy)法が用いられている(図5参照)。HVPE法は、100μm/h程度の成長速度を容易に達成できる。しかし、III族元素を輸送するためにHClガスを用い、IV族元素の原料としてアンモニアを用いているため、副生成物として塩化アンモニウムが生成する。塩化アンモニウムは、排気管を詰まらせる原因となる。そのため、HVPE法は、長時間の成長には向かない。
 ハロゲンを用いない気相成長法では、原料として金属Ga又はGaN粉末を用い、反応ガスとしてNH3を用いて、GaN結晶の成長を行う(図6参照)。ハロゲンを用いない気相成長法では、HVPE法と同程度の高速成長が可能との報告はあるが、厚さ1mmを超える大型の結晶が得られたとの報告はない。
 これは、原料としてGaNのみを用いた場合、成長時間の経過と共にGaNが分解して金属Gaに変性していくために、成長途中で原料供給が途絶えてしまうためである。
 また、ハロゲンを用いない気相成長法において、原料として金属Gaを用いた場合には、成長中にGaがルツボからあふれ出て、装置全体がGaで覆われてしまう。Gaがあふれ出る理由は、金属Gaを保持するルツボ表面にGaNが析出するためである。溶融GaはGaNに非常に良く濡れるため、ルツボ表面にGaNが析出すると、溶融Gaの這い上がりが容易に生じる。そのため、金属Gaを用いて2時間以上の長時間の成長を安定的に実現した例はない。
 さらに、これらの手法におけるGa収率は報告されていないが、非常に小さい(15%程度)と考えられる。
 他方、金属Gaと水素の反応により発生させたガリウムハイドライドを前駆体として用いる方法も知られている。しかし、水素によるGaN結晶のエッチングが発生するため、成長速度は100μm/h未満に制限される。
 さらに、後述するハロゲンを用いない気相成長法を用いて良好な結晶成長を実現するには、金属蒸気又は昇華ガスが成長表面まで原子状又は分子状で到達すること、及び、成長表面において金属蒸気又は昇華ガスと反応ガスとを反応させること、が必要がある。しかし、一般に、このような方法でバルク単結晶を安定的に成長させるのは困難である。これは、
(a)気相反応により気相中で化合物粉末が生成すること、
(b)気相中、成長結晶の表面、又は他の構造部材上で金属が液化又は固化すること、
(c)反応ガスがルツボ内の金属源と直接反応し、金属源の表面に不働態膜を形成したり、あるいは、急激な反応により突沸現象がおきるために、金属蒸気又は昇華ガスの供給が不安定となること、
などが主要な原因と考えられる。
 これに対し、本発明に係るハロゲンを用いない気相成長法を用いて結晶成長を行う場合において、金属源を充填したルツボの開口部に多孔バッフル板を設け、ルツボ内にキャリアガスを流すと、ルツボから混合ガスが排出されると同時に、ルツボ内への反応ガスの逆流が抑制される。そのため、金属含有ガスの供給が安定化する。
 さらに、単結晶を成長させる場合において、各部の温度を最適化すると、気相中での化合物粉末の生成や、意図しない部位での金属の液化又は固化を抑制することができる。そのため、化合物単結晶の製造コストの低減や結晶サイズの大型化が可能となる。
 さらに、多孔バッフル板の形状を最適化すると、出口ガス流速が20m/sec未満であっても、安定して結晶を成長させることができる。また、ルツボの相対密度又は平均細孔径を最適化すると、金属源として液体金属を用いた場合において、液体金属がルツボ壁面を這い上がるのを防ぐことができる。このような装置を用いると、C、H、O不純物の濃度が極めて少ないGaN単結晶が得られる。
(実施例1: 這い上がり高さ)
[1. 試験方法]
 平均細孔径が約10μmのルツボを用いて、液体Gaの這い上がり高さを測定した。また、式(4)を用いて、這い上がり高さ(h)を算出した。
[2. 結果]
 図7に、Ga這い上がり高さの平均細孔径依存性を示す。図7より、這い上がり高さ(h)を数cm以下にするためには、平均細孔径を100μm以上にすれば良いことがわかる。
(実施例2~4、比較例1~2: 体積比)
[1. 試料の作製]
 図1に示す化合物単結晶成長装置を用いて、GaN単結晶の成長を行った。金属源には金属Gaを用い、反応ガスにはNH3を用いた。種結晶には、直径2インチ(5.08cm)のMOCVD-GaN膜(厚さ2μm)付きのサファイアテンプレートを用いた。Ga蒸気を輸送するためのキャリアガス、及びNH3の希釈ガス(キャリアガス)には、それぞれ、N2を用いた。多孔バッフル板48には、直径が15mm(比較例1)、20mm(比較例2)、30mm(実施例2)、40mm(実施例3)、又は50mm(実施例4)であるものを用いた。各多孔バッフル板48には、それぞれ、直径が2mm、長さが4mmの円筒状を孔を45個形成した。ルツボ出口ガス流速が0.9m/secとなるように成長条件を調整し、1hの成長を行った。
[2. 試験方法及び結果]
 得られたGaN単結晶の表面状態を目視により評価した。また、光学顕微鏡を用いて、成長結晶中のパーティクル混入密度を計測した。表1に、その結果を示す。また、図8に多孔バッフル板の直径と体積比(1-VH/VB)×100との関係を示す。
Figure JPOXMLDOC01-appb-T000001
 目視観察結果より、実施例2~4のGaN成長結晶の表面には、いずれもGa液滴が存在せず、スムースな鏡面を呈し、良好な結晶品質を達成できていることがうかがえた。他方、比較例1~2の成長結晶の表面ではGa液滴が発生していた。これは、
(a)多孔バッフル板48を通過する際にGa蒸気の温度が下がり、Ga液滴が形成されたため、及び
(b)NH3ガスのルツボ42への混入により液体Gaが突沸を起こしたため、
と考えられる。
 体積比が小さい場合は、多孔バッフル板48の熱容量が小さい。そのため、ガスによる多孔バッフル板48の温度低下により、Ga蒸気の冷却が起きていると考えられる。また、多孔バッフル板48の温度が低いため、NH3ガスが分解せずに多孔バッフル板48を通過し、ルツボ42内の液体Gaに到達しているとも考えられる。以上の結果から、多孔バッフル板48の体積比は、80%以上が好ましいことがわかった。
(実施例5~9: ルツボ出口ガス流速依存性)
[1. 試料の作製]
 ルツボ出口ガス流速を0.3~15m/secとした以外は、実施例2と同様にして、GaN単結晶を作製した。多孔バッフル板48には、直径:40mm、孔サイズ:直径2mm×長さ4mm、孔個数:45個、体積比:88.75%であるものを用いた。
[2. 試験方法及び結果]
 得られたGaN単結晶の表面状態を目視により評価した。また、各単結晶の成長速度を算出した。表2に、その結果を示す。また、図9に、GaN成長速度のキャリアガス流速依存性を示す。
Figure JPOXMLDOC01-appb-T000002
 すべての条件において、ルツボ42内へのNH3の混入は確認されなかった。しかし、ルツボ出口ガス流速が減少するにつれて、Ga蒸気の供給量も減少した。ルツボ出口ガス流速が1m/sec未満になると、成長速度が100μm/hを下回った。製造効率を勘案すると、成長速度は、100μm/h以上が好ましい。以上の結果から、ルツボ出口ガス流速は、1m/sec以上が好ましいことがわかった。
(実施例10: a2/L比)
[1. 試験方法]
 a2/L比の異なる多孔バッフル板48を作製し、a2/L比とルツボ出口ガス流速との関係を調べた。多孔バッフル板48の温度は1300℃とし、プロセス圧力は4kPaとした。
[2. 結果]
 図10に、ルツボ出口ガス流速のa2/L依存性を示す。図10より、多孔バッフル板48のa2/L比を0.00033<a2/L<1.1の範囲内とすると、ルツボ出口ガス流速が1m/sec以上となることがわかる。
(実施例11: SB/SL比)
[1. 試験方法]
 SB/SL比の異なる条件下において、GaN単結晶を成長させた。SB/SL比以外の条件については、実施例2と同一とした。
[2. 結果]
 図11に、規格化成長速度のSB/SL比依存性を示す。ここで、「規格化成長速度」とは、各条件下での成長速度をSB/SL=1である時の成長速度で規格化したものをいう。図11より、SB/SL比が0.1未満になると、規格化成長速度が急激に低下し、0.05未満となることがわかる。以上の結果から、SB/SL比は、0.1以上が好ましいことがわかった。
(実施例12、比較例3: GaN単結晶)
[1. 試料の作製]
 実施例9と同一条件下で、GaN単結晶を成長させた(実施例12)。
 また、比較として、実施例9よりも出口キャリアガス流速の速い条件(73.8m/sec)で、GaN単結晶の成長を行った(比較例3)。
[2. 試験方法及び結果]
 GaN単結晶に含まれる不純物を2次イオン質量分析法により測定した。表3に、その結果を示す。表3に示すように、C、H、O不純物は、それぞれ、C<8×1015cm-3(バックグラウンドレベル以下)、H<3×1015cm-3(バックグラウンドレベル以下)、及びO<6×1015cm-3(バックグラウンドレベル以下)となった。
 このようにC、H、O不純物のすべてがバックグラウンドレベル以下のGaN単結晶は、従来から用いられているHVPE法やMOCVD法では得られていなかった。これは、本発明により、Gaの這い上がりを抑制し、原料Ga中に不純物が取り込まれることを抑制できるため、又は、出口キャリアガス流速を下げたことにより、装置部材等からくるC、H、O不純物濃度が大幅に減少したためであると考えられる。
Figure JPOXMLDOC01-appb-T000003
 以上、本発明の実施の形態について詳細に説明したが、本発明は上記実施の形態に何ら限定されるものではなく、本発明の要旨を逸脱しない範囲で種々の改変が可能である。
 本発明に係る化合物単結晶製造装置は、GaN、InN、AlN、InGaN、AlGaNなどの窒化物単結晶を製造するための装置として用いることができる。
10 化合物単結晶製造装置
20 結晶成長部
22 種結晶
24 サセプタ
40 ガス供給部
42 ルツボ
48 多孔バッフル板
50 金属源
60 加熱部
62 加熱装置

Claims (18)

  1.  C不純物量が8×1015cm-3未満であり、H不純物量が3×1016cm-3未満であり、かつ、O不純物量が6×1015cm-3未満であるGaN単結晶。
  2.  以下の構成を備えた化合物単結晶製造装置。
    (1)前記化合物単結晶製造装置は、
     種結晶を保持するためのサセプタを備えた結晶成長部と、
     金属源から発生させた金属含有ガス(金属蒸気を含むガス)、及びこれと反応して無機化合物を生成する反応ガスを前記種結晶に向かって供給するためのガス供給部と、
     前記種結晶及び前記金属源を加熱するための加熱装置を備えた加熱部と
    を備えている。
    (2)前記ガス供給部は、
     前記サセプタから離間して配置された、前記金属源を保持するためのルツボと、
     前記ルツボ内にキャリアガスを供給し、前記金属含有ガスと前記キャリアガスとの混合ガスを前記種結晶に向かって供給するためのキャリアガス供給装置と、
     前記反応ガスを前記種結晶に向かって供給するための反応ガス供給装置と、
    を備えている。
    (3)前記ルツボの開口部には、多孔バッフル板が設けられている。
    (4)前記多孔バッフル板は、次の式(1)及び式(2)の関係を満たす。
     80%≦(1-VH/VB)×100<100%   ・・・(1)
     0.0003<a2/L<1.1   ・・・(2)
     但し、
     VBは、前記多孔バッフル板の見かけの体積、
     VHは、前記多孔バッフル板に含まれる孔の総体積。
     aは、前記孔の直径、
     Lは、前記孔の長さ。
  3.  前記孔は、前記多孔バッフル板の厚さ方向に沿って直径の異なる箇所を有している請求項2に記載の化合物単結晶製造装置。
  4.  前記ルツボに保持された前記金属源の表面積(SL)に対する前記多孔バッフル板の面積(SB)の比(=SB/SL)は、0.1以上である請求項2に記載の化合物単結晶製造装置。
  5.  前記ルツボは、相対密度が99%以上であるもの、又は、平均細孔径が100μm以上であるものからなる請求項2に記載の化合物単結晶製造装置。
  6.  前記多孔バッフル板と前記サセプタとの間の垂直方向距離又は水平方向距離を変更するための第1可動装置、及び/又は、
     前記加熱装置と前記ルツボとの間の垂直方向距離又は水平方向距離を変更するための第2可動装置
    をさらに備えた請求項2に記載の化合物単結晶製造装置。
  7.  前記サセプタは、前記ルツボの上方に配置されており、
     前記第1可動装置は、前記サセプタを垂直方向に移動可能なものであり、
     前記第2可動装置は、前記加熱装置を垂直方向に移動可能なものである
    請求項6に記載の化合物単結晶製造装置。
  8.  前記ルツボは、
    (a)前記金属源を保持するための内ルツボと、前記内ルツボを収容するための外ルツボとを備えており、
    (b)前記内ルツボの外壁面と前記外ルツボの内壁面との間には、キャリアガスを前記内ルツボの内部に向かって流すためのキャリアガス流路が設けられ、
    (c)前記外ルツボの底面又は側面には、前記キャリアガス流路に前記キャリアガスを導入するためのキャリアガス導入孔が設けられている
    請求項2に記載の化合物単結晶製造装置。
  9.  前記キャリアガス流路は、前記内ルツボの先端に向かって前記キャリアガスを流すことが可能なものからなり、
     前記外ルツボの上部には、前記内ルツボの先端に達した前記キャリアガスの流れを前記金属源に向かう方向に変更するためのキャリアガス流方向調整器が設けられている
    請求項8に記載の化合物単結晶製造装置。
  10.  前記ガス供給部は、前記サセプタと前記ルツボとの間に設けられた反応ガス流方向調整器を備え、
     前記反応ガス流方向調整器は、前記反応ガスの流れの方向を前記混合ガスに向かう方向に変更し、前記混合ガスと前記反応ガスとの混合を促進するためのものからなる
    請求項2に記載の化合物単結晶製造装置。
  11.  前記種結晶の表面の傾き角度を変更する角度変更装置をさらに備えた請求項2に記載の化合物単結晶製造装置。
  12.  前記ルツボは、下から上に向かって第1ルツボ、第2ルツボ、…第nルツボ(n≧2)の順に積み重ねられた積層ルツボであって、第kルツボ(1≦k≦n-1)の前記開口部と、第(k+1)ルツボの前記キャリアガス導入孔とが接続されたものからなり、
     前記多孔バッフル板は、少なくとも最上部にある前記第nルツボの開口部に設けられている
    請求項8に記載の化合物単結晶製造装置。
  13.  請求項2に記載の化合物単結晶製造装置を用いて、各部の温度が次の式(10)を満たす条件下において、前記種結晶の表面に前記無機化合物からなる単結晶を成長させる化合物単結晶の製造方法。
     TG<TD<TS<TB   ・・・(10)
     但し、
     TGは、成長温度、
     TSは、前記金属源の温度、
     TDは、前記無機化合物の分解温度、
     TBは、前記ルツボの開口部に設けられた前記多孔バッフル板の温度。
  14.  請求項12に記載の化合物単結晶製造装置を用いて、各部の温度が次の式(11)及び式(12)を満たす条件下において、前記種結晶の表面に前記無機化合物からなる単結晶を成長させる化合物単結晶の製造方法。
     TG<TD≦TDmax<TSn<TB   ・・・(11)
     TSk≦TSk+1(1≦k≦n-1)    ・・・(12)
     但し、
     TGは、成長温度、
     TSnは、前記第nルツボに充填された第n金属源の温度、
     TDは、前記無機化合物の分解温度、
     TDmaxは、前記第1金属源~第n金属源に含まれるいずれか1以上の金属元素と前記反応ガスから生成する無機化合物の分解温度の最大値、
     TSkは、前記第kルツボに充填された第k金属源の温度、
     TSk+1は、前記第(k+1)ルツボに充填された第(k+1)金属源の温度、
     TBは、前記第nルツボの開口部に設けられた前記多孔バッフル板の温度。
  15.  前記第k金属源(1≦k≦n)は、いずれも金属のみからなり、
     前記第(k+1)金属源の沸点は、前記第k金属源の沸点以上である
    請求項14に記載の化合物単結晶の製造方法。
  16.  前記多孔バッフル板を通過する際の前記混合ガスの流速(ルツボ出口ガス流速)が1m/sec以上20m/sec未満となるように、前記キャリアガスを供給する請求項13又は14に記載の化合物単結晶の製造方法。
  17.  成長圧力Pが(3)式を満たし、かつ、前記多孔バッフル板と前記成長結晶の表面との間の距離Dが(4)式を満たすように、前記単結晶を成長させる請求項13又は14に記載の化合物単結晶の製造方法。
     0.1kPa<P<6kPa   ・・・(3)
     0.5cm≦D<5cm     ・・・(4)
  18.  前記金属源は、Al、Ga、In、Zn、Cd、Hg、Si、Ge、Sn、Mg、Mn、Cu、及びAgからなる群から選ばれるいずれか1種以上の金属元素を含む金属からなり、
     前記反応ガスは、C、B、N、P、As、Sb、O、S、Se、及びTeからなる群から選ばれるいずれか1種以上の元素を含むガスからなる
    請求項13又は14に記載の化合物単結晶の製造方法。
PCT/JP2018/004436 2017-02-10 2018-02-08 化合物単結晶製造装置、化合物単結晶の製造方法、及びGaN単結晶 WO2018147379A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/344,455 US11091851B2 (en) 2017-02-10 2018-02-08 Apparatus provided with a crucible including a porous baffle plate therein for manufacturing compound single crystal and method for manufacturing compound single crystal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-023660 2017-02-10
JP2017023660A JP6624110B2 (ja) 2017-02-10 2017-02-10 化合物単結晶製造装置、及び化合物単結晶の製造方法

Publications (1)

Publication Number Publication Date
WO2018147379A1 true WO2018147379A1 (ja) 2018-08-16

Family

ID=63108234

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/004436 WO2018147379A1 (ja) 2017-02-10 2018-02-08 化合物単結晶製造装置、化合物単結晶の製造方法、及びGaN単結晶

Country Status (3)

Country Link
US (1) US11091851B2 (ja)
JP (1) JP6624110B2 (ja)
WO (1) WO2018147379A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12046471B1 (en) * 2018-06-06 2024-07-23 United States Of America As Represented By The Secretary Of The Air Force Optimized thick heteroepitaxial growth of semiconductors with in-situ substrate pretreatment
GB2595878A (en) * 2020-06-09 2021-12-15 De Montfort Univ Materials grown by plasma-enhanced chemical vapour deposition
WO2023122250A2 (en) * 2021-12-22 2023-06-29 University Of Maryland, College Park Vapor deposition systems and methods, and nanomaterials formed by vapor deposition

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08157295A (ja) * 1994-12-01 1996-06-18 Crystal Device:Kk 薄膜形成方法
JP2000290777A (ja) * 1999-04-07 2000-10-17 Tokyo Electron Ltd ガス処理装置、バッフル部材、及びガス処理方法
JP2002060297A (ja) * 2000-08-21 2002-02-26 Agency Of Ind Science & Technol 単結晶の成長装置および成長方法
JP2006027976A (ja) * 2004-07-20 2006-02-02 Univ Waseda 窒化物単結晶の製造方法及びその製造装置
JP2007277089A (ja) * 2007-07-09 2007-10-25 Sumitomo Electric Ind Ltd GaN単結晶の合成方法
JP2008044818A (ja) * 2006-08-17 2008-02-28 Hitachi Cable Ltd Iii−v族窒化物系半導体基板及びiii−v族窒化物系発光素子
JP2009302205A (ja) * 2008-06-11 2009-12-24 Tokyo Electron Ltd プラズマ処理装置及びプラズマ処理方法
JP2016128381A (ja) * 2010-03-15 2016-07-14 株式会社リコー 窒化ガリウム結晶、13族窒化物結晶、結晶基板、およびそれらの製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11209199A (ja) * 1998-01-26 1999-08-03 Sumitomo Electric Ind Ltd GaN単結晶の合成方法
JP5888317B2 (ja) * 2009-06-29 2016-03-22 住友電気工業株式会社 Iii族窒化物結晶
JP5446622B2 (ja) * 2009-06-29 2014-03-19 住友電気工業株式会社 Iii族窒化物結晶およびその製造方法
JP5887697B2 (ja) * 2010-03-15 2016-03-16 株式会社リコー 窒化ガリウム結晶、13族窒化物結晶、結晶基板、およびそれらの製造方法
JP2013227202A (ja) * 2012-03-30 2013-11-07 Mitsubishi Chemicals Corp 周期表第13族金属窒化物半導体結晶の製造方法、および、当該製造方法によって得られた周期表第13族金属窒化物半導体結晶を用いた半導体発光デバイス
JP6099346B2 (ja) 2012-10-03 2017-03-22 株式会社トクヤマ N型iii族窒化物半導体層を有する積層体及びその製造方法
JP5772941B2 (ja) * 2013-12-25 2015-09-02 東レ株式会社 プラズマcvd装置
JP6396939B2 (ja) 2016-03-31 2018-09-26 株式会社サイオクス 窒化物半導体基板、半導体装置、および窒化物半導体基板の製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08157295A (ja) * 1994-12-01 1996-06-18 Crystal Device:Kk 薄膜形成方法
JP2000290777A (ja) * 1999-04-07 2000-10-17 Tokyo Electron Ltd ガス処理装置、バッフル部材、及びガス処理方法
JP2002060297A (ja) * 2000-08-21 2002-02-26 Agency Of Ind Science & Technol 単結晶の成長装置および成長方法
JP2006027976A (ja) * 2004-07-20 2006-02-02 Univ Waseda 窒化物単結晶の製造方法及びその製造装置
JP2008044818A (ja) * 2006-08-17 2008-02-28 Hitachi Cable Ltd Iii−v族窒化物系半導体基板及びiii−v族窒化物系発光素子
JP2007277089A (ja) * 2007-07-09 2007-10-25 Sumitomo Electric Ind Ltd GaN単結晶の合成方法
JP2009302205A (ja) * 2008-06-11 2009-12-24 Tokyo Electron Ltd プラズマ処理装置及びプラズマ処理方法
JP2016128381A (ja) * 2010-03-15 2016-07-14 株式会社リコー 窒化ガリウム結晶、13族窒化物結晶、結晶基板、およびそれらの製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LUKIN, G. ET AL.: "Investigation of GaN layers grown by high temperature vapor phase epitaxy", PHYS. STATUS SOLIDI C, vol. 11, no. 3-4, 2014, pages 491 - 494, XP055533291 *

Also Published As

Publication number Publication date
JP2018127391A (ja) 2018-08-16
US11091851B2 (en) 2021-08-17
US20190330762A1 (en) 2019-10-31
JP6624110B2 (ja) 2019-12-25

Similar Documents

Publication Publication Date Title
JP7046117B2 (ja) 金属るつぼ内に含まれる金属からベータ相の酸化ガリウム(β-Ga2O3)単結晶を成長させる方法
EP1567696B1 (de) Verfahren und vorrichtung zur ein-einkristall-herstellung mit gasdurchlässiger tiegelwand
US7361222B2 (en) Device and method for producing single crystals by vapor deposition
CA2583592C (en) Process for the production of gan or aigan crystals
EP2000567B1 (en) Method for growing iii nitride single crystal
US8987156B2 (en) Polycrystalline group III metal nitride with getter and method of making
US20100151194A1 (en) Polycrystalline group iii metal nitride with getter and method of making
JP4733485B2 (ja) 炭化珪素単結晶成長用種結晶の製造方法、炭化珪素単結晶成長用種結晶、炭化珪素単結晶の製造方法、および炭化珪素単結晶
WO2018147379A1 (ja) 化合物単結晶製造装置、化合物単結晶の製造方法、及びGaN単結晶
WO2002099169A1 (fr) Carbure de silicium monocristal et son procede de production
JP2013053068A (ja) n型III族窒化物系化合物半導体
JP4573713B2 (ja) 単結晶の製造方法及び単結晶の製造装置
JP6083096B2 (ja) 結晶成長方法および結晶成長装置
JP6885205B2 (ja) 金属蒸気供給装置、金属/金属化合物製造装置、金属窒化物単結晶の製造方法、及びナノ粒子の製造方法
JP6623736B2 (ja) 化合物単結晶製造装置、及び化合物単結晶の製造方法
JP6187503B2 (ja) 金属蒸気供給装置、金属/金属化合物製造装置、GaN単結晶の製造方法、及びナノ粒子の製造方法
JP2007145679A (ja) 窒化アルミニウム単結晶の製造装置及びその製造方法
JP4678212B2 (ja) Iii族窒化物単結晶の成長方法
JP2020125221A (ja) Iii族窒化物結晶の製造方法
EP2037011A1 (en) Single crystal of nitride of group iii element and method of growing the same
RU2315825C1 (ru) Способ выращивания монокристаллов нитрида галлия
JP5182758B2 (ja) 窒化物単結晶の製造方法および製造装置
JP5310669B2 (ja) AlN単結晶の成長方法
JP2013159510A (ja) 単結晶製造装置および単結晶の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18751265

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18751265

Country of ref document: EP

Kind code of ref document: A1