WO2018146978A1 - 3,4-ジヒドロキシテトラヒドロフランの還元反応用触媒及び3,4-ジヒドロキシテトラヒドロフラン還元物の製造方法 - Google Patents

3,4-ジヒドロキシテトラヒドロフランの還元反応用触媒及び3,4-ジヒドロキシテトラヒドロフラン還元物の製造方法 Download PDF

Info

Publication number
WO2018146978A1
WO2018146978A1 PCT/JP2017/047157 JP2017047157W WO2018146978A1 WO 2018146978 A1 WO2018146978 A1 WO 2018146978A1 JP 2017047157 W JP2017047157 W JP 2017047157W WO 2018146978 A1 WO2018146978 A1 WO 2018146978A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
dihydroxytetrahydrofuran
reaction
metal
hydrogen
Prior art date
Application number
PCT/JP2017/047157
Other languages
English (en)
French (fr)
Inventor
冨重圭一
中川善直
田村正純
平井雄一郎
梶川泰照
小野圭輔
Original Assignee
株式会社ダイセル
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ダイセル filed Critical 株式会社ダイセル
Priority to CN201780086397.2A priority Critical patent/CN110290870B/zh
Priority to MYPI2019004599A priority patent/MY193459A/en
Priority to JP2018566796A priority patent/JP6942738B2/ja
Priority to US16/485,379 priority patent/US11040334B2/en
Publication of WO2018146978A1 publication Critical patent/WO2018146978A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/32Manganese, technetium or rhenium
    • B01J23/36Rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/10Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of rare earths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/66Silver or gold
    • B01J23/68Silver or gold with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/688Silver or gold with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with manganese, technetium or rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0236Drying, e.g. preparing a suspension, adding a soluble salt and drying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • B01J37/035Precipitation on carriers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C27/00Processes involving the simultaneous production of more than one class of oxygen-containing compounds
    • C07C27/04Processes involving the simultaneous production of more than one class of oxygen-containing compounds by reduction of oxygen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/132Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C31/00Saturated compounds having hydroxy or O-metal groups bound to acyclic carbon atoms
    • C07C31/02Monohydroxylic acyclic alcohols
    • C07C31/12Monohydroxylic acyclic alcohols containing four carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C31/00Saturated compounds having hydroxy or O-metal groups bound to acyclic carbon atoms
    • C07C31/18Polyhydroxylic acyclic alcohols
    • C07C31/20Dihydroxylic alcohols
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/02Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings
    • C07D307/04Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having no double bonds between ring members or between ring members and non-ring members
    • C07D307/18Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having no double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D307/20Oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B61/00Other general methods
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/02Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings
    • C07D307/04Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having no double bonds between ring members or between ring members and non-ring members
    • C07D307/06Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having no double bonds between ring members or between ring members and non-ring members with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, directly attached to ring carbon atoms
    • C07D307/08Preparation of tetrahydrofuran

Definitions

  • the present invention relates to a catalyst used for a reduction reaction with hydrogen using 3,4-dihydroxytetrahydrofuran as a raw material, and a method for producing a reduced product using the catalyst.
  • Diols such as 1,4-butanediol are important compounds used as raw materials for polyesters and polyurethanes.
  • Tetrahydrofuran (THF) is an important compound used as a solvent for the synthesis reaction.
  • Patent Documents 1 to 3 the production of 1,4-butanediol uses butadiene, maleic acid ester, succinic acid ester, etc., which are chemical fuel resources, as raw materials.
  • an object of the present invention is to provide a catalyst (reduction reaction catalyst) capable of obtaining 1,4-butanediol or tetrahydrofuran at a higher selectivity than conventional using a biomass-derived raw material.
  • Another object of the present invention is to provide a method capable of producing 1,4-butanediol or tetrahydrofuran at a higher selectivity than conventional using biomass-derived raw materials.
  • the present invention is a catalyst used in a reaction for reducing 3,4-dihydroxytetrahydrofuran by reaction with hydrogen, and contains the following metal catalyst (1) and the following metal catalyst (2).
  • the first catalyst for the reduction reaction of 3,4-dihydroxytetrahydrofuran is provided.
  • Metal catalyst (1) catalyst supported on carrier with M1 and M2 below as metal species
  • Metal catalyst (2) catalyst supported on carrier with M1 as metal species below M1: 4th to 6th cycles of periodic table 1 or more selected from the group consisting of iron and elements belonging to Group 5 to 7 and iron M2: elements belonging to Periods 4 to 6 and belonging to Groups 9 to 11 of the periodic table, ruthenium and osmium One or more selected from the group consisting of
  • M1 in the metal catalyst (1) is preferably rhenium, and M2 is preferably gold.
  • the carrier in the metal catalyst (1) is preferably cerium oxide.
  • M1 in the metal catalyst (2) is preferably rhenium.
  • the support in the metal catalyst (2) is preferably activated carbon.
  • the present invention also includes a step of reducing 3,4-dihydroxytetrahydrofuran by reaction with hydrogen, and the reaction of 3,4-dihydroxytetrahydrofuran with hydrogen in the above step is performed by the presence of the first catalyst for reduction reaction.
  • the reaction between 3,4-dihydroxytetrahydrofuran and hydrogen in the step is performed in the presence of the metal catalyst (1) in the first stage, and the metal catalyst (2 It is preferable to carry out the reaction in the presence of a metal catalyst (1) or to proceed in the presence of a mixed catalyst of the metal catalyst (1) and the metal catalyst (2).
  • the reaction between 3,4-dihydroxytetrahydrofuran and hydrogen in the above step is performed in an atmosphere having a hydrogen partial pressure of 3 MPa or more.
  • the first production method preferably has a step of dehydrating erythritol to obtain 3,4-dihydroxytetrahydrofuran before the step of reducing 3,4-dihydroxytetrahydrofuran.
  • the present invention also relates to a catalyst used in a reaction for reducing 3,4-dihydroxytetrahydrofuran by reaction with hydrogen, comprising the following catalyst (A) and the following catalyst (B):
  • the present invention provides the second catalyst for the reduction reaction of 3,4-dihydroxytetrahydrofuran, characterized in that the catalyst (B) is a catalyst in which M1 below is supported as a metal species.
  • M1 is preferably rhenium.
  • the inorganic oxide in the catalyst (A) is preferably cerium oxide.
  • the catalyst (B) is preferably a catalyst supported with the M1 as a metal species, and the catalyst (A) and the catalyst (B) have the M1 as a metal species. More preferably, it is a supported catalyst.
  • the present invention includes a step of reducing 3,4-dihydroxytetrahydrofuran by reaction with hydrogen, and the reaction of 3,4-dihydroxytetrahydrofuran with hydrogen in the above step is converted into the second 3,4-dihydroxytetrahydrofuran.
  • the present invention provides a method for producing a second reduced product of 3,4-dihydroxytetrahydrofuran, which is characterized by proceeding in the presence of a catalyst for the reduction reaction.
  • the reaction of 3,4-dihydroxytetrahydrofuran and hydrogen in the above step is performed in the first stage in the presence of the catalyst (A), and in the second stage, the catalyst (B) is reacted. It is preferable to carry out the reaction in the presence or to proceed in the presence of a mixed catalyst of the catalyst (A) and the catalyst (B).
  • 1,4-butanediol or tetrahydrofuran can be obtained with a higher selectivity than conventional materials using biomass-derived raw materials. For this reason, when the raw material derived from biomass is used, the burden on the environment is small and greatly contributes to the construction of a sustainable society. Further, by using a specific catalyst for the reduction reaction of the present invention, 1,4-butanediol or tetrahydrofuran can be produced with a higher selectivity than in the past.
  • FIG. 1 is a flowchart showing an example of a reduction step in the production method of the present invention when a trickle bed reactor is used.
  • the catalyst for reduction reaction of the present invention is a catalyst (catalyst for reduction reaction of 3,4-dihydroxytetrahydrofuran) used in a reaction for reducing 3,4-dihydroxytetrahydrofuran by reaction with hydrogen.
  • the catalyst for reduction reaction of the first present invention contains a metal catalyst (1) and a metal catalyst (2). Each of the metal catalyst (1) and the metal catalyst (2) may be used alone or in combination of two or more.
  • the catalyst for reduction reaction of the second present invention contains a catalyst (A) and a catalyst (B). Each of the catalyst (A) and the catalyst (B) may be used alone or in combination of two or more.
  • the “reduction reaction catalyst of the first invention” and the “reduction reaction catalyst of the second invention” may be collectively referred to as the “reduction reaction catalyst of the invention”. is there.
  • the metal catalyst (1) is a catalyst having M1 and M2 as metal species and supported on a carrier.
  • the metal catalyst (1) is a catalyst in which both M1 and M2 are supported on one carrier.
  • M1 in the metal catalyst (1) may be referred to as “M1a”.
  • Each of the M1a, M2 and the carrier may be used alone or in combination of two or more.
  • M1 (M1a) is one or more selected from the group consisting of elements belonging to the fourth to sixth periods of the periodic table and belonging to the groups 5 to 7, and iron.
  • vanadium, chromium, manganese, iron, molybdenum, tungsten, and rhenium are preferable, and rhenium is particularly preferable.
  • These metals listed as M1 generally have a common property that they have a high affinity and a high reactivity with a compound having a hydroxy group (OH group).
  • the above M2 is one or more selected from the group consisting of elements belonging to the 4th to 6th periods of the periodic table and belonging to the 9th to 11th groups, ruthenium and osmium. Specifically, cobalt (Co), nickel (Ni), copper (Cu), ruthenium (Ru), rhodium (Rh), palladium (Pd), silver (Ag), osmium (Os), iridium (Ir), Examples include platinum (Pt) and gold (Au). Of these, gold and iridium are preferable. These metals listed as M2 have a common property that they have a high affinity with hydrogen and are a metal group having a high reducing action. Among them, gold and iridium (especially gold) have an appropriate reducing action for obtaining 1,4-butanediol, and tend to obtain 1,4-butanediol with high selectivity.
  • M1a and M2 contained in the said metal catalyst (1) contains by the state carry
  • a known or conventional carrier used for a catalyst can be used, and is not particularly limited, and examples thereof include inorganic carriers such as inorganic oxides and activated carbon, and organic carriers such as ion exchange resins. Among these, activated carbon and inorganic oxide are preferable from the viewpoint of reaction activity.
  • activated carbon known or commonly used activated carbon can be used, and is not particularly limited. Activated carbon obtained from any raw material such as plant-based, mineral-based, or resin-based can also be used. Examples of the activated carbon include a trade name “Vulcan XC72” (manufactured by CABOT), a trade name “BP2000” (manufactured by CABOT), a trade name “Shirasagi FAC-10” (manufactured by Nippon Enviro Chemicals), and a trade name.
  • inorganic oxide known or conventional inorganic oxides can be used and are not particularly limited.
  • cerium oxide CeO 2
  • titania TiO 2
  • zirconia ZrO 2
  • sulfated zirconia sulfated zirconia
  • Phosphorylated zirconia magnesium oxide (MgO), zinc oxide (ZnO), silica (SiO 2 ), alumina (Al 2 O 3 ), calcium oxide (CaO), molybdenum oxide (MoO 2 , MoO 3 ), vanadium oxide ( VO, V 2 O 5 ), tungsten oxide (W 2 O 3 , WO 2 , WO 3 ), tin oxide (SnO, SnO 2 , SnO 3 ), rhenium oxide (ReO 2 , ReO 3 , Re 2 O 7 ), Niobium oxide (Nb 2 O 5 ), a composite of two or more of these inorganic oxides (for example, zeolite, titanosilicate, etc.) and the like can be mentioned.
  • MgO magnesium oxide
  • ZnO zinc oxide
  • SiO 2 silica
  • alumina Al 2 O 3
  • calcium oxide CaO
  • MoO 2 , MoO 3 molybdenum oxide
  • silica, zirconia, sulfated zirconia, phosphorylated zirconia, titania, titanosilicate, alumina, calcium oxide, zinc oxide, molybdenum oxide, vanadium oxide, tungsten oxide, tin oxide, oxidation Rhenium, niobium oxide, cerium oxide, and magnesium oxide are preferred.
  • inorganic oxide examples include trade name “TIO-4” (titania, manufactured by Nippon Aerosil Co., Ltd.), trade name “500A” (magnesia, manufactured by Ube Industries, Ltd.), trade name “G-6”. (Silica, manufactured by Fuji Silysia Chemical Co., Ltd.), trade name “KHO-24” (alumina, manufactured by Sumitomo Chemical Co., Ltd.), trade name “Zirconia” (manufactured by Wako Pure Chemical Industries, Ltd.) It can also be used.
  • cerium oxide is preferable from the viewpoint of the selectivity of a specific reductant.
  • the metal catalyst (1) one or more metal species (especially rhenium) selected from the group consisting of vanadium, chromium, manganese, iron, molybdenum, tungsten, and rhenium, and gold are cerium oxide.
  • a catalyst supported on the catalyst is preferred.
  • the specific surface area of the carrier is not particularly limited, but is 50 m 2 / g in that the metal species are well dispersed, the aggregation of these can be suppressed, and the catalytic activity per unit weight can be improved.
  • the above for example, 50 to 1500 m 2 / g, preferably 100 to 1000 m 2 / g is preferable.
  • the specific surface area of the carrier is within the above range, the catalytic activity per unit weight tends to be further improved.
  • the average particle size of the carrier is not particularly limited, but is preferably from 100 to 10,000 ⁇ m, more preferably from 1000 to 10,000 ⁇ m, in view of reactivity and not accompanied by excessive pressure loss when the reaction is carried out in a continuous flow mode. 10,000 ⁇ m.
  • the shape of the carrier may be any of powder, granule, molding (molded body) and the like, and is not particularly limited.
  • the amount of M1a supported on the carrier is not particularly limited, but is preferably 0.01 to 50% by weight, more preferably 0.05 to 30% by weight based on the total amount (100% by weight) of M1a, M2 and the carrier. %, More preferably 0.1 to 10% by weight, particularly preferably 0.15 to 3% by weight.
  • the supported amount of M1a is 0.01% by weight or more, the selectivity of a specific reduced product tends to be further improved.
  • the supported amount of M1a is 50% by weight or less, the conversion rate of 3,4-dihydroxytetrahydrofuran is improved and the yield of a specific reduced product tends to be improved.
  • support amount is metal conversion (For example, when M1a is carry
  • the ratio (molar ratio) of M2 to M1a in the metal catalyst (1) [M2 / M1a] is not particularly limited, but is preferably 0.002 to 50, more preferably 0.005 to 10, and still more preferably 0.01. To 5, particularly preferably 0.02 to 0.7.
  • the amount of M2 used can be appropriately adjusted within the above range depending on the temperature, time and the like of reacting 3,4-dihydroxytetrahydrofuran with hydrogen.
  • the number of moles of M1a and M2 in the above molar ratio is in metal conversion (for example, in the case where M1a and M2 are supported as oxides, in terms of metal atoms constituting the oxide), and two kinds of M1a and M2 When the above metal species are used, these are the total amounts. Further, the ratio (molar ratio) of rhenium to gold [Au / Re] is particularly preferably within the above range.
  • the method for supporting M1a and M2 on the carrier is not particularly limited, and the carrier can be supported on the carrier by a known or conventional carrier method.
  • Specific examples include an impregnation method, a coprecipitation method, and a precipitation method.
  • the M1a loading method is preferably an impregnation method
  • the M2 loading method is preferably an impregnation method or a precipitation precipitation method.
  • a solution containing M1a (for example, an aqueous solution of ammonium perrhenate or the like when M1a is rhenium) is impregnated on a carrier or a carrier on which M2 is supported, and then dried. It may be supported by firing (preferably firing in air) and further reducing with hydrogen or the like as necessary.
  • the loading amount of M1a can be controlled by adjusting the concentration of the above-described solution containing M1a, the impregnation of the carrier, and the number of times of applying the drying treatment and the firing treatment.
  • carrier impregnated with this solution, and the temperature at the time of baking are not specifically limited.
  • the reduction may be performed in a coprecipitation method or a precipitation precipitation method from the viewpoint of increasing the activity at the initial stage of the reaction or making it possible to draw out the catalyst performance more sufficiently.
  • the temperature at which the carrier is dried and then calcined or reduced is not particularly limited. For example, it is preferably 250 to 550 ° C., more preferably 300 to 500 ° C. in a hydrogen atmosphere. After the reduction treatment, passivation may be performed as necessary.
  • Passivation can be performed by a known or conventional method, and is not particularly limited.
  • the passivation can be performed by exposure to an oxygen atmosphere at a temperature near room temperature.
  • M2 When M2 is supported by the above impregnation method, it can be supported in the same manner as the method of supporting M1a by the above impregnation method.
  • M2 when M2 is gold, an aqueous solution of chloroauric acid, etc. ) Is impregnated into a carrier or a carrier carrying M1a, dried, fired (preferably fired in air), and further reduced with hydrogen or the like as necessary. More specifically, for example, a method of impregnating a carrier with a solution containing M2 further, drying and firing, and then reducing with hydrogen or the like as necessary may be mentioned.
  • the temperature at the time of impregnating the solution containing M2 the temperature at the time of drying the support
  • the reduction treatment after impregnating the solution containing M1a and the reduction treatment after impregnating the solution containing M2 include, for example, heating in a hydrogen atmosphere after impregnation of both solutions (for example, The heating temperature is preferably from 100 to 700 ° C., more preferably from 200 to 600 ° C.).
  • a solution containing M2 for example, an aqueous solution of chloroauric acid when M2 is gold, etc.
  • an alkaline aqueous solution for example, The pH is adjusted to 6 to 10
  • the above carrier or the carrier carrying M1a is added thereto, and after a predetermined time, washed with water, dried and fired (preferably fired in air).
  • a method of reducing with hydrogen or the like as required.
  • carrier, the temperature at the time of baking, and the temperature at the time of reduction are not specifically limited.
  • a preferable preparation method of the metal catalyst (1) preferably, (i) a method in which M1a and M2 are sequentially supported on a support by an impregnation method, and (ii) M2 is supported on a support by a precipitation method. Thereafter, a method of supporting M1a by the impregnation method, (iii) a method of supporting M1a on the support by the impregnation method, and then supporting M2 by the precipitation method, and (iv) preparing a support having M2 supported by the coprecipitation method.
  • a method of supporting M1a by an impregnation method may be used.
  • the order of supporting by the impregnation method may be that M1a is supported first or M2 is supported first.
  • the average particle diameter of the metal catalyst (1) is not particularly limited, but is preferably from 100 to 10,000 ⁇ m in terms of reactivity and not accompanied by excessive pressure loss when the reaction is carried out in a continuous flow mode.
  • the thickness is preferably 1000 to 10,000 ⁇ m.
  • the shape of the metal catalyst (1) is not particularly limited, and examples thereof include powder, granule, molding (molded body) and the like.
  • the metal catalyst (2) is a catalyst having M1 as a metal species and supported on a carrier.
  • the carrier in the metal catalyst (2) does not carry the M2.
  • M1 in the metal catalyst (2) may be the same metal species as M1 in the metal catalyst (1), or may be a different metal species.
  • M1 in the metal catalyst (2) may be referred to as “M1b”. Each of the M1b and the carrier may be used alone or in combination of two or more.
  • M1 (M1b) is one or more selected from the group consisting of elements belonging to the fourth to sixth periods of the periodic table and belonging to the groups 5 to 7, and iron, and M1a in the metal catalyst (1) described above The same thing is mentioned. Among them, vanadium, chromium, manganese, iron, molybdenum, tungsten, and rhenium are preferable as M1b in the metal catalyst (2). In particular, rhenium is preferred from the viewpoint of obtaining a specific reduced product with high selectivity and high yield.
  • the aspect of M1b contained in the said metal catalyst (2) is not specifically limited,
  • a known or conventional carrier used for a catalyst can be used, and examples thereof include the same carriers as those in the metal catalyst (1).
  • the carrier in the metal catalyst (2) include silica, zirconia, sulfated zirconia, phosphorylated zirconia, titania, titanosilicate, alumina, calcium oxide, zinc oxide, molybdenum oxide, vanadium oxide, tungsten oxide, and tin oxide. , Rhenium oxide, niobium oxide, cerium oxide, and magnesium oxide are preferable.
  • inorganic oxide when it is desired to obtain 1,4-butanediol as a reduced product with high selectivity and high yield, activated carbon is preferable, and when it is desired to obtain tetrahydrofuran with high selectivity, inorganic oxide is preferable. Furthermore, when it is desired to obtain tetrahydrofuran with high selectivity and high yield, inorganic oxides other than inorganic oxides containing silica (silica, zeolite, titanosilicate, etc.) are preferable.
  • the metal catalyst (2) is selected from the group consisting of vanadium, chromium, manganese, iron, molybdenum, tungsten, and rhenium.
  • one or more metal species is a catalyst supported on activated carbon.
  • the metal catalyst (2) may be one or more metal species selected from the group consisting of vanadium, chromium, manganese, iron, molybdenum, tungsten, and rhenium (particularly, Rhenium) is supported on inorganic oxides (especially, inorganic oxides other than silica-containing inorganic oxides (silica, zeolite, titanosilicate, etc.) when tetrahydrofuran is to be obtained with high selectivity and high yield).
  • the catalyst is selected from the group consisting of vanadium, chromium, manganese, iron, molybdenum, tungsten, and rhenium (particularly, Rhenium) is supported on inorganic oxides (especially, inorganic oxides other than silica-containing inorganic oxides (silica, zeolite, titanosilicate, etc.) when tetrahydrofuran is to be obtained with high selectivity and high yield).
  • the catalyst is
  • the specific surface area of the carrier is not particularly limited, but is 50 m 2 / g in that the metal species are well dispersed, the aggregation of these can be suppressed, and the catalytic activity per unit weight can be improved.
  • the above for example, 50 to 1500 m 2 / g, preferably 100 to 1000 m 2 / g is preferable.
  • the specific surface area of the carrier is within the above range, the catalytic activity per unit weight tends to be further improved.
  • the average particle size of the carrier is not particularly limited, but is preferably from 100 to 10,000 ⁇ m, more preferably from 1000 to 10,000 ⁇ m, in view of reactivity and not accompanied by excessive pressure loss when the reaction is carried out in a continuous flow mode. 10,000 ⁇ m.
  • the shape of the carrier may be any of powder, granule, molding (molded body) and the like, and is not particularly limited.
  • the amount of M1b supported on the carrier is not particularly limited, but is preferably 0.01 to 60% by weight, more preferably 0.05 to 50% by weight, based on the total amount of M1b and the carrier (100% by weight). More preferably, it is 0.1 to 20% by weight.
  • the supported amount of M1b is 0.01% by weight or more, the selectivity for a specific reduced product tends to be further improved.
  • the supported amount of M1b is 60% by weight or less, the conversion of 3,4-dihydroxytetrahydrofuran is improved, and the yield of a specific reduced product tends to be improved.
  • the said carrying amount is metal conversion (For example, when M1b is carry
  • the method for supporting M1b on the carrier is not particularly limited, and the carrier can be supported on the carrier by a known or conventional carrier method.
  • Specific examples include an impregnation method, a coprecipitation method, and a precipitation method.
  • the impregnation method is preferable from the viewpoint of improving the conversion of 3,4-dihydroxytetrahydrofuran and improving the yield of a specific reduced product.
  • the preferred conditions for supporting M1b on the support by the impregnation method are the same as those for the impregnation method of M1a in the metal catalyst (1) described above.
  • the average particle diameter of the metal catalyst (2) is not particularly limited, but is preferably 100 to 10,000 ⁇ m in terms of reactivity and not accompanied by excessive pressure loss when the reaction is carried out in a continuous flow mode.
  • the thickness is preferably 1000 to 10,000 ⁇ m.
  • the shape of the metal catalyst (2) is not particularly limited, and examples thereof include powder, granule, molding (molded body) and the like.
  • the catalyst for reduction reaction of the first present invention includes the metal catalyst (1) and the metal catalyst (2).
  • the content ratio (weight ratio) of the metal catalyst (1) and the metal catalyst (2) [metal catalyst (1) / metal catalyst (2)] is not particularly limited, but the conversion rate of 3,4-dihydroxytetrahydrofuran and a specific ratio From the viewpoint of improving the selectivity of the reduced product, 0.03 to 10 is preferable, more preferably 0.07 to 5, and still more preferably 0.1 to 2.
  • the usage-amount of the metal catalyst (1) and the metal catalyst (2) in the manufacturing method of 1st this invention mentioned later is also in the said range similarly.
  • the metal catalyst (2) When the metal catalyst (2) is not used as the catalyst for reacting 3,4-dihydroxytetrahydrofuran with hydrogen, but only the metal catalyst (1) is used, the selectivity of 1,4-butanediol or tetrahydrofuran is several. %. Further, when only the metal catalyst (2) is used without using the metal catalyst (1), the selectivity of 1,4-butanediol or tetrahydrofuran is not so high, and the conversion of 3,4-dihydroxytetrahydrofuran is also several. % Is extremely low. On the other hand, when the catalyst for reduction reaction of the first invention is used, 1,4-butanediol or tetrahydrofuran can be obtained with a higher selectivity than in the past.
  • the catalyst for reduction reaction of the second aspect of the present invention contains a catalyst (A) and a catalyst (B).
  • the catalyst (A) and / or the catalyst (B) is a catalyst in which M1 is supported as a metal species. That is, at least one of the catalyst (A) and the catalyst (B) is a catalyst in which M1 is supported as a metal species.
  • at least the catalyst (B) is preferably a catalyst in which M1 is supported as a metal species. It is more preferable that both (A) and the catalyst (B) are catalysts in which M1 is supported as a metal species.
  • Catalyst (A) is an inorganic oxide that may be supported using M1 as a metal species.
  • M1 and the inorganic oxide that can be contained in the catalyst (A) may be used singly or in combination of two or more.
  • the inorganic oxide examples include inorganic oxides exemplified as the above-mentioned carrier. Among them, those showing solid basicity are preferable, silica, zirconia, sulfated zirconia, phosphorylated zirconia, titania, titanosilicate, alumina, calcium oxide, zinc oxide, molybdenum oxide, vanadium oxide, tungsten oxide, tin oxide, oxidation Rhenium, niobium oxide, cerium oxide, and magnesium oxide are preferable, and cerium oxide is particularly preferable from the viewpoint of the selectivity of a specific reduced product.
  • inorganic oxides exemplified as the above-mentioned carrier. Among them, those showing solid basicity are preferable, silica, zirconia, sulfated zirconia, phosphorylated zirconia, titania, titanosilicate, alumina, calcium oxide, zinc oxide, molybdenum oxide, vanadium oxide, tungs
  • Catalyst (B) is activated carbon which may be supported using M1 as a metal species.
  • M1 in the catalyst (B) may be the same metal species as M1 in the catalyst (A), or may be a different metal species.
  • M1 and activated carbon that can be contained in the catalyst (B) may be used singly or in combination of two or more.
  • M1 that can be contained in the catalyst (A) and / or the catalyst (B) is preferably vanadium, chromium, manganese, iron, molybdenum, tungsten, or rhenium, and particularly preferably rhenium.
  • Catalyst (A) or catalyst (B) may be supported using M2 as a metal species.
  • M2 that can be contained in the catalyst (A) or the catalyst (B) may be used alone or in combination of two or more.
  • gold and iridium especially gold have an appropriate reducing action for obtaining 1,4-butanediol, and 1,4-butanediol Is preferred because it tends to be obtained at a high selectivity.
  • activated carbon and / or inorganic oxide acts as a support.
  • M1 and M2 which can be contained in the catalyst (A) and / or the catalyst (B) is not particularly limited, for example, as a simple metal, a metal salt, a metal oxide, a metal hydroxide, or a metal complex, The aspect etc. which are contained in the state supported are mentioned.
  • cerium oxide a catalyst in which one or more metal species selected from the group consisting of vanadium, chromium, manganese, iron, molybdenum, tungsten, and rhenium (particularly rhenium) are supported on cerium oxide;
  • one or more metal species (especially rhenium) selected from the group consisting of vanadium, chromium, manganese, iron, molybdenum, tungsten, and rhenium and gold are catalysts supported on cerium oxide.
  • one or more metal species (especially rhenium) selected from the group consisting of vanadium, chromium, manganese, iron, molybdenum, tungsten, and rhenium and gold are catalysts supported on cerium oxide. preferable.
  • activated carbon As the catalyst (B), activated carbon; a catalyst in which one or more metal species (especially rhenium) selected from the group consisting of vanadium, chromium, manganese, iron, molybdenum, tungsten, and rhenium are supported on activated carbon; or It is preferable that one or more metal species (especially rhenium) selected from the group consisting of vanadium, chromium, manganese, iron, molybdenum, tungsten, and rhenium and gold are catalysts supported on activated carbon.
  • one or more metal species (especially rhenium) selected from the group consisting of vanadium, chromium, manganese, iron, molybdenum, tungsten, and rhenium and gold are catalysts supported on activated carbon.
  • the specific surface areas of the inorganic oxide and the activated carbon are not particularly limited, but are 50 m 2 / g or more (for example, 50 to 1500 m 2 / g, preferably in terms of improving the catalytic activity per unit weight and improving the addition rate. Is preferably 100 to 1000 m 2 / g). There exists a tendency for the catalyst activity per unit weight to improve more that the specific surface area of the said inorganic oxide and activated carbon is in the said range.
  • the average particle size of the inorganic oxide and the activated carbon is not particularly limited, but is preferably 100 to 10,000 ⁇ m in terms of reactivity and not accompanied by excessive pressure loss when the reaction is carried out in a continuous flow mode.
  • the thickness is preferably 1000 to 10,000 ⁇ m.
  • the shape of the inorganic oxide and activated carbon may be any of powder, granule, molding (molded body) and the like, and is not particularly limited.
  • the amount of M1 supported on the carrier is not particularly limited, but is based on the total amount of M1 and the carrier (100% by weight).
  • the content is preferably 0.01 to 60% by weight, more preferably 0.05 to 50% by weight, and still more preferably 0.1 to 20% by weight.
  • the supported amount of M1 is 0.01% by weight or more, the selectivity of a specific reduced product tends to be further improved.
  • the supported amount of M1 is 60% by weight or less, the conversion rate of 3,4-dihydroxytetrahydrofuran is improved and the yield of a specific reduced product tends to be improved.
  • the said carrying amount is metal conversion (For example, when M1 is carry
  • the amount of M1 supported on the carrier when the catalyst (A) or catalyst (B) carries M1 and M2 is not particularly limited, but is 0 with respect to the total amount (100% by weight) of M1, M2, and the carrier.
  • the amount is preferably 0.01 to 50% by weight, more preferably 0.05 to 30% by weight, still more preferably 0.1 to 10% by weight, and particularly preferably 0.15 to 3% by weight.
  • the supported amount of M1 is 0.01% by weight or more, the selectivity of a specific reduced product tends to be further improved.
  • the supported amount of M1 is 50% by weight or less, the conversion rate of 3,4-dihydroxytetrahydrofuran is improved and the yield of a specific reduced product tends to be improved.
  • the said carrying amount is metal conversion (For example, when M1 is carry
  • the ratio (molar ratio) [M2 / M1] of M2 to M1 when catalyst (A) or catalyst (B) supports M1 and M2 is not particularly limited, but is preferably 0.002 to 50, more preferably It is 0.005 to 10, more preferably 0.01 to 5, particularly preferably 0.02 to 0.7.
  • the amount of M2 used can be appropriately adjusted within the above range depending on the temperature, time and the like of reacting 3,4-dihydroxytetrahydrofuran with hydrogen.
  • the number of moles of M1 and M2 in the above molar ratio is metal conversion (for example, conversion of metal atoms constituting the oxide when M1 and M2 are supported as oxides), and two kinds of M1 and M2 When the above metal species are used, these are the total amounts. Further, the ratio (molar ratio) of rhenium to gold [Au / Re] is particularly preferably within the above range.
  • the method for supporting M1 and M2 on the inorganic oxide and / or activated carbon is not particularly limited, and can be supported on the support by a known or conventional supporting method.
  • the method described in the above-described metal catalyst (1) is used. Can be mentioned.
  • the method of supporting M1 on the inorganic oxide and / or activated carbon is not particularly limited, and it can be supported on a carrier by a known or conventional supporting method.
  • the method described in the above metal catalyst (2) is used. Can be mentioned.
  • a preferable supporting method is the same as the method mentioned for the metal catalyst (1) and the metal catalyst (2).
  • the catalyst for reduction reaction of the second invention includes the catalyst (A) and the catalyst (B).
  • the content ratio (weight ratio) of catalyst (A) and catalyst (B) [catalyst (A) / catalyst (B)] is not particularly limited, but the conversion of 3,4-dihydroxytetrahydrofuran and 1,4-butanediol From the viewpoint of improving the selectivity, it is preferably 0.03 to 10, more preferably 0.07 to 5, and still more preferably 0.1 to 2.
  • the usage-amount of the catalyst (A) and the catalyst (B) in the manufacturing method of the below-mentioned 2nd this invention is also in the said range similarly.
  • catalyst (B) When catalyst (B) is not used as a catalyst for reacting 3,4-dihydroxytetrahydrofuran with hydrogen, only catalyst (A) is used, and the selectivity for 1,4-butanediol or tetrahydrofuran is about several percent. It is. In addition, when only catalyst (B) is used without using catalyst (A), the selectivity of 1,4-butanediol or tetrahydrofuran is not so high, and the conversion of 3,4-dihydroxytetrahydrofuran is about several percent. And very low. On the other hand, when the reduction reaction catalyst of the second invention is used, 1,4-butanediol or tetrahydrofuran can be obtained with higher selectivity than in the past.
  • a metal catalyst (1), a catalyst (A), and a catalyst (B) may mutually overlap.
  • a metal catalyst (2), a catalyst (A), and a catalyst (B) may overlap each other.
  • the catalyst (ReO x —Au / CeO 2 ) corresponds to both the metal catalyst (1) and the catalyst (A).
  • the catalyst (ReO x / C) corresponds to both the metal catalyst (2) and the catalyst (B).
  • the catalyst (ReO x / TiO 2 ) corresponds to both the metal catalyst (2) and the catalyst (A).
  • a reduced product of 3,4-dihydroxytetrahydrofuran can be produced by reaction with hydrogen using the catalyst for reduction reaction of the present invention.
  • the production method of 3,4-dihydroxytetrahydrofuran reduced product using the catalyst for reduction reaction of the first invention is referred to as “production method of the first invention” and the catalyst for reduction reaction of the second invention.
  • the method for producing the 3,4-dihydroxytetrahydrofuran reduced product used may be referred to as “the production method of the second invention”, respectively.
  • the “manufacturing method of the present invention” and the “manufacturing method of the second invention” may be collectively referred to as “the manufacturing method of the present invention”.
  • the 3,4-dihydroxytetrahydrofuran is a compound represented by the following formula (1).
  • 3,4-dihydroxytetrahydrofuran is a compound having a structure formed by dehydration condensation of the 1-position and 4-position hydroxyl groups of erythritol.
  • Examples of 3,4-dihydroxytetrahydrofuran include 1,4-anhydroerythritol (3,4-dihydroxyoxolane) and 1,4-anhydrothreitol.
  • the 3,4-dihydroxytetrahydrofuran may be, for example, 3,4-dihydroxytetrahydrofuran produced by chemical synthesis, or 3,4-dihydroxytetrahydrofuran derived from a sugar such as glucose by fermentation technology.
  • a sugar such as glucose by fermentation technology.
  • the 3,4-dihydroxytetrahydrofuran induced by the fermentation technique for example, 3,4 produced by intramolecular dehydration reaction of erythritol using erythritol derived from a sugar such as glucose as a raw material.
  • the intramolecular dehydration reaction can be carried out by a known or conventional method and is not particularly limited.
  • 3,4-dihydroxytetrahydrofuran As the 3,4-dihydroxytetrahydrofuran, 3,4-dihydroxytetrahydrofuran (unreacted 3,4-dihydroxytetrahydrofuran) recovered from the reaction mixture obtained as a result of the reduction process described later can be reused. .
  • the metal catalyst (2) or the catalyst (B) one or more metal species selected from the group consisting of vanadium, chromium, manganese, iron, molybdenum, tungsten, and rhenium (particularly rhenium) are supported on activated carbon.
  • the above catalyst is used, the conversion of 3,4-dihydroxytetrahydrofuran is high (for example, 95% or more) and 1,4-butanediol is produced with a high selectivity (for example, 77% or more).
  • one or more metal species selected from the group consisting of vanadium, chromium, manganese, iron, molybdenum, tungsten, and rhenium are supported on the inorganic oxide as the metal catalyst (2) or the catalyst (A).
  • metal catalyst (2) or the catalyst (A)
  • tetrahydrofuran is generated with high selectivity.
  • the hydrogen can be used in a substantially hydrogen-only state, or can be used in a state diluted with an inert gas such as nitrogen, argon, or helium.
  • hydrogen (unreacted hydrogen) recovered from the reaction mixture obtained as a result of the reduction process described later can be reused.
  • the method for producing the 3,4-dihydroxytetrahydrofuran reduced product may be referred to as “the production method of the present invention”.
  • the “step of reducing 3,4-dihydroxytetrahydrofuran by reaction with hydrogen” may be referred to as a “reduction step”.
  • the reaction between 3,4-dihydroxytetrahydrofuran and hydrogen is carried out by reacting gaseous (vaporized) 3,4-dihydroxytetrahydrofuran with hydrogen in the presence of the reduction reaction catalyst (solid) of the present invention.
  • gaseous (vaporized) 3,4-dihydroxytetrahydrofuran with hydrogen in the presence of the reduction reaction catalyst (solid) of the present invention.
  • solid reduction reaction catalyst
  • It may be a gas-solid two-phase reaction to be reacted, or a gas-liquid solid three-phase system in which liquid 3,4-dihydroxytetrahydrofuran and hydrogen are reacted in the presence of the reduction reaction catalyst (solid) of the present invention.
  • the reaction may be in particular, from the viewpoint of suppressing the formation of a compound having a small number of carbon atoms (for example, 3 or less) due to the cleavage of the carbon-carbon bond, the above reaction is preferably allowed to proceed in a gas-liquid solid three-phase system.
  • the reaction between 3,4-dihydroxytetrahydrofuran and hydrogen in the reduction step is performed by, for example, sealing a raw material liquid containing 3,4-dihydroxytetrahydrofuran as an essential component and hydrogen in a reactor, It can be advanced by heating in the presence of the catalyst for reduction reaction of the present invention.
  • the reaction between 3,4-dihydroxytetrahydrofuran and hydrogen is performed in the presence of the metal catalyst (1) in the first stage, and in the presence of the metal catalyst (2) in the second stage. Alternatively, it may proceed in the presence of a mixed catalyst of the metal catalyst (1) and the metal catalyst (2).
  • 1,4-dihydroxytetrahydrofuran and hydrogen react in the first stage to produce dihydrofuran (2,3-dihydrofuran, 3,4-dihydrofuran), and dihydrofuran and hydrogen in the second stage.
  • 1,4-butanediol is produced by the reaction with each other, but it becomes possible to carry out each elementary reaction in the first stage and the second stage with higher yield, and with a single catalyst. It is possible to produce 1,4-butanediol with a higher industrial selectivity than that performed. In the latter case, 1,4-butanediol can be produced at a high conversion and high selectivity in one step.
  • the reaction may be performed in the presence of the catalyst (A) in the first stage and the reaction may be performed in the presence of the catalyst (B) in the second stage, or the presence of a mixed catalyst of the catalyst (A) and the catalyst (B). You may proceed below.
  • the reduction reaction catalyst of the present invention can be used singly or in combination of two or more.
  • the raw material liquid may contain, for example, a solvent such as water or an organic solvent, or may contain substantially no solvent.
  • the organic solvent is not particularly limited, and examples thereof include alcohols such as methanol, ethanol, isopropanol, n-butanol, 2-butanol, dimethyl sulfoxide (DMSO), dimethylformamide (DMF), dimethylacetamide (DMAc), 1, 4-dioxane and the like can be mentioned.
  • 1,4-dioxane is preferable because it is excellent in reactivity between 3,4-dihydroxytetrahydrofuran and hydrogen.
  • the said solvent can also be used individually by 1 type, and can also be used in combination of 2 or more type.
  • the concentration of 3,4-dihydroxytetrahydrofuran in the raw material liquid is not particularly limited, but is 5% by weight or more (eg, 5 to 100% by weight). More preferably, it is 8% by weight or more (for example, 8 to 90% by weight, 8 to 70% by weight), and further preferably 10% by weight or more (for example, 10 to 60% by weight).
  • concentration is 5% by weight or more
  • the reaction rate (conversion rate) of 3,4-dihydroxytetrahydrofuran tends to be improved.
  • the concentration is 90% by weight or less, the viscosity does not become too high and the operation tends to be easy.
  • the amount (content) of the metal catalyst (1) used in the reduction reaction catalyst of the first present invention is not particularly limited, but is 0.1 to 300 weights with respect to 100 parts by weight of 3,4-dihydroxytetrahydrofuran. Parts, preferably 1 to 200 parts by weight, more preferably 5 to 150 parts by weight. When the amount used is within the above range, the effect of using the catalyst is more sufficiently obtained, the conversion rate of 3,4-dihydroxytetrahydrofuran, the specific reduced product (especially 1,4-butanediol) There is a tendency that the selectivity is further improved.
  • the use amount (content) of the metal catalyst (2) in the reduction reaction catalyst of the first invention is not particularly limited, but is 0.1 to 300 weights with respect to 100 parts by weight of 3,4-dihydroxytetrahydrofuran. Parts, preferably 1 to 200 parts by weight, more preferably 5 to 150 parts by weight.
  • the amount used is within the above range, the effect of using the catalyst is more sufficiently obtained, the conversion rate of 3,4-dihydroxytetrahydrofuran, the specific reduced product (especially 1,4-butanediol) There is a tendency that the selectivity is further improved.
  • the amount (content) of the catalyst (A) used in the reduction reaction catalyst of the second invention is not particularly limited, but is 0.1 to 300 parts by weight with respect to 100 parts by weight of 3,4-dihydroxytetrahydrofuran. It is preferably 1 to 200 parts by weight, more preferably 5 to 150 parts by weight. When the amount used is within the above range, the effect of using the catalyst is more sufficiently obtained, the conversion rate of 3,4-dihydroxytetrahydrofuran, the specific reduced product (especially 1,4-butanediol) There is a tendency that the selectivity is further improved.
  • the amount (content) of the catalyst (B) used in the reduction reaction catalyst of the second invention is not particularly limited, but is 0.1 to 300 parts by weight with respect to 100 parts by weight of 3,4-dihydroxytetrahydrofuran. It is preferably 1 to 200 parts by weight, more preferably 5 to 150 parts by weight. When the amount used is within the above range, the effect of using the catalyst is more sufficiently obtained, the conversion rate of 3,4-dihydroxytetrahydrofuran, the specific reduced product (especially 1,4-butanediol) There is a tendency that the selectivity is further improved.
  • the reaction between 3,4-dihydroxytetrahydrofuran and hydrogen may proceed in the presence of a solid acid. That is, the raw material liquid may contain a solid acid in addition to the above 3,4-dihydroxytetrahydrofuran and the solvent.
  • the solid acid is a solid exhibiting the characteristics of Bronsted acid and / or Lewis acid (either one or both of Bronsted acid and Lewis acid), and Hammett acidity function (H 0 ) is 6.8 or less. belongs to.
  • the solid acid known or commonly used solid acids can be used, and are not particularly limited.
  • inorganic acids and organic acids for example, silica, alumina, zeolite, silica-alumina, etc.
  • Solids carrying organic sulfonic acids, etc . crystalline metal silicates such as gallium silicate, aluminosilicate, borosilicate (eg, H-ZSM-5 which is a proton type zeolite); heteropoly acids or salts thereof; carriers (eg, , Silica, alumina, etc.) solids carrying heteropolyacids or salts thereof; acidic metal oxides such as zirconium oxide (ZrO 2 ) and titanium oxide (TiO 2 ); having acid groups such as carboxyl groups and sulfonic acid groups Examples thereof include polymers (for example, cation exchange resins).
  • a commercial item can also be utilized as said solid acid.
  • the reaction of 3,4-dihydroxytetrahydrofuran with hydrogen can be promoted.
  • the said solid acid can also be used individually by 1 type, and can also be used in combination of 2 or more type.
  • the amount (content) of the solid acid is not particularly limited, but is preferably 0.1 to 50 parts by weight with respect to 100 parts by weight of 3,4-dihydroxytetrahydrofuran.
  • the amount is preferably 1 to 20 parts by weight.
  • the raw material liquid may contain other components (for example, alcohols and the like) as long as the effects of the present invention are not impaired.
  • the raw material liquid may contain impurities derived from, for example, 3,4-dihydroxytetrahydrofuran raw materials (3,4-dihydroxytetrahydrofuran and its raw materials). Such impurities deteriorate the catalyst. Therefore, it is preferably removed from the raw material liquid by a known or conventional method (for example, distillation, adsorption, ion exchange, crystallization, extraction, etc.).
  • the raw material liquid is not particularly limited, and can be obtained by mixing 3,4-dihydroxytetrahydrofuran with a solvent, a solid acid, and other components as necessary.
  • a known or conventional stirrer can be used for mixing.
  • the molar ratio [hydrogen (mol) / 3,4-dihydroxytetrahydrofuran (mol)] of hydrogen and 3,4-dihydroxytetrahydrofuran to be subjected to the above reaction is not particularly limited. 1 to 100 is preferable, 1 to 50 is more preferable, and 1 to 30 is more preferable. When the molar ratio is 1 or more, the reaction rate (conversion rate) of 3,4-dihydroxytetrahydrofuran tends to be improved. On the other hand, when the molar ratio is 100 or less, the utility cost for recovering unreacted hydrogen tends to be reduced.
  • the reaction temperature of 3,4-dihydroxytetrahydrofuran and hydrogen in the above reaction is not particularly limited, but is preferably 50 to 250 ° C, more preferably 60 to 220 ° C, still more preferably 70 to 200 ° C.
  • the reaction temperature is 50 ° C. or higher, the reaction rate (conversion rate) of 3,4-dihydroxytetrahydrofuran tends to be improved.
  • the reaction temperature is 250 ° C. or lower, 3,4-dihydroxytetrahydrofuran is hardly decomposed, and the yield of a specific reduced product tends to be improved.
  • the reaction temperature may be controlled to be constant (substantially constant) in the above reaction, or may be controlled to change stepwise or continuously.
  • the reaction time of 3,4-dihydroxytetrahydrofuran and hydrogen in the above reaction is not particularly limited, but is preferably 0.1 to 200 hours, more preferably 0.2 to 150 hours, still more preferably 0.5 to 100 hours. is there.
  • the reaction time is 0.1 hour or longer, the reaction rate (conversion rate) of 3,4-dihydroxytetrahydrofuran tends to be improved.
  • the reaction time is 200 hours or less, the selectivity for a specific reduced product tends to be improved.
  • the reaction pressure of 3,4-dihydroxytetrahydrofuran and hydrogen in the above reaction is not particularly limited, but is 0.1 MPa or more (for example, 0.1 to 50 MPa) More preferably, it is 1 MPa or more (for example, 1 to 30 MPa), more preferably 3 MPa or more (for example, 3 to 20 MPa), and further preferably 5 MPa or more (for example, 5 to 15 MPa).
  • the reaction pressure is 0.1 MPa or more (particularly 5 MPa or more)
  • the reaction rate (conversion rate) of 3,4-dihydroxytetrahydrofuran tends to be improved.
  • the reaction pressure exceeds 50 MPa the reactor needs to have a high pressure resistance, and thus the production cost tends to increase.
  • the above reaction can be carried out in an arbitrary format such as a batch format, a semi-batch format, or a continuous distribution format.
  • a process of separating and recovering unreacted 3,4-dihydroxytetrahydrofuran after the reaction is completed and recycling it is adopted. May be. If this recycling process is employed, the amount of specific reduced product produced when a predetermined amount of 3,4-dihydroxytetrahydrofuran is used can be increased.
  • a known or conventional reactor can be used as the reactor, and for example, a batch reactor, a fluidized bed reactor, a fixed bed reactor or the like can be used.
  • a trickle bed reactor can be used as the fixed bed reactor.
  • the trickle bed reactor has a catalyst packed bed filled with a solid catalyst inside, and the liquid (in the reduction process, for example, the above raw material liquid) and gas (hydrogen in the reduction process) with respect to the catalyst packed bed
  • a reactor fixed bed continuous reaction apparatus of a type that flows in a downward flow (gas-liquid downward parallel flow) from above the reactor.
  • FIG. 1 is a flowchart showing an example of a reduction step in the production method of the present invention when a trickle bed reactor is used.
  • 1 is a reactor (a trickle bed reactor)
  • 2 is a feed line for raw material liquid
  • 3 is a supply line for hydrogen.
  • 4 is a reaction mixture take-out line
  • 5 is a high-pressure gas-liquid separator
  • 6 is a hydrogen recycle line.
  • the raw material liquid and hydrogen are continuously supplied from above the trickle bed reactor 1, and then the 3,4-dihydroxytetrahydrofuran and hydrogen in the raw material liquid are converted into the catalyst (
  • the reaction is carried out in the presence of the catalyst for reduction reaction of the present invention to produce a reduced product (reaction product).
  • the reaction mixture containing the reduced product is continuously taken out from the reaction mixture take-out line 4 below the trickle bed reactor 1, and then hydrogen is separated from the reaction mixture by the high-pressure gas-liquid separator 5 as necessary.
  • the reduced product is purified and isolated in the purification step.
  • the hydrogen separated by the high-pressure gas-liquid separator 5 can be supplied again to the trickle bed reactor 1 through the hydrogen recycling line 6 and reused for the reaction.
  • Adopting a trickle bed reactor as the reactor is advantageous in terms of cost because the reaction can proceed in a gas-liquid solid three-phase system without vaporizing 3,4-dihydroxytetrahydrofuran as a raw material. Further, in the trickle bed reactor, the raw material liquid containing 3,4-dihydroxytetrahydrofuran flows downward while forming a thin film on the catalyst surface, and therefore, from the interface between the raw material liquid and hydrogen (gas-liquid interface) to the catalyst surface. The distance is short, the diffusion of hydrogen dissolved in the raw material liquid to the catalyst surface is facilitated, and a specific reduced product can be efficiently generated. In addition, a process for separating the catalyst from the reaction product of 3,4-dihydroxytetrahydrofuran and hydrogen is not required, and the catalyst regeneration process is easy. Therefore, the manufacturing process is simple and the cost is excellent.
  • the material, shape, size, etc. are not particularly limited, and are selected from known or conventional trickle bed reactors depending on the scale of the reaction, etc. It can be selected appropriately.
  • the trickle bed reactor may be constituted by a single reaction tube or a multi-stage reactor constituted by a plurality of reaction tubes.
  • the number of reaction tubes can be selected as appropriate and is not particularly limited.
  • the reactor may be one in which a plurality of reaction tubes are installed in series, or a plurality of reaction tubes are arranged in parallel. It may be a thing.
  • the catalyst packed bed inside the trickle bed reactor may be divided (separated) into two or more positions, for example, in order to suppress overheating due to reaction heat.
  • the production method of the present invention may include other steps as required in addition to the reduction step.
  • Other steps include, for example, a step of preparing and purifying the raw material liquid before supplying the raw material liquid and hydrogen to the reactor, and a reaction mixture discharged (outflowed) from the reactor (for example, 3,4-dihydroxytetrahydrofuran). , Hydrogen, and a mixture of products such as a reduced product) and the like. Note that these steps may be performed in a separate line from the reduction step, or may be performed as a series of steps (in-line) with the reduction step.
  • the production method of the present invention may include, for example, a step of generating 3,4-dihydroxytetrahydrofuran as a raw material in the step before the reduction step.
  • the step of producing 3,4-dihydroxytetrahydrofuran includes 3,4-dihydroxytetrahydrofuran (especially 1,4-anhydroerythritol) by intramolecular dehydration reaction (intramolecular dehydration cyclization reaction) of erythritol.
  • a step of generating s (sometimes referred to as a “dehydration reaction step”) is preferred.
  • the intramolecular dehydration reaction of erythritol in the dehydration reaction step can be carried out by a well-known method and is not particularly limited. For example, it can be advanced by heating erythritol in the presence of an acid catalyst.
  • the dehydration reaction step may be performed on a separate line from the reduction step, or may be performed as a series of steps with the reduction step.
  • the erythritol used as a raw material in the dehydration reaction step is not particularly limited, and may be erythritol produced by chemical synthesis or erythritol derived from a sugar such as glucose by a fermentation technique. Among these, from the viewpoint of reducing the burden on the environment, it is preferable to use erythritol derived from a saccharide such as glucose by a fermentation technique. In addition, erythritol (unreacted erythritol) recovered from the reaction mixture obtained by the dehydration reaction step can be reused.
  • the acid catalyst used in the dehydration reaction step may be a known or conventional acid, and is not particularly limited.
  • hydrochloric acid sulfuric acid, nitric acid, phosphoric acid, polyphosphoric acid, metaphosphoric acid, condensed phosphoric acid.
  • Inorganic acids such as hydrobromic acid, perchloric acid, hypochlorous acid and chlorous acid; organic acids such as p-toluenesulfonic acid, trichloroacetic acid, trifluoroacetic acid and trifluoromethanesulfonic acid; cation exchange resin, Examples thereof include solid acids such as zeolite, silica alumina, and heteropolyacid (for example, phosphomolybdic acid).
  • a solid acid is preferable because it can be easily separated from a product and regenerated.
  • a commercial item can also be used as said acid catalyst, for example, a brand name "Amberlyst” (made by Dow Chemical Co.), a brand name "Nafion” (made by DuPont Co., Ltd.) etc. as a commercial item of a solid acid. Is exemplified.
  • an acid (acid catalyst) can also be used individually by 1 type, and can also be used in combination of 2 or more type.
  • the above reaction can be allowed to proceed in the absence of a solvent, or can be allowed to proceed in the presence of a solvent.
  • a solvent examples include water; alcohols such as methanol, ethanol, isopropanol and n-butanol; ethers such as 1,4-dioxane; dimethyl sulfoxide (DMSO), dimethylformamide (DMF), dimethylacetamide (DMAc) and the like.
  • DMSO dimethyl sulfoxide
  • DMF dimethylformamide
  • DMAc dimethylacetamide
  • a solvent can also be used individually by 1 type and can also be used in combination of 2 or more type.
  • the reaction temperature (heating temperature) of the above reaction is not particularly limited, but is preferably 40 to 240 ° C, more preferably 80 to 200 ° C, and still more preferably 120 to 180 ° C. By controlling the reaction temperature within the above range, the intramolecular dehydration reaction of erythritol can proceed more efficiently.
  • the reaction temperature may be controlled to be constant (substantially constant) in the reaction, or may be controlled to change stepwise or continuously.
  • the time (reaction time) for the above reaction is not particularly limited, but is preferably 1 to 100 hours, more preferably 2 to 50 hours, still more preferably 3 to 30 hours. If the reaction time is less than 1 hour, the reaction rate (conversion rate) of erythritol may not be sufficiently increased. On the other hand, if the reaction time exceeds 100 hours, it may be disadvantageous in terms of cost.
  • the above reaction can be carried out in any atmosphere such as an air atmosphere or an inert gas atmosphere such as nitrogen or argon.
  • an inert gas atmosphere such as nitrogen or argon.
  • the above reaction can be carried out under normal pressure, under pressure, or under reduced pressure.
  • the conversion rate of erythritol it is preferably carried out under pressure.
  • the reaction temperature can be raised to 100 ° C. or higher by carrying out the reaction under pressure, so that the conversion rate of erythritol can be increased efficiently.
  • the above reaction can be carried out in any format such as a batch format, a semi-batch format, and a continuous flow format.
  • 3,4-Dihydroxytetrahydrofuran is produced by the dehydration reaction step.
  • the 3,4-dihydroxytetrahydrofuran obtained in this way is then used as a raw material in the reduction step, but is known or commonly used from the reaction mixture obtained in the dehydration reaction step (for example, distillation, adsorption, (Ion exchange, crystallization, extraction, etc.) can be used after being isolated, or can be used without being isolated from the above reaction mixture (after removing the acid catalyst, etc. if necessary). .
  • Production Example 4 [Production of catalyst (ReO x / BP2000)] A catalyst (ReO x / BP2000) was produced in the same manner as in Production Example 3, except that the trade name “BP2000” (carbon black, manufactured by CABOT) was used as the activated carbon. In addition, the catalyst produced in Production Example 4 also corresponds to the catalyst (B).
  • BP2000 carbon black, manufactured by CABOT
  • Production Example 5 [Production of catalyst (ReO x / VXC72)] A catalyst (ReO x / VXC72) was produced in the same manner as in Production Example 3 except that the trade name “Vulcan XC72” (carbon black, manufactured by CABOT) was used as the activated carbon. Note that the catalyst produced in Production Example 5 also corresponds to the catalyst (B).
  • a catalyst (ReO x / VXC72R) was produced in the same manner as in Production Example 3 except that the trade name “Vulcan XC72R” (carbon black, manufactured by CABOT) was used as the activated carbon. Note that the catalyst produced in Production Example 6 also corresponds to the catalyst (B).
  • Production Example 7 [Production of catalyst (ReO x / Shirasagi FAC-10)]
  • a catalyst (ReO x / Shirasagi FAC-10) was produced in the same manner as in Production Example 3 except that the trade name “Shirasagi FAC-10” (manufactured by Osaka Gas Chemical Co., Ltd.) was used as the activated carbon. Note that the catalyst produced in Production Example 7 also corresponds to the catalyst (B).
  • Production Example 8 [Production of catalyst (ReO x / Shirasagi M)] A catalyst (ReO x / Shirasagi M) was produced in the same manner as in Production Example 3 except that the trade name “Shirasagi M” (manufactured by Osaka Gas Chemical Co., Ltd.) was used as the activated carbon. In addition, the catalyst produced in Production Example 8 also corresponds to the catalyst (B).
  • Production Example 9 [Production of catalyst (ReO x / TiO 2 )] A catalyst (ReO x / TiO 2 ) was produced in the same manner as in Production Example 3 except that titania (trade name “P25”, manufactured by Nippon Aerosil Co., Ltd.) was used instead of the activated carbon. Note that the catalyst produced in Production Example 9 also corresponds to the catalyst (A).
  • Production Example 10 [Production of catalyst (ReO x / Al 2 O 3 )]
  • a catalyst (ReO x / Al 2 O 3 ) was used in the same manner as in Production Example 3 except that alumina (boehmite manufactured by Wako Pure Chemical Industries, Ltd., calcined at 600 ° C. for 3 hours) was used instead of activated carbon. ) was used instead of activated carbon. ) was manufactured.
  • the catalyst produced in Production Example 10 also corresponds to the catalyst (A).
  • Production Example 11 [Production of catalyst (ReO x / ZrO 2 )] A catalyst (ReO x / ZrO 2 ) was produced in the same manner as in Production Example 3, except that zirconia (trade name “RC-100P”, manufactured by Daiichi Rare Element Chemical Co., Ltd.) was used instead of activated carbon. did. The catalyst produced in Production Example 11 also corresponds to the catalyst (A).
  • Production Example 12 [Production of catalyst (ReO x / SiO 2 )] A catalyst (ReO x / SiO 2 ) was produced in the same manner as in Production Example 3 except that silica (trade name “G-6”, manufactured by Fuji Silysia Chemical Co., Ltd.) was used instead of the activated carbon. Note that the catalyst produced in Production Example 12 also corresponds to the catalyst (A).
  • Production Example 13 [Production of catalyst (ReO x / HZSM-5)] A catalyst (ReO x / HZSM-5) was produced in the same manner as in Production Example 3, except that zeolite (trade name “HZSM-5”, manufactured by Zude Chemie) was used instead of activated carbon. Note that the catalyst produced in Production Example 13 also corresponds to the catalyst (A).
  • Production Example 14 [Production of catalyst (ReO x / HBEA)] A catalyst (ReO x / HBEA) was produced in the same manner as in Production Example 3, except that zeolite (trade name “HBEA”, manufactured by Tosoh Corporation) was used instead of activated carbon. The catalyst produced in Production Example 14 also corresponds to the catalyst (A).
  • Production Example 15 [Production of catalyst (ReO x / HUSY)] A catalyst (ReO x / HUSY) was produced in the same manner as in Production Example 3, except that zeolite (trade name “HUSY”, manufactured by Tosoh Corporation) was used instead of activated carbon. The catalyst produced in Production Example 15 also corresponds to the catalyst (A).
  • Production Example 16 [Production of catalyst (ReO X / Char Carbon)]
  • a catalyst (ReO X / Char Carbon) was produced in the same manner as in Production Example 3 except that the trade name “Char Carbon” (charcoal, manufactured by Wako Pure Chemical Industries, Ltd.) was used as the activated carbon.
  • the catalyst produced in Production Example 16 also corresponds to the catalyst (B).
  • Production Example 17 [Production of catalyst (MoO x / Norit Rx3 EXTRA)] A catalyst (MoO x / Norit Rx3 EXTRA) was produced in the same manner as in Production Example 3 except that ammonium molybdate (manufactured by Wako Pure Chemical Industries, Ltd.) was used instead of ammonium perrhenate. The catalyst produced in Production Example 17 also corresponds to the catalyst (B).
  • Production Example 18 [Production of catalyst (WO X / Norit Rx3 EXTRA)] A catalyst (WO X / Norit Rx3 EXTRA) was produced in the same manner as in Production Example 3, except that ammonium tungstate (manufactured by Strem Chemicals) was used instead of ammonium perrhenate. The catalyst produced in Production Example 18 also corresponds to the catalyst (B).
  • Reference example 1 [Production of 3,4-dihydroxytetrahydrofuran] Into an autoclave, 1 g of erythritol, 4 g of water, and 0.15 g of a trade name “Amberlyst 70” (manufactured by Dow Chemical Co., Ltd.) are introduced as a catalyst, and the reaction is performed for 24 hours under an argon atmosphere under a pressure of 5 MPa and a temperature of 160 ° C. 3,4-dihydroxytetrahydrofuran was obtained. The conversion of erythritol was 98.6%, the selectivity for 3,4-dihydroxytetrahydrofuran was 97.2%, and the yield was 95.8%.
  • Examples 1-6 [Reduction of 3,4-dihydroxytetrahydrofuran]
  • a glass autoclave inner cylinder shows a stirrer chip, 150 mg of the catalyst obtained in Production Example 1 (ReO x -Au / CeO 2 ), and the catalyst obtained in Production Example 2 (ReO x / Norit Rx3 EXTRA).
  • 1, 4 g of 1,4-dioxane and 0.5 g of 3,4-dihydroxytetrahydrofuran were added.
  • the inner cylinder for autoclave was placed in a 190 mL autoclave (high pressure batch reactor) and covered. Next, the operation of evacuating after filling 1 MPa of hydrogen into the autoclave was repeated three times to expel the air inside the autoclave.
  • Examples 7 and 8 A reduction reaction of 3,4-dihydroxytetrahydrofuran was carried out in the same manner as in Example 4 except that the reaction temperature was changed as shown in Table 2. The analysis results are shown in Table 2.
  • Production Example 22 [Production of catalyst (ReO x / BP2000)] A catalyst (ReO x / BP2000) was produced in the same manner as in Production Example 4 except that the amount of ammonium perrhenate was changed and the amount of rhenium supported was 1% by weight. Note that the catalyst produced in Production Example 22 also corresponds to the metal catalyst (2).
  • Production Example 23 [Production of catalyst (ReO x / BP2000)] A catalyst (ReO x / BP2000) was produced in the same manner as in Production Example 4 except that the amount of ammonium perrhenate was changed and the supported amount of rhenium was changed to 3% by weight. The catalyst produced in Production Example 23 also corresponds to the metal catalyst (2).
  • Production Example 24 [Production of catalyst (ReO x / BP2000)] A catalyst (ReO x / BP2000) was produced in the same manner as in Production Example 4 except that the amount of ammonium perrhenate was changed and the amount of rhenium supported was 9% by weight. The catalyst produced in Production Example 24 also corresponds to the metal catalyst (2).
  • the catalyst (A) is not supported when gold and rhenium are supported (Examples 29 to 33) and when only rhenium is supported (Examples 34 to 37).
  • the conversion of 3,4-dihydroxytetrahydrofuran and the selectivity of 1,4-butanediol were the same.
  • the catalyst (A) was not used (Comparative Examples 5 and 6), the conversion rate of 3,4-dihydroxytetrahydrofuran was extremely low.
  • the conversion rate was determined by the following formula (1), and the selectivity was determined by the following formula (2).
  • Conversion (%) ⁇ Amount of 2,3-dihydroxytetrahydrofuran used as raw material (mol) ⁇ Amount of residual 2,3-dihydroxytetrahydrofuran (mol) ⁇ / Amount of 2,3-dihydroxytetrahydrofuran used as raw material ( mol) ⁇ 100 (1)
  • Selectivity of substance A (%) production amount of substance A (mol) / ⁇ amount of 2,3-dihydroxytetrahydrofuran used as raw material (mol) ⁇ amount of residual 2,3-dihydroxytetrahydrofuran (mol) ⁇ ⁇ 100 (2)
  • the reduction reaction catalyst of the present invention can be used in a reduction reaction with hydrogen using 3,4-dihydroxytetrahydrofuran as a raw material.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Furan Compounds (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

バイオマス由来の原料を用いて、1,4-ブタンジオール又はテトラヒドロフランを従来よりも高い選択率で得ることが可能な触媒(還元反応用触媒)を提供する。 水素との反応により3,4-ジヒドロキシテトラヒドロフランを還元させる反応に用いられる触媒であって、下記金属触媒(1)及び下記金属触媒(2)を含有することを特徴とする、3,4-ジヒドロキシテトラヒドロフランの還元反応用触媒。 金属触媒(1):下記M1及びM2を金属種とし、担体に担持された触媒 金属触媒(2):下記M1を金属種とし、担体に担持された触媒 M1:周期表の第4~6周期に属し且つ第5~7族に属する元素、及び鉄からなる群より選択される1以上 M2:周期表の第4~6周期に属し且つ第9~11族に属する元素、ルテニウム、及びオスミウムからなる群より選択される1以上

Description

3,4-ジヒドロキシテトラヒドロフランの還元反応用触媒及び3,4-ジヒドロキシテトラヒドロフラン還元物の製造方法
 本発明は、3,4-ジヒドロキシテトラヒドロフランを原料とした水素による還元反応に用いられる触媒、及び該触媒を用いた還元物の製造方法に関する。
 1,4-ブタンジオール等のジオール類は、ポリエステルやポリウレタンの原料等に用いられる重要な化合物である。また、テトラヒドロフラン(THF)は、合成反応の溶媒等として用いられる重要な化合物である。
 例えば、1,4-ブタンジオールは、ブタジエンを基質としてパラジウム触媒と酢酸を用いて1位及び4位をジアセトキシ化した後、還元、加水分解を経て製造する方法が知られている(例えば、特許文献1、2参照)。他に、マレイン酸やコハク酸のエステルや無水物を還元して製造する方法も知られている(例えば、特許文献3参照)。
 一方で、現在、化学製品を製造するために、主に石油等の化学燃料資源が大量に消費されている。即ち、現在の社会においては、炭素が一方的に地中から大気に放出されているのが現状である。このため、地球温暖化や化石燃料資源の枯渇等の問題が生じており、このような問題に対して、近年では、植物の光合成の力を借りて炭素の再生使用及び循環を行う、いわゆるバイオマス(例えば、セルロース、グルコース、植物油等の植物由来の資源)を活用した持続可能な社会の構築が求められつつある。
特開平7-82191号公報 特開平10-152450号公報 特開平10-192709号公報
 しかしながら、上記特許文献1~3では、1,4-ブタンジオールの製造に当たり、原料として、化学燃料資源であるブタジエン、マレイン酸エステル、コハク酸エステル等を用いている。
 従って、本発明の目的は、バイオマス由来の原料を用いて、1,4-ブタンジオール又はテトラヒドロフランを従来よりも高い選択率で得ることが可能な触媒(還元反応用触媒)を提供することにある。
 また、本発明の他の目的は、バイオマス由来の原料を用いて、1,4-ブタンジオール又はテトラヒドロフランを従来よりも高い選択率で製造できる方法を提供することにある。
 本発明者らは、上記課題を解決するため鋭意検討した結果、バイオマス由来の原料から製造することができる3,4-ジヒドロキシテトラヒドロフランを原料とする反応において、特定の触媒を用いて水素と反応させると、1,4-ブタンジオール又はテトラヒドロフラン(「特定の還元物」と称する場合がある)が従来よりも高選択率で生成することを見出した。本発明は、これらの知見に基づいて完成させたものである。
 すなわち、本発明は、水素との反応により3,4-ジヒドロキシテトラヒドロフランを還元させる反応に用いられる触媒であって、下記金属触媒(1)及び下記金属触媒(2)を含有することを特徴とする、第一の3,4-ジヒドロキシテトラヒドロフランの還元反応用触媒を提供する。
 金属触媒(1):下記M1及びM2を金属種とし、担体に担持された触媒
 金属触媒(2):下記M1を金属種とし、担体に担持された触媒
  M1:周期表の第4~6周期に属し且つ第5~7族に属する元素、及び鉄からなる群より選択される1以上
  M2:周期表の第4~6周期に属し且つ第9~11族に属する元素、ルテニウム、及びオスミウムからなる群より選択される1以上
 上記第一の還元反応用触媒において、上記金属触媒(1)におけるM1はレニウムであり、M2は金であることが好ましい。
 上記第一の還元反応用触媒において、上記金属触媒(1)における担体は酸化セリウムであることが好ましい。
 上記第一の還元反応用触媒において、上記金属触媒(2)におけるM1はレニウムであることが好ましい。
 上記第一の還元反応用触媒において、上記金属触媒(2)における担体は活性炭であることが好ましい。
 また、本発明は、水素との反応により3,4-ジヒドロキシテトラヒドロフランを還元させる工程を含み、上記工程における3,4-ジヒドロキシテトラヒドロフランと水素との反応を、上記第一の還元反応用触媒の存在下で進行させることを特徴とする、第一の3,4-ジヒドロキシテトラヒドロフラン還元物の製造方法を提供する。
 上記第一の製造方法において、上記工程における3,4-ジヒドロキシテトラヒドロフランと水素との反応を、1段目で上記金属触媒(1)の存在下反応を行い、2段目で上記金属触媒(2)の存在下反応を行うか、又は、上記金属触媒(1)及び上記金属触媒(2)の混合触媒の存在下で進行させることが好ましい。
 上記第一の製造方法において、上記工程における3,4-ジヒドロキシテトラヒドロフランと水素との反応を、水素分圧が3MPa以上の雰囲気下で行うことが好ましい。
 上記第一の製造方法は、エリスリトールを脱水環化して3,4-ジヒドロキシテトラヒドロフランを得る工程を、上記3,4-ジヒドロキシテトラヒドロフランを還元させる工程の前に有することが好ましい。
 また、本発明は、水素との反応により3,4-ジヒドロキシテトラヒドロフランを還元させる反応に用いられる触媒であって、下記触媒(A)及び下記触媒(B)を含有し、触媒(A)及び/又は触媒(B)が下記M1を金属種として担持された触媒であることを特徴とする、第二の3,4-ジヒドロキシテトラヒドロフランの還元反応用触媒を提供する。
 触媒(A):下記M1を金属種として担持されていてもよい無機酸化物
 触媒(B):下記M1を金属種として担持されていてもよい活性炭
  M1:周期表の第4~6周期に属し且つ第5~7族に属する元素、及び鉄からなる群より選択される1以上
 上記第二の還元反応用触媒において、上記M1はレニウムであることが好ましい。
 上記第二の還元反応用触媒において、上記触媒(A)における無機酸化物は酸化セリウムであることが好ましい。
 上記第二の還元反応用触媒において、上記触媒(B)が上記M1を金属種として担持された触媒であることが好ましく、上記触媒(A)及び上記触媒(B)が上記M1を金属種として担持された触媒であることがより好ましい。
 また、本発明は、水素との反応により3,4-ジヒドロキシテトラヒドロフランを還元させる工程を含み、上記工程における3,4-ジヒドロキシテトラヒドロフランと水素との反応を、上記第二の3,4-ジヒドロキシテトラヒドロフランの還元反応用触媒の存在下で進行させることを特徴とする、第二の3,4-ジヒドロキシテトラヒドロフラン還元物の製造方法を提供する。
 上記第二の製造方法において、上記工程における3,4-ジヒドロキシテトラヒドロフランと水素との反応を、1段目で上記触媒(A)の存在下反応を行い、2段目で上記触媒(B)の存在下反応を行うか、又は、上記触媒(A)及び上記触媒(B)の混合触媒の存在下で進行させることが好ましい。
 本発明の還元反応用触媒は上記構成を有するため、バイオマス由来の原料を用いて、1,4-ブタンジオール又はテトラヒドロフランが従来よりも高い選択率で得ることが可能となる。このため、バイオマス由来の原料を用いた場合、環境に与える負荷が小さく、持続可能な社会の構築に大きく寄与するものである。また、本発明の還元反応用触媒として特定のものを用いることにより、1,4-ブタンジオール又はテトラヒドロフランが従来よりも高い選択率で製造できる。
図1は、トリクルベッド反応器を使用した場合の、本発明の製造方法における還元工程の一例を示すフロー図である。
<本発明の還元反応用触媒>
 本発明の還元反応用触媒は、水素との反応により3,4-ジヒドロキシテトラヒドロフランを還元させる反応に用いられる触媒(3,4-ジヒドロキシテトラヒドロフランの還元反応用触媒)である。第一の本発明の還元反応用触媒は、金属触媒(1)及び金属触媒(2)を含有する。金属触媒(1)及び金属触媒(2)は、それぞれ、一種のみを使用してもよいし、二種以上を使用してもよい。また、第二の本発明の還元反応用触媒は、触媒(A)及び触媒(B)を含有する。触媒(A)及び触媒(B)は、それぞれ、一種のみを使用してもよいし、二種以上を使用してもよい。なお、本明細書では、「第一の本発明の還元反応用触媒」及び「第二の本発明の還元反応用触媒」を総称して、「本発明の還元反応用触媒」と称する場合がある。
[金属触媒(1)]
 金属触媒(1)は、M1及びM2を金属種とし、担体に担持された触媒である。金属触媒(1)は、一つの担体にM1及びM2の両方が担持されている触媒である。なお、金属触媒(1)におけるM1を「M1a」と称する場合がある。上記M1a、M2、及び担体は、それぞれ、一種を単独で使用してもよいし、二種以上を組み合わせて使用してもよい。
 上記M1(M1a)は、周期表の第4~6周期に属し且つ第5~7族に属する元素、及び鉄からなる群より選択される1以上である。具体的には、バナジウム(V)、クロム(Cr)、マンガン(Mn)、鉄(Fe)、ニオブ(Nb)、モリブデン(Mo)、テクネチウム(Tc)、タンタル(Ta)、タングステン(W)、レニウム(Re)が挙げられる。中でも、バナジウム、クロム、マンガン、鉄、モリブデン、タングステン、レニウムが好ましく、特に好ましくはレニウムである。M1として挙げられたこれらの金属は、一般にヒドロキシ基(OH基)を持つ化合物と親和性が高く、反応性が高い傾向があるという共通の性質を有する。
 上記M2は、周期表の第4~6周期に属し且つ第9~11族に属する元素、ルテニウム、及びオスミウムからなる群より選択される1以上である。具体的には、コバルト(Co)、ニッケル(Ni)、銅(Cu)、ルテニウム(Ru)、ロジウム(Rh)、パラジウム(Pd)、銀(Ag)、オスミウム(Os)、イリジウム(Ir)、白金(Pt)、金(Au)が挙げられる。中でも、金、イリジウムが好ましい。M2として挙げられたこれらの金属は、水素との親和性が高く、還元作用の高い金属群であるという共通の性質を有する。中でも、金、イリジウム(特に、金)は、1,4-ブタンジオールを得るための還元作用が適度であり、1,4-ブタンジオールを高選択率で得られる傾向がある。
 上記金属触媒(1)に含まれるM1a及びM2の態様は、特に限定されないが、例えば、金属単体、金属塩、金属酸化物、金属水酸化物、又は金属錯体として担体に担持された状態で含まれる態様等が挙げられる。
 上記担体としては、触媒に使用される公知乃至慣用の担体を使用することができ、特に限定されないが、例えば無機酸化物や活性炭等の無機物担体、イオン交換樹脂等の有機物担体等が挙げられる。中でも、反応活性の観点で、活性炭、無機酸化物が好ましい。
 上記活性炭としては、公知乃至慣用の活性炭を使用することができ、特に限定されず、植物系、鉱物系、樹脂系等の何れの原料から得られる活性炭も使用することができる。上記活性炭としては、例えば、商品名「Vulcan XC72」(CABOT社製)、商品名「BP2000」(CABOT社製)、商品名「Shirasagi FAC-10」(日本エンバイロケミカルズ(株)製)、商品名「Shirasagi M」(日本エンバイロケミカルズ(株)製)、商品名「Shirasagi C」(日本エンバイロケミカルズ(株)製)、商品名「Carboraffin」(日本エンバイロケミカルズ(株)製)等の市販品を使用することもできる。
 上記無機酸化物としては、公知乃至慣用の無機酸化物を使用することができ、特に限定されないが、例えば、酸化セリウム(CeO2)、チタニア(TiO2)、ジルコニア(ZrO2)、硫酸化ジルコニア、リン酸化ジルコニア、酸化マグネシウム(MgO)、酸化亜鉛(ZnO)、シリカ(SiO2)、アルミナ(Al23)、酸化カルシウム(CaO)、酸化モリブデン(MoO2、MoO3)、酸化バナジウム(VO、V25)、酸化タングステン(W23、WO2、WO3)、酸化スズ(SnO、SnO2、SnO3)、酸化レニウム(ReO2、ReO3、Re27)、酸化ニオブ(Nb25)、これら無機酸化物の二種以上の複合体(例えば、ゼオライト、チタノシリケート等)等が挙げられる。中でも、固体塩基性を示すものが好ましく、シリカ、ジルコニア、硫酸化ジルコニア、リン酸化ジルコニア、チタニア、チタノシリケート、アルミナ、酸化カルシウム、酸化亜鉛、酸化モリブデン、酸化バナジウム、酸化タングステン、酸化スズ、酸化レニウム、酸化ニオブ、酸化セリウム、酸化マグネシウムが好ましい。
 上記無機酸化物としては、例えば、商品名「TIO-4」(チタニア、日本アエロジル(株)製)、商品名「500A」(マグネシア、宇部興産(株)製)、商品名「G-6」(シリカ、富士シリシア化学(株)製)、商品名「KHO-24」(アルミナ、住友化学(株)製)、商品名「ジルコニア」(和光純薬工業(株)製)等の市販品を使用することもできる。
 上記担体としては、中でも、特定の還元物の選択率の観点で、酸化セリウムが好ましい。
 従って、上記金属触媒(1)としては、バナジウム、クロム、マンガン、鉄、モリブデン、タングステン、及びレニウムからなる群から選択された1以上の金属種(特に、レニウム)と、金とが、酸化セリウムに担持された触媒であることが好ましい。
 上記担体の比表面積は、特に限定されないが、上記金属種が良好に分散され、これらの凝集を抑制することができ、単位重量当たりの触媒活性を向上することができる点で、50m2/g以上(例えば、50~1500m2/g、好ましくは100~1000m2/g)が好ましい。上記担体の比表面積が上記範囲内であると、単位重量当たりの触媒活性がより向上する傾向がある。
 上記担体の平均粒径は、特に限定されないが、反応性の点や、連続流通形式で反応を実施する場合の過剰な圧力損失を伴わない点で、100~10000μmが好ましく、より好ましくは1000~10000μmである。また、上記担体の形状は、粉末状、粒状、成型(成型体状)等のいずれであってもよく、特に限定されない。
 上記M1aの担体への担持量は、特に限定されないが、M1aとM2と担体の総量(100重量%)に対して、0.01~50重量%が好ましく、より好ましくは0.05~30重量%、さらに好ましくは0.1~10重量%、特に好ましくは0.15~3重量%である。上記M1aの担持量が0.01重量%以上であると、特定の還元物の選択率がより向上する傾向がある。一方、上記M1aの担持量が50重量%以下であると、3,4-ジヒドロキシテトラヒドロフランの転化率が向上し、特定の還元物の収率が向上する傾向がある。これは、上記M1aの担持量が、上記範囲内において少ないほど担体に担持されているM2の粒径が小さくなる傾向があり、これによって触媒の活性度、触媒寿命、及び特定の還元物の選択率が比較的高くなるためと推測される。なお、上記担持量は、金属換算(例えば、M1aが酸化物として担持されている場合は酸化物を構成する金属原子換算)であり、M1aとして二種以上の金属種を使用する場合にはこれらの総量である。
 金属触媒(1)におけるM1aに対するM2の割合(モル比)[M2/M1a]は、特に限定されないが、0.002~50が好ましく、より好ましくは0.005~10、さらに好ましくは0.01~5、特に好ましくは0.02~0.7である。上記M2の使用量は、3,4-ジヒドロキシテトラヒドロフランと水素とを反応させる温度や時間等に応じて、上記範囲内で適宜調整することができる。なお、上記モル比におけるM1aとM2のモル数は、金属換算(例えば、M1a及びM2が酸化物として担持されている場合は酸化物を構成する金属原子換算)であり、M1a及びM2として二種以上の金属種を使用する場合にはこれらの総量である。また、レニウムと金との割合(モル比)[Au/Re]が上記範囲内であることが特に好ましい。
 M1a及びM2の担体への担持方法は、特に限定されず、公知乃至慣用の担持方法により担体に担持させることができる。具体的には、例えば、含浸法、共沈法、析出沈殿法等が挙げられる。中でも、3,4-ジヒドロキシテトラヒドロフランの転化率が向上し、特定の還元物の収率が向上する観点から、M1aの担持方法は含浸法、M2の担持方法は含浸法、析出沈殿法が好ましい。
 上記含浸法でM1aを担持させる場合、M1aを含有する溶液(例えば、M1aがレニウムの場合には過レニウム酸アンモニウムの水溶液等)を担体又はM2が担持された担体に含浸させた後、乾燥、焼成(好ましくは空気中での焼成)を行い、さらに必要に応じて水素等により還元することにより担持させてもよい。なお、上記含浸法において、上述のM1aを含有する溶液の濃度や、担体への含浸、及び乾燥処理や焼成処理の施用回数を調整することにより、M1aの担持量を制御することができる。また、上記含浸法において、M1aを含有する溶液を含浸させる際の温度、該溶液を含浸させた担体を乾燥させる際の温度、焼成する際の温度は、特に限定されない。また、上記還元は、反応初期の活性を高めたり、触媒性能をより十分に引き出すことが可能であったりする観点から、共沈法や析出沈殿法においても行ってもよい。上記担体を乾燥させた後、焼成する際の温度又は還元する際の温度は、特に限定されないが、例えば、水素雰囲気において250~550℃が好ましく、より好ましくは300~500℃である。上記還元処理の後、必要に応じて、パッシベーションを行ってもよい。パッシベーションを行うことにより、本発明の還元反応用触媒の取り扱いが容易となる傾向がある。なお、パッシベーションは公知乃至慣用の方法で実施することができ、特に限定されないが、例えば、室温付近の温度で酸素雰囲気に曝露することによって実施することができる。
 上記含浸法でM2を担持させる場合、上述の含浸法でM1aを担持させる方法と同様に担持させることができ、M2を含有する溶液(例えば、M2が金の場合には塩化金酸の水溶液等)を担体又はM1aが担持された担体に含浸し、乾燥、焼成(好ましくは空気中での焼成)を行い、さらに必要に応じて水素等により還元すること等が挙げられる。より具体的には、例えば、担体に対して、さらにM2を含有する溶液を含浸させ、乾燥させ、焼成した後、さらに必要に応じて水素等により還元する方法等が挙げられる。なお、M2を含有する溶液を含浸させる際の温度、該溶液を含浸させた担体を乾燥させる際の温度、焼成する際の温度、及び還元する際の温度は特に限定されない。また、上述のM1aを含有する溶液を含浸させた後の還元処理と、M2を含有する溶液を含浸させた後の還元処理とは、例えば、両溶液の含浸後、水素雰囲気において加熱(例えば、加熱温度は100~700℃が好ましく、より好ましくは200~600℃)することにより、同時に実施することもできる。
 上記析出沈殿法でM2を担持させる場合、例えば、M2を含有する溶液(例えば、M2が金の場合には塩化金酸の水溶液等)を、必要に応じてアルカリ水溶液によりpHを調整し(例えば、pHを6~10に調整し)、これに、上記担体又はM1aが担持された担体を加え、所定時間経過後、水洗し、乾燥、焼成(好ましくは空気中での焼成)を行った後、さらに必要に応じて水素等により還元する方法等が挙げられる。なお、アルカリ水溶液によりpHを調整する際の温度、担体を乾燥させる際の温度、焼成する際の温度、及び還元する際の温度は特に限定されない。
 上記金属触媒(1)の好ましい調製法としては、好ましくは、(i)担体にM1aとM2をそれぞれ含浸法により逐次的に担持させる方法、(ii)担体にM2を析出沈殿法により担持させた後、M1aを含浸法により担持させる方法、(iii)担体にM1aを含浸法により担持させた後、M2を析出沈殿法により担持させる方法、(iv)共沈法によりM2が担持した担体を調製し、これにM1aを含浸法により担持させる方法等が挙げられる。なお、上記(i)において、含浸法により担持させる順序は、M1aの担持が先であってもよいし、M2の担持が先であってもよい。
 上記金属触媒(1)の平均粒径は、特に限定されないが、反応性の点や、連続流通形式で反応を実施する場合の過剰な圧力損失を伴わない点で、100~10000μmが好ましく、より好ましくは1000~10000μmである。また、金属触媒(1)の形状は、特に限定されないが、例えば、粉末状、粒状、成型(成型体状)等が挙げられる。
[金属触媒(2)]
 金属触媒(2)は、M1を金属種とし、担体に担持された触媒である。なお、金属触媒(2)における担体は上記M2を担持していない。また、金属触媒(2)におけるM1は、金属触媒(1)におけるM1と同じ金属種であってもよく、異なる金属種であってもよい。金属触媒(2)におけるM1を「M1b」と称する場合がある。上記M1b及び担体は、それぞれ、一種を単独で使用してもよいし、二種以上を組み合わせて使用してもよい。
 上記M1(M1b)は、周期表の第4~6周期に属し且つ第5~7族に属する元素、及び鉄からなる群より選択される1以上であり、上述の金属触媒(1)におけるM1aと同様のものが挙げられる。上記金属触媒(2)におけるM1bとしては、中でも、バナジウム、クロム、マンガン、鉄、モリブデン、タングステン、レニウムが好ましい。特に、特定の還元物を高選択率、高収率で得られる観点からレニウムが好ましい。
 上記金属触媒(2)に含まれるM1bの態様は、特に限定されないが、例えば、金属単体、金属塩、金属酸化物、金属水酸化物、又は金属錯体として担体に担持された状態で含まれる態様等が挙げられる。
 上記担体としては、触媒に使用される公知乃至慣用の担体を使用することができ、上述の金属触媒(1)における担体と同様のものが挙げられる。上記金属触媒(2)における担体としては、中でも、シリカ、ジルコニア、硫酸化ジルコニア、リン酸化ジルコニア、チタニア、チタノシリケート、アルミナ、酸化カルシウム、酸化亜鉛、酸化モリブデン、酸化バナジウム、酸化タングステン、酸化スズ、酸化レニウム、酸化ニオブ、酸化セリウム、酸化マグネシウムが好ましい。特に、還元物として1,4-ブタンジオールを高選択率、高収率で得たい場合は活性炭が好ましく、テトラヒドロフランを高選択率で得たい場合は無機酸化物が好ましい。さらに、テトラヒドロフランを高選択率、高収率で得たい場合は、シリカを含む無機酸化物(シリカ、ゼオライト、チタノシリケート等)以外の無機酸化物が好ましい。
 従って、1,4-ブタンジオールを高選択率、高収率で得たい場合、上記金属触媒(2)としては、バナジウム、クロム、マンガン、鉄、モリブデン、タングステン、及びレニウムからなる群から選択された1以上の金属種(特に、レニウム)が、活性炭に担持された触媒であることが好ましい。また、テトラヒドロフランを高選択率で得たい場合、上記金属触媒(2)としては、バナジウム、クロム、マンガン、鉄、モリブデン、タングステン、及びレニウムからなる群から選択された1以上の金属種(特に、レニウム)が、無機酸化物(特に、テトラヒドロフランを高選択率且つ高収率で得たい場合は、シリカを含む無機酸化物(シリカ、ゼオライト、チタノシリケート等)以外の無機酸化物)に担持された触媒であることが好ましい。
 上記担体の比表面積は、特に限定されないが、上記金属種が良好に分散され、これらの凝集を抑制することができ、単位重量当たりの触媒活性を向上することができる点で、50m2/g以上(例えば、50~1500m2/g、好ましくは100~1000m2/g)が好ましい。上記担体の比表面積が上記範囲内であると、単位重量当たりの触媒活性がより向上する傾向がある。
 上記担体の平均粒径は、特に限定されないが、反応性の点や、連続流通形式で反応を実施する場合の過剰な圧力損失を伴わない点で、100~10000μmが好ましく、より好ましくは1000~10000μmである。また、上記担体の形状は、粉末状、粒状、成型(成型体状)等のいずれであってもよく、特に限定されない。
 上記M1bの担体への担持量は、特に限定されないが、M1bと担体の総量(100重量%)に対して、0.01~60重量%が好ましく、より好ましくは0.05~50重量%、さらに好ましくは0.1~20重量%である。上記M1bの担持量が0.01重量%以上であると、特定の還元物の選択率がより向上する傾向がある。一方、上記M1bの担持量が60重量%以下であると、3,4-ジヒドロキシテトラヒドロフランの転化率が向上し、特定の還元物の収率が向上する傾向がある。なお、上記担持量は、金属換算(例えば、M1bが酸化物として担持されている場合は酸化物を構成する金属原子換算)であり、M1bとして二種以上の金属種を使用する場合にはこれらの総量である。
 M1bの担体への担持方法は、特に限定されず、公知乃至慣用の担持方法により担体に担持させることができる。具体的には、例えば、含浸法、共沈法、析出沈殿法等が挙げられる。中でも、3,4-ジヒドロキシテトラヒドロフランの転化率が向上し、特定の還元物の収率が向上する観点から、含浸法が好ましい。なお、M1bを含浸法で担体に担持させる際の好ましい条件は、上述の金属触媒(1)におけるM1aの含浸法と同様である。
 上記金属触媒(2)の平均粒径は、特に限定されないが、反応性の点や、連続流通形式で反応を実施する場合の過剰な圧力損失を伴わない点で、100~10000μmが好ましく、より好ましくは1000~10000μmである。また、金属触媒(2)の形状は、特に限定されないが、例えば、粉末状、粒状、成型(成型体状)等が挙げられる。
 第一の本発明の還元反応用触媒は、上記金属触媒(1)及び金属触媒(2)を含む。金属触媒(1)と金属触媒(2)の含有割合(重量比)[金属触媒(1)/金属触媒(2)]は、特に限定されないが、3,4-ジヒドロキシテトラヒドロフランの転化率及び特定の還元物の選択率を向上させることができる観点から、0.03~10が好ましく、より好ましくは0.07~5、さらに好ましくは0.1~2である。なお、後述の第一の本発明の製造方法における金属触媒(1)と金属触媒(2)の使用割合も同様に上記範囲内であることが好ましい。
 3,4-ジヒドロキシテトラヒドロフランと水素とを反応させる際の触媒として、金属触媒(2)を使用せず金属触媒(1)のみを用いた場合、1,4-ブタンジオール又はテトラヒドロフランの選択率は数%程度である。また、金属触媒(1)を使用せず金属触媒(2)のみを用いた場合、1,4-ブタンジオール又はテトラヒドロフランの選択率はそれほど高くなく、また3,4-ジヒドロキシテトラヒドロフランの転化率も数%程度と極めて低い。一方、第一の本発明の還元反応用触媒を用いた場合、1,4-ブタンジオール又はテトラヒドロフランを従来よりも高選択率で得ることが可能となる。
[触媒(A)、触媒(B)]
 第二の本発明の還元反応用触媒は、触媒(A)及び触媒(B)を含有する。そして、触媒(A)及び/又は触媒(B)が上記M1を金属種として担持された触媒である。すなわち、触媒(A)及び触媒(B)のうち少なくとも一方は、上記M1を金属種として担持された触媒である。特に、3,4-ジヒドロキシテトラヒドロフランの転化率及び1,4-ブタンジオールの選択率が向上する観点から、少なくとも触媒(B)が上記M1を金属種として担持された触媒であることが好ましく、触媒(A)及び触媒(B)の両方が上記M1を金属種として担持された触媒であることがより好ましい。
 触媒(A)は、M1を金属種として担持されていてもよい無機酸化物である。触媒(A)に含まれ得るM1及び無機酸化物は、それぞれ、一種を単独で使用してもよいし、二種以上を組み合わせて使用してもよい。
 上記無機酸化物としては、上述の担体として例示された無機酸化物が挙げられる。中でも、固体塩基性を示すものが好ましく、シリカ、ジルコニア、硫酸化ジルコニア、リン酸化ジルコニア、チタニア、チタノシリケート、アルミナ、酸化カルシウム、酸化亜鉛、酸化モリブデン、酸化バナジウム、酸化タングステン、酸化スズ、酸化レニウム、酸化ニオブ、酸化セリウム、酸化マグネシウムが好ましく、特定の還元物の選択率の観点で、酸化セリウムが特に好ましい。
 触媒(B)は、M1を金属種として担持されていてもよい活性炭である。触媒(B)におけるM1は、触媒(A)におけるM1と同じ金属種であってもよく、異なる金属種であってもよい。触媒(B)に含まれ得るM1及び活性炭は、それぞれ、一種を単独で使用してもよいし、二種以上を組み合わせて使用してもよい。
 触媒(A)及び/又は触媒(B)に含まれ得るM1としては、バナジウム、クロム、マンガン、鉄、モリブデン、タングステン、レニウムが好ましく、特に好ましくはレニウムである。
 触媒(A)又は触媒(B)(すなわち、触媒(A)及び触媒(B)のいずれか一方)は、M2を金属種として担持されていてもよい。触媒(A)又は触媒(B)に含まれ得るM2は、それぞれ、一種を単独で使用してもよいし、二種以上を組み合わせて使用してもよい。触媒(A)又は触媒(B)に含まれ得るM2としては、金、イリジウム(特に、金)は、1,4-ブタンジオールを得るための還元作用が適度であり、1,4-ブタンジオールを高選択率で得られる傾向があるため、好ましい。
 触媒(A)及び/又は触媒(B)がM1及び/又はM2を含む場合、活性炭及び/又は無機酸化物は担体として作用する。触媒(A)及び/又は触媒(B)に含まれ得るM1及びM2の態様は、特に限定されないが、例えば、金属単体、金属塩、金属酸化物、金属水酸化物、又は金属錯体として担体に担持された状態で含まれる態様等が挙げられる。
 触媒(A)としては、酸化セリウム;バナジウム、クロム、マンガン、鉄、モリブデン、タングステン、及びレニウムからなる群から選択された1以上の金属種(特に、レニウム)が酸化セリウムに担持された触媒;又は、バナジウム、クロム、マンガン、鉄、モリブデン、タングステン、及びレニウムからなる群から選択された1以上の金属種(特に、レニウム)と、金とが、酸化セリウムに担持された触媒であることが好ましい。
 触媒(B)としては、活性炭;バナジウム、クロム、マンガン、鉄、モリブデン、タングステン、及びレニウムからなる群から選択された1以上の金属種(特に、レニウム)が活性炭に担持された触媒;又は、バナジウム、クロム、マンガン、鉄、モリブデン、タングステン、及びレニウムからなる群から選択された1以上の金属種(特に、レニウム)と、金とが、活性炭に担持された触媒であることが好ましい。
 上記無機酸化物及び活性炭の比表面積は、特に限定されないが、単位重量当たりの触媒活性を向上させ、添加率が向上する点で、50m2/g以上(例えば、50~1500m2/g、好ましくは100~1000m2/g)が好ましい。上記無機酸化物及び活性炭の比表面積が上記範囲内であると、単位重量当たりの触媒活性がより向上する傾向がある。
 上記無機酸化物及び活性炭の平均粒径は、特に限定されないが、反応性の点や、連続流通形式で反応を実施する場合の過剰な圧力損失を伴わない点で、100~10000μmが好ましく、より好ましくは1000~10000μmである。また、上記無機酸化物及び活性炭の形状は、粉末状、粒状、成型(成型体状)等のいずれであってもよく、特に限定されない。
 触媒(A)及び/又は触媒(B)がM1を担持し且つM2を担持しない場合の上記M1の担体への担持量は、特に限定されないが、M1と担体の総量(100重量%)に対して、0.01~60重量%が好ましく、より好ましくは0.05~50重量%、さらに好ましくは0.1~20重量%である。上記M1の担持量が0.01重量%以上であると、特定の還元物の選択率がより向上する傾向がある。一方、上記M1の担持量が60重量%以下であると、3,4-ジヒドロキシテトラヒドロフランの転化率が向上し、特定の還元物の収率が向上する傾向がある。なお、上記担持量は、金属換算(例えば、M1が酸化物として担持されている場合は酸化物を構成する金属原子換算)であり、M1として二種以上の金属種を使用する場合にはこれらの総量である。
 触媒(A)又は触媒(B)がM1及びM2を担持する場合の上記M1の担体への担持量は、特に限定されないが、M1とM2と担体の総量(100重量%)に対して、0.01~50重量%が好ましく、より好ましくは0.05~30重量%、さらに好ましくは0.1~10重量%、特に好ましくは0.15~3重量%である。上記M1の担持量が0.01重量%以上であると、特定の還元物の選択率がより向上する傾向がある。一方、上記M1の担持量が50重量%以下であると、3,4-ジヒドロキシテトラヒドロフランの転化率が向上し、特定の還元物の収率が向上する傾向がある。これは、上記M1の担持量が、上記範囲内において少ないほど担体に担持されているM2の粒径が小さくなる傾向があり、これによって触媒の活性度、触媒寿命、及び特定の還元物の選択率が比較的高くなるためと推測される。なお、上記担持量は、金属換算(例えば、M1が酸化物として担持されている場合は酸化物を構成する金属原子換算)であり、M1として二種以上の金属種を使用する場合にはこれらの総量である。
 触媒(A)又は触媒(B)がM1及びM2を担持する場合のM1に対するM2の割合(モル比)[M2/M1]は、特に限定されないが、0.002~50が好ましく、より好ましくは0.005~10、さらに好ましくは0.01~5、特に好ましくは0.02~0.7である。上記M2の使用量は、3,4-ジヒドロキシテトラヒドロフランと水素とを反応させる温度や時間等に応じて、上記範囲内で適宜調整することができる。なお、上記モル比におけるM1とM2のモル数は、金属換算(例えば、M1及びM2が酸化物として担持されている場合は酸化物を構成する金属原子換算)であり、M1及びM2として二種以上の金属種を使用する場合にはこれらの総量である。また、レニウムと金との割合(モル比)[Au/Re]が上記範囲内であることが特に好ましい。
 M1及びM2の無機酸化物及び/又は活性炭への担持方法は、特に限定されず、公知乃至慣用の担持方法により担体に担持させることができ、例えば上述の金属触媒(1)に記載の方法が挙げられる。また、M1の無機酸化物及び/又は活性炭への担持方法は、特に限定されず、公知乃至慣用の担持方法により担体に担持させることができ、例えば上述の金属触媒(2)に記載の方法が挙げられる。いずれの場合も、好ましい担持方法は、上述の金属触媒(1)及び金属触媒(2)で挙げた方法と同様である。
 第二の本発明の還元反応用触媒は、上記触媒(A)及び触媒(B)を含む。触媒(A)と触媒(B)の含有割合(重量比)[触媒(A)/触媒(B)]は、特に限定されないが、3,4-ジヒドロキシテトラヒドロフランの転化率及び1,4-ブタンジオールの選択率を向上させることができる観点から、0.03~10が好ましく、より好ましくは0.07~5、さらに好ましくは0.1~2である。なお、後述の第二の本発明の製造方法における触媒(A)と触媒(B)の使用割合も同様に上記範囲内であることが好ましい。
 3,4-ジヒドロキシテトラヒドロフランと水素とを反応させる際の触媒として、触媒(B)を使用せず触媒(A)のみを用いた場合、1,4-ブタンジオール又はテトラヒドロフランの選択率は数%程度である。また、触媒(A)を使用せず触媒(B)のみを用いた場合、1,4-ブタンジオール又はテトラヒドロフランの選択率はそれほど高くなく、また3,4-ジヒドロキシテトラヒドロフランの転化率も数%程度と極めて低い。一方、第二の本発明の還元反応用触媒を用いた場合、1,4-ブタンジオール又はテトラヒドロフランを従来よりも高選択率で得ることが可能となる。
 なお、金属触媒(1)と、触媒(A)及び触媒(B)と、は相互に重複し得る。また、金属触媒(2)と、触媒(A)及び触媒(B)と、は相互に重複し得る。例えば、触媒(ReOX-Au/CeO2)は、金属触媒(1)と触媒(A)の両方に該当する。また、触媒(ReOX/C)は、金属触媒(2)と触媒(B)の両方に該当する。また、触媒(ReOX/TiO2)は、金属触媒(2)と触媒(A)の両方に該当する。
 本発明の還元反応用触媒を用いた水素との反応により、3,4-ジヒドロキシテトラヒドロフランの還元物を製造することができる。なお、第一の本発明の還元反応用触媒を用いた3,4-ジヒドロキシテトラヒドロフラン還元物の製造方法を「第一の本発明の製造方法」と、第二の本発明の還元反応用触媒を用いた3,4-ジヒドロキシテトラヒドロフラン還元物の製造方法を「第二の本発明の製造方法」と、それぞれ称する場合がある。また、「第一の本発明の製造方法」と「第二の本発明の製造方法」とを総称して「本発明の製造方法」と称する場合がある。
[3,4-ジヒドロキシテトラヒドロフラン]
 上記3,4-ジヒドロキシテトラヒドロフランは、下記式(1)で表される化合物である。3,4-ジヒドロキシテトラヒドロフランは、式(1)に示されるように、エリスリトールの1位と4位の水酸基が脱水縮合して形成された構造を有する化合物である。3,4-ジヒドロキシテトラヒドロフランとしては、1,4-アンヒドロエリスリトール(3,4-ジヒドロキシオキソラン)、1,4-アンヒドロトレイトールが存在する。
Figure JPOXMLDOC01-appb-C000001
 上記3,4-ジヒドロキシテトラヒドロフランは、例えば、化学合成により製造された3,4-ジヒドロキシテトラヒドロフランであってもよいし、グルコース等の糖類から発酵技術で誘導される3,4-ジヒドロキシテトラヒドロフランであってもよく、特に限定されない。上記発酵技術で誘導される3,4-ジヒドロキシテトラヒドロフランとしては、例えば、グルコース等の糖類から発酵技術で誘導されたエリスリトールを原料として使用し、該エリスリトールの分子内脱水反応により生成される3,4-ジヒドロキシテトラヒドロフラン等が挙げられる。上記分子内脱水反応は、公知乃至慣用の方法により実施することができ、特に限定されない。なお、上記3,4-ジヒドロキシテトラヒドロフランとしては、後述の還元工程を経た結果得られる反応混合物から回収した3,4-ジヒドロキシテトラヒドロフラン(未反応の3,4-ジヒドロキシテトラヒドロフラン)を再利用することもできる。
[還元物]
 3,4-ジヒドロキシテトラヒドロフランと水素との反応では、通常、2,5-ジヒドロフラン、2,3-ジヒドロフラン、テトラヒドロフラン、3-ヒドロキシテトラヒドロフラン、1,4-ブタンジオール、1,3-ブタンジオール、1,2-ブタンジオール、2,3-ブタンジオール、1-ブタノール、2-ブタノール、γ-ブチロラクトン等多種の化合物が生成し得る。しかしながら、本発明の還元反応用触媒を用いた3,4-ジヒドロキシテトラヒドロフランと水素との反応によれば、特定の還元物を高選択率で得ることができる。例えば、金属触媒(2)又は触媒(B)として、バナジウム、クロム、マンガン、鉄、モリブデン、タングステン、及びレニウムからなる群から選択された1以上の金属種(特に、レニウム)が活性炭に担持された触媒を用いた場合は、3,4-ジヒドロキシテトラヒドロフランの転化率が高く(例えば、95%以上)且つ1,4-ブタンジオールが高選択率(例えば、77%以上)で生成する。また、金属触媒(2)又は触媒(A)としてバナジウム、クロム、マンガン、鉄、モリブデン、タングステン、及びレニウムからなる群から選択された1以上の金属種(特に、レニウム)が無機酸化物に担持された触媒を用いた場合は、テトラヒドロフランが高選択率で生成する。
[水素]
 上記水素(水素ガス)は、実質的に水素のみの状態で使用することもできるし、窒素、アルゴン、ヘリウム等の不活性ガス等により希釈した状態で使用することもできる。また、後述の還元工程を経た結果得られる反応混合物から回収した水素(未反応の水素)を再利用することもできる。
<3,4-ジヒドロキシテトラヒドロフラン還元物の製造方法>
 水素との反応により3,4-ジヒドロキシテトラヒドロフランを還元させる工程を含み、上記工程における3,4-ジヒドロキシテトラヒドロフランと水素との反応を、本発明の還元反応用触媒の存在下で進行させることにより、3,4-ジヒドロキシテトラヒドロフラン還元物を製造することができる。なお、本明細書において、上記の3,4-ジヒドロキシテトラヒドロフラン還元物を製造する方法を「本発明の製造方法」と称する場合がある。また、「水素との反応により3,4-ジヒドロキシテトラヒドロフランを還元させる工程」を、「還元工程」と称する場合がある。
 上記還元工程において、3,4-ジヒドロキシテトラヒドロフランと水素との反応は、本発明の還元反応用触媒(固体)の存在下、気体状の(気化させた)3,4-ジヒドロキシテトラヒドロフランと水素とを反応させる気固二相系の反応であってもよいし、本発明の還元反応用触媒(固体)の存在下、液状の3,4-ジヒドロキシテトラヒドロフランと水素とを反応させる気液固三相系の反応であってもよい。特に、炭素-炭素結合の開裂による炭素数が小さい(例えば3以下)の化合物の生成を抑制する観点からは、上記反応を気液固三相系で進行させることが好ましい。
 より具体的には、上記還元工程における3,4-ジヒドロキシテトラヒドロフランと水素との反応は、例えば、3,4-ジヒドロキシテトラヒドロフランを必須成分として含む原料液と水素とを反応器中に封入して、本発明の還元反応用触媒の存在下で加熱することによって進行させることができる。上記還元工程では、3,4-ジヒドロキシテトラヒドロフランと水素との反応を、1段目で金属触媒(1)の存在下反応を行い、2段目で金属触媒(2)の存在下反応を行ってもよいし、金属触媒(1)及び金属触媒(2)の混合触媒の存在下で進行させてもよい。前者の場合、1段目では3,4-ジヒドロキシテトラヒドロフランと水素とが反応してジヒドロフラン(2,3-ジヒドロフラン、3,4-ジヒドロフラン)が生成し、2段目でジヒドロフランと水素とが反応して1,4-ブタンジオールが生成するものと推測されるが、1段目と2段目におけるそれぞれの素反応をより高収率で行なうことが可能となり、単一の触媒で行なうよりも工業的に高い選択率で1,4-ブタンジオールを製造することが可能となる。また、後者の場合、一段階で1,4-ブタンジオールを高転化率及び高選択率で製造することが可能となる。また、1段目で触媒(A)の存在下反応を行い、2段目で触媒(B)の存在下反応を行ってもよいし、触媒(A)及び触媒(B)の混合触媒の存在下で進行させてもよい。なお、上記還元工程において本発明の還元反応用触媒は、一種を単独で使用することもできるし、二種以上を組み合わせて使用することもできる。
 上記原料液は、3,4-ジヒドロキシテトラヒドロフランの他に、例えば、水や有機溶媒等の溶媒を含有していてもよいし、溶媒を実質的に含有していなくてもよい。上記有機溶媒としては、特に限定されず、例えば、メタノール、エタノール、イソプロパノール、n-ブタノール、2-ブタノール等のアルコール、ジメチルスルホキシド(DMSO)、ジメチルホルムアミド(DMF)、ジメチルアセトアミド(DMAc)、1,4-ジオキサン等が挙げられる。上記原料液としては、中でも、3,4-ジヒドロキシテトラヒドロフランと水素との反応性に優れる点で、1,4-ジオキサンが好ましい。なお、上記溶媒は一種を単独で使用することもできるし、二種以上を組み合わせて使用することもできる。
 上記原料液における3,4-ジヒドロキシテトラヒドロフランの濃度(原料液100重量%に対する3,4-ジヒドロキシテトラヒドロフランの含有量)は、特に限定されないが、5重量%以上(例えば、5~100重量%)が好ましく、より好ましくは8重量%以上(例えば、8~90重量%、8~70重量%)、さらに好ましくは10重量%以上(例えば、10~60重量%)である。上記濃度が5重量%以上であると、3,4-ジヒドロキシテトラヒドロフランの反応率(転化率)が向上する傾向がある。一方、上記濃度が90重量%以下であると、粘度が高くなりすぎず、操作が容易となる傾向がある。
 第一の本発明の還元反応用触媒中の金属触媒(1)の使用量(含有量)は、特に限定されないが、3,4-ジヒドロキシテトラヒドロフラン100重量部に対して、0.1~300重量部が好ましく、より好ましくは1~200重量部、さらに好ましくは5~150重量部である。上記使用量が上記範囲内であると、触媒を使用することによる効果がより十分に得られ、3,4-ジヒドロキシテトラヒドロフランの転化率、特定の還元物(特に、1,4-ブタンジオール)の選択率がより向上する傾向がある。
 第一の本発明の還元反応用触媒中の金属触媒(2)の使用量(含有量)は、特に限定されないが、3,4-ジヒドロキシテトラヒドロフラン100重量部に対して、0.1~300重量部が好ましく、より好ましくは1~200重量部、さらに好ましくは5~150重量部である。上記使用量が上記範囲内であると、触媒を使用することによる効果がより十分に得られ、3,4-ジヒドロキシテトラヒドロフランの転化率、特定の還元物(特に、1,4-ブタンジオール)の選択率がより向上する傾向がある。
 第二の本発明の還元反応用触媒中の触媒(A)の使用量(含有量)は、特に限定されないが、3,4-ジヒドロキシテトラヒドロフラン100重量部に対して、0.1~300重量部が好ましく、より好ましくは1~200重量部、さらに好ましくは5~150重量部である。上記使用量が上記範囲内であると、触媒を使用することによる効果がより十分に得られ、3,4-ジヒドロキシテトラヒドロフランの転化率、特定の還元物(特に、1,4-ブタンジオール)の選択率がより向上する傾向がある。
 第二の本発明の還元反応用触媒中の触媒(B)の使用量(含有量)は、特に限定されないが、3,4-ジヒドロキシテトラヒドロフラン100重量部に対して、0.1~300重量部が好ましく、より好ましくは1~200重量部、さらに好ましくは5~150重量部である。上記使用量が上記範囲内であると、触媒を使用することによる効果がより十分に得られ、3,4-ジヒドロキシテトラヒドロフランの転化率、特定の還元物(特に、1,4-ブタンジオール)の選択率がより向上する傾向がある。
 反応終了後は、上記触媒をろ過等により除去する工程を設けることが好ましい。
 3,4-ジヒドロキシテトラヒドロフランと水素との反応は、固体酸の共存下で進行させてもよい。即ち、上記原料液は、上述の3,4-ジヒドロキシテトラヒドロフラン、溶媒のほか、固体酸を含有していてもよい。なお、固体酸とは、ブレンステッド酸及び/又はルイス酸(ブレンステッド酸及びルイス酸のいずれか一方又は両方)の特性を示す固体であり、ハメットの酸度関数(H0)が6.8以下のものである。上記固体酸としては、公知乃至慣用の固体酸を使用することができ、特に限定されないが、例えば、担体(例えば、シリカ、アルミナ、ゼオライト、シリカ-アルミナ等)に無機酸類、有機酸類(例えば、有機スルホン酸類等)を担持した固体;ガリウムシリケート、アルミノシリケート、ボロシリケート等の結晶性金属シリケート(例えば、プロトン型のゼオライトであるH-ZSM-5等);ヘテロポリ酸又はその塩;担体(例えば、シリカ、アルミナ等)にヘテロポリ酸又はその塩を担持した固体;酸化ジルコニウム(ZrO2)、酸化チタン(TiO2)等の酸性の金属酸化物;カルボキシル基、スルホン酸基等の酸基を有するポリマー(例えば、陽イオン交換樹脂等)等が挙げられる。上記固体酸としては、市販品を利用することもできる。固体酸の共存下で反応を進行させることにより、上述の3,4-ジヒドロキシテトラヒドロフランと水素との反応を促進させることができる。なお、上記固体酸は一種を単独で使用することもできるし、二種以上を組み合わせて使用することもできる。
 還元工程において固体酸を用いる場合、上記固体酸の使用量(含有量)は、特に限定されないが、3,4-ジヒドロキシテトラヒドロフラン100重量部に対して、0.1~50重量部が好ましく、より好ましくは1~20重量部である。固体酸を共存させた場合には、反応終了後、当該固体酸をろ過等により除去する工程を設けることが好ましい。
 上記反応においては、本発明の効果を阻害しない範囲でその他の成分を共存させてもよい。即ち、上記原料液は、本発明の効果を阻害しない範囲でその他の成分(例えば、アルコール類等)を含有していてもよい。また、上記原料液には、例えば、3,4-ジヒドロキシテトラヒドロフランの原料(3,4-ジヒドロキシテトラヒドロフランやその原料等)に由来する不純物が含まれる場合があるが、このような不純物は触媒を劣化させるおそれがあるため、公知乃至慣用の方法(例えば、蒸留、吸着、イオン交換、晶析、抽出等)により、原料液から除去することが好ましい。
 上記原料液は、特に限定されないが、3,4-ジヒドロキシテトラヒドロフランと、必要に応じて溶媒や固体酸、その他の成分を混合することにより得られる。混合には、公知乃至慣用の撹拌機等を使用することができる。
 上記反応(3,4-ジヒドロキシテトラヒドロフランと水素との反応)に付す水素と3,4-ジヒドロキシテトラヒドロフランのモル比[水素(mol)/3,4-ジヒドロキシテトラヒドロフラン(mol)]は、特に限定されないが、1~100が好ましく、より好ましくは1~50、さらに好ましくは1~30である。上記モル比が1以上であると、3,4-ジヒドロキシテトラヒドロフランの反応率(転化率)が向上する傾向がある。一方、上記モル比が100以下であると、未反応の水素を回収するための用役コストが軽減される傾向がある。
 上記反応における3,4-ジヒドロキシテトラヒドロフランと水素の反応温度は、特に限定されないが、50~250℃が好ましく、より好ましくは60~220℃、さらに好ましくは70~200℃である。反応温度が50℃以上であると、3,4-ジヒドロキシテトラヒドロフランの反応率(転化率)が向上する傾向がある。一方、反応温度が250℃以下であると、3,4-ジヒドロキシテトラヒドロフランの分解が生じにくく、特定の還元物の収率が向上する傾向がある。なお、反応温度は、上記反応において一定(実質的に一定)となるように制御されていてもよいし、段階的又は連続的に変化するように制御されていてもよい。
 上記反応における3,4-ジヒドロキシテトラヒドロフランと水素の反応時間は、特に限定されないが、0.1~200時間が好ましく、より好ましくは0.2~150時間、さらに好ましくは0.5~100時間である。反応時間が0.1時間以上であると、3,4-ジヒドロキシテトラヒドロフランの反応率(転化率)が向上する傾向がある。一方、反応時間が200時間以下であると、特定の還元物の選択率が向上する傾向がある。
 上記反応における3,4-ジヒドロキシテトラヒドロフランと水素の反応圧力(3,4-ジヒドロキシテトラヒドロフランと水素の反応における水素分圧)は、特に限定されないが、0.1MPa以上(例えば、0.1~50MPa)が好ましく、より好ましくは1MPa以上(例えば、1~30MPa)、さらに好ましくは3MPa以上(例えば、3~20MPa)、さらに好ましくは5MPa以上(例えば、5~15MPa)である。反応圧力が0.1MPa以上(特に、5MPa以上)であると、3,4-ジヒドロキシテトラヒドロフランの反応率(転化率)が向上する傾向がある。一方、反応圧力が50MPaを超えると、反応器が高度な耐圧性を備える必要があるため、製造コストが高くなる傾向がある。
 上記反応は、回分形式、半回分形式、連続流通形式等の任意の形式により実施することができる。また、所定量の3,4-ジヒドロキシテトラヒドロフランから得られる還元物の量を増加させたい場合には、反応終了後の未反応の3,4-ジヒドロキシテトラヒドロフランを分離回収してリサイクルするプロセスを採用してもよい。このリサイクルプロセスを採用すれば、3,4-ジヒドロキシテトラヒドロフランを所定量使用したときの特定の還元物の生成量を高めることができる。
 上記還元工程においては、反応器として公知乃至慣用の反応器を使用することができ、例えば、回分式反応器、流動床反応器、固定床反応器等が使用できる。上記固定床反応器としては、例えば、トリクルベッド反応器を使用できる。トリクルベッド反応器とは、固体触媒が充填された触媒充填層を内部に有し、該触媒充填層に対して液体(還元工程では、例えば、上記原料液)と気体(還元工程では、水素)とを共に、反応器の上方から下向流(気液下向並流)で流通する形式の反応器(固定床連続反応装置)である。
 図1は、トリクルベッド反応器を使用した場合の本発明の製造方法における還元工程の一例を示すフロー図である。図1において、1は反応器(トリクルベッド反応器)、2は原料液の供給ライン、3は水素の供給ラインを示す。また、4は反応混合物取り出しライン、5は高圧気液分離器、6は水素リサイクルラインを示す。以下、図1を参照しながら、トリクルベッド反応器を使用した本発明の製造方法を簡単に説明する。
 まず、トリクルベッド反応器1の上方から原料液と水素とを連続的に供給し、その後、反応器の内部で原料液中の3,4-ジヒドロキシテトラヒドロフランと水素とを、触媒充填層における触媒(本発明の還元反応用触媒)の存在下で反応させ、還元物(反応生成物)を生成させる。そして、当該還元物を含む反応混合物をトリクルベッド反応器1の下方の反応混合物取り出しライン4から連続的に取り出し、その後、必要に応じて、高圧気液分離器5により該反応混合物から水素を分離した後、精製工程にて還元物を精製・単離する。また、高圧気液分離器5により分離した水素は、水素リサイクルライン6を通じて、再度トリクルベッド反応器1に供給して反応に再利用することもできる。
 反応器としてトリクルベッド反応器を採用すると、原料である3,4-ジヒドロキシテトラヒドロフランを気化することなく、気液固三相系で反応を進行させることができるため、コスト面で有利である。また、トリクルベッド反応器中では、3,4-ジヒドロキシテトラヒドロフランを含む原料液が触媒表面に薄膜を形成しながら下方に流通するため、原料液と水素の界面(気液界面)から触媒表面までの距離が短く、原料液に溶解した水素の触媒表面への拡散が容易となり、特定の還元物を効率的に生成することができる。また、3,4-ジヒドロキシテトラヒドロフランと水素の反応生成物からの触媒の分離プロセスも不要で、触媒の再生処置も容易であるため、製造プロセスが簡便でありコスト面で優れる。
 なお、上記トリクルベッド反応器の材質や形状、サイズ(例えば、塔径や塔長等)等は、特に限定されず、公知乃至慣用のトリクルベッド反応器の中から、反応の規模等に応じて適宜選択することができる。また、上記トリクルベッド反応器は、単一の反応管により構成されるものであってもよいし、複数の反応管により構成された多段反応器であってもよい。上記トリクルベッド反応器が多段反応器である場合の反応管の数は、適宜選択でき、特に限定されない。また、上記トリクルベッド反応器が多段反応器である場合には、当該反応器は、複数の反応管が直列に設置されたものであってもよいし、複数の反応管が並列に配置されたものであってもよい。
 更に、トリクルベッド反応器の内部における触媒充填層は、必要に応じて、例えば、反応熱による過熱を抑制するために2以上の位置に分割(分離)して配置してもよい。
 本発明の製造方法は、上記還元工程以外にも、必要に応じてその他の工程を含んでいてもよい。その他の工程としては、例えば、原料液と水素を反応器に供給する前に、原料液を調製・精製する工程、反応器から排出(流出)された反応混合物(例えば、3,4-ジヒドロキシテトラヒドロフラン、水素、及び還元物等の生成物の混合物)を分離・精製する工程等が挙げられる。なお、これらの工程は、上記還元工程とは別ラインで実施してもよく、上記還元工程と一連の工程として(インラインで)実施してもよい。
 本発明の製造方法は、例えば、還元工程の前に、該工程における原料の3,4-ジヒドロキシテトラヒドロフランを生成させる工程を含んでいてもよい。例えば、上記3,4-ジヒドロキシテトラヒドロフランを生成させる工程としては、特に、エリスリトールの分子内脱水反応(分子内脱水環化反応)により3,4-ジヒドロキシテトラヒドロフラン(特に、1,4-アンヒドロエリスリトール)を生成させる工程(「脱水反応工程」と称する場合がある)が好ましい。
[脱水反応工程]
 上記脱水反応工程におけるエリスリトールの分子内脱水反応は、周知の方法により実施することができ、特に限定されないが、例えば、酸触媒の存在下でエリスリトールを加熱することにより進行させることができる。なお、上記脱水反応工程は、上記還元工程とは別ラインで実施してもよいし、上記還元工程と一連の工程として実施してもよい。
 上記脱水反応工程において原料として使用されるエリスリトールは、特に限定されず、化学合成により製造されたエリスリトールであってもよいし、グルコース等の糖類から発酵技術で誘導されるエリスリトールであってもよい。中でも、環境への負荷を低減する観点からは、グルコース等の糖類から発酵技術で誘導されるエリスリトールを使用することが好ましい。また、当該脱水反応工程により得られた反応混合物から回収したエリスリトール(未反応のエリスリトール)を再利用することもできる。
 上記脱水反応工程において使用される酸触媒としては、公知乃至慣用の酸を使用することができ、特に限定されないが、例えば、塩酸、硫酸、硝酸、リン酸、ポリリン酸、メタリン酸、縮合リン酸、臭化水素酸、過塩素酸、次亜塩素酸、亜塩素酸等の無機酸;p-トルエンスルホン酸、トリクロロ酢酸、トリフルオロ酢酸、トリフルオロメタンスルホン酸等の有機酸;陽イオン交換樹脂、ゼオライト、シリカアルミナ、ヘテロポリ酸(例えば、リンモリブデン酸等)等の固体酸等が挙げられる。中でも、生成物等からの分離及び再生処理が容易である点で、固体酸が好ましい。なお、上記酸触媒としては市販品を使用することもでき、例えば、固体酸の市販品として商品名「Amberlyst」(ダウ・ケミカル社製)、商品名「ナフィオン」(デュポン(株)製)等が例示される。なお、酸(酸触媒)は一種を単独で使用することもできるし、二種以上を組み合わせて使用することもできる。
 上記反応(分子内脱水反応)は、溶媒の非存在下で進行させることもできるし、溶媒の存在下で進行させることもできる。上記溶媒としては、例えば、水;メタノール、エタノール、イソプロパノール、n-ブタノール等のアルコール;1,4-ジオキサン等のエーテル;ジメチルスルホキシド(DMSO)、ジメチルホルムアミド(DMF)、ジメチルアセトアミド(DMAc)等の高極性の有機溶媒等が挙げられる。中でも、反応性に優れる点、及び取り扱いや廃棄が容易である点で、溶媒として水を少なくとも含有することが好ましい。なお、溶媒は一種を単独で使用することもできるし、二種以上を組み合わせて使用することもできる。
 上記反応(分子内脱水反応)の反応温度(加熱温度)は、特に限定されないが、40~240℃が好ましく、より好ましくは80~200℃、さらに好ましくは120~180℃である。反応温度を上記範囲に制御することによって、エリスリトールの分子内脱水反応をより効率的に進行させることができる。なお、反応温度は、反応において一定(実質的に一定)となるように制御されていてもよいし、段階的又は連続的に変化するように制御されていてもよい。
 上記反応(分子内脱水反応)の時間(反応時間)は、特に限定されないが、1~100時間が好ましく、より好ましくは2~50時間、さらに好ましくは3~30時間である。反応時間が1時間未満であると、エリスリトールの反応率(転化率)が十分に上がらない場合がある。一方、反応時間が100時間を超えると、コスト面で不利となる場合がある。
 上記反応(分子内脱水反応)は、空気雰囲気下、窒素、アルゴン等の不活性ガス雰囲気下等のいずれの雰囲気下においても実施することができる。特に、3,4-ジヒドロキシテトラヒドロフランの選択率向上の観点からは、不活性ガス雰囲気下で実施することが好ましい。また、上記反応(分子内脱水反応)は、常圧下、加圧下、減圧下のいずれにおいても実施することができる。特に、エリスリトールの転化率向上の観点からは、加圧下で実施することが好ましい。例えば、水を溶媒として使用する場合には、加圧下で反応を実施することにより反応温度を100℃以上に高くできるため、エリスリトールの転化率を効率的に高めることができる。
 上記反応(分子内脱水反応)は、回分形式、半回分形式、連続流通形式等の任意の形式により実施することができる。
 上記脱水反応工程により、3,4-ジヒドロキシテトラヒドロフランが生成する。このようにして得られた3,4-ジヒドロキシテトラヒドロフランは、その後、上記還元工程における原料として使用されるが、脱水反応工程により得られた反応混合物から公知乃至慣用の方法(例えば、蒸留、吸着、イオン交換、晶析、抽出等)により単離した上で使用することもできるし、上記反応混合物から単離することなく(必要に応じて酸触媒等を取り除いた上で)使用することもできる。
 以下、実施例により本発明をさらに具体的に説明するが、本発明はこれらの実施例により限定されるものではない。
<金属触媒(1)の製造例>
製造例1
[触媒(ReOX-Au/CeO2)の製造]
 テトラクロロ金(III)酸四水和物(HAuCl4・4H2O、和光純薬工業(株)製)0.027gを、20℃の蒸留水250mLに溶解させ、テトラクロロ金(III)酸水溶液を作製した。上記テトラクロロ金(III)酸水溶液を80℃に加熱した後、商品名「HS」(酸化セリウム、第一稀元素化学工業(株)製)3.947gを加え、酸化セリウムを懸濁させた。そして、懸濁したテトラクロロ金(III)酸水溶液のpHが8になるまで0.1Mのアンモニア水溶液を添加し、4時間攪拌して金水酸化物を析出させた。その後、吸引ろ過により金水酸化物が担持した酸化セリウムを回収し、これを、乾燥機内にて110℃で一晩乾燥させた後、空気雰囲気下で1℃/minの速度で昇温させ、400℃で4時間焼成して、金が担持した酸化セリウム[Au/CeO2]を得た。
 他方、過レニウム酸アンモニウム(NH4ReO4、シグマアルドリッチ社製)0.052gを、20℃の蒸留水10mLに溶解させ、過レニウム酸アンモニウム水溶液を作製した。次いで、上記で得られた[Au/CeO2]3.564gに、液だまりができないように上記過レニウム酸アンモニウム水溶液を5回に分けて全量加え、80℃で加熱及び攪拌して、含浸させた後、これを乾燥機内にて110℃で一晩乾燥させた。その後、空気雰囲気下で1℃/minの速度で昇温させ、400℃で4時間焼成し、レニウムの担持量が1重量%、[Au/Re]=0.3である触媒(ReOX-Au/CeO2)を得た。ここで、上記触媒(ReOX-Au/CeO2)において、Reの価数は一定ではない、又は不安定であるため、「ReOx」と記載している。以下の触媒についても同様である。なお、製造例1で作製した触媒は、触媒(A)にも該当する。
<金属触媒(2)の製造例>
製造例2
[触媒(ReOX/Norit Rx3 EXTRA)の製造]
 過レニウム酸アンモニウム(NH4ReO4、シグマアルドリッチ社製)0.0639gを、80℃の蒸留水15mLに溶解させ、過レニウム酸アンモニウム水溶液を作製した。次いで、活性炭(商品名「Norit Rx3 EXTRA」、CABOT社製)1.4673gに、液だまりができないように上記過レニウム酸アンモニウム水溶液を5回に分けて全量加え、80℃で加熱及び攪拌して、含浸させた。これを乾燥機内にて110℃で一晩乾燥させて、触媒(ReOX/Norit Rx3 EXTRA)を得た。レニウムの担持量は3重量%であった。なお、製造例2で作製した触媒は、触媒(B)にも該当する。
製造例3
[触媒(ReOX/Norit Rx3 EXTRA)の製造]
 過レニウム酸アンモニウムの量を変更しレニウムの担持量を6重量%としたこと以外は製造例2と同様にして、触媒(ReOX/Norit Rx3 EXTRA)を製造した。なお、製造例3で作製した触媒は、触媒(B)にも該当する。
製造例4
[触媒(ReOX/BP2000)の製造]
 活性炭として商品名「BP2000」(カーボンブラック、CABOT社製)を用いたこと以外は製造例3と同様にして、触媒(ReOX/BP2000)を製造した。なお、製造例4で作製した触媒は、触媒(B)にも該当する。
製造例5
[触媒(ReOX/VXC72)の製造]
 活性炭として商品名「Vulcan XC72」(カーボンブラック、CABOT社製)を用いたこと以外は製造例3と同様にして、触媒(ReOX/VXC72)を製造した。なお、製造例5で作製した触媒は、触媒(B)にも該当する。
製造例6
[触媒(ReOX/VXC72R)の製造]
 活性炭として商品名「Vulcan XC72R」(カーボンブラック、CABOT社製)を用いたこと以外は製造例3と同様にして、触媒(ReOX/VXC72R)を製造した。なお、製造例6で作製した触媒は、触媒(B)にも該当する。
製造例7
[触媒(ReOX/Shirasagi FAC-10)の製造]
 活性炭として商品名「Shirasagi FAC-10」(大阪ガスケミカル(株)製)を用いたこと以外は製造例3と同様にして、触媒(ReOX/Shirasagi FAC-10)を製造した。なお、製造例7で作製した触媒は、触媒(B)にも該当する。
製造例8
[触媒(ReOX/Shirasagi M)の製造]
 活性炭として商品名「Shirasagi M」(大阪ガスケミカル(株)製)を用いたこと以外は製造例3と同様にして、触媒(ReOX/Shirasagi M)を製造した。なお、製造例8で作製した触媒は、触媒(B)にも該当する。
製造例9
[触媒(ReOX/TiO2)の製造]
 活性炭の代わりに、チタニア(商品名「P25」、日本アエロジル(株)製)を用いたこと以外は製造例3と同様にして、触媒(ReOX/TiO2)を製造した。なお、製造例9で作製した触媒は、触媒(A)にも該当する。
製造例10
[触媒(ReOX/Al23)の製造]
 活性炭の代わりに、アルミナ(和光純薬工業(株)製のベーマイトを600℃で3時間焼成したもの)を用いたこと以外は製造例3と同様にして、触媒(ReOX/Al23)を製造した。なお、製造例10で作製した触媒は、触媒(A)にも該当する。
製造例11
[触媒(ReOX/ZrO2)の製造]
 活性炭の代わりに、ジルコニア(商品名「RC-100P」、第一稀元素化学工業(株)製)を用いたこと以外は製造例3と同様にして、触媒(ReOX/ZrO2)を製造した。なお、製造例11で作製した触媒は、触媒(A)にも該当する。
製造例12
[触媒(ReOX/SiO2)の製造]
 活性炭の代わりに、シリカ(商品名「G-6」、富士シリシア化学(株)製)を用いたこと以外は製造例3と同様にして、触媒(ReOX/SiO2)を製造した。なお、製造例12で作製した触媒は、触媒(A)にも該当する。
製造例13
[触媒(ReOX/HZSM-5)の製造]
 活性炭の代わりに、ゼオライト(商品名「HZSM-5」、ズードケミー社製)を用いたこと以外は製造例3と同様にして、触媒(ReOX/HZSM-5)を製造した。なお、製造例13で作製した触媒は、触媒(A)にも該当する。
製造例14
[触媒(ReOX/HBEA)の製造]
 活性炭の代わりに、ゼオライト(商品名「HBEA」、東ソー(株)製)を用いたこと以外は製造例3と同様にして、触媒(ReOX/HBEA)を製造した。なお、製造例14で作製した触媒は、触媒(A)にも該当する。
製造例15
[触媒(ReOX/HUSY)の製造]
 活性炭の代わりに、ゼオライト(商品名「HUSY」、東ソー(株)製)を用いたこと以外は製造例3と同様にして、触媒(ReOX/HUSY)を製造した。なお、製造例15で作製した触媒は、触媒(A)にも該当する。
製造例16
[触媒(ReOX/Char Carbon)の製造]
 活性炭として商品名「Char Carbon」(木炭、和光純薬工業(株)製)を用いたこと以外は製造例3と同様にして、触媒(ReOX/Char Carbon)を製造した。なお、製造例16作製した触媒は、触媒(B)にも該当する。
製造例17
[触媒(MoOX/Norit Rx3 EXTRA)の製造]
 過レニウム酸アンモニウムの代わりに、モリブデン酸アンモニウム(和光純薬工業(株)製)を用いたこと以外は製造例3と同様にして、触媒(MoOX/Norit Rx3 EXTRA)を製造した。なお、製造例17作製した触媒は、触媒(B)にも該当する。
製造例18
[触媒(WOX/Norit Rx3 EXTRA)の製造]
 過レニウム酸アンモニウムの代わりに、タングステン酸アンモニウム(Strem Chemicals社製)を用いたこと以外は製造例3と同様にして、触媒(WOX/Norit Rx3 EXTRA)を製造した。なお、製造例18作製した触媒は、触媒(B)にも該当する。
参考例1
[3,4-ジヒドロキシテトラヒドロフランの製造]
 オートクレーブ内にエリスリトール1g、水4g、及び触媒として商品名「Amberlyst 70」(ダウ・ケミカル社製)0.15gを投入し、アルゴン雰囲気下、圧力5MPa、温度160℃の条件で24時間反応を行い、3,4-ジヒドロキシテトラヒドロフランを得た。エリスリトールの転化率は98.6%であり、3,4-ジヒドロキシテトラヒドロフランの選択率は97.2%であり、収率は95.8%であった。
実施例1~6
[3,4-ジヒドロキシテトラヒドロフランの還元]
 ガラス製のオートクレーブ用内筒にスターラーチップと、製造例1で得られた触媒(ReOX-Au/CeO2)150mgと、製造例2で得られた触媒(ReOX/Norit Rx3 EXTRA)を表1に示す量と、1,4-ジオキサン4gと、3,4-ジヒドロキシテトラヒドロフラン0.5gとを入れた。上記オートクレーブ用内筒を190mLオートクレーブ(高圧回分式反応装置)に入れ、蓋をした。次いで、オートクレーブの内部に1MPaの水素を張り込んだ後に排気する操作を3回繰り返し、内部の空気をオートクレーブから追い出した。このオートクレーブに、140℃で8MPa(水素圧力:8MPa)を示すよう、室温で5.5MPaを示すように水素を充填した。
 続いて、上記オートクレーブをマグネットスターラー付加熱装置にセットし、反応器内部(オートクレーブ内部)の温度が140℃になるように加熱し、反応温度を140℃に維持しながら24時間(Reaction time=24h)攪拌した。その後、室温まで冷却し、オートクレーブ内部の水素を解放し、放圧した。
 反応後の溶液は、ガスクロマトグラフィー(ガスクロマトグラフ装置:「GC-2014」((株)島津製作所製)、GCカラム:TC-WAX、DB-FFAP、検出器:FID)を用いたFID分析及びGC-MSにより分析した。これより、3,4-ジヒドロキシテトラヒドロフランの転化率、生成物の選択率を算出した。分析結果を表1に示す。
Figure JPOXMLDOC01-appb-T000002
実施例7、8
 反応温度を表2に示すように変更したこと以外は実施例4と同様にして3,4-ジヒドロキシテトラヒドロフランの還元反応を行った。分析結果を表2に示す。
Figure JPOXMLDOC01-appb-T000003
実施例9~12
 水素分圧を表3に示すように変更したこと以外は実施例4と同様にして3,4-ジヒドロキシテトラヒドロフランの還元反応を行った。分析結果を表3に示す。
Figure JPOXMLDOC01-appb-T000004
実施例13~28、比較例1
 使用する金属触媒(2)を表4に示すように変更したこと、又は金属触媒(2)を使用しなかったこと以外は実施例2と同様にして3,4-ジヒドロキシテトラヒドロフランの還元反応を行った。分析結果を表4に示す。
Figure JPOXMLDOC01-appb-T000005
 表4に示すように、金属触媒(2)としてレニウムが活性炭に担持された触媒を用いた場合(実施例17~22及び26)、1,4-ブタンジオールが比較例に対して高選択率、高収率で得られた。金属触媒(2)としてレニウム、モリブデン、又はタングステンが無機酸化物に担持された触媒を用いた場合(実施例13~16、23~25、27、及び28)、テトラヒドロフランが比較例に対して高選択率で得られた。中でも、金属触媒(2)としてレニウムがチタニア、アルミナ、又はジルコニアに担持された触媒を用いた場合(実施例13~15)、さらに、3,4-ジヒドロキシテトラヒドロフランの転化率が高かった。
<触媒(A)の製造例>
製造例19
[触媒(ReOX/CeO2)の製造]
 過レニウム酸アンモニウム(NH4ReO4、シグマアルドリッチ社製)0.144gを、80℃の蒸留水15mLに溶解させ、過レニウム酸アンモニウム水溶液を作製した。次いで、商品名「HS」(酸化セリウム、第一稀元素化学工業(株)製)10.0gに、液だまりができないように上記過レニウム酸アンモニウム水溶液を5回に分けて全量加え、80℃で加熱及び攪拌して、含浸させた。これを乾燥機内にて110℃で一晩乾燥させて、触媒(ReOX/CeO2)を得た。レニウムの担持量は1重量%であった。なお、製造例2で作製した触媒は、金属触媒(2)にも該当する。
製造例20
[触媒(CeO2)の製造]
 商品名「HS」(酸化セリウム、第一稀元素化学工業(株)製)を触媒(CeO2)とした。
<触媒(B)の製造例>
製造例21
[触媒(BP2000)の製造]
 商品名「BP2000」(カーボンブラック、CABOT社製)を触媒(BP2000)とした。
製造例22
[触媒(ReOX/BP2000)の製造]
 過レニウム酸アンモニウムの量を変更しレニウムの担持量を1重量%としたこと以外は製造例4と同様にして、触媒(ReOX/BP2000)を製造した。なお、製造例22で作製した触媒は、金属触媒(2)にも該当する。
製造例23
[触媒(ReOX/BP2000)の製造]
 過レニウム酸アンモニウムの量を変更しレニウムの担持量を3重量%としたこと以外は製造例4と同様にして、触媒(ReOX/BP2000)を製造した。なお、製造例23で作製した触媒は、金属触媒(2)にも該当する。
製造例24
[触媒(ReOX/BP2000)の製造]
 過レニウム酸アンモニウムの量を変更しレニウムの担持量を9重量%としたこと以外は製造例4と同様にして、触媒(ReOX/BP2000)を製造した。なお、製造例24で作製した触媒は、金属触媒(2)にも該当する。
実施例29~38及び比較例2~6
[3,4-ジヒドロキシテトラヒドロフランの還元]
 ガラス製のオートクレーブ用内筒にスターラーチップと、表5に示す各製造例で得られた触媒(A)150mgと、触媒(B)150mg(但し、表中「-」は無配合)と、1,4-ジオキサン4gと、3,4-ジヒドロキシテトラヒドロフラン0.5gとを入れた。上記オートクレーブ用内筒を190mLオートクレーブ(高圧回分式反応装置)に入れ、蓋をした。次いで、オートクレーブの内部に1MPaの水素を張り込んだ後に排気する操作を3回繰り返し、内部の空気をオートクレーブから追い出した。このオートクレーブに、140℃で8MPa(水素圧力:8MPa)を示すよう、室温で5.5MPaを示すように水素を充填した。
 続いて、上記オートクレーブをマグネットスターラー付加熱装置にセットし、反応器内部(オートクレーブ内部)の温度が140℃になるように加熱し、反応温度を140℃に維持しながら24時間(Reaction time=24h)攪拌した。その後、室温まで冷却し、オートクレーブ内部の水素を解放し、放圧した。
 反応後の溶液は、ガスクロマトグラフィー(ガスクロマトグラフ装置:「GC-2014」((株)島津製作所製)、GCカラム:TC-WAX、DB-FFAP、検出器:FID)を用いたFID分析及びGC-MSにより分析した。これより、3,4-ジヒドロキシテトラヒドロフランの転化率、生成物の選択率を算出した。分析結果を表5に示す。
Figure JPOXMLDOC01-appb-T000006
 表5に示すように、触媒(B)を使用しない場合(比較例2~4)に対して、触媒(B)としてレニウムが担持されていない活性炭を用いた場合(実施例29及び実施例34)は、3,4-ジヒドロキシテトラヒドロフランの転化率が高く、また1,4-ブタンジオールの選択率が高かった。また、触媒(B)としてレニウムが担持された活性炭を用いた場合(実施例30~33及び実施例35~38)は、3,4-ジヒドロキシテトラヒドロフランの転化率及び1,4-ブタンジオールの選択率がさらに高かった。また、触媒(A)として金及びレニウムが担持されたものを用いた場合(実施例29~33)とレニウムのみが担持されたものを用いた場合(実施例34~37)と担持されていないものを用いた場合(実施例38)とで、3,4-ジヒドロキシテトラヒドロフランの転化率及び1,4-ブタンジオールの選択率は同等であった。また、触媒(A)を使用しない場合(比較例5及び6)は、3,4-ジヒドロキシテトラヒドロフランの転化率が極端に低かった。
 表中の略号は、以下の化合物を示す。
1,4-BuD : 1,4-ブタンジオール
THF : テトラヒドロフラン
γ-Bul : γ-ブチロラクトン
1-BuOH : 1-ブタノール
Conv. : 転化率(Conversion)
 なお、上記実施例において、転化率は下記式(1)により、選択率は下記式(2)により求めた。
  転化率(%)={原料として用いた2,3-ジヒドロキシテトラヒドロフランの量(mol)-残存2,3-ジヒドロキシテトラヒドロフランの量(mol)}/原料として用いた2,3-ジヒドロキシテトラヒドロフランの量(mol)×100  (1)
  物質Aの選択率(%)=物質Aの生成量(mol)/{原料として用いた2,3-ジヒドロキシテトラヒドロフランの量(mol)-残存2,3-ジヒドロキシテトラヒドロフランの量(mol)}×100   (2)
 本発明の還元反応用触媒は、3,4-ジヒドロキシテトラヒドロフランを原料とした水素による還元反応に用いることができる。
 1:トリクルベッド反応器
 2:原料液供給ライン
 3:水素供給ライン
 4:反応混合物取り出しライン
 5:高圧気液分離器
 6:水素リサイクルライン

Claims (16)

  1.  水素との反応により3,4-ジヒドロキシテトラヒドロフランを還元させる反応に用いられる触媒であって、下記金属触媒(1)及び下記金属触媒(2)を含有することを特徴とする、3,4-ジヒドロキシテトラヒドロフランの還元反応用触媒。
     金属触媒(1):下記M1及びM2を金属種とし、担体に担持された触媒
     金属触媒(2):下記M1を金属種とし、担体に担持された触媒
      M1:周期表の第4~6周期に属し且つ第5~7族に属する元素、及び鉄からなる群より選択される1以上
      M2:周期表の第4~6周期に属し且つ第9~11族に属する元素、ルテニウム、及びオスミウムからなる群より選択される1以上
  2.  前記金属触媒(1)におけるM1がレニウムであり、M2が金である、請求項1に記載の3,4-ジヒドロキシテトラヒドロフランの還元反応用触媒。
  3.  前記金属触媒(1)における担体が酸化セリウムである、請求項1又は2に記載の3,4-ジヒドロキシテトラヒドロフランの還元反応用触媒。
  4.  前記金属触媒(2)におけるM1がレニウムである、請求項1~3のいずれか1項に記載の3,4-ジヒドロキシテトラヒドロフランの還元反応用触媒。
  5.  前記金属触媒(2)における担体が活性炭である、請求項1~4のいずれか1項に記載の3,4-ジヒドロキシテトラヒドロフランの還元反応用触媒。
  6.  水素との反応により3,4-ジヒドロキシテトラヒドロフランを還元させる工程を含み、前記工程における3,4-ジヒドロキシテトラヒドロフランと水素との反応を、請求項1~5のいずれか1項に記載の3,4-ジヒドロキシテトラヒドロフランの還元反応用触媒の存在下で進行させることを特徴とする、3,4-ジヒドロキシテトラヒドロフラン還元物の製造方法。
  7.  前記工程における3,4-ジヒドロキシテトラヒドロフランと水素との反応を、1段目で前記金属触媒(1)の存在下反応を行い、2段目で前記金属触媒(2)の存在下反応を行うか、又は、前記金属触媒(1)及び前記金属触媒(2)の混合触媒の存在下で進行させる、請求項6に記載の3,4-ジヒドロキシテトラヒドロフラン還元物の製造方法。
  8.  前記工程における3,4-ジヒドロキシテトラヒドロフランと水素との反応を、水素分圧が3MPa以上の雰囲気下で行う、請求項6又は7に記載の3,4-ジヒドロキシテトラヒドロフラン還元物の製造方法。
  9.  エリスリトールを脱水環化して3,4-ジヒドロキシテトラヒドロフランを得る工程を、前記3,4-ジヒドロキシテトラヒドロフランを還元させる工程の前に有する、請求項6~8のいずれか1項に記載の3,4-ジヒドロキシテトラヒドロフラン還元物の製造方法。
  10.  水素との反応により3,4-ジヒドロキシテトラヒドロフランを還元させる反応に用いられる触媒であって、下記触媒(A)及び下記触媒(B)を含有し、触媒(A)及び/又は触媒(B)が下記M1を金属種として担持された触媒であることを特徴とする、3,4-ジヒドロキシテトラヒドロフランの還元反応用触媒。
     触媒(A):下記M1を金属種として担持されていてもよい無機酸化物
     触媒(B):下記M1を金属種として担持されていてもよい活性炭
      M1:周期表の第4~6周期に属し且つ第5~7族に属する元素、及び鉄からなる群より選択される1以上
  11.  前記M1がレニウムである、請求項10に記載の3,4-ジヒドロキシテトラヒドロフランの還元反応用触媒。
  12.  前記触媒(A)における無機酸化物が酸化セリウムである、請求項10又は11に記載の3,4-ジヒドロキシテトラヒドロフランの還元反応用触媒。
  13.  前記触媒(B)が前記M1を金属種として担持された触媒である、請求項10~12のいずれか1項に記載の3,4-ジヒドロキシテトラヒドロフランの還元反応用触媒。
  14.  前記触媒(A)及び前記触媒(B)が前記M1を金属種として担持された触媒である、請求項10~13のいずれか1項に記載の3,4-ジヒドロキシテトラヒドロフランの還元反応用触媒。
  15.  水素との反応により3,4-ジヒドロキシテトラヒドロフランを還元させる工程を含み、前記工程における3,4-ジヒドロキシテトラヒドロフランと水素との反応を、請求項10~14のいずれか1項に記載の3,4-ジヒドロキシテトラヒドロフランの還元反応用触媒の存在下で進行させることを特徴とする、3,4-ジヒドロキシテトラヒドロフラン還元物の製造方法。
  16.  前記工程における3,4-ジヒドロキシテトラヒドロフランと水素との反応を、1段目で前記触媒(A)の存在下反応を行い、2段目で前記触媒(B)の存在下反応を行うか、又は、前記触媒(A)及び前記触媒(B)の混合触媒の存在下で進行させる、請求項15に記載の3,4-ジヒドロキシテトラヒドロフラン還元物の製造方法。
PCT/JP2017/047157 2017-02-13 2017-12-28 3,4-ジヒドロキシテトラヒドロフランの還元反応用触媒及び3,4-ジヒドロキシテトラヒドロフラン還元物の製造方法 WO2018146978A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201780086397.2A CN110290870B (zh) 2017-02-13 2017-12-28 3,4-二羟基四氢呋喃的还原反应用催化剂及其还原产物的制造方法
MYPI2019004599A MY193459A (en) 2017-02-13 2017-12-28 Catalyst for reduction reaction of 3,4-dihydroxytetrahydrofuran, and method for producing 3,4-dihydroxytetrahydrofuran reduced product
JP2018566796A JP6942738B2 (ja) 2017-02-13 2017-12-28 3,4−ジヒドロキシテトラヒドロフランの還元反応用触媒及び3,4−ジヒドロキシテトラヒドロフラン還元物の製造方法
US16/485,379 US11040334B2 (en) 2017-02-13 2017-12-28 Catalyst for reduction reaction of 3,4-dihydroxytetrahydrofuran, and method for producing 3,4-dihydroxytetrahydrofuran reduced product

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-023959 2017-02-13
JP2017023959 2017-02-13

Publications (1)

Publication Number Publication Date
WO2018146978A1 true WO2018146978A1 (ja) 2018-08-16

Family

ID=63108206

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/047157 WO2018146978A1 (ja) 2017-02-13 2017-12-28 3,4-ジヒドロキシテトラヒドロフランの還元反応用触媒及び3,4-ジヒドロキシテトラヒドロフラン還元物の製造方法

Country Status (5)

Country Link
US (1) US11040334B2 (ja)
JP (1) JP6942738B2 (ja)
CN (1) CN110290870B (ja)
MY (1) MY193459A (ja)
WO (1) WO2018146978A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021126639A (ja) * 2020-02-17 2021-09-02 株式会社ダイセル 3,4−ジヒドロキシテトラヒドロフランの還元反応用触媒

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111420650B (zh) * 2020-03-31 2023-04-18 成都信息工程大学 1,4-丁二醇选择性脱水制3-丁烯-1-醇用催化剂及其制备与应用
CN113896676B (zh) * 2021-11-10 2023-02-10 河北工业大学 一种2,5-二(氨基甲基)呋喃选择性氢解制备2-氨基甲基哌啶的方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06116256A (ja) * 1992-10-06 1994-04-26 Nikken Kasei Kk エリスリタンの製造方法
JP2001048819A (ja) * 1999-08-04 2001-02-20 Tonen Chem Corp ジカルボン酸類の二段階水素化法
JP2005511624A (ja) * 2001-11-13 2005-04-28 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 3,4−テトラヒドロフランジオールのテトラヒドロフランへの水素添加
JP2013010708A (ja) * 2011-06-29 2013-01-17 Daicel Corp エリスリトールの水素化分解物の製造方法
JP2013181026A (ja) * 2012-03-05 2013-09-12 Daicel Corp 1,4−アンヒドロエリスリトールの水素化分解物の製造方法
WO2014188843A1 (ja) * 2013-05-21 2014-11-27 株式会社ダイセル テトラヒドロフランの製造方法
WO2015115410A1 (ja) * 2014-01-28 2015-08-06 株式会社日本触媒 水素化反応方法
JP2017051941A (ja) * 2015-09-08 2017-03-16 株式会社ダイセル オレフィン化反応用触媒及びオレフィンの製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3572636B2 (ja) 1993-09-14 2004-10-06 三菱化学株式会社 ブタンジオールの製造方法
DE19510438A1 (de) * 1995-03-22 1996-09-26 Basf Ag Verfahren zur Herstellung von 1,4-Butandiol und Tetrahydrofuran aus Furan
TW380131B (en) 1996-09-24 2000-01-21 Mitsubishi Chem Corp Process for producing butanediol
JP3959793B2 (ja) 1996-09-24 2007-08-15 三菱化学株式会社 ブタンジオールの製造方法
US5969164A (en) 1996-12-20 1999-10-19 The Standard Oil Company Catalysts for the hydrogenation of maleic acid to 1,4-butanediol
SG74602A1 (en) 1996-12-20 2000-08-22 Standard Oil Co Improved catalysts for the hydrogenation of maleic acid to 1,4-butanediol
US7019155B2 (en) * 2001-11-13 2006-03-28 Invista North America S.A.R.L. Hydrogenation of tetrahydroxybutane to tetrahydrofuran
CN104718196B (zh) * 2012-11-13 2017-11-10 株式会社大赛璐 3‑羟基四氢呋喃的制造方法、1,3‑丁二醇的制造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06116256A (ja) * 1992-10-06 1994-04-26 Nikken Kasei Kk エリスリタンの製造方法
JP2001048819A (ja) * 1999-08-04 2001-02-20 Tonen Chem Corp ジカルボン酸類の二段階水素化法
JP2005511624A (ja) * 2001-11-13 2005-04-28 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 3,4−テトラヒドロフランジオールのテトラヒドロフランへの水素添加
JP2013010708A (ja) * 2011-06-29 2013-01-17 Daicel Corp エリスリトールの水素化分解物の製造方法
JP2013181026A (ja) * 2012-03-05 2013-09-12 Daicel Corp 1,4−アンヒドロエリスリトールの水素化分解物の製造方法
WO2014188843A1 (ja) * 2013-05-21 2014-11-27 株式会社ダイセル テトラヒドロフランの製造方法
WO2015115410A1 (ja) * 2014-01-28 2015-08-06 株式会社日本触媒 水素化反応方法
JP2017051941A (ja) * 2015-09-08 2017-03-16 株式会社ダイセル オレフィン化反応用触媒及びオレフィンの製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021126639A (ja) * 2020-02-17 2021-09-02 株式会社ダイセル 3,4−ジヒドロキシテトラヒドロフランの還元反応用触媒
JP7404098B2 (ja) 2020-02-17 2023-12-25 株式会社ダイセル 3,4-ジヒドロキシテトラヒドロフランの還元反応用触媒

Also Published As

Publication number Publication date
CN110290870B (zh) 2022-08-23
US11040334B2 (en) 2021-06-22
US20190366304A1 (en) 2019-12-05
CN110290870A (zh) 2019-09-27
JP6942738B2 (ja) 2021-09-29
MY193459A (en) 2022-10-14
JPWO2018146978A1 (ja) 2020-01-09

Similar Documents

Publication Publication Date Title
JP5881620B2 (ja) 飽和アルデヒドを選択的に低減させる触媒と、その製造方法
JP6280870B2 (ja) 3−ヒドロキシテトラヒドロフランの製造方法、1,3−ブタンジオールの製造方法
EP2797867A1 (en) Process for preparing 1, 6-hexanediol
JPWO2013018752A1 (ja) グリセリンの脱水反応によるアクロレイン及びアクリル酸の製造用触媒と、その製造法
JP6871446B2 (ja) オレフィン化反応用触媒及びオレフィンの製造方法
WO2018146978A1 (ja) 3,4-ジヒドロキシテトラヒドロフランの還元反応用触媒及び3,4-ジヒドロキシテトラヒドロフラン還元物の製造方法
JP2013508127A (ja) グリセリンの脱水反応によって不飽和アルデヒドおよび/または不飽和カルボン酸を製造するのに使用する触媒の製造方法と、この方法で得られる触媒
JP6345654B2 (ja) テトラヒドロフランの製造方法
JP3921877B2 (ja) 1,4−シクロヘキサンジメタノールの製造方法
JP5797587B2 (ja) 1,4−アンヒドロエリスリトールの水素化分解物の製造方法
JP7404098B2 (ja) 3,4-ジヒドロキシテトラヒドロフランの還元反応用触媒
JP5827925B2 (ja) エリスリトールの水素化分解物の製造方法
WO2013012048A1 (ja) 1,4-ブタンジオールの製造方法
WO2022065152A1 (ja) オレフィンの製造方法およびオレフィン化反応用触媒
JP2017014133A (ja) ホモアリルアルコールの製造方法
CN113398911B (zh) 以CeO2-ZrO2-Al2O3复合氧化物为载体的催化剂的应用
EP2462101B1 (en) Process for preparing an ester
EP4320108A1 (en) Nikel- and cerium-catalyzed reduction of hydroxymethylfurfural
CN114315765A (zh) 一种呋喃化合物的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17895790

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018566796

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17895790

Country of ref document: EP

Kind code of ref document: A1