WO2018135086A1 - コイル成形体、その製造方法、モータ、及び、ステータの組立方法 - Google Patents

コイル成形体、その製造方法、モータ、及び、ステータの組立方法 Download PDF

Info

Publication number
WO2018135086A1
WO2018135086A1 PCT/JP2017/039707 JP2017039707W WO2018135086A1 WO 2018135086 A1 WO2018135086 A1 WO 2018135086A1 JP 2017039707 W JP2017039707 W JP 2017039707W WO 2018135086 A1 WO2018135086 A1 WO 2018135086A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil
molded body
stator
coils
motor
Prior art date
Application number
PCT/JP2017/039707
Other languages
English (en)
French (fr)
Inventor
祐一 吉川
慶一郎 額田
弘和 山内
菱田 光起
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2018562886A priority Critical patent/JP7016001B2/ja
Priority to US16/475,727 priority patent/US11223260B2/en
Priority to EP17893300.8A priority patent/EP3573215A4/en
Priority to CN201780083417.0A priority patent/CN110199458B/zh
Publication of WO2018135086A1 publication Critical patent/WO2018135086A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/04Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of windings, prior to mounting into machines
    • H02K15/0407Windings manufactured by etching, printing or stamping the complete coil
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/04Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of windings, prior to mounting into machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D22/00Shaping without cutting, by stamping, spinning, or deep-drawing
    • B21D22/02Stamping using rigid devices or tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D25/00Special casting characterised by the nature of the product
    • B22D25/02Special casting characterised by the nature of the product by its peculiarity of shape; of works of art
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/14Stator cores with salient poles
    • H02K1/146Stator cores with salient poles consisting of a generally annular yoke with salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/0056Manufacturing winding connections
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/0056Manufacturing winding connections
    • H02K15/0062Manufacturing the terminal arrangement per se; Connecting the terminals to an external circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/14Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures
    • H02K21/16Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures having annular armature cores with salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/18Windings for salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/26Windings characterised by the conductor shape, form or construction, e.g. with bar conductors consisting of printed conductors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/46Fastening of windings on the stator or rotor structure
    • H02K3/52Fastening salient pole windings or connections thereto
    • H02K3/521Fastening salient pole windings or connections thereto applicable to stators only
    • H02K3/522Fastening salient pole windings or connections thereto applicable to stators only for generally annular cores with salient poles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/04Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing coils
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2203/00Specific aspects not provided for in the other groups of this subclass relating to the windings
    • H02K2203/09Machines characterised by wiring elements other than wires, e.g. bus rings, for connecting the winding terminations

Definitions

  • the technology disclosed herein relates to a coil molded body to be mounted on a stator of a motor, a manufacturing method thereof, a motor, and a stator assembling method.
  • Patent Document 1 As a technique for improving the space factor of the coil, a configuration in which a cast coil using a copper material is arranged in a slot has been proposed (see, for example, Patent Document 1).
  • the stator manufacturing cost in particular, the coil winding process and the coil and bus bar connection process, each require dedicated equipment, which is a major factor that increases the cost.
  • Patent Document 1 does not disclose a solution to this problem.
  • the technology disclosed here has been made in view of the above points.
  • the object is to provide a coil molded body that can keep the manufacturing cost low, and a method for manufacturing the same.
  • At least one of a plurality of coils and a coil molded body formed by integrally molding a coil and a bus bar is used as a stator coil of a motor.
  • the coil molded body of the present disclosure is a coil molded body mounted on a stator of a motor, a coil wound around each of a plurality of teeth of the stator, a bus bar connected to the coil, Is a coil molded body integrally molded.
  • the coil and the bus bar are integrally formed, the coil winding process and the coil and bus bar connecting process can be omitted, and the manufacturing cost of the motor can be suppressed.
  • Another coil molded body of the present disclosure is a coil molded body mounted on a stator of a motor, and a coil molded body in which a pair of coils wound around each of a plurality of teeth of the stator are integrally molded. is there.
  • the plurality of coils are integrally formed, the coil winding process and the connection process between the coils can be omitted, and the manufacturing cost of the motor can be suppressed.
  • the motor according to the present disclosure includes a shaft, a rotor provided in contact with the outer periphery of the shaft, and a stator disposed at a certain distance from the rotor outside the rotor.
  • the stator includes a substantially annular stator core, a plurality of teeth provided at equal intervals along the inner periphery of the stator core, slots provided between the teeth, and a slot mounted on the teeth. And the above-described coil molded body disposed inside.
  • the coil winding process and the coil and bus bar or coil connection process can be omitted, and the manufacturing process of the motor, particularly the stator, can be simplified, and the manufacturing cost of the motor can be suppressed.
  • FIG. 1B is a cross-sectional view taken along line 1C-1C ′ in FIG. 1B. It is a perspective view which shows the coil forming body of the U phase by which the coil and bus bar of the motor which concern on embodiment were integrated. It is a perspective view which shows the V-phase coil molded object of the motor which concerns on embodiment. It is a perspective view which shows the coil molded object of the W phase of the motor which concerns on embodiment. It is the perspective view which combined the coil molded object of the U, V, and W phase of the motor which concerns on embodiment. It is a figure explaining the manufacturing method of the coil molded object of the motor which concerns on embodiment.
  • FIG. 1A is a top view showing the motor according to the embodiment.
  • FIG. 1B is a side view showing the motor according to the embodiment.
  • 1C is a cross-sectional view taken along line 1C-1C ′ in FIG. 1B. In either figure, the cover case and the like are not shown.
  • the motor 1 includes a rotor 3, a shaft 2, a stator 4, coils U11 to U41, V12 to V42, W11 to W41, and bus bars 51 to 54 inside a cover case (not shown). Yes.
  • the longitudinal direction of the shaft 2 (direction perpendicular to the paper surface) is referred to as the Z-axis direction.
  • directions orthogonal to this are referred to as an X-axis direction and a Y-axis direction.
  • the X-axis direction and the Y-axis direction are orthogonal to each other.
  • “Integral” or “integrated” means that multiple parts are not only mechanically connected by bolting or caulking, but also by material bonding such as covalent bonding, ionic bonding, metal bonding, etc. Is an object that is electrically connected, or a state in which one part is electrically connected after the whole part is material-bonded by melting or the like.
  • the rotor 3 is provided in contact with the outer periphery of the shaft 2.
  • the rotor 3 includes magnets 31 that are opposed to the stator 4 and in which N poles and S poles are alternately arranged along the outer circumferential direction of the shaft 2.
  • a neodymium magnet is used as the magnet 31 used in the rotor 3, but the material, shape, and material of the magnet 31 can be appropriately changed according to the output of the motor and the like.
  • the stator 4 includes a substantially annular stator core 41, a plurality of teeth 42 provided at equal intervals along the inner periphery of the stator core 41, and slots 43 provided between the teeth 42. .
  • the stator 4 is disposed outside the rotor 3 with a certain distance from the rotor 3 when viewed from the Z-axis direction.
  • the stator core 41 is formed by, for example, punching after laminating electromagnetic steel sheets containing silicon or the like.
  • the number of magnetic poles of the rotor 3 is 10 in total, that is, 5 N poles and 5 S poles facing the stator 4.
  • the number of slots 43 is twelve.
  • the number of magnetic poles of the rotor 3 and the number of slots 43 are not particularly limited to these, and can be applied to other combinations of the number of magnetic poles and the number of slots.
  • the stator 4 has 12 coils U11 to U41, V12 to V42, and W11 to W41.
  • the coils U11 to U41, V12 to V42, and W11 to W41 are attached to the teeth 42 and disposed in the slots 43 as viewed from the Z-axis direction. That is, the coils U11 to U41, V12 to V42, and W11 to W41 are concentrated with respect to the teeth 42. Further, the coils U11 to U41 are integrated with the bus bar 51, the coils V12 to V42 are integrated with the bus bar 52, and the coils W11 to W41 are integrated with the bus bar 53, respectively.
  • the first letter represents each phase of the motor 1 (in this embodiment, U phase, V phase, W phase).
  • the second letter represents the sequence of coils in the same phase.
  • the third character represents the winding direction of the coil, and in this embodiment, 1 is the clockwise direction and 2 is the counterclockwise direction. Therefore, the coil U11 indicates that the U-phase arrangement order is the first coil and the winding direction is the clockwise direction.
  • Coil V42 is the fourth coil in the V-phase arrangement order, and represents that the winding direction is the counterclockwise direction. Note that “clockwise” means clockwise when viewed from the center of the motor 1, and “counterclockwise” means counterclockwise when viewed from the center of the motor 1.
  • the coils U11 and U41 are U-phase coils, and the coils U22 and U32 are U-bar coils (the direction of the generated magnetic field is opposite to that of the U-phase coil). However, in the following description, unless otherwise specified, they are collectively referred to as U-phase coils. Similarly, the coils V12 to V42 and the coils W11 to W41 are collectively referred to as a V-phase coil and a W-phase coil, respectively.
  • FIG. 2 is a perspective view showing a U-phase coil molded body in which the motor coil and the bus bar according to the embodiment are integrated. Coils U11 to U41 and bus bars 51 and 54 are integrated to form a coil molded body 61.
  • the side where the bus bar 51 is disposed in the coil molded body 61 may be referred to as “upward” and the opposite side as “downward”.
  • the bus bar 51 is a substantially semi-annular plate member as viewed from the Z-axis direction. Both ends of the bus bar 51 are integrated with the lead portions U11a and U32a of the coils U11 and U32.
  • the lead part 51b of the bus bar 51 is electrically connected to a power source (U phase; not shown).
  • the bus bar 54 is a substantially annular plate member as viewed from the Z-axis direction.
  • the bus bar 54 is provided with a plurality of drawer portions 54a.
  • the lead portions U22a and U41a of the coils U22 and U41 are integrated with the lead portions 54a and 54a of the bus bar 54, respectively.
  • the potential of the bus bar 54 corresponds to the neutral point potential of the motor 1.
  • the pair of coils U11 and U22 are directly integrated without the bus bars 51 and 54 interposed therebetween.
  • the set of coils U32 and U41 are also directly integrated, as are the coils U11 and U22.
  • current is passed through the coils U11 to U41, the winding directions of the coil U11 and the coil U22 are opposite to each other, so that the directions of the generated magnetic fluxes are opposite to each other.
  • the directions of the magnetic fluxes generated in the coils U32 and U41 are opposite to each other.
  • the coils U11 to U41 and the bus bars 51 and 54 are all made of a copper material.
  • the coils U11 to U41 are made of a copper wire having a rectangular cross section.
  • FIG. 3 is a perspective view showing a V-phase coil molded body 62 of the motor according to the embodiment.
  • FIG. 4 is a perspective view showing a W-phase coil molded body 63 of the motor according to the embodiment.
  • the bus bar 52 is a substantially semi-annular plate-like member as viewed from the Z-axis direction. Both ends of the bus bar 52 are integrated with the lead portions V12a and V31a of the coils V12 and V31, respectively.
  • the lead-out part 52b of the bus bar 52 is electrically connected to a power source (V phase; not shown).
  • a pair of adjacent coils V12 and V21 are directly integrated, for example, like the coils U11 and U22.
  • another set of adjacent coils V31 and V42 is also directly integrated.
  • the coils V12 to V42 and the bus bar 52 are all made of copper.
  • the coils V12 to V42 are made of a copper wire having a rectangular cross section.
  • the bus bar 53 is a substantially semi-annular plate-like member as viewed from the Z-axis direction. Both ends of the bus bar 53 are integrated with the lead portions W11a and W32a of the coils W11 and W32, respectively.
  • the lead-out portion 53b of the bus bar 53 is electrically connected to a power source (W phase; not shown).
  • W phase a power source
  • a pair of adjacent coils W11 and W22 are integrated in the same manner as the coils U11 and U22, for example.
  • Another set of adjacent coils W32 and W41 are also integrated in the same manner.
  • the coils W11 to W41 and the bus bar 53 are all made of a copper material.
  • the coils W11 to W41 are made of a copper wire having a rectangular cross section.
  • FIG. 5 is a perspective view in which U, V, and W phase coil molded bodies 64 of the motor according to the embodiment are combined. As shown in FIG. 5, it is also possible to integrate the coil molded body 64 of each phase with the bus bars 51-54. However, the shape becomes complicated and it may be difficult to form a coil molded body. For example, as described later, it may be difficult to remove the copper material from the mold. Further, in the process of assembling the coil molded bodies 61 to 63 on the stator 4, the assembly positioning allowance may be reduced.
  • the U-phase coil is the coil molded body 61 in which the coils U11 to U41 and the bus bars 51 and 54 are integrated, and the V-phase is a pair of adjacent coils.
  • Coil molded body 62a (see FIGS. 3 and 7C) in which V12 and V21 are integrated, and coil molded body 62b (see FIGS. 3 and 7C) in which another set of adjacent coils V31 and V42 are integrated. )
  • W phase two types of integrated coils are prepared in the same manner as the V phase.
  • a coil molded body 64 shown in FIG. 5 is an aligned body (see FIG. 7D) of the coil molded bodies 61 to 63 of each phase.
  • each coil group and the bus bar is not limited to the above, and it goes without saying that it can be appropriately changed depending on the specifications of the motor 1, the performance of the stator 4 or the coil assembly equipment, and the like. .
  • FIG. 6A, FIG. 6B, and FIG. 6C are diagrams for explaining a method for manufacturing the coil molded body 61 of the motor according to the embodiment.
  • the coils U11 to U41 and the bus bars 51 and 54 are integrally formed by casting copper.
  • a cavity 71 corresponding to an integrated shape including the coils U11 to U41, the bus bars 51 and 54, and the lead portions thereof is provided inside the mold 70. Yes.
  • the molten copper is pressurized and poured into the cavity 71, as shown in FIG. 6B, the copper is cooled to solidify the copper molded body 61.
  • the coil molded body 61 is taken out from the mold 70, and as shown in FIG.
  • the entire surface of the coil molded body 61 is subjected to an insulation treatment to form an insulating film 80.
  • the insulation process is performed to electrically insulate the coil molded body 61 and the stator 4.
  • the insulation treatment is performed by, for example, electrodeposition coating, but is not particularly limited thereto.
  • the metal material used for casting may be other than copper, and for example, any metal material such as aluminum, zinc, magnesium, iron, SUS (Steel Use Stainless), and brass may be used.
  • the manufacturing method of a molded product is not limited to casting, and the molded product may be manufactured by other methods.
  • the cutting may be performed from any solid material such as copper, aluminum, zinc, magnesium, iron, SUS, and brass.
  • the individually molded parts may be joined by cold welding, welding, or the like.
  • FIG. 7A to 7F are views for explaining an assembly method of the stator 4 of the motor according to the embodiment.
  • a coil molded body 61 and four teeth 42 are prepared (FIG. 7A).
  • the teeth 42 are respectively attached to the four coils U11 to U41 of the coil molded body 61 (FIG. 7B).
  • V-phase coil molded bodies 62a and 62b and W-phase coil molded bodies 63a and 63b are prepared, and teeth 42 are attached to the coils V12 to W41, respectively (FIG. 7C).
  • the coil molded bodies 61 to 63b on which the teeth 42 are mounted are arranged at predetermined positions and combined so as to form an annular shape.
  • the stator core 41 is prepared (FIG. 7D).
  • the aligned bodies 64 of the coil molded bodies 61 to 63b are mounted on the stator core 41 (FIG. 7E).
  • the both end portions of the bus bar 52 and the lead portions 54a and 54a of the bus bar 54 are joined to the four lead portions of the V-phase coil molded bodies 62a and 62b, respectively, by a joining method such as fusing.
  • both end portions of the bus bar 53 and the lead portions 54a and 54a of the bus bar 54 are joined to the four lead portions of the W-phase coil molded bodies 63a and 63b, respectively, to complete the assembly of the stator 4 (FIG. 7F).
  • the joining of the bus bars 52 to 54 and the V-phase and W-phase coil molded bodies 62a to 63b may be performed following the step shown in FIG. 7D.
  • the coils U11 to U41 and the bus bars 51 and 54 are integrally molded. For this reason, the winding process of a coil and the connection process of a coil and a bus bar can be omitted.
  • this coil molded body for the motor 1, the manufacturing cost of the motor 1 can be reduced.
  • the coil U11 and the coil U22 corresponding to the U phase and the U bar phase, respectively, are directly integrated. For this reason, the crossover for connecting these phases can be eliminated. Further, the connecting step between the connecting wire and the coil can be omitted. Similarly, for the coil U32, the coil U41, the coils V21 to V42, and the coils W11 to W41, the connecting wire can be omitted and the connecting step thereof can be omitted.
  • At least one of the coil, the bus bar, and the plurality of coils is integrally formed. For this reason, the coil molded bodies 61 to 63b to which the teeth 42 are attached can be easily handled, and the assembly cost of the stator 4 can be reduced.
  • the coils U11 to U41, V12 to V42, and W11 to W41 are made of copper wire having a rectangular cross section, the coils can be arranged in the slot 43 without any gap. Therefore, the coil space factor can be improved. Therefore, the motor 1 can be downsized and the torque density can be improved.
  • the coil molded body 61 of the present embodiment is a coil molded body 61 that is mounted on the stator 4 of the motor 1, and the coils U11 to U41 wound around each of the plurality of teeth 42 of the stator 4. And a coil molded body 61 in which bus bars 51 and 54 connected to the coils U11 to U41 are integrally formed.
  • the coil molded body 61 of the present embodiment is a coil molded body 61 that is mounted on the stator 4 of the motor 1, and is a set of coils U ⁇ b> 11 and U ⁇ b> 22 that are wound around each of the plurality of teeth 42 of the stator 4. Is a coil molded body 61 formed integrally with each other.
  • the number of turns of the integrally formed coils U11 and U22 is a natural number.
  • one coil U11 is wound clockwise when viewed from the center of the motor, and the other coil U22 is counterclockwise viewed from the center of the motor. It may be wound in the turning direction.
  • the pair of coils U11 and U22 and at least one bus bar 51 and 54 are integrally formed.
  • pair of integrally formed coils U11 and U22 may be arranged adjacent to each other.
  • the motor 1 includes a shaft 2, a rotor 3 provided in contact with the outer periphery of the shaft 2 inside the cover case, and a rotor 3 spaced apart from the rotor 3 at a certain interval.
  • the stator 4 is arranged.
  • the stator 4 includes a substantially annular stator core 41, a plurality of teeth 42 provided at equal intervals along the inner periphery of the stator core 41, slots 43 provided between the teeth 42, and teeth 42. And a coil molded body 61 disposed in the slot 43 in a mounted state.
  • the coil molded body 61 in which the coil winding process and the coil and bus bar or coil connection process are omitted is used for the motor 1, the manufacturing cost of the motor 1 can be suppressed.
  • the method for manufacturing the coil molded body 61 of the present embodiment prepares a mold 70 having a cavity 71 corresponding to a shape in which at least one coil U11 to U41 and at least one bus bar 51, 54 are integrated.
  • the manufacturing method of the coil molded body 61 of the present embodiment includes a step of preparing a mold 70 having a cavity 71 corresponding to a shape in which at least a pair of adjacent coils U11 and U22 are integrated; A step of pouring a metal material selected from copper, aluminum, zinc, magnesium, iron, SUS, and brass in a molten state; and a step of cooling the mold 70 to solidify the metal material in the cavity 71 And a step of taking out the solidified metal material from the mold 70 to obtain a coil molded body 61 and a step of subjecting the entire surface of the coil molded body 61 to insulation treatment.
  • the stator assembling method of the present embodiment includes a step of preparing the coil molded body 61, a step of mounting the teeth 42 of the stator 4 on the coils U11 to U41 of the coil molded body 61, and a coil on which the teeth 42 are mounted.
  • the step of attaching the molded body 61 to the stator core 41, and the step of joining the coil molded body 61 and the bus bar 53 that is not integrated with the coil molded body 61 are provided.
  • FIG. 8 is a partially enlarged view of the coil molded body of FIG.
  • the coils U11 to U41, V12 to V42, and W11 to W41 all have a natural number of turns (hereinafter referred to as the number of turns).
  • the winding of the coil U11 extends from the upper side to the coil U22 side after three turns and is integrated with the coil U22.
  • FIG. 9 is a perspective view showing a coil molded body according to a modification.
  • it can also be set as the structure by which the coil
  • the number of turns of the coil per tooth is slightly reduced.
  • the number of turns when viewed as two coils in other words, the coil wire length can be shortened. Therefore, the material cost can be reduced.
  • the winding density above the coil can be reduced. For this reason, there is room in the space above the coil. Therefore, a joining process such as fusing can be easily performed.
  • an example of a structure in which adjacent coils are directly integrated is shown.
  • the number of contacts with the bus bar can be reduced, so that the space above the coil can be widened.
  • it is effective for reducing the number of the drawer portions or the arrangement density.
  • the integrated structure via the bus bar that is, the coils at adjacent positions may not be directly integrated.
  • coils wound clockwise and a coil wound counterclockwise were shown.
  • coils wound clockwise or coils wound counterclockwise may be integrated.
  • the arrangement of these coils can be appropriately changed depending on the number of poles or slots of the motor 1.
  • the coil wound clockwise and the coil wound counterclockwise may be arranged apart from each other via a bus bar.
  • a coil molded body in which a plurality of coils and a plurality of bus bars are integrally formed is shown.
  • a plurality of coils and a single bus bar for example, the coils U11 to U41 and the bus bar 51 are included. It may be integrally molded.
  • a single coil for example, the coil U11 and the bus bar 51 may be integrally formed. In either case, part of the coil winding process or part of the coil and bus bar connection process can be omitted, and the assembly cost of the motor 1 can be reduced.
  • the number of turns of the coils U11 to U41, V12 to V42, and W11 to W41 is set to 3.
  • the present invention is not limited to this. It can be changed as appropriate according to the performance specifications of the motor 1.
  • the number of turns of the integrally formed coils U11 and U22 may be a natural number (an integer of 1 or more +1/2) times.
  • the coil molded body according to the present disclosure improves the space factor of the coil in the stator. At the same time, the coil winding step and the coil and bus bar connecting step can be omitted. Therefore, it is useful in realizing a motor with high efficiency and low cost.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Windings For Motors And Generators (AREA)
  • Manufacture Of Motors, Generators (AREA)
  • Insulation, Fastening Of Motor, Generator Windings (AREA)

Abstract

モータのステータに装着されるコイル成形体であって、ステータの複数のティースの各々に巻回されたコイルと、コイルに接続されるバスバーとが一体成形される。また、モータのステータに装着されるコイル成形体であって、ステータの複数のティースの各々に巻回された一組のコイルが互いに一体成形される。

Description

コイル成形体、その製造方法、モータ、及び、ステータの組立方法
 ここに開示する技術は、モータのステータに装着されるコイル成形体、その製造方法、モータ、及び、ステータの組立方法に関する。
 近年、産業、車載用途で、モータの需要は高まっている。その中で、モータの効率向上、低コスト化が要望されている。
 モータの効率向上手法の一つとして、ステータのスロット内に配置されるコイルの占積率を向上させることが知られている。コイルの占積率を向上させることで、モータの駆動時に、コイルに流れる電流に起因する損失を抑制できる。
 コイルの占積率を向上させる手法として、銅材を用いた鋳造コイルをスロット内に配置する構成が提案されている(例えば特許文献1を参照)。
 一方、モータの低コスト化を図るために、例えば、組立コストを下げることが考えられる。モータの組立コストにおいて、ステータの製造コスト、特に、コイルの巻線工程、及び、コイルとバスバーとの接続工程は、それぞれ専用の設備を要するため、コストが上昇する大きな要因となっている。
 しかし、特許文献1に開示された従来の技術において、この問題に対する解決手法は開示されていない。
独国特許出願公開第102012212637号明細書
 ここに開示する技術は、かかる点に鑑みてなされたものである。その目的は、製造コストを低く抑えることができるコイル成形体、及び、その製造方法を提供することにある。
 上記の目的を達成するために、ここに開示する技術では、複数のコイル、及び、コイルとバスバーとを一体成形してなるコイル成形体の少なくとも一方を、モータのステータコイルとした。
 具体的には、本開示のコイル成形体は、モータのステータに装着されるコイル成形体であって、ステータの複数のティースの各々に巻回されたコイルと、コイルに接続されるバスバーと、が一体成形されたコイル成形体である。
 この構成によれば、コイルとバスバーとが一体成形されてなるため、コイルの巻線工程及びコイルとバスバーとの接続工程を省略でき、モータの製造コストを抑制できる。
 本開示の別のコイル成形体は、モータのステータに装着されるコイル成形体であって、ステータの複数のティースの各々に巻回された一組のコイルが互いに一体成形されたコイル成形体である。
 この構成によれば、複数のコイルが一体成形されてなるため、コイルの巻線工程及びコイル間の接続工程を省略でき、モータの製造コストを抑制できる。
 本開示のモータは、カバーケースの内部に、シャフトと、シャフトの外周に接して設けられたロータと、ロータの外側に、ロータと一定の間隔を持って離間して配置されているステータとを有する。ステータは、実質的に円環形状のステータコアと、ステータコアの内周に沿って等間隔に設けられた複数のティースと、ティース間にそれぞれ設けられたスロットと、ティースに装着された状態で、スロット内に配置されている上記のコイル成形体と、を有する。
 この構成によれば、コイルの巻線工程、及び、コイルとバスバーあるいはコイル間の接続工程が省略されたコイル成形体をモータに使用するため、モータの製造コストを抑制できる。
 本開示によれば、コイルの巻線工程、及び、コイルとバスバーあるいはコイル間の接続工程を省略でき、モータ、特にステータの製造工程が簡略化されて、モータの製造コストを抑制できる。
実施形態に係るモータを示す上面図である。 実施形態に係るモータを示す側面図である。 図1Bにおける1C-1C’線での断面図である。 実施形態に係るモータのコイルとバスバーとが一体化されたU相のコイル成形体を示す斜視図である。 実施形態に係るモータのV相のコイル成形体を示す斜視図である。 実施形態に係るモータのW相のコイル成形体を示す斜視図である。 実施形態に係るモータのU,V,W相のコイル成形体を組み合わせた斜視図である。 実施形態に係るモータのコイル成形体の製造方法を説明する図である。 実施形態に係るモータのコイル成形体の製造方法を説明する図である。 実施形態に係るモータのコイル成形体の製造方法を説明する図である。 実施形態に係るモータのステータの組立方法を説明する図である。 実施形態に係るモータのステータの組立方法を説明する図である。 実施形態に係るモータのステータの組立方法を説明する図である。 実施形態に係るモータのステータの組立方法を説明する図である。 実施形態に係るモータのステータの組立方法を説明する図である。 実施形態に係るモータのステータの組立方法を説明する図である。 図2のコイル成形体の部分拡大図である。 変形例に係るコイル成形体を示す斜視図である。
 以下、本開示の実施形態を図面に基づいて詳細に説明する。以下の好ましい実施形態の説明は、本質的に例示に過ぎず、本発明、その適用物或いはその用途を制限することを意図するものでは全くない。
 (実施形態)
 (モータ構造)
 図1Aは、実施形態に係るモータを示す上面図である。図1Bは、実施形態に係るモータを示す側面図である。図1Cは、図1Bにおける1C-1C’線での断面図である。いずれの図においても、カバーケース等は図示していない。モータ1は、カバーケース(図示せず)の内部に、ロータ3と、シャフト2と、ステータ4と、コイルU11~U41、V12~V42、W11~W41と、バスバー51~54と、を備えている。
 図1Aに示すように、シャフト2の長手方向(紙面に対して垂直な方向)をZ軸方向と呼ぶ。図1Aに示すように、これに直交する方向(紙面に対して平行な方向)をX軸方向、Y軸方向と呼ぶ。X軸方向とY軸方向は直交する。
 「一体」あるいは「一体化」とは、複数の部品が、ボルト締め、または、かしめ等の機械的に接続されているだけではなく、共有結合、イオン結合、金属結合などの材料接合によって、部品が電気的に接続された1つの物体、または部品全体が溶融などによって材料接合され、電気的に接続された1つの物体の状態をいう。
 ロータ3は、シャフト2の外周に接して設けられている。ロータ3は、ステータ4に対向して、N極、S極がシャフト2の外周方向に沿って交互に配置された磁石31を含んでいる。本実施形態で、ロータ3に用いられる磁石31として、ネオジム磁石を使用しているが、磁石31の材料、形状、及び材質については、モータの出力等に応じて、適宜変更しうる。
 ステータ4は、実質的に円環状のステータコア41と、ステータコア41の内周に沿って等間隔に設けられた複数のティース42と、ティース42間にそれぞれ設けられたスロット43とを有している。ステータ4は、Z軸方向から見て、ロータ3の外側に、ロータ3と一定の間隔を持って離間して配置されている。
 ステータコア41は、例えば、ケイ素等を含有した電磁鋼板を積層した後に、打ち抜き加工して形成される。
 本実施形態において、ロータ3の磁極数は、ステータ4に対向するN極が5個、S極が5個の計10極である。スロット43の数は12個である。しかし、ロータ3の磁極数とスロット43の数は、特にこれらに限定されるものではなく、その他の磁極数とスロット数との組合せについても適用できる。
 ステータ4は12個のコイルU11~U41、V12~V42、W11~W41を有している。コイルU11~U41、V12~V42、W11~W41は、各ティース42に対して装着されて、Z軸方向から見て、各スロット43内に配置されている。つまり、コイルU11~U41、V12~V42、W11~W41はティース42に対して集中巻になっている。さらに、コイルU11~U41がバスバー51と、コイルV12~V42はバスバー52と、コイルW11~W41はバスバー53と、それぞれ一体化されて配置されている。
 ここで、コイルを表わす符号UPQ、VPQ、WPQのうち、最初の文字はモータ1の各相(本実施形態の場合は、U相、V相、W相)を表わす。2番目の文字は同相内のコイルの配列順を表わす。3番目の文字はコイルの巻回方向を表わし、本実施形態では、1は時計回り方向、2は反時計回り方向である。従って、コイルU11は、U相の配列順が1番目のコイルで、巻回方向が時計回り方向であることを表わす。コイルV42は、V相の配列順が4番目のコイルで、巻回方向が反時計回り方向であることを表わす。なお、「時計回り」とは、モータ1の中心から見て右回りをいい、「反時計回り」とはモータ1の中心から見て左回りをいう。
 厳密には、コイルU11,U41はU相のコイルであり、コイルU22,U32はUバー相(U相のコイルと発生する磁界の向きが逆)のコイルである。しかし、以降の説明では、特に断らない限り、U相のコイルと総称する。コイルV12~V42及びコイルW11~W41についても同様に、V相のコイル、W相のコイルとそれぞれ総称する。
 (コイル成形体の詳細)
 図2は、実施形態に係るモータのコイルとバスバーとが一体化されたU相のコイル成形体を示す斜視図である。コイルU11~U41とバスバー51,54とが一体化されて、コイル成形体61を構成している。以降の説明において、図2に示すように、Z軸方向における、コイル成形体61におけるバスバー51が配置された側を「上方」、その反対側を「下方」と言うことがある。
 コイル成形体61のうち、バスバー51は、Z軸方向から見て、実質的に半円環状の板状部材である。バスバー51の両端部は、コイルU11,U32の引き出し部U11a,U32aとそれぞれ一体化されている。バスバー51の引き出し部51bは、電源(U相;図示せず)に電気的に接続されている。
 バスバー54は、Z軸方向から見て、実質的に円環状の板状部材である。バスバー54には、複数の引き出し部54aが設けられている。コイルU22,U41の引き出し部U22a,U41aは、バスバー54の引き出し部54a,54aとそれぞれ一体化されている。バスバー54の電位は、モータ1の中性点電位に対応している。
 一組のコイルU11,U22は、バスバー51,54を介さず、直接に一体化されている。一組のコイルU32,U41も、コイルU11,U22と同様に、直接に一体化されている。コイルU11~U41に電流を流したとき、コイルU11とコイルU22とで巻回方向が反対であるため、発生する磁束の向きは互いに逆向きである。コイルU32とコイルU41も同様に、発生する磁束の向きは互いに逆向きである。
 コイルU11~U41及びバスバー51,54は、いずれも銅材でできている。コイルU11~U41は、断面矩形状の銅製の線材からなる。
 図3は、実施形態に係るモータのV相のコイル成形体62を示す斜視図である。図4は、実施形態に係るモータのW相のコイル成形体63を示す斜視図である。図3に示すように、バスバー52は、Z軸方向から見て、実質的に半円環状の板状部材である。バスバー52の両端部はコイルV12,V31の引き出し部V12a,V31aとそれぞれ一体化されている。バスバー52の引き出し部52bは、電源(V相;図示せず)に電気的に接続されている。V相の4つのコイルのうち、隣り合う一組のコイルV12,V21が、例えば、コイルU11,U22と同様に直接に一体化されている。隣り合う別の一組のコイルV31,V42も同様に直接に一体化されている。
 コイルV12~V42及びバスバー52は、いずれも銅材でできている。コイルV12~V42は、断面矩形状の銅製の線材からなる。
 図4に示すように、バスバー53は、Z軸方向から見て、実質的に半円環状の板状部材である。バスバー53の両端部は、コイルW11,W32の引き出し部W11a,W32aとそれぞれ一体化されている。バスバー53の引き出し部53bは、電源(W相;図示せず)に電気的に接続されている。W相の4つのコイルのうち、隣り合う一組のコイルW11,W22が、例えば、コイルU11,U22と同様に一体化されている。隣り合う別の一組のコイルW32,W41も同様に一体化されている。
 コイルW11~W41及びバスバー53は、いずれも銅材でできている。コイルW11~W41は、断面矩形状の銅製の線材からなる。
 図5は、実施形態に係るモータのU,V,W相のコイル成形体64を組み合わせた斜視図である。図5に示すように、各相のコイル成形体64をバスバー51~54と一体化することも可能ではある。しかし、形状が複雑になり、コイル成形体の形成が難しくなる場合がある。例えば、後述するように、銅材を鋳型から取り出すのが難しくなる場合がある。また、ステータ4へのコイル成形体61~63の組立工程において、組立の位置合わせ余裕度が小さくなることもありうる。
 よって、以降の説明では、特に断らない限り、U相のコイルについては、コイルU11~U41とバスバー51,54とが一体化したコイル成形体61とし、V相については、隣り合う一組のコイルV12,V21が一体化したコイル成形体62a(図3,図7Cを参照)と、隣り合う別の一組のコイルV31,V42とが一体化したコイル成形体62b(図3,図7Cを参照)の2種類とし、W相についても、V相と同様に2種類の一体化したコイルが準備されているものとする。ここで、コイルV12~V42とバスバー52,54及びコイルW11~W41とバスバー53,54は、それぞれ、ヒュージング等の接合工程を経て、電気的に接続される。なお、図5に示すコイル成形体64は、各相のコイル成形体61~63の整列体(図7Dを参照)である。
 また、各コイル群とバスバーとの一体化構造のバリエーションは、上記に限定されるものではなく、モータ1の仕様、ステータ4、またはコイルの組立設備の性能等によって適宜変更しうることは言うまでもない。
 (コイル成形体の製造方法)
 ここで、コイルとバスバーとが一体化されたコイル成形体の形成方法について、コイル成形体61を例にとって、コイル成形体が鋳造品である場合について、説明する。なお、V相のコイル成形体62a,62b及びW相のコイル成形体63a,63b(図3,図4を参照)についても、下記と同様に形成可能である。また、バスバー51~54と、U相,V相,W相のコイル群U11~W41全てとを一体形成する場合は、下記の鋳型において、すべてのコイル、バスバーの形状を組み込んでキャビティを設ける必要がある。
 図6A,図6B,図6Cは、実施形態に係るモータのコイル成形体61の製造方法を説明する図である。コイルU11~U41とバスバー51,54とは、銅を鋳造することによって、一体成形されている。具体的には、図6Aに示すように、コイルU11~U41、バスバー51,54、及びそれらの引き出し部を含んで一体化された形状に対応するキャビティ71が、鋳型70の内部に設けられている。キャビティ71の中に溶融した銅を加圧して流し込んだ後、図6Bに示すように、冷却して銅を固化させ、コイル成形体61を得る。次に、コイル成形体61を鋳型70から取り出し、図6Cに示すように、コイル成形体61の表面全体に絶縁処理を施して、絶縁皮膜80を形成する。絶縁処理は、コイル成形体61とステータ4とを電気的に絶縁するために行われる。絶縁処理は、例えば、電着塗装により行われるが、特にこれに限定されない。
 さらに、鋳造に用いられる金属材料は銅以外でもよく、例えば、アルミニウム、亜鉛、マグネシウム、鉄、SUS(Steel Use Stainless)、及び真鍮等のいずれかの金属材料を用いてもよい。また、成形品の製造方法は鋳造に限られず、他の方法で成形品を製造してもよい。例えば、銅、アルミニウム、亜鉛、マグネシウム、鉄、SUS、及び真鍮などのいずれかの固体物から削りだしを行ってもよい。また、例えば、個々に成形された部品同士を冷間圧接、溶接等により、接合して形成してもよい。
 (ステータの組立方法)
 次に、ステータ4の組立方法について説明する。図7A~図7Fは、実施形態に係るモータのステータ4の組立方法を説明する図である。コイル成形体61と4つのティース42とを準備する(図7A)。ティース42を、コイル成形体61の4つのコイルU11~U41にそれぞれ装着する(図7B)。V相のコイル成形体62a,62bとW相のコイル成形体63a,63bを準備し、コイルV12~W41に対してそれぞれティース42を装着する(図7C)。
 次に、ティース42が装着されたコイル成形体61~63bを所定の位置に配列し、円環状になるように組み合わせる。ステータコア41を準備する(図7D)。各コイル成形体61~63bの整列体64をステータコア41に装着する(図7E)。ヒュージングなどの接合手法により、バスバー52の両端部及びバスバー54の引き出し部54a,54aをそれぞれ、V相のコイル成形体62a,62bの4つの引き出し部に接合する。同様に、バスバー53の両端部及びバスバー54の引き出し部54a,54aをそれぞれW相のコイル成形体63a,63bの4つの引き出し部に接合し、ステータ4の組立を完了する(図7F)。
 なお、バスバー52~54とV相、W相のコイル成形体62a~63bとの接合は、図7Dに示す工程に続けて行ってもよい。
 以上説明したように、本実施形態によれば、コイル成形体61において、コイルU11~U41とバスバー51,54とが一体成形されている。このため、コイルの巻線工程、及び、コイルとバスバーとの接続工程を省略できる。このコイル成形体をモータ1に使用することで、モータ1の製造コストを低減できる。
 また、U相とUバー相にそれぞれ対応するコイルU11とコイルU22とを直接に一体化している。このため、これらの相間を接続するための渡り線を無くすことができる。また、渡し線とコイルとの接続工程を省略できる。コイルU32とコイルU41、コイルV21~V42、コイルW11~W41についても同様に、渡し線を省略し、かつその接続工程を省略できる。
 さらに、コイル成形体61~63bにおいて、これらの表面に対する絶縁処理を一括で行うことができ、このプロセスを簡略化できる。
 また、コイルとバスバー及び複数のコイルの少なくとも一方が、一体成形されている。このため、ティース42が装着されたコイル成形体61~63bのハンドリングが容易であり、ステータ4の組立コストを低減できる。
 さらに、コイルU11~U41、V12~V42、W11~W41は断面矩形状の銅製の線材からなるため、スロット43内に隙間無くコイルを配置できる。よって、コイルの占積率を向上することができる。したがって、モータ1の小型化、および、トルク密度の向上が可能となる。
 以上のように、本実施形態のコイル成形体61は、モータ1のステータ4に装着されるコイル成形体61であって、ステータ4の複数のティース42の各々に巻回されたコイルU11~U41と、コイルU11~U41に接続されるバスバー51,54とが一体成形されたコイル成形体61である。
 これにより、コイルの巻線工程及びコイルとバスバーとの接続工程を省略でき、モータ1の製造コストを抑制できる。
 また、本実施形態のコイル成形体61は、モータ1のステータ4に装着されるコイル成形体61であって、ステータ4の複数のティース42の各々に巻回された一組のコイルU11,U22が互いに一体成形されたコイル成形体61である。
 これにより、コイルの巻線工程及びコイル間の接続工程を省略でき、モータ1の製造コストを抑制できる。
 また、一体成形されたコイルU11,U22のターン数はいずれも自然数であることが好ましい。
 また、一体成形された一組のコイルU11,U22のうち、一方のコイルU11がモータの中心から見て時計回り方向に巻回されており、他方のコイルU22がモータの中心から見て反時計回り方向に巻回されていてもよい。
 また、一組のコイルU11,U22と少なくとも一つのバスバー51,54とが一体成形されることが好ましい。
 また、一体成形された一組のコイルU11,U22は、互いに隣り合って配置されていてもよい。
 また、本実施形態のモータ1は、カバーケースの内部に、シャフト2と、シャフト2の外周に接して設けられたロータ3と、ロータ3の外側に、ロータ3と一定の間隔を持って離間して配置されているステータ4とを有する。ステータ4は、実質的に円環形状のステータコア41と、ステータコア41の内周に沿って等間隔に設けられた複数のティース42と、ティース42間にそれぞれ設けられたスロット43と、ティース42に装着された状態で、スロット43内に配置されているコイル成形体61と、を有する。
 これにより、コイルの巻線工程、及び、コイルとバスバーあるいはコイル間の接続工程が省略されたコイル成形体61をモータ1に使用するため、モータ1の製造コストを抑制できる。
 また、本実施形態のコイル成形体61の製造方法は、少なくとも一つのコイルU11~U41と少なくとも一つのバスバー51,54とが一体化された形状に対応するキャビティ71を内部に有する鋳型70を準備するステップと、キャビティ71内に銅、アルミニウム、亜鉛、マグネシウム、鉄、SUS、及び真鍮から選択される一種の金属材料を溶融した状態で流し込むステップと、鋳型70を冷却して、キャビティ71内の金属材料を固化させるステップと、固化した金属材料を鋳型70から取り出して、コイル成形体61を得るステップと、コイル成形体61の表面全体に絶縁処理を施すステップと、を備える。
 これにより、コイルの巻線工程及びコイルとバスバーとの接続工程を省略でき、モータ1の製造コストを抑制できる。
 また、本実施形態のコイル成形体61の製造方法は、少なくとも隣り合う一組のコイルU11,U22が一体化された形状に対応するキャビティ71を内部に有する鋳型70を準備するステップと、キャビティ71内に銅、アルミニウム、亜鉛、マグネシウム、鉄、SUS、及び真鍮から選択される一種の金属材料を溶融した状態で流し込むステップと、鋳型70を冷却して、キャビティ71内の金属材料を固化させるステップと、固化した金属材料を鋳型70から取り出して、コイル成形体61を得るステップと、コイル成形体61の表面全体に絶縁処理を施すステップと、を備える。
 これにより、コイルの巻線工程及びコイル間の接続工程を省略でき、モータ1の製造コストを抑制できる。
 また、本実施形態のステータの組立方法は、コイル成形体61を準備するステップと、ステータ4のティース42をコイル成形体61のコイルU11~U41に装着するステップと、ティース42が装着されたコイル成形体61をステータコア41に装着するステップと、コイル成形体61と、コイル成形体61と一体化されていないバスバー53とを接合するステップと、を備える。
 これにより、ステータ4の組立コストを低減できる。
 (変形例)
 図8は、図2のコイル成形体の部分拡大図である。上記の実施形態では、図2~4に示すように、コイルU11~U41、V12~V42、W11~W41は、いずれも巻回数(以下、ターン数という)が自然数である。例えば、図8に示すように、コイルU11の巻線は3ターン後に、上方からコイルU22側に延びてコイルU22と一体化している。
 これに対して、図9は、変形例に係るコイル成形体を示す斜視図である。図9に示すように、コイルU11の巻線が2ターン後に下方から延びて一体化されるような構成とすることもできる。つまり、一つのコイルあたり2.5ターンとなる構成とすることもできる。このような構成とすることで、ティース1個あたりのコイルのターン数は若干減少する。しかし、2つのコイルとしてみた場合のターン数、言い換えるとコイルの線長を短くできる。したがって、材料コストを低減できる。また、コイル上方での巻線密度を下げることができる。このため、コイル上方の空間に余裕ができる。よって、ヒュージング等の接合工程を容易に行うことができる。
 実施形態において、隣り合うコイル同士を直接一体化する構造の例を示した。この構造であれば、バスバーとの接点を減らすことができるので、コイル上方の空間を広くとることができる。例えば、引き出し部の個数または配置密度を減らすには有効である。ただし、特にこれに限定されない。バスバーを介した一体構造、すなわち、隣り合う位置にあるコイル同士が直接には一体化されていなくてもよい。
 また、時計回りに巻回されたコイルと反時計回りに巻回されたコイルとを一体化する例を示した。しかし、時計回りに巻回されたコイル同士、あるいは、反時計回りに巻回されたコイル同士を一体化してもよい。これらのコイルの配置は、モータ1の極数またはスロット数等により適宜変更されうる。
 また、時計回りに巻回されたコイルと反時計回りに巻回されたコイルとが、バスバーを介して離間して配置されていてもよい。
 なお、変形例を含む実施形態では、複数のコイルと複数のバスバーとが一体成形されたコイル成形体を示したが、複数のコイルと単独のバスバー、例えば、コイルU11~U41とバスバー51とが一体成形されていてもよい。また、単独のコイル、例えば、コイルU11とバスバー51とが一体成形されていてもよい。いずれの場合も、コイルの巻線工程の一部、あるいは、コイルとバスバーとの接続工程の一部を省略でき、モータ1の組立コストを低減できる。
 また、実施形態において、コイルU11~U41、V12~V42、W11~W41のターン数を3としたが、特にこれに限定されるものではない。モータ1の性能仕様等によって適宜変更しうる。
 以上のように、実施形態のコイル成形体61において、一体成形されたコイルU11,U22のターン数はいずれも自然数の(1以上の整数+1/2)倍であってもよい。
 本開示に係るコイル成形体は、ステータ内でのコイルの占積率を向上させる。同時に、コイルの巻線工程及びコイルとバスバーとの接続工程を省略できる。したがって、高効率かつ低コストのモータを実現する上で有用である。
 1  モータ
 2  シャフト
 3  ロータ
 4  ステータ
 31  磁石
 41  ステータコア
 42  ティース
 43  スロット
 51,52,53,54  バスバー
 61,62,62a,62b,63,63a,63b,64  コイル成形体
 70  鋳型
 71  キャビティ
 80  絶縁皮膜
 U11,U22,U32,U41,V12,V21,V31,V42,W11,W22,W32,W41  コイル
 U11a,U22a,U32a,U41a,V12a,V31a,W11a,W32a,51b,52b,53b,54a  引き出し部

Claims (11)

  1. モータのステータに装着されるコイル成形体であって、
    前記ステータの複数のティースの各々に巻回されたコイルと、前記コイルに接続されるバスバーとが一体成形された、コイル成形体。
  2. モータのステータに装着されるコイル成形体であって、
    前記ステータの複数のティースの各々に巻回された一組のコイルが互いに一体成形された、コイル成形体。
  3. 一体成形された前記コイルのターン数はいずれも自然数である、請求項2に記載のコイル成形体。
  4. 一体成形された前記コイルのターン数はいずれも自然数の(1以上の整数+1/2)倍である、請求項2に記載のコイル成形体。
  5. 一体成形された前記一組のコイルのうち、一方のコイルが前記モータの中心から見て時計回り方向に巻回されており、他方のコイルが前記モータの前記中心から見て反時計回り方向に巻回されている、請求項2に記載のコイル成形体。
  6. 前記一組のコイルと少なくとも一つのバスバーとが一体成形された、請求項2に記載のコイル成形体。
  7. 一体成形された前記一組のコイルは、互いに隣り合って配置されている、請求項2に記載のコイル成形体。
  8. カバーケースの内部に、
    シャフトと、
    前記シャフトの外周に接して設けられたロータと、
    前記ロータの外側に、前記ロータと一定の間隔を持って離間して配置されているステータと
    を有するモータであって、
    前記ステータは、
    実質的に円環形状のステータコアと、
    前記ステータコアの内周に沿って等間隔に設けられた複数のティースと、
    前記ティース間にそれぞれ設けられたスロットと、
    前記ティースに装着された状態で、前記スロット内に配置されている請求項1に記載のコイル成形体と、
    を有するモータ。
  9. 少なくとも一つのコイルと少なくとも一つのバスバーとが一体化された形状に対応するキャビティを内部に有する鋳型を準備するステップと、
    前記キャビティ内に銅、アルミニウム、亜鉛、マグネシウム、鉄、SUS、及び真鍮から選択される一種の金属材料を溶融した状態で流し込むステップと、
    前記鋳型を冷却して、前記キャビティ内の前記金属材料を固化させるステップと、
    固化した前記金属材料を前記鋳型から取り出して、コイル成形体を得るステップと、
    前記コイル成形体の表面全体に絶縁処理を施すステップと、
    を備える、コイル成形体の製造方法。
  10. 少なくとも隣り合う一組のコイルが一体化された形状に対応するキャビティを内部に有する鋳型を準備するステップと、
    前記キャビティ内に銅、アルミニウム、亜鉛、マグネシウム、鉄、SUS、及び真鍮から選択される一種の金属材料を溶融した状態で流し込むステップと、
    前記鋳型を冷却して、前記キャビティ内の前記金属材料を固化させるステップと、
    固化した前記金属材料を前記鋳型から取り出して、コイル成形体を得るステップと、
    前記コイル成形体の表面全体に絶縁処理を施すステップと、
    を備えるコイル成形体の製造方法。
  11. 請求項1に記載のコイル成形体を準備するステップと、
    ステータのティースを前記コイル成形体のコイルに装着するステップと、
    前記ティースが装着された前記コイル成形体をステータコアに装着するステップと、
    前記コイル成形体と、前記コイル成形体と一体化されていないバスバーとを接合するステップと、
    を備えるステータの組立方法。
PCT/JP2017/039707 2017-01-18 2017-11-02 コイル成形体、その製造方法、モータ、及び、ステータの組立方法 WO2018135086A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2018562886A JP7016001B2 (ja) 2017-01-18 2017-11-02 コイル成形体、その製造方法、モータ、及び、ステータの組立方法
US16/475,727 US11223260B2 (en) 2017-01-18 2017-11-02 Molded coil body with coil and semiannular busbars integrally connected with coils in the molded coil body
EP17893300.8A EP3573215A4 (en) 2017-01-18 2017-11-02 MOLDED COIL BODY, METHOD FOR THE PRODUCTION THEREOF, ENGINE AND METHOD FOR MOUNTING THE STATUS
CN201780083417.0A CN110199458B (zh) 2017-01-18 2017-11-02 线圈成形体及其制造方法、马达、以及定子的组装方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-006957 2017-01-18
JP2017006957 2017-01-18

Publications (1)

Publication Number Publication Date
WO2018135086A1 true WO2018135086A1 (ja) 2018-07-26

Family

ID=62908113

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/039707 WO2018135086A1 (ja) 2017-01-18 2017-11-02 コイル成形体、その製造方法、モータ、及び、ステータの組立方法

Country Status (5)

Country Link
US (1) US11223260B2 (ja)
EP (1) EP3573215A4 (ja)
JP (1) JP7016001B2 (ja)
CN (1) CN110199458B (ja)
WO (1) WO2018135086A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020071532A1 (ja) * 2018-10-04 2020-04-09 三菱電機株式会社 コイル部品の製造方法、電気機械の製造方法、コイル部品及び電気機械
WO2020170759A1 (ja) * 2019-02-19 2020-08-27 株式会社アスター コイル接合体およびコイル接合体の製造方法
WO2020170760A1 (ja) * 2019-02-19 2020-08-27 株式会社アスター コイル接合体およびコイル接合体の製造方法
WO2020246406A1 (ja) * 2019-06-06 2020-12-10 日本電産株式会社 ステータ、モータ及びステータの製造方法
EP3785821A1 (de) * 2019-08-27 2021-03-03 Volkswagen Aktiengesellschaft Gusswerkzeug für gegossene elektrotechnische spulen
WO2021043765A1 (de) * 2019-09-02 2021-03-11 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren und einrichtung zur herstellung einer elektrischen maschine, elektrische maschine und gruppe von elektrischen maschinen
JP2022500864A (ja) * 2018-09-19 2022-01-04 フラウンホッファー−ゲゼルシャフト ツァー フェーデルング デア アンゲバンテン フォルシュング エー ファー ヘリックス生成、ヘリックス用永久鋳型、およびヘリックス
JP2022502840A (ja) * 2018-09-19 2022-01-11 フラウンホッファー−ゲゼルシャフト・ツァー・フォデラング・デル・アンゲワンテン・フォーシュング・エー.ファウ. コイルを製造するための方法及び工具並びに製造されたコイル

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111756144A (zh) * 2020-07-03 2020-10-09 苏州达思灵电机有限公司 一种层叠式过桥连接的扁线双凸极励磁电机定子
KR20220028784A (ko) * 2020-08-31 2022-03-08 현대모비스 주식회사 코일 어셈블리 및 이를 구비한 모터
KR20230012816A (ko) 2021-07-16 2023-01-26 현대자동차주식회사 모터 어셈블리용 캐스팅 코일, 그것의 제조 방법 및 모터 어셈블리

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014007829A (ja) * 2012-06-22 2014-01-16 Aisin Aw Co Ltd ステータおよびステータの製造方法
DE102012212637A1 (de) 2012-07-18 2014-01-23 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Gießtechnisch hergestellte elektrische Spule
JP2016028550A (ja) * 2014-07-01 2016-02-25 ダイキン工業株式会社 電機子

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000324739A (ja) 1999-03-09 2000-11-24 Toyota Motor Corp 回転電機および回転電機のコイルの結線方法
JP2004336969A (ja) 2003-05-12 2004-11-25 Fuji Heavy Ind Ltd 鋳造装置
JP2005312182A (ja) * 2004-04-21 2005-11-04 Denso Corp 回転電機の集中巻き型ステータコイル
JP2005312278A (ja) * 2004-04-26 2005-11-04 Denso Corp 回転電機の集中巻き型ステータコイル
JP2005312277A (ja) * 2004-04-26 2005-11-04 Denso Corp 回転電機の集中巻き型ステータコイル
JP4783012B2 (ja) 2004-12-28 2011-09-28 日立オートモティブシステムズ株式会社 電動パワーステアリング用モータ及びその製造方法
JP4527602B2 (ja) * 2005-05-30 2010-08-18 日立オートモティブシステムズ株式会社 ステータコイルの製造方法
JP2007267463A (ja) 2006-03-28 2007-10-11 Hitachi Ltd 回転電機及び回転電機の製造方法
JP4789676B2 (ja) * 2006-03-29 2011-10-12 トヨタ自動車株式会社 回転電機用端末モジュールおよび回転電機
JP4737054B2 (ja) * 2006-11-30 2011-07-27 トヨタ自動車株式会社 絶縁部材およびステータ
US7723879B2 (en) * 2006-12-12 2010-05-25 Nidec Corporation Motor having multiple busbar plates and wire for the same
JP4420041B2 (ja) * 2007-02-26 2010-02-24 株式会社日立製作所 回転電機及び固定子の製造方法
US8519583B2 (en) * 2008-05-16 2013-08-27 Mitsubishi Electric Corporation Rotary electric machine
JP5304058B2 (ja) * 2008-07-03 2013-10-02 トヨタ自動車株式会社 集中巻線式ステータの製造方法、及び集中巻線式ステータ
JP5309897B2 (ja) * 2008-10-30 2013-10-09 トヨタ自動車株式会社 回転電機
JP2010200400A (ja) * 2009-02-23 2010-09-09 Nippon Densan Corp ステータ、バスバーユニット、モータ、及びパワーステアリング装置
DE102010020897A1 (de) * 2010-05-10 2011-11-10 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Elektrotechnische Spule in Gusstechnik, Herstellungsverfahren für eine solche Spule und Elektromaschinen verwendend solche Spulen
CN102577035B (zh) 2010-10-14 2015-10-07 丰田自动车株式会社 马达
JP5691968B2 (ja) * 2011-09-26 2015-04-01 トヨタ自動車株式会社 回転電機のステータ
JP5789570B2 (ja) 2012-07-03 2015-10-07 アイシン・エィ・ダブリュ株式会社 ステータ
DE102013000899A1 (de) * 2013-01-18 2014-08-07 Volkswagen Aktiengesellschaft Elektrotechnische Spule und/oder Spulenwicklung, Verfahren zu ihrer Herstellung sowie elektrisches Gerät
DE102013205240A1 (de) 2013-03-25 2014-09-25 Robert Bosch Gmbh Rotor oder Stator für eine elektrische Maschine und Verfahren zu seiner Herstellung
JP2015002614A (ja) 2013-06-14 2015-01-05 アイシン・エィ・ダブリュ株式会社 コイル鋳造装置及びコイル鋳造方法
JP5787005B2 (ja) * 2014-06-03 2015-09-30 日本電産株式会社 モータ、および、パワーステアリング装置
JP6809801B2 (ja) 2016-03-04 2021-01-06 住友重機械工業株式会社 ステータ、モータ、およびステータの製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014007829A (ja) * 2012-06-22 2014-01-16 Aisin Aw Co Ltd ステータおよびステータの製造方法
DE102012212637A1 (de) 2012-07-18 2014-01-23 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Gießtechnisch hergestellte elektrische Spule
JP2016028550A (ja) * 2014-07-01 2016-02-25 ダイキン工業株式会社 電機子

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3573215A4

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022500864A (ja) * 2018-09-19 2022-01-04 フラウンホッファー−ゲゼルシャフト ツァー フェーデルング デア アンゲバンテン フォルシュング エー ファー ヘリックス生成、ヘリックス用永久鋳型、およびヘリックス
JP7459433B2 (ja) 2018-09-19 2024-04-02 フラウンホッファー-ゲゼルシャフト ツァー フェーデルング デア アンゲバンテン フォルシュング エー ファー ヘリックス生成、ヘリックス用永久鋳型、およびヘリックス
JP2022502840A (ja) * 2018-09-19 2022-01-11 フラウンホッファー−ゲゼルシャフト・ツァー・フォデラング・デル・アンゲワンテン・フォーシュング・エー.ファウ. コイルを製造するための方法及び工具並びに製造されたコイル
JP7441215B2 (ja) 2018-09-19 2024-02-29 フラウンホッファー-ゲゼルシャフト・ツァー・フォデラング・デル・アンゲワンテン・フォーシュング・エー.ファウ. コイルを製造するための方法及び工具並びに製造されたコイル
WO2020071532A1 (ja) * 2018-10-04 2020-04-09 三菱電機株式会社 コイル部品の製造方法、電気機械の製造方法、コイル部品及び電気機械
JPWO2020071532A1 (ja) * 2018-10-04 2021-05-13 三菱電機株式会社 コイル部品の製造方法、電気機械の製造方法、コイル部品及び電気機械
JP2020137253A (ja) * 2019-02-19 2020-08-31 株式会社アスター コイル接合体およびコイル接合体の製造方法
US11984780B2 (en) 2019-02-19 2024-05-14 Aster Co., Ltd. Coil unit and method of manufacturing coil unit
US12003149B2 (en) 2019-02-19 2024-06-04 Aster Co., Ltd. Coil unit and method of manufacturing coil unit
CN113196619A (zh) * 2019-02-19 2021-07-30 株式会社阿斯特 线圈接合体和线圈接合体的制造方法
CN113228471A (zh) * 2019-02-19 2021-08-06 株式会社阿斯特 线圈接合体和线圈接合体的制造方法
CN113196619B (zh) * 2019-02-19 2024-06-04 株式会社阿斯特 线圈接合体和线圈接合体的制造方法
JP2020137254A (ja) * 2019-02-19 2020-08-31 株式会社アスター コイル接合体およびコイル接合体の製造方法
WO2020170760A1 (ja) * 2019-02-19 2020-08-27 株式会社アスター コイル接合体およびコイル接合体の製造方法
US20220085677A1 (en) * 2019-02-19 2022-03-17 Aster Co., Ltd. Coil unit and method of manufacturing coil unit
WO2020170759A1 (ja) * 2019-02-19 2020-08-27 株式会社アスター コイル接合体およびコイル接合体の製造方法
EP3930155A4 (en) * 2019-02-19 2022-04-06 Aster Co., Ltd. COIL SEAL AND COIL SEAL MANUFACTURING METHOD
JP7373827B2 (ja) 2019-02-19 2023-11-06 株式会社アスター コイル接合体およびコイル接合体の製造方法
JP7376902B2 (ja) 2019-02-19 2023-11-09 株式会社アスター コイル接合体およびコイル接合体の製造方法
CN113906657A (zh) * 2019-06-06 2022-01-07 日本电产株式会社 定子、马达和定子的制造方法
CN113906657B (zh) * 2019-06-06 2024-04-05 日本电产株式会社 定子、马达和定子的制造方法
WO2020246406A1 (ja) * 2019-06-06 2020-12-10 日本電産株式会社 ステータ、モータ及びステータの製造方法
EP3785821A1 (de) * 2019-08-27 2021-03-03 Volkswagen Aktiengesellschaft Gusswerkzeug für gegossene elektrotechnische spulen
CN114287101A (zh) * 2019-09-02 2022-04-05 弗劳恩霍夫应用研究促进协会 用于生产电机的方法和设备、电机和电机的组
WO2021043765A1 (de) * 2019-09-02 2021-03-11 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren und einrichtung zur herstellung einer elektrischen maschine, elektrische maschine und gruppe von elektrischen maschinen

Also Published As

Publication number Publication date
JPWO2018135086A1 (ja) 2019-11-07
EP3573215A1 (en) 2019-11-27
US11223260B2 (en) 2022-01-11
CN110199458B (zh) 2021-09-07
JP7016001B2 (ja) 2022-02-21
CN110199458A (zh) 2019-09-03
US20200212770A1 (en) 2020-07-02
EP3573215A4 (en) 2019-11-27

Similar Documents

Publication Publication Date Title
WO2018135086A1 (ja) コイル成形体、その製造方法、モータ、及び、ステータの組立方法
JP4783012B2 (ja) 電動パワーステアリング用モータ及びその製造方法
JP5480106B2 (ja) 回転電機
WO2015186455A1 (ja) 永久磁石式モータおよび駆動一体型永久磁石式モータ
JP2007202263A (ja) 電動パワーステアリング用モータ
DE112018006725T5 (de) Rotierende elektrische Maschine
EP3588743B1 (en) Motor
JPWO2018037529A1 (ja) 回転電機
JPWO2012147310A1 (ja) モータの固定子およびモータ
EP3611826B1 (en) Coil and motor using same
JP7129612B2 (ja) モータ
KR101247683B1 (ko) 비정질 스테이터, 이를 이용한 전기 모터 및 그의 제조방법
WO2021131575A1 (ja) コイル及びそれを備えたステータ、モータ
WO2018154943A1 (ja) モータ
US11929654B2 (en) Coil mounting structure
US20220069681A1 (en) Method for winding a heavy gauge toroidal coil of an electric machine
JP4110335B2 (ja) リニアモータ
JP7150171B2 (ja) 回転電機の固定子、端子台及び回転電機
CN118044103A (zh) 电枢和电动机
JP5109737B2 (ja) 分割ステータコアの製造方法
JP2014082935A (ja) 回転電機の固定子、およびこれを備えた回転電機
JP2010148170A (ja) ギャップワインディングモータ
JP2001157389A (ja) 電動機
JP2016019312A (ja) かご形三相誘導電動機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17893300

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018562886

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017893300

Country of ref document: EP

Effective date: 20190819