WO2018135058A1 - 熱交換器の解析方法 - Google Patents

熱交換器の解析方法 Download PDF

Info

Publication number
WO2018135058A1
WO2018135058A1 PCT/JP2017/038192 JP2017038192W WO2018135058A1 WO 2018135058 A1 WO2018135058 A1 WO 2018135058A1 JP 2017038192 W JP2017038192 W JP 2017038192W WO 2018135058 A1 WO2018135058 A1 WO 2018135058A1
Authority
WO
WIPO (PCT)
Prior art keywords
model
linear
load
heat exchanger
heat transfer
Prior art date
Application number
PCT/JP2017/038192
Other languages
English (en)
French (fr)
Inventor
匡胤 門出
直樹 大野
友仁 中森
正章 片山
亮一 川上
真仁 松原
朋乃 峯野
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to EP17892526.9A priority Critical patent/EP3550457B1/en
Priority to US16/475,188 priority patent/US11494525B2/en
Publication of WO2018135058A1 publication Critical patent/WO2018135058A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • F22B1/02Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers
    • F22B1/023Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers with heating tubes, for nuclear reactors as far as they are not classified, according to a specified heating fluid, in another group
    • F22B1/025Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers with heating tubes, for nuclear reactors as far as they are not classified, according to a specified heating fluid, in another group with vertical U shaped tubes carried on a horizontal tube sheet
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B37/00Component parts or details of steam boilers
    • F22B37/002Component parts or details of steam boilers specially adapted for nuclear steam generators, e.g. maintenance, repairing or inspecting equipment not otherwise provided for
    • F22B37/003Maintenance, repairing or inspecting equipment positioned in or via the headers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B37/00Component parts or details of steam boilers
    • F22B37/02Component parts or details of steam boilers applicable to more than one kind or type of steam boiler
    • F22B37/10Water tubes; Accessories therefor
    • F22B37/20Supporting arrangements, e.g. for securing water-tube sets
    • F22B37/205Supporting and spacing arrangements for tubes of a tube bundle
    • F22B37/206Anti-vibration supports for the bends of U-tube steam generators
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M5/00Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M7/00Vibration-testing of structures; Shock-testing of structures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/32Investigating strength properties of solid materials by application of mechanical stress by applying repeated or pulsating forces
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21DNUCLEAR POWER PLANT
    • G21D1/00Details of nuclear power plant
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0058Kind of property studied
    • G01N2203/0069Fatigue, creep, strain-stress relations or elastic constants
    • G01N2203/0073Fatigue
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/022Environment of the test
    • G01N2203/0222Temperature
    • G01N2203/0226High temperature; Heating means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/022Environment of the test
    • G01N2203/023Pressure
    • G01N2203/0232High pressure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin

Definitions

  • the present invention relates to a heat exchanger analysis method.
  • This application claims priority based on Japanese Patent Application No. 2017-008517 filed in Japan on January 20, 2017, the contents of which are incorporated herein by reference.
  • the steam generator includes a heat exchanger having a U bend.
  • the U-bend portion of this heat exchanger is formed by collectively arranging a plurality of heat transfer tubes having bent portions so as to form a hemispherical shape as a whole.
  • the U-bend portion is configured by stacking heat transfer tube groups arranged side by side in the same plane (in-plane direction) in an out-of-plane direction orthogonal to the in-plane direction.
  • a bracing member that extends across each heat transfer tube is disposed between the heat transfer tube groups.
  • Patent Document 1 discloses a method for predicting vibration of a heat transfer tube of a steam generator.
  • the heat transfer tube and the bracing member of the heat exchanger are usually in contact with each other due to variations in production, they do not exert a large load on each other.
  • the entire heat exchanger is greatly deformed, so that the heat transfer tube and the bracing member exert a large load on each other.
  • the entire heat exchanger is divided into a portion where a load is generated and a region where a gap is formed.
  • the present invention has been made in view of such problems, and an object thereof is to provide a heat exchanger analysis method capable of improving the accuracy of earthquake resistance evaluation.
  • the heat exchanger analysis method according to the present invention is a heat exchange in which a plurality of heat transfer tube groups including a plurality of heat transfer tubes arranged in parallel in the in-plane direction are stacked in the out-of-plane direction intersecting the in-plane direction.
  • a heat exchanger analysis method comprising a heat exchanger main body and a bracing member extending across the heat transfer tubes between the heat transfer tube groups adjacent to each other, wherein the structural model creates a structural model of the heat exchanger
  • a load is generated at the time of contact at the location where the heat transfer tube and the bracing member are opposed to each other in the out-of-plane direction of the heat transfer tube and the bracing member in the creation process and the structural model.
  • a non-linear model creating step for creating a non-linear model applying the non-linear spring element in the out-of-plane direction, and an analysis for applying a load in the out-of-plane direction to the non-linear model.
  • To the heat exchanger load It includes a load distribution acquisition step of acquiring a cloth, a.
  • an analysis model using a nonlinear spring simulating the behavior of the heat transfer tube and the bracing member is used to analyze the load distribution exerted on the heat transfer tube and the bracing member and the heat transfer tubes. It is possible to grasp the gap distribution between the heel member and the bracing member. And the accuracy of seismic evaluation can be improved by performing response analysis in consideration of such load distribution and gap distribution.
  • the out-of-plane linear spring element is applied only to the facing portion where the load is generated among the facing portions of the structural model. It is preferable to further include a linear gap model creating step of creating an applied linear gap model and an earthquake resistance evaluation step of performing earthquake resistance evaluation using the linear gap model.
  • the linear spring element is not applied to a portion where the load is zero, that is, a non-contact portion among the opposed portions of the heat transfer tube and the anti-rest member. The linear spring element is applied only to the place where the load is generated.
  • similar to the heat exchanger tube and the bracing member of an actual heat exchanger can be simulated.
  • the analysis time does not increase because the linear gap model to be analyzed does not include nonlinear elements.
  • the in-plane direction in which the elastic rigidity is a value corresponding to the load at each of the opposing locations at each of the opposing locations in the structural model may be created by applying the linear spring element.
  • a load may be applied to the nonlinear model so as to have a value corresponding to the amount of deformation.
  • the accuracy of seismic evaluation can be improved.
  • a steam generator 1 including a heat exchanger to be analyzed shown in FIG. 1 is used in, for example, a pressurized water reactor (PWR).
  • the pressurized water reactor uses light water as a reactor coolant and a neutron moderator, and this light water is used as a primary coolant.
  • the pressurized water reactor sends the primary coolant to the steam generator 1 as high-temperature high-pressure water that does not boil over the entire core.
  • a steam generator 1 shown in FIG. 1 has a hollow cylindrical shape that extends in the vertical direction and is hermetically sealed, and has a body portion 2 in which the lower half portion has a smaller diameter than the upper half portion. Yes.
  • a water chamber 21 is disposed on the lower end side of the body portion 2, and a steam discharge port 22 is disposed on the upper end side.
  • a cylindrical tube group outer tube (wrapper tube) 3 arranged on the inner wall surface of the body 2 with a space is provided.
  • the lower end portion of the tube group outer tube 3 extends to a tube plate (not shown) disposed below in the lower half of the body portion 2.
  • a heat exchanger 20 having a plurality of heat transfer tubes 15 is provided in the tube group outer tube 3.
  • This heat exchanger 20 has a U-bend portion 10.
  • the U-bend part 10 has a plurality of heat transfer tubes 15 arranged in a hemispherical shape as a whole.
  • Each heat transfer tube 15 has a bent portion 15U. That is, by arranging these bent portions 15U so as to overlap each other, a U-bend portion 10 having a hemispherical shape as a whole is formed.
  • the heat exchanger 20 includes a heat exchanger body 11, a bracing member 12, a holding member 13, and a bridge 14, as shown in FIGS.
  • the heat exchanger body 11 is configured by laminating a plurality of heat transfer tube groups 16 in an out-of-plane direction D2 orthogonal to the in-plane direction D1.
  • the plurality of heat transfer tube groups 16 includes a plurality of heat transfer tubes 15 arranged in parallel in the same plane (in-plane direction D1).
  • Each heat transfer tube 15 is a tubular member, and has a pair of straight portions whose lower ends are connected to the water chamber 21 shown in FIG. 1 and bent portions 15U that connect the upper ends of these straight portions, respectively. Have.
  • the heat transfer tube group 16 is configured by arranging a plurality of heat transfer tubes 15 having different bends 15U in size from the bends 15U in descending order toward the outside of the bends 15U. At this time, the straight portions of the heat transfer tubes 15 are parallel to each other. Thereby, the heat exchanger tube group 16 which has the some heat exchanger tube 15 arranged in the same plane as mentioned above is formed.
  • the in-plane direction D1 means a direction along a plane in which the heat transfer tubes 15 in the heat transfer tube group 16 are arranged.
  • the heat exchanger body 11 is configured by stacking a plurality of heat transfer tube groups 16 in an out-of-plane direction D2 orthogonal to the in-plane direction D1.
  • the out-of-plane direction D2 may be a crossing direction without being a direction orthogonal to the in-plane direction D1.
  • a plurality of bent portions 15U form a hemispherical U-bend portion at the top of the heat exchanger body 11 as a whole.
  • the U-bend portion 10 is disposed so as to face the upper side of the heat exchanger 20.
  • Such a heat exchanger main body 11 is supported by a tube support plate 23 fixed inside the trunk portion 2. That is, many through holes are formed in the tube support plate, and the heat transfer tubes 15 are inserted into the through holes in a non-contact state.
  • the plurality of heat transfer tubes 15 in each heat transfer tube group 16 are arranged so as to form a gap between the other adjacent heat transfer tubes 15.
  • the bracing member 12 is provided between the heat transfer tube groups 16 stacked in the out-of-plane direction D2. That is, the bracing member 12 is provided in a gap formed between adjacent heat transfer tube groups.
  • the anti-vibration member 12 is a rod-shaped member having a rectangular cross section having an I shape or a V shape as a whole. Fixing portions 12 a are provided at both ends of the anti-vibration member 12.
  • the I-shaped bracing member 12 is located at the center of the U-bend portion 10. Furthermore, in the V-shaped bracing member 12, the V-shaped top is located on the center side of the hemisphere formed by the U-bend portion 10 between the heat transfer tube groups 16 to be stacked. With the configuration as described above, the bracing member 12 extends in the in-plane direction D1 so as to be sandwiched between the heat transfer tube groups 16 adjacent in the out-of-plane direction D2.
  • the holding member 13 is a member that connects the fixed portions 12a of the bracing member 12 protruding from the surface of the U-bend portion 10 to each other.
  • the holding member 13 has an arc shape extending along the hemispherical surface of the U-bend portion 10.
  • the bridges 14 are respectively connected to a plurality of bracing members 12 provided at intervals in the out-of-plane direction D2.
  • the fixing portions 12 a of some of the bracing members 12 protrude toward the radially outer side of the hemispherical surface from the fixing portions 12 a of the other bracing members 12.
  • the bridge 14 is connected to the protruding portion.
  • the bridge 14 and the anti-vibration member 12 are connected to each other.
  • the bridge 14 is an arc-shaped member arranged so as to extend in the in-plane direction D1 along the outer periphery of the U-bend portion 10, that is, the hemispherical outer periphery of the heat transfer tube group 16.
  • FIG. 2 only one bridge 14 is shown, but actually, as shown in FIG. 3, a plurality of bridges 14 are arranged at intervals in the out-of-plane direction D2.
  • the primary cooling water heated in the pressurized water reactor is sent to the entrance of the water chamber 21, and a large number of transmissions of the heat exchanger main body 11 are transmitted. It circulates through the heat pipe 15 and reaches the exit chamber of the water chamber 21.
  • the secondary cooling water cooled by the condenser is sent to the water supply pipe and rises along the heat transfer pipe group 16 through the water supply path in the trunk portion 2. At this time, heat exchange is performed between the high-temperature primary cooling water flowing through the heat transfer tube 15 and the secondary cooling water around the heat transfer tube 15. The primary cooling water cooled through this heat exchange is returned from the exit chamber into the pressurized water reactor.
  • the secondary cooling water that has exchanged heat with the high-temperature and high-pressure primary cooling water rises in the body 2 and is separated into steam and hot water by the steam separator.
  • the separated steam is sent to the turbine after the moisture is removed by the moisture separator.
  • the analysis method of the present embodiment includes a structural model creation step S1, a linear model creation step S2, a primary response analysis step S3, a nonlinear model creation step S4, a load distribution acquisition step S5, a linear gap model creation step S6, and an earthquake resistance evaluation step S7. Including.
  • a structural model M of the heat exchanger 20 as shown in FIG. 6 is created. That is, a component model obtained by modeling the heat transfer tube 15, the bracing member 12, the holding member 13, and the bridge 14 as components of the heat exchanger 20 is combined based on the drawing data of the heat exchanger 20, and the heat exchanger 20 is combined.
  • a structural model M as an overall FEM model is created.
  • the entire tube group (U) is used based on the above-prepared component model and drawing data of the heat exchanger 20 using a computer in which an automatic generation program is incorporated.
  • the structural model M of the entire upper part of the heat exchanger 20 including the bend portion is automatically created.
  • the drawing data is a design drawing of the heat exchanger 20 in which the position and orientation of the component parts, the position of the connection part between the component parts, and the like are set.
  • the drawing data is incorporated in the automatic generation program in advance.
  • a linear model creation step S2 is performed.
  • a linear model is created by applying a linear spring element in the out-of-plane direction D2 to all of the facing portions 25 between the heat transfer tube 15 and the bracing member 12 in the structural model M.
  • the relative positional relationship between the heat transfer tube 15 and the bracing member 12 in the structural model M is as shown in FIG.
  • the heat transfer tubes 15 arranged between the pair of anti-vibration members 12 adjacent to the out-of-plane direction position D2 extend so as to intersect the extending direction of these anti-vibration members 12, and the heat transfer tubes 15 Are arranged with a gap between the pair of bracing members 12 that sandwich the heat transfer tube 15 from the out-of-plane direction D2.
  • the heat transfer tube 15 faces the anti-vibration member 12 in the out-of-plane direction D ⁇ b> 2 through the gap.
  • the facing portion 25 between the heat transfer tube 15 and the anti-vibration member 12 is a portion where the heat transfer tube 15 and the anti-vibration member 12 indicate the shortest distance in the out-of-plane direction D2.
  • a linear spring element in the out-of-plane direction D2 coupled to the heat transfer tube 15 and the anti-vibration member 12 is applied to all the facing portions 25 in the structural model M.
  • the linear spring element is a spring element having a load-displacement characteristic in which a load and a relative displacement have a linear relationship.
  • the characteristic line of the linear spring element has a straight line shape in which the load increases as the relative displacement increases.
  • the load in FIG. 8 indicates the load that acts between the heat transfer tube 15 and the bracing member 12.
  • the relative displacement indicates the relative displacement between the heat transfer tube 15 and the bracing member 12.
  • the relative displacement when the heat transfer tube 15 and the bracing member 12 are at the initial position (the position on the design data, that is, the position on the structural model M to which no external force is applied) is set to the reference value 0. .
  • the state where the heat transfer tube 15 and the anti-vibration member 12 are closer than the reference value is positive, and the state where the heat transfer tube 15 and the anti-vibration member 12 are separated from the reference value is negative.
  • the characteristic line of the load-displacement characteristic of the linear spring element is a straight line displaced in the positive direction of the relative displacement that is the horizontal axis without passing through the origin. That is, the load-load displacement characteristic of the linear spring element includes an element (gap element) based on the above-described gap.
  • the heat transfer tube 15 may be set as a one-dimensional element 15 a extending along the heat transfer tube 15. You may show as the one-dimensional element 15b extended in these extending directions of the extending line segment.
  • the facing portion 25 between the heat transfer tube 15 and the bracing member 12 may be shown as a one-dimensional element 30 that passes through the shortest distance between the heat transfer tube 15 and the bracing member 12.
  • the linear model is created by applying the linear spring element in the out-of-plane direction D ⁇ b> 2 to the facing portion 25 between the heat transfer tube 15 and the bracing member 12 in the structural model M.
  • a primary response analysis step S3 is performed.
  • a response analysis for giving a seismic wave to the linear model is performed, and the deformation amount of the linear model is acquired. That is, in the primary response analysis step S3, an earthquake wave (earthquake acceleration) is given to the linear model, and a seismic time history response analysis (dynamic analysis) is performed to obtain a response waveform of displacement.
  • the seismic wave here is a seismic wave corresponding to an earthquake to be actually evaluated.
  • the above response analysis is performed considering only the primary mode.
  • the maximum displacement in the out-of-plane direction D2 as the entire linear model is acquired as the deformation amount of the primary prediction.
  • a nonlinear model creation step S4 is performed.
  • the nonlinear model creation step S4 may be performed in parallel with the linear model creation step S2 and the primary response analysis step S3 after the structural model creation step S1, or before the linear model creation step S2 and the primary response analysis step S3. You may go to the latter stage.
  • a non-linear model is created by applying a non-linear spring element in the out-of-plane direction D2 to the opposite location 25 between the heat transfer tube 15 and the anti-vibration member 12 in the structural model M shown in FIG.
  • the non-linear spring element in the out-of-plane direction D ⁇ b> 2 coupled to the heat transfer tube 15 and the anti-vibration member 12 is applied to all the facing portions 25. That is, in the linear model creation step S2, a linear spring element is set at the opposing location 25 of the structural model M, whereas in the nonlinear model creation step S4, a nonlinear spring element is set at the opposing location 25 of the structural model M.
  • the non-linear spring element is a spring element having a load-displacement characteristic in which the load and the relative displacement indicate a non-linear relationship.
  • the definitions of the load and relative displacement shown in FIG. 9 are the same as those of the linear spring element shown in FIG.
  • the load-displacement characteristic of the non-linear spring element has a load value of 0 when the relative displacement is negative and in the range of 0 to a predetermined positive value.
  • the relative displacement exceeds a predetermined positive value
  • the relative displacement and the load form a straight line having a positive correlation.
  • the nonlinear spring element simulates the behavior in the actual heat exchanger 20 in which a load is not generated when the heat transfer tube 15 and the anti-vibration member 12 are not in contact but a load is generated only at the time of contact. .
  • the reason why the load increases with the increase of the relative displacement only when the load-displacement characteristic of the nonlinear spring element becomes a predetermined positive value is that the gap element is included like the linear spring element.
  • the nonlinear model is created by applying the nonlinear spring element in the out-of-plane direction D ⁇ b> 2 to the facing portion 25 between the heat transfer tube 15 and the bracing member 12 in the structural model M.
  • a load distribution acquisition step S5 is performed after the primary response analysis step S3 and the nonlinear model creation step S4.
  • an analysis (static analysis) for applying inertial acceleration (load) to the nonlinear model is performed, and the load distribution of the heat exchanger 20 is acquired from the value of the load at each facing portion 25.
  • the clearance distribution of the said opposing location 25 as the heat exchanger 20 whole can be acquired simultaneously. That is, as a result of acquiring the load distribution, it can be considered that a portion where the load at each facing portion 25 is 0 is a gap because the heat transfer tube 15 and the bracing member 12 are not in contact with each other. Therefore, the gap distribution can be acquired simultaneously with the load distribution.
  • a response analysis (static analysis) is performed when the inertial acceleration in the out-of-plane direction D2 is applied to the nonlinear model.
  • inertial acceleration is applied so that the deformation amount of the nonlinear model at the time of deformation shown in FIG. 10 matches the deformation amount acquired in the primary response analysis step S3, that is, the deformation amount of the linear model with respect to the seismic wave.
  • the above analysis is performed considering only the primary mode.
  • inertial acceleration acts on the mass during an earthquake
  • the deformation when the inertial acceleration is applied in the out-of-plane direction D2 and the deformation in the out-of-plane direction D2 in the primary mode during the earthquake are very similar. Therefore, the deformation amount when the inertial acceleration in the out-of-plane direction D2 is given to the nonlinear model approximates the deformation amount in the out-of-plane direction D2 in the primary mode at the time of the earthquake. Therefore, by applying inertial acceleration so that the deformation amount of the nonlinear model matches the deformation amount of the linear model, data corresponding to the response of the nonlinear model to the seismic wave can be acquired.
  • transformation state of the nonlinear model based on the result of the said response analysis can be acquired.
  • the said load is a load produced when the heat exchanger tube 15 and the heat exchanger tube 15 contact in the out-of-plane direction D2 by deformation
  • a linear gap model creation step S6 is performed.
  • a linear gap model in which a linear spring element in the out-of-plane direction D2 is applied only to the opposite portion 25 where the load is generated among the opposite portions 25 of the structural model M based on the load distribution or the gap distribution. Create Specifically, from the load distribution or gap distribution acquired in the load distribution acquisition step S5, each facing portion 25 is a location where a gap is generated (location where the load is 0), a location where no gap is generated (a load is generated). Into two groups). Then, the linear gap model is created by setting the linear spring element shown in FIG.
  • the earthquake resistance evaluation is performed on the linear gap model.
  • the linear gap model is subjected to eigenvalue analysis or seismic time history response analysis as dynamic analysis, and the vibration resistance or the like of the linear gap model is evaluated as the vibration resistance or the like of the heat exchanger 20.
  • response analysis is performed using an analysis model (nonlinear model) to which a non-linear spring simulating the behavior of the heat transfer tube 15 and the anti-vibration member 12 in contact / non-contact is applied.
  • an analysis model non-linear model
  • a non-linear spring simulating the behavior of the heat transfer tube 15 and the anti-vibration member 12 in contact / non-contact is applied.
  • the seismic evaluation is performed on a linear gap model in which the linear spring element is applied only to a portion of the opposing portion 25 between the heat transfer tube 15 and the anti-vibration member 12 that is in contact, the evaluation can be performed with high accuracy. That is, for example, if the linear spring element shown in FIG. 8 is applied to all the opposite locations 25 of the heat transfer tube 15 and the vibration prevention member 12 in the structural model M, a gap is generated between the heat transfer tube 15 and the vibration prevention member 12. Even in such a case, a tensile load is generated. In this case, a behavior different from that of the actual heat exchanger 20 is exhibited, and the analysis accuracy is lowered.
  • the portion where the load is 0 (the portion that is not in contact) among the opposed portions 25 between the heat transfer tube 15 and the anti-rest member 12.
  • No linear spring element is applied to, and the linear spring element is applied only to the place where the load is generated (the place where it comes into contact).
  • the behavior closer to the heat transfer tube 15 and the bracing member 12 of the actual heat exchanger 20 can be simulated. That is, even if there is a gap between the heat transfer tube 15 and the anti-vibration member 12, no tensile force is generated between them, so that the analysis result greatly deviates from the actual heat exchanger 20. There is nothing.
  • a linear model or a linear gap model to which only linear elements are applied is used, and inertial acceleration is calculated.
  • a non-linear model to which non-linear elements are applied is used in the step of performing the static analysis (load distribution acquisition step S5).
  • load distribution acquisition step S5 load distribution acquisition step S5
  • static analysis an analysis model to which only linear elements are applied is used, so the analysis time does not increase.
  • static analysis that is easier to calculate than the dynamic analysis is performed for the analysis model to which the nonlinear element is applied, it is possible to suppress an increase in the analysis time. Therefore, the entire analysis can be performed in a short time.
  • the same components as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the heat transfer tubes 15 are arranged in the respective opposing portions 25 of the heat transfer tubes 15 and the bracing member 12 in the linear gap model of the first embodiment.
  • 40 linear spring elements in the in-plane direction D1 coupled to the anti-vibration member 12 are applied.
  • the linear spring element 40 simulates the frictional force in the in-plane direction D1 that occurs when the heat transfer tube 15 and the anti-vibration member 12 come into contact with each other.
  • the elastic stiffness of the linear spring element 40 in the in-plane direction D1 is determined based on the load value at each facing location 25 acquired in the load distribution acquisition step S5. That is, when the heat transfer tube 15 and the bracing member 12 are in contact with each other in the out-of-plane direction D1 with a predetermined load, a value obtained by multiplying the load by the friction coefficient becomes the frictional force between the heat transfer tube 15 and the bracing member 12. . And this frictional force respond
  • the load-displacement characteristic which is the relationship between the load in the out-of-plane direction D2 and the relative displacement in the out-of-plane direction D2 at each facing location 25, is an elastic stiffness corresponding to the load at each facing location 25, as shown in FIG. A straight line having K 1 , K 2 , K 3 , K 4 is shown.
  • Each linear spring element in the in-plane direction D1 at each facing portion 25 can be a single-degree-of-freedom model.
  • the seismic evaluation step S7 is performed on such a linear gap model as in the first embodiment.
  • the response analysis which considered the frictional force which the heat exchanger tube 15 and the bracing member 12 mutually exert in the in-plane direction D1 can be performed. Therefore, an analysis that more closely approximates the actual behavior of the heat exchanger 20 can be performed, and the accuracy of seismic evaluation can be further improved.
  • the present invention has been described above, but the present invention is not limited to this, and can be appropriately changed without departing from the technical idea of the present invention.
  • the analysis is performed considering only the primary mode.
  • the eigenvalue analysis is performed on the linear model, the evaluation mode is selected, and the response analysis is performed considering the selection mode. May be.
  • the primary response analysis step S3 not only the analysis that gives the inertial acceleration, but also the analysis that gives the load other than the inertial acceleration and obtains the deformation amount may be performed.
  • the analysis method of the present invention is applied to the heat exchanger 20 of the steam generator 1 has been described, but the present invention may be applied to other heat exchangers 20.
  • the present invention is applicable to a heat exchanger analysis method.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • Computer Hardware Design (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Plasma & Fusion (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Architecture (AREA)
  • Software Systems (AREA)

Abstract

熱交換器の構造モデルを作成する構造モデル作成工程(S1)と、構造モデルにおける伝熱管と振止部材との対向箇所に、伝熱管と振止部材との接触時のみに荷重が発生する面外方向の非線形バネ要素を適用した非線形モデルを作成する非線形モデル作成工程(S4)と、非線形モデルに対して面外方向の荷重を与える解析を行って、各対向箇所における荷重の値から熱交換器の荷重分布を取得する荷重分布取得工程(S5)と、を含む。

Description

熱交換器の解析方法
 本発明は、熱交換器の解析方法に関する。
 本願は、2017年1月20日に、日本に出願された特願2017-008517号に基づき優先権を主張し、その内容をここに援用する。
 蒸気発生器は、Uベンド部を有する熱交換器を備えている。この熱交換器のUベンド部は、曲がり部を有する複数の伝熱管を全体として半球状をなすように集合配列してなるものである。具体的にはUベンド部は、同一面内(面内方向)に並設された伝熱管群を、面内方向に直交する面外方向に積層することによって構成されている。このような伝熱管群の間には、各伝熱管に交差して延びる振止部材が配置されている。
 例えば特許文献1には、蒸気発生器の伝熱管の振動を予測する方法が開示されている。
特開2015-26259号公報
 ところで、上記熱交換器の伝熱管及び振止部材は、通常時は製作時のばらつきにより多少接触しているものの、互いに大きな荷重を及ぼし合ってはいない。しかしながら地震発生時には、熱交換器全体が大きく変形することにより、伝熱管と振止部材とが互いに大きな荷重を及ぼし合うことになる。これにより、熱交換器全体として、荷重が発生する部分と隙間ができる領域とに分かれる。蒸気発生器の耐震評価の精度を向上させるためには、このような伝熱管及び振止部材の挙動を把握し、熱交換器全体としての荷重分布や隙間分布を取得する必要がある。
 本発明はこのような課題に鑑みてなされたものであって、耐震評価の精度を向上させることができる熱交換器の解析方法を提供することを目的とする。
 本発明は、上記課題を解決するため、以下の手段を採用している。
 即ち、本発明に係る熱交換器の解析方法は、面内方向に並設された複数の伝熱管からなる伝熱管群が前記面内方向に交差する面外方向に複数積層されてなる熱交換器本体と、互いに隣り合う前記伝熱管群の間で前記伝熱管に交差して延びる振止部材とを有する熱交換器の解析方法であって、前記熱交換器の構造モデルを作成する構造モデル作成工程と、前記構造モデルにおける前記伝熱管と前記振止部材との前記面外方向の対向箇所に、これら伝熱管と振止部材との非接触時に荷重が発生せずに接触時に荷重が発生する前記面外方向の非線形バネ要素を適用した非線形モデルを作成する非線形モデル作成工程と、前記非線形モデルに対して前記面外方向の荷重を与える解析を行って、各前記対向箇所における荷重の値から前記熱交換器の荷重分布を取得する荷重分布取得工程と、を含む。
 このような解析方法によれば、伝熱管及び振止部材の挙動を模擬した非線形バネを適用した解析モデルで解析を行うことで、伝熱管及び振止部材に互いに及ぼされる荷重分布やこれら伝熱管と振止部材との間の隙間分布を把握することができる。そして、このような荷重分布や隙間分布を考慮して応答解析を行うことで、耐震評価の精度を向上させることができる。
 また、本発明に係る熱交換器の解析方法は、前記荷重分布に基づいて、前記構造モデルの前記対向箇所のうち前記荷重が生じている前記対向箇所のみに前記面外方向の線形バネ要素を適用した線形隙間モデルを作成する線形隙間モデル作成工程と、前記線形隙間モデルを用いて耐震評価を行う耐震評価工程と、をさらに含むことが好ましい。
 ここで、仮に構造モデルにおける伝熱管及び振止部材の全ての対向箇所に線形バネ要素を適用した場合には、伝熱管と振止部材との間に隙間がある場合であっても引っ張り荷重が発生してしまう場合がある。そのため、伝熱管と振止部材との間に隙間が生じている実際の熱交換器とは異なる挙動を示すことになる。
 当該解析方法によれば、荷重分布や隙間分布に基づいて、伝熱管と振止部材との対向箇所のうち荷重が0の箇所、即ち、非接触となる箇所には線形バネ要素を適用せず、荷重が発生する箇所にのみ線形バネ要素を適用する。これにより、実際の熱交換器の伝熱管及び振止部材に近い挙動を模擬することができる。
 また、地震波を与える動的解析を行う応答解析の際には、解析対象となる線形隙間モデルが非線形要素を含んでいないため、解析時間が長大化してしまうこともない。
 さらに、本発明に係る熱交換器の解析方法の前記線形隙間モデル作成工程では、前記構造モデルにおける各前記対向箇所に、各前記対向箇所の荷重に応じた値を弾性剛性とする前記面内方向の線形バネ要素を適用して前記線形隙間モデルを作成してもよい。
 これにより、伝熱管と振止部材とが互いに面内方向に及ぼす摩擦力を模擬することができる。したがって、より実際の熱交換器の挙動に近似した解析を行うことができる。
 また、本発明に係る熱交換器の解析方法では、前記構造モデルの前記対向箇所の全部に、前記面外方向の線形バネ要素を適用した線形モデルを作成する線形モデル作成工程と、前記線形モデルに地震波を与える応答解析を行って、該線形モデルの変形量を取得する一次応答解析工程と、をさらに含み、前記荷重分布取得工程では、前記非線形モデルの変形量が前記変形量取得工程で取得した変形量と対応した値となるように、前記非線形モデルに対して荷重を作用させてもよい。
 これにより、熱交換器に地震波が与えられた際の伝熱管及び振止部材の挙動を模擬しながら、円滑に解析を行うことができる。
 即ち、本発明では、地震波を与える動的解析では線形要素のみが適用された線形モデルを用い、荷重を与える静的解析では非線形要素が適用された非線形モデルを用いている。
 そのため、解析時間が不用意に長大化することを抑制しながら、伝熱管及び振止部材の実際の挙動に近似した解析結果を取得することができる。
 本発明によれば、耐震評価の精度を向上させることができる。
第一実施形態に係る蒸気発生器の一部を破断した斜視図である。 第一実施形態に係る蒸気発生器のUベンド部の斜視図である。 第一実施形態に係る蒸気発生器のUベンド部を面内方向から視た側面図である。 第一実施形態に係る蒸気発生器のUベンド部を面外方向から視た縦断面図である。 第一実施形態に係る熱交換器の解析方法のフローチャートである。 第一実施形態に係る熱交換器の解析方法における構造モデルの斜視図である。 第一実施形態に係る熱交換器の解析方法における構造モデルの伝熱管と振止部材との対向箇所に線形バネ要素又非線形バネ要素を適用した状態を示す部分斜視図である。 第一実施形態に係る面外方向の線形バネ要素の相対変位と荷重との関係を示すグラフである。 第一実施形態に係る面外方向の非線形バネ要素の相対変位と荷重との関係を示すグラフである。 第一実施形態に係る変形時の非線形モデルを面外方向から視た模式図である。 第一実施形態に係る熱交換器の接触分布を示す図である。 第二実施形態に係る熱交換器の伝熱管及び振止部材に面外方向に作用する摩擦力を示す模式図である。 第二実施形態に係る面内方向の線形バネ要素の相対変位と荷重との関係を示すグラフである。
 〔第一実施形態〕
 以下、本発明の熱交換器の解析方法について、図面を参照して詳細に説明する。
 図1に示す解析対象となる熱交換器を備えた蒸気発生器1は、例えば、加圧水型原子炉(PWR:Pressurized Water Reactor)に用いられる。加圧水型原子炉は、原子炉冷却材及び中性子減速材として軽水を使用しており、この軽水を一次冷却材として用いる。加圧水型原子炉は、一次冷却材を、炉心全体にわたって沸騰しない高温高圧水として、蒸気発生器1に送る。
 図1に示す蒸気発生器1は、上下方向に延在し、かつ、密閉された中空円筒形状であって、上半部に対して下半部の方が小径をなす胴部2を備えている。胴部2の下端側には水室21が配置され、上端側には蒸気排出口22が配置されている。下半部から上半部にかけての領域には、胴部2の内壁面に間隔をあけて配列された円筒状の管群外筒(ラッパー管)3が設けられている。この管群外筒3の下端部は、胴部2の下半部内の下方に配置された管板(不図示)まで延在している。管群外筒3内には、複数の伝熱管15を有する熱交換器20が設けられている。
 この熱交換器20は、Uベンド部10を有する。Uベンド部10は、複数の伝熱管15を全体として半球状をなすように配列したものである。それぞれの伝熱管15は、曲がり部15Uを有している。すなわち、これら曲がり部15U同士が互いに重なり合うように配列されることで、全体として半球状をなすUベンド部10が形成されている。
 より具体的には、この熱交換器20は、図2~図4に示すように、熱交換器本体11と、振止部材12と、保持部材13と、ブリッジ14と、を備えている。熱交換器本体11は、複数の伝熱管群16を面内方向D1に直交する面外方向D2に積層することによって構成される。この複数の伝熱管群16は、同一面内(面内方向D1)に並設された複数の伝熱管15から構成されている。
 各伝熱管15は、管状をなす部材であって、それぞれ下端が図1に示す水室21に接続された一対の直線部と、これら直線部の上端部同士を接続する曲がり部15Uと、を有している。
 伝熱管群16は、曲がり部15Uの大きさが互いに異なる複数の伝熱管15を、曲がり部15Uの径が小さいものから順に該曲がり部15Uの外側に向かって配列することで構成されている。このとき、各伝熱管15の直線部は互いに平行をなしている。これにより、上記のように同一平面内に配列された複数の伝熱管15を有する伝熱管群16が形成されている。なお、面内方向D1とは、伝熱管群16における各伝熱管15が配置される平面に沿う方向を意味している。
 熱交換器本体11は、伝熱管群16を面内方向D1に直交する面外方向D2に複数積層することで構成される。なお、面外方向D2は、面内方向D1に直交する方向とせずに、交差している方向としてもよい。
 このように伝熱管群16が積層されることで、熱交換器本体11の頂部では、複数の曲がり部15Uが全体として半球状をなすUベンド部を形成する。このUベンド部10は、熱交換器20の上方を向くようにして配置される。
 このような熱交換器本体11は、胴部2の内側に固定された管支持板23に支持されている。即ち、管支持板には、多数の貫通孔が形成されており、この貫通孔内に各伝熱管15が非接触状態で挿通されている。言い換えれば、各伝熱管群16における複数の伝熱管15は、隣り合う他の伝熱管15との間に間隙を形成するように配置されている。
 振止部材12は、面外方向D2に積層された伝熱管群16の間にそれぞれ設けられている。即ち、振止部材12は、互いに隣り合う伝熱管群同士の間に形成あれる隙間内に設けられている。
 振止部材12は、全体としてI字状、又はV字状をなす矩形断面の棒状部材である。振止部材12の両端部には、固定部12aが設けられている。I字状の振止部材12は、Uベンド部10の中央部に位置している。さらに、V字状の振止部材12では、積層される伝熱管群16の間におけるUベンド部10がなす半球の中心側にV字の頂部が位置している。以上のような構成により、振止部材12は、面外方向D2に隣り合う伝熱管群16に挟まれるように面内方向D1に延在している。
 保持部材13は、Uベンド部10の表面から突出する振止部材12の固定部12a同士を互いに連結する部材である。この保持部材13は、Uベンド部10の半球面に沿って延びる円弧状をなしている。
 ブリッジ14は、面外方向D2に間隔をあけて設けられた複数の振止部材12にそれぞれ接続されている。ここで、一部の振止部材12の固定部12aは、他の振止部材12の固定部12aよりも半球面の径方向外側に向かって突出している。ブリッジ14は、この突出部分に接続されている。以上により、ブリッジ14と振止部材12とが互いに接続される。
 このブリッジ14は、Uベンド部10の外周、すなわち、伝熱管群16の半球状の外周に沿って面内方向D1に延在するように配置された円弧状の部材である。なお、図2では、1つのみのブリッジ14が示されているが、実際には図3に示すように、複数のブリッジ14が面外方向D2に間隔をあけて配置されている。
 以上のように構成された蒸気発生器1では、図1に示すように、加圧水型原子炉で加熱された一次冷却水が水室21の入室に送られ、熱交換器本体11の多数の伝熱管15内を通って循環して水室21の出室に到達する。一方、復水器で冷却された二次冷却水は、給水管に送られ、胴部2内の給水路を通って、伝熱管群16に沿って上昇する。この際、伝熱管15内を流通する高温の一次冷却水と伝熱管15周囲の二次冷却水との間で熱交換が行われる。この熱交換を経て冷却された一次冷却水は、出室から加圧水型原子炉内に戻される。一方、高温高圧の一次冷却水と熱交換した二次冷却水は、胴部2内を上昇し、気水分離器で蒸気と熱水とに分離される。分離された蒸気は、湿分分離器で湿分を除去されてからタービンに送られる。
<熱交換器の解析方法>
 次に上述した蒸気発生器1の熱交換器20の解析方法について、図5に示すフローチャートを参照して説明する。
 本実施形態の解析方法は、構造モデル作成工程S1、線形モデル作成工程S2、一次応答解析工程S3、非線形モデル作成工程S4、荷重分布取得工程S5、線形隙間モデル作成工程S6及び耐震評価工程S7を含む。
<構造モデル作成工程>
 構造モデル作成工程S1では、図6に示すような熱交換器20の構造モデルMを作成する。即ち、熱交換器20の構成部品としての伝熱管15、振止部材12、保持部材13及びブリッジ14をモデル化した構成部品モデルを熱交換器20の図面データに基づいて組み合わせ、熱交換器20全体のFEMモデルとしての構造モデルMを作成する。
 具体的には、構造モデル作成工程S1では、自動生成プログラムが組み込まれたコンピュータを使用し、予め作成された上記の各構成部品モデル及び熱交換器20の図面データに基づいて管群全体(Uベンド部を含む熱交換器20の上部全体)の構造モデルMを自動作成する。
 なお、図面データは、構成部品の位置や姿勢や、構成部品同士の接続部の位置等が設定された熱交換器20の設計図面である。当該図面データは、上記の自動生成プログラムに予め組み込まれている。
<線形モデル作成工程>
 構造モデル作成工程S1の後に、線形モデル作成工程S2を行う。線形モデル作成工程S2では、構造モデルMにおける伝熱管15と振止部材12との対向箇所25の全部に、面外方向D2の線形バネ要素を適用することで、線形モデルを作成する。
 ここで、上記構造モデルMにおける伝熱管15と振止部材12との相対位置関係は、図7に示す通りとなっている。即ち、面外方向位D2に隣り合う一対の振止部材12の間に配置される伝熱管15は、これら振止部材12の延在方向に交差するように延在しており、伝熱管15は、該伝熱管15を面外方向D2から挟み込む一対の振止部材12の間で隙間をあけて配置されている。伝熱管15は、振止部材12に対して当該隙間を介して面外方向D2に対向している。伝熱管15と振止部材12との対向箇所25とは、伝熱管15と振止部材12とが面外方向D2に最短距離を示す部分である。
 線形モデル作成工程S2では、構造モデルMにおける上記対向箇所25の全てに、伝熱管15と振止部材12とに結合された面外方向D2の線形バネ要素を適用する。線形バネ要素は、図8に示す通り、荷重と相対変位とが線形関係を示す荷重-変位特性を有するバネ要素である。線形バネ要素の特性線は、相対変位の増加とともに荷重も増加する直線状をなす。ここで、図8における荷重は、伝熱管15と振止部材12との間で作用し合う荷重を示している。また、相対変位は、伝熱管15と振止部材12との相対変位を示している。線形バネ要素では、伝熱管15と振止部材12との初期位置(設計データ上の位置、即ち、外力が及んでいない構造モデルM上の位置)にある場合の相対変位を基準値0としている。そして、伝熱管15と振止部材12とが基準値よりも近接した状態を正、伝熱管15と振止部材12とが基準値よりも離間した状態を負としている。
 なお、上述の通り、伝熱管15と振止部材12との間には隙間が存在しているため、相対変位が0から所定の正の値の範囲にある場合は伝熱管15と振止部材12とは接触しない。そのため、線形バネ要素の荷重‐変位特性の特性線は、図8に示すように、原点を通らずに横軸となる相対変位の正方向に変位した直線状をなしている。即ち、線形バネ要素の荷重‐荷重変位特性には、上述した隙間を踏まえた要素(ギャップ要素)を含んでいる。
 また、構造モデルMでは、図7に示すように、伝熱管15を該伝熱管15に沿って延びる一次元要素15aとして設定してもよい、振止部材12を該振止部材12に沿って延びる線分のこれらの延在方向に延びる一次元要素15bとして示してもよい。また、線形モデル作成工程S2では、伝熱管15と振止部材12との対向箇所25を、これら伝熱管15と振止部材12との最短距離を通る一次元要素30として示してもよい。そして、当該対向箇所25を示す一次元要素30に図8に示す面外方向D2の線形バネ要素を設定してもよい。
 以上のように、構造モデルMにおける伝熱管15と振止部材12との対向箇所25に面外方向D2の線形バネ要素を適用することで、線形モデルが作成される。
<一次応答解析工程>
 線形モデル作成工程S2の後に、一次応答解析工程S3を行う。一次応答解析工程S3では、線形モデルに地震波を与える応答解析を行って、該線形モデルの変形量を取得する。
 即ち、一次応答解析工程S3では、上記の線形モデルに対して地震波(地震加速度)を与え、地震波時刻歴応答解析(動的解析)を行い、変位の応答波形を得る。ここでの地震波は、実際に評価すべき地震に対応する地震波である。また、実際の地震時には高次モードよりも一次モードが卓越することから、一次モードのみを考慮して上記応答解析を行う。
 そして、上記応答波形に基づいて、例えば線形モデル全体としての面外方向D2の最大変位を一次予想の変形量として取得する。なお、応答波形から熱交換器20全体のひずみを求め、当該ひずみを変形量としてもよい。
<非線形モデル作成工程>
 次に非線形モデル作成工程S4を行う。非線形モデル作成工程S4は、構造モデル作成工程S1の後に線形モデル作成工程S2や一次応答解析工程S3と並行して行ってもよいし、これら線形モデル作成工程S2、一次応答解析工程S3の前段又は後段に行ってもよい。
 非線形モデル作成工程S4では、図7に示す構造モデルMにおける伝熱管15と振止部材12との対向箇所25に、面外方向D2の非線形バネ要素を適用することで、非線形モデルを作成する。本実施形態では、対向箇所25の全てに、伝熱管15と振止部材12とに結合された面外方向D2の非線形バネ要素を適用する。即ち、線形モデル作成工程S2では、構造モデルMの対向箇所25に線形バネ要素を設定したのに対して、非線形モデル作成工程S4では、構造モデルMの対向箇所25に非線形バネ要素を設定する。
 非線形バネ要素は、図9に示す通り、荷重と相対変位とが非線形関係を示す荷重-変位特性を有するバネ要素である。図9に示す荷重及び相対変位の定義は、図8に示す線形バネ要素と同様である。
 非線形バネ要素の荷重‐変位特性は、相対変位が負である場合、及び、0から正の所定の値の範囲にある場合に、荷重の値は0となる。一方、相対変位が正の所定の値を超えた場合には、相対変位と荷重とが正の相関となる直線状をなしている。これにより、非線形バネ要素は、伝熱管15と振止部材12との非接触時に荷重が発生せずに接触時のみに荷重が発生するといった実際の熱交換器20での挙動を模擬している。なお、非線形バネ要素の荷重‐変位特性で所定の正の値になって初めて相対変位の増加に伴って荷重が増加するのは、線形バネ要素と同様にギャップ要素を含むためである。これにより、伝熱管15と振止部材12との隙間がなくなるまで変位して初めて荷重が生じるといった実際の挙動を模擬している。
 以上のように、構造モデルMにおける伝熱管15と振止部材12との対向箇所25に面外方向D2の非線形バネ要素を適用することで、非線形モデルが作成される。
<荷重分布取得工程>
 一次応答解析工程S3及び非線形モデル作成工程S4の後に、荷重分布取得工程S5を行う。荷重分布取得工程S5では、非線形モデルに対して慣性加速度(荷重)を与える解析(静的解析)を行って、各対向箇所25における荷重の値から前記熱交換器20の荷重分布を取得する。また、荷重分布取得工程S5では、同時に熱交換器20全体としての上記対向箇所25の隙間分布を取得できる。即ち、荷重分布を取得した結果、各対向箇所25における荷重が0となる箇所は、伝熱管15と振止部材12とが非接触となり隙間が生じているとみなすことができる。したがって、荷重分布と同時に隙間分布を取得できる。
 荷重分布取得工程S5では、上記の非線形モデルに対して面外方向D2の慣性加速度を与えた際の応答解析(静的解析)を行う。当該解析では、図10に示す変形時の非線形モデルの変形量が、一次応答解析工程S3で取得した変形量、即ち、地震波に対する線形モデルの変形量に一致するように慣性加速度を付与する。また、一次応答解析と同様の理由から、一次モードのみを考慮して上記解析を行う。
 ここで一般に、地震時には慣性加速度が質量に作用するため、面外方向D2に慣性加速度を作用させた場合の変形と、地震時における一次モードでの面外方向D2の変形は酷似している。そのため、非線形モデルに面外方向D2の慣性加速度を与えた際の変形量は、地震時における一次モードでの面外方向D2の変形量に近似する。したがって、非線形モデルの変形量が線形モデルの変形量と一致させるように慣性加速度を与えることで、地震波に対する非線形モデルの応答に相当するデータを取得することができる。そして、当該応答解析の結果に基づく非線形モデルの変形状態から、当該非線形モデルが一次モードで変形した際の各対向箇所25における荷重を取得することができる。なお、当該荷重とは、熱交換器20の変形により伝熱管15と伝熱管15とが面外方向D2に接触することで生じる荷重である。
 これにより、熱交換器20全体としての対向箇所25の荷重分布を取得することができる。また、各対向箇所25のうち荷重が発生していない箇所は、伝熱管15と振止部材12とが非接触状態であることを示している。そのため、図11に示すように、熱交換器20全体としての対向箇所25の隙間分布を取得することができる。
<線形隙間モデル作成工程>
 荷重分布取得工程S5の後に、線形隙間モデル作成工程S6を行う。線形隙間モデル作成工程S6では、荷重分布又は隙間分布に基づいて、構造モデルMの対向箇所25のうち荷重が生じている対向箇所25のみに面外方向D2の線形バネ要素を適用した線形隙間モデルを作成する。
 具体的には、荷重分布取得工程S5で取得した荷重分布又は隙間分布から、各対向箇所25を隙間が生じている箇所(荷重が0の箇所)、隙間が生じていない箇所(荷重が発生している箇所)の2つのグループに区分けする。そして、構造モデルMに対して対向箇所25における隙間が生じていない箇所のみに、線形モデル作成工程S2と同様の図8に示す線形バネ要素を設定することで、線形隙間モデルを作成する。
 各対向箇所25のうち、伝熱管15と振止部材12とが非接触の箇所にはそもそも荷重が生じないため、線形バネ要素の設定は不要となる。そのため、線形隙間モデルでは、非接触箇所には線形バネ要素を設定しない。
<耐震評価工程>
 そして、線形隙間モデル作成工程S6の後に、線形隙間モデルに対して耐震評価を行う。具体的には、線形隙間モデルに対して固有値解析や動的解析としての地震波時刻歴応答解析等を施し、当該線形隙間モデルの耐振性等を熱交換器20の耐振性等として評価する。
 以上のように、本実施形態の解析方法によれば、伝熱管15及び振止部材12の接触・非接触時の挙動を模擬した非線形バネを適用した解析モデル(非線形モデル)で応答解析を行うことで、伝熱管15及び振止部材12に互いに及ぼされる荷重分布や隙間分布を把握することができる。
 また、伝熱管15と振止部材12との対向箇所25のうち接触する箇所のみに線形バネ要素を適用した線形隙間モデルを解析対象として耐震評価を行うため、精度高く評価を行うことができる。
 即ち、例えば構造モデルMにおける伝熱管15及び振止部材12の全ての対向箇所25に図8に示す線形バネ要素を適用すれば、伝熱管15と振止部材12との間に隙間が生じている場合であっても引っ張り荷重が発生することになる。この場合、実際の熱交換器20とは異なる挙動を示すことになり、解析精度の低下を招く。
 これに対して本実施形態の解析方法によれば、荷重分布又は隙間分布に基づいて、伝熱管15と振止部材12との対向箇所25のうち荷重が0の箇所(非接触となる箇所)には線形バネ要素を適用せず、荷重が発生する箇所(接触する箇所)にのみ線形バネ要素を適用している。これにより、実際の熱交換器20の伝熱管15及び振止部材12により近い挙動を模擬することができる。即ち、伝熱管15と振止部材12との間に隙間が生じている場合であってもこれらの間に引っ張り力が発生しないため、解析結果が実際の熱交換器20から大きく乖離してしまうことはない。
 また、本実施形態では、地震波を与える動的解析を行う工程(一次応答解析工程S3、線形隙間モデル作成工程S6)では線形要素のみが適用された線形モデル又は線形隙間モデルを用い、慣性加速度を与える静的解析を行う工程(荷重分布取得工程S5)では非線形要素が適用された非線形モデルを用いている。解析が複雑な動的解析では、線形要素のみが適用された解析モデルを用いているため、解析時間が長大化することはない。さらに、非線形要素が適用された解析モデルについては動的解析に比べて計算が容易な静的解析のみを行っているため、解析時間の長大化を抑えることができる。したがって、解析全体を短時間で行うことができる。
 次に本発明の第二実施形態について説明する。第二実施形態では、第一実施形態と同様の構成要素には同様の符号を付して詳細な説明を省略する。
 第二実施形態では、線形隙間モデル作成工程S6で、第一実施形態の線形隙間モデルにおける伝熱管15と振止部材12との各対向箇所25に、図12に示すように、これら伝熱管15と振止部材12とに結合された面内方向D1の線形バネ要素を40適用する。当該線形バネ要素40は、伝熱管15と振止部材12とが接触した際に生じる面内方向D1の摩擦力を模擬するものである。
 面内方向D1の線形バネ要素40の弾性剛性は、荷重分布取得工程S5で取得した各対向箇所25での荷重の値に基づいて定められる。即ち、伝熱管15と振止部材12とが所定の荷重で面外方向D1に接触した場合は、該荷重に摩擦係数を乗じた値が伝熱管15と振止部材12との摩擦力となる。そして、この摩擦力は、伝熱管15と振止部材12とが接触した状態で面外方向D2に相対移動する際の弾性剛性に対応する。したがって、各対向箇所25における面外方向D2の荷重と面外方向D2の相対変位との関係である荷重‐変位特性は、図13に示すように、それぞれ対向箇所25における荷重に対応する弾性剛性K、K、K、Kを有する直線状を示す。各対向箇所25での面内方向D1の線形バネ要素は、それぞれ一自由度系のモデルとすることができる。
 そして、このような線形隙間モデルに対して、第一実施形態同様、耐震評価工程S7を実施する。これにより、伝熱管15と振止部材12とが互いに面内方向D1に及ぼす摩擦力を考慮した応答解析を行うことができる。したがって、より実際の熱交換器20の挙動に近似した解析を行うことができ、耐震評価の精度をさらに向上させることができる。
 以上、本発明の実施の形態について説明したが、本発明はこれに限定されることなく、その発明の技術的思想を逸脱しない範囲で適宜変更可能である。
 例えば一次応答解析工程S3では、一次モードのみを考慮して解析を行ったが、線形モデルに対して固有値解析を行った上で評価モードを選定し、当該選定モードを考慮して応答解析を行ってもよい。
 一次応答解析工程S3では、慣性加速度を与える解析のみならず、慣性加速度以外の荷重を与えて変形量を求める解析を行ってもよい。
 また、実施形態では、蒸気発生器1の熱交換器20に本発明の解析方法を適用した例について説明したが、他の熱交換器20に適用してもよい。
 本発明は、熱交換器の解析方法に適用可能である。
 1  蒸気発生器
 2  胴部
 3  管群外筒
 10  Uベンド部
 11  熱交換器本体
 12  振止部材
 12a  固定部
 13  保持部材
 14  ブリッジ
 15  伝熱管
 15a,15b,30  一次元要素
 15U  曲がり部
 16  伝熱管群
 20  熱交換器
 21  水室
 22  蒸気排出口
 23  管支持板
 25  対向箇所
 40  線形バネ要素
 S1  構造モデル作成工程
 S2  線形モデル作成工程
 S3  一次応答解析工程
 S4  非線形モデル作成工程
 S5  荷重分布取得工程
 S6  線形隙間モデル作成工程
 S7  耐震評価工程
 D1  面内方向
 D2  面外方向
 M  構造モデル

Claims (4)

  1.  面内方向に並設された複数の伝熱管からなる伝熱管群が前記面内方向に交差する面外方向に複数積層されてなる熱交換器本体と、互いに隣り合う前記伝熱管群の間で前記伝熱管に交差して延びる振止部材とを有する熱交換器の解析方法であって、
     前記熱交換器の構造モデルを作成する構造モデル作成工程と、
     前記構造モデルにおける前記伝熱管と前記振止部材との前記面外方向の対向箇所に、これら伝熱管と振止部材との非接触時に荷重が発生せずに接触時に荷重が発生する前記面外方向の非線形バネ要素を適用した非線形モデルを作成する非線形モデル作成工程と、
     前記非線形モデルに対して前記面外方向の荷重を与える解析を行って、各前記対向箇所における荷重の値から前記熱交換器の荷重分布を取得する荷重分布取得工程と、
     を含む熱交換器の解析方法。
  2.  前記荷重分布に基づいて、前記構造モデルの前記対向箇所のうち前記荷重が生じている前記対向箇所のみに前記面外方向の線形バネ要素を適用した線形隙間モデルを作成する線形隙間モデル作成工程と、
     前記線形隙間モデルを用いて耐震評価を行う耐震評価工程と、
     をさらに含む請求項1に記載の熱交換器の解析方法。
  3.  前記線形隙間モデル作成工程では、
     前記構造モデルにおける各前記対向箇所に、各前記対向箇所の荷重に応じた値を弾性剛性とする前記面内方向の線形バネ要素をさらに適用して前記線形隙間モデルを作成する請求項2に記載の熱交換器の解析方法。
  4.  前記構造モデルの前記対向箇所の全部に、前記面外方向の線形バネ要素を適用した線形モデルを作成する線形モデル作成工程と、
     前記線形モデルに地震波を与える応答解析を行って、該線形モデルの変形量を取得する一次応答解析工程と、
     をさらに含み、
     前記荷重分布取得工程では、前記非線形モデルの変形量が前記一次応答解析工程で取得した変形量と対応した値となるように、前記非線形モデルに対して荷重を与える請求項1から3のいずれか一項に記載の熱交換器の解析方法。
PCT/JP2017/038192 2017-01-20 2017-10-23 熱交換器の解析方法 WO2018135058A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP17892526.9A EP3550457B1 (en) 2017-01-20 2017-10-23 Method for analyzing heat exchanger
US16/475,188 US11494525B2 (en) 2017-01-20 2017-10-23 Method for analyzing heat exchanger

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017008517A JP6803244B2 (ja) 2017-01-20 2017-01-20 熱交換器の解析方法
JP2017-008517 2017-01-20

Publications (1)

Publication Number Publication Date
WO2018135058A1 true WO2018135058A1 (ja) 2018-07-26

Family

ID=62908077

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/038192 WO2018135058A1 (ja) 2017-01-20 2017-10-23 熱交換器の解析方法

Country Status (4)

Country Link
US (1) US11494525B2 (ja)
EP (1) EP3550457B1 (ja)
JP (1) JP6803244B2 (ja)
WO (1) WO2018135058A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110849751A (zh) * 2019-09-29 2020-02-28 浙江工业大学 一种换热管冲击磨损实验装置
CN118424035A (zh) * 2024-07-05 2024-08-02 山东正诺化工设备有限公司 用于多管程绕管式换热器的高效换热控制方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111177845B (zh) * 2019-12-10 2022-07-12 中国航空工业集团公司成都飞机设计研究所 一种基于结构应变分布反推载荷分布的方法
JP7393968B2 (ja) * 2020-02-19 2023-12-07 三菱重工業株式会社 評価装置、評価方法及び評価プログラム
FR3142591A1 (fr) * 2022-11-29 2024-05-31 Electricite De France Maquette et procédé de fabrication d’une telle maquette

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014109906A (ja) * 2012-11-30 2014-06-12 Ihi Corp 振動予測方法及び計算装置
JP2014164323A (ja) * 2013-02-21 2014-09-08 Mitsubishi Heavy Ind Ltd 蒸気発生器の耐震評価方法
JP2015026259A (ja) 2013-07-26 2015-02-05 株式会社Ihi 管群振動予測方法
JP2017008517A (ja) 2015-06-18 2017-01-12 株式会社Lixil テラス囲い
JP2017049013A (ja) * 2015-08-31 2017-03-09 三菱重工業株式会社 熱交換器の変形応力特性取得方法、及び耐震評価方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5804668B2 (ja) * 2009-06-10 2015-11-04 三菱重工業株式会社 面内圧縮強度評価装置及び方法
JP6511016B2 (ja) * 2016-05-30 2019-05-08 三菱重工業株式会社 押し付け力評価方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014109906A (ja) * 2012-11-30 2014-06-12 Ihi Corp 振動予測方法及び計算装置
JP2014164323A (ja) * 2013-02-21 2014-09-08 Mitsubishi Heavy Ind Ltd 蒸気発生器の耐震評価方法
JP2015026259A (ja) 2013-07-26 2015-02-05 株式会社Ihi 管群振動予測方法
JP2017008517A (ja) 2015-06-18 2017-01-12 株式会社Lixil テラス囲い
JP2017049013A (ja) * 2015-08-31 2017-03-09 三菱重工業株式会社 熱交換器の変形応力特性取得方法、及び耐震評価方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MINENO, TOMONORI ET AL: "Development of seismic analysis at U-bend tube-bundle of steam generator", THE PROCEEDINGS OF THE 2015 MATERIALS AND MECHANICS CONFERENCE, vol. 2015, 20 November 2015 (2015-11-20), pages OS0921-265, XP009515446, DOI: 10.1299/jsmemm.2015._OS0921-26 *
See also references of EP3550457A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110849751A (zh) * 2019-09-29 2020-02-28 浙江工业大学 一种换热管冲击磨损实验装置
CN110849751B (zh) * 2019-09-29 2022-03-25 浙江工业大学 一种换热管冲击磨损实验装置
CN118424035A (zh) * 2024-07-05 2024-08-02 山东正诺化工设备有限公司 用于多管程绕管式换热器的高效换热控制方法

Also Published As

Publication number Publication date
JP2018116625A (ja) 2018-07-26
US11494525B2 (en) 2022-11-08
US20190340307A1 (en) 2019-11-07
JP6803244B2 (ja) 2020-12-23
EP3550457A1 (en) 2019-10-09
EP3550457A4 (en) 2020-01-15
EP3550457B1 (en) 2021-02-17

Similar Documents

Publication Publication Date Title
WO2018135058A1 (ja) 熱交換器の解析方法
JP6086752B2 (ja) 蒸気発生器の耐震評価方法
JP7005304B2 (ja) 熱交換器の解析方法
Agarwal et al. Fire design of steel columns: Effects of thermal gradients
JP5804668B2 (ja) 面内圧縮強度評価装置及び方法
JP6497588B2 (ja) 熱交換器の変形応力特性取得方法、及び耐震評価方法
Burzyński et al. Geometrically nonlinear FEM analysis of 6‐parameter resultant shell theory based on 2‐D Cosserat constitutive model
US10990712B2 (en) Contact force evaluation method
JP6747957B2 (ja) 制振構造の解析方法
JP6487307B2 (ja) 独立振動管の評価方法
Huang et al. Parametric resonance of a fluctuation fluid flow heat exchanger system
Monde et al. Seismic Test and Seismic Response Analysis of U-Shaped Tubes With Square Array in Steam Generator
Shaw et al. Assessment of Compact Heat Exchanger Design Following Elastic Perfectly Plastic Methodology
Zhao et al. A detailed model to predict mechanical characteristics of fuel assembly
Khulief et al. Prediction of flow-induced vibrations in tubular heat exchangers—part I: numerical modeling
Elbanhawy et al. Simulations of Fully-Flexible Fuel Bundle Response due to Turbulence Excitation
Hirota et al. Seismic Test and Seismic Response Analysis of U-Shaped Tube Bundle With Triangular Arrays in Steam Generator
Zhu et al. Load resistance and hysteretic response of rhombic grid hyperboloid‐latticed shell subjected to combined vertical and horizontal loads
Tang et al. Investigation of elasto-plastic seismic response analysis method for complex steel bridges
Lee et al. Seismic analysis of the nuclear reactor vessel and internals with using model reduction method
Hirota et al. Considering Gaps Between Tubes and AVBs for U-Shaped Tube Bundle in Steam Generators Using Seismic Linear Analysis Method
de Jong Fluid Force Identification
Gupta et al. Buckling Analysis of Sodium to Sodium Heat Exchanger Tubes
Wambsganss Jr EVALUATION OF POTENTIAL TUBE VIBRATION IN EBR-II STEAM SUPERHEATERS AND EVAPORATORS AT FULL POWER.
JP2020091537A (ja) シミュレーション装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17892526

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017892526

Country of ref document: EP

Effective date: 20190701

NENP Non-entry into the national phase

Ref country code: DE