WO2018135217A1 - 共重合体及びその製造方法、並びに共重合体組成物 - Google Patents

共重合体及びその製造方法、並びに共重合体組成物 Download PDF

Info

Publication number
WO2018135217A1
WO2018135217A1 PCT/JP2017/045555 JP2017045555W WO2018135217A1 WO 2018135217 A1 WO2018135217 A1 WO 2018135217A1 JP 2017045555 W JP2017045555 W JP 2017045555W WO 2018135217 A1 WO2018135217 A1 WO 2018135217A1
Authority
WO
WIPO (PCT)
Prior art keywords
copolymer
molecular weight
parts
polymerizable compound
cellulose
Prior art date
Application number
PCT/JP2017/045555
Other languages
English (en)
French (fr)
Inventor
明石 量磁郎
琢朗 西本
徳仁 古賀
Original Assignee
新中村化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新中村化学工業株式会社 filed Critical 新中村化学工業株式会社
Priority to JP2018526735A priority Critical patent/JP6542476B2/ja
Priority to KR1020187032757A priority patent/KR102056557B1/ko
Publication of WO2018135217A1 publication Critical patent/WO2018135217A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F216/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical
    • C08F216/36Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical by a ketonic radical
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/08Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated side groups
    • C08F290/10Polymers provided for in subclass C08B
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F299/00Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers
    • C08F299/02Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/14Homopolymers or copolymers of esters of esters containing halogen, nitrogen, sulfur, or oxygen atoms in addition to the carboxy oxygen

Definitions

  • the present invention relates to a copolymer, a method for producing the same, and a copolymer composition containing the copolymer.
  • MLCC multilayer ceramic capacitor
  • An example of the production of MLCC is as follows. First, a dielectric ceramic paste is applied on a releasable sheet to produce a green sheet having a dielectric layer. Next, an electrode paste (sometimes referred to as “conductive paste”) is printed on the dielectric layer to form an electrode pattern (electrode layer). Further, the laminate of the dielectric layer and the electrode layer is peeled off from the release sheet, and a plurality of the laminates are laminated and pressed, and then cut into chips. Next, the obtained chip is heated to several hundred ° C. to 1000 ° C. or higher and fired to produce a sintered body chip in which a dielectric layer and an electrode layer are laminated in multiple layers. Finally, external electrodes and the like are formed.
  • the manufacturing process of a silicon-based solar cell includes a printing and firing process using an electrode paste in forming a collector electrode.
  • Ceramic paste and electrode paste used for manufacturing electronic components such as MLCC are resin compositions containing a binder and an organic solvent, which are polymer materials, in which inorganic particles are uniformly dispersed.
  • the inorganic particles dielectric particles such as barium titanate are used in the ceramic paste, and conductive metal particles such as nickel are used in the electrode paste.
  • a binder polyvinyl butyral has been mainly used for ceramic pastes, and ethyl cellulose has been mainly used for electrode pastes [Japanese Patent Publication No. 04-049766 (Patent Document 1)].
  • a paste such as a ceramic paste or an electrode paste, particularly a binder contained therein has the following problems, for example. 1) Improvement of thermal decomposability (combustibility). If ash such as carbon remains even after the thermal decomposition treatment by firing, the electrical characteristics of MLCC are deteriorated and delamination is caused. 2) Improved printability. In recent years, electrode patterns formed by screen printing have been miniaturized and thinned, and the pattern size has fallen below 100 ⁇ m. For this reason, in the electrode paste, a binder that does not cause a so-called stringing phenomenon is required.
  • the yarn wrinkle phenomenon is a phenomenon in which a paste used in a printing process is stretched under the influence of a binder polymer and a thin yarn is wound, which causes a defective product. 3) Improvement of uniform dispersibility of inorganic particles, film strength (strength of layer formed from paste) and adhesion between layers. These are required characteristics accompanying the thinning of each layer constituting the chip.
  • Patent Document 2 Japanese Patent No. 4347440 (Patent Document 2) and Japanese Patent No. 5299904 (Patent Document 3) disclose a technique for improving physical properties such as film strength by blending polyvinyl butyral with ethyl cellulose in an electrode paste.
  • Patent Document 3 discloses a technique for improving physical properties such as film strength by blending polyvinyl butyral with ethyl cellulose in an electrode paste.
  • Patent Document 4 describes that a reaction product of ethyl cellulose, polyvinyl butyral, and a binder that binds these is used as a binder.
  • the binder blended with ethyl cellulose and polyvinyl butyral described in Patent Documents 2 and 3 has poor compatibility with these two polymers, and is an inorganic material when inorganic particles such as metals, ceramics, and glass are mixed to form a paste.
  • the dispersibility of the particles is low. As a result, the coating film is likely to be defective or the uniformity of the coating film is likely to be reduced.
  • Patent Document 4 compatibility is improved by chemically bonding ethyl cellulose and polyvinyl butyral. However, since the bonding efficiency between these two types of polymers is not high, the uniformity of the coating film is still improved. There is room for improvement.
  • An object of the present invention is to provide a binder having good thermal decomposability, adhesion, coating film quality, and printability, and a composition containing the same.
  • the present invention provides the following copolymer, a method for producing the same, and a copolymer composition.
  • a copolymer comprising a structural unit (a) derived from a cellulose-based polymerizable compound having a polymerizable unsaturated group and a structural unit (b) derived from a polyvinyl acetal-based polymerizable compound having a polymerizable unsaturated group Coalescence.
  • [5] including a step of polymerizing a cellulose polymerizable compound having a polymerizable unsaturated group and a polyvinyl acetal polymerizable compound having a polymerizable unsaturated group in an organic solvent in the presence of a polymerization initiator.
  • a method for producing a copolymer including a step of polymerizing a cellulose polymerizable compound having a polymerizable unsaturated group and a polyvinyl acetal polymerizable compound having a polymerizable unsaturated group in an organic solvent in the presence of a polymerization initiator.
  • copolymer composition comprising:
  • a copolymer having good thermal decomposability, adhesion, coating film quality, and printability, and a copolymer composition containing the same can be provided. According to the copolymer, a highly strong film can be formed.
  • a copolymer composition containing the copolymer as a binder is suitable as a paste (or slurry) such as a ceramic paste or an electrode paste. The paste (or slurry) can be used for the production of electronic components and substrates.
  • the copolymer according to the present invention is a polymer material suitably used as a binder of a copolymer composition (paste or slurry), and is a structural unit derived from a cellulose-based polymerizable compound having a polymerizable unsaturated group (a). And a structural unit (b) derived from a polyvinyl acetal polymerizable compound having a polymerizable unsaturated group.
  • the cellulose polymerizable compound and the polyvinyl acetal polymerizable compound are polymerized by a polymerizable unsaturated group to form the structural unit (a) and the structural unit (b) in the copolymer, respectively.
  • a copolymer can contain 1 type, or 2 or more types of structural units (a), and can also include 1 type, or 2 or more types of structural units (b).
  • the cellulose polymerizable compound having a polymerizable unsaturated group forming the structural unit (a) is a cellulose derivative having a polymerizable unsaturated group.
  • the cellulose derivative refers to a modified cellulose obtained by chemically modifying a part of hydroxy groups of cellulose that is a natural polymer.
  • the chemical modification of the hydroxy group is not particularly limited, and examples thereof include alkyl etherification, hydroxyalkyl etherification, esterification and the like of the hydroxy group.
  • the cellulose derivative has at least one hydroxy group in one molecule.
  • a cellulose derivative may use only 1 type and may use 2 or more types together.
  • Cellulose derivatives include methylcellulose, ethylcellulose, propylcellulose, butylcellulose, hydroxyethylcellulose, hydroxypropylcellulose, hydroxypropylmethylcellulose, hydroxybutylmethylcellulose, cellulose acetate (acetylcellulose, diacetylcellulose, triacetylcellulose, etc.), cellulose acetate propionate , Cellulose acetate butyrate, nitrocellulose and the like.
  • the cellulose derivative is preferably soluble in an organic solvent.
  • the cellulose derivative is more preferably ethylcellulose.
  • the number average molecular weight of the cellulose derivative is preferably in the range of 50,000 to 150,000, preferably in the range of 10,000 to 100,000 in terms of standard polystyrene conversion by gel permeation chromatography (GPC). It is more preferable.
  • GPC gel permeation chromatography
  • the number average molecular weight is less than 50,000, the solution viscosity becomes extremely low and it becomes difficult to adjust the viscosity of the copolymer composition (paste or slurry), and the copolymer composition is applied and dried. There exists a possibility that the intensity
  • the number average molecular weight exceeds 150,000 the solution viscosity becomes extremely large, it may be difficult to adjust the viscosity of the copolymer composition, and printability may be deteriorated.
  • the cellulose derivative has at least one hydroxy group in one molecule.
  • This hydroxy group can be used for introducing a polymerizable unsaturated group.
  • a specific example of the polymerizable unsaturated group is a polymerizable carbon-carbon double bond, and preferred examples thereof are a (meth) acrylate group ((meth) acryloyloxy group), a vinyl group, and an allyl group.
  • (meth) acrylate” means acrylate and / or methacrylate
  • “(meth)” in the case of (meth) acryl, (meth) acryloyl, etc. has the same meaning.
  • a polymerizable unsaturated group can be introduced into a cellulose derivative by reacting a hydroxyl group of the cellulose derivative with a compound having a group capable of reacting with the hydroxy group and a polymerizable unsaturated group.
  • a cellulose-based polymerizable compound having an unsaturated group can be obtained.
  • the group capable of reacting with a hydroxy group include a carboxyl group, an acid anhydride group, an acid chloride group, an isocyanate group, and a halogen group (halogen atom).
  • Examples of the compound having a group capable of reacting with a hydroxy group and a polymerizable unsaturated group include polymerizable unsaturated groups such as (meth) acrylic acid, maleic acid, 4-vinylbenzoic acid, 4-ethenylbenzoic acid and the like.
  • the compound having a group capable of reacting with a hydroxy group and a polymerizable unsaturated group only one kind may be used, or two or more kinds may be used in combination.
  • reaction esterification reaction, urethanization, etherification reaction, etc.
  • a compound having a group capable of reacting with the hydroxy group and a polymerizable unsaturated group can be adopted. It is also effective to use a reaction catalyst (organic metal compound, metal, amine, condensing agent, etc.).
  • the number of polymerizable unsaturated groups contained in the cellulose polymerizable compound is preferably 10 or less per molecule on average. If the number of polymerizable unsaturated groups exceeds 10 on average per molecule, gelation and insolubilization in an organic solvent accompanying the production of the copolymer are likely to occur.
  • the gelled copolymer is not preferable as a binder for paste or slurry.
  • the number of polymerizable unsaturated groups possessed by the cellulosic polymerizable compound may be an average of 8 or less per molecule, 5 or less, 3 or less, or 2 or less. May be sufficient.
  • the polyvinyl acetal polymerizable compound having a polymerizable unsaturated group forming the structural unit (b) is a polyvinyl acetal having a polymerizable unsaturated group.
  • Polyvinyl acetal is usually a polymer composed of vinyl acetal / vinyl alcohol / vinyl acetate monomer units, and can be obtained by acetalizing polyvinyl alcohol. Specific examples include polyvinyl alcohol butyral (polyvinyl butyral), polyvinyl alcohol formalized (polyvinyl formal), and the like.
  • Polyvinyl acetal may be a commercial product, and various polyvinyl acetals with different butyralization degree, formalization degree, acetyl group amount, hydroxy group amount and molecular weight are sold by Sekisui Chemical Co., Kuraray, Eastman Chemical Co., Ltd. Has been. Polyvinyl acetal may use only 1 type and may use 2 or more types together.
  • the polyvinyl acetal is preferably soluble in an organic solvent.
  • the polyvinyl acetal is more preferably polyvinyl butyral because of its high solubility in organic solvents.
  • the number average molecular weight of polyvinyl acetal is preferably in the range of 50,000 to 150,000, and more preferably in the range of 10,000 to 100,000, in terms of standard polystyrene conversion by GPC.
  • the number average molecular weight is less than 50,000, the solution viscosity becomes extremely low and it becomes difficult to adjust the viscosity of the copolymer composition (paste or slurry), and the copolymer composition is applied and dried. There exists a possibility that the intensity
  • the number average molecular weight exceeds 150,000 the solution viscosity becomes extremely large, it may be difficult to adjust the viscosity of the copolymer composition, and printability may be deteriorated.
  • Polyvinyl acetal has at least one hydroxy group in one molecule. Generally, polyvinyl acetal has 20 to 40 mol% of hydroxy groups as vinyl alcohol units constituting the polymer. This hydroxy group can be used for introducing a polymerizable unsaturated group.
  • a specific example of the polymerizable unsaturated group is a polymerizable carbon-carbon double bond, and preferred examples thereof are a (meth) acrylate group ((meth) acryloyloxy group), a vinyl group, and an allyl group.
  • a polymerizable unsaturated group can be introduced into polyvinyl acetal by reacting a hydroxyl group of polyvinyl acetal with a compound having a group capable of reacting with the hydroxy group and a polymerizable unsaturated group.
  • a polyvinyl acetal polymerizable compound having an unsaturated group can be obtained.
  • the group capable of reacting with a hydroxy group include a carboxyl group, an acid anhydride group, an acid chloride group, an isocyanate group, and a halogen group (halogen atom).
  • the compound having a group capable of reacting with a hydroxy group and a polymerizable unsaturated group are the same as those mentioned in the above-mentioned section “[1] Structural unit (a)”.
  • the compound having a group capable of reacting with a hydroxy group and a polymerizable unsaturated group only one kind may be used, or two or more kinds may be used in combination.
  • reaction esterification, urethanization, etherification reaction, etc.
  • a compound having a group capable of reacting with the hydroxyl group and a polymerizable unsaturated group esterification, urethanization, etherification reaction, etc.
  • reaction catalyst organic metal compound, metal, amine, condensing agent, etc.
  • the number of polymerizable unsaturated groups contained in the polyvinyl acetal polymerizable compound is preferably 10 or less on average per molecule. If the number of polymerizable unsaturated groups exceeds 10 on average per molecule, gelation and insolubilization in an organic solvent accompanying the production of the copolymer are likely to occur.
  • the gelled copolymer is not preferable as a binder for paste or slurry.
  • the number of polymerizable unsaturated groups possessed by the polyvinyl acetal polymerizable compound may be an average of 8 or less per molecule, 5 or less, 3 or less, or 2 The following may be sufficient and one may be sufficient.
  • the copolymer can further contain a structural unit (c) other than the structural unit (a) and the structural unit (b).
  • the copolymer can contain 1 type, or 2 or more types of structural units (c).
  • Examples of the monomer that forms the structural unit (c) include (meth) acrylate (a compound having a (meth) acryloyloxy group).
  • (Meth) acrylate may use only 1 type and may use 2 or more types together.
  • (Meth) acrylates include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, n-butyl (meth) acrylate, isobutyl (meth) acrylate, tert-butyl (meth) acrylate, 2-ethyl Alkyl (meth) acrylates having an alkyl group of 1 to 20 carbon atoms such as hexyl (meth) acrylate and cyclohexyl (meth) acrylate; 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, glyceryl mono Hydroxyalkyl (meth) acrylates such as (meth) acrylate; N, N-dialkylaminoalkyl (meth) acrylates such as dimethylaminoethyl (meth) acrylate and diethylaminoethyl (meth) acrylate;
  • (meth) acrylates include bifunctional (e.g., ethylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate having 2 to 30 repeating ethylene oxide moieties, and hexanediol di (meth) acrylate).
  • (Meth) acrylates Trifunctional or higher functional (meth) acrylates such as pentaerythritol tri (meth) acrylate may be mentioned.
  • the monomer forming the structural unit (c) may be a monomer other than (meth) acrylate.
  • monomers other than (meth) acrylate include aromatic vinyl monomers such as styrene, vinyl toluene, ⁇ -methyl styrene, p-methyl styrene, and divinylbenzene; olefin monomers such as ethylene and propylene; (meth) acrylamide, ( (Meth) acrylamides such as (meth) acryloylmorpholine; (meth) acrylic acid, crotonic acid, cinnamic acid, maleic acid, maleic anhydride, fumaric acid, itaconic acid, itaconic anhydride, citraconic acid, citraconic anhydride, etc. Acids: N-vinylpyrrolidone, N-phenylmaleimide, N-cyclohexylmaleimide, (meth) acrylonitrile, vinyl chloride, vinyl
  • the content ratio of the constitutional unit (a) and constitutional unit (b) contained in the copolymer is preferably in the range of 10:90 to 90:10 on a mass basis. More preferably, it is in the range of 20:80 to 80:20, and still more preferably in the range of 25:75 to 75:25.
  • the desired effect of being a copolymer containing the structural unit (a) and the structural unit (b) can be obtained more effectively.
  • the structural unit (a) When the structural unit (a) is less than the above range, the printability of the copolymer composition (paste or slurry) may be lowered.
  • the structural unit (b) When the structural unit (b) is less than the above range, the strength, adhesion and / or thermal decomposability of the film formed from the copolymer composition may be lowered.
  • the content thereof is 0.1 to 200 parts by mass with respect to 100 parts by mass of the total content of the structural unit (a) and the structural unit (b). Preferably, it is 100 parts by mass or less, and more preferably 50 parts by mass or less. If the structural unit (c) is in the above range, the desired effect (good thermal decomposability, adhesion, coating film quality, and the like by being a copolymer containing the structural unit (a) and the structural unit (b). And printability) are easily secured. When the content of the structural unit (c) exceeds 200 parts by mass, the printability of the copolymer composition (paste or slurry) decreases, or the strength of the film formed from the copolymer composition decreases. there's a possibility that.
  • the number average molecular weight of the copolymer is preferably 10,000 to 200,000, more preferably 10,000 to 150,000, and more preferably 20,000 to 120,000, in terms of standard polystyrene conversion by GPC. preferable.
  • the number average molecular weight of the copolymer is less than 10,000, the viscosity of the copolymer composition (paste or slurry) is lowered, and the strength and adhesion of the coating film may be reduced.
  • it exceeds 200,000 the viscosity tends to be too high, and the printability tends to decrease.
  • the polyvinyl acetal polymerizable compound having a polymerizable unsaturated group comprises a cellulose derivative, a hydroxy group of polyvinyl acetal, a group capable of reacting with the hydroxy group, and a compound having a polymerizable unsaturated group, respectively. It can be obtained by reacting.
  • the above reaction is, for example, an esterification reaction, a urethanization reaction, or an etherification reaction.
  • conventionally known methods and reaction conditions can be employed. It is also effective to use a reaction catalyst (organic metal compound, metal, amine, condensing agent, etc.).
  • the esterification reaction can be performed using, for example, a condensing agent.
  • a condensing agent examples include carbodiimide, diphenyl phosphate azide, 1-hydroxybenzotriazole, BOP reagent and the like. Only 1 type may be used for a condensing agent and it may use 2 or more types together. Among these, carbodiimide is preferable because it is excellent in versatility and reactivity and can advance the reaction under low temperature conditions and without being affected by moisture in the reaction environment.
  • carbodiimide examples include dicyclohexylcarbodiimide, diisopropylcarbodiimide, N- [3- (dimethylamino) propyl] -N′-ethylcarbodiimide, N- [3- (dimethylamino) propyl] -N′-ethylcarbodiimide methiodado and the like. Can be mentioned. Among these, dicyclohexylcarbodiimide and diisopropylcarbodiimide are preferable from the viewpoint of availability.
  • dimethylaminopyridine or triethylamine which is a base
  • a reaction accelerator in a range of 0.01 mol% to 10 mol% with respect to carbodiimide.
  • the urethanization reaction can be performed using, for example, a reaction catalyst.
  • the reaction catalyst include organometallic compounds such as dioctyltin dilaurate, dibutyltin dilaurate, stannous octoate, and zinc dibutafonate; 1,8-diazabicyclo [5,4,0] undecene-7 (DBU) or a salt thereof; 1 , 4-diazabicyclo [2,2,2] octane, PMDETA (N, N, N ′, N ′′, N ′′ -pentamethyldiethylenetriamine), N, N-dimethylcyclohexylamine, N-methyldicyclohexylamine, N , N, N ′, N′-tetramethylpropylenediamine, N, N, N ′, N′-tetramethylhexamethylenediamine, N-methylmorpholine, N-ethylmorpholine, N, N-di
  • the etherification reaction can be efficiently carried out by using an alkali metal hydroxide such as KOH or NaOH; an alkali metal hydride such as NaH or KH as a reaction catalyst.
  • an alkali metal hydroxide such as KOH or NaOH
  • an alkali metal hydride such as NaH or KH as a reaction catalyst.
  • reaction of the hydroxy group of the cellulose derivative or polyvinyl acetal with the compound having a group capable of reacting with the hydroxy group and a polymerizable unsaturated group is preferably carried out in an aprotic organic solvent.
  • aprotic organic solvents examples include ethyl acetate, butyl acetate, tetrahydrofuran, dioxane, acetone, methyl ethyl ketone, methyl isobutyl ketone, diisobutyl ketone, toluene, xylene, dimethylformamide, dimethylacetamide, N-methylpyrrolidone, ethyl lactate, ethylene glycol Monomethyl ether acetate, ethylene glycol monoethyl ether acetate, ethylene glycol monobutyl ether acetate (butyl carbitol acetate), diethylene glycol monoethyl ether acetate, diethylene glycol monobutyl ether acetate, diethylene glycol ethyl methyl ether, diethylene glycol isopropyl methyl ether, diethylene glycol diethyl ether Diethylene glycol butyl methyl ether, diethylene glycol dibutyl
  • the temperature of the reaction between the hydroxy group of the cellulose derivative or polyvinyl acetal and the compound having a group capable of reacting with the hydroxy group and a polymerizable unsaturated group is, for example, about 0 ° C. to 100 ° C.
  • the introduction amount of the polymerizable unsaturated group can be measured by NMR analysis or the like.
  • carbodiimide When carbodiimide is used as the condensing agent, it may be added after reacting a compound having a polymerizable unsaturated group with carbodiimide in advance. When carbodiimide is used, urea may be generated as a by-product and insolubilized in some cases, but filtration purification or reprecipitation purification may be performed as necessary.
  • the amount of polymerizable unsaturated groups introduced into the cellulose derivative or polyvinyl acetal is the number of hydroxy groups that one molecule of the cellulose derivative or polyvinyl acetal has, a compound that can react with a hydroxy group and a compound having a polymerizable unsaturated group, condensation It can be adjusted depending on the amount of the agent used.
  • the number of hydroxy groups contained in one molecule of the cellulose derivative or polyvinyl acetal can be adjusted by the content of hydroxy groups contained in the cellulose derivative or polyvinyl acetal, the molecular weight of the cellulose derivative or polyvinyl acetal, and the like.
  • the introduction of the polymerizable unsaturated group into the cellulose derivative and the polyvinyl acetal may be performed 1) individually, or 2) the cellulose derivative and the polyvinyl acetal are previously mixed, and the hydroxy group is added to the mixture. You may carry out by making the compound which has a group which can react and a polymerizable unsaturated group react.
  • the mixing ratio of the cellulose derivative and the polyvinyl acetal in the case 2) is the same as the above-mentioned “content ratio of the structural unit (a) and the structural unit (b) contained in the copolymer”. preferable. Moreover, also in the case of said 2), it is preferable to introduce
  • a copolymer can be obtained by copolymerizing a monomer composition containing. This copolymerization reaction is performed, for example, by heating in an organic solvent in the presence of a radical polymerization initiator, preferably in a non-oxygen atmosphere.
  • examples include alcohol, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, diethylene glycol monoethyl ether, diethylene glycol monobutyl ether, propylene glycol monomethyl ether, propylene glycol dimethyl ether, dipropylene glycol monomethyl ether, terpineol, dihydroterpineol and the like. Only 1 type may be used for an organic solvent and it may use 2 or more types together.
  • radical polymerization initiator conventionally known ones (for example, peroxides and azos) can be used.
  • the amount of the radical polymerization initiator used is, for example, in the range of 0.001 to 5% with respect to 100% by mass of the total amount of monomers.
  • the total concentration of all monomers in the copolymerization reaction solution is preferably 5 to 70% by mass.
  • the temperature of the copolymerization reaction is, for example, about 40 ° C. to 120 ° C.
  • a normal polymer purification treatment such as precipitation purification with a poor solvent may be performed as necessary.
  • the purification treatment unreacted monomers and by-products can be removed, and a solid state copolymer can be obtained.
  • the copolymer composition according to the present invention contains a binder, which is the copolymer, inorganic particles, and an organic solvent, and is used for producing various pastes or slurries, particularly electronic components and electronic device members. Suitable as a baking paste or slurry.
  • a paste and a slurry it is distinguished mainly from the point of viscosity, and the former is higher viscosity.
  • the copolymer composition according to the present invention can be suitably used as a paste or slurry for forming circuits, electrode patterns, dielectric layers, phosphor layers and the like of various electronic components.
  • a copolymer composition containing a binder and an organic solvent which can be a production intermediate of the copolymer composition, also belongs to the present invention.
  • Examples of inorganic materials constituting the inorganic particles contained in the copolymer composition include conductive inorganic materials, ceramics, glass, pigments, and phosphors.
  • Examples of conductive inorganic materials include metals such as gold, silver, copper, platinum, palladium, nickel, aluminum, tungsten, and iron; alloys containing any of the above metals such as silver-palladium alloys; metals made of ITO or the like Oxides; carbon powder and the like.
  • Examples of the ceramic include magnetic ceramics such as barium titanate, titanium oxide, alumina, zirconia, aluminum nitride, silicon nitride, boron nitride, silicon carbide, and ferrite.
  • the glass examples include those containing silicon dioxide (usually those containing silicon dioxide as a main component), and the melting point thereof is not particularly limited.
  • the particle size of the inorganic particles is usually in the range of 20 nm to 1 mm. Only one type of inorganic particles may be used, or two or more types may be used in combination.
  • the organic solvent contained in the copolymer composition one or more of the organic solvents exemplified in the above ⁇ Method for producing copolymer> [1] and [2] can be used.
  • the organic solvent is a solvent capable of dissolving the binder, and preferably has a high boiling point in printing paste applications.
  • the copolymer composition may further contain an additive as necessary.
  • Additives include surfactants, viscosity modifiers, antifoaming agents, leveling agents, stabilizers, plasticizers, wetting agents, dyes, polymer particles, and the like. Only 1 type may be used for an additive and it may use 2 or more types together.
  • the copolymer composition may contain a polymer other than the above-mentioned copolymer as a binder.
  • the content ratio of the inorganic particles in the copolymer composition (the total content when containing two or more inorganic particles) and the binder is usually 100: 1 to 100: 50 on a mass basis. From the viewpoint of the viscosity of the polymer composition and the dispersibility of the inorganic particles, the ratio is preferably 100: 5 to 100: 30.
  • the content of the organic solvent (when two or more organic solvents are contained, the total content thereof) is usually 100 to 10,000 parts by mass with respect to 100 parts by mass of the binder.
  • the content thereof is usually 0.1 to 30 masses per 100 mass parts of the binder. Part.
  • Inorganic particles, a binder (copolymer) dissolved in an organic solvent, and additives used as necessary are mixed using a dispersing device such as a three-roll mill, a ball mill, a media mill, or a homogenizer, and the inorganic particles are mixed.
  • a copolymer composition can be prepared by uniformly dispersing the copolymer composition.
  • the organic solvent is volatilized by subsequent baking, and the binder is thermally decomposed to form a layer or pattern of inorganic particles.
  • the coating method for the copolymer composition include screen printing, die coating printing, doctor blade printing, roll coating printing, offset printing, gravure printing, flexographic printing, inkjet printing, dispensing printing, casting method, dip coating, and the like. Of these, screen printing and dip coating are preferred.
  • the layer or pattern obtained by firing usually comprises a sintered body of inorganic particles.
  • ethylcellulose 100 parts of the dried ethylcellulose was dissolved in 400 parts of ethyl acetate.
  • ethylcellulose 100 parts of the dried ethylcellulose was dissolved in 400 parts of ethyl acetate.
  • ethyl acetate was distilled off to obtain a cellulose polymerizable compound (a3) in which a methacrylate group was introduced into ethyl cellulose as a solid.
  • ethylcellulose 100 parts of the dried ethylcellulose was dissolved in 400 parts of ethyl acetate.
  • the number average molecular weight (standard polystyrene conversion value) was 71000. Since this value is larger than the number average molecular weight of ethyl cellulose used as a raw material and the number average molecular weight of polyvinyl butyral, it was confirmed that polymerization was proceeding by the above reaction.
  • the number average molecular weight of the copolymer (1) was measured under the following conditions (the same applies to the number average molecular weight of the copolymer obtained in the following Examples).
  • GPC device “HLC-8320GPC” manufactured by Tosoh Corporation Column: TSKgel GMHXL, Measurement temperature (set temperature): 30 ° C. Mobile phase: tetrahydrofuran.
  • Example 2 Synthesis of copolymer (2)>
  • 10 parts of the cellulose polymerizable compound (a1) obtained in Synthesis Example 1 10 parts of the polyvinyl acetal polymerizable compound (b1) obtained in Synthesis Example 7, 1.0 part of isobutyl methacrylate, And 80 parts of dihydroterpinyl acetate as an organic solvent was added, mixed, heated to 60 ° C. and stirred with a rotary blade to dissolve. After dissolution, nitrogen substitution was performed to remove oxygen in the system, and 0.01 part of azoisobutyronitrile (AIBN) as a polymerization initiator was mixed and reacted at 70 ° C. for 5 hours to obtain a copolymer ( A liquid (binder solution) containing 2) was obtained.
  • AIBN azoisobutyronitrile
  • the number average molecular weight (standard polystyrene conversion value) was 72,000. Since this value is larger than the number average molecular weight of ethyl cellulose used as a raw material and the number average molecular weight of polyvinyl butyral, it was confirmed that polymerization was proceeding by the above reaction.
  • Example 3 Synthesis of copolymer (3)> Example 1 was used except that 5 parts of the cellulose-based polymerizable compound (a1) obtained in Synthesis Example 1 and 15 parts of the polyvinyl acetal-based polymerizable compound (b1) obtained in Synthesis Example 7 were used. A liquid (binder solution) containing the copolymer (3) was obtained.
  • the number average molecular weight (standard polystyrene conversion value) was 73,000. Since this value is larger than the number average molecular weight of ethyl cellulose used as a raw material and the number average molecular weight of polyvinyl butyral, it was confirmed that polymerization was proceeding by the above reaction.
  • Example 4 Synthesis of copolymer (4)> The same procedure as in Example 1 was conducted except that 15 parts of the cellulose-based polymerizable compound (a1) obtained in Synthesis Example 1 and 5 parts of the polyvinyl acetal-based polymerizable compound (b1) obtained in Synthesis Example 7 were used. A liquid (binder solution) containing the copolymer (4) was obtained.
  • the number average molecular weight (standard polystyrene conversion value) was 70000. Since this value is larger than the number average molecular weight of ethyl cellulose used as a raw material and the number average molecular weight of polyvinyl butyral, it was confirmed that polymerization was proceeding by the above reaction.
  • Example 5 Synthesis of copolymer (5)>
  • 10 parts of the cellulose polymerizable compound (a2) obtained in Synthesis Example 2 10 parts of the polyvinyl acetal polymerizable compound (b2) obtained in Synthesis Example 8, and dihydroter as an organic solvent 80 parts of pinyl acetate were added, mixed, heated to 60 ° C. and stirred with a rotary blade to dissolve. After dissolution, nitrogen substitution was performed to remove oxygen in the system, and 0.01 part of azoisobutyronitrile (AIBN) as a polymerization initiator was mixed and reacted at 70 ° C. for 5 hours to obtain a copolymer ( A liquid (binder solution) containing 5) was obtained.
  • AIBN azoisobutyronitrile
  • the number average molecular weight (standard polystyrene conversion value) was 42,000. Since this value is larger than the number average molecular weight of ethyl cellulose used as a raw material and the number average molecular weight of polyvinyl butyral, it was confirmed that polymerization was proceeding by the above reaction.
  • Example 6 Synthesis of copolymer (6)>
  • 10 parts of the cellulose polymerizable compound (a2) obtained in Synthesis Example 2 10 parts of the polyvinyl acetal polymerizable compound (b2) obtained in Synthesis Example 8, 2 parts of isobutyl methacrylate, and organic 80 parts of dihydroterpinyl acetate as a solvent was added and mixed, heated to 60 ° C. and stirred with a rotary blade to dissolve. After dissolution, nitrogen substitution was performed to remove oxygen in the system, and 0.01 part of azoisobutyronitrile (AIBN) as a polymerization initiator was mixed and reacted at 70 ° C. for 5 hours to obtain a copolymer ( A liquid (binder solution) containing 6) was obtained.
  • AIBN azoisobutyronitrile
  • the number average molecular weight (standard polystyrene conversion value) was 45,000. Since this value is larger than the number average molecular weight of ethyl cellulose used as a raw material and the number average molecular weight of polyvinyl butyral, it was confirmed that polymerization was proceeding by the above reaction.
  • Example 7 Synthesis of copolymer (7)> A copolymer in the same manner as in Example 5 except that the cellulose polymerizable compound (a1) obtained in Synthesis Example 1 was used instead of the cellulose polymerizable compound (a2) obtained in Synthesis Example 2. A liquid (binder solution) containing (7) was obtained.
  • the number average molecular weight (standard polystyrene conversion value) was 68,000. Since this value is larger than the number average molecular weight of ethyl cellulose used as a raw material and the number average molecular weight of polyvinyl butyral, it was confirmed that polymerization was proceeding by the above reaction.
  • Example 8 Synthesis of copolymer (8)> In the same manner as in Example 5, except that the polyvinyl acetal polymerizable compound (b1) obtained in Synthesis Example 7 was used instead of the polyvinyl acetal polymerizable compound (b2) obtained in Synthesis Example 8. A liquid (binder solution) containing the polymer (8) was obtained.
  • the number average molecular weight (standard polystyrene conversion value) was 56000. Since this value is larger than the number average molecular weight of ethyl cellulose used as a raw material and the number average molecular weight of polyvinyl butyral, it was confirmed that polymerization was proceeding by the above reaction.
  • Example 9 Synthesis of copolymer (9)>
  • a cellulose polymerizable compound (a7) in which a methacrylate group was introduced into ethyl cellulose obtained in Synthesis Example 13
  • a polyvinyl acetal polymerizable compound (b7) in which a methacrylate group was introduced into polyvinyl butyral.
  • 20 parts of the mixture, 0.2 parts of isobutyl methacrylate, and 80 parts of dihydroterpinyl acetate as an organic solvent were added, mixed, heated to 60 ° C., stirred with a rotary blade, and dissolved.
  • the number average molecular weight (standard polystyrene conversion value) was 72,000. Since this value is larger than the number average molecular weight of ethyl cellulose used as a raw material and the number average molecular weight of polyvinyl butyral, it was confirmed that polymerization was proceeding by the above reaction.
  • Example 10 Synthesis of copolymer (10)> Cellulose polymerizable compound (a8) in which methacrylate groups are introduced into ethyl cellulose obtained in Synthesis Example 14 instead of the mixture obtained in Synthesis Example 13 and polyvinyl acetal polymerizable compounds in which methacrylate groups are introduced into polyvinyl butyral A liquid (binder solution) containing the copolymer (10) was obtained in the same manner as in Example 9 except that the mixture with (b8) was used.
  • the number average molecular weight (standard polystyrene conversion value) was 48,000. Since this value is larger than the number average molecular weight of ethyl cellulose used as a raw material and the number average molecular weight of polyvinyl butyral, it was confirmed that polymerization was proceeding by the above reaction.
  • Example 11 Synthesis of copolymer (11)> Using the cellulose polymerizable compound (a3) obtained in Synthesis Example 3 in place of the cellulose polymerizable compound (a1), the polyvinyl obtained in Synthesis Example 9 instead of the polyvinyl acetal polymerizable compound (b1). A liquid (binder solution) containing the copolymer (11) was obtained in the same manner as in Example 1 except that the acetal polymerizable compound (b3) was used.
  • the number average molecular weight (standard polystyrene conversion value) was 78,000. Since this value is larger than the number average molecular weight of ethyl cellulose used as a raw material and the number average molecular weight of polyvinyl butyral, it was confirmed that polymerization was proceeding by the above reaction.
  • Example 12 Synthesis of copolymer (12)>
  • 10 parts of the cellulose polymerizable compound (a3) obtained in Synthesis Example 3 10 parts of the polyvinyl acetal polymerizable compound (b3) obtained in Synthesis Example 9, 0.2 part of isobutyl methacrylate, And 80 parts of dihydroterpinyl acetate as an organic solvent was added, mixed, heated to 60 ° C. and stirred with a rotary blade to dissolve. After dissolution, nitrogen substitution was performed to remove oxygen in the system, and 0.01 part of azoisobutyronitrile (AIBN) as a polymerization initiator was mixed and reacted at 70 ° C. for 5 hours to obtain a copolymer ( 12) was obtained (binder solution).
  • AIBN azoisobutyronitrile
  • the number average molecular weight (standard polystyrene conversion value) was 80000. Since this value is larger than the number average molecular weight of ethyl cellulose used as a raw material and the number average molecular weight of polyvinyl butyral, it was confirmed that polymerization was proceeding by the above reaction.
  • Example 13 Synthesis of copolymer (13)> A liquid (binder solution) containing the copolymer (13) was obtained in the same manner as in Example 2 except that the addition amount of isobutyl methacrylate was changed to 0.2 part.
  • the number average molecular weight (standard polystyrene conversion value) was 72,000. Since this value is larger than the number average molecular weight of ethyl cellulose used as a raw material and the number average molecular weight of polyvinyl butyral, it was confirmed that polymerization was proceeding by the above reaction.
  • Example 14 Synthesis of copolymer (14)> A liquid (binder solution) containing the copolymer (14) was obtained in the same manner as in Example 13 except that methyl methacrylate was used instead of isobutyl methacrylate.
  • the number average molecular weight (standard polystyrene conversion value) was 73,000. Since this value is larger than the number average molecular weight of ethyl cellulose used as a raw material and the number average molecular weight of polyvinyl butyral, it was confirmed that polymerization was proceeding by the above reaction.
  • Example 15 Synthesis of copolymer (15)> Using the cellulose polymerizable compound (a4) obtained in Synthesis Example 4 in place of the cellulose polymerizable compound (a1), the polyvinyl obtained in Synthesis Example 10 instead of the polyvinyl acetal polymerizable compound (b1). A liquid (binder solution) containing the copolymer (15) was obtained in the same manner as in Example 1 except that the acetal polymerizable compound (b4) was used.
  • the number average molecular weight (standard polystyrene conversion value) was 78,000. Since this value is larger than the number average molecular weight of ethyl cellulose used as a raw material and the number average molecular weight of polyvinyl butyral, it was confirmed that polymerization was proceeding by the above reaction.
  • Example 16 Synthesis of copolymer (16)>
  • 10 parts of the cellulose polymerizable compound (a4) obtained in Synthesis Example 4 10 parts of the polyvinyl acetal polymerizable compound (b4) obtained in Synthesis Example 10, 5.0 parts of methyl methacrylate, And 80 parts of dihydroterpinyl acetate as an organic solvent was added, mixed, heated to 60 ° C. and stirred with a rotary blade to dissolve. After dissolution, nitrogen substitution was performed to remove oxygen in the system, and 0.01 part of azoisobutyronitrile (AIBN) as a polymerization initiator was mixed and reacted at 70 ° C. for 5 hours to obtain a copolymer ( A liquid (binder solution) containing 16) was obtained.
  • AIBN azoisobutyronitrile
  • the number average molecular weight (standard polystyrene conversion value) was 81,000. Since this value is larger than the number average molecular weight of ethyl cellulose used as a raw material and the number average molecular weight of polyvinyl butyral, it was confirmed that polymerization was proceeding by the above reaction.
  • Example 17 Synthesis of copolymer (17)> Using the cellulose-based polymerizable compound (a5) obtained in Synthesis Example 5 instead of the cellulose-based polymerizable compound (a1), the polyvinyl obtained in Synthesis Example 11 instead of the polyvinyl acetal-based polymerizable compound (b1) A liquid (binder solution) containing the copolymer (17) was obtained in the same manner as in Example 1 except that the acetal polymerizable compound (b5) was used.
  • the number average molecular weight (standard polystyrene conversion value) was 68,000. Since this value is larger than the number average molecular weight of ethyl cellulose used as a raw material and the number average molecular weight of polyvinyl butyral, it was confirmed that polymerization was proceeding by the above reaction.
  • Example 18 Synthesis of copolymer (18)>
  • 10 parts of the cellulose polymerizable compound (a5) obtained in Synthesis Example 5 10 parts of the polyvinyl acetal polymerizable compound (b5) obtained in Synthesis Example 11, 3.0 parts of isobutyl methacrylate, 2.0 parts of 2-hydroxyethyl methacrylate and 80 parts of dihydroterpinyl acetate as an organic solvent were added, mixed, heated to 60 ° C., stirred with a rotary blade, and dissolved.
  • the number average molecular weight (standard polystyrene conversion value) was 70000. Since this value is larger than the number average molecular weight of ethyl cellulose used as a raw material and the number average molecular weight of polyvinyl butyral, it was confirmed that polymerization was proceeding by the above reaction.
  • Example 19 Synthesis of copolymer (19)> Using the cellulose polymerizable compound (a6) obtained in Synthesis Example 6 in place of the cellulose polymerizable compound (a1), the polyvinyl obtained in Synthesis Example 12 instead of the polyvinyl acetal polymerizable compound (b1). A liquid (binder solution) containing the copolymer (19) was obtained in the same manner as in Example 1 except that the acetal polymerizable compound (b6) was used.
  • the number average molecular weight (standard polystyrene conversion value) was 56000. Since this value is larger than the number average molecular weight of ethyl cellulose used as a raw material and the number average molecular weight of polyvinyl butyral, it was confirmed that polymerization was proceeding by the above reaction.
  • Example 20 Synthesis of copolymer (20)>
  • a cellulose-based polymerizable compound (a9) in which a methacrylate group was introduced into ethylcellulose obtained in Synthesis Example 15 and a polyvinyl acetal-based polymerizable compound (b9) in which a methacrylate group was introduced into polyvinyl butyral 20 parts of the mixture, 0.1 part of isobutyl methacrylate and 80 parts of dihydroterpinyl acetate as an organic solvent were added, mixed, heated to 60 ° C. and stirred with a rotary blade to dissolve.
  • the number average molecular weight (standard polystyrene conversion value) was 30500. Since this value is larger than the number average molecular weight of ethyl cellulose used as a raw material and the number average molecular weight of polyvinyl butyral, it was confirmed that polymerization was proceeding by the above reaction.
  • Example 21 Synthesis of copolymer (21)>
  • the cellulose-based polymerizable compound (a10) in which the methacrylate group was introduced into the ethylcellulose obtained in Synthesis Example 16 and the polyvinyl acetal-based polymerizable compound (b10) in which the methacrylate group was introduced into polyvinyl butyral 20 parts of the mixture, 0.2 parts of isobutyl methacrylate, and 80 parts of dihydroterpinyl acetate as an organic solvent were added, mixed, heated to 60 ° C., stirred with a rotary blade, and dissolved.
  • the number average molecular weight (standard polystyrene conversion value) was 59000. Since this value is larger than the number average molecular weight of ethyl cellulose used as a raw material and the number average molecular weight of polyvinyl butyral, it was confirmed that polymerization was proceeding by the above reaction.
  • Example 22 Synthesis of copolymer (22)>
  • the cellulose-based polymerizable compound (a11) in which the methacrylate group was introduced into the ethylcellulose obtained in Synthesis Example 17 and the polyvinyl acetal-based polymerizable compound (b11) in which the methacrylate group was introduced into polyvinyl butyral 20 parts of the mixture, 0.2 parts of isobutyl methacrylate, and 80 parts of dihydroterpinyl acetate as an organic solvent were added, mixed, heated to 60 ° C., stirred with a rotary blade, and dissolved.
  • the number average molecular weight (standard polystyrene conversion value) was 63,000. Since this value is larger than the number average molecular weight of ethyl cellulose used as a raw material and the number average molecular weight of polyvinyl butyral, it was confirmed that polymerization was proceeding by the above reaction.
  • ⁇ Comparative Example 1 10 parts of ethyl cellulose ("Etocel STD-100” manufactured by Dow Chemical Company) and 10 parts of polyvinyl butyral ("BM-S” manufactured by Sekisui Chemical Co., Ltd.) were dissolved in 113.3 parts of dihydroterpinyl acetate. A binder solution was prepared.
  • ⁇ Comparative example 2 10 parts of ethyl cellulose ("Etocel STD-10" manufactured by Dow Chemical Company) and 10 parts of polyvinyl butyral ("BL-S” manufactured by Sekisui Chemical Co., Ltd.) were dissolved in 113.3 parts of dihydroterpinyl acetate. A binder solution was prepared.
  • BM-S polyvinyl butyral
  • ⁇ Comparative Example 7 10 parts of ethyl cellulose ("Etocel STD-100” manufactured by Dow Chemical Co., Ltd.) and 10 parts of polyvinyl butyral ("BH-S” manufactured by Sekisui Chemical Co., Ltd.) are dissolved in 113.3 parts of dihydroterpinyl acetate to form a binder. A solution was prepared.
  • ⁇ Comparative Example 8 10 parts of ethyl cellulose ("Etocel STD-200" manufactured by Dow Chemical Company) and 10 parts of polyvinyl butyral ("BH-S” manufactured by Sekisui Chemical Co., Ltd.) were dissolved in 113.3 parts of dihydroterpinyl acetate. A binder solution was prepared.
  • ⁇ Comparative Example 11 10 parts of a cellulose-based polymerizable compound (a1) in which a methacrylate group is introduced into ethylcellulose obtained in Synthesis Example 1 and a polyvinyl acetal-based polymerizable compound in which a methacrylate group is introduced into the polyvinyl butyral obtained in Synthesis Example 7 ( b1) 10 parts was dissolved in 113.3 parts of dihydroterpinyl acetate as an organic solvent to prepare a binder solution. In this comparative example, the effect was grasped without carrying out the polymerization reaction.
  • ⁇ Comparative Example 12 20 parts of a mixture of the cellulose polymerizable compound (a7) and the polyvinyl acetal polymerizable compound (b7) obtained in Synthesis Example 13 were dissolved in 113.3 parts of dihydroterpinyl acetate as an organic solvent, A solution was prepared. In this comparative example, the effect was grasped without carrying out the polymerization reaction.
  • Table 1 summarizes the binder compositions obtained in Examples and Comparative Examples. Details of the abbreviations shown in Table 1 are as follows.
  • iBMA isobutyl methacrylate
  • MMA methyl methacrylate
  • HEMA 2-hydroxyethyl methacrylate
  • the binder solutions obtained in Examples and Comparative Examples are applied with a blade coater having a thickness gap of 90 ⁇ m, and then dried by heating. Thus, a film having a binder layer with a thickness of about 10 ⁇ m was produced.
  • polyvinyl butyral (“BH-S” manufactured by Sekisui Chemical Co., Ltd.) as a model material for the binder for green sheets was dissolved in toluene to prepare a 15% by mass solution.
  • a film having a polyvinyl butyral layer having a thickness of about 10 ⁇ m was prepared by applying this to a PET film adhesive layer on which an adhesive layer was formed in the same manner as described above, followed by drying by heating.
  • a strip sample having a width of 2 cm and a length of 8 cm was cut out from each of the obtained films.
  • the polyvinyl butyral layer of the film sample having the polyvinyl butyral layer was superposed on the binder layer of the film sample having the binder layer while being shifted in the longitudinal direction.
  • the area of the overlapped portion was 2 cm in the longitudinal direction and 2 cm in width.
  • a 1 cm ⁇ 2 cm (area 2 cm 2 ) heating plate was pressed against the center of the overlapped portion and thermocompression bonded for 5 minutes under the conditions of a temperature of 130 ° C. and a pressure of 2 kg to partially adhere the overlapped portion.
  • the obtained paste was applied onto a glass substrate with a blade coater having a thickness gap of 30 ⁇ m, the coating film after heat drying was observed with a scanning electron microscope (SEM), and the coating film quality was evaluated based on the following evaluation criteria. .
  • SEM scanning electron microscope
  • JSM-7800F manufactured by JEOL Ltd. was used, and the coating film was observed at a magnification of 5000 times.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Macromonomer-Based Addition Polymer (AREA)

Abstract

重合性不飽和基を有するセルロース系重合性化合物由来の構成単位(a)と、重合性不飽和基を有するポリビニルアセタール系重合性化合物由来の構成単位(b)とを含む共重合体及びその製造方法、並びに該共重合体と無機粒子と有機溶剤とを含む共重合体組成物が提供される。

Description

共重合体及びその製造方法、並びに共重合体組成物
 本発明は、共重合体及びその製造方法、並びに該共重合体を含む共重合体組成物に関する。
 携帯電話、スマートフォン等の携帯機器や自動車の電化によって電子部品の需要が増加している。中でも、受動部品である積層セラミックコンデンサ(「MLCC」と呼ばれている。)は、スマートフォン1台あたり数百個が使用されており、需要が急増している。
 MLCCの製造の一例を挙げると次のとおりである。まず、誘電体セラミックペーストを離形性シート上に塗布することにより、誘電体層を有するグリーンシートを作製する。次いで、誘電体層上に電極ペースト(「導電性ペースト」とも呼ばれることがある。)を印刷して電極パターン(電極層)を形成する。さらに、誘電体層と電極層との積層体を離形性シートから剥離し、該積層体の複数を積層、圧着した後にチップ状に切断する。次いで、得られたチップを数百℃~1000℃又はそれ以上に加熱して焼成を行い、誘電体層と電極層とが多層に積層された焼結体チップを作製する。最後に、外部電極等の形成を行う。
 近年益々、チップの小サイズ化、及びこれに伴う、チップを構成する前記した各層の薄膜化、印刷される電極パターンの微細化が進んでいる。このような背景の下、各層間の密着性向上や、使用するペーストの優れた印刷性が強く求められている。
 チップインダクター、チップ抵抗体等の他の電子部品も、MLCCと同様のプロセスによって製造される。また、シリコン系等の太陽電池の製造プロセスにも、集電極の形成において電極ペーストを用いた印刷、焼成工程が含まれている。
 MLCC等の電子部品の製造に使用されるセラミックペースト及び電極ペーストは、高分子材料であるバインダーと有機溶剤とを含み、そこに無機粒子が均一に分散された樹脂組成物である。無機粒子として、セラミックペーストではチタン酸バリウム等の誘電体粒子が用いられ、電極ペーストではニッケル等の導電性金属粒子が用いられる。また従来、バインダーとして、セラミックペーストでは主にポリビニルブチラールが用いられ、電極ペーストでは主にエチルセルロースが用いられてきた〔特公平04-049766号公報(特許文献1)〕。
特公平04-049766号公報 特許第4347440号公報 特許第5299904号公報 国際公開第2015/107811号
 セラミックペーストや電極ペーストのようなペースト、特にそれに含まれるバインダーには、例えば次のような課題がある。
1)熱分解性(燃焼性)の向上。焼成による熱分解処理後においてもカーボン等の灰分が残存していると、MLCCの電気特性を悪化させたり層間の剥離を引き起こしてしまう。
2)印刷性の向上。昨今、スクリーン印刷によって形成される電極パターンの微細化や薄膜化が進んでおり、パターンサイズは100μmを下回るようになっている。このため、電極ペーストにおいては、いわゆる糸曳現象を生じないバインダーが求められる。糸曳現象とは、バインダーポリマーの影響で印刷する工程において用いるペースト等が伸長して細い糸を曳く現象であり、欠陥品を生じる原因となる。
3)無機粒子の均一分散性、膜強度(ペーストから形成される層の強度)及び各層間の密着性の向上。これらは、チップを構成する各層の薄膜化に伴う要求特性である。
 上記課題を解決するために、バインダーについて様々な検討が従来なされている。例えば、特許第4347440号公報(特許文献2)及び特許第5299904号公報(特許文献3)には、電極ペーストにおいて、エチルセルロースにポリビニルブチラールをブレンドすることで膜強度等の物性を改善する技術が開示されている。また国際公開第2015/107811号(特許文献4)には、エチルセルロースとポリビニルブチラールとこれらを結合させる結合剤との反応生成物をバインダーとすることが記載されている。
 特許文献2及び3に記載されるエチルセルロースとポリビニルブチラールとをブレンドしたバインダーは、これら2種のポリマーの相溶性が悪く、金属、セラミック、ガラス等の無機粒子を混合してペーストとしたときの無機粒子の分散性が低い。その結果、塗布膜に欠陥が生じたり、塗布膜の均一性が低下したりしやすい。
 一方、特許文献4ではエチルセルロースとポリビニルブチラールとを化学的に結合させることにより相溶性を改善しているが、これら2種のポリマー間の結合効率が高くないために、なお塗布膜の均一性に改善の余地がある。
 本発明の目的は、熱分解性、密着性、塗布膜質、及び印刷性が良好なバインダー、並びにそれを含む組成物を提供することにある。
 本発明は、以下に示す共重合体及びその製造方法、並びに共重合体組成物を提供する。
 [1] 重合性不飽和基を有するセルロース系重合性化合物由来の構成単位(a)と、重合性不飽和基を有するポリビニルアセタール系重合性化合物由来の構成単位(b)とを含む、共重合体。
 [2] 前記構成単位(a)及び前記構成単位(b)以外の他の構成単位(c)をさらに含む、[1]に記載の共重合体。
 [3] 前記セルロース系重合性化合物が有する前記重合性不飽和基の数は、1分子あたり平均10個以下である、[1]又は[2]に記載の共重合体。
 [4] 前記ポリビニルアセタール系重合性化合物が有する前記重合性不飽和基の数は、1分子あたり平均10個以下である、[1]~[3]のいずれかに記載の共重合体。
 [5] 重合性不飽和基を有するセルロース系重合性化合物と、重合性不飽和基を有するポリビニルアセタール系重合性化合物とを、有機溶剤中、重合開始剤の存在下に重合させる工程を含む、共重合体の製造方法。
 [6] [1]~[4]のいずれかに記載の共重合体と、無機粒子と、有機溶剤と、
を含む、共重合体組成物。
 熱分解性、密着性、塗布膜質、及び印刷性が良好な共重合体、並びにそれを含む共重合体組成物を提供することができる。該共重合体によれば、強度の高い膜を形成し得る。該共重合体をバインダーとして含む共重合体組成物は、セラミックペーストや電極ペースト等のペースト(又はスラリー)として好適である。該ペースト(又はスラリー)は、電子部品や基板等の製造に使用することができる。
 以下、実施の形態を示して本発明を詳細に説明する。
 なお、本明細書において「A~B」(A及びBは数値である。)との記載は、特記ない限り「A以上B以下」を表す。
 <共重合体>
 本発明に係る共重合体は、共重合体組成物(ペースト又はスラリー)のバインダーとして好適に用いられるポリマー材料であり、重合性不飽和基を有するセルロース系重合性化合物由来の構成単位(a)と、重合性不飽和基を有するポリビニルアセタール系重合性化合物由来の構成単位(b)とを含む。セルロース系重合性化合物及びポリビニルアセタール系重合性化合物は、重合性不飽和基によって重合し、共重合体においてそれぞれ構成単位(a)及び構成単位(b)を形成する。共重合体は、1種又は2種以上の構成単位(a)を含むことができ、また、1種又は2種以上の構成単位(b)を含むことができる。
 〔1〕構成単位(a)
 構成単位(a)を形成する重合性不飽和基を有するセルロース系重合性化合物は、重合性不飽和基を有するセルロース誘導体である。セルロース誘導体とは、天然高分子であるセルロースが有するヒドロキシ基の一部に化学修飾を施した変性セルロースをいう。ヒドロキシ基の化学修飾としては、特に制限されないが、ヒドロキシ基のアルキルエーテル化、ヒドロキシアルキルエーテル化、エステル化等を挙げることができる。セルロース誘導体は、1分子中に少なくとも1つのヒドロキシ基を有する。セルロース誘導体は、1種のみを用いてもよいし、2種以上を併用してもよい。
 セルロース誘導体としては、メチルセルロース、エチルセルロース、プロピルセルロース、ブチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、ヒドロキシプロピルメチルセルロース、ヒドロキシブチルメチルセルロース、酢酸セルロース(アセチルセルロース、ジアセチルセルロース、トリアセチルセルロース等)、セルロースアセテートプロピオネート、セルロースアセテートブチレート、ニトロセルロース等を挙げることができる。
 重合性不飽和基を有するセルロース系重合性化合物を効率良く製造する観点から、セルロース誘導体は、有機溶剤に溶解可能なものであることが好ましい。有機溶剤に対する溶解度の高さから、セルロース誘導体は、エチルセルロースであることがより好ましい。
 セルロース誘導体は、その分子量によって膜強度や溶液時の粘度に影響を及ぼす。そのため、セルロース誘導体の数平均分子量は、ゲルパーミエイションクロマトグラフィー(GPC)による標準ポリスチレン換算値で、0.5万~15万の範囲であることが好ましく、1万~10万の範囲であることがより好ましい。数平均分子量が0.5万未満であると溶液粘度が極端に低くなり共重合体組成物(ペースト又はスラリー)の粘度調整が困難となり、また、共重合体組成物を塗布、乾燥してなる膜の強度や密着性が低下するおそれがある。一方で、数平均分子量が15万を超えると溶液粘度が極端に大きくなり、共重合体組成物の粘度調整が困難となり得、また印刷性が低下するおそれがある。
 セルロース誘導体は、1分子中に少なくとも1つのヒドロキシ基を有する。このヒドロキシ基は、重合性不飽和基の導入に利用することができる。重合性不飽和基の具体例は重合性炭素-炭素二重結合であり、この好適な例は(メタ)アクリレート基((メタ)アクリロイルオキシ基)、ビニル基、アリル基である。本明細書において「(メタ)アクリレート」とは、アクリレート及び/又はメタクリレートを意味し、(メタ)アクリル、(メタ)アクリロイル等というときの「(メタ)」も同様の趣旨である。
 例えば、セルロース誘導体のヒドロキシ基に、当該ヒドロキシ基と反応可能な基及び重合性不飽和基を有する化合物を反応させることによってセルロース誘導体に重合性不飽和基を導入することができ、これにより重合性不飽和基を有するセルロース系重合性化合物を得ることができる。ヒドロキシ基と反応可能な基としては、カルボキシル基、酸無水物基、酸塩化物基、イソシアネート基、ハロゲン基(ハロゲン原子)等を挙げることができる。
 ヒドロキシ基と反応可能な基及び重合性不飽和基を有する化合物としては、例えば、(メタ)アクリル酸、マレイン酸、4-ビニル安息香酸、4-エテニル安息香酸等の重合性不飽和基を有する有機酸;当該有機酸の無水物;当該有機酸の酸塩化物;2-イソシアナトエチル(メタ)アクリレート等のイソシアネート基含有(メタ)アクリレート、ハロゲン基を有するビニル誘導体、ハロゲン基を有するアリル誘導体が挙げられる。ヒドロキシ基と反応可能な基及び重合性不飽和基を有する化合物は、1種のみを用いてもよいし、2種以上を併用してもよい。
 セルロース誘導体のヒドロキシ基と、当該ヒドロキシ基と反応可能な基及び重合性不飽和基を有する化合物との反応(エステル化反応、ウレタン化、エーテル化反応等)においては、従来公知の方法や反応条件を採用することができる。反応触媒(有機金属化合物、金属、アミン、縮合剤等)を用いることも有効である。
 セルロース系重合性化合物が有する重合性不飽和基の数は、1分子あたり平均10個以下であることが好ましい。重合性不飽和基の数が1分子あたり平均10個を超えると、共重合体の製造においてゲル化及びこれに伴う有機溶剤への不溶化を生じやすくなる。ゲル化した共重合体は、ペースト又はスラリーのバインダーとしては好ましくない。セルロース系重合性化合物が有する重合性不飽和基の数は、1分子あたり平均8個以下であってもよく、5個以下であってもよく、3個以下であってもよく、2個以下であってもよく、1個であってもよい。
 〔2〕構成単位(b)
 構成単位(b)を形成する重合性不飽和基を有するポリビニルアセタール系重合性化合物は、重合性不飽和基を有するポリビニルアセタールである。ポリビニルアセタールは通常、ビニルアセタール/ビニルアルコール/酢酸ビニルのモノマー単位から構成されるポリマーであり、ポリビニルアルコールをアセタール化することによって得ることができる。具体的には、ポリビニルアルコールをブチラール化したもの(ポリビニルブチラール)、ポリビニルアルコールをホルマール化したもの(ポリビニルホルマール)等を挙げることができる。
 ポリビニルアセタールは市販品であってもよく、ブチラール化度、ホルマール化度、アセチル基量、ヒドロキシ基量や分子量等の異なる各種ポリビニルアセタールが積水化学工業社、クラレ社、イーストマンケミカル社等から販売されている。ポリビニルアセタールは、1種のみを用いてもよいし、2種以上を併用してもよい。
 重合性不飽和基を有するポリビニルアセタール系重合性化合物を効率良く製造する観点から、ポリビニルアセタールは、有機溶剤に溶解可能なものであることが好ましい。有機溶剤に対する溶解度の高さから、ポリビニルアセタールは、ポリビニルブチラールであることがより好ましい。
 ポリビニルアセタールは、その分子量によって膜強度や溶液時の粘度に影響を及ぼす。そのため、ポリビニルアセタールの数平均分子量は、GPCによる標準ポリスチレン換算値で、0.5万~15万の範囲であることが好ましく、1万~10万の範囲であることがより好ましい。数平均分子量が0.5万未満であると溶液粘度が極端に低くなり共重合体組成物(ペースト又はスラリー)の粘度調整が困難となり、また、共重合体組成物を塗布、乾燥してなる膜の強度や密着性が低下するおそれがある。一方で、数平均分子量が15万を超えると溶液粘度が極端に大きくなり、共重合体組成物の粘度調整が困難となり得、また印刷性が低下するおそれがある。
 ポリビニルアセタールは、1分子中に少なくとも1つのヒドロキシ基を有する。一般的には、ポリビニルアセタールは、ポリマーを構成するビニルアルコール単位として20~40モル%のヒドロキシ基を有する。このヒドロキシ基は、重合性不飽和基の導入に利用することができる。重合性不飽和基の具体例は重合性炭素-炭素二重結合であり、この好適な例は(メタ)アクリレート基((メタ)アクリロイルオキシ基)、ビニル基、アリル基である。
 例えば、ポリビニルアセタールのヒドロキシ基に、当該ヒドロキシ基と反応可能な基及び重合性不飽和基を有する化合物を反応させることによってポリビニルアセタールに重合性不飽和基を導入することができ、これにより重合性不飽和基を有するポリビニルアセタール系重合性化合物を得ることができる。ヒドロキシ基と反応可能な基としては、カルボキシル基、酸無水物基、酸塩化物基、イソシアネート基、ハロゲン基(ハロゲン原子)等を挙げることができる。ヒドロキシ基と反応可能な基及び重合性不飽和基を有する化合物の具体例は、上記「〔1〕構成単位(a)」の項で挙げた化合物と同様である。ヒドロキシ基と反応可能な基及び重合性不飽和基を有する化合物は、1種のみを用いてもよいし、2種以上を併用してもよい。
 ポリビニルアセタールのヒドロキシ基と、当該ヒドロキシ基と反応可能な基及び重合性不飽和基を有する化合物との反応(エステル化、ウレタン化、エーテル化反応等)においては、従来公知の方法や反応条件を採用することができる。反応触媒(有機金属化合物、金属、アミン、縮合剤等)を用いることも有効である。
 ポリビニルアセタール系重合性化合物が有する重合性不飽和基の数は、1分子あたり平均10個以下であることが好ましい。重合性不飽和基の数が1分子あたり平均10個を超えると、共重合体の製造においてゲル化及びこれに伴う有機溶剤への不溶化を生じやすくなる。ゲル化した共重合体は、ペースト又はスラリーのバインダーとしては好ましくない。ポリビニルアセタール系重合性化合物が有する重合性不飽和基の数は、1分子あたり平均8個以下であってもよく、5個以下であってもよく、3個以下であってもよく、2個以下であってもよく、1個であってもよい。
 〔3〕他の構成単位(c)
 共重合体は、構成単位(a)及び構成単位(b)以外の他の構成単位(c)をさらに含むことができる。共重合体は、1種又は2種以上の構成単位(c)を含むことができる。構成単位(c)をさらに含有させることにより、上記した2種の重合性化合物の共重合効率が高まったり、共重合体の有機溶剤への溶解性や、共重合体組成物(ペースト又はスラリー)における無機粒子の分散性の調整が容易になることがある。
 構成単位(c)を形成するモノマーとしては、(メタ)アクリレート((メタ)アクリロイルオキシ基を有する化合物)を挙げることができる。(メタ)アクリレートは、1種のみを用いてもよいし、2種以上を併用してもよい。
 (メタ)アクリレートとしては、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、tert-ブチル(メタ)アクリレート、2-エチルへキシル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート等のアルキル基の炭素数が1~20のアルキル(メタ)アクリレート;2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、グリセリルモノ(メタ)アクリレート等のヒドロキシアルキル(メタ)アクリレート;ジメチルアミノエチル(メタ)アクリレート、ジエチルアミノエチル(メタ)アクリレート等のN,N-ジアルキルアミノアルキル(メタ)アクリレート;2-(メタ)アクリロイルオキシエチルヘキサヒドロフタル酸、2-(メタ)アクリロイルオキシエチルコハク酸、2-(メタ)アクリロイルオキシエチルアシッドホスフェート等の酸基含有(メタ)アクリレート;メトキシポリエチレングリコール(メタ)アクリレート、エトキシポリエチレングリコール(メタ)アクリレート、メトキシポリプロピレングリコール(メタ)アクリレート、エトキシポリプロピレングリコール(メタ)アクリレート、ブトキシジエチレングリコール(メタ)アクリレート等のアルキレンオキサイド部位の繰り返し数が1~30であるアルキレンオキサイド変性(メタ)アクリレート;テトラヒドロフルフリル(メタ)アクリレート、イソボルニル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、ベンジル(メタ)アクリレート、グリシジル(メタ)アクリレート等のその他の単官能(メタ)アクリレートが挙げられる。
 (メタ)アクリレートの他の例としては、エチレングリコールジ(メタ)アクリレート、エチレンオキサイド部位の繰り返し数が2~30のポリエチレングリコールジ(メタ)アクリレート、ヘキサンジオールジ(メタ)アクリレート等の2官能(メタ)アクリレート;ペンタエリスリトールトリ(メタ)アクリレート等の3官能以上の(メタ)アクリレートを挙げることができる。
 構成単位(c)を形成するモノマーは、(メタ)アクリレート以外のモノマーであってもよい。(メタ)アクリレート以外のモノマーとしては、スチレン、ビニルトルエン、α-メチルスチレン、p-メチルスチレン、ジビニルベンゼン等の芳香族ビニル系モノマー;エチレン、プロピレン等のオレフィン系モノマー;(メタ)アクリルアミド、(メタ)アクリロイルモルホリン等の(メタ)アクリルアミド類;(メタ)アクリル酸、クロトン酸、ケイ皮酸、マレイン酸、無水マレイン酸、フマル酸、イタコン酸、無水イタコン酸、シトラコン酸、無水シトラコン酸等の酸類;N-ビニルピロリドン、N-フェニルマレイミド、N-シクロヘキシルマレイミド、(メタ)アクリロニトリル、塩化ビニル、酢酸ビニル等が挙げられる。
 多官能モノマーを用いる場合は、共重合体の製造においてゲル化を生じない程度の量とすることが好ましい。
 〔4〕共重合体の構成
 共重合体に含有される構成単位(a)と構成単位(b)との含有量比は、質量基準で、好ましくは10:90~90:10の範囲であり、より好ましくは20:80~80:20の範囲であり、さらに好ましくは25:75~75:25の範囲である。構成単位(a)と構成単位(b)との含有量比が上記範囲であることにより、構成単位(a)と構成単位(b)とを含む共重合体であることによる所期の効果(良好な熱分解性、密着性、塗布膜質、及び印刷性の兼備)をより効果的に得ることができる。構成単位(a)が上記範囲より少ないと、共重合体組成物(ペースト又はスラリー)の印刷性が低下する可能性がある。構成単位(b)が上記範囲より少ないと、共重合体組成物から形成される膜の強度、密着性及び/又は熱分解性が低下する可能性がある。
 共重合体が他の構成単位(c)を含む場合、その含有量は、構成単位(a)と構成単位(b)との合計含有量100質量部に対して、0.1~200質量部であることが好ましく、100質量部以下であることがより好ましく、50質量部以下であることがさらに好ましい。構成単位(c)が上記範囲であれば、構成単位(a)と構成単位(b)とを含む共重合体であることによる所期の効果(良好な熱分解性、密着性、塗布膜質、及び印刷性の兼備)が確保されやすい。構成単位(c)の含有量が200質量部を超えると、共重合体組成物(ペースト又はスラリー)の印刷性が低下したり、共重合体組成物から形成される膜の強度が低下したりする可能性がある。
 共重合体の数平均分子量は、GPCによる標準ポリスチレン換算値で、1万~20万であることが好ましく、1万~15万であることがより好ましく、2万~12万であることがさらに好ましい。共重合体の数平均分子量が1万未満であると、共重合体組成物(ペースト又はスラリー)としての粘度が低くなり、また塗布膜の強度や密着性が低下するおそれがある。一方で20万を超えると粘度が高くなりすぎる傾向があり、また印刷性が低下する傾向がある。
 <共重合体の製造方法>
 〔1〕セルロース系重合性化合物及びポリビニルアセタール系重合性化合物の製造
 共重合体の構成単位(a)を形成する重合性不飽和基を有するセルロース系重合性化合物及び構成単位(b)を形成する重合性不飽和基を有するポリビニルアセタール系重合性化合物は、上述のように、それぞれセルロース誘導体、ポリビニルアセタールのヒドロキシ基と、当該ヒドロキシ基と反応可能な基及び重合性不飽和基を有する化合物とを反応させることによって得ることができる。
 上記反応は、例えば、エステル化反応、ウレタン化反応、エーテル化反応である。当該反応においては、従来公知の方法や反応条件を採用することができる。反応触媒(有機金属化合物、金属、アミン、縮合剤等)を用いることも有効である。
 エステル化反応は、例えば、縮合剤を用いて行うことができる。縮合剤としては、カルボジイミド、ジフェニルリン酸アジド、1-ヒドロキシベンゾトリアゾール、BOP試薬等を挙げることができる。縮合剤は、1種のみを用いてもよいし、2種以上を併用してもよい。中でも、カルボジイミドは、汎用性や反応性に優れ、低温条件で、また反応環境下の水分の影響を受けずに反応を進行させることができるため好適である。
 カルボジイミドとしては、ジシクロヘキシルカルボジイミド、ジイソプロピルカルボジイミド、N-[3-(ジメチルアミノ)プロピル]-N’-エチルカルボジイミド、N-[3-(ジメチルアミノ)プロピル]-N’-エチルカルボジイミドメチオダド等が挙げられる。中でも、入手性の観点から、ジシクロヘキシルカルボジイミド、ジイソプロピルカルボジイミドが好適である。また、カルボジイミドを使用する場合には、反応促進剤として塩基であるジメチルアミノピリジンやトリエチルアミンをカルボジイミドに対して0.01モル%~10モル%の範囲で併用することも好ましい。
 ウレタン化反応は、例えば、反応触媒を用いて行うことができる。反応触媒としては、ジラウリン酸ジオクチルスズ、ジブチルスズジラウレート、スタナスオクトエート、ジブナフテン酸亜鉛等の有機金属化合物;1,8-ジアザビシクロ[5,4,0]ウンデセン-7(DBU)又はその塩;1,4-ジアザビシクロ[2,2,2]オクタン、PMDETA(N,N,N’,N’’,N’’-ペンタメチルジエチレントリアミン)、N,N-ジメチルシクロヘキシルアミン、N-メチルジシクロヘキシルアミン、N,N,N’,N’-テトラメチルプロピレンジアミン、N,N,N’,N’-テトラメチルヘキサメチレンジアミン、N-メチルモルホリン、N-エチルモルホリン、N,N-ジメチルエタノールアミン、N,N-ジエチルエタノールアミン等のアミン化合物が挙げられる。
 エーテル化反応は、KOH、NaOH等のアルカリ金属の水酸化物;NaHやKH等の水素化アルカリ金属を反応触媒として用いることで効率的に実施できる。
 セルロース誘導体、ポリビニルアセタールのヒドロキシ基と、当該ヒドロキシ基と反応可能な基及び重合性不飽和基を有する化合物との反応は、非プロトン性の有機溶剤中で行うことが好ましい。
 非プロトン性の有機溶剤としては、酢酸エチル、酢酸ブチル、テトラヒドロフラン、ジオキサン、アセトン、メチルエチルケトン、メチルイソブチルケトン、ジイソブチルケトン、トルエン、キシレン、ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドン、エチルラクテート、エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、エチレングリコールモノブチルエーテルアセテート(ブチルカルビトールアセテート)、ジエチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノブチルエーテルアセテート、ジエチレングリコールエチルメチルエーテル、ジエチレングリコールイソプロピルメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールブチルメチルエーテル、ジエチレングリコールジブチルエーテル、トリエチレングリコールジメチルエーテル、トリエチレングリコールブチルメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールジメチルエーテル、プロピレングリコールジアセテート、ジプロピレングリコールジメチルエーテル、トリプロピレングリコールジメチルエーテル、ジヒドロターピニルアセテート等が挙げられる。有機溶剤は、1種のみを用いてもよいし、2種以上を併用してもよい。
 セルロース誘導体、ポリビニルアセタールのヒドロキシ基と、当該ヒドロキシ基と反応可能な基及び重合性不飽和基を有する化合物との反応の温度は、例えば、0℃~100℃程度である。重合性不飽和基の導入量は、NMR分析等で測定可能である。縮合剤としてカルボジイミドを用いる場合は、あらかじめ重合性不飽和基を有する化合物とカルボジイミドとを反応させた後に添加してもよい。またカルボジイミドを用いた場合には、副生成物としてウレアが生成し、それが不溶化する場合もあるが、必要に応じてろ過精製や再沈殿精製を行ってもよい。
 セルロース誘導体やポリビニルアセタールへの重合性不飽和基の導入量は、セルロース誘導体やポリビニルアセタールの1分子が有するヒドロキシ基の数、ヒドロキシ基と反応可能な基及び重合性不飽和基を有する化合物、縮合剤等の使用量等によって調整することができる。セルロース誘導体やポリビニルアセタールの1分子が有するヒドロキシ基の数は、セルロース誘導体やポリビニルアセタールに含まれるヒドロキシ基の含有率、セルロース誘導体やポリビニルアセタールの分子量等によって調整できる。
 セルロース誘導体及びポリビニルアセタールへの重合性不飽和基の導入は、1)それぞれ個別に行ってもよいし、あるいは、2)あらかじめセルロース誘導体とポリビニルアセタールとを混合し、この混合物に対してヒドロキシ基と反応可能な基及び重合性不飽和基を有する化合物を反応させることにより行ってもよい。
 上記2)の場合におけるセルロース誘導体とポリビニルアセタールとの混合比率は、上述の「共重合体に含有される構成単位(a)と構成単位(b)との含有量比」と同様であることが好ましい。また、上記2)の場合においても、セルロース誘導体及びポリビニルアセタールのそれぞれについて、重合性不飽和基の数が1分子あたり平均10個以下となるように重合性不飽和基を導入することが好ましい。
 〔2〕共重合体の製造
 重合性不飽和基を有するセルロース系重合性化合物、重合性不飽和基を有するポリビニルアセタール系重合性化合物、及び任意で使用される構成単位(c)を形成するモノマーを含むモノマー組成物を共重合させることにより共重合体を得ることができる。この共重合反応は、例えば、有機溶剤中、ラジカル重合開始剤の存在下に、好ましくは非酸素雰囲気下にて加熱することによって行われる。共重合反応に使用可能な有機溶剤の具体例は、上記〔1〕で例示した非プロトン性の有機溶剤に加えてプロトン性有機溶剤が使用可能であり、エチルアルコール、イソプロピルアルコール、ブチルアルコール、ベンジルアルコール、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールジメチルエーテル、ジプロピレングリコールモノメチルエーテル、ターピネオール、ジヒドロターピネオール等が挙げられる。有機溶剤は、1種のみを用いてもよいし、2種以上を併用してもよい。
 ラジカル重合開始剤としては、従来公知のもの(例えば過酸化物系やアゾ系)を用いることができる。ラジカル重合開始剤の使用量は、モノマーの総量100質量%に対して、例えば0.001~5%の範囲である。
 共重合反応溶液中における全モノマーの合計濃度は、好ましくは5~70質量%である。共重合反応の温度は、例えば、40℃~120℃程度である。
 共重合反応後、必要に応じて、貧溶媒による沈殿精製等の通常のポリマー精製処理を実施してもよい。精製処理により、未反応モノマーや副生成物を除去することができ、固体状態の共重合体を得ることもできる。
 <共重合体組成物>
 本発明に係る共重合体組成物は、上記共重合体であるバインダーと、無機粒子と、有機溶剤とを含み、種々のペースト又はスラリー、特に電子部品や、電子機器の部材を製造するための焼成型のペースト又はスラリーとして好適である。なお、ペーストとスラリーとの間に明確な区別はないが、主に粘度の点から区別されており、前者の方が高粘度である。
 例えば、本発明に係る共重合体組成物は、各種電子部品の回路や電極パターン、誘電体層、蛍光体層等を形成するためのペースト又はスラリーとして好適に用いることができる。また、該共重合体組成物の製造中間体ともなり得る、バインダーと有機溶剤とを含む共重合体組成物も本発明に属する。
 共重合体組成物に含まれる無機粒子を構成する無機材料としては、導電性無機材料、セラミック、ガラス、顔料、蛍光体等が挙げられる。導電性無機材料としては、例えば、金、銀、銅、白金、パラジウム、ニッケル、アルミニウム、タングステン、鉄等の金属;銀-パラジウム合金等の前記金属のいずれかを含む合金;ITO等からなる金属酸化物;炭素粉末等が挙げられる。セラミックとしては、例えば、チタン酸バリウム、酸化チタン、アルミナ、ジルコニア、窒化アルミニウム、窒化ケイ素、窒化ホウ素、炭化ケイ素、及びフェライト等の磁性セラミック等が挙げられる。ガラスとしては、二酸化ケイ素を含むもの(通常は、これを主成分とするもの)が挙げられ、その融点は特に制限されない。無機粒子の粒子径は、通常20nm~1mmの範囲である。無機粒子は、1種のみを用いてもよいし、2種以上を併用してもよい。
 共重合体組成物に含まれる有機溶剤としては、上記<共重合体の製造方法>〔1〕、〔2〕で例示した有機溶剤の1種又は2種以上を用いることができる。有機溶剤は、バインダーを溶解可能な溶剤であり、印刷ペースト用途においては高沸点であることが好ましい。
 共重合体組成物は、必要に応じて添加剤をさらに含むことができる。添加剤としては、界面活性剤、粘度調整剤、消泡剤、レベリング剤、安定剤、可塑剤、湿潤剤、色素、ポリマー粒子等を含む。添加剤は、1種のみを用いてもよいし、2種以上を併用してもよい。また、共重合体組成物は、上述の共重合体以外の重合体をバインダーとして含み得る。
 共重合体組成物における無機粒子(2種以上の無機粒子を含有する場合はその合計含有量)とバインダーとの含有量比は、質量基準で、通常100:1~100:50であり、共重合体組成物の粘度や無機粒子の分散性等の観点から、好ましくは100:5~100:30である。有機溶剤(2種以上の有機溶剤を含有する場合はその合計含有量)の含有量は、バインダー100質量部に対して、通常100質量部~10000質量部である。共重合体組成物が添加剤を含有する場合、その含有量(2種以上の添加剤を含有する場合はその合計含有量)は、バインダー100質量部に対して、通常0.1~30質量部である。
 無機粒子、有機溶剤に溶解したバインダー(共重合体)、及び必要に応じて使用される添加剤を、3本ロールミル、ボールミル、メディアミル、ホモジナイザー等の分散装置を用いて混合し、無機粒子を均一に分散させることによって共重合体組成物を調製することができる。
 共重合体組成物を基材等に塗工した後、続く焼成によって有機溶剤を揮発させるとともに、バインダーを熱分解させることにより、無機粒子による層又はパターン等を形成することができる。共重合体組成物の塗工方法としては、スクリーン印刷、ダイコート印刷、ドクターブレード印刷、ロールコート印刷、オフセット印刷、グラビア印刷、フレキソ印刷、インクジェット印刷、ディスペンス印刷、キャスト法、ディップ塗装等が挙げられ、中でもスクリーン印刷、ディップ塗装が好適である。焼成により得られる層又はパターンは通常、無機粒子の焼結体からなる。
 以下、実施例及び比較例を示して本発明をさらに具体的に説明するが、本発明はこれらの例によって限定されるものではない。例中、含有量ないし使用量を表す%及び部は、特記ない限り質量基準である。
 (合成例1:セルロース系重合性化合物(a1)の合成)
 エチルセルロース(ダウケミカル社製の「エトセルSTD-100」、数平均分子量Mn(GPCによる標準ポリスチレン換算値):63400、置換度(DS値、エーテル化度):2.52)を用意し、乾燥させた。なお、置換度2.52とは、1個のグルコース環に存在する3個のヒドロキシ基のうち平均して2.52個がエチルエーテル化されており、0.48個のヒドロキシ基が残存しているという意味である。数平均分子量Mn及び置換度から計算される一分子中の平均ヒドロキシ基数は、約131である。
 上記乾燥させたエチルセルロース100部を酢酸エチル400部に溶解させた。得られた溶液に、エチルセルロース一分子に対して平均2個の導入量に相当するメタクリル酸0.27部、縮合剤としてのジイソプロピルカルボジイミド0.4部、反応促進剤としてのジメチルアミノピリジン0.004部を添加し、温度30℃で24時間撹拌して反応を行った。その後、酢酸エチルを留去することにより、固体として、エチルセルロースにメタクリレート基が導入されたセルロース系重合性化合物(a1)を得た。
 得られた固体の一部をFT-IR及びH-NMRで分析したところ、エステル結合の生成が確認されるとともに、仕込んだメタクリル酸と同モル量のメタクリレート基がエチルセルロースに導入されていることが確認された。
 (合成例2:セルロース系重合性化合物(a2)の合成)
 エチルセルロース(ダウケミカル社製の「エトセルSTD-10」、数平均分子量Mn(GPCによる標準ポリスチレン換算値):22800、置換度:2.52)を用意し、乾燥させた。数平均分子量Mn及び置換度から計算される一分子中の平均ヒドロキシ基数は、約47である。
 上記乾燥させたエチルセルロース100部を酢酸エチル400部に溶解させた。得られた溶液に、エチルセルロース一分子に対して平均3個の導入量に相当する2-イソシアナトエチルメタクリレート(昭和電工社製の「カレンズMOI」)2.05部、触媒としてのジラウリン酸ジオクチルスズ0.01部を添加し、温度60℃で5時間撹拌して反応を行った。その後、酢酸エチルを留去することにより、固体として、エチルセルロースにメタクリレート基が導入されたセルロース系重合性化合物(a2)を得た。
 得られた固体の一部をFT-IR及びH-NMRで分析したところ、ウレタン結合の生成が確認されるとともに、仕込んだ2-イソシアナトエチルメタクリレートと同モル量のメタクリレート基がエチルセルロースに導入されていることが確認された。
 (合成例3:セルロース系重合性化合物(a3)の合成)
 エチルセルロース(ダウケミカル社製の「エトセルSTD-200」、数平均分子量Mn(GPCによる標準ポリスチレン換算値):80700、置換度:2.52)を用意し、乾燥させた。数平均分子量Mn及び置換度から計算される一分子中の平均ヒドロキシ基数は、約167である。
 上記乾燥させたエチルセルロース100部を酢酸エチル400部に溶解させた。得られた溶液に、エチルセルロース一分子に対して平均1個の導入量に相当するメタクリル酸0.11部、縮合剤としてのジイソプロピルカルボジイミド0.16部、反応促進剤としてのジメチルアミノピリジン0.0016部を添加し、温度30℃で24時間撹拌して反応を行った。その後、酢酸エチルを留去することにより、固体として、エチルセルロースにメタクリレート基が導入されたセルロース系重合性化合物(a3)を得た。
 得られた固体の一部をFT-IR及びH-NMRで分析したところ、エステル結合の生成が確認されるとともに、仕込んだメタクリル酸と同モル量のメタクリレート基がエチルセルロースに導入されていることが確認された。
 (合成例4:セルロース系重合性化合物(a4)の合成)
 エチルセルロース(ダウケミカル社製の「エトセルSTD-100」、数平均分子量Mn(GPCによる標準ポリスチレン換算値):63400、置換度:2.52)を用意し、乾燥させた。数平均分子量Mn及び置換度から計算される一分子中の平均ヒドロキシ基数は、約131である。
 上記乾燥させたエチルセルロース100部を酢酸エチル400部に溶解させた。得られた溶液に、エチルセルロース一分子に対して平均5個の導入量に相当するメタクリル酸0.68部、縮合剤としてのジイソプロピルカルボジイミド0.99部、反応促進剤としてのジメチルアミノピリジン0.001部を添加し、温度30℃で24時間撹拌して反応を行った。その後、酢酸エチルを留去することにより、固体として、エチルセルロースにメタクリレート基が導入されたセルロース系重合性化合物(a4)を得た。
 得られた固体の一部をFT-IR及びH-NMRで分析したところ、エステル結合の生成が確認されるとともに、仕込んだメタクリル酸と同モル量のメタクリレート基がエチルセルロースに導入されていることが確認された。
 (合成例5:セルロース系重合性化合物(a5)の合成)
 エチルセルロース(ダウケミカル社製の「エトセルSTD-45」、数平均分子量Mn(GPCによる標準ポリスチレン換算値):56500、置換度:2.52)を用意し、乾燥させた。数平均分子量Mn及び置換度から計算される一分子中の平均ヒドロキシ基数は、約117である。
 上記乾燥させたエチルセルロース100部を酢酸エチル400部に溶解させた。得られた溶液に、エチルセルロース一分子に対して平均3個の導入量に相当するメタクリル酸0.46部、縮合剤としてのジイソプロピルカルボジイミド0.67部、反応促進剤としてのジメチルアミノピリジン0.0067部を添加し、温度30℃で24時間撹拌して反応を行った。その後、酢酸エチルを留去することにより、固体として、エチルセルロースにメタクリレート基が導入されたセルロース系重合性化合物(a5)を得た。
 得られた固体の一部をFT-IR及びH-NMRで分析したところ、エステル結合の生成が確認されるとともに、仕込んだメタクリル酸と同モル量のメタクリレート基がエチルセルロースに導入されていることが確認された。
 (合成例6:セルロース系重合性化合物(a6)の合成)
 エチルセルロース(ダウケミカル社製の「エトセルSTD-4」、数平均分子量Mn(GPCによる標準ポリスチレン換算値):13700、置換度:2.52)を用意し、乾燥させた。数平均分子量Mn及び置換度から計算される一分子中の平均ヒドロキシ基数は、約28である。
 上記乾燥させたエチルセルロース100部を酢酸エチル400部に溶解させた。得られた溶液に、エチルセルロース一分子に対して平均10個の導入量に相当するメタクリル酸6.26部、縮合剤としてのジイソプロピルカルボジイミド9.18部、反応促進剤としてのジメチルアミノピリジン0.09部を添加し、温度30℃で24時間撹拌して反応を行った。その後、酢酸エチルを留去することにより、固体として、エチルセルロースにメタクリレート基が導入されたセルロース系重合性化合物(a6)を得た。
 得られた固体の一部をFT-IR及びH-NMRで分析したところ、エステル結合の生成が確認されるとともに、仕込んだメタクリル酸と同モル量のメタクリレート基がエチルセルロースに導入されていることが確認された。
 (合成例7:ポリビニルアセタール系重合性化合物(b1)の合成)
 ポリビニルブチラール(積水化学社製の「BM-S」、数平均分子量Mn(GPCによる標準ポリスチレン換算値):53000、ヒドロキシ基量:約22モル%)を用意し、乾燥させた。乾燥させたポリビニルブチラール100部を酢酸エチル400部に溶解させた。得られた溶液に、ポリビニルブチラール一分子に対して平均2個の導入量に相当するメタクリル酸0.32部、縮合剤としてのジイソプロピルカルボジイミド0.48部、反応促進剤としてのジメチルアミノピリジン0.0048部を添加し、温度30℃で24時間撹拌して反応を行った。その後、酢酸エチルを留去することにより、固体として、ポリビニルブチラールにメタクリレート基が導入されたポリビニルアセタール系重合性化合物(b1)を得た。
 得られた固体の一部をFT-IR及びH-NMRで分析したところ、エステル結合の生成が確認されるとともに、仕込んだメタクリル酸と同モル量のメタクリレート基がポリビニルブチラールに導入されていることが確認された。
 (合成例8:ポリビニルアセタール系重合性化合物(b2)の合成)
 ポリビニルブチラール(積水化学社製の「BL-S」、数平均分子量Mn(GPCによる標準ポリスチレン換算値):23000、ヒドロキシ基量:約22モル%)を用意し、乾燥させた。乾燥させたポリビニルブチラール100部を酢酸エチル400部に溶解させた。得られた溶液に、ポリビニルブチラール一分子に対して平均3個の導入量に相当する2-イソシアナトエチルメタクリレート(昭和電工社製の「カレンズMOI」)2.02部、触媒としてのジラウリン酸ジオクチルスズ0.01部を添加し、温度60℃で5時間撹拌して反応を行った。その後、酢酸エチルを留去することにより、固体として、ポリビニルブチラールにメタクリレート基が導入されたポリビニルアセタール系重合性化合物(b2)を得た。
 得られた固体の一部をFT-IR及びH-NMRで分析したところ、ウレタン結合の生成が確認されるとともに、仕込んだ2-イソシアナトエチルメタクリレートと同モル量のメタクリレート基がポリビニルブチラールに導入されていることが確認された。
 (合成例9:ポリビニルアセタール系重合性化合物(b3)の合成)
 ポリビニルブチラール(積水化学社製の「BH-S」、数平均分子量Mn(GPCによる標準ポリスチレン換算値):66000、ヒドロキシ基量:約22モル%)を用意し、乾燥させた。乾燥させたポリビニルブチラール100部を酢酸エチル400部に溶解させた。得られた溶液に、ポリビニルブチラール一分子に対して平均1個の導入量に相当するメタクリル酸0.13部、縮合剤としてのジイソプロピルカルボジイミド0.19部、反応促進剤としてのジメチルアミノピリジン0.002部を添加し、温度30℃で24時間撹拌して反応を行った。その後、酢酸エチルを留去することにより、固体として、ポリビニルブチラールにメタクリレート基が導入されたポリビニルアセタール系重合性化合物(b3)を得た。
 得られた固体の一部をFT-IR及びH-NMRで分析したところ、エステル結合の生成が確認されるとともに、仕込んだメタクリル酸と同モル量のメタクリレート基がポリビニルブチラールに導入されていることが確認された。
 (合成例10:ポリビニルアセタール系重合性化合物(b4)の合成)
 ポリビニルブチラール(積水化学社製の「BM-S」、数平均分子量Mn(GPCによる標準ポリスチレン換算値):53000、ヒドロキシ基量:約22モル%)を用意し、乾燥させた。乾燥させたポリビニルブチラール100部を酢酸エチル400部に溶解させた。得られた溶液に、ポリビニルブチラール一分子に対して平均5個の導入量に相当するメタクリル酸0.81部、縮合剤としてのジイソプロピルカルボジイミド1.19部、反応促進剤としてのジメチルアミノピリジン0.012部を添加し、温度30℃で24時間撹拌して反応を行った。その後、酢酸エチルを留去することにより、固体として、ポリビニルブチラールにメタクリレート基が導入されたポリビニルアセタール系重合性化合物(b4)を得た。
 得られた固体の一部をFT-IR及びH-NMRで分析したところ、エステル結合の生成が確認されるとともに、仕込んだメタクリル酸と同モル量のメタクリレート基がポリビニルブチラールに導入されていることが確認された。
 (合成例11:ポリビニルアセタール系重合性化合物(b5)の合成)
 ポリビニルブチラール(積水化学社製の「BM-S」、数平均分子量Mn(GPCによる標準ポリスチレン換算値):53000、ヒドロキシ基量:約22モル%)を用意し、乾燥させた。乾燥させたポリビニルブチラール100部を酢酸エチル400部に溶解させた。得られた溶液に、ポリビニルブチラール一分子に対して平均3個の導入量に相当するメタクリル酸0.48部、縮合剤としてのジイソプロピルカルボジイミド0.72部、反応促進剤としてのジメチルアミノピリジン0.0072部を添加し、温度30℃で24時間撹拌して反応を行った。その後、酢酸エチルを留去することにより、固体として、ポリビニルブチラールにメタクリレート基が導入されたポリビニルアセタール系重合性化合物(b5)を得た。
 得られた固体の一部をFT-IR及びH-NMRで分析したところ、エステル結合の生成が確認されるとともに、仕込んだメタクリル酸と同モル量のメタクリレート基がポリビニルブチラールに導入されていることが確認された。
 (合成例12:ポリビニルアセタール系重合性化合物(b6)の合成)
 ポリビニルブチラール(積水化学社製の「BL-S」、数平均分子量Mn(GPCによる標準ポリスチレン換算値):23000、ヒドロキシ基量:約22モル%)を用意し、乾燥させた。乾燥させたポリビニルブチラール100部を酢酸エチル400部に溶解させた。得られた溶液に、ポリビニルブチラール一分子に対して平均10個の導入量に相当するメタクリル酸3.74部、縮合剤としてのジイソプロピルカルボジイミド5.49部、反応促進剤としてのジメチルアミノピリジン0.055部を添加し、温度30℃で24時間撹拌して反応を行った。その後、酢酸エチルを留去することにより、固体として、ポリビニルブチラールにメタクリレート基が導入されたポリビニルアセタール系重合性化合物(b6)を得た。
 得られた固体の一部をFT-IR及びH-NMRで分析したところ、エステル結合の生成が確認されるとともに、仕込んだメタクリル酸と同モル量のメタクリレート基がエチルセルロースに導入されていることが確認された。
 (合成例13:セルロース系重合性化合物(a7)とポリビニルアセタール系重合性化合物(b7)との混合物の合成)
 エチルセルロース(ダウケミカル社製の「エトセルSTD-100」、数平均分子量Mn(GPCによる標準ポリスチレン換算値):63400、置換度:2.52)を用意し、乾燥させた。また、ポリビニルブチラール(積水化学社製の「BM-S」、数平均分子量Mn(GPCによる標準ポリスチレン換算値):53000、ヒドロキシ基量:約22モル%)を用意し、乾燥させた。
 上記乾燥させたエチルセルロース50部及び上記乾燥させたポリビニルブチラール50部を酢酸エチル400部に溶解させた。得られた溶液に、エチルセルロース一分子及びポリビニルブチラール一分子のそれぞれに対して平均2個の導入量に相当するメタクリル酸0.30部、縮合剤としてのジイソプロピルカルボジイミド0.44部、反応促進剤としてのジメチルアミノピリジン0.0044部を添加し、温度30℃で24時間撹拌して反応を行った。その後、酢酸エチルを留去することにより、固体として、エチルセルロースにメタクリレート基が導入されたセルロース系重合性化合物(a7)とポリビニルブチラールにメタクリレート基が導入されたポリビニルアセタール系重合性化合物(b7)との混合物を得た。
 得られた固体の一部をFT-IR及びH-NMRで分析したところ、エステル結合の生成が確認されるとともに、仕込んだメタクリル酸と同モル量のメタクリレート基がエチルセルロース及びポリビニルブチラールに導入されていることが確認された。
 (合成例14:セルロース系重合性化合物(a8)とポリビニルアセタール系重合性化合物(b8)との混合物の合成)
 エチルセルロース(ダウケミカル社製の「エトセルSTD-10」、数平均分子量Mn(GPCによる標準ポリスチレン換算値):22800、置換度:2.52)を用意し、乾燥させた。また、ポリビニルブチラール(積水化学社製の「BL-S」、数平均分子量Mn(GPCによる標準ポリスチレン換算値):23000、ヒドロキシ基量:約22モル%)を用意し、乾燥させた。
 上記乾燥させたエチルセルロース50部及び上記乾燥させたポリビニルブチラール50部を酢酸エチル400部に溶解させた。得られた溶液に、エチルセルロース一分子及びポリビニルブチラール一分子のそれぞれに対して平均3個の導入量に相当するメタクリル酸1.13部、縮合剤としてのジイソプロピルカルボジイミド1.65部、反応促進剤としてのジメチルアミノピリジン0.016部を添加し、温度30℃で24時間撹拌して反応を行った。その後、酢酸エチルを留去することにより、固体として、エチルセルロースにメタクリレート基が導入されたセルロース系重合性化合物(a8)とポリビニルブチラールにメタクリレート基が導入されたポリビニルアセタール系重合性化合物(b8)との混合物を得た。
 得られた固体の一部をFT-IR及びH-NMRで分析したところ、エステル結合の生成が確認されるとともに、仕込んだメタクリル酸と同モル量のメタクリレート基がエチルセルロース及びポリビニルブチラールに導入されていることが確認された。
 (合成例15:セルロース系重合性化合物(a9)とポリビニルアセタール系重合性化合物(b9)との混合物の合成)
 エチルセルロース(ダウケミカル社製の「エトセルSTD-4」、数平均分子量Mn(GPCによる標準ポリスチレン換算値):13700、置換度:2.52)を用意し、乾燥させた。また、ポリビニルブチラール(積水化学社製の「BL-S」、数平均分子量Mn(GPCによる標準ポリスチレン換算値):23000、ヒドロキシ基量:約22モル%)を用意し、乾燥させた。
 上記乾燥させたエチルセルロース50部及び上記乾燥させたポリビニルブチラール50部を酢酸エチル400部に溶解させた。得られた溶液に、エチルセルロース一分子及びポリビニルブチラール一分子のそれぞれに対して平均2個の導入量に相当するメタクリル酸0.30部、縮合剤としてのジイソプロピルカルボジイミド0.44部、反応促進剤としてのジメチルアミノピリジン0.0044部を添加し、温度30℃で24時間撹拌して反応を行った。その後、酢酸エチルを留去することにより、固体として、エチルセルロースにメタクリレート基が導入されたセルロース系重合性化合物(a9)とポリビニルブチラールにメタクリレート基が導入されたポリビニルアセタール系重合性化合物(b9)との混合物を得た。
 得られた固体の一部をFT-IR及びH-NMRで分析したところ、エステル結合の生成が確認されるとともに、仕込んだメタクリル酸と同モル量のメタクリレート基がエチルセルロース及びポリビニルブチラールに導入されていることが確認された。
 (合成例16:セルロース系重合性化合物(a10)とポリビニルアセタール系重合性化合物(b10)との混合物の合成)
 エチルセルロース(ダウケミカル社製の「エトセルSTD-100」、数平均分子量Mn(GPCによる標準ポリスチレン換算値):63400、置換度:2.52)を用意し、乾燥させた。また、ポリビニルブチラール(積水化学社製の「BH-S」、数平均分子量Mn(GPCによる標準ポリスチレン換算値):66000、ヒドロキシ基量:約22モル%)を用意し、乾燥させた。
 上記乾燥させたエチルセルロース50部及び上記乾燥させたポリビニルブチラール50部を酢酸エチル400部に溶解させた。得られた溶液に、エチルセルロース一分子及びポリビニルブチラール一分子のそれぞれに対して平均2個の導入量に相当するメタクリル酸0.27部、縮合剤としてのジイソプロピルカルボジイミド0.4部、反応促進剤としてのジメチルアミノピリジン0.004部を添加し、温度30℃で24時間撹拌して反応を行った。その後、酢酸エチルを留去することにより、固体として、エチルセルロースにメタクリレート基が導入されたセルロース系重合性化合物(a10)とポリビニルブチラールにメタクリレート基が導入されたポリビニルアセタール系重合性化合物(b10)との混合物を得た。
 得られた固体の一部をFT-IR及びH-NMRで分析したところ、エステル結合の生成が確認されるとともに、仕込んだメタクリル酸と同モル量のメタクリレート基がエチルセルロース及びポリビニルブチラールに導入されていることが確認された。
 (合成例17:セルロース系重合性化合物(a11)とポリビニルアセタール系重合性化合物(b11)との混合物の合成)
 エチルセルロース(ダウケミカル社製の「エトセルSTD-200」、数平均分子量Mn(GPCによる標準ポリスチレン換算値):80700、置換度:2.52)を用意し、乾燥させた。また、ポリビニルブチラール(積水化学社製の「BH-S」、数平均分子量Mn(GPCによる標準ポリスチレン換算値):66000、ヒドロキシ基量:約22モル%)を用意し、乾燥させた。
 上記乾燥させたエチルセルロース50部及び上記乾燥させたポリビニルブチラール50部を酢酸エチル400部に溶解させた。得られた溶液に、エチルセルロース一分子及びポリビニルブチラール一分子のそれぞれに対して平均2個の導入量に相当するメタクリル酸0.24部、縮合剤としてのジイソプロピルカルボジイミド0.35部、反応促進剤としてのジメチルアミノピリジン0.004部を添加し、温度30℃で24時間撹拌して反応を行った。その後、酢酸エチルを留去することにより、固体として、エチルセルロースにメタクリレート基が導入されたセルロース系重合性化合物(a11)とポリビニルブチラールにメタクリレート基が導入されたポリビニルアセタール系重合性化合物(b11)との混合物を得た。
 得られた固体の一部をFT-IR及びH-NMRで分析したところ、エステル結合の生成が確認されるとともに、仕込んだメタクリル酸と同モル量のメタクリレート基がエチルセルロース及びポリビニルブチラールに導入されていることが確認された。
 1.バインダー(共重合体)の合成
 <実施例1:共重合体(1)の合成>
 重合反応容器内に、合成例1で得られたセルロース系重合性化合物(a1) 10部、合成例7で得られたポリビニルアセタール系重合性化合物(b1) 10部、及び有機溶剤としてのジヒドロターピニルアセテート80部を添加、混合し、60℃に加熱して回転翼で撹拌して溶解させた。溶解後に窒素置換を行って系内の酸素を除去し、重合開始剤としてのアゾイソブチロニトリル(AIBN)0.01部を混合して70℃で5時間反応を行って、共重合体(1)を含有する液(バインダー溶液)を得た。
 得られた共重合体(1)の分子量をGPC装置で測定したところ、数平均分子量(標準ポリスチレン換算値)は71000であった。この値は、原料として用いたエチルセルロースの数平均分子量及びポリビニルブチラールの数平均分子量よりも大きいことから、上記反応によって重合が進行していることが確認できた。
 共重合体(1)の数平均分子量は、次の条件で測定した(以下の実施例で得られた共重合体の数平均分子量についても同様)。
 GPC装置:東ソー社製「HLC-8320GPC」、
 カラム:TSKgel GMHXL、
 測定温度(設定温度):30℃、
 移動相:テトラヒドロフラン。
 <実施例2:共重合体(2)の合成>
 重合反応容器内に、合成例1で得られたセルロース系重合性化合物(a1) 10部、合成例7で得られたポリビニルアセタール系重合性化合物(b1) 10部、イソブチルメタクリレート1.0部、及び有機溶剤としてのジヒドロターピニルアセテート80部を添加、混合し、60℃に加熱して回転翼で撹拌して溶解させた。溶解後に窒素置換を行って系内の酸素を除去し、重合開始剤としてのアゾイソブチロニトリル(AIBN)0.01部を混合して70℃で5時間反応を行って、共重合体(2)を含有する液(バインダー溶液)を得た。
 得られた共重合体(2)の分子量をGPC装置で測定したところ、数平均分子量(標準ポリスチレン換算値)は72000であった。この値は、原料として用いたエチルセルロースの数平均分子量及びポリビニルブチラールの数平均分子量よりも大きいことから、上記反応によって重合が進行していることが確認できた。
 <実施例3:共重合体(3)の合成>
 合成例1で得られたセルロース系重合性化合物(a1)を5部、合成例7で得られたポリビニルアセタール系重合性化合物(b1)を15部使用したこと以外は実施例1と同様にして、共重合体(3)を含有する液(バインダー溶液)を得た。
 得られた共重合体(3)の分子量をGPC装置で測定したところ、数平均分子量(標準ポリスチレン換算値)は73000であった。この値は、原料として用いたエチルセルロースの数平均分子量及びポリビニルブチラールの数平均分子量よりも大きいことから、上記反応によって重合が進行していることが確認できた。
 <実施例4:共重合体(4)の合成>
 合成例1で得られたセルロース系重合性化合物(a1)を15部、合成例7で得られたポリビニルアセタール系重合性化合物(b1)を5部使用したこと以外は実施例1と同様にして、共重合体(4)を含有する液(バインダー溶液)を得た。
 得られた共重合体(4)の分子量をGPC装置で測定したところ、数平均分子量(標準ポリスチレン換算値)は70000であった。この値は、原料として用いたエチルセルロースの数平均分子量及びポリビニルブチラールの数平均分子量よりも大きいことから、上記反応によって重合が進行していることが確認できた。
 <実施例5:共重合体(5)の合成>
 重合反応容器内に、合成例2で得られたセルロース系重合性化合物(a2) 10部、合成例8で得られたポリビニルアセタール系重合性化合物(b2) 10部、及び有機溶剤としてのジヒドロターピニルアセテート80部を添加、混合し、60℃に加熱して回転翼で撹拌して溶解させた。溶解後に窒素置換を行って系内の酸素を除去し、重合開始剤としてのアゾイソブチロニトリル(AIBN)0.01部を混合して70℃で5時間反応を行って、共重合体(5)を含有する液(バインダー溶液)を得た。
 得られた共重合体(5)の分子量をGPC装置で測定したところ、数平均分子量(標準ポリスチレン換算値)は42000であった。この値は、原料として用いたエチルセルロースの数平均分子量及びポリビニルブチラールの数平均分子量よりも大きいことから、上記反応によって重合が進行していることが確認できた。
 <実施例6:共重合体(6)の合成>
 重合反応容器内に、合成例2で得られたセルロース系重合性化合物(a2) 10部、合成例8で得られたポリビニルアセタール系重合性化合物(b2) 10部、イソブチルメタクリレート2部、及び有機溶剤としてのジヒドロターピニルアセテート80部を添加、混合し、60℃に加熱して回転翼で撹拌して溶解させた。溶解後に窒素置換を行って系内の酸素を除去し、重合開始剤としてのアゾイソブチロニトリル(AIBN)0.01部を混合して70℃で5時間反応を行って、共重合体(6)を含有する液(バインダー溶液)を得た。
 得られた共重合体(6)の分子量をGPC装置で測定したところ、数平均分子量(標準ポリスチレン換算値)は45000であった。この値は、原料として用いたエチルセルロースの数平均分子量及びポリビニルブチラールの数平均分子量よりも大きいことから、上記反応によって重合が進行していることが確認できた。
 <実施例7:共重合体(7)の合成>
 合成例2で得られたセルロース系重合性化合物(a2)の代わりに合成例1で得られたセルロース系重合性化合物(a1)を使用したこと以外は実施例5と同様にして、共重合体(7)を含有する液(バインダー溶液)を得た。
 得られた共重合体(7)の分子量をGPC装置で測定したところ、数平均分子量(標準ポリスチレン換算値)は68000であった。この値は、原料として用いたエチルセルロースの数平均分子量及びポリビニルブチラールの数平均分子量よりも大きいことから、上記反応によって重合が進行していることが確認できた。
 <実施例8:共重合体(8)の合成>
 合成例8で得られたポリビニルアセタール系重合性化合物(b2)の代わりに合成例7で得られたポリビニルアセタール系重合性化合物(b1)を使用したこと以外は実施例5と同様にして、共重合体(8)を含有する液(バインダー溶液)を得た。
 得られた共重合体(8)の分子量をGPC装置で測定したところ、数平均分子量(標準ポリスチレン換算値)は56000であった。この値は、原料として用いたエチルセルロースの数平均分子量及びポリビニルブチラールの数平均分子量よりも大きいことから、上記反応によって重合が進行していることが確認できた。
 <実施例9:共重合体(9)の合成>
 重合反応容器内に、合成例13で得られたエチルセルロースにメタクリレート基が導入されたセルロース系重合性化合物(a7)とポリビニルブチラールにメタクリレート基が導入されたポリビニルアセタール系重合性化合物(b7)との混合物20部、イソブチルメタクリレート0.2部、及び有機溶剤としてのジヒドロターピニルアセテート80部を添加、混合し、60℃に加熱して回転翼で撹拌して溶解させた。溶解後に窒素置換を行って系内の酸素を除去し、重合開始剤としてのアゾイソブチロニトリル(AIBN)0.01部を混合して70℃で5時間反応を行って、共重合体(9)を含有する液(バインダー溶液)を得た。
 得られた共重合体(9)の分子量をGPC装置で測定したところ、数平均分子量(標準ポリスチレン換算値)は72000であった。この値は、原料として用いたエチルセルロースの数平均分子量及びポリビニルブチラールの数平均分子量よりも大きいことから、上記反応によって重合が進行していることが確認できた。
 <実施例10:共重合体(10)の合成>
 合成例13で得られた混合物の代わりに合成例14で得られたエチルセルロースにメタクリレート基が導入されたセルロース系重合性化合物(a8)とポリビニルブチラールにメタクリレート基が導入されたポリビニルアセタール系重合性化合物(b8)との混合物を使用したこと以外は実施例9と同様にして共重合体(10)を含有する液(バインダー溶液)を得た。
 得られた共重合体(10)の分子量をGPC装置で測定したところ、数平均分子量(標準ポリスチレン換算値)は48000であった。この値は、原料として用いたエチルセルロースの数平均分子量及びポリビニルブチラールの数平均分子量よりも大きいことから、上記反応によって重合が進行していることが確認できた。
 <実施例11:共重合体(11)の合成>
 セルロース系重合性化合物(a1)の代わりに合成例3で得られたセルロース系重合性化合物(a3)を使用し、ポリビニルアセタール系重合性化合物(b1)の代わりに合成例9で得られたポリビニルアセタール系重合性化合物(b3)を使用したこと以外は実施例1と同様にして共重合体(11)を含有する液(バインダー溶液)を得た。
 得られた共重合体(11)の分子量をGPC装置で測定したところ、数平均分子量(標準ポリスチレン換算値)は78000であった。この値は、原料として用いたエチルセルロースの数平均分子量及びポリビニルブチラールの数平均分子量よりも大きいことから、上記反応によって重合が進行していることが確認できた。
 <実施例12:共重合体(12)の合成>
 重合反応容器内に、合成例3で得られたセルロース系重合性化合物(a3) 10部、合成例9で得られたポリビニルアセタール系重合性化合物(b3) 10部、イソブチルメタクリレート0.2部、及び有機溶剤としてのジヒドロターピニルアセテート80部を添加、混合し、60℃に加熱して回転翼で撹拌して溶解させた。溶解後に窒素置換を行って系内の酸素を除去し、重合開始剤としてのアゾイソブチロニトリル(AIBN)0.01部を混合して70℃で5時間反応を行って、共重合体(12)を含有する液(バインダー溶液)を得た。
 得られた共重合体(12)の分子量をGPC装置で測定したところ、数平均分子量(標準ポリスチレン換算値)は80000であった。この値は、原料として用いたエチルセルロースの数平均分子量及びポリビニルブチラールの数平均分子量よりも大きいことから、上記反応によって重合が進行していることが確認できた。
 <実施例13:共重合体(13)の合成>
 イソブチルメタクリレートの添加量を0.2部に変更したこと以外は実施例2と同様にして共重合体(13)を含有する液(バインダー溶液)を得た。
 得られた共重合体(13)の分子量をGPC装置で測定したところ、数平均分子量(標準ポリスチレン換算値)は72000であった。この値は、原料として用いたエチルセルロースの数平均分子量及びポリビニルブチラールの数平均分子量よりも大きいことから、上記反応によって重合が進行していることが確認できた。
 <実施例14:共重合体(14)の合成>
 イソブチルメタクリレートの代わりにメチルメタクリレートを使用したこと以外は実施例13と同様にして共重合体(14)を含有する液(バインダー溶液)を得た。
 得られた共重合体(14)の分子量をGPC装置で測定したところ、数平均分子量(標準ポリスチレン換算値)は73000であった。この値は、原料として用いたエチルセルロースの数平均分子量及びポリビニルブチラールの数平均分子量よりも大きいことから、上記反応によって重合が進行していることが確認できた。
 <実施例15:共重合体(15)の合成>
 セルロース系重合性化合物(a1)の代わりに合成例4で得られたセルロース系重合性化合物(a4)を使用し、ポリビニルアセタール系重合性化合物(b1)の代わりに合成例10で得られたポリビニルアセタール系重合性化合物(b4)を使用したこと以外は実施例1と同様にして共重合体(15)を含有する液(バインダー溶液)を得た。
 得られた共重合体(15)の分子量をGPC装置で測定したところ、数平均分子量(標準ポリスチレン換算値)は78000であった。この値は、原料として用いたエチルセルロースの数平均分子量及びポリビニルブチラールの数平均分子量よりも大きいことから、上記反応によって重合が進行していることが確認できた。
 <実施例16:共重合体(16)の合成>
 重合反応容器内に、合成例4で得られたセルロース系重合性化合物(a4) 10部、合成例10で得られたポリビニルアセタール系重合性化合物(b4) 10部、メチルメタクリレート5.0部、及び有機溶剤としてのジヒドロターピニルアセテート80部を添加、混合し、60℃に加熱して回転翼で撹拌して溶解させた。溶解後に窒素置換を行って系内の酸素を除去し、重合開始剤としてのアゾイソブチロニトリル(AIBN)0.01部を混合して70℃で5時間反応を行って、共重合体(16)を含有する液(バインダー溶液)を得た。
 得られた共重合体(16)の分子量をGPC装置で測定したところ、数平均分子量(標準ポリスチレン換算値)は81000であった。この値は、原料として用いたエチルセルロースの数平均分子量及びポリビニルブチラールの数平均分子量よりも大きいことから、上記反応によって重合が進行していることが確認できた。
 <実施例17:共重合体(17)の合成>
 セルロース系重合性化合物(a1)の代わりに合成例5で得られたセルロース系重合性化合物(a5)を使用し、ポリビニルアセタール系重合性化合物(b1)の代わりに合成例11で得られたポリビニルアセタール系重合性化合物(b5)を使用したこと以外は実施例1と同様にして共重合体(17)を含有する液(バインダー溶液)を得た。
 得られた共重合体(17)の分子量をGPC装置で測定したところ、数平均分子量(標準ポリスチレン換算値)は68000であった。この値は、原料として用いたエチルセルロースの数平均分子量及びポリビニルブチラールの数平均分子量よりも大きいことから、上記反応によって重合が進行していることが確認できた。
 <実施例18:共重合体(18)の合成>
 重合反応容器内に、合成例5で得られたセルロース系重合性化合物(a5) 10部、合成例11で得られたポリビニルアセタール系重合性化合物(b5) 10部、イソブチルメタクリレート3.0部、2-ヒドロキシエチルメタクリレート2.0部、及び有機溶剤としてのジヒドロターピニルアセテート80部を添加、混合し、60℃に加熱して回転翼で撹拌して溶解させた。溶解後に窒素置換を行って系内の酸素を除去し、重合開始剤としてのアゾイソブチロニトリル(AIBN)0.01部を混合して70℃で5時間反応を行って、共重合体(18)を含有する液(バインダー溶液)を得た。
 得られた共重合体(18)の分子量をGPC装置で測定したところ、数平均分子量(標準ポリスチレン換算値)は70000であった。この値は、原料として用いたエチルセルロースの数平均分子量及びポリビニルブチラールの数平均分子量よりも大きいことから、上記反応によって重合が進行していることが確認できた。
 <実施例19:共重合体(19)の合成>
 セルロース系重合性化合物(a1)の代わりに合成例6で得られたセルロース系重合性化合物(a6)を使用し、ポリビニルアセタール系重合性化合物(b1)の代わりに合成例12で得られたポリビニルアセタール系重合性化合物(b6)を使用したこと以外は実施例1と同様にして共重合体(19)を含有する液(バインダー溶液)を得た。
 得られた共重合体(19)の分子量をGPC装置で測定したところ、数平均分子量(標準ポリスチレン換算値)は56000であった。この値は、原料として用いたエチルセルロースの数平均分子量及びポリビニルブチラールの数平均分子量よりも大きいことから、上記反応によって重合が進行していることが確認できた。
 <実施例20:共重合体(20)の合成>
 重合反応容器内に、合成例15で得られたエチルセルロースにメタクリレート基が導入されたセルロース系重合性化合物(a9)とポリビニルブチラールにメタクリレート基が導入されたポリビニルアセタール系重合性化合物(b9)との混合物20部、イソブチルメタクリレート0.1部、及び有機溶剤としてのジヒドロターピニルアセテート80部を添加、混合し、60℃に加熱して回転翼で撹拌して溶解させた。溶解後に窒素置換を行って系内の酸素を除去し、重合開始剤としてのアゾイソブチロニトリル(AIBN)0.01部を混合して70℃で5時間反応を行って、共重合体(20)を含有する液(バインダー溶液)を得た。
 得られた共重合体(20)の分子量をGPC装置で測定したところ、数平均分子量(標準ポリスチレン換算値)は30500であった。この値は、原料として用いたエチルセルロースの数平均分子量及びポリビニルブチラールの数平均分子量よりも大きいことから、上記反応によって重合が進行していることが確認できた。
 <実施例21:共重合体(21)の合成>
 重合反応容器内に、合成例16で得られたエチルセルロースにメタクリレート基が導入されたセルロース系重合性化合物(a10)とポリビニルブチラールにメタクリレート基が導入されたポリビニルアセタール系重合性化合物(b10)との混合物20部、イソブチルメタクリレート0.2部、及び有機溶剤としてのジヒドロターピニルアセテート80部を添加、混合し、60℃に加熱して回転翼で撹拌して溶解させた。溶解後に窒素置換を行って系内の酸素を除去し、重合開始剤としてのアゾイソブチロニトリル(AIBN)0.01部を混合して70℃で5時間反応を行って、共重合体(21)を含有する液(バインダー溶液)を得た。
 得られた共重合体(21)の分子量をGPC装置で測定したところ、数平均分子量(標準ポリスチレン換算値)は59000であった。この値は、原料として用いたエチルセルロースの数平均分子量及びポリビニルブチラールの数平均分子量よりも大きいことから、上記反応によって重合が進行していることが確認できた。
 <実施例22:共重合体(22)の合成>
 重合反応容器内に、合成例17で得られたエチルセルロースにメタクリレート基が導入されたセルロース系重合性化合物(a11)とポリビニルブチラールにメタクリレート基が導入されたポリビニルアセタール系重合性化合物(b11)との混合物20部、イソブチルメタクリレート0.2部、及び有機溶剤としてのジヒドロターピニルアセテート80部を添加、混合し、60℃に加熱して回転翼で撹拌して溶解させた。溶解後に窒素置換を行って系内の酸素を除去し、重合開始剤としてのアゾイソブチロニトリル(AIBN)0.01部を混合して70℃で5時間反応を行って、共重合体(22)を含有する液(バインダー溶液)を得た。
 得られた共重合体(22)の分子量をGPC装置で測定したところ、数平均分子量(標準ポリスチレン換算値)は63000であった。この値は、原料として用いたエチルセルロースの数平均分子量及びポリビニルブチラールの数平均分子量よりも大きいことから、上記反応によって重合が進行していることが確認できた。
 <比較例1>
 エチルセルロース(ダウケミカル社製の「エトセルSTD-100」)10部、及びポリビニルブチラール(積水化学社製の「BM-S」)10部を、ジヒドロターピニルアセテート113.3部に溶解して、バインダー溶液を調製した。
 <比較例2>
 エチルセルロース(ダウケミカル社製の「エトセルSTD-10」)10部、及びポリビニルブチラール(積水化学社製の「BL-S」)10部を、ジヒドロターピニルアセテート113.3部に溶解して、バインダー溶液を調製した。
 <比較例3>
 エチルセルロース(ダウケミカル社製の「エトセルSTD-100」)20部を、ジヒドロターピニルアセテート113.3部に溶解して、バインダー溶液を調製した。
 <比較例4>
 ポリビニルブチラール(積水化学社製の「BM-S」)20部を、ジヒドロターピニルアセテート113.3部に溶解して、バインダー溶液を調製した。
 <比較例5>
 エチルセルロース(ダウケミカル社製の「エトセルSTD-10」)20部を、ジヒドロターピニルアセテート113.3部に溶解して、バインダー溶液を調製した。
 <比較例6>
 ポリビニルブチラール(積水化学社製の「BL-S」)20部を、ジヒドロターピニルアセテート113.3部に溶解して、バインダー溶液を調製した。
 <比較例7>
 エチルセルロース(ダウケミカル社製の「エトセルSTD-100」)10部、及びポリビニルブチラール(積水化学社製の「BH-S」10部を、ジヒドロターピニルアセテート113.3部に溶解して、バインダー溶液を調製した。
 <比較例8>
 エチルセルロース(ダウケミカル社製の「エトセルSTD-200」)10部、及びポリビニルブチラール(積水化学社製の「BH-S」)10部を、ジヒドロターピニルアセテート113.3部に溶解して、バインダー溶液を調製した。
 <比較例9>
 エチルセルロース(ダウケミカル社製の「エトセルSTD-200」)20部を、ジヒドロターピニルアセテート113.3部に溶解して、バインダー溶液を調製した。
 <比較例10>
 ポリビニルブチラール(積水化学社製の「BH-S」)20部を、ジヒドロターピニルアセテート113.3部に溶解して、バインダー溶液を調製した。
 <比較例11>
 合成例1で得られたエチルセルロースにメタクリレート基が導入されたセルロース系重合性化合物(a1) 10部、及び合成例7で得られたポリビニルブチラールにメタクリレート基が導入されたポリビニルアセタール系重合性化合物(b1) 10部を有機溶剤としてのジヒドロターピニルアセテート113.3部に溶解して、バインダー溶液を調製した。本比較例では重合反応を実施せずにその影響を把握した。
 <比較例12>
 合成例13で得られたセルロース系重合性化合物(a7)とポリビニルアセタール系重合性化合物(b7)との混合物20部を有機溶剤としてのジヒドロターピニルアセテート113.3部に溶解して、バインダー溶液を調製した。本比較例では重合反応を実施せずにその影響を把握した。
 実施例、比較例で得られたバインダーの組成を表1にまとめた。表1に示される略称の詳細は次のとおりである。
 iBMA: イソブチルメタクリレート、
 MMA : メチルメタクリレート、
 HEMA: 2-ヒドロキシエチルメタクリレート。
Figure JPOXMLDOC01-appb-T000001
 2.バインダーの評価
 実施例、比較例で得られたバインダー及びそれを含むペーストについて、次の評価を行った。結果を表2に示す。
 〔1〕熱分解性の評価
 バインダーの乾燥固体サンプル10mgを、TG/DTA熱分析装置(セイコーインスツルメンツ株式会社製の「EXSTAR TG/DTA6200」)にて、窒素雰囲気下、10℃/minの昇温速度で500℃まで加熱したときの残渣量を測定し、次の評価基準に基づいてバインダーの熱分解性を評価した。残渣量(質量%)とは、上記乾燥固体サンプルの質量を100質量%としたときの測定後の残渣の量を示す。
 (熱分解性の評価基準)
 A:残渣量が1質量%以下である、
 B:残渣量が1質量%を超え、3質量%以下である、
 C:残渣量が3質量%を超える。
 〔2〕ポリビニルブチラールに対する密着性の評価
 バインダーを電極ペーストに使用するケースを想定し、グリーンシートに対する密着性の評価を下記のモデル実験により実施した。
 接着層が形成されたポリエチレンテレフタレート(PET)フィルム(総厚み100μm)の接着層上に、実施例、比較例で得られたバインダー溶液を、厚みギャップ90μmのブレードコーターで塗布後、加熱乾燥させることにより、厚み約10μmのバインダー層を有するフィルムを作製した。一方で、グリーンシート用バインダーのモデル材料としてのポリビニルブチラール(積水化学社製の「BH-S」)をトルエンに溶解させ、15質量%の溶液を調製した。これを前記と同様に接着層が形成されたPETフィルムの接着層上に塗布後、加熱乾燥させることにより、厚み約10μmのポリビニルブチラール層を有するフィルムを作製した。得られた各フィルムから幅2cm、長さ8cmの短冊状サンプルを切り出した。
 バインダー層を有するフィルムサンプルのバインダー層上に、ポリビニルブチラール層を有するフィルムサンプルのポリビニルブチラール層を長手方向にずらして重ね合わせた。重ね合わせた部分の面積は、長手方向2cm×幅2cmとした。重ね合わせた部分の中央に1cm×2cm(面積2cm)の加熱板を押し当て、温度130℃、圧力2kgの条件で5分間熱圧着して、重ね合わせた部分を部分的に接着させた。
 (株)島津製作所製の引張試験機(AG-10N)を用いてn=3で接着させたサンプルを長手方向に引張って破断強度を測定し、次の評価基準に基づいてポリビニルブチラールに対する密着性を評価した。
 (密着性の評価基準)
 A:破断強度が100N以上である、
 B:破断強度が100N未満、50N以上である、
 C:破断強度が50N未満である。
 〔3〕樹脂組成物(ペースト)の調製及び塗布膜質の評価
 実施例、比較例で得られたバインダー溶液にジヒドロターピニルアセテートを加えて、バインダー濃度を15質量%に調整した。次いで、無機粒子としてのNi粒子(JFEミネラル社製の「NFP201S」、平均粒径0.2μm)100質量部、及び上記バインダー溶液25質量部を3本ロールミルで混合して、ペーストを得た。
 得られたペーストを、厚みギャップ30μmのブレードコーターでガラス基板上に塗布し、加熱乾燥後の塗布膜を走査型電子顕微鏡(SEM)で観察し、次の評価基準に基づいて塗布膜質を評価した。走査型電子顕微鏡には、日本電子社製「JSM-7800F」を用い、倍率5000倍で塗布膜を観察した。
 (塗布膜質の評価基準)
 A:1μmを超えるサイズの欠陥(穴)が認められない、
 B:1μmを超えるサイズの欠陥(穴)が認められる。
 〔4〕スクリーン印刷性の評価
 上記〔3〕で調製したペーストを、マイクロテック印刷装置(MT-320シリーズ)を用い、メッシュ#500(中沼アートスクリーン製)をスクリーン版として、L/S=100μm/100μmのストライプ状パターンをPETフィルム上に印刷した。印刷パターンを顕微鏡で観察し、次の評価基準に基づいてスクリーン印刷性を評価した。なお、糸曳欠陥とは、印刷時にスクリーン印刷版が被印刷体から引き離される段階でペースト等が伸長して細い糸を曳く現象によって印刷欠陥を生じるものである。この現象が起こると、印刷パターンのエッジ部から繊維状の異物が形成されてしまって電気的短絡が起こる、印刷パターン形状が不均一になることで要求特性が得られない等の問題を引き起こす。
 (スクリーン印刷性の評価基準)
 A:エッジ部に糸曳欠陥がない、
 B:エッジ部に糸曳欠陥がある。
Figure JPOXMLDOC01-appb-T000002
 実施例1~22のバインダーは、熱分解性、密着性、塗布膜質及びスクリーン印刷性の各項目で良好な評価を示した。一方、比較例1~12ではこれらの評価項目全てを満足することはできなかった。
 今回開示された実施の形態及び実施例はすべての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は上記した実施の形態及び実施例ではなく請求の範囲によって示され、請求の範囲と均等の意味、及び範囲内でのすべての変更が含まれることが意図される。

Claims (6)

  1.  重合性不飽和基を有するセルロース系重合性化合物由来の構成単位(a)と、重合性不飽和基を有するポリビニルアセタール系重合性化合物由来の構成単位(b)とを含む、共重合体。
  2.  前記構成単位(a)及び前記構成単位(b)以外の他の構成単位(c)をさらに含む、請求項1に記載の共重合体。
  3.  前記セルロース系重合性化合物が有する前記重合性不飽和基の数は、1分子あたり平均10個以下である、請求項1又は2に記載の共重合体。
  4.  前記ポリビニルアセタール系重合性化合物が有する前記重合性不飽和基の数は、1分子あたり平均10個以下である、請求項1~3のいずれか1項に記載の共重合体。
  5.  重合性不飽和基を有するセルロース系重合性化合物と、重合性不飽和基を有するポリビニルアセタール系重合性化合物とを、有機溶剤中、重合開始剤の存在下に重合させる工程を含む、共重合体の製造方法。
  6.  請求項1~4のいずれか1項に記載の共重合体と、無機粒子と、有機溶剤と、
    を含む、共重合体組成物。
PCT/JP2017/045555 2017-01-17 2017-12-19 共重合体及びその製造方法、並びに共重合体組成物 WO2018135217A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018526735A JP6542476B2 (ja) 2017-01-17 2017-12-19 共重合体及びその製造方法、並びに共重合体組成物
KR1020187032757A KR102056557B1 (ko) 2017-01-17 2017-12-19 공중합체 및 그 제조 방법, 및 공중합체 조성물

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017005704 2017-01-17
JP2017-005704 2017-01-17

Publications (1)

Publication Number Publication Date
WO2018135217A1 true WO2018135217A1 (ja) 2018-07-26

Family

ID=62909019

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/045555 WO2018135217A1 (ja) 2017-01-17 2017-12-19 共重合体及びその製造方法、並びに共重合体組成物

Country Status (3)

Country Link
JP (1) JP6542476B2 (ja)
KR (1) KR102056557B1 (ja)
WO (1) WO2018135217A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020029479A (ja) * 2018-08-20 2020-02-27 新中村化学工業株式会社 高分子化合物及びそれを含む高分子組成物、並びに無機粒子含有組成物
JP2021006610A (ja) * 2019-06-28 2021-01-21 住友金属鉱山株式会社 有機ビヒクルの製造方法、及び、導電性ペーストの製造方法、並びに、積層セラミックコンデンサの製造方法
JP2021006611A (ja) * 2019-06-28 2021-01-21 住友金属鉱山株式会社 有機ビヒクルの製造方法、及び、導電性ペーストの製造方法、並びに、積層セラミックコンデンサの製造方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008129503A (ja) * 2006-11-24 2008-06-05 Dai Ichi Kogyo Seiyaku Co Ltd アルカリ現像型感光性ペースト組成物
JP2008285589A (ja) * 2007-05-17 2008-11-27 Sekisui Chem Co Ltd 樹脂組成物、導電ペースト及びセラミックペースト
JP2009144262A (ja) * 2007-12-11 2009-07-02 Kri Inc 表面修飾セルロース短繊維およびその製造方法
JP2010083005A (ja) * 2008-09-30 2010-04-15 Fujifilm Corp 感熱転写シート
JP2015072901A (ja) * 2013-09-06 2015-04-16 日本合成化学工業株式会社 リチウムイオン二次電池電極用バインダー、リチウムイオン二次電池電極の製造方法、リチウムイオン二次電池電極、およびリチウムイオン二次電池
WO2015107811A1 (ja) * 2014-01-17 2015-07-23 昭栄化学工業株式会社 バインダー樹脂の製造方法および樹脂組成物の製造方法ならびにバインダー樹脂および樹脂組成物
JP2015193269A (ja) * 2015-08-07 2015-11-05 大日本印刷株式会社 熱転写シート
JP2016533522A (ja) * 2013-10-03 2016-10-27 イーストマン コダック カンパニー ネガ型平版印刷版原版

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017226560A (ja) 2016-06-20 2017-12-28 積水化学工業株式会社 無機質焼結体製造用ペースト

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008129503A (ja) * 2006-11-24 2008-06-05 Dai Ichi Kogyo Seiyaku Co Ltd アルカリ現像型感光性ペースト組成物
JP2008285589A (ja) * 2007-05-17 2008-11-27 Sekisui Chem Co Ltd 樹脂組成物、導電ペースト及びセラミックペースト
JP2009144262A (ja) * 2007-12-11 2009-07-02 Kri Inc 表面修飾セルロース短繊維およびその製造方法
JP2010083005A (ja) * 2008-09-30 2010-04-15 Fujifilm Corp 感熱転写シート
JP2015072901A (ja) * 2013-09-06 2015-04-16 日本合成化学工業株式会社 リチウムイオン二次電池電極用バインダー、リチウムイオン二次電池電極の製造方法、リチウムイオン二次電池電極、およびリチウムイオン二次電池
JP2016533522A (ja) * 2013-10-03 2016-10-27 イーストマン コダック カンパニー ネガ型平版印刷版原版
WO2015107811A1 (ja) * 2014-01-17 2015-07-23 昭栄化学工業株式会社 バインダー樹脂の製造方法および樹脂組成物の製造方法ならびにバインダー樹脂および樹脂組成物
JP2015193269A (ja) * 2015-08-07 2015-11-05 大日本印刷株式会社 熱転写シート

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020029479A (ja) * 2018-08-20 2020-02-27 新中村化学工業株式会社 高分子化合物及びそれを含む高分子組成物、並びに無機粒子含有組成物
JP7061795B2 (ja) 2018-08-20 2022-05-02 新中村化学工業株式会社 高分子化合物及びそれを含む高分子組成物、並びに無機粒子含有組成物
JP2021006610A (ja) * 2019-06-28 2021-01-21 住友金属鉱山株式会社 有機ビヒクルの製造方法、及び、導電性ペーストの製造方法、並びに、積層セラミックコンデンサの製造方法
JP2021006611A (ja) * 2019-06-28 2021-01-21 住友金属鉱山株式会社 有機ビヒクルの製造方法、及び、導電性ペーストの製造方法、並びに、積層セラミックコンデンサの製造方法
JP7292580B2 (ja) 2019-06-28 2023-06-19 住友金属鉱山株式会社 有機ビヒクルの製造方法、及び、導電性ペーストの製造方法、並びに、積層セラミックコンデンサの製造方法
JP7292579B2 (ja) 2019-06-28 2023-06-19 住友金属鉱山株式会社 有機ビヒクルの製造方法、及び、導電性ペーストの製造方法、並びに、積層セラミックコンデンサの製造方法

Also Published As

Publication number Publication date
JP6542476B2 (ja) 2019-07-10
KR20180135925A (ko) 2018-12-21
KR102056557B1 (ko) 2019-12-16
JPWO2018135217A1 (ja) 2019-01-24

Similar Documents

Publication Publication Date Title
EP2980047B1 (en) Binder for manufacturing inorganic sintered body
TWI658109B (zh) 黏著劑樹脂之製造方法及樹脂組成物之製造方法以及黏著劑樹脂及樹脂組成物
KR101632096B1 (ko) 무기 미립자 분산 페이스트
JP6542476B2 (ja) 共重合体及びその製造方法、並びに共重合体組成物
EP3392225B1 (en) Binder for production of inorganic sintered body
JP7061795B2 (ja) 高分子化合物及びそれを含む高分子組成物、並びに無機粒子含有組成物
WO2005007710A1 (ja) 塗工ペースト用バインダー樹脂
CN113330043B (zh) 聚合物、导电性膏组合物、陶瓷用粘结剂树脂、陶瓷浆料组合物及导电膏用粘结剂树脂
JP7060351B2 (ja) ポリビニルアセタール樹脂組成物
JP6742791B2 (ja) 焼成ペースト組成物、及び共重合体の製造方法
TWI774774B (zh) 聚合物、包含聚合物而成的膏組合物、導電膏用黏結劑樹脂、導電膏組合物、陶瓷用黏結劑樹脂、陶瓷組合物及陶瓷成型體
JP6473447B2 (ja) 焼成ペースト組成物およびその用途
JP2018184569A (ja) 共重合体及び共重合体組成物
JP2011173765A (ja) セラミックグリーンシートおよびその製造方法
JP4581341B2 (ja) セラミックグリーンシート成形用バインダおよびその製造方法
JP2024051239A (ja) 高分子化合物、それを含むバインダーおよび無機粒子含有組成物
JP2012072256A (ja) エポキシ変性ポリビニルアセタール樹脂、セラミックスラリー及びセラミックグリーンシート
WO2024062857A1 (ja) 導電性ペースト、電子部品及び積層セラミックコンデンサ
TW202336121A (zh) 電子零件用膏
WO2024014427A1 (ja) 導電性ペースト、電子部品及び積層セラミックコンデンサ
JP7227558B2 (ja) バインダー樹脂および導電性ペースト組成物
JPH10251347A (ja) セラミック粘結剤用樹脂組成物
JP5486463B2 (ja) ポリビニルアセタール樹脂組成物
CN111936450A (zh) 焙烧浆料组合物、生片、制造生片的方法、制造烧结产品的方法及制造独石陶瓷电容器的方法
JP2020023635A (ja) ペースト組成物

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018526735

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20187032757

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17892164

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17892164

Country of ref document: EP

Kind code of ref document: A1