WO2018147145A1 - 金属酸化物の製錬方法 - Google Patents

金属酸化物の製錬方法 Download PDF

Info

Publication number
WO2018147145A1
WO2018147145A1 PCT/JP2018/003273 JP2018003273W WO2018147145A1 WO 2018147145 A1 WO2018147145 A1 WO 2018147145A1 JP 2018003273 W JP2018003273 W JP 2018003273W WO 2018147145 A1 WO2018147145 A1 WO 2018147145A1
Authority
WO
WIPO (PCT)
Prior art keywords
reduction
mixture
metal oxide
temperature
hearth furnace
Prior art date
Application number
PCT/JP2018/003273
Other languages
English (en)
French (fr)
Inventor
井関 隆士
幸弘 合田
純一 小林
岡田 修二
Original Assignee
住友金属鉱山株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友金属鉱山株式会社 filed Critical 住友金属鉱山株式会社
Priority to US16/484,618 priority Critical patent/US20200024685A1/en
Priority to AU2018218643A priority patent/AU2018218643B2/en
Publication of WO2018147145A1 publication Critical patent/WO2018147145A1/ja
Priority to PH12019501782A priority patent/PH12019501782A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B5/00General methods of reducing to metals
    • C22B5/02Dry methods smelting of sulfides or formation of mattes
    • C22B5/10Dry methods smelting of sulfides or formation of mattes by solid carbonaceous reducing agents
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • C22B1/16Sintering; Agglomerating
    • C22B1/216Sintering; Agglomerating in rotary furnaces
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • C22B1/24Binding; Briquetting ; Granulating
    • C22B1/242Binding; Briquetting ; Granulating with binders
    • C22B1/243Binding; Briquetting ; Granulating with binders inorganic
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • C22B1/24Binding; Briquetting ; Granulating
    • C22B1/242Binding; Briquetting ; Granulating with binders
    • C22B1/244Binding; Briquetting ; Granulating with binders organic
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • C22B1/24Binding; Briquetting ; Granulating
    • C22B1/242Binding; Briquetting ; Granulating with binders
    • C22B1/244Binding; Briquetting ; Granulating with binders organic
    • C22B1/245Binding; Briquetting ; Granulating with binders organic with carbonaceous material for the production of coked agglomerates
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B23/00Obtaining nickel or cobalt
    • C22B23/02Obtaining nickel or cobalt by dry processes
    • C22B23/021Obtaining nickel or cobalt by dry processes by reduction in solid state, e.g. by segregation processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B23/00Obtaining nickel or cobalt
    • C22B23/02Obtaining nickel or cobalt by dry processes
    • C22B23/023Obtaining nickel or cobalt by dry processes with formation of ferro-nickel or ferro-cobalt

Definitions

  • the present invention relates to a metal oxide smelting method, for example, a smelting method of obtaining a reduced product by reducing nickel oxide ore or the like with a carbonaceous reducing agent as a raw material.
  • a dry smelting method that produces nickel mat using a smelting furnace a dry smelting method that produces ferronickel using a rotary kiln or moving hearth furnace
  • an HPAL process which is a hydrometallurgical method for obtaining a nickel cobalt mixed sulfide (mixed sulfide) by adding a high-pressure acid leaching sulfiding agent using an autoclave, is known.
  • the raw nickel oxide ore is crushed to an appropriate size, etc.
  • a slurry process or the like is performed as a pretreatment.
  • nickel oxide ore when nickel oxide ore is agglomerated, that is, when powder or fine particles are agglomerated, the nickel oxide ore is mixed with other components, for example, a reducing agent such as a binder or coke to form a mixture. Further, after performing moisture adjustment and the like, it is inserted into a lump manufacturing machine, for example, a lump or a lump called a pellet or briquette with a diameter of about 10 mm to 30 mm (hereinafter collectively referred to as “pellet”). ).
  • a lump or a lump called a pellet or briquette with a diameter of about 10 mm to 30 mm (hereinafter collectively referred to as “pellet”).
  • the pellet needs to have a certain degree of air permeability in order to “fly” the contained moisture.
  • the composition of the resulting reduced product becomes non-uniform, resulting in inconveniences such as metal dispersion or uneven distribution. It is important to maintain a uniform temperature as much as possible when the reduction treatment is performed.
  • Patent Document 1 discloses a technique related to a method for producing ferronickel, and particularly discloses a method for producing ferronickel or a ferronickel refining raw material with high efficiency from low-grade nickel oxide ore. Specifically, a mixing step in which a raw material containing nickel oxide and iron oxide and a carbonaceous reducing material are mixed to form a mixture, and the mixture is heated and reduced in a moving hearth furnace to obtain a reduced mixture. A method comprising a step and a melting step of melting a reducing mixture in a melting furnace to obtain ferronickel is disclosed.
  • Patent Document 1 it is necessary to reduce nickel oxide remaining in the reduction mixture in the melting furnace by setting the metallization rate of Ni in the reduction mixture to 40% or more, preferably 85% or more.
  • the required heat for reduction is reduced and the energy consumption in the melting furnace can be reduced.
  • the metallization rate of Ni in the reduction mixture hereinafter also referred to as “metalation rate”
  • metalalation rate the metallization rate of Ni in the reduction mixture
  • Ni can be metallized. Since the amount of heat required for the same is the same, the overall energy consumption is not reduced, and therefore the smelting cost is not reduced.
  • Patent Document 1 discloses that a reduced agglomerate (reduced mixture) reduced in a moving hearth furnace is usually about 1000 ° C. by a radiant cooling plate or a refrigerant spraying device provided in the moving hearth furnace. There is a description that it is discharged by a discharge device after being cooled. However, if the reduced agglomerate is cooled to about 1000 ° C. or lower and then discharged and recovered from the moving hearth furnace, the moving hearth furnace cools down, and the energy for raising the temperature again for reduction. Cost and cost. In addition, repeated cooling and heating increase the thermal shock to the furnace and shorten the life of the apparatus, which also increases the cost.
  • the present invention has been proposed in view of such circumstances.
  • a metal oxide such as nickel oxide ore containing nickel oxide or the like is used as a raw material and reduced with a carbonaceous reducing agent to obtain a reduced product.
  • a method capable of efficiently treating a smelting method is provided.
  • the present inventors have made extensive studies to solve the above-described problems. As a result, the mixture containing the metal oxide raw material is efficiently subjected to a reduction process in which a drying process, a preheating process, a reduction process using a rotary hearth furnace, and a cooling process are sequentially performed. The present inventors have found that an appropriate smelting process can be performed and have completed the present invention.
  • the first invention of the present invention comprises a drying step of drying a mixture obtained by mixing a metal oxide and a carbonaceous reducing agent, a preheating step of preheating the dried mixture, and a hearth
  • a metal oxide smelting method comprising a reduction step of reducing a preheated mixture using a rotating rotary hearth furnace, and a reduction step of cooling the resulting reduction product It is.
  • the reduced product obtained through the reduction step is subjected to a temperature maintaining step of maintaining a predetermined temperature in the rotary hearth furnace, In this method, the reduced product is supplied to the cooling step after being held for a predetermined time.
  • the rotary hearth furnace has a structure capable of partitioning each step, and the treatment in the reduction step and the temperature holding step Is a metal oxide smelting method, in which the treatment in is performed using the same rotary hearth furnace.
  • the reduced product in the second or third aspect, in the temperature maintaining step, is maintained at a temperature of 1300 ° C. or higher and 1500 ° C. or lower. It is.
  • the fifth invention of the present invention is a metal oxide smelting method according to any one of the first to fourth inventions, wherein in the reduction step, the reduction temperature is reduced to 1200 ° C. or higher and 1450 ° C. or lower. is there.
  • the mixture to be dried in the drying step includes at least a metal oxide and a carbonaceous reducing agent.
  • a metal oxide smelting method obtained through a mixing treatment step for obtaining a mixture and a pretreatment step for performing a treatment for agglomerating the obtained mixture or a treatment for filling a predetermined container. is there.
  • the reduced product cooled in the cooling step in the reduction treatment step is separated and recovered into metal and slag. It is a smelting method of a metal oxide which has a separation process.
  • the eighth invention of the present invention is the metal oxide smelting method according to any one of the first to seventh inventions, wherein the metal oxide is nickel oxide ore.
  • a ninth invention of the present invention is the metal oxide smelting method according to any one of the first to eighth inventions, wherein the reduced product contains ferronickel.
  • a method capable of efficiently treating a smelting method using a metal oxide such as nickel oxide ore containing nickel oxide or the like as a raw material to obtain a reduced product by reduction with a carbonaceous reducing agent. can be provided.
  • the metal oxide smelting method according to the present invention is a smelting method in which a metal oxide is used as a raw material to perform a reduction treatment at a high temperature with a carbonaceous reducing agent to obtain a reduced product.
  • a method for producing ferronickel by using nickel oxide ore containing nickel oxide or iron oxide as a metal oxide as a raw material, and reducing the smelting raw material at a high temperature using a carbonaceous reducing agent Is mentioned.
  • the metal oxide smelting method according to the present invention includes a drying step of drying a mixture obtained by mixing a metal oxide and a carbonaceous reducing agent, and a preheating step of preheating the dried mixture. And a reduction treatment step including a reduction step of reducing using a rotary hearth furnace in which the hearth rotates, and a cooling step of cooling the obtained reduction product.
  • the mixture containing the raw material metal oxide is subjected to the treatment in each step described above, and further the treatment in the reduction step is performed using the rotary hearth furnace in which the hearth rotates.
  • the metal contained in the metal oxide can be effectively metalized and an efficient smelting treatment can be performed.
  • Nickel oxide ore which is a smelting raw material, contains at least nickel oxide.
  • ferronickel iron-nickel alloy
  • nickel oxide and the like contained in the raw material can be manufactured.
  • the present invention is not limited to nickel oxide ore as a metal oxide, and the smelting method is not limited to a method for producing ferronickel from nickel oxide ore containing nickel oxide or the like. Various changes can be made without departing from the scope of the present invention.
  • Nickel Oxide Smelting Method The method for smelting nickel oxide ore according to the present embodiment is to mix and knead nickel oxide ore, which is a smelting raw material, with a carbonaceous reducing agent, etc., to make a mixture, and to perform a reduction treatment on the mixture
  • ferronickel and slag which are metals, are generated.
  • the ferronickel which is a metal can be collect
  • FIG. 1 is a process diagram showing an example of the flow of a nickel oxide ore smelting method.
  • this nickel oxide ore smelting method comprises mixing treatment step S1 in which nickel oxide ore and a material such as a carbonaceous reducing agent are mixed to obtain a mixture, and the resulting mixture is agglomerated or A metal is separated from a mixture including a reduction charging pre-treatment step S2 for filling a predetermined container, a reduction treatment step S3 for reducing the mixture at a predetermined temperature (reduction temperature), and a mixture including metal and slag generated by the reduction treatment. And a separation step S4 to be recovered.
  • the mixing process step S1 is a step of obtaining a mixture by mixing raw material powders containing nickel oxide ore. Specifically, in the mixing treatment step S1, raw material powder having a particle size of about 0.2 mm to 0.8 mm, such as nickel oxide ore as a smelting raw material, iron ore, a flux component, a binder, a carbonaceous reducing agent, etc. Are mixed at a predetermined ratio to obtain a mixture.
  • the nickel oxide ore which is a smelting raw ore, is not particularly limited, but limonite or saprolite ore can be used.
  • iron ore for example, iron ore having an iron grade of about 50% or more, hematite obtained by wet refining of nickel oxide ore, and the like can be used.
  • Table 1 below shows an example of the composition (wt%) of nickel oxide ore and iron ore as raw materials.
  • a composition of a raw material it is not limited to this.
  • binder examples include bentonite, polysaccharides, resins, water glass, and dehydrated cake.
  • flux component examples include calcium oxide, calcium hydroxide, calcium carbonate, silicon dioxide and the like.
  • this carbonaceous reducing agent has a magnitude
  • the mixing amount of the carbonaceous reducing agent for example, the chemical equivalent required to reduce the total amount of nickel oxide contained in the formed mixture to nickel metal and the ferric oxide contained in the pellets as metal
  • the carbon content is 5% or more and 60% or less. Can be adjusted as follows.
  • a mixture is obtained by uniformly mixing the raw material powder containing nickel oxide ore as described above.
  • kneading may be performed at the same time, or kneading may be performed on a mixed word.
  • the raw material powder after the raw material powder is kneaded, it may be extruded using an extruder.
  • an extruder by extruding with an extruder, a much higher kneading effect can be obtained, the contact area between the raw material powders can be increased, and the voids can be reduced. Thereby, high quality ferronickel can be produced efficiently.
  • the reduction charging pretreatment step S2 is a step of agglomerating the mixture obtained in the mixing treatment step S1 into a lump or filling a container. That is, in this pre-reduction charging treatment step S2, the mixture obtained by mixing the raw material powders can be easily put into a furnace used in the reduction treatment step S3 described later, and the reduction reaction can be efficiently performed. Mold.
  • the mixture is formed (granulated) into a lump. Specifically, a predetermined amount of water necessary for agglomeration is added to the obtained mixture, and for example, using an agglomerate production apparatus (rolling granulator, compression molding machine, extrusion molding machine, etc.), etc. It is formed into a lump (hereinafter also referred to as “pellet”).
  • the shape of the pellet is not particularly limited, and may be spherical, for example. Spherical pellets are preferable because the reduction reaction can proceed relatively uniformly.
  • the size of the lump to be pelletized is not particularly limited. For example, in order to perform the reduction process (reduction process S33) through the drying process (drying process S31) and the preheating process (preheating process S32).
  • the size of the pellets charged into the smelting furnace to be used can be about 10 mm to 30 mm. Details of the reduction step will be described later.
  • the mixture When filling the obtained mixture into a container, the mixture can be filled into a predetermined container while kneading the mixture with an extruder or the like. As described above, after filling the container, the reduction treatment may be performed in the next reduction treatment step S3 as it is, but it is preferable to press and harden the mixture filled in the container by a press or the like. By pressing and compacting the mixture in the container, the density of the mixture can be increased, the density can be made uniform, the reduction reaction can proceed more uniformly, and ferronickel with less quality variation can be produced. .
  • the shape of the mixture filled in the container is not particularly limited, but is preferably a rectangular parallelepiped, a cube, a cylinder, or the like. Moreover, although the size is not particularly limited, for example, in the case of a rectangular parallelepiped shape or a cubic shape, it is generally preferable that the vertical and horizontal inner dimensions are 500 mm or less. By adopting such a shape and size, smelting with small quality variation and high productivity can be performed.
  • the raw material powder is mixed in the mixing treatment step S1, and the mixture that has been agglomerated or filled in the container in the reduction pre-treatment step S2 is reduced and heated to a predetermined reduction temperature.
  • the reduction heat treatment of the mixture in the reduction treatment step S3 the smelting reaction proceeds to produce metal and slag.
  • FIG. 2 is a process diagram showing the process executed in the reduction process S3.
  • the reduction treatment step S3 in the present embodiment is obtained by a drying step S31 for drying the mixture, a preheating step S32 for preheating the dried mixture, and a reduction step S33 for reducing the mixture.
  • Cooling step S35 for cooling the reduced product.
  • it preferably has a temperature holding step S34 for holding the reduced product obtained through the reduction step S33 in a predetermined temperature range.
  • the process in the reduction step S33 is performed using a rotary hearth furnace in which the hearth rotates. Moreover, when performing temperature holding process S34 which hold
  • the temperature in the rotary hearth furnace can be maintained at a high temperature. Therefore, the temperature is increased or decreased at each process in each process. The energy cost can be significantly reduced. Moreover, according to the process using a rotary hearth furnace, control and management of temperature become easy. For these reasons, it is possible to continuously and stably produce ferronickel with good quality with high productivity.
  • drying process S31 a drying process is performed with respect to the mixture obtained by mixing raw material powder.
  • the purpose of this drying step S31 is mainly to remove water and crystal water in the mixture.
  • the mixture obtained in the mixing treatment step S1 contains a lot of moisture and the like, and when rapidly heated to a high temperature such as the reduction temperature during the reduction treatment, the moisture is vaporized, expanded and agglomerated at once.
  • the mixture breaks or breaks up to break up in some cases, making it difficult to perform a uniform reduction treatment. Therefore, prior to the reduction treatment, the mixture is subjected to a drying treatment to remove moisture, thereby preventing the destruction of pellets and the like.
  • drying process in drying process S31 is performed in the form connected to a rotary hearth furnace.
  • an area (drying area) for performing a drying process in the rotary hearth furnace in such a case, the drying process in the drying area becomes rate-limiting, and the process and temperature in the reduction step S33 are performed. There is a possibility of affecting the processing in the holding step S34.
  • the drying process in the drying step S31 is preferably performed in a drying chamber provided outside the rotary hearth furnace and connected to the rotary hearth furnace.
  • FIG. 3 shows a configuration example of the rotary hearth furnace 1 and the drying chamber 20 connected to the rotary hearth furnace 1.
  • the drying chamber 20 can be designed completely different from the steps such as preheating, reduction, and cooling described later, and desirable drying treatment, preheat treatment, reduction treatment, It becomes easy to perform each cooling process.
  • the drying chamber 20 may be designed to have a long overall length, or the mixture in the drying chamber 20 What is necessary is just to design so that a conveyance speed may become slow.
  • the drying treatment in the drying chamber 20 for example, the solid content in the mixture can be about 70% by weight and the water content can be about 30% by weight.
  • the drying method is not particularly limited, but can be performed by blowing hot air on the mixture conveyed in the drying chamber 20.
  • the drying temperature is not particularly limited, but from the viewpoint of preventing the reduction reaction from starting, it is preferably 500 ° C. or lower, and it is preferable to uniformly dry at the temperature of 500 ° C. or lower.
  • Table 2 below shows an example of the composition (parts by weight) of the solid content in the mixture after the drying treatment.
  • the composition of the mixture is not limited to this.
  • preheating process S32 the mixture after water
  • the mixture If the mixture is charged into the rotary hearth furnace and raised to a high reduction temperature, the mixture may break or become powdery due to thermal stress. In addition, the temperature of the mixture may not rise uniformly, causing variations in the reduction reaction, and the quality of the metal produced may vary. For this reason, it is preferable to preheat the mixture to a predetermined temperature after the drying treatment, whereby the destruction of the mixture and variations in the reduction reaction can be suppressed.
  • the preheating process in the preheating step S32 is preferably performed in a processing chamber provided outside the rotary hearth furnace, similarly to the drying process, and is performed in a preheating chamber connected to the rotary hearth furnace. It is preferable to do so.
  • this preheating chamber 30 is provided outside the furnace of the rotary hearth furnace 1, and the drying chamber which performs a drying process 20 are continuously provided.
  • the preheat treatment in the preheating chamber 30 is not particularly limited, but is preferably performed at a preheating temperature of 600 ° C or higher, and more preferably at a preheating temperature of 700 ° C or higher and 1280 ° C or lower.
  • a preheating temperature 600 ° C or higher
  • a preheating temperature 700 ° C or higher and 1280 ° C or lower.
  • the reduction step S33 the mixture preheated in the preheating step S32 is reduced at a predetermined reduction temperature.
  • the reduction process in the reduction step S33 is performed using a rotary hearth furnace in which the hearth rotates.
  • the temperature inside the furnace can be maintained in a high temperature range, and there is no need to raise or lower the temperature, greatly reducing energy costs. can do.
  • temperature control and management become easy, and high quality ferronickel can be produced stably.
  • FIG. 3 is a diagram (plan view) showing a configuration example of a rotary hearth furnace in which the hearth rotates.
  • the rotary hearth furnace 1 has a region 10 in which the hearth rotates, and the region 10 is divided into four, and each constitutes a processing chamber (10a, 10b, 10c, 10d). Yes.
  • all four treatment chambers with reference numerals “10a” to “10d” may be reduction chambers for performing reduction treatment.
  • the processing chambers “10a”, “10b”, and “10c” are set as the reduction chamber, and the processing chamber “10d” is held at the temperature. It can be set as the temperature holding chamber which performs the process in process S34.
  • each process that is, between each processing chamber, be partitioned by a partition wall in order to strictly control the reaction temperature and suppress energy loss.
  • the rotary hearth furnace having a structure capable of partitioning the sub-size of each process, the energy loss is suppressed between the process in the reduction process S33 and the process in the temperature holding process S34, as will be described later.
  • the same rotary hearth furnace can be used.
  • the partition wall is of a fixed type, it may be difficult to transport between processes, and particularly to charge and discharge the rotary hearth furnace. It is preferable to have a structure that can be opened and closed to the extent that it does not interfere with.
  • the number of processing chambers formed by dividing the area 10 in which the hearth rotates is not limited to four illustrated in FIG. Further, the number of reduction chambers and the number of temperature holding chambers are not limited to the above-described example, and can be appropriately set according to the processing time and the like.
  • the rotary hearth furnace 1 includes a hearth that rotates and moves on a plane, and the hearth on which the mixture is placed rotates and moves at a predetermined speed, so that each processing chamber (10a, 10a, 10b, 10c, 10d), and processing is performed at the time of the passage.
  • each processing chamber (10a, 10a, 10b, 10c, 10d) is performed at the time of the passage.
  • the arrow on the rotary hearth furnace 1 in FIG. 3 shows the rotation direction of a hearth, it shows the moving direction of a processed material (mixture).
  • the rotary hearth furnace 1 is connected to a drying chamber 20 provided outside the furnace and a preheating chamber 30, and as described above, after the drying treatment is performed on the mixture in the drying chamber 20.
  • the dried mixture moves to the preheating chamber 30 and is preheated, and the preheated mixture is sequentially transferred into the rotary hearth furnace 1.
  • the rotary hearth furnace 1 is connected to a cooling chamber 40 provided outside the furnace, and the reduced product obtained through the reduction chamber or the temperature holding chamber (10d) is cooled in the cooling chamber 40. (Cooling step S35 described later).
  • the reduction temperature is not particularly limited, but is preferably in the range of 1200 ° C to 1450 ° C, and more preferably in the range of 1300 ° C to 1400 ° C.
  • a reduction reaction can be caused uniformly and a metal (ferronickel metal) with suppressed quality variation can be generated.
  • a metal ferrronickel metal
  • a desired reduction reaction can be caused in a relatively short time.
  • the internal temperature of the reduction chamber in the rotary hearth furnace 1 is raised until the reduction temperature is in the above-described range, and the temperature is maintained after the temperature rise.
  • a reaction inhibitor such as ash is placed on the hearth of the rotary hearth furnace 1 to be used in order to prevent the hearth and the mixture sample from reacting and becoming difficult to recover.
  • the mixture sample may be placed on the reaction suppressing material.
  • the ash as a reaction inhibitor, a ash having a main component of SiO 2 and a small amount of oxides such as Al 2 O 3 and MgO can be used as the other components.
  • the metal component in the reduced product is small in the state obtained by the reduction treatment, for example, when it is a bulk metal of about 200 ⁇ m or less, the metal and slag are separated in the subsequent separation step S4. Will become difficult. For this reason, if necessary, the reduced product is kept at a high temperature for a certain period of time after the reduction reaction is completed, so that the metal having a higher specific gravity than the slag in the reduced product is settled and aggregated. Make it coarse.
  • the reduced product holding temperature in the temperature holding step S34 is preferably in the high temperature range of 1300 ° C to 1500 ° C.
  • the metal component in the reduced product can be efficiently precipitated to form a coarse metal.
  • the holding temperature is lower than 1300 ° C., a large part of the reduced product becomes a solid phase, so that the metal component does not settle or even takes time, which is not preferable.
  • the holding temperature exceeds 1500 ° C., the reaction between the obtained reduced product and the hearth material proceeds, and the reduced product may not be recovered, and the furnace may be damaged. .
  • the treatment in the temperature holding step S34 is performed continuously following the reduction treatment in the rotary hearth furnace 1 used in the reduction step S33. That is, as described with reference to FIG. 3, in the rotary hearth furnace 1, for example, the processing chambers “10a”, “10b”, and “10c” are used as the reduction chambers, and the processing chamber “10d” is used in the temperature holding step S34. A temperature holding chamber for processing is used, and the reduced product obtained through the reduction chambers (10a, 10b, 10c) is held in a predetermined temperature range in the temperature holding chamber (10d).
  • the metal component in the reduction product is efficiently settled by continuously performing the process of maintaining the reduction product obtained through the reduction treatment at a predetermined temperature using the rotary hearth furnace 1. Can be coarsened.
  • the process in the reduction process S33 and the process in the temperature holding process S34 are continuously performed using the rotary hearth furnace 1 instead of separate furnaces, so that heat loss between the processes is reduced and efficient. Enable operation.
  • Cooling step S35 the reduction product obtained through the reduction step S33 or the reduction product after being held at a high temperature for a predetermined time in the temperature holding step S34 is separated and recovered in the subsequent separation step S4. Cool down to a temperature where you can.
  • the cooling step S35 is a step of cooling the reduction product obtained as described above, it is preferably performed in a cooling chamber connected to the outside of the rotary hearth furnace 1.
  • FIG. 3 shows a configuration example of the cooling chamber 40 connected to the rotary hearth furnace 1.
  • the cooling chamber 40 is provided outside the rotary hearth furnace 1.
  • the temperature in the cooling step S35 (hereinafter also referred to as “recovery temperature”) is a temperature at which the reduced product can be handled substantially as a solid, and is preferably as high as possible.
  • the recovery temperature is preferably 600 ° C. or higher.
  • the energy required for reheating can be greatly reduced, and efficient smelting treatment can be performed at low cost.
  • the temperature difference in the rotary hearth furnace 1 the thermal stress applied to the hearth, the furnace wall, etc. can be reduced, and the life of the rotary hearth furnace 1 can be greatly extended. In addition, problems during operation can be greatly reduced.
  • Separation process S4 isolate
  • a metal phase is obtained from a mixture (reduced product) including a metal phase (metal solid phase) and a slag phase (slag solid phase) obtained by subjecting the mixture to reduction heat treatment. Separate and collect.
  • the obtained metal phase and slag phase can be easily separated because of poor wettability, and for example, when a large mixture is dropped with a predetermined drop, or when sieving By giving an impact such as giving a predetermined vibration, the metal phase and the slag phase can be easily separated from the mixture.
  • the metal phase can be recovered and made into a ferronickel product.
  • Nickel oxide ore as raw material ore, iron ore, silica sand and limestone as flux components, binder, and coal powder as carbonaceous reducing agent (carbon content: 85% by weight, average particle size: about 190 ⁇ m) Were mixed using a mixer while adding an appropriate amount of water to obtain a mixture.
  • the carbonaceous reducing agent is 33% in terms of carbon when the total value of chemical equivalents required to reduce nickel oxide and iron oxide (Fe 2 O 3 ) to metal without excess or deficiency is 100%. In an amount corresponding to.
  • the mixture obtained by mixing with a mixer was kneaded with a twin-screw kneader.
  • the rotary hearth furnace 1 includes a drying chamber 20 for drying pellets, a preheating chamber 30 provided continuously to the drying chamber 20, and a processing chamber 10a in the furnace. The one connected to the cooling chamber 40 for cooling the reduced product obtained through ⁇ 10d was used.
  • the pellets after the drying treatment are transferred to a preheating chamber 30 continuously provided in the drying chamber 20, and the temperature in the preheating chamber 30 is maintained in a range of 700 ° C. or higher and 1280 ° C. or lower, so Heat treatment was performed.
  • the pellets after the pre-heat treatment were transferred into the rotary hearth furnace 1 and subjected to reduction treatment and temperature holding treatment.
  • the region 10 in which the hearth rotates and moves is divided into four processing chambers, and among the four processing chambers, the processing chambers 10a to 10c are reduced.
  • the reduction chamber to be executed and the processing chamber 10d are temperature holding chambers for holding the reduced product at a high temperature.
  • the hearth of the rotary hearth furnace 1 is preliminarily provided with a hearth from the viewpoint of suppressing the reaction between the hearth and the sample as much as possible in order to prevent the hearth and the sample from peeling off and becoming difficult to collect.
  • Ash the main component is SiO 2 and the other components contain a small amount of oxides such as Al 2 O 3 and MgO) was spread.
  • the internal temperature of the temperature holding chamber is set to 0 ° C., and only the temperature holding chamber is passed.
  • restoration thing obtained through the reduction process or a reduction process and a temperature maintenance process it transfers to the cooling chamber connected to the rotary hearth furnace 1, and it cools to room temperature rapidly, flowing nitrogen, and air
  • the reductant was collected from the rotary hearth furnace in a form in which the reductant was transferred to the cooling chamber 40, and the reductant was collected along a guide installed in the cooling chamber 40.
  • Table 4 below shows the conditions of the reduction treatment and the temperature holding treatment in the reduction treatment step.
  • Ni metal recovery rate recovered Ni amount ⁇ (amount of ore charged ⁇ Ni content ratio in ore) ⁇ 100 (iii) formula
  • the drying step, the preheating step, the reduction step of reducing using a rotary hearth furnace in which the hearth rotates, and the obtained reduction product are cooled.
  • a reduction treatment step having at least a cooling step ferronickel with high nickel quality could be obtained, and nickel could be recovered with a high recovery rate of 90% or more.
  • reduction processing, or reduction processing and temperature holding processing are performed using a rotary hearth furnace, so that the internal temperature of the rotary hearth furnace can be held at a high temperature, and energy required for reheating. Was suppressed, and an efficient smelting process could be performed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

例えば、酸化ニッケル等を含有するニッケル酸化鉱などの金属酸化物を原料とし、炭素質還元剤で還元して還元物を得る製錬方法に関して、効率よく処理することができる方法を提供とする。 本発明に係る金属酸化物の製錬方法は、例えばニッケル酸化鉱の製錬方法である。具体的に、金属酸化物と炭素質還元剤とを混合して得られた混合物を乾燥する乾燥工程S31と、乾燥させた混合物を予熱する予熱工程S32と、炉床が回転する回転炉床炉1を用いて予熱後の混合物を還元する還元工程S33と、得られた還元物を冷却する冷却工程S35と、を有する還元処理工程S3を含む。また、好ましくは、還元工程S33を経て得られた還元物を、回転炉床炉1内で所定の温度に保持する温度保持工程S34に付す。

Description

金属酸化物の製錬方法
 本発明は、金属酸化物の製錬方法に関するものであり、例えば、ニッケル酸化鉱等を原料として炭素質還元剤により還元することで還元物を得る製錬方法に関する。
 リモナイトあるいはサプロライトと呼ばれるニッケル酸化鉱の製錬方法として、熔錬炉を使用してニッケルマットを製造する乾式製錬方法、ロータリーキルンあるいは移動炉床炉を使用してフェロニッケルを製造する乾式製錬方法、オートクレーブを使用して高圧酸浸出し硫化剤を添加してニッケルコバルト混合硫化物(ミックスサルファイド)を得る湿式製錬法であるHPALプロセス等が知られている。
 上述した様々な方法の中で、特に乾式製錬法を用いてニッケル酸化鉱を還元して製錬する場合、原料のニッケル酸化鉱を適度な大きさに破砕する等して塊状物化する処理や、あるいはスラリー化する処理等が前処理として行われる。
 具体的に、ニッケル酸化鉱を塊状物化する、すなわち粉や微粒状から塊状にする際には、そのニッケル酸化鉱と、それ以外の成分、例えばバインダーやコークス等の還元剤と混合して混合物とし、さらに水分調整等を行った後に塊状物製造機に装入して、例えば一辺あるいは直径が10mm~30mm程度の大きさのペレットやブリケットと称せられる塊状物(以下、まとめて単に「ペレット」という)とするのが一般的である。
 さて、ペレットには、含有する水分を「飛ばす」ために、ある程度の通気性が必要となる。また、ペレット内で均一に還元が進まないと、得られる還元物の組成が不均一になり、メタルが分散したり偏在したりする等の不都合が生じるため、混合物を均一に混合し、またペレットを還元処理する際には可能な限り均一な温度を維持することが重要となる。
 加えて、還元されて生成したフェロニッケルを粗大化させることも非常に重要な技術である。なぜなら、生成したフェロニッケルが、例えば数10μm~数100μm以下の細かな大きさであった場合、同時に生成したスラグと分離することが困難となり、フェロニッケルとしての回収率(収率)が大きく低下してしまうためである。このことから、還元後のフェロニッケルを粗大化する処理が必要となる。
 また、製錬コストを如何に低く抑えることができるかについても重要な技術的事項であり、コンパクトな設備で操業できる連続処理が望まれている。
 例えば、特許文献1には、フェロニッケルの製造方法に関する技術が開示されており、特に、低品位の酸化ニッケル鉱石から高効率でフェロニッケル又はフェロニッケル精錬原料を製造する方法が開示されている。具体的には、酸化ニッケル及び酸化鉄を含有する原料と炭素質還元材とを混合して混合物とする混合工程と、その混合物を移動炉床炉内で加熱し還元して還元混合物を得る還元工程と、還元混合物を溶解炉で溶解してフェロニッケルを得る溶解工程と、を備えた方法が開示されている。
 ここで、特許文献1には、還元混合物中のNiの金属化率を40%以上、好ましくは85%以上とすることにより、還元混合物中に残留する酸化ニッケルを溶解炉で還元するのに必要な還元所要熱が少なくなり、溶解炉におけるエネルギー消費量を低減できる、との記載がある。しかしながら、還元混合物中のNiの金属化率(以下、「メタル化率」ともいう)を高くして溶融炉で還元するのに必要な還元所要熱を少なくしても、Niをメタル化するのに必要な熱量そのものは同じであるため、全体でみるとエネルギーの消費量を低減することにはならず、従って製錬コストを低減することにはならない。
 また、特許文献1には、移動炉床炉内で還元された還元塊成物(還元混合物)は、移動炉床炉内に設けられた輻射式冷却板や冷媒吹き付け装置等により通常1000℃程度に冷却してから排出装置で排出される、との記載がある。しかしながら、還元塊成物を1000℃程度以下まで冷却してから移動炉床炉から排出して回収するのでは、その移動炉床炉が冷えてしまい、還元するために再度温度に上げるためのエネルギーを要し、コストがかかってしまう。また、冷却、加熱を繰り返すことで炉への熱衝撃を増して装置寿命を縮めてしまい、これもコストアップにつながる要因となる。
 このように、ニッケル酸化鉱を混合、還元して、低コストで連続して製錬しフェロニッケルを得るためには、多くの問題があった。
特開2004-156140号公報
 本発明は、このような実情に鑑みて提案されたものであり、例えば、酸化ニッケル等を含有するニッケル酸化鉱などの金属酸化物を原料とし、炭素質還元剤で還元して還元物を得る製錬方法に関して、効率よく処理することができる方法を提供する。
 本発明者らは、上述した課題を解決するために鋭意検討を重ねた。その結果、金属酸化物の原料を含む混合物に対して、乾燥工程と、予熱工程と、回転炉床炉を使用した還元工程と、冷却工程とを順に実行する還元処理を施すことによって、効率的な製錬処理を行うことができることを見出し、本発明を完成するに至った。
 (1)本発明の第1の発明は、金属酸化物と炭素質還元剤とを混合して得られた混合物を乾燥する乾燥工程と、乾燥させた混合物を予熱する予熱工程と、炉床が回転する回転炉床炉を用いて、予熱後の混合物を還元する還元する還元工程と、得られた還元物を冷却する冷却工程と、を有する還元処理工程を含む、金属酸化物の製錬方法である。
 (2)本発明の第2の発明は、第1の発明において、前記還元工程を経て得られた還元物を、前記回転炉床炉内で所定の温度に保持する温度保持工程に付し、所定の時間で保持した後に、該還元物を前記冷却工程に供給する、金属酸化物の製錬方法である。
 (3)本発明の第3の発明は、第2の発明において、前記回転炉床炉は、各工程の間を仕切ることが可能な構造を有し、前記還元工程における処理と前記温度保持工程における処理とを、同一の前記回転炉床炉を用いて実行する、金属酸化物の製錬方法である。
 (4)本発明の第4の発明は、第2又は第3の発明において、前記温度保持工程では、前記還元物を1300℃以上1500℃以下の温度に保持する、金属酸化物の製錬方法である。
 (5)本発明の第5の発明は、第1乃至第4のいずれかの発明において、前記還元工程では、還元温度を1200℃以上1450℃以下として還元する、金属酸化物の製錬方法である。
 (6)本発明の第6の発明は、第1乃至第5のいずれかの発明において、前記乾燥工程にて乾燥させる前記混合物は、少なくとも、金属酸化物と、炭素質還元剤とを混合して混合物を得る混合処理工程と、得られた混合物を塊状化する処理又は所定の容器に充填する処理を行う前処理工程と、を経て得られたものである、金属酸化物の製錬方法である。
 (7)本発明の第7の発明は、第1乃至第6のいずれかの発明において、前記還元処理工程における前記冷却工程にて冷却した還元物を、メタルとスラグとに分離して回収する分離工程を有する、金属酸化物の製錬方法である。
 (8)本発明の第8の発明は、第1乃至第7のいずれかの発明において、金属酸化物は、ニッケル酸化鉱である、金属酸化物の製錬方法である。
 (9)本発明の第9の発明は、第1乃至第8のいずれかの発明において、前記還元物は、フェロニッケルを含有する、金属酸化物の製錬方法である。
 本発明によれば、例えば酸化ニッケル等を含有するニッケル酸化鉱などの金属酸化物を原料とし、炭素質還元剤で還元して還元物を得る製錬方法に関して、効率よく処理することができる方法を提供とすることができる。
ニッケル酸化鉱の製錬方法の流れの一例を示す工程図である。 還元処理工程にて実行する処理工程を示す工程である。 炉床が回転する回転炉床炉の構成例を示す図(平面図)である。
 ≪1.本発明の概要≫
 本発明に係る金属酸化物の製錬方法は、金属酸化物を原料として、炭素質還元剤により高温下で還元処理を行って還元物を得る製錬方法である。例えば、金属酸化物として、酸化ニッケルや酸化鉄等を含有するニッケル酸化鉱を原料とし、その製錬原料に対して炭素質還元剤を用いて高温下で還元することでフェロニッケルを製造する方法が挙げられる。
 具体的に、本発明に係る金属酸化物の製錬方法は、金属酸化物と炭素質還元剤とを混合して得られた混合物を乾燥する乾燥工程と、乾燥させた混合物を予熱する予熱工程と、炉床が回転する回転炉床炉を用いて還元する還元工程と、得られた還元物を冷却する冷却工程と、を有する還元処理工程を含むことを特徴としている。
 このように本発明によれば、原料の金属酸化物を含む混合物に対し、上述した各工程における処理を施し、さらに還元工程における処理を炉床が回転する回転炉床炉を用いて行うことによって、金属酸化物中に含まれる金属を効果的にメタル化して、しかも効率的な製錬処理を行うことができる。
 以下では、本発明の具体的な実施形態(以下、「本実施の形態」という)として、ニッケル酸化鉱の製錬方法を例に挙げて説明する。製錬原料であるニッケル酸化鉱は酸化ニッケルを少なくとも含むものであり、このニッケル酸化鉱の製錬方法では、原料中に含まれる酸化ニッケル等を還元することによってフェロニッケル(鉄-ニッケル合金)を製造することができる。
 なお、本発明は、金属酸化物としてニッケル酸化鉱に限定されるものではなく、製錬方法としても酸化ニッケル等を含むニッケル酸化鉱からフェロニッケルを製造する方法に限られるものではない。また、本発明の要旨を変更しない範囲で種々の変更が可能である。
 ≪2.ニッケル酸化鉱の製錬方法≫
 本実施の形態に係るニッケル酸化鉱の製錬方法は、製錬原料であるニッケル酸化鉱を炭素質還元剤等と混合、混練して混合物を作り、その混合物に対して還元処理を施すことによって、メタルであるフェロニッケルとスラグとを生成させる方法である。なお、メタルであるフェロニッケルは、還元処理を経て得られたメタルとスラグとを含む混合物から、そのメタルを分離することで回収することができる。
 図1は、ニッケル酸化鉱の製錬方法の流れの一例を示す工程図である。図1に示すように、このニッケル酸化鉱の製錬方法は、ニッケル酸化鉱と炭素質還元剤等の材料とを混合して混合物を得る混合処理工程S1と、得られた混合物を塊状化あるいは所定の容器に充填する還元投入前処理工程S2と、所定の温度(還元温度)で混合物を還元する還元処理工程S3と、還元処理により生成したメタルとスラグとを含む混合物からメタルを分離して回収する分離工程S4と、を有する。
 <2-1.混合処理工程>
 混合処理工程S1は、ニッケル酸化鉱を含む原料粉末を混合して混合物を得る工程である。具体的に、混合処理工程S1では、製錬原料であるニッケル酸化鉱と、鉄鉱石、フラックス成分、バインダー、炭素質還元剤等の、例えば粒径が0.2mm~0.8mm程度の原料粉末とを所定の割合で混合して混合物を得る。
 製錬原料の鉱石であるニッケル酸化鉱としては、特に限定されないが、リモナイト鉱、サプロライト鉱等を用いることができる。
 鉄鉱石としては、例えば鉄品位が50%程度以上の鉄鉱石、ニッケル酸化鉱の湿式製錬により得られるヘマタイト等を用いることができる。
 下記表1に、原料であるニッケル酸化鉱と、鉄鉱石の組成(重量%)の一例を示す。なお、原料の組成としては、これに限定されるものではない。
Figure JPOXMLDOC01-appb-T000001
 また、バインダーとしては、例えば、ベントナイト、多糖類、樹脂、水ガラス、脱水ケーキ等を挙げることができる。また、フラックス成分としては、例えば、酸化カルシウム、水酸化カルシウム、炭酸カルシウム、二酸化珪素等を挙げることができる。
 炭素質還元剤としては、特に限定されないが、例えば、石炭粉、コークス等が挙げられる。なお、この炭素質還元剤は、原料鉱石のニッケル酸化鉱の粒度と同等の大きさを有するものであることが好ましい。また、炭素質還元剤の混合量としては、例えば、形成される混合物内に含まれる酸化ニッケルの全量をニッケルメタル還元するのに必要な化学当量と、ペレット内に含まれる酸化第二鉄を金属鉄に還元するのに必要な化学当量との両者合計値(便宜的に「化学当量の合計値」ともいう)を100%としたときに、5%以上60%以下の炭素量の割合となるように調整することができる。
 混合処理工程S1では、上述したようなニッケル酸化鉱を含む原料粉末を均一に混合することによって混合物を得る。この混合に際しては、混練を同時に行ってもよく、混合語に混練を行ってもよい。このように、原料粉末を混合、混練することにより、原料同士の接触面積が増し、また空隙が減少することによって、還元反応が起りやすくなるとともに均一に反応させることができる。これにより、還元反応の反応時間を短縮させることができ、かつ品質のばらつきが無くなる。その結果として、生産性の高い処理することができ、かつ高い品質のフェロニッケルを製造することができる。
 また、原料粉末を混練した後、押出機を用いて押出してもよい。このように押出機で押出すことによって、より一層高い混練効果を得ることができ、原料粉末同士の接触面積が増し、また空隙が減少させることができる。これにより、高品質のフェロニッケルを効率的に製造することができる。
 <2-2.還元投入前処理工程(前処理工程)>
 還元投入前処理工程S2は、混合処理工程S1で得られた混合物を、塊状物に塊状化し、あるいは容器に充填する工程である。すなわち、この還元投入前処理工程S2では、原料粉末を混合して得られた混合物を、後述する還元処理工程S3にて使用する炉に投入し易くし、また効率的に還元反応が起こるように成形する。
 (混合物の塊状化)
 得られた混合物を塊状化する場合には、その混合物を塊状物に形成(造粒)する。具体的には、得られた混合物に対して塊状化に必要な所定量の水分を添加し、例えば塊状物製造装置(転動造粒機、圧縮成形機、押出成形機など)等を用いて塊(以下、「ペレット」ともいう)に成形する。
 ペレットの形状としては、特に限定されず、例えば球状とすることができる。球状のペレットであることにより、還元反応が比較的均一に進み易く好ましい。また、ペレット状にする塊状物の大きさとしては、特に限定されないが、例えば、乾燥処理(乾燥工程S31)、予熱処理(予熱工程S32)を経て、還元処理(還元工程S33)を行うために使用する製錬炉等に装入されるペレットの大きさ(球状のペレットの場合には直径)で、10mm~30mm程度となるようにすることができる。なお、還元工程等については、詳しくは後述する。
 (混合物の容器への充填)
 得られた混合物を容器に充填する場合には、その混合物を押出機等で混練しながら所定の容器に充填することができる。このように、容器に充填したのち、そのまま次工程の還元処理工程S3にて還元処理を行ってもよいが、容器に充填せいた混合物をプレス等により押し固めることが好ましい。容器内で混合物を押し固めて成形することによって、混合物の密度を上げることができるとともに、密度が均一化し、還元反応がより均一に進み易くなり、品質ばらつきの小さいフェロニッケルを製造することができる。
 容器内に充填する混合物の形状としては、特に限定されないが、例えば直方体、立方体、円柱等とすることが好ましい。また、その大きさについても特に限定されないが、例えば直方体形状や立方体形状であれば、概ね、縦、横の内寸が500mm以下であることが好ましい。このような形状、大きさとすることにより、品質ばらつきが小さく、かつ生産性の高い製錬を行うことができる。
 <2-3.還元処理工程>
 還元処理工程S3では、混合処理工程S1にて原料粉末が混合され、還元投入前処理工程S2にて塊状化あるいは容器に充填された混合物を、所定の還元温度に還元加熱する。還元処理工程S3における混合物の還元加熱処理により、製錬反応が進行して、メタルとスラグとが生成する。
 図2は、還元処理工程S3にて実行する処理工程を示す工程図である。図2に示すように、本実施の形態における還元処理工程S3は、混合物を乾燥する乾燥工程S31と、乾燥させた混合物を予熱する予熱工程S32と、混合物を還元する還元工程S33と、得られた還元物を冷却する冷却工程S35と、を有する。また、好ましくは、還元工程S33を経て得られた還元物を所定の温度範囲に保持する温度保持工程S34を有する。
 ここで、還元工程S33における処理は、炉床が回転する回転炉床炉を用いて行われる。また、還元物を所定の温度範囲に保持する温度保持工程S34を実行する場合には、少なくとも、還元工程S33における処理と温度保持工程S34における処理とを回転炉床炉にて実行する。
 このように、これらの処理を回転炉床炉にて行うことによって、その回転炉床炉内の温度を高い温度で維持することができるため、それぞれの工程における処理の都度、温度を上げたり下げたりする等の必要が無くなり、エネルギーコストを大幅に低減することができる。また、回転炉床炉を用いた処理によれば、温度の制御や管理が容易になる。これらのことから、高い生産性でもって品質の良好なフェロニッケルを連続して安定的に製造することができる。
 (1)乾燥工程
 乾燥工程S31では、原料粉末を混合して得られた混合物に対して乾燥処理を施す。この乾燥工程S31は、主に混合物中の水分や結晶水を飛ばすことを目的とする。
 混合処理工程S1にて得られた混合物には水分等が多く含まれており、そのような状態で還元処理時に還元温度のような高温まで急加熱すると水分が一気に気化、膨張し、塊状化した混合物が割れたり、場合によって破裂して粉々になってしまい、均一な還元処理を行うことが困難になる。そのため、還元処理を行うに先立ち、混合物に対する乾燥処理を施して水分を除去するようにし、ペレット等の破壊を防止する。
 乾燥工程S31における乾燥処理は、回転炉床炉に接続される形態で行われることが好ましい。回転炉床炉内において乾燥処理を施すエリア(乾燥エリア)を設けて実施することも考えられるが、このような場合、乾燥エリアでの乾燥処理が律速となって、還元工程S33における処理や温度保持工程S34における処理に影響を与える可能性がある。
 したがって、乾燥工程S31における乾燥処理は、回転炉床炉の炉外に設けられ、その回転炉床炉に接続された乾燥室にて行われることが好ましい。なお、詳しくは後述するが、図3に、回転炉床炉1と、その回転炉床炉1に接続された乾燥室20の構成例を示す。このように、回転炉床炉1の炉外に乾燥室20を設けることで、後述する予熱、還元、冷却といった工程とは全く別に乾燥室を設計でき、望ましい乾燥処理、予熱処理、還元処理、冷却処理をそれぞれ実行し易くなる。例えば、原料に依存して混合物に水分が多く残存するような場合には、乾燥処理に時間がかかるため、乾燥室20の全長を長めに設計すればよく、または乾燥室20内での混合物の搬送速度が遅くなるように設計すればよい。
 乾燥室20における乾燥処理としては、例えば、混合物中の固形分が70重量%程度で、水分が30重量%程度となるように処理することができる。また、乾燥方法については、特に限定されないが、乾燥室20において搬送されてきた混合物に対し熱風を吹き付けることによって行うことができる。また、乾燥温度についても、特に限定されないが、還元反応がはじまらないようにする観点から、500℃以下とすることが好ましく、かつその500℃以下の温度で均一に乾燥することが好ましい。
 下記表2に、乾燥処理後の混合物における固形分の組成(重量部)の一例を示す。なお、混合物の組成としては、これに限定されるものではない。
Figure JPOXMLDOC01-appb-T000002
 (2)予熱工程
 予熱工程S32では、乾燥工程S31での乾燥処理により水分を除去した後の混合物を予熱(予備加熱)する。
 混合物を回転炉床炉に装入していきなり高温の還元温度まで上げてしまうと、熱応力によって混合物が割れたり、粉状になってしまったりすることがある。また、混合物の温度が均一に上がらず、還元反応にばらつきが生じ、生成されるメタルの品質がばらつくことがある。そのため、混合物に対して乾燥処理を施した後に、所定の温度にまで予熱することが好ましく、これにより混合物の破壊や還元反応のばらつきを抑えることができる。
 予熱工程S32における予熱処理は、乾燥処理と同様に、回転炉床炉の炉外に設けられた処理室にて行われることが好ましく、その回転炉床炉に接続された予熱室にて行われるようにすることが好ましい。なお、図3に、回転炉床炉1に接続された予熱室30の構成例を示すが、この予熱室30は回転炉床炉1の炉外に設けられており、乾燥処理を行う乾燥室20から連続的に設けられている。このように、回転炉床炉1の炉外に設けられた予熱室30にて予熱処理を行うことによって、還元処理を実行する回転炉床炉1内の温度を高い温度で維持でき、加熱に要するエネルギーを大幅に節約することができる。
 予熱室30における予熱処理としては、特に限定されないが、予熱温度を600℃以上として行うことが好ましく、予熱温度を700℃以上1280℃以下として行うことがより好ましい。このような範囲の予熱温度で処理することによって、続く還元処理における還元温度まで再加熱する際に必要なエネルギーを大幅に削減することができる。
 (3)還元工程
 還元工程S33では、予熱工程S32にて予熱した混合物を所定の還元温度で還元処理する。具体的に、還元工程S33における還元処理は、炉床が回転する回転炉床炉を用いて行われる。このように、回転炉床炉を用いて還元処理を行うことにより、炉内の温度を高い温度範囲に維持することができ、温度を上げたり下げたりする必要がなく、エネルギーコストを大幅に低減することができる。また、温度の制御や管理が容易となり、高い品質のフェロニッケルを安定的に生産することができる。
  [回転炉床炉の構成]
 ここで、図3は、炉床が回転する回転炉床炉の構成例を示す図(平面図)である。図3に示すように、回転炉床炉1は、炉床が回転する領域10を有し、領域10は4つ分割されてそれぞれで処理室(10a,10b,10c,10d)を構成している。具体的に、この回転炉床炉1においては、例えば、符号「10a」~「10d」の4つすべての処理室を、還元処理を行う還元室とすることができる。また、還元工程S33における処理の後に後述する温度保持工程S34を実行する場合には、例えば、処理室「10a」、「10b」、「10c」を還元室とし、処理室「10d」を温度保持工程S34における処理を行う温度保持室とすることができる。
 各工程間、すなわち各処理室間は、反応温度を厳密に制御してエネルギーロスを抑制するために、仕切り壁で仕切られた構成とすることが好ましい。このように、各工程の亜大を仕切ることが可能な構造を有する回転炉床炉によれば、後述するように、還元工程S33における処理と温度保持工程S34における処理とを、エネルギーロスを抑制しながら、同一の回転炉床炉を用いて行うことができる。ただし、仕切り壁が固定式のものであると、工程間の搬送や、特に回転炉床炉への装入及び排出が困難となる可能性があるため、その仕切り壁としては、処理物の移動に差し支えることがない程度に開閉できる構造とすることが好ましい。
 なお、炉床が回転する領域10を分割して形成される処理室の数としては、図3に例示する4つに限られるものではない。また、還元室の数や温度保持室の数についても、上述した例に限られず、処理時間等に応じて適宜設定することができる。
 回転炉床炉1は、上述したように、平面上に回転移動する炉床を備えており、混合物を載置した炉床が所定の速度で回転移動することで、それぞれの処理室(10a,10b,10c,10d)を通過し、その通過の際に処理が行われる。なお、図3中の回転炉床炉1上の矢印は、炉床の回転方向を示すとともに、処理物(混合物)の移動方向を示す。
 また、回転炉床炉1は、その炉外に設けられた乾燥室20と、予熱室30とが接続されており、上述したように、乾燥室20にて混合物に対する乾燥処理が施されたのち、乾燥後の混合物が予熱室30に移動して予熱処理され、予熱処理後の混合物が回転炉床炉1内に順次移されるようになっている。また、回転炉床炉1は、その炉外に設けられた冷却室40が接続されており、還元室又は温度保持室(10d)を経て得られた還元物がその冷却室40にて冷却処理される(後述する冷却工程S35)。
  [回転炉床炉における還元処理]
 回転炉床炉1を使用した還元処理においては、ニッケル酸化鉱に含まれる金属酸化物である酸化ニッケルは可能な限り完全に還元し、一方で、ニッケル酸化鉱と共に原料粉末として混合した鉄鉱石等に由来する酸化鉄は一部だけ還元して、目的とするニッケル品位のフェロニッケルが得られようにすることが好ましい。
 具体的に、還元温度としては、特に限定されないが、1200℃以上1450℃以下の範囲とすることが好ましく、1300℃以上1400℃以下の範囲とすることがより好ましい。このような温度範囲で還元することによって、均一に還元反応を生じさせることができ、品質のばらつきを抑制したメタル(フェロニッケルメタル)を生成させることができる。またより好ましくは1300℃以上1400℃以下の範囲の還元温度で還元することで、比較的短時間で所望の還元反応を生じさせることができる。
 還元処理に際しては、上述した範囲の還元温度になるまで回転炉床炉1における還元室の内部温度を上昇させ、昇温後にその温度を維持する。
 また、還元処理においては、使用する回転炉床炉1の炉床に、炉床と混合物試料とが反応して剥がれなくなって回収困難となることを防ぐため、例えば灰等の反応抑制材を敷いて、その反応抑制材上に混合物試料が載置されるようにしてもよい。例えば、反応抑制材としての灰としては、主成分がSiOであり、その他の成分としてAl、MgO等の酸化物を少量含有するものを用いることができる。
 (4)温度保持工程
 必須の態様ではないが、還元工程S33を経て得られた還元物を、回転炉床炉内で所定の高い温度条件で保持する温度保持工程S34を行うようにしてもよい。このように、還元工程S33における所定の還元温度での還元処理により得られた還元物を、すぐに冷却するのではなく、高温の雰囲気で保持することによって、還元物中において生成したメタル成分を沈降させて粗大化させることができる。
 還元処理して得られた状態において還元物中のメタル成分が小さい場合、例えば200μm以下程度のバルク状のメタルであった場合には、その後の分離工程S4にてメタルとスラグとを分離することが困難になってしまう。このため、必要に応じて、還元反応が終わった後も引き続き一定時間に亘って還元物を高温保持することによって、還元物中のスラグよりも比重の大きいメタルを沈降、凝集させて、メタルを粗大化させる。
 なお、還元工程S33における還元処理により、製造上問題ないレベルまでメタルが粗大化している場合には、特にこの温度保持工程S34を設けることを必要としない。
 具体的に、温度保持工程S34における還元物の保持温度としては、1300℃以上1500℃以下の高温範囲とすることが好ましい。このような範囲で還元物を高温保持することによって、還元物中のメタル成分を効率よく沈降させて粗大なメタルとすることができる。なお、保持温度が1300℃未満であると、還元物の多くの部分が固相となるため、メタル成分が沈降しないか、沈降した場合であっても時間を要してしまい好ましくない。一方で、保持温度が1500℃を超えると、得られた還元物と炉床材との反応が進行して、還元物を回収できなくなることがあり、また、炉を損傷させてしまうことがある。
 ここで、温度保持工程S34における処理は、還元工程S33にて使用する回転炉床炉1内において、還元処理に続いて連続的に行うようにする。すなわち、図3を用いて説明したように、回転炉床炉1において、例えば、処理室「10a」、「10b」、「10c」を還元室とし、処理室「10d」を温度保持工程S34における処理を行う温度保持室とし、還元室(10a、10b、10c)を通過して得られた還元物を、温度保持室(10d)にて所定の温度範囲に保持させる。
 このように、還元処理を経て得られた還元物を所定の温度に保持する処理を、回転炉床炉1を用いて連続的に行うことによって、還元物中のメタル成分を効率的に沈降させて粗大化させることができる。しかも、還元工程S33における処理と、温度保持工程S34における処理とを別々の炉ではなく、回転炉床炉1を用いて連続的に行うことで、各処理間におけるヒートロスを低減して効率的な操業を可能にする。
 (5)冷却工程
 冷却工程S35では、還元工程S33を経て得られた還元物、または温度保持工程S34にて所定の時間に亘り高温保持した後の還元物を、続く分離工程S4にて分離回収できる温度まで冷却する。
 冷却工程S35は、上述したように得られた還元物を冷却する工程であるため、回転炉床炉1の炉外に接続された冷却室にて行うことが好ましい。なお、図3に、回転炉床炉1に接続された冷却室40の構成例を示すが、この冷却室40は回転炉床炉1の炉外に接続して設けられている。このように、回転炉床炉1の炉外に設けられた冷却室40にて冷却処理を行うことによって、回転炉床炉1の内部温度の低下を防ぐことができ、エネルギーロスを抑えることができる。これにより、効率的なフェロニッケルの生産を可能とする。
 冷却工程S35における温度(以下、「回収時温度」ともいう)は、還元物が実質的に固体として扱える温度であって、できるだけ高い温度であることが好ましい。回収時温度をできるだけ高くすることにより、回転移動する回転炉床炉1の炉床が、予熱工程S32を実行する予熱室30との接続箇所に戻ったときでもエネルギーロスを低減でき、再加熱に要するエネルギーをより一層節約することができる。
 具体的に、回収時温度としては600℃以上とすることが好ましい。このように回収時温度を高い温度にすることによって、再加熱に要するエネルギーを大幅に削減でき、低コストで効率的な製錬処理を行うことができる。また、回転炉床炉1の内部における温度差の減少することによって、その炉床や炉壁等に加わる熱応力を減少させることができ、回転炉床炉1の寿命を大きく延ばすことができる。さらに、操業中の不具合も大幅に減らすことができる。
 <2-4.分離工程>
 分離工程S4は、還元処理工程S3にて生成した還元物からメタル(フェロニッケルメタル)を分離し回収する。具体的に、分離工程S4では、混合物を還元加熱処理することによって得られた、メタル相(メタル固相)とスラグ相(スラグ固相)とを含む混在物(還元物)から、メタル相を分離して回収する。
 固体として得られたメタル相とスラグ相との混在物からメタル相とスラグ相とを分離する方法としては、例えば、篩い分けによる不要物の除去に加えて、比重による分離や、磁力による分離等の方法を利用することができる。また、得られたメタル相とスラグ相は、濡れ性が悪いことから容易に分離することができ、大きな混在物に対して、例えば、所定の落差を設けて落下させる、あるいは篩い分けの際に所定の振動を与える等の衝撃を与えることで、その混在物からメタル相とスラグ相とを容易に分離することができる。
 このようにしてメタル相とスラグ相とを分離することによって、メタル相を回収し、フェロニッケルの製品とすることができる。
 以下、本発明の実施例を示してより具体的に説明するが、本発明は以下の実施例に何ら限定されるものではない。
 (混合処理工程)
 原料鉱石としてのニッケル酸化鉱と、鉄鉱石と、フラックス成分である珪砂及び石灰石と、バインダーと、炭素質還元剤である石炭粉(炭素含有量:85重量%、平均粒径:約190μm)とを、適量の水を添加しながら混合機を用いて混合して混合物を得た。なお、炭素質還元剤は、酸化ニッケルと酸化鉄(Fe)とを過不足なくメタルに還元するのに必要な化学当量の合計値を100%としたときに、炭素量で33%に相当する分量で含有させた。
 そして、混合機によって混合して得られた混合物を、二軸混練機によって混練した。
 (還元投入前処理工程)
 次に、混練して得られた混合物を9つに分類し、それぞれの混合物試料を、パン型造粒機を用いてφ19±1.5mmの球状のペレットに成形した。
 (還元処理工程)
 次に、図3に例示したような還元炉床炉1を用いて、9つに分類したそれぞれの混合物試料を用いて処理条件を変えて還元処理を行った。回転炉床炉1としては、図3に示すように、その炉外に、ペレットを乾燥する乾燥室20と、乾燥室20に連続して設けられた予熱室30と、炉内における処理室10a~10dを経て得られた還元物を冷却する冷却室40とが接続されているものを用いた。
 具体的には、9つのペレット試料を、還元炉床炉1の炉外に接続された乾燥室20に装入し、乾燥処理を施した。乾燥処理は、実質的に酸素を含まない窒素雰囲気中において、ペレット中を固形分が70重量%程度、水分が30重量%程度となるように、250℃~350℃の熱風をペレットに吹き付けることによって行った。下記表3に、乾燥処理後のペレットの固形分組成(炭素を除く)を示す。
Figure JPOXMLDOC01-appb-T000003
 続いて、乾燥処理後のペレットを、乾燥室20に連続して設けられた予熱室30に移行させ、予熱室30内の温度を700℃以上1280℃以下の範囲に保持して、ペレットに対する予熱処理を行った。
 続いて、予熱処理後のペレットを、回転炉床炉1の内部に移行させて還元処理及び温度保持処理を行った。具体的に、回転炉床炉1としては、炉床が回転移動する領域10を4分割して4つの処理室を備えるものとし、4つの処理室のうち、処理室10a~10cを還元処理を実行する還元室と、処理室10dを還元物を高温保持する温度保持室とした。
 回転炉床炉1の炉床には、炉床と試料とが反応して剥がれなくなって回収困難となることを防ぐため、炉床と試料との反応をできるだけ抑制する観点から、予め、炉床に灰(主成分はSiOであり、その他の成分としてAl、MgO等の酸化物を少量含有するもの)を敷き詰めた。
 なお、還元物を高温保持する処理を行わない態様の実施例では、温度保持室の内部温度を0℃として、その温度保持室を通過させるのみとした。また、還元処理、又は、還元処理及び温度保持処理を経て得られた還元物については、回転炉床炉1に接続された冷却室に移行させ、窒素を流しながら速やかに室温まで冷却して大気中へ取り出した。なお、還元物の回転炉床炉から回収は、冷却室40に還元物を移行させる形態で行い、冷却室40に設置したガイドによって還元物を沿わせるようにして回収した。
 下記表4に、還元処理工程における還元処理及び温度保持処理の条件を示す。
 また、取り出した試料のニッケル品位をICP発光分光分析器(SHIMAZU S-8100型)により分析し、ニッケルメタル率とメタル中ニッケル含有率とをそれぞれ算出した。なお、ニッケルメタル率は、下記(i)式により、メタル中ニッケル含有率は下記(ii)式により、それぞれ算出した。
 ニッケルメタル率=ペレット中のメタル化したNiの量÷(ペレット中の全てのNi量)×100(%)  ・・・(i)
 メタル中ニッケル含有率=ペレット中のメタル化したNiの量÷(ペレット中のメタルしたNiとFeの合計量)×100(%)  ・・・(ii)
 また、回収した試料は、湿式処理よる粉砕後、磁力選別によってメタル(フェロニッケルメタル)を回収した。そして、投入したニッケル酸化鉱のNi含有率と投入量、及び回収したNi量から、Niメタル回収率を算出した。なお、Niメタル回収率は、下記(iii)式により算出した。
 Niメタル回収率=回収されたNi量÷(投入した鉱石の量×鉱石中のNi含有割合)×100  ・・・(iii)式
Figure JPOXMLDOC01-appb-T000004
 表4から分かるように、原料鉱石を含む混合物に対して、乾燥工程と、予熱工程と、炉床が回転する回転炉床炉を用いて還元する還元工程と、得られた還元物を冷却する冷却工程と、を少なくとも有する還元処理工程を実行することにより、ニッケル品位の高いフェロニッケルを得ることができ、回収率としても90%以上の高い回収率でニッケルを回収することができた。
 また、還元処理、又は、還元処理及び温度保持処理を、回転炉床炉を用いて行ったことにより、回転炉床炉の内部の温度を高い温度で保持することができ、再加熱に要するエネルギーが抑えられ、効率的な製錬処理を行うことができた。
 1  回転炉床炉
 10  領域
 10a,10b,10c,10d  処理室(還元室、温度保持室)
 20  乾燥室
 30  予熱室
 40  冷却室

Claims (9)

  1.  金属酸化物と炭素質還元剤とを混合して得られた混合物を乾燥する乾燥工程と、
     乾燥させた混合物を予熱する予熱工程と、
     炉床が回転する回転炉床炉を用いて、予熱後の混合物を還元する還元工程と、
     得られた還元物を冷却する冷却工程と、
     を有する還元処理工程を含む
     金属酸化物の製錬方法。
  2.  前記還元工程を経て得られた還元物を、前記回転炉床炉内で所定の温度に保持する温度保持工程に付し、所定の時間で保持した後に、該還元物を前記冷却工程に供給する
     請求項1に記載の金属酸化物の製錬方法。
  3.  前記回転炉床炉は、各工程の間を仕切ることが可能な構造を有し、
     前記還元工程における処理と前記温度保持工程における処理とを、同一の前記回転炉床炉を用いて実行する
     請求項2に記載の金属酸化物の製錬方法。
  4.  前記温度保持工程では、前記還元物を1300℃以上1500℃以下の温度に保持する
     請求項2及び3に記載の金属酸化物の製錬方法。
  5.  前記還元工程では、還元温度を1200℃以上1450℃以下として還元する
     請求項1乃至4のいずれか1項に記載の金属酸化物の製錬方法。
  6.  前記乾燥工程にて乾燥させる前記混合物は、
     少なくとも、金属酸化物と、炭素質還元剤とを混合して混合物を得る混合処理工程と、
     得られた混合物を塊状化する処理又は所定の容器に充填する処理を行う前処理工程と、
     を経て得られたものである
     請求項1乃至5のいずれか1項に記載の金属酸化物の製錬方法。
  7.  前記還元処理工程における前記冷却工程にて冷却した還元物を、メタルとスラグとに分離して回収する分離工程を有する
     請求項1乃至6のいずれか1項に記載の金属酸化物の製錬方法。
  8.  金属酸化物は、ニッケル酸化鉱である
     請求項1乃至7のいずれか1項に記載の金属酸化物の製錬方法。
  9.  前記還元物は、フェロニッケルを含有する
     請求項1乃至8のいずれか1項に記載の金属酸化物の製錬方法。
PCT/JP2018/003273 2017-02-09 2018-01-31 金属酸化物の製錬方法 WO2018147145A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/484,618 US20200024685A1 (en) 2017-02-09 2018-01-31 Metal oxide smelting method
AU2018218643A AU2018218643B2 (en) 2017-02-09 2018-01-31 Metal oxide smelting method
PH12019501782A PH12019501782A1 (en) 2017-02-09 2019-08-05 Metal oxide smelting method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017022523A JP6900695B2 (ja) 2017-02-09 2017-02-09 金属酸化物の製錬方法
JP2017-022523 2017-02-09

Publications (1)

Publication Number Publication Date
WO2018147145A1 true WO2018147145A1 (ja) 2018-08-16

Family

ID=63108191

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/003273 WO2018147145A1 (ja) 2017-02-09 2018-01-31 金属酸化物の製錬方法

Country Status (5)

Country Link
US (1) US20200024685A1 (ja)
JP (1) JP6900695B2 (ja)
AU (1) AU2018218643B2 (ja)
PH (1) PH12019501782A1 (ja)
WO (1) WO2018147145A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7124588B2 (ja) * 2018-09-18 2022-08-24 住友金属鉱山株式会社 酸化鉱石の製錬方法
JP7255272B2 (ja) * 2019-03-25 2023-04-11 住友金属鉱山株式会社 ニッケル酸化鉱石の製錬方法、還元炉
JP7292581B2 (ja) * 2019-07-24 2023-06-19 住友金属鉱山株式会社 酸化鉱石の製錬方法
JP7338309B2 (ja) 2019-08-06 2023-09-05 住友金属鉱山株式会社 酸化鉱石の製錬方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000292069A (ja) * 1999-02-03 2000-10-20 Kawasaki Steel Corp 金属含有物からの還元金属の製造方法および還元金属製造用移動型炉床炉
JP2002030319A (ja) * 2000-06-28 2002-01-31 Midrex Internatl Bv 粒状金属鉄の製法
JP2003073722A (ja) * 2001-06-18 2003-03-12 Kobe Steel Ltd 粒状金属の製法
JP2004156140A (ja) * 2002-10-18 2004-06-03 Kobe Steel Ltd フェロニッケルおよびフェロニッケル精錬原料の製造方法
JP2009079292A (ja) * 2007-09-05 2009-04-16 Nippon Steel Corp 還元鉄成形体の製造方法、及び銑鉄の製造方法
JP2016035083A (ja) * 2014-08-01 2016-03-17 住友金属鉱山株式会社 ニッケル酸化鉱の製錬方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4763880A (en) * 1987-04-03 1988-08-16 Holcroft/Loftus Inc. Rotary hearth multi-chamber, multi-purpose furnace system
JP2003035083A (ja) * 2001-07-25 2003-02-07 Kawasaki Steel Corp 基礎杭施工用の掘削治具
DE102004055808A1 (de) * 2003-11-19 2005-06-23 Loi Thermprocess Gmbh Anlage und Verfahren zum Wärmebehandeln von Werkstücken
CA2775709A1 (en) * 2009-09-29 2011-04-07 Nu-Iron Technology, Llc System and method for producing metallic iron

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000292069A (ja) * 1999-02-03 2000-10-20 Kawasaki Steel Corp 金属含有物からの還元金属の製造方法および還元金属製造用移動型炉床炉
JP2002030319A (ja) * 2000-06-28 2002-01-31 Midrex Internatl Bv 粒状金属鉄の製法
JP2003073722A (ja) * 2001-06-18 2003-03-12 Kobe Steel Ltd 粒状金属の製法
JP2004156140A (ja) * 2002-10-18 2004-06-03 Kobe Steel Ltd フェロニッケルおよびフェロニッケル精錬原料の製造方法
JP2009079292A (ja) * 2007-09-05 2009-04-16 Nippon Steel Corp 還元鉄成形体の製造方法、及び銑鉄の製造方法
JP2016035083A (ja) * 2014-08-01 2016-03-17 住友金属鉱山株式会社 ニッケル酸化鉱の製錬方法

Also Published As

Publication number Publication date
JP2018127693A (ja) 2018-08-16
AU2018218643B2 (en) 2020-11-12
US20200024685A1 (en) 2020-01-23
PH12019501782A1 (en) 2020-07-06
AU2018218643A1 (en) 2019-08-15
JP6900695B2 (ja) 2021-07-07

Similar Documents

Publication Publication Date Title
WO2018147145A1 (ja) 金属酸化物の製錬方法
WO2018147146A1 (ja) 金属酸化物の製錬方法
JP6809603B2 (ja) 金属酸化物の製錬方法
JP6776927B2 (ja) 金属酸化物の製錬方法
JP6953835B2 (ja) 酸化鉱石の製錬方法
JP7052239B2 (ja) 酸化鉱石の製錬方法
WO2018216513A1 (ja) 酸化鉱石の製錬方法
JP6900837B2 (ja) 酸化鉱石の製錬方法、還元炉
JP6926674B2 (ja) 酸化鉱石の製錬方法
JP7196461B2 (ja) 酸化鉱石の製錬方法
JP6981070B2 (ja) 酸化鉱石の製錬方法
JP6926993B2 (ja) ペレットの製造方法、ニッケル酸化鉱の製錬方法
JP2021021090A (ja) 酸化鉱石の製錬方法
JP7124588B2 (ja) 酸化鉱石の製錬方法
JP6907705B2 (ja) 酸化鉱石の製錬方法
JP6798079B2 (ja) 酸化鉱石の製錬方法
JP7459660B2 (ja) 酸化鉱石の製錬方法
JP6809377B2 (ja) 酸化鉱石の製錬方法
JP7167534B2 (ja) 酸化鉱石の製錬方法
JP7255272B2 (ja) ニッケル酸化鉱石の製錬方法、還元炉
JP7415369B2 (ja) 酸化鉱石の製錬方法
JP6891722B2 (ja) 酸化鉱石の製錬方法、還元炉
JP6943075B2 (ja) 酸化鉱石の製錬方法、還元炉
JP2022119615A (ja) ニッケル酸化鉱石の製錬方法
JP2022119616A (ja) ニッケル酸化鉱石の製錬方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18750738

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018218643

Country of ref document: AU

Date of ref document: 20180131

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18750738

Country of ref document: EP

Kind code of ref document: A1