WO2018142510A1 - 内燃機関の吸気制御方法及び吸気制御装置 - Google Patents

内燃機関の吸気制御方法及び吸気制御装置 Download PDF

Info

Publication number
WO2018142510A1
WO2018142510A1 PCT/JP2017/003624 JP2017003624W WO2018142510A1 WO 2018142510 A1 WO2018142510 A1 WO 2018142510A1 JP 2017003624 W JP2017003624 W JP 2017003624W WO 2018142510 A1 WO2018142510 A1 WO 2018142510A1
Authority
WO
WIPO (PCT)
Prior art keywords
target
intake
egr
opening area
valve
Prior art date
Application number
PCT/JP2017/003624
Other languages
English (en)
French (fr)
Inventor
賢午 米倉
土田 博文
濱本 高行
Original Assignee
日産自動車株式会社
ルノー エス.ア.エス.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社, ルノー エス.ア.エス. filed Critical 日産自動車株式会社
Priority to BR112019015674-7A priority Critical patent/BR112019015674B1/pt
Priority to PCT/JP2017/003624 priority patent/WO2018142510A1/ja
Priority to JP2018565142A priority patent/JP6838611B2/ja
Priority to CN201780082624.4A priority patent/CN110168212B/zh
Priority to EP17894984.8A priority patent/EP3578787B8/en
Priority to MX2019008298A priority patent/MX2019008298A/es
Priority to RU2019124470A priority patent/RU2730342C1/ru
Priority to MYPI2019003910A priority patent/MY195559A/en
Priority to US16/476,952 priority patent/US10883429B2/en
Publication of WO2018142510A1 publication Critical patent/WO2018142510A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D41/0007Controlling intake air for control of turbo-charged or super-charged engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/0065Specific aspects of external EGR control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/06Low pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust downstream of the turbocharger turbine and reintroduced into the intake system upstream of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/09Constructional details, e.g. structural combinations of EGR systems and supercharger systems; Arrangement of the EGR and supercharger systems with respect to the engine
    • F02M26/10Constructional details, e.g. structural combinations of EGR systems and supercharger systems; Arrangement of the EGR and supercharger systems with respect to the engine having means to increase the pressure difference between the exhaust and intake system, e.g. venturis, variable geometry turbines, check valves using pressure pulsations or throttles in the air intake or exhaust system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D2041/0017Controlling intake air by simultaneous control of throttle and exhaust gas recirculation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0406Intake manifold pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/41Control to generate negative pressure in the intake manifold, e.g. for fuel vapor purging or brake booster
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M2026/001Arrangements; Control features; Details
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to intake control of an internal combustion engine.
  • an internal combustion engine equipped with an exhaust gas recirculation device (hereinafter also referred to as an EGR device) that recirculates part of the exhaust gas to the intake system is known.
  • Japanese Patent No. 3511849 discloses intake control for an internal combustion engine including an EGR device.
  • the total opening area of the intake throttle valve and the EGR valve is calculated based on the total fresh air amount.
  • the opening area of the intake throttle valve and the opening area of the EGR valve are determined by allocating the total opening area by the ratio between the intake air amount and the new air amount converted value.
  • the intake air amount and the EGR gas introduction ratio (hereinafter also referred to as the EGR rate) can be accurately controlled regardless of the state of the EGR gas such as temperature and pressure.
  • HP-EGR system high pressure EGR system
  • EGR gas is introduced downstream of the intake throttle valve.
  • negative pressure develops as the opening of the intake throttle valve decreases. Therefore, in the HP-EGR system, the differential pressure between the exhaust side and the intake side necessary for recirculating EGR gas is ensured by the negative pressure that develops as the opening of the intake throttle valve decreases.
  • a so-called low-pressure EGR system in which EGR gas is introduced upstream of the intake throttle valve from the intake throttle valve.
  • LP-EGR system low-pressure EGR system
  • the LP-EGR system Since the upstream side of the intake flow from the intake throttle valve is almost atmospheric pressure, the LP-EGR system has a smaller differential pressure between the intake side and the exhaust side than the HP-EGR system. For this reason, for example, in a low load operation region where the pressure on the exhaust side is low, exhaust pulsation may cause the exhaust side to be at a lower pressure than the intake side, and EGR gas may flow backward.
  • an additional throttle valve (hereinafter referred to as a negative pressure) is provided upstream of the intake throttle valve. It is necessary to provide a generation valve).
  • the pressure in the intake passage from the negative pressure generating valve to the intake throttle valve (hereinafter also referred to as intake pressure) changes. That is, even if the opening of the intake throttle valve and the opening of the EGR valve that adjusts the EGR rate are constant, the intake air amount and the EGR rate change according to the opening of the negative pressure generating valve. For this reason, even if the control of the above document is applied to the LP-EGR system as it is, it is difficult to accurately control the intake air amount and the EGR rate.
  • an object of the present invention is to accurately control the intake air amount and the EGR rate in an EGR system including a negative pressure generating valve.
  • the intake throttle valve provided in the intake passage, the EGR passage communicating the upstream side of the intake flow with respect to the intake throttle valve of the intake passage and the exhaust passage, and the EGR passage are provided.
  • An intake air control method for an internal combustion engine is provided that includes an EGR valve and a negative pressure generating valve provided upstream of the merging portion of the intake air passage with the EGR passage.
  • This intake control method is a target value of the intake pressure in the intake passage between the negative pressure generating valve and the intake throttle valve, and the intake air necessary for executing the EGR control in the exhaust pressure state determined for each operating point. Including setting a target intake pressure which is a pressure.
  • this intake control method is based on the target intake pressure, the target fresh air amount, and the target EGR gas amount, and a target total opening area that is the sum of the target opening area of the EGR valve and the target opening area of the negative pressure generating valve. And setting the target EGR valve opening area, which is the opening area of the EGR valve for realizing the target EGR gas amount, on the assumption that the negative pressure generating valve is fully open. Further, the intake control method includes setting a target negative pressure generating valve opening area which is a target value of the opening area of the negative pressure generating valve, which is obtained by subtracting the target EGR valve opening area from the target total opening area.
  • FIG. 1 is a schematic configuration diagram of an internal combustion engine system.
  • FIG. 2 is a block diagram for explaining the basic concept of the intake control according to the present embodiment.
  • FIG. 3 is a flowchart showing an intake control routine according to the present embodiment.
  • FIG. 4 is a diagram illustrating an example of the EGR map.
  • FIG. 5 is a diagram illustrating an example of an intake pressure profile.
  • FIG. 6 is a diagram showing the relationship between the target EGR valve opening area and the target intake pressure.
  • FIG. 7 is a diagram showing the relationship between the target throttle valve opening area and the target intake pressure.
  • FIG. 8 is a diagram for explaining the effect of the present embodiment.
  • FIG. 1 is a schematic configuration diagram of an internal combustion engine system 100 according to the first embodiment.
  • an air flow meter (not shown), a negative pressure generation valve (hereinafter also referred to as ADM / V) 19, a compressor 5 ⁇ / b> A of the turbocharger 5, and a throttle are sequentially arranged from the upstream side of the intake flow.
  • a valve (hereinafter also referred to as TH / V) 4 and an intercooler 6 are arranged.
  • an air flow meter is used to detect the intake air amount, but the present invention is not limited to this, and any device that can detect or estimate the intake air amount may be used. For example, it may be estimated based on the pressure in the intake passage 2 on the downstream side of TH / V4 and the opening degree of TH / V4.
  • a turbine 5B of the turbocharger 5 an exhaust purification device 7, and an exhaust temperature sensor 11 are arranged in this order from the upstream side of the exhaust flow.
  • the exhaust purification device 7 is, for example, a three-way catalyst or an oxidation catalyst.
  • turbocharger 5 driven by the exhaust energy of the internal combustion engine 1 will be described.
  • the present invention is not limited to this.
  • a mechanical supercharger may be used.
  • An electric supercharger may be used.
  • the internal combustion engine system 100 includes an exhaust gas recirculation passage (hereinafter also referred to as an EGR passage) 8 that communicates the exhaust passage 3 downstream from the exhaust purification device 7 and the intake passage 2 upstream from the compressor 5A.
  • An EGR cooler 9 that cools the exhaust gas flowing through the EGR passage 8 and an EGR valve (hereinafter also referred to as EGR / V) 10 that controls the flow rate of the exhaust gas flowing through the EGR passage 8 are disposed in the EGR passage 8.
  • the EGR device includes the EGR passage 8, the EGR cooler 9, and the EGR / V10.
  • Controller 20 as a control unit reads detection values of a crank angle sensor, an accelerator opening sensor, etc. (not shown) in addition to the detection value of the air flow meter. Then, based on these detection values, the controller 20 executes opening control of the ADM / V19, TH / V4, and EGR / V10, fuel injection control, ignition timing control, and the like.
  • the controller 20 is composed of a microcomputer including a central processing unit (CPU), a read only memory (ROM), a random access memory (RAM), and an input / output interface (I / O interface). It is also possible to configure the controller 20 with a plurality of microcomputers.
  • CPU central processing unit
  • ROM read only memory
  • RAM random access memory
  • I / O interface input / output interface
  • the EGR device of the present embodiment is a so-called low pressure / EGR device (hereinafter also referred to as an LP-EGR device) in which the EGR passage 8 is connected to the upstream side of the compressor 5A.
  • the EGR rate is the ratio of EGR gas to the total gas flowing into the internal combustion engine 1. Control for recirculating EGR gas is referred to as EGR control.
  • the EGR device introduces EGR gas from the exhaust passage 3 to the intake passage 2 using the differential pressure between the exhaust side and the intake side, in other words, the differential pressure across the EGR valve 10, in order to execute EGR control.
  • the intake side must be at a lower pressure than the exhaust side.
  • HP-EGR device also referred to as HP-EGR device
  • the intake side has a positive pressure in the supercharging region. Therefore, EGR control could not be executed.
  • the LP-EGR device recirculates the EGR gas upstream of the compressor 5A, so that EGR control can be performed even in the supercharging region, and the fuel efficiency performance of the internal combustion engine with a supercharger can be achieved. It can be said that the device is suitable for improvement.
  • the LP-EGR device in which the differential pressure across the EGR valve 10 is smaller than that of the HP-EGR device has a low load region where the average pressure of the exhaust is low.
  • the pressure may be lower than the pressure on the intake side.
  • the EGR gas flows backward, making it difficult to achieve the target EGR amount described below. Therefore, in order to prevent the backflow of the EGR gas, a negative pressure is generated between the ADM / V19 and the compressor 5A by the ADM / V19.
  • the target value of the new air volume is determined according to the accelerator opening. For example, a table in which the target fresh air amount for each load of the internal combustion engine 1 is set is created in advance and stored in the controller 20, and is set by searching the table using the load.
  • the accelerator opening is used as an index indicating the load.
  • the target value of EGR gas amount is determined according to the target fresh air amount and the target value of EGR rate (target EGR rate) that is the ratio of the EGR gas amount to the fresh air amount.
  • the target EGR rate is determined according to the driving. For example, a map in which the target EGR rate for each operating point is set is created in advance and stored in the controller 20, and a map search is performed using the detected rotation speed and load.
  • the controller 20 sets the target opening of TH / V4 according to the target fresh air amount determined for each operating point of the internal combustion engine 1, and controls the opening of TH / V4 based on this. Further, the controller 20 sets the target opening degree of the EGR / V10 according to the target EGR gas amount determined for each operating point of the internal combustion engine 1, and controls the opening degree of the EGR / V10 based on this.
  • intake pressure the pressure in the intake passage 2 between the ADM / V 19 and TH / V 4
  • FIG. 2 is a block diagram showing a basic concept of control of ADM / V19, EGR / V10, and TH / V4 in this embodiment.
  • FIG. 2 merely shows the basic concept, and specific control contents are shown in FIG. 3 to be described later.
  • the EGR control when there is a request for operating the ADM / V19, that is, as described above, the EGR control is performed in a low load region where the average exhaust pressure is low and the exhaust side pressure may be lower than the intake side pressure.
  • the controller 20 sets the target intake pressure in the target intake pressure setting unit.
  • the controller 20 sets the target fresh air amount and the target EGR gas amount described above.
  • the controller 20 sets the target openings of ADM / V19, EGR / V10, and TH / V4 based on the target intake pressure, the target fresh air amount, and the target EGR gas amount. Thereby, the target fresh air amount and the target EGR gas amount can be accurately controlled while realizing the target intake pressure.
  • FIG. 3 is a flowchart of a control routine executed by the controller 20 based on the above-described concept.
  • the control routine is repeatedly executed at a short interval of, for example, about several milliseconds when executing EGR control. Note that the ADM / V 19 is fully open when the EGR control is not executed.
  • step S100 the controller 20 reads the accelerator opening APO and the rotational speed NE of the internal combustion engine 1.
  • the accelerator opening APO is used as an index indicating the magnitude of the load of the internal combustion engine 1.
  • step S110 the controller 20 calculates a target fresh air amount and a target EGR gas rate.
  • the target fresh air amount is calculated by searching a table created in advance as described above. In the table, a larger target fresh air amount is set as the accelerator opening APO becomes larger.
  • the target EGR gas rate is calculated by searching a map created in advance as described above.
  • FIG. 4 is an example of the target EGR rate map.
  • An EGR area is set in a part of the operation area determined by the load and the rotation speed. In the EGR region, a higher target EGR rate is set as the rotational speed becomes lower and the load becomes smaller.
  • step S120 the controller 20 calculates the target EGR gas amount by multiplying the target fresh air amount by the target EGR rate.
  • step S130 the controller 20 calculates a target total gas amount.
  • the target total gas amount is the sum of the target fresh air amount and the target EGR gas amount.
  • step S140 the controller 20 sets the target intake pressure by the following method.
  • the controller 20 assumes that the amount of fresh air at the operating point determined from the accelerator opening APO and the rotational speed NE read in step S100 has burned, and sets the pressure in the exhaust passage 3 (hereinafter also referred to as exhaust pressure). calculate.
  • an intake pressure necessary to execute EGR control in the calculated exhaust pressure state is set as the target intake pressure Pt.
  • a pressure lower than the calculated exhaust pressure by several Pascals is set as the target intake pressure Pt.
  • a pressure that is several Pascals lower than the atmospheric pressure may be set as the target intake pressure Pt without performing the above-described calculation.
  • the target intake pressure Pt may be almost atmospheric pressure, and the ADM / V 19 may be fully open.
  • the controller 20 sets not only the target intake pressure Pt but also a profile of changes in the intake pressure from the current state (approximately atmospheric pressure) to the transition to the target intake pressure Pt.
  • FIG. 5 is an example of a profile, and shows a case where EGR control is started at timing T1. Since the EGR control is not executed before the timing T1, the ADM / V 19 is fully open. Therefore, the intake pressure is almost atmospheric pressure.
  • the intake pressure changes from the atmospheric pressure to the target intake pressure Pt from timing T1 to timing T2.
  • the period from the timing T1 to the timing T2 is, for example, about a few seconds of commas.
  • the difference between the target intake pressure Pt and the actual intake pressure due to the delay time from when the ADM / V 19 is activated until the actual intake pressure changes can be suppressed. .
  • a control error due to the deviation can be prevented.
  • step S150 the controller 20 calculates the total opening area, which is the sum of the opening area of the ADM / V19 and the opening area of the EGR / V10, based on the target total gas amount and the target intake pressure as follows.
  • the total amount of gas flowing into the internal combustion engine 1 is the sum of the amount of fresh air that has passed through ADM / V19 and the amount of EGR gas that has passed through EGR / V10. Further, when the exhaust pressure is low enough to generate a negative pressure with ADM / V19, it can be considered that the differential pressure across the EGR / V10 and the differential pressure across the ADM / V19 are equal. Therefore, in the generally known equation (1) relating to the fluid passing through the valve, the effective sectional area A is calculated with the flow rate Q as the target total gas amount and the differential pressure ⁇ p as the differential pressure between the target intake pressure and atmospheric pressure. This is the total opening area.
  • step S160 the controller 20 determines the target opening areas of EGR / V10, ADM / V19, and TH / V4 as follows: Calculate as follows.
  • the controller 20 first calculates the target opening area of the EGR / V10. When it is assumed that ADM / V19 is in a fully open state, the opening area of EGR / V10 that gives the target EGR gas amount at each operating point determined by the load of the internal combustion engine 1 (for example, accelerator opening APO) and the rotational speed NE is This is checked in advance and stored in the controller 20 as the target EGR / V opening area. Then, the controller 20 corrects the target EGR / V opening area according to the target intake pressure and the current intake pressure based on the profile set in step S140.
  • the above correction will be described.
  • the lower the target intake pressure the greater the differential pressure with the exhaust passage and the easier the EGR gas recirculates. Therefore, the EGR / V opening area when the intake pressure reaches the target intake pressure is corrected so as to decrease as the target intake pressure decreases.
  • the differential pressure with respect to the exhaust passage gradually increases, so the above correction is a correction in a direction to gradually reduce the opening area.
  • the vertical axis represents the target EGR / V opening area when the intake pressure reaches the target intake pressure
  • the horizontal axis represents the target intake pressure
  • the target EGR / V opening area and the target intake air after performing the above correction It is a figure which shows the relationship with a pressure.
  • the characteristic line of the target EGR / V opening relative to the target intake pressure is a straight line, but this is merely an example, and the target EGR / V opening becomes a curve that increases monotonically as the target intake pressure increases. Sometimes.
  • the vertical axis in FIG. 6 can be replaced with the target EGR / V opening degree. That is, the above correction can be rephrased as correcting the EGR / V opening when the intake pressure reaches the target intake pressure so that the EGR / V opening becomes smaller as the target intake pressure is lower.
  • the controller 20 subtracts the target EGR / V opening area from the total opening area, and sets this as the target ADM / V opening area.
  • the method for calculating the target TH / V opening area is basically the same as the method for calculating the target EGR / V opening area. That is, when the controller 20 assumes that the ADM / V 19 is in a fully open state, the controller 20 provides a target fresh air amount for each operating point determined by the load of the internal combustion engine 1 (for example, the accelerator opening APO) and the rotational speed NE. The opening area of / V4 is stored as the target TH / V opening area. Then, the controller 20 corrects the target TH / V opening area according to the target intake pressure and the current intake pressure.
  • the above correction will be described.
  • the opening degree of the ADM / V 19 is controlled to be smaller and it is difficult for fresh air to pass. Therefore, the TH / V opening area when the intake pressure reaches the target intake pressure is corrected so as to increase as the target intake pressure decreases.
  • the opening degree of the ADM / V 19 gradually decreases, so that the correction is a correction in a direction in which the opening area is gradually increased.
  • the vertical axis represents the target TH / V opening area when the intake pressure reaches the target intake pressure
  • the horizontal axis represents the target intake pressure
  • the target TH / V opening area and the target intake air after performing the above correction It is a figure which shows the relationship with a pressure.
  • the characteristic line of the target TH / V opening with respect to the target intake pressure is a straight line, but this is merely an example, and the target TH / V opening becomes a curve that decreases monotonously as the target intake pressure increases. Sometimes.
  • the vertical axis in FIG. 7 can be replaced with the target TH / V opening degree. That is, it can be said that the above correction is performed so that the TH / V opening when the intake pressure reaches the target intake pressure is increased as the target intake pressure is lower.
  • the controller 20 calculates EGR / V10, ADM / V19, and TH / V4 as the respective target opening areas in step S170.
  • Control to be In the control for example, the target opening area is converted into the target opening based on the relationship between the opening and the opening area of each of the valves 10, 19 and 4 examined in advance, and the opening of each of the valves 10, 19, and 4 is changed. It matches the target opening.
  • FIG. 8 is a diagram for explaining the operational effect of the control routine of FIG. 3, and shows the relationship between the exhaust pressure and the intake pressure in the low load region of the internal combustion engine 1 with the vertical axis representing pressure and the horizontal axis representing time. ing.
  • the exhaust pressure may be lower than the atmospheric pressure at the valley of the exhaust pulsation as shown in FIG.
  • the intake pressure of the LP-EGR device can be regarded as almost atmospheric pressure although there is a change due to the intake pulsation.
  • the exhaust pressure may be lower than the intake pressure in the valley portion of the exhaust pulsation (shaded portion in the figure).
  • the exhaust pressure becomes lower than the intake pressure in this way, the EGR gas flows backward from the intake side to the exhaust side, so that accurate EGR control becomes difficult.
  • the exhaust pressure is prevented from becoming lower than the intake pressure by lowering the intake pressure using ADM / V19, so that the backflow of EGR gas does not occur.
  • the ADM / V19 is determined based on the target intake pressure and the target total gas amount, that is, considering the influence of the opening (opening area) of the ADM / V19 based on the target intake pressure. Since the opening degrees of EGR / V10 and TH / V4 are controlled, EGR control can be executed with high accuracy while ensuring the torque required by the driver.
  • the controller 20 uses the target intake air that is the target value of the intake air pressure in the intake passage 2 between the ADM / V 19 and the TH / V 4. A pressure and a target fresh air amount that is a target value corresponding to the operating point of the internal combustion engine 1 for the fresh air amount introduced from the atmosphere are set. Further, the controller 20 sets a target EGR gas amount that is a target value corresponding to the operating point of the internal combustion engine 1 for the amount of EGR gas to be recirculated from the exhaust passage 3 to the intake passage 2 via the EGR passage 8.
  • the controller 20 sets the sum of the target fresh air amount and the target EGR gas amount as the target total gas amount, and based on the target intake pressure and the target total gas amount, TH / V4, EGR / V10, ADM / V19 To control.
  • EGR control can be performed with high accuracy while ensuring the torque required from the driver.
  • the controller 20 sets a target total opening area that is the sum of the target opening area of EGR / V10 and the target opening area of ADM / V19 based on the target intake pressure and the target total gas amount. Further, the controller 20 sets a target EGR valve opening area that is an opening area of the EGR / V10 for realizing the target EGR gas amount, assuming that the ADM / V 19 is fully open. Then, the controller 20 sets a value obtained by subtracting the target EGR valve opening area from the target total opening area as a target ADM / V opening area which is a target value of the opening area of the ADM / V19. Thereby, the movement of ADM / V19 and the movement of EGR / V10 can be coordinated. As a result, the target EGR rate and the target fresh air amount can be realized while realizing the target intake pressure.
  • the controller 20 corrects the EGR / V target opening so that the TH / V target opening becomes larger as the target intake pressure becomes lower.
  • the fresh air amount and the EGR gas amount can be accurately controlled according to the target intake pressure.
  • the controller 20 corrects the target EGR valve opening area to be smaller as the intake pressure is lower. In other words, the controller 20 corrects the target EGR / V opening area according to the profile until the intake pressure reaches the target intake pressure. Thereby, EGR control can be executed with high accuracy even in a transient state until the target intake pressure is reached.
  • the controller 20 corrects the opening area of TH / V4 to be larger as the intake pressure is lower. In other words, the controller 20 corrects the target TH / V opening area according to the profile until the intake pressure reaches the target intake pressure.
  • the total gas amount can be accurately controlled even in a transient state until the target intake pressure is reached.
  • the controller 20 corrects the target EGR / V opening area and the target TH / V opening area according to the profile until the intake pressure reaches the target intake pressure.
  • the target fresh air amount together with the EGR gas amount can be accurately controlled, and the torque required by the driver can be realized.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Exhaust-Gas Circulating Devices (AREA)
  • Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

低圧EGRシステムを備える内燃機関の吸気制御方法は、負圧生成弁と吸気絞り弁との間の吸気通路の吸気圧力の目標値であって、運転点毎に定まる排気圧力の状態においてEGR制御を実行するために必要な吸気圧力である目標吸気圧力を設定し、目標吸気圧力と目標新気量と目標EGRガス量とに基づいて、EGR弁の目標開口面積と負圧生成弁の目標開口面積との和である目標総開口面積を設定し、負圧生成弁が全開であると仮定して、目標EGRガス量を実現するためのEGR弁の開口面積である目標EGR弁開口面積を設定し、目標総開口面積から目標EGR弁開口面積を減算したものを負圧生成弁の開口面積の目標値である目標負圧生成弁開口面積として設定することを含む。

Description

内燃機関の吸気制御方法及び吸気制御装置
 本発明は、内燃機関の吸気制御に関する。
 燃費性能や環境性能の向上を図るために、排気ガスの一部を吸気系に再循環させる排気再循環装置(以下、EGR装置ともいう)を備える内燃機関が知られている。特許3511849号公報には、EGR装置を備える内燃機関の吸気制御が開示されている。上記文献では、先ず、再循環させる排気ガス(以下、EGRガスともいう)の量を大気中の空気(以下、新気ともいう)の量に換算した新気量換算値と、吸入空気量との和である総新気量を算出する。次いで、総新気量に基づいて吸気絞り弁及びEGR弁の総開口面積を算出する。そして、総開口面積を吸入空気量と新気量換算値との比率で配分することによって、吸気絞り弁の開口面積とEGR弁の開口面積とを決定する。上記文献の制御によれば、温度や圧力といったEGRガスの状態によらず吸入空気量及びEGRガスの導入割合(以下、EGR率ともいう)を精度よく制御することができる。
 上記文献の制御は、EGRガスを吸気絞り弁よりも吸気流れの下流側に導入する、いわゆる高圧EGRシステム(以下、HP-EGRシステムともいう)を対象としている。吸気絞り弁よりも吸気流れの下流側は、吸気絞り弁の開度が減少すると負圧が発達する。したがって、HP-EGRシステムにおいては、吸気絞り弁の開度の減少により発達する負圧により、EGRガスを再循環させるために必要な排気側と吸気側との差圧が確保される。
 これに対し、近年では、より広い運転領域でEGR制御を実行可能にするために、EGRガスを吸気絞り弁よりも吸気流れの上流側に導入する、いわゆる低圧EGRシステム(以下、LP-EGRシステムともいう)が提案されている。吸気絞り弁よりも吸気流れの上流側はほぼ大気圧なので、LP-EGRシステムではHP-EGRシステムに比べて吸気側と排気側との差圧が小さい。このため、例えば排気側の圧力が低くなる低負荷運転領域においては、排気脈動によって排気側が吸気側より低圧になってしまい、EGRガスの逆流が生じるおそれがある。そこで、LP-EGRシステムでは、EGRガスの導入に必要な吸気側と排気側との差圧を確保するために、吸気絞り弁よりも吸気流れの上流側に追加の絞り弁(以下、負圧生成弁ともいう)を設けることが必要となる。
 ところで、負圧生成弁の開度を変化させると、負圧生成弁から吸気絞り弁までの吸気通路内の圧力(以下、吸気圧力ともいう)が変化する。すなわち、吸気絞り弁の開度及びEGR率を調節するEGR弁の開度が一定であっても、負圧生成弁の開度に応じて吸入空気量及びEGR率が変化する。このため、上記文献の制御をLP-EGRシステムにそのまま適用しても、吸入空気量及びEGR率を精度良く制御することは困難である。
 そこで本発明では、負圧生成弁を備えるEGRシステムにおいて吸入空気量及びEGR率を精度良く制御することを目的とする。
 本発明のある態様によれば、吸気通路に設けられた吸気絞り弁と、吸気通路の吸気絞り弁よりも吸気流れの上流側と排気通路とを連通するEGR通路と、EGR通路に設けられたEGR弁と、吸気通路のEGR通路との合流部よりも吸気流れの上流側に設けられた負圧生成弁とを備える内燃機関の吸気制御方法が提供される。この吸気制御方法は、負圧生成弁と吸気絞り弁との間の吸気通路の吸気圧力の目標値であって、運転点毎に定まる排気圧力の状態においてEGR制御を実行するために必要な吸気圧力である目標吸気圧力を設定することを含む。また、この吸気制御方法は、目標吸気圧力と目標新気量と目標EGRガス量とに基づいて、EGR弁の目標開口面積と負圧生成弁の目標開口面積との和である目標総開口面積を設定し、負圧生成弁が全開であると仮定して、目標EGRガス量を実現するためのEGR弁の開口面積である目標EGR弁開口面積を設定することを含む。さらに、この吸気制御方法は、目標総開口面積から目標EGR弁開口面積を減算したものを負圧生成弁の開口面積の目標値である目標負圧生成弁開口面積として設定することを含む。
図1は、内燃機関システムの概略構成図である。 図2は、本実施形態にかかる吸気制御の基本コンセプトを説明するためのブロック図である。 図3は、本実施形態にかかる吸気制御ルーチンを示すフローチャートである。 図4は、EGRマップの一例を示す図である。 図5は、吸気圧力プロフィールの一例を示す図である。 図6は、目標EGRバルブ開口面積と目標吸気圧力との関係を示す図である。 図7は、目標スロットルバルブ開口面積と目標吸気圧力との関係を示す図である。 図8は、本実施形態の効果を説明するための図である。
 以下、添付図面を参照しながら本発明の実施形態について説明する。
 図1は、第1実施形態にかかる内燃機関システム100の概略構成図である。
 吸気通路2には、吸気流れの上流側から順に、エアフローメータ(図示せず)と、負圧生成弁(以下、ADM/Vともいう)19と、ターボ過給機5のコンプレッサ5Aと、スロットルバルブ(以下、TH/Vともいう)4と、インタークーラ6が配置されている。
 なお、本実施形態では吸入空気量の検出にエアフローメータを用いるが、これに限られるわけではなく、吸入空気量を検知または推定できるものであればよい。例えばTH/V4より下流側の吸気通路2内の圧力とTH/V4の開度とに基づいて推定してもよい。
 排気通路3には、排気流れの上流側から順に、ターボ過給機5のタービン5Bと、排気浄化装置7と、排気温度センサ11と、が配置されている。排気浄化装置7は、例えば、三元触媒や酸化触媒である。
 なお、本実施形態では内燃機関1の排気エネルギによって駆動されるターボ過給機5を用いる場合について説明するが、これに限定されるわけではなく、例えば機械式過給機であってもよく、電動式過給機であってもよい。
 内燃機関システム100は、排気通路3の排気浄化装置7より下流側と、吸気通路2のコンプレッサ5Aより上流側とを連通する排気再循環通路(以下、EGR通路ともいう)8を備える。EGR通路8には、EGR通路8を流れる排気ガスを冷却するEGRクーラ9と、EGR通路8を流れる排気ガス流量を制御するEGRバルブ(以下、EGR/Vともいう)10とが配置されている。EGR通路8、EGRクーラ9及びEGR/V10を含めてEGR装置という。
 制御部としてのコントローラ20は、エアフローメータの検出値の他に、図示しないクランク角センサ、アクセル開度センサ等の検出値も読込む。そして、コントローラ20はこれらの検出値に基づいて、ADM/V19、TH/V4及びEGR/V10の開度制御や、燃料噴射制御や、点火時期制御等を実行する。
 なお、コントローラ20は、中央演算装置(CPU)、読み出し専用メモリ(ROM)、ランダムアクセスメモリ(RAM)及び入出力インタフェース(I/Oインタフェース)を備えたマイクロコンピュータで構成される。コントローラ20を複数のマイクロコンピュータで構成することも可能である。
 本実施形態のEGR装置は、EGR通路8がコンプレッサ5Aよりも上流側に接続される、いわゆるロープレッシャー・EGR装置(以下、LP-EGR装置ともいう)である。なお、EGR率とは、内燃機関1に流入する全ガス量に対するEGRガスの割合である。また、EGRガスを再循環させる制御をEGR制御という。
 EGRガスを再循環させると、EGRガスが導入された分だけTH/V4の開度を増大させることになるので、ポンピングロスが低減して燃費性能が向上することが知られている。また、EGRガスを再循環させると燃焼温度が低下して耐ノッキング性が改善されるので、ノッキング回避のための点火時期遅角量が小さくなり、燃費性能が向上することも知られている。したがって、燃費性能を向上させるためには、より広い運転領域でEGR制御を実行することが望ましい。
 ただし、EGR装置は排気側と吸気側との差圧、換言するとEGR弁10の前後差圧、を利用してEGRガスを排気通路3から吸気通路2へ導入するので、EGR制御を実行するためには吸気側が排気側よりも低圧でなければならない。このため、従来からよく知られているハイプレッシャー・EGR装置(HP-EGR装置ともいう)、すなわち、EGRガスをスロットルバルブより下流側に再循環させるEGR装置では、過給領域において吸気側が正圧となるためEGR制御を実行できなかった。
 これに対し、LP-EGR装置はコンプレッサ5Aよりも上流側にEGRガスを再循環させるので、過給領域であってもEGR制御を行うことが可能であり、過給機付き内燃機関の燃費性能向上に適した装置といえる。
 ただし、内燃機関1の排気圧力は脈動するので、HP-EGR装置に比べてEGR弁10の前後差圧が小さいLP-EGR装置では、排気の平均圧力が低くなる低負荷領域において、排気側の圧力が吸気側の圧力よりも低くなるおそれがある。この場合、EGRガスが逆流して、以下に述べる目標EGR量を達成することが困難となってしまう。そこで、EGRガスの逆流を防ぐために、ADM/V19によってADM/V19とコンプレッサ5Aとの間に負圧を生成する。
 次に、コントローラ20によるADM/V19とEGR/V10とTH/V4の制御について説明する。
 EGR制御を実行する場合、内燃機関1には大気中から導入する新気と、EGRガスと、が流入する。
 新気量の目標値(目標新気量)は、アクセル開度に応じて定まる。例えば、内燃機関1の負荷ごとの目標新気量を設定したテーブルを予め作成してコントローラ20に記憶させておき、負荷を用いてテーブルを検索することにより設定する。本実施形態では、負荷を示す指標として、アクセル開度を用いる。
 EGRガス量の目標値(目標EGRガス量)は、目標新気量と、新気量に対するEGRガス量の割合であるEGR率の目標値(目標EGR率)とに応じて定まる。目標EGR率は、運転に応じて定まる。例えば、運転点ごとの目標EGR率を設定したマップを予め作成してコントローラ20に記憶しておき、検出した回転速度と負荷とを用いてマップ検索する。
 コントローラ20は、内燃機関1の運転点毎に定まる目標新気量に応じてTH/V4の目標開度を設定し、これに基づいてTH/V4の開度を制御する。また、コントローラ20は、内燃機関1の運転点毎に定まる目標EGRガス量に応じてEGR/V10の目標開度を設定し、これに基づいてEGR/V10の開度を制御する。ただし、ADM/V19の開度が変化すると、ADM/V19とTH/V4との間の吸気通路2の圧力(以下、吸気圧力ともいう)が変化する。そして、吸気圧力が変化すれば、TH/V4の開度やEGR/V10の開度が一定であっても新気量及びEGRガス量が変化する。すなわち、EGR制御を精度良く実行するためには、ADM/V19とEGR/V10とTH/V4とをいかに制御するかが重要となる。
 図2は、本実施形態におけるADM/V19とEGR/V10とTH/V4の制御の基本的な考え方を示すブロック図である。図2は、あくまでも基本的な考え方を示すものであり、具体的な制御内容は後述する図3に示す。
 本実施形態では、ADM/V19の作動要求がある場合、つまり上述した通り排気の平均圧力が低く、排気側の圧力が吸気側の圧力よりも低くなるおそれがある低負荷領域でEGR制御を実行する場合に、コントローラ20は目標吸気圧力設定部にて目標吸気圧力を設定する。また、コントローラ20は、上述した目標新気量及び目標EGRガス量を設定する。
 そして、コントローラ20は、ADM/V19とEGR/V10とTH/V4のそれぞれの目標開度を、目標吸気圧と目標新気量と目標EGRガス量とに基づいて設定する。これにより、目標吸気圧力を実現しつつ、目標新気量及び目標EGRガス量を精度良く制御することができる。
 図3は、上述した考え方に基づいてコントローラ20が実行する制御ルーチンのフローチャートである。当該制御ルーチンは、EGR制御を実行する場合に、例えば数ミリ秒程度の短い間隔で繰り返し実行される。なお、EGR制御の非実行時には、ADM/V19は全開になっている。
 ステップS100において、コントローラ20はアクセル開度APO及び内燃機関1の回転速度NEを読み込む。上述した通り、アクセル開度APOは内燃機関1の負荷の大きさを示す指標として用いる。
 ステップS110において、コントローラ20は目標新気量と目標EGRガス率とを算出する。目標新気量は、上述したように予め作成したテーブルを検索することにより算出される。当該テーブルでは、アクセル開度APOが大きくなるほど大きな目標新気量が設定されている。
 目標EGRガス率は、上述したように予め作成したマップを検索することにより算出される。図4は、目標EGR率マップの一例である。負荷と回転速度とで定まる運転領域の一部にEGR領域が設定されている。そして、EGR領域内は、回転速度が低くなるほど、そして負荷が小さくなるほど、高い目標EGR率が設定されている。
 ステップS120において、コントローラ20は、目標新気量に目標EGR率を乗算することにより、目標EGRガス量を算出する。
 ステップS130において、コントローラ20は目標総ガス量を算出する。目標総ガス量は、目標新気量と目標EGRガス量との和である。
 ステップS140において、コントローラ20は以下の方法により目標吸気圧力を設定する。まず、コントローラ20は、ステップS100で読み込んだアクセル開度APOと回転速度NEとから定まる運転点における新気量が燃焼したと仮定して、排気通路3の圧力(以下、排気圧力ともいう)を算出する。そして、算出された排気圧力の状態においてEGR制御を実行するために必要な吸気圧力を目標吸気圧力Ptとして設定する。例えば、算出された排気圧力から数パスカル程度低い圧力を目標吸気圧力Ptとする。なお、上述した演算を行わずに、大気圧に対して数パスカル低い圧力を目標吸気圧力Ptとしてもよい。また、算出された排気圧力が十分に高い場合、目標吸気圧Ptがほぼ大気圧となり、ADM/V19が全開状態で良いこともある。
 コントローラ20は、目標吸気圧力Ptだけでなく、現在の状態(ほぼ大気圧)から目標吸気圧力Ptに移行するまでの、吸気圧力の変化のプロフィールも設定する。図5はプロフィールの一例であり、タイミングT1でEGR制御を開始する場合を示している。タイミングT1以前はEGR制御を実行していないので、ADM/V19は全開である。したがって、吸気圧力はほぼ大気圧である。そして、タイミングT1からタイミングT2にかけて、吸気圧力が大気圧から目標吸気圧力Ptまで変化している。タイミングT1からタイミングT2までは、例えばコンマ数秒程度とする。このような目標吸気圧力Ptの変化のプロフィールを設定することで、ADM/V19が作動してから実吸気圧力が変化するまでの遅れ時間による目標吸気圧力Ptと実吸気圧力との乖離を抑制できる。その結果、当該乖離に起因する制御エラーを防止できる。
 ステップS150において、コントローラ20は目標総ガス量と目標吸気圧力とに基づいて、ADM/V19の開口面積とEGR/V10の開口面積との和である総開口面積を以下のように算出する。
 内燃機関1に流入する総ガス量は、ADM/V19を通過した新気量と、EGR/V10を通過したEGRガス量との和である。また、ADM/V19で負圧を生成する必要がある程度に排気圧力が低い状態では、EGR/V10の前後差圧とADM/V19の前後差圧とが等しいとみなすことができる。そこで、バルブを通過する流体に関する一般的に知られた式(1)において、流量Qを目標総ガス量、差圧Δpを目標吸気圧力と大気圧との差圧として有効断面積Aを算出し、これを総開口面積とする。
  Q=Cv×A×(2・Δp/ρ)1/2   ・・・(1)
  Q:流量、Cv:流量係数、A:有効断面積、Δp:差圧、ρ:密度
 ステップS160において、コントローラ20はEGR/V10、ADM/V19及びTH/V4のそれぞれの目標開口面積を、以下のように算出する。
 コントローラ20は、まずEGR/V10の目標開口面積を算出する。ADM/V19が全開状態であると仮定したときに、内燃機関1の負荷(例えばアクセル開度APO)と回転速度NEで定まる運転点毎に、目標EGRガス量を与えるEGR/V10の開口面積を予め調べて、目標EGR/V開口面積としてコントローラ20に記憶しておく。そして、コントローラ20は、ステップS140で設定したプロフィールに基づいて目標吸気圧力と現在の吸気圧力に応じて目標EGR/V開口面積を補正する。
 ここで、上記補正について説明する。目標吸気圧力が低いほど、排気通路との差圧が大きくなりEGRガスが還流しやすくなる。したがって、吸気圧力が目標吸気圧力に到達したときのEGR/V開口面積は、目標吸気圧力が低いほど小さくなるように補正される。同様に、吸気圧力が目標吸気圧力に到達する過程では、排気通路との差圧が徐々に大きくなるので、上記補正は開口面積を徐々に小さくする方向の補正になる。
 図6は、縦軸を吸気圧力が目標吸気圧力に到達したときの目標EGR/V開口面積とし、横軸を目標吸気圧力として、上記補正を行った後の目標EGR/V開口面積と目標吸気圧力との関係を示す図である。図6では目標吸気圧力に対する目標EGR/V開度の特性線が直線になっているが、これはあくまでも一例であり、目標吸気圧力が高くなるほど目標EGR/V開度が単調増加する曲線になることもある。
 なお、EGR/V10の開口面積と開度とには、開度が大きくなるほど開口面積も大きくなるという相関関係があるので、図6の縦軸を目標EGR/V開度に置き換えることもできる。すなわち、上記補正を、吸気圧力が目標吸気圧力に到達したときのEGR/V開度を目標吸気圧力が低いほど小さくなるように補正する、と換言することができる。
 次にコントローラ20は、総開口面積から目標EGR/V開口面積を減算し、これを目標ADM/V開口面積とする。
 目標TH/V開口面積の算出方法は、目標EGR/V開口面積の算出方法と基本的に同様である。すなわち、コントローラ20は、ADM/V19が全開状態であると仮定したときに、内燃機関1の負荷(例えばアクセル開度APO)と回転速度NEで定まる運転点毎に、目標新気量を与えるTH/V4の開口面積を目標TH/V開口面積として記憶しておく。そして、コントローラ20は目標TH/V開口面積を目標吸気圧力と現在の吸気圧力に応じて補正する。
 ここで、上記補正について説明する。目標吸気圧力が低いほどADM/V19の開度が小さく制御されて新気が通過しづらくなる。したがって、吸気圧力が目標吸気圧力に到達したときのTH/V開口面積は、目標吸気圧力が低いほど大きくなるように補正される。同様に、吸気圧力が目標吸気圧力に到達する過程ではADM/V19の開度が徐々に小さくなるので、当該補正は開口面積を徐々に増大させる方向の補正になる。
 図7は、縦軸を吸気圧力が目標吸気圧力に到達したときの目標TH/V開口面積とし、横軸を目標吸気圧力として、上記補正を行った後の目標TH/V開口面積と目標吸気圧力との関係を示す図である。図7では目標吸気圧力に対する目標TH/V開度の特性線が直線になっているが、これはあくまでも一例であり、目標吸気圧力が高くなるほど目標TH/V開度が単調減少する曲線になることもある。
 なお、TH/V4の開口面積と開度とには、開度が大きくなるほど開口面積も大きくなるという相関関係があるので、図7の縦軸を目標TH/V開度に置き換えることもできる。すなわち、上記補正を、吸気圧力が目標吸気圧力に到達したときのTH/V開度を目標吸気圧力が低いほど大きくなるように補正する、と換言することができる。
 コントローラ20は、上記の通りEGR/V10、ADM/V19及びTH/V4のそれぞれの目標開口面積を算出したら、ステップS170において、EGR/V10、ADM/V19及びTH/V4を、それぞれの目標開口面積となるように制御する。当該制御は、例えば、予め調べた各バルブ10、19、4の開度と開口面積との関係に基づいて目標開口面積を目標開度に変換し、各バルブ10、19、4の開度を目標開度に一致させるものである。
 図8は、図3の制御ルーチンの作用効果を説明するための図であり、縦軸を圧力、横軸を時間として、内燃機関1の低負荷領域における排気圧力と吸気圧力との関係を示している。
 低負荷領域のように排気圧力が低い状態では、図8に示すように排気脈動の谷の部分で排気圧力が大気圧より低くなることがある。ADM/V19を備えない場合、またはADM/V19が全開の場合には、LP-EGR装置の吸気圧力は吸気脈動による変化はあるものの、ほぼ大気圧とみなすことができる。このため、排気脈動の谷の部分では排気圧力が吸気圧力より低くなることがある(図中の斜線部)。このように排気圧力が吸気圧力より低くなると、EGRガスは吸気側から排気側へと逆流するので、正確なEGR制御を行うことが困難になる。
 これに対し本実施形態では、ADM/V19を用いて吸気圧力を低下させることで、排気圧力が吸気圧力より低くなることを防止するので、EGRガスの逆流が生じることはない。さらに、吸気圧力を低下させる際には、目標吸気圧力と目標総ガス量とに基づいて、つまり目標吸気圧力に基づくADM/V19の開度(開口面積)の影響を考慮してADM/V19とEGR/V10とTH/V4との開度を制御するので、ドライバが要求するトルクを確保しつつ、精度良くEGR制御を実行することができる。
 以上のように本実施形態では、LP-EGR装置を備える内燃機関1の制御方法として、コントローラ20はADM/V19とTH/V4との間の吸気通路2の吸気圧力の目標値である目標吸気圧力と、大気中から導入する新気量の、内燃機関1の運転点に応じた目標値である目標新気量とを設定する。さらにコントローラ20は、EGR通路8を介して排気通路3から吸気通路2へ再循環させるEGRガス量の、内燃機関1の運転点に応じた目標値である目標EGRガス量を設定する。そして、コントローラ20は、目標新気量と目標EGRガス量との和を目標総ガス量として、目標吸気圧力と目標総ガス量とに基づいて、TH/V4とEGR/V10とADM/V19とを制御する。これにより、ドライバから要求されるトルクを確保しつつ、精度良くEGR制御を行うことができる。
 本実施形態では、コントローラ20は目標吸気圧力と目標総ガス量とに基づいて、EGR/V10の目標開口面積とADM/V19の目標開口面積との和である目標総開口面積を設定する。さらにコントローラ20は、ADM/V19が全開であると仮定して、目標EGRガス量を実現するためのEGR/V10の開口面積である目標EGR弁開口面積を設定する。そして、コントローラ20は目標総開口面積から目標EGR弁開口面積を減算したものをADM/V19の開口面積の目標値である目標ADM/V開口面積として設定する。これにより、ADM/V19の動きとEGR/V10の動きを協調させることができ、その結果、目標吸気圧力を実現しつつ、目標EGR率及び目標新気量を実現することができる。
 本実施形態では、コントローラ20は目標吸気圧力が低いほど、TH/V目標開度が大きくなるように、EGR/V目標開度が小さくなるように、それぞれ補正する。これにより、目標吸気圧力に応じて精度良く新気量及びEGRガス量を制御することができる。
 本実施形態では、コントローラ20は吸気圧力が低くなるほど目標EGR弁開口面積を小さくなるように補正する。換言すると、コントローラ20は吸気圧力が目標吸気圧力に到達するまでのプロフィールに応じて目標EGR/V開口面積を補正する。これにより、目標吸気圧力に到達するまでの過渡状態においても、精度良くEGR制御を実行することができる。
 本実施形態では、コントローラ20は吸気圧力が低くなるほどTH/V4の開口面積を大きくなるように補正する。換言すると、コントローラ20は吸気圧力が目標吸気圧力に到達するまでのプロフィールに応じて目標TH/V開口面積を補正する。これにより、目標吸気圧力に到達するまでの過渡状態においても、総ガス量を精度良く制御することができる。
 特に、本実施形態では、コントローラ20は吸気圧力が目標吸気圧力に到達するまでのプロフィールに応じて目標EGR/V開口面積および目標TH/V開口面積を補正するので、過渡状態においても総ガス量、EGRガス量と共に目標新気量を精度良く制御し、ドライバから要求されるトルクを実現することができる。
 以上、本発明の実施形態について説明したが、上記実施形態は本発明の適用例の一部を示したに過ぎず、本発明の技術的範囲を上記実施形態の具体的構成に限定する趣旨ではない。

Claims (5)

  1.  内燃機関の吸気制御方法において、
     前記内燃機関は、
     吸気通路に設けられ、前記内燃機関の運転点ごとに定まる目標新気量に応じて目標開度が設定される吸気絞り弁と、
     前記吸気通路の前記吸気絞り弁よりも吸気流れの上流側と排気通路とを連通するEGR通路と、
     前記EGR通路に設けられ、前記運転点ごとに定まる目標EGRガス量に応じて目標開度が設定されるEGR弁と、
     前記吸気通路の前記EGR通路との合流部よりも吸気流れの上流側に設けられた負圧生成弁と、
    を備え、
     前記吸気制御方法は、
     前記負圧生成弁と前記吸気絞り弁との間の前記吸気通路の吸気圧力の目標値であって、前記運転点毎に定まる排気圧力の状態においてEGR制御を実行するために必要な吸気圧力である目標吸気圧力を設定し、
     前記目標吸気圧力と前記目標新気量と前記目標EGRガス量とに基づいて、前記EGR弁の目標開口面積と前記負圧生成弁の目標開口面積との和である目標総開口面積を設定し、
     前記負圧生成弁が全開であると仮定して、前記目標EGRガス量を実現するための前記EGR弁の開口面積である目標EGR弁開口面積を設定し、
     前記目標総開口面積から前記目標EGR弁開口面積を減算したものを前記負圧生成弁の開口面積の目標値である目標負圧生成弁開口面積として設定する、
    内燃機関の吸気制御方法。
  2.  請求項1に記載の内燃機関の吸気制御方法において、
     前記吸気制御方法は、
     前記目標吸気圧力が低いほど、前記吸気絞り弁の目標開度を大きくするように、前記EGR弁の目標開度を小さくするように、補正する、
    内燃機関の吸気制御方法。
  3.  請求項2に記載の内燃機関の吸気制御方法において、
     前記目標吸気圧力が低くなるほど、前記目標EGR弁開口面積を小さくするように補正する、内燃機関の吸気制御方法。
  4.  請求項2または3に記載の内燃機関の吸気制御方法において、
     前記吸気圧力が低くなるほど、前記吸気絞り弁の開口面積を大きくするように補正する、内燃機関の吸気制御方法。
  5.  吸気通路に設けられ、内燃機関の運転点ごとに定まる目標新気量に応じて目標開度が設定される吸気絞り弁と、
     前記吸気通路の前記吸気絞り弁よりも吸気流れの上流側と排気通路とを連通するEGR通路と、
     前記EGR通路に設けられ、前記運転点ごとに定まる目標EGRガス量に応じて目標開度が設定されるEGR弁と、
     前記吸気通路の前記EGR通路との合流部よりも吸気流れの上流側に設けられた負圧生成弁と、
     前記吸気絞り弁と前記EGR弁と前記負圧生成弁とを制御する制御部と、
    を備える内燃機関の吸気制御装置において、
     前記制御部は、
     前記負圧生成弁と前記吸気絞り弁との間の前記吸気通路の吸気圧力の目標値であって、前記運転点毎に定まる排気圧力の状態においてEGR制御を実行するために必要な吸気圧力である目標吸気圧力を設定し、
     前記目標吸気圧力と前記目標新気量と前記目標EGRガス量とに基づいて、前記EGR弁の目標開口面積と前記負圧生成弁の目標開口面積との和である目標総開口面積を設定し、
     前記負圧生成弁が全開であると仮定して、前記目標EGRガス量を実現するための前記EGR弁の開口面積である目標EGR弁開口面積を設定し、
     前記目標総開口面積から前記目標EGR弁開口面積を減算したものを前記負圧生成弁の開口面積の目標値である目標負圧生成弁開口面積として設定する、
    内燃機関の吸気制御装置。
PCT/JP2017/003624 2017-02-01 2017-02-01 内燃機関の吸気制御方法及び吸気制御装置 WO2018142510A1 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
BR112019015674-7A BR112019015674B1 (pt) 2017-02-01 2017-02-01 Método de controle de admissão e dispositivo de controle de admissão para motor de combustão interna
PCT/JP2017/003624 WO2018142510A1 (ja) 2017-02-01 2017-02-01 内燃機関の吸気制御方法及び吸気制御装置
JP2018565142A JP6838611B2 (ja) 2017-02-01 2017-02-01 内燃機関の吸気制御方法及び吸気制御装置
CN201780082624.4A CN110168212B (zh) 2017-02-01 2017-02-01 内燃机的进气控制方法以及进气控制装置
EP17894984.8A EP3578787B8 (en) 2017-02-01 2017-02-01 Intake control method and intake control device for internal combustion engine
MX2019008298A MX2019008298A (es) 2017-02-01 2017-02-01 Metodo de control de admision y dispositivo de control de admision para motor de combustion interna.
RU2019124470A RU2730342C1 (ru) 2017-02-01 2017-02-01 Способ управления впуском и устройство управления впуском для двигателя внутреннего сгорания
MYPI2019003910A MY195559A (en) 2017-02-01 2017-02-01 Intake Control Method And Intake Control Device For Internal Combustion Engine
US16/476,952 US10883429B2 (en) 2017-02-01 2017-02-01 Intake control method and intake control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/003624 WO2018142510A1 (ja) 2017-02-01 2017-02-01 内燃機関の吸気制御方法及び吸気制御装置

Publications (1)

Publication Number Publication Date
WO2018142510A1 true WO2018142510A1 (ja) 2018-08-09

Family

ID=63039503

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/003624 WO2018142510A1 (ja) 2017-02-01 2017-02-01 内燃機関の吸気制御方法及び吸気制御装置

Country Status (9)

Country Link
US (1) US10883429B2 (ja)
EP (1) EP3578787B8 (ja)
JP (1) JP6838611B2 (ja)
CN (1) CN110168212B (ja)
BR (1) BR112019015674B1 (ja)
MX (1) MX2019008298A (ja)
MY (1) MY195559A (ja)
RU (1) RU2730342C1 (ja)
WO (1) WO2018142510A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112324582A (zh) * 2020-11-04 2021-02-05 潍柴动力股份有限公司 车辆的排气控制方法、装置及设备

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11313291B2 (en) * 2020-08-03 2022-04-26 GM Global Technology Operations LLC Secondary throttle control systems and methods
CN111911304B (zh) * 2020-08-21 2022-01-04 安徽江淮汽车集团股份有限公司 电子节气门控制系统及方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS511849B1 (ja) 1972-01-21 1976-01-21
JP2002332872A (ja) * 2001-05-01 2002-11-22 Denso Corp 内燃機関の制御装置
JP3511849B2 (ja) * 1997-06-10 2004-03-29 日産自動車株式会社 エンジンの吸気制御装置
JP2008248729A (ja) * 2007-03-29 2008-10-16 Honda Motor Co Ltd 内燃機関のegr制御装置
JP2012002123A (ja) * 2010-06-16 2012-01-05 Honda Motor Co Ltd 内燃機関のegr制御装置
JP2015121167A (ja) * 2013-12-24 2015-07-02 トヨタ自動車株式会社 内燃機関の制御装置
JP2016211430A (ja) * 2015-05-08 2016-12-15 本田技研工業株式会社 内燃機関の冷却制御装置
US20170009682A1 (en) * 2015-07-10 2017-01-12 Honda Motor Co., Ltd. Control device for internal combustion engine
US20170009679A1 (en) * 2015-07-06 2017-01-12 Ford Global Technologies, Llc Method for crankcase ventilation in a boosted engine

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2829711A (en) * 1954-11-02 1958-04-08 Alfred F Hiller Reversible awning
JPH0814110A (ja) * 1994-06-29 1996-01-16 Nippondenso Co Ltd 内燃機関の制御装置
JPH10184408A (ja) * 1996-12-26 1998-07-14 Nissan Motor Co Ltd エンジンの吸気制御装置
DE69826067T2 (de) 1997-06-10 2005-01-20 Nissan Motor Co., Ltd., Yokohama Brennkraftmaschine
US6227182B1 (en) * 1998-06-09 2001-05-08 Nissan Motor Co., Ltd. Exhaust gas recirculation control system for internal combustion engine
JP3678057B2 (ja) * 1999-06-15 2005-08-03 日産自動車株式会社 排気圧検出装置およびエンジンの制御装置
JP4107506B2 (ja) * 2005-09-21 2008-06-25 三菱電機株式会社 内燃機関制御装置
JP4225322B2 (ja) 2006-01-27 2009-02-18 トヨタ自動車株式会社 内燃機関の排気還流装置
JP4301296B2 (ja) * 2007-01-18 2009-07-22 トヨタ自動車株式会社 内燃機関の排気再循環システム
ES2931034T3 (ja) * 2009-12-23 2022-12-23
JP5075229B2 (ja) 2010-06-18 2012-11-21 本田技研工業株式会社 内燃機関のegr制御装置
JP5459106B2 (ja) * 2010-06-29 2014-04-02 マツダ株式会社 自動車搭載用ディーゼルエンジン
US8056340B2 (en) * 2010-08-17 2011-11-15 Ford Global Technologies, Llc EGR mixer for high-boost engine systems
KR101198811B1 (ko) * 2011-06-07 2012-11-07 기아자동차주식회사 저압 이지알 시스템 및 그 제어방법
US9759165B2 (en) * 2012-07-18 2017-09-12 Nissan Motor Co., Ltd. Internal combustion engine
CN104487692B (zh) * 2012-08-01 2016-10-26 日产自动车株式会社 内燃机的控制装置
CN104884771B (zh) 2012-12-26 2018-11-02 斗山英维高株式会社 Egr控制方法及装置
FR3009020B1 (fr) * 2013-07-26 2017-11-03 Valeo Systemes De Controle Moteur Procede et dispositif pour la determination de la concentration des gaz d'echappement recirculant a l'entree du repartiteur d'admission d'un moteur thermique
JP6090088B2 (ja) * 2013-09-30 2017-03-08 マツダ株式会社 エンジンの排気ガス還流制御装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS511849B1 (ja) 1972-01-21 1976-01-21
JP3511849B2 (ja) * 1997-06-10 2004-03-29 日産自動車株式会社 エンジンの吸気制御装置
JP2002332872A (ja) * 2001-05-01 2002-11-22 Denso Corp 内燃機関の制御装置
JP2008248729A (ja) * 2007-03-29 2008-10-16 Honda Motor Co Ltd 内燃機関のegr制御装置
JP2012002123A (ja) * 2010-06-16 2012-01-05 Honda Motor Co Ltd 内燃機関のegr制御装置
JP2015121167A (ja) * 2013-12-24 2015-07-02 トヨタ自動車株式会社 内燃機関の制御装置
JP2016211430A (ja) * 2015-05-08 2016-12-15 本田技研工業株式会社 内燃機関の冷却制御装置
US20170009679A1 (en) * 2015-07-06 2017-01-12 Ford Global Technologies, Llc Method for crankcase ventilation in a boosted engine
US20170009682A1 (en) * 2015-07-10 2017-01-12 Honda Motor Co., Ltd. Control device for internal combustion engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112324582A (zh) * 2020-11-04 2021-02-05 潍柴动力股份有限公司 车辆的排气控制方法、装置及设备

Also Published As

Publication number Publication date
CN110168212B (zh) 2022-03-11
CN110168212A (zh) 2019-08-23
BR112019015674B1 (pt) 2024-01-09
US10883429B2 (en) 2021-01-05
EP3578787A1 (en) 2019-12-11
US20190331035A1 (en) 2019-10-31
JP6838611B2 (ja) 2021-03-03
BR112019015674A2 (pt) 2020-04-28
EP3578787A4 (en) 2020-02-19
EP3578787B8 (en) 2021-05-12
MX2019008298A (es) 2019-09-04
RU2730342C1 (ru) 2020-08-21
EP3578787B1 (en) 2021-04-07
MY195559A (en) 2023-02-02
JPWO2018142510A1 (ja) 2019-11-07

Similar Documents

Publication Publication Date Title
JP3861046B2 (ja) 内燃機関のegrガス流量推定装置
US8001953B2 (en) Exhaust gas recirculation system for internal combustion engine and method for controlling the same
JP4715799B2 (ja) 内燃機関の排気還流装置
US10309298B2 (en) Control device of an engine
KR101563831B1 (ko) 내연 기관의 제어 장치
WO2018142510A1 (ja) 内燃機関の吸気制御方法及び吸気制御装置
US6705303B2 (en) Air-fuel ratio control apparatus and method for internal combustion engine
JP6860313B2 (ja) エンジンの制御方法、及び、エンジン
CN109072823B (zh) 内燃机的egr控制装置和egr控制方法
JP4228953B2 (ja) 内燃機関の制御装置
JP3861621B2 (ja) ディーゼルエンジンの燃料噴射制御装置
JP2007303380A (ja) 内燃機関の排気制御装置
JP5556891B2 (ja) 内燃機関の制御装置
JP5111534B2 (ja) 内燃機関のegr制御装置
JP6458479B2 (ja) 排気還流制御装置
JP5310954B2 (ja) 内燃機関の制御装置
JP2005299570A (ja) 圧縮着火内燃機関の予混合燃焼制御システム
JP2020041435A (ja) 排気再循環装置の動作制御方法及び排気再循環装置
JP2019152122A (ja) 内燃機関システム
JP2015021456A (ja) 内燃機関の制御装置
JP2008019730A (ja) 内燃機関の排気還流装置
JP6330749B2 (ja) エンジンの制御装置
JP2010255546A (ja) 過給機付き内燃機関
JP2015102006A (ja) 吸入空気量推定装置
JP2016176386A (ja) 可変容量型ターボチャージャーの制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17894984

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018565142

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112019015674

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2017894984

Country of ref document: EP

Effective date: 20190902

ENP Entry into the national phase

Ref document number: 112019015674

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20190730