WO2018131868A1 - 다공성 폴리우레탄 연마패드 및 이의 제조방법 - Google Patents

다공성 폴리우레탄 연마패드 및 이의 제조방법 Download PDF

Info

Publication number
WO2018131868A1
WO2018131868A1 PCT/KR2018/000415 KR2018000415W WO2018131868A1 WO 2018131868 A1 WO2018131868 A1 WO 2018131868A1 KR 2018000415 W KR2018000415 W KR 2018000415W WO 2018131868 A1 WO2018131868 A1 WO 2018131868A1
Authority
WO
WIPO (PCT)
Prior art keywords
polishing pad
amine
porous polyurethane
pores
pore
Prior art date
Application number
PCT/KR2018/000415
Other languages
English (en)
French (fr)
Inventor
허혜영
서장원
한혁희
Original Assignee
에스케이씨 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에스케이씨 주식회사 filed Critical 에스케이씨 주식회사
Priority to US16/462,180 priority Critical patent/US11325222B2/en
Priority to CN201880006888.6A priority patent/CN110191781B/zh
Priority to JP2019537816A priority patent/JP6991224B2/ja
Publication of WO2018131868A1 publication Critical patent/WO2018131868A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/11Lapping tools
    • B24B37/20Lapping pads for working plane surfaces
    • B24B37/24Lapping pads for working plane surfaces characterised by the composition or properties of the pad materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/10Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/14Manufacture of cellular products
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4854Polyethers containing oxyalkylene groups having four carbon atoms in the alkylene group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/76Polyisocyanates or polyisothiocyanates cyclic aromatic
    • C08G18/7614Polyisocyanates or polyisothiocyanates cyclic aromatic containing only one aromatic ring
    • C08G18/7621Polyisocyanates or polyisothiocyanates cyclic aromatic containing only one aromatic ring being toluene diisocyanate including isomer mixtures
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0014Use of organic additives
    • C08J9/0019Use of organic additives halogenated
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0014Use of organic additives
    • C08J9/0028Use of organic additives containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/36After-treatment
    • C08J9/38Destruction of cell membranes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/17Amines; Quaternary ammonium compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/35Heterocyclic compounds having nitrogen in the ring having also oxygen in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/02Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles for articles of definite length, i.e. discrete articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2075/00Use of PU, i.e. polyureas or polyurethanes or derivatives thereof, as moulding material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2101/00Manufacture of cellular products
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2110/00Foam properties
    • C08G2110/0025Foam properties rigid
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2110/00Foam properties
    • C08G2110/0041Foam properties having specified density
    • C08G2110/0066≥ 150kg/m3
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/31051Planarisation of the insulating layers
    • H01L21/31053Planarisation of the insulating layers involving a dielectric removal step
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/32115Planarisation
    • H01L21/3212Planarisation by chemical mechanical polishing [CMP]

Definitions

  • Embodiments relate to a porous polyurethane polishing pad used in a chemical mechanical planarization (CMP) process of a semiconductor and a method of manufacturing the same.
  • CMP chemical mechanical planarization
  • the chemical mechanical planarization (CMP) process in the semiconductor fabrication process involves supplying a slurry and chemically treating the wafer surface with the wafer attached to the head and in contact with the surface of the polishing pad formed on the platen. It is a process of mechanically flattening the uneven portion of the wafer surface by making the platen and the head relatively move while reacting.
  • the polishing pad is an essential material that plays an important role in such a CMP process.
  • the polishing pad is generally made of a polyurethane-based resin, and has a groove for supporting a large flow of slurry on the surface and a pore for supporting a small flow. ).
  • the pore in the polishing pad can be formed using a solid foaming agent having voids, a liquid foaming agent filled with a volatile liquid, an inert gas, a fiber, or the like, or can be formed by generating a gas by a chemical reaction.
  • the technique of forming a pore using an inert gas or a volatile liquid foaming agent has the advantage that there are no emissions that can be affected during the CMP process.
  • it is necessary to control the gas phase which is not easy to control, it is difficult to precisely control the particle size and density of the pore, and in particular, the production of a uniform pore of 50 ⁇ m or less is difficult.
  • a microcapsule thermal expanded microcapsule having thermal expansion and size adjustment
  • the thermally expanded microcapsule is a structure of the micro-balloons already expanded to have a uniform size of the particle size to uniformly adjust the particle size of the pore.
  • Korean Patent No. 10-1608901 discloses a polishing pad including a pore having a particle size of a uniform size using a solid blowing agent.
  • the thermally expanded microcapsules have a disadvantage in that the pore control is difficult due to the change in shape under high temperature reaction conditions of 100 ° C. or higher.
  • the pores may be implemented to be suitable for the size and distribution of the designed pores, but the design freedom of the pores is low and there is a limitation in controlling the pore distribution.
  • a polishing pad comprising a urethane-based prepolymer and a curing agent
  • a porous polyurethane polishing pad having a mm 2, elongation of 80 to 250%, total area of pores 30 to 60% based on the total polishing pad area, and breakdown voltage of 14 to 23 kV.
  • the solid blowing agent is included in an amount of 0.5 to 10 parts by weight based on 100 parts by weight of the urethane-based prepolymer,
  • It has a thickness of 1.5 to 2.5 mm, an average pore diameter of 10 to 40 ⁇ m, a specific gravity of 0.7 to 0.9 g / cm 3, a surface hardness of 25 to 50 shore D, and a tensile strength of 15 to 25 N /.
  • Porous polyurethane polishing pad according to the embodiment can adjust the polishing performance (polishing rate) of the polishing pad by adjusting the size and distribution of the pores of the polishing pad.
  • the pores having a relatively large particle size are uniformly disposed throughout the polishing pad and the small pores are disposed between the large pores so that the polishing pad has a structure in which the void space and the polyurethane matrix are uniformly distributed by the pores.
  • the polishing pad has few pores and many pores.
  • the polishing pad can prevent scratches, etc. generated in the polishing object such as a wafer.
  • FIG. 1 is an SEM photograph of the polishing pad of Example 1.
  • FIG. 2 is an SEM photograph of the polishing pad of Example 2.
  • FIG. 3 is an SEM photograph of the polishing pad of Comparative Example 1.
  • One embodiment includes (1) molding a mixture comprising a urethane-based prepolymer, a curing agent and a solid blowing agent into a mold; And (2) curing the mixture, wherein
  • the solid blowing agent is included in an amount of 0.5 to 10 parts by weight based on 100 parts by weight of the urethane-based prepolymer,
  • It has a thickness of 1.5 to 2.5 mm, an average pore diameter of 10 to 40 ⁇ m, a specific gravity of 0.7 to 0.9 g / cm 3, a surface hardness of 25 to 50 shore D, and a tensile strength of 15 to 25 N /.
  • Prepolymer generally refers to a polymer having a relatively low molecular weight in which the degree of polymerization is stopped at an intermediate stage in order to make a kind of final molded product.
  • the prepolymer may be molded by itself or after reacting with another polymerizable compound, for example by reacting an isocyanate compound with a polyol to prepare the prepolymer.
  • Isocyanate compounds used in the preparation of the urethane-based prepolymer for example, toluene diisocyanate (TDI), naphthalene-1,5-diisocyanate (naphthalene-1,5-diisocyanate), para-phenylene diisocyanate (p-phenylene diisocyanate), tolidine diisocyanate, 4,4'-diphenyl methane diisocyanate, hexamethylene diisocyanate, dicyclohexylmethane It may be at least one isocyanate selected from the group consisting of dicyclohexylmethane diisocyanate and isophorone diisocyanate.
  • TDI toluene diisocyanate
  • naphthalene-1,5-diisocyanate naphthalene-1,5-diisocyanate
  • para-phenylene diisocyanate para-phenylene diisocyan
  • the polyols that may be used in the preparation of the urethane-based prepolymers are, for example, polyether polyols, polyester polyols, polycarbonate polyols, and acrylic polyols. At least one polyol selected from the group consisting of: The polyol may have a weight average molecular weight (Mw) of 300 to 3,000 g / mol.
  • the urethane-based prepolymer may have a weight average molecular weight of 500 to 3,000 g / mol. Specifically, the urethane-based prepolymer may have a weight average molecular weight (Mw) of 600 to 2,000 g / mol, or 800 to 1,500 g / mol.
  • Mw weight average molecular weight
  • the urethane-based prepolymer may be a polymer having a weight average molecular weight (Mw) of 500 to 3,000 g / mol polymerized using toluene diisocyanate as the isocyanate compound and polytetramethylene ether glycol as the polyol.
  • Mw weight average molecular weight
  • the curing agent may include one or more selected from the group consisting of amine compounds and alcohol compounds. Specifically, the curing agent may be at least one compound selected from the group consisting of aromatic amines, aliphatic amines, aromatic alcohols, and aliphatic alcohols.
  • the curing agent is 4,4'- methylenebis (2-chloroaniline) (MOCA), diethyltoluenediamine, diaminodiphenyl methane, diaminodiphenyl sulphone ), m-xylylene diamine, isophoronediamine, ethylenediamine, diethylenetriamine, triethylenetetramine, polypropylenediamine, Polypropylenetriamine, ethyleneglycol, diethyleneglycol, dipropyleneglycol, butanediol, butanediol, hexanediol, glycerine, trimethylolpropane And bis (4-amino-3-chlorophenyl) methane (bis (4-amino-3-chlorophenyl) methane).
  • MOCA 4,4'- methylenebis (2-chloroaniline)
  • diethyltoluenediamine diethyltoluenediamine, di
  • the solid blowing agent may be a thermally expanded microcapsule, and may be a microballoon structure having an average particle diameter of 5 to 200 ⁇ m. Specifically, the solid blowing agent may have an average particle diameter of 10 to 50 ⁇ m. More specifically, the solid blowing agent may have an average particle diameter of 15 to 45 ⁇ m.
  • the thermally expanded microcapsules may be obtained by thermally expanding the thermally expandable microcapsules.
  • the thermally expandable microcapsules include an outer shell including a thermoplastic resin; And it may include a foaming agent enclosed in the shell.
  • the thermoplastic resin may be at least one selected from the group consisting of vinylidene chloride copolymers, acrylonitrile copolymers, methacrylonitrile copolymers, and acrylic copolymers.
  • the blowing agent enclosed therein may be at least one member selected from the group consisting of hydrocarbons having 1 to 7 carbon atoms.
  • the blowing agent enclosed therein is ethane, ethylene, propane, propene, n-butane, isobutane, butene , Isobutene, n-pentane, n-pentane, isopentane, neopentane, neopentane, n-hexane, heptane, petroleum ether, etc.
  • Trichlorofluoromethane (CCl 3 F), dichlorodifluoromethane (CCl 2 F 2 ), chlorotrifluoromethane (CClF 3 ), tetrafluoroethylene (tetrafluoroethylene, CClF 2 -CClF Chlorofluoro hydrocarbons such as 2 );
  • tetraalkylsilanes such as tetramethylsilane, trimethylethylsilane, trimethylisopropylsilane, trimethyl-n-propylsilane, and the like.
  • the solid blowing agent may be used in an amount of 0.5 to 10 parts by weight, 1 to 3 parts by weight, 1.3 to 2.7 parts by weight, or 1.3 to 2.6 parts by weight based on 100 parts by weight of the urethane-based prepolymer.
  • the inert gas may be introduced into the mold when the mixture is injected into the mold.
  • the inert gas may be added to the process of mixing the urethane-based prepolymer, the curing agent and the solid blowing agent to form pores of the polishing pad.
  • the inert gas is not particularly limited as long as it is a gas that does not participate in the reaction between the prepolymer and the curing agent.
  • the inert gas may be at least one selected from the group consisting of nitrogen gas (N 2 ), argon gas (Ar), and helium (He).
  • the inert gas may be nitrogen gas (N 2 ) or argon gas (Ar).
  • the inert gas may be added in a volume of 20 to 35% based on the total volume of the mixture. Specifically, the inert gas may be added in a volume of 20 to 30% based on the total volume of the mixture.
  • the mixture further includes a rate controlling agent, and the rate controlling agent may be at least one selected from the group consisting of tertiary amine compounds and organometallic compounds.
  • the reaction rate modifier may be a reaction accelerator or a reaction retardant. More specifically, the reaction rate modifier may be a reaction promoter.
  • the reaction rate modifier for example, triethylene diamine (TEDA), dimethyl ethanol amine (DMEA), tetramethyl butane diamine (TMBDA), 2-methyl-triethylene diamine (2-methyl-triethylene diamine), dimethyl cyclohexyl amine (DMCHA), triethyl amine (TEA), triisopropanol amine (TIPA), 1,4-diazabicyclo (2 (2,2) octane (1,4-diazabicyclo (2,2,2) octane), bis (2-methylaminoethyl) ether, trimethylaminoethylethanol amine , N, N, N, N, N ''-pentamethyldiethylene triamine, N, N, N, N, N, N ''-pentamethyldiethylene triamine, dimethylaminoethyl amine, dimethylaminopropyl amine ( dimethylaminopropyl amine, benzyldimethyl
  • the reaction rate modifier may be used in an amount of 0.1 to 2 parts by weight based on 100 parts by weight of the urethane-based prepolymer. Specifically, the reaction rate modifier may be used in an amount of 0.2 to 1.8 parts by weight, 0.2 to 1.7 parts by weight, 0.2 to 1.6 parts by weight, or 0.2 to 1.5 parts by weight based on 100 parts by weight of the urethane-based prepolymer.
  • reaction rate control agent When the reaction rate control agent is included in an amount within the above range, by appropriately adjusting the reaction rate (time when the mixture is solidified) of the mixture (a mixture of a urethane-based prepolymer, a curing agent, a solid blowing agent, a reaction rate controlling agent and a silicone surfactant), Polishing pads having pores of a desired size can be made.
  • the mixture may further comprise a surfactant.
  • the surfactant may serve to prevent overlapping and coalescence of the pores to be formed.
  • the surfactant may be a silicone-based nonionic surfactant, but can be variously selected according to the physical properties required for the polishing pad.
  • a silicone-based nonionic surfactant having a hydroxyl group may be used alone, or may be used together with a silicone-based nonionic surfactant having no hydroxyl group.
  • the silicone-based nonionic surfactant having a hydroxyl group is not particularly limited as long as it is excellent in compatibility with an isocyanate-containing compound and an active hydrogen compound and is widely used in the polyurethane technical field.
  • Commercially available materials of the silicone-based nonionic surfactant having a hydroxyl group include, for example, Dow Corning's DOW CORNING 193 (silicon glycol copolymer, liquid phase; specific gravity at 25 ° C: 1.07; viscosity at 20 ° C: 465 mm 2 / s Flash point: 92 ⁇ ) (hereinafter referred to as DC-193);
  • silicone-based nonionic surfactants having no hydroxyl group include, for example, Dow Corning's DOW CORNING 190 (silicon glycol copolymer, Gardner color number: 2; specific gravity at 25 ° C: 1.037; viscosity at 25 ° C: Flash point: 63 ° C or higher; Inverse solubility point (1.0% water solution): 36 ° C) (hereinafter referred to as DC-190);
  • the surfactant may be included in an amount of 0.2 to 2 parts by weight based on 100 parts by weight of the urethane-based prepolymer. Specifically, the surfactant may be included in an amount of 0.2 to 1.9 parts by weight, 0.2 to 1.8 parts by weight, 0.2 to 1.7 parts by weight, 0.2 to 1.6 parts by weight, or 0.2 to 1.5 parts by weight based on 100 parts by weight of the urethane-based prepolymer. . When the surfactant is included in an amount within the above range, the pore-foaming agent-derived pores may be stably formed and maintained in the mold.
  • urethane-based prepolymers curing agents, solid blowing agents, reaction rate modifiers, surfactants and inert gases can be introduced into the mixing process substantially simultaneously.
  • the urethane-based prepolymer, the solid blowing agent and the surfactant may be mixed in advance, and then a curing agent, a reaction rate regulator and an inert gas may be added.
  • the mixing initiates the reaction by mixing the urethane-based prepolymer and the curing agent, and evenly disperses the solid blowing agent and the inert gas in the raw material.
  • the reaction rate modifier may control the rate of the reaction by intervening the reaction of the urethane-based prepolymer and the curing agent from the initial reaction.
  • the mixing may be performed at a speed of 1,000 to 10,000 rpm, or 4,000 to 7,000 rpm. When in the above speed range, it may be more advantageous for the inert gas and the solid blowing agent to be evenly dispersed in the raw material.
  • the urethane-based prepolymer and the curing agent may be mixed in a molar equivalent ratio of 1: 0.8 to 1.2 or in a molar equivalent ratio of 1: 0.9 to 1.1 based on the mole number of the reactive groups in each molecule.
  • the term "based on the number of moles of reactive groups in each molecule" herein means, for example, based on the number of moles of isocyanate groups of the urethane-based prepolymer and the number of moles of reactive groups (amine groups, alcohol groups, etc.) of the curing agent. do. Therefore, the urethane-based prepolymer and the curing agent may be added at a constant rate in the mixing process by adjusting the feed rate to be added per unit time in an amount satisfying the molar equivalent ratio exemplified above.
  • the urethane-based prepolymer and the curing agent react after mixing to form a solid polyurethane to prepare a sheet or the like.
  • the isocyanate end group of the urethane-based polymer may react with an amine group, an alcohol group, and the like of the curing agent.
  • the inert gas and the solid blowing agent are dispersed evenly in the raw material without forming a pore in the reaction of the urethane-based prepolymer and the curing agent.
  • the reaction rate control agent adjusts the particle size of the pore by promoting or delaying the reaction between the urethane-based prepolymer and the curing agent.
  • the reaction rate regulator is a reaction retarder for delaying the reaction
  • the time for incorporating finely dispersed inert gases into the raw material may be increased, thereby increasing the average particle diameter of the pore.
  • the reaction rate regulator is a reaction accelerator for promoting a reaction
  • a time for incorporating finely dispersed inert gases in the raw material may be reduced, thereby reducing the average particle diameter of the pore.
  • the molding is carried out using a mold. Specifically, a sufficiently stirred raw material (a mixture containing a urethane-based prepolymer, a curing agent, and a solid blowing agent) in the mixing head or the like may be discharged into the mold to fill the inside of the mold.
  • a sufficiently stirred raw material a mixture containing a urethane-based prepolymer, a curing agent, and a solid blowing agent
  • the mixture is cured to give a shaped cake in the form of a solidified cake.
  • the reaction between the urethane-based prepolymer and the curing agent is completed in the mold, so that a molded article in the form of a cake solidified in the shape of the mold can be obtained.
  • the obtained molded product can be sliced or cut appropriately and processed into a sheet for producing a polishing pad.
  • a plurality of sheets for polishing pads may be manufactured at once by molding a mold 5 to 50 times the thickness of the polishing pad to be finally manufactured, and then slicing the molded bodies at equal thickness intervals.
  • a reaction retardant may be used as a reaction rate control agent.
  • the height of the mold may be configured to about 5 times to about 50 times the thickness of the final polishing pad and then molded. It can manufacture.
  • the sliced sheets may have pores of different particle sizes depending on the molded position in the mold. That is, in the case of a sheet formed at the bottom of the mold, the sheets having fine particle diameters may have pores having a larger particle diameter than the sheet formed at the bottom thereof.
  • a mold capable of producing one sheet by one molding can be used.
  • the height of the mold may not be significantly different from the thickness of the porous polyurethane polishing pad to be finally manufactured.
  • the molding may be performed by using a mold having a height corresponding to 1 to 3 times the thickness of the final porous polyurethane polishing pad. More specifically, the mold may have a height of 1.1 to 2.5 times, or 1.2 to 2 times the thickness of the final polishing pad.
  • a reaction accelerator may be used as the reaction rate regulator.
  • each of the upper and lower ends of the molded body obtained from the mold may be cut.
  • each of the upper and lower ends of the molded body may be cut by 1/3 or less, 1/22 to 3/10, or 1/12 to 1/4 of the total thickness of the molded body.
  • the molding is carried out using a mold having a height corresponding to 1.2 to 2 times the thickness of the porous polyurethane polishing pad to be finally manufactured, and after the molding each of the upper and lower ends of the molded body obtained from the mold It may further include a step of cutting by 1/12 to 1/4 of the total thickness of the molded body.
  • the manufacturing method may further include a process of processing a groove on the surface after the surface cutting, an adhesion process with an underlayer, an inspection process, a packaging process, and the like. These processes can be carried out in the manner of a conventional polishing pad manufacturing method.
  • the polishing performance (polishing rate) of the polishing pad may be adjusted by adjusting the size and distribution of pores of the prepared polishing pad.
  • the present invention also provides a porous polyurethane polishing pad manufactured according to the method as described above.
  • the porous polyurethane polishing pad includes a urethane-based prepolymer and a curing agent, has a thickness of 1.5 to 2.5 mm, an average pore diameter of 10 to 40 ⁇ m, a specific gravity of 0.7 to 0.9 g / cm 3, and a 25 ° C.
  • Surface hardness is 50 to 65 shore D
  • tensile strength is 15 to 25 N / mm 2
  • elongation is 80 to 250%
  • total area of pores is 30 to 60% based on the total area of polishing pad
  • withstand voltage is 14 To 23 kV.
  • the porous polyurethane polishing pad may have a breakdown voltage of 14 to 22 kV.
  • the type and content of the urethane-based prepolymer and the curing agent are as described in the preparation method.
  • the porous polyurethane polishing pad may include various kinds of pores, and specifically, may include first and second pores different in size from each other.
  • the first pore and the second pore may be formed using a solid blowing agent or an inert gas, respectively.
  • the porous polyurethane polishing pad may further include a reaction rate regulator, and may include first and second pores different in size from each other.
  • the porous polyurethane polishing pad may include first pores formed from a solid blowing agent and second pores formed from an inert gas.
  • the average particle diameter of the first pores may be substantially the same as the average particle diameter of the solid blowing agent.
  • the porous polyurethane polishing pad may include first pores formed from a first solid blowing agent and second pores formed from a second solid blowing agent having an average particle diameter different from that of the first solid blowing agent.
  • Particle diameters of the 2-1 pores, which occupy 5 to 45% of the total area of the second pores, may be 5 ⁇ m or more smaller than the average particle diameter of the first pores, and may occupy 5 to 45% of the total area of the second pores.
  • the particle diameter of the 2-2 pores may be larger than 5 ⁇ m than the average particle diameter of the first pores.
  • reaction rate modifier The type and content of the reaction rate modifier are as described in the preparation method.
  • the porous polyurethane polishing pad is made of a polyurethane resin, and the polyurethane resin may be derived from a urethane-based prepolymer having an isocyanate end group.
  • the polyurethane resin includes monomer units constituting the urethane-based prepolymer.
  • the polyurethane resin may have a weight average molecular weight of 500 to 3,000 g / mol. Specifically, the polyurethane resin may have a weight average molecular weight (Mw) of 600 to 2,000 g / mol, or 700 to 1,500 g / mol.
  • Mw weight average molecular weight
  • the porous polyurethane polishing pad has a thickness of 1.5 to 2.5 mm. Specifically, the porous polyurethane polishing pad may have a thickness of 1.8 to 2.5 mm. When the thickness of the polishing pad is in the above range, the basic physical properties as the polishing pad can be sufficiently exhibited.
  • the porous polyurethane polishing pad may have a groove for mechanical polishing on its surface.
  • the groove may have a suitable depth, width and spacing for mechanical polishing and is not particularly limited.
  • the porous polyurethane polishing pad has pores of appropriate size distribution, and the pores are uniformly disposed throughout the polishing pad, thereby providing the characteristics of the average pore diameter, specific gravity, surface hardness, tensile strength, elongation and withstand voltage characteristics as described above.
  • the polishing pad can prevent scratches, etc. generated in the polishing object such as a wafer.
  • Porous polyurethane polishing pad according to an embodiment may be the polishing performance (polishing rate) is adjusted by controlling the size and distribution of the pores.
  • PUGL-550D product of SKC, weight average molecular weight: 1,200 g /
  • PUGL-550D product of SKC, weight average molecular weight: 1,200 g /
  • PUGL-550D product of SKC, weight average molecular weight: 1,200 g /
  • a hardener tank is filled with bis (4-amino-3-chlorofonyl) methane) (bis (4-amino-3-chlorophenyl) methane, manufactured by Ishihara), and nitrogen (N 2 ) as an inert gas.
  • a reaction accelerator (manufacturer: Airproduct, product name: A1, tertiary amine compound) was prepared as a reaction rate regulator.
  • 2 parts by weight of the solid blowing agent (manufacturer: Akzonobel, product name: Expancel 461 DET 20 d40, average particle diameter: 20 ⁇ m)
  • 1 part by weight of silicone surfactant (manufacturer: Evonik, product name: 100 parts by weight of the urethane-based prepolymer B8462) was premixed and injected into the prepolymer tank.
  • the urethane-based prepolymer, the curing agent, the solid blowing agent, the reaction rate control agent and the inert gas were stirred while feeding the mixing head at a constant speed.
  • the molar equivalents of the NCO groups of the urethane-based prepolymer and the molar equivalents of the reactive groups of the curing agent were set at 1: 1, and the total charge was maintained at a rate of 10 kg / min.
  • the inert gas is constantly added in a volume of 30% of the total volume of the urethane-based prepolymer, the curing agent, the solid blowing agent, the reaction rate regulator and the silicone surfactant, and the reaction rate regulator is in an amount of 1 part by weight based on 100 parts by weight of the urethane-based prepolymer. Input.
  • the stirred raw material was poured into a mold (width 1,000 mm, length 1,000 mm, height 3 mm) and solidified to obtain a sheet. Thereafter, the sheet was ground using a grinding machine and grooved using a sharp tip to prepare a porous polyurethane polishing pad having an average thickness of 2 mm.
  • Urethane polishing pads were prepared.
  • Example 2 In the same manner as in Example 1, except that an inert gas was constantly added to a volume of 35% of the total volume of the urethane-based prepolymer, the curing agent, the solid blowing agent, the reaction rate regulator, and the silicone surfactant without using the solid blowing agent. Polyurethane polishing pads were prepared.
  • a porous polyurethane polishing pad was manufactured in the same manner as in Example 1, except that the inert gas was constantly added at a volume of 17% of the total volume of the urethane-based prepolymer, curing agent, solid state blowing agent, reaction rate regulator, and silicone surfactant. It was.
  • polishing pads prepared in Examples and Comparative Examples the physical properties of the polishing pads were measured according to the following conditions and procedures, and are shown in Table 1 and FIGS. 1 to 4.
  • Shore D hardness was measured, and the polishing pad was cut into a size of 2 cm ⁇ 2 cm (thickness: about 2 mm) and then 16 at an environment of 23 ° C., 30 ° C., 50 ° C. and 70 ° C., and a humidity of 50 ⁇ 5%. It was time to stand still. Then, the hardness of the polishing pad was measured using a hardness tester (type D hardness tester).
  • the polishing pad was cut into a rectangle of 4 cm x 8.5 cm (thickness: 2 mm) and then left for 16 hours in an environment of a temperature of 23 ⁇ 2 ° C. and a humidity of 50 ⁇ 5%.
  • the specific gravity of the polishing pad was measured using a hydrometer.
  • the test was performed in the same manner as the tensile strength measurement method, and the maximum deformation amount immediately before fracture was measured.
  • the ratio of the maximum deformation amount to the initial length was expressed as a percentage (%).
  • the polishing pad was cut into 2 cm x 2 cm squares (thickness: 2 mm), and observed 100 times using a scanning electron microscope (SEM).
  • the total pore particle diameter was measured from the image obtained using image analysis software, and the pore average particle diameter, the number of pores per unit area, the pore area ratio, and the pore particle size distribution were calculated.
  • the SEM photograph of Example 1 is shown in FIG. 1
  • the SEM photograph of Example 2 is shown in FIG. 2
  • the SEM photograph of Comparative Example 1 is shown in FIG.
  • the calculated pore particle size distribution map is shown in FIG.
  • the 10 points were measured by selecting points at intervals of 4 mm in width and 4 mm in length for a polishing pad of 2 cm ⁇ 2 cm square (thickness: 2 mm).
  • a silicon wafer having a diameter of 300 mm formed with a silicon oxide film produced by the TEOS-plasma CVD method was installed, and then a surface plate with the porous polyurethane polishing pad attached to the silicon oxide film face down. was set on. Thereafter, the silicon oxide film was polished by adjusting the polishing load to 1.4 psi and rotating the platen at 115 rpm for 60 seconds while introducing calcined silica slurry on the polishing pad at a speed of 190 ml / min while rotating the polishing pad at 121 rpm. .
  • the silicon wafer was removed from the carrier, mounted in a spin dryer, washed with purified water (DIW), and dried in air for 15 seconds.
  • DIW purified water
  • the dried silicon wafer was measured before and after polishing by using an optical interference thickness measuring device and the polishing rate was calculated.
  • the polishing rate of Example and Comparative Example was measured based on the polishing rate of Example 2 as 100%.
  • the polishing pads of Examples 1 and 2 had a smaller average pore size and a larger number of pores in the same area than the polishing pads of Comparative Example 1, indicating that the withstand voltage and silicon oxide had high polishing rates. there was.
  • the polishing pads of Examples 1 and 2 have higher elongation and proper breakdown voltage than the polishing pads of Comparative Example 2, so that the polishing rate of silicon oxide is high.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Cell Biology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Abstract

실시예는 반도체의 화학적 기계적 평탄화(chemical mechanical planarization, CMP) 공정에 사용되는 다공성 폴리우레탄 연마패드 및 이의 제조방법에 관한 것으로서, 상기 다공성 폴리우레탄 연마패드는 기공의 크기 및 분포를 조절함으로써 상기 연마패드의 연마성능(연마율)을 조절할 수 있다.

Description

다공성 폴리우레탄 연마패드 및 이의 제조방법
실시예는 반도체의 화학적 기계적 평탄화(chemical mechanical planarization, CMP) 공정에 사용되는 다공성 폴리우레탄 연마패드 및 이의 제조방법에 관한 것이다.
반도체 제조공정 중 화학적 기계적 평탄화(CMP) 공정은, 웨이퍼(wafer)를 헤드에 부착하고 플래튼(platen) 상에 형성된 연마패드의 표면에 접촉하도록 한 상태에서, 슬러리를 공급하여 웨이퍼 표면을 화학적으로 반응시키면서 플래튼과 헤드를 상대운동시켜 기계적으로 웨이퍼 표면의 요철부분을 평탄화하는 공정이다.
연마패드는 이와 같은 CMP 공정에서 중요한 역할을 담당하는 필수적인 자재로서, 일반적으로 폴리우레탄 계열의 수지로 이루어지고, 표면에 슬러리의 큰 유동을 담당하는 그루브(groove)와 미세한 유동을 지원하는 포어(pore)를 구비한다.
연마패드 내의 포어는, 공극을 가지는 고상발포제, 휘발성 액체가 채워져 있는 액상발포제, 불활성 가스, 섬유질 등을 이용하여 형성하거나, 또는 화학적 반응에 의해 가스를 발생시켜 형성할 수 있다.
불활성 가스 또는 휘발성 액상발포제를 사용하여 포어를 형성하는 기술은, CMP 공정 중에 영향을 줄 수 있는 배출 물질이 없다는 장점은 있다. 하지만, 제어하기 쉽지 않은 기상을 컨트롤해야 하기 때문에, 포어의 입경 및 밀도의 정교한 조절이 어렵고, 특히 50 ㎛ 이하의 균일한 포어의 제작이 어렵다. 또한, 연마패드용 폴리우레탄 매트릭스의 조성을 변경하지 않고는 포어의 입경과 밀도를 조절하기가 매우 어려운 문제가 있다.
상기 고상 발포제로는 열팽창되어 사이즈가 조절된 마이크로 캡슐(열팽창된 마이크로 캡슐)이 사용된다. 상기 열팽창된 마이크로 캡슐은 이미 팽창된 마이크로 벌룬의 구조체로서 균일한 크기의 입경을 가짐으로써 포어의 입경 크기를 균일하게 조절 가능하다. 예컨대, 대한민국 등록특허 제 10-1608901 호는 고상 발포제를 사용하여 균일한 크기의 입경을 갖는 포어를 포함하는 연마패드를 개시하고 있다. 그러나, 상기 열팽창된 마이크로 캡슐은 100 ℃ 이상의 고온 반응조건에서 그 형상이 변하여 기공 조절이 힘든 단점이 있었다.
따라서, 종래와 같이 단일방식을 이용하여 미세기공을 구현할 경우, 설계된 기공의 크기와 분포에 적합하게 기공을 구현할 수 있으나, 기공의 설계 자유도가 낮으며 기공 분포를 조절함에 한계가 있었다.
따라서, 실시예의 목적은 기공의 크기 및 분포가 조절된 다공성 폴리우레탄 연마패드 및 이의 제조방법을 제공하는 것이다.
상기 목적을 달성하기 위해 실시예는
우레탄계 프리폴리머 및 경화제를 포함하는 연마패드로서,
두께가 1.5 내지 2.5 mm이고, 평균 기공 직경이 10 내지 40 ㎛이며, 비중이 0.7 내지 0.9 g/㎤이고, 25 ℃에서의 표면경도가 50 내지 65 shore D이며, 인장 강도가 15 내지 25 N/㎟이고, 신율이 80 내지 250 %이며, 기공의 총 면적이 연마패드 총 면적을 기준으로 30 내지 60 %이고, 내전압이 14 내지 23 kV인, 다공성 폴리우레탄 연마패드를 제공한다.
상기 다른 목적을 달성하기 위해, 실시예는
(1) 우레탄계 프리폴리머, 경화제 및 고상 발포제를 포함하는 혼합물을 몰드 내에 주입하여 성형하는 단계; 및
(2) 상기 혼합물을 경화시키는 단계를 포함하는 연마패드의 제조방법으로서,
상기 고상 발포제가 우레탄계 프리폴리머 100 중량부를 기준으로 0.5 내지 10 중량부의 함량으로 포함되고,
두께가 1.5 내지 2.5 mm이고, 평균 기공 직경이 10 내지 40 ㎛이며, 비중이 0.7 내지 0.9 g/㎤이고, 25 ℃에서의 표면경도가 50 내지 65 shore D이며, 인장 강도가 15 내지 25 N/㎟이고, 신율이 80 내지 250 %이며, 기공의 총 면적이 연마패드 총 면적을 기준으로 30 내지 60 %이고, 내전압이 14 내지 23 kV인, 다공성 폴리우레탄 연마패드의 제조방법을 제공한다.
실시예에 따른 다공성 폴리우레탄 연마패드는 연마패드의 기공의 크기 및 분포를 조절함으로써 상기 연마패드의 연마성능(연마율)을 조절할 수 있다. 특히, 상대적으로 입경 크기가 큰 기공들이 연마패드 전체적으로 균일하게 배치되고 상기 큰 기공들 사이에 작은 기공들이 배치됨으로써 상기 연마패드는 기공들에 의한 빈 공간과 폴리우레탄 매트릭스가 균일하게 분포되어 있는 구조를 갖는다. 이로 인해, 상기 연마패드는 기공이 많은 부분 및 기공이 거의 없는 부분이 거의 없다. 이에, 상기 연마패드는 웨이퍼 등과 같은 연마 대상에 발생되는 스크래치 등을 방지할 수 있다.
도 1은 실시예 1의 연마패드의 SEM 사진이다.
도 2는 실시예 2의 연마패드의 SEM 사진이다.
도 3은 비교예 1의 연마패드의 SEM 사진이다.
도 4는 실시예 1 및 2, 및 비교예 1 각각의 연마패드의 포어 입경 분포도이다.
일 실시예는 (1) 우레탄계 프리폴리머, 경화제 및 고상 발포제를 포함하는 혼합물을 몰드 내에 주입하여 성형하는 단계; 및 (2) 상기 혼합물을 경화시키는 단계를 포함하는 연마패드의 제조방법으로서,
상기 고상 발포제가 우레탄계 프리폴리머 100 중량부를 기준으로 0.5 내지 10 중량부의 함량으로 포함되고,
두께가 1.5 내지 2.5 mm이고, 평균 기공 직경이 10 내지 40 ㎛이며, 비중이 0.7 내지 0.9 g/㎤이고, 25 ℃에서의 표면경도가 50 내지 65 shore D이며, 인장 강도가 15 내지 25 N/㎟이고, 신율이 80 내지 250 %이며, 기공의 총 면적이 연마패드 총 면적을 기준으로 30 내지 60 %이고, 내전압이 14 내지 23 kV인, 다공성 폴리우레탄 연마패드의 제조방법을 제공한다.
원료 투입
프리폴리머(prepolymer)란 일반적으로 일종의 최종성형품을 제조함에 있어서, 성형하기 쉽도록 중합도를 중간 단계에서 중지시킨 비교적 낮은 분자량을 갖는 고분자를 의미한다. 프리폴리머는 그 자체로 또는 다른 중합성 화합물과 반응시킨 후 성형할 수 있고, 예를 들어 이소시아네이트 화합물과 폴리올을 반응시켜 프리폴리머를 제조할 수 있다.
상기 우레탄계 프리폴리머의 제조에 사용되는 이소시아네이트 화합물은, 예를 들어, 톨루엔 디이소시아네이트(toluene diisocyanate, TDI), 나프탈렌-1,5-디이소시아네이트(naphthalene-1,5-diisocyanate), 파라-페닐렌 디이소시아네이트(p-phenylene diisocyanate), 토리딘 디이소시아네이트(tolidine diisocyanate), 4,4'-디페닐 메탄 디이소시아네이트(4,4'-diphenyl methane diisocyanate), 헥사메틸렌 디이소시아네이트(hexamethylene diisocyanate), 디시클로헥실메탄 디이소시아네이트(dicyclohexylmethane diisocyanate) 및 이소포론 디이소시아네이트(isoporone diisocyanate)로 이루어진 군으로부터 선택되는 1종 이상의 이소시아네이트일 수 있다.
상기 우레탄계 프리폴리머의 제조에 사용될 수 있는 폴리올은, 예를 들어, 폴리에테르계 폴리올(polyether polyol), 폴리에스테르계 폴리올(polyester polyol), 폴리카보네이트계 폴리올(polycarbonate polyol) 및 아크릴계 폴리올(acryl polyol)로 이루어진 군으로부터 선택되는 1종 이상의 폴리올일 수 있다. 상기 폴리올은 300 내지 3,000 g/mol의 중량평균분자량(Mw)을 가질 수 있다.
상기 우레탄계 프리폴리머는 500 내지 3,000 g/mol의 중량평균분자량을 가질 수 있다. 구체적으로, 상기 우레탄계 프리폴리머는 600 내지 2,000 g/mol, 또는 800 내지 1,500 g/mol의 중량평균분자량(Mw)을 가질 수 있다.
일례로서, 상기 우레탄계 프리폴리머는 이소시아네이트 화합물로서 톨루엔 디이소시아네이트가 사용되고, 폴리올로서 폴리테트라메틸렌 에테르 글리콜이 사용하여 중합된 500 내지 3,000 g/mol의 중량평균분자량(Mw)을 갖는 고분자일 수 있다.
상기 경화제는 아민 화합물 및 알콜 화합물로 이루어진 군으로부터 선택된 1종 이상을 포함할 수 있다. 구체적으로, 상기 경화제는 방향족 아민, 지방족 아민, 방향족 알콜, 및 지방족 알콜로 이루어지는 군으로부터 선택되는 1종 이상의 화합물일 수 있다.
예를 들어, 상기 경화제는 4,4'-메틸렌비스(2-클로로아닐린)(MOCA), 디에틸톨루엔디아민(diethyltoluenediamine), 디아미노디페닐 메탄(diaminodiphenyl methane), 디아미노디페닐 설폰(diaminodiphenyl sulphone), m-자일릴렌 디아민(m-xylylene diamine), 이소포론디아민(isophoronediamine), 에틸렌디아민(ethylenediamine), 디에틸렌트리아민(diethylenetriamine), 트리에틸렌테트라아민(triethylenetetramine), 폴리프로필렌디아민(polypropylenediamine), 폴리프로필렌트리아민(polypropylenetriamine), 에틸렌글리콜(ethyleneglycol), 디에틸렌글리콜(diethyleneglycol), 디프로필렌글리콜(dipropyleneglycol), 부탄디올(butanediol), 헥산디올(hexanediol), 글리세린(glycerine), 트리메틸올프로판(trimethylolpropane) 및 비스(4-아미노-3-클로로페닐)메탄(bis(4-amino-3-chlorophenyl)methane)으로 이루어지는 군으로부터 선택되는 1종 이상일 수 있다.
상기 고상 발포제는 열팽창된 마이크로 캡슐이고, 5 내지 200 ㎛의 평균 입경을 갖는 마이크로 벌룬 구조체일 수 있다. 구체적으로, 상기 고상 발포제는 평균 입경이 10 내지 50 ㎛일 수 있다. 보다 구체적으로, 상기 고상 발포제는 평균 입경이 15 내지 45 ㎛일 수 있다. 또한, 상기 열팽창된 마이크로 캡슐은 열팽창성 마이크로 캡슐을 가열 팽창시켜 얻어진 것일 수 있다.
상기 열팽창성 마이크로 캡슐은 열가소성 수지를 포함하는 외피; 및 상기 외피 내부에 봉입된 발포제를 포함할 수 있다. 상기 열가소성 수지는 염화비닐리덴계 공중합체, 아크릴로니트릴계 공중합체, 메타크릴로니트릴계 공중합체 및 아크릴계 공중합체로 이루어진 군으로부터 선택된 1종 이상일 수 있다. 나아가, 상기 내부에 봉입된 발포제는 탄소수 1 내지 7개의 탄화수소로 이루어진 군으로부터 선택된 1종 이상일 수 있다. 구체적으로, 상기 내부에 봉입된 발포제는 에탄(ethane), 에틸렌(ethylene), 프로판(propane), 프로펜(propene), n-부탄(n-butane), 이소부탄(isobutene), 부텐(butene), 이소부텐(isobutene), n-펜탄(n-pentane), 이소펜탄(isopentane), 네오펜탄(neopentane), n-헥산(n-hexane), 헵탄(heptane), 석유 에테르(petroleum ether) 등의 저분자량 탄화수소; 트리클로로플로오르메탄(trichlorofluoromethane, CCl3F), 디클로로디플로오로메탄(dichlorodifluoromethane, CCl2F2), 클로로트리플루오로메탄(chlorotrifluoromethane, CClF3), 테트라플루오로에틸렌(tetrafluoroethylene, CClF2-CClF2) 등의 클로로플루오로 탄화수소; 및 테트라메틸실란(tetramethylsilane), 트리메틸에틸실란(trimethylethylsilane), 트리메틸이소프로필실란(trimethylisopropylsilane), 트리메틸-n-프로필실란(trimethyl-n-propylsilane) 등의 테트라알킬실란으로 이루어진 군으로부터 선택될 수 있다.
상기 우레탄계 프리폴리머 100 중량부를 기준으로 상기 고상 발포제를 0.5 내지 10 중량부, 1 내지 3 중량부, 1.3 내지 2.7 중량부, 또는 1.3 내지 2.6 중량부의 양으로 사용할 수 있다.
상기 단계 (1)에서 상기 혼합물의 몰드 내 주입시 몰드 내에 불활성 가스를 투입할 수 있다. 상기 불활성 가스는 상기 우레탄계 프리폴리머, 경화제 및 고상 발포제가 혼합되어 반응하는 과정에 투입되어 연마패드의 포어들을 형성할 수 있다.
상기 불활성 가스는 프리폴리머와 경화제 간의 반응에 참여하지 않는 가스라면 종류가 특별히 한정되지 않는다. 예를 들어, 상기 불활성 가스는 질소 가스(N2), 아르곤 가스(Ar), 및 헬륨(He)으로 이루어진 군으로부터 선택되는 1종 이상일 수 있다. 구체적으로, 상기 불활성 가스는 질소 가스(N2) 또는 아르곤 가스(Ar)일 수 있다.
상기 불활성 가스는 상기 혼합물 총 부피를 기준으로 20 내지 35 %의 부피로 투입될 수 있다. 구체적으로, 상기 불활성 가스는 상기 혼합물 총 부피를 기준으로 20 내지 30 %의 부피로 투입될 수 있다.
상기 혼합물은 반응속도 조절제를 더 포함하고, 상기 반응속도 조절제는 3차 아민계 화합물 및 유기금속계 화합물로 이루어진 군으로부터 선택된 1종 이상일 수 있다. 구체적으로, 상기 반응속도 조절제는 반응 촉진제 또는 반응 지연제일 수 있다. 보다 구체적으로, 상기 반응속도 조절제는 반응 촉진제일 수 있다.
상기 반응속도 조절제는, 예를 들어, 트리에틸렌 디아민(triethylene diamine, TEDA), 디메틸 에탄올 아민(dimethyl ethanol amine, DMEA), 테트라메틸 부탄 디아민(tetramethyl butane diamine, TMBDA), 2-메틸-트리에틸렌 디아민(2-methyl-triethylene diamine), 디메틸 사이클로헥실 아민(dimethyl cyclohexyl amine, DMCHA), 트리에틸 아민(triethyl amine, TEA), 트리이소프로판올 아민(triisopropanol amine, TIPA), 1,4-디아자바이사이클로(2,2,2)옥탄(1,4-diazabicyclo(2,2,2)octane), 비스(2-메틸아미노에틸) 에테르(bis(2-methylaminoethyl) ether), 트리메틸아미노에틸에탄올 아민(trimethylaminoethylethanol amine), N,N,N,N,N''-펜타메틸디에틸렌 트리아민(N,N,N,N,N''-pentamethyldiethylene triamine), 디메틸아미노에틸 아민(dimethylaminoethyl amine), 디메틸아미노프로필 아민(dimethylaminopropyl amine), 벤질디메틸 아민(benzyldimethyl amine), N-에틸모르폴린(N-ethylmorpholine), N,N-디메틸아미노에틸모르폴린(N,N-dimethylaminoethylmorpholine), N,N-디메틸사이클로헥실 아민(N,N-dimethylcyclohexyl amine), 2-메틸-2-아자노보네인(2-methyl-2-azanorbornane), 디부틸틴 디라우레이트(dibutyltin dilaurate), 스태너스 옥토에이트(stannous octoate), 디부틸틴 디아세테이트(dibutyltin diacetate), 디옥틸틴 디아세테이트(diocthyltin diacetate), 디부틸틴 말리에이트(dibutyltin maleate), 디부틸틴 디-2-에틸헥사노에이트(dibutyltin di-2-ethylhexanoate) 및 디부틸틴 디머캅타이드(dibutyltin dimercaptide)로 이루어진 군으로부터 선택된 1종 이상을 포함할 수 있다. 구체적으로, 상기 반응 속도 조절제는 벤질디메틸 아민, N,N-디메틸사이클로헥실 아민 및 트리에틸 아민으로 이루어진 군으로부터 선택된 1종 이상일 수 있다.
상기 반응속도 조절제는 우레탄계 프리폴리머 100 중량부를 기준으로 0.1 내지 2 중량부의 양으로 사용될 수 있다. 구체적으로, 상기 반응속도 조절제는 우레탄계 프리폴리머 100 중량부를 기준으로 0.2 내지 1.8 중량부, 0.2 내지 1.7 중량부, 0.2 내지 1.6 중량부, 또는 0.2 내지 1.5 중량부의 양으로 사용될 수 있다. 상기 범위 내의 함량으로 반응속도 조절제를 포함할 경우, 혼합물(우레탄계 프리폴리머, 경화제, 고상 발포제, 반응속도 조절제 및 실리콘 계면활성제의 혼합물)의 반응속도(혼합물이 고상화되는 시간)을 적절하게 조절함으로써, 원하는 크기의 포어를 갖는 연마패드를 제조할 수 있다.
상기 혼합물은 계면활성제를 더 포함할 수 있다. 상기 계면활성제는 형성되는 포어들의 겹침 및 합침 현상을 방지하는 역할을 할 수 있다. 구체적으로, 상기계면활성제는 실리콘계 비이온성 계면활성제가 적합하나, 이외에도 연마패드에 요구되는 물성에 따라 다양하게 선택할 수 있다.
상기 실리콘계 비이온성 계면활성제로는 수산기를 갖는 실리콘계 비이온성 계면활성제를 단독으로 사용하거나, 수산기를 갖지 않는 실리콘계 비이온성 계면활성제와 함께 사용할 수 있다.
상기 수산기를 갖는 실리콘계 비이온성 계면활성제는 이소시아네이트 함유 화합물 및 활성수소화합물과의 상용성이 우수하여 폴리우레탄 기술분야에 널리 사용되고 있는 것이라면 특별히 제한하지 않는다. 상기 수산기를 갖는 실리콘계 비이온성 계면활성제의 시판물질은, 예를 들어, 다우 코닝사의 DOW CORNING 193(실리콘 글리콜 공중합체, 액상; 25 ℃에서의 비중: 1.07; 20 ℃에서의 점성: 465 ㎟/s; 인화점: 92 ℃)(이하, DC-193이라 함) 등이 있다.
상기 수산기를 갖지 않는 실리콘계 비이온성 계면활성제의 시판물질은, 예를 들어, 다우 코닝사의 DOW CORNING 190(실리콘 글리콜 공중합체, 가드너 색수: 2; 25 ℃에서의 비중: 1.037; 25 ℃에서의 점성: 2000 ㎟/s; 인화점: 63 ℃ 이상; Inverse solubility Point(1.0% water solution): 36 ℃)(이하, DC-190이라 함) 등이 있다.
상기 계면활성제는 상기 우레탄계 프리폴리머 100 중량부를 기준으로 0.2 내지 2 중량부의 양으로 포함될 수 있다. 구체적으로, 상기 계면활성제는 상기 우레탄계 프리폴리머 100 중량부를 기준으로 0.2 내지 1.9 중량부, 0.2 내지 1.8 중량부, 0.2 내지 1.7 중량부, 0.2 내지 1.6 중량부, 또는 0.2 내지 1.5 중량부의 양으로 포함될 수 있다. 상기 범위 내의 함량으로 계면활성제를 포함할 경우, 기상발포제 유래 포어가 몰드 내에서 안정하게 형성 및 유지될 수 있다.
일례로서, 우레탄계 프리폴리머, 경화제, 고상 발포제, 반응속도 조절제, 계면활성제 및 불활성 가스는 실질적으로 거의 동시에 혼합 과정에 투입될 수 있다.
다른 예로서, 우레탄계 프리폴리머, 고상 발포제 및 계면활성제는 미리 혼합하고, 이후 경화제, 반응속도 조절제 및 불활성 가스를 투입할 수 있다.
상기 혼합은 우레탄계 프리폴리머와 경화제를 혼합하여 반응을 개시시키고, 고상 발포제 및 불활성 가스를 원료 내에 고르게 분산시킨다. 이때 반응속도 조절제는 반응 초기부터 우레탄계 프리폴리머와 경화제의 반응에 개입하여 반응의 속도를 조절할 수 있다. 구체적으로, 상기 혼합은 1,000 내지 10,000 rpm, 또는 4,000 내지 7,000 rpm의 속도로 수행될 수 있다. 상기 속도 범위일 때, 불활성 가스 및 고상 발포제가 원료 내에 고르게 분산되는데 보다 유리할 수 있다.
상기 우레탄계 프리폴리머 및 경화제는, 각각의 분자 내의 반응성 기(reactive group)의 몰 수 기준으로, 1 : 0.8~1.2의 몰 당량비, 또는 1 : 0.9~1.1의 몰 당량비로 혼합될 수 있다. 여기서 "각각의 분자 내의 반응성 기의 몰 수 기준"이라 함은, 예를 들어 우레탄계 프리폴리머의 이소시아네이트기의 몰 수와 경화제의 반응성 기(아민기, 알콜기 등)의 몰 수를 기준으로 하는 것을 의미한다. 따라서, 상기 우레탄계 프리폴리머 및 경화제는 앞서 예시된 몰 당량비를 만족하는 양으로 단위 시간당 투입되도록 투입 속도가 조절되어, 혼합 과정에 일정한 속도로 투입될 수 있다.
반응 및 포어 형성
상기 우레탄계 프리폴리머와 경화제는 혼합 후 반응하여 고상의 폴리우레탄을 형성하여 시트 등으로 제조된다. 구체적으로, 상기 우레탄계 프리폴리머의 이소시아네이트 말단기는, 상기 경화제의 아민기, 알콜기 등과 반응할 수 있다. 이때 불활성 가스 및 고상 발포제는 우레탄계 프리폴리머와 경화제의 반응에 참여하지 않으면서 원료 내에 고르게 분산되어 포어들을 형성한다.
또한, 상기 반응속도 조절제는 우레탄계 프리폴리머와 경화제 간의 반응을 촉진하거나 지연시킴으로써 포어의 입경을 조절한다. 예를 들어, 상기 반응속도 조절제가 반응을 지연시키는 반응 지연제일 경우, 상기 원료 내에 미세하게 분산된 불활성 가스들이 서로 합쳐지는 시간이 늘어나서, 포어의 평균 입경을 증대시킬 수 있다. 반대로, 상기 반응속도 조절제가 반응을 촉진시키는 반응 촉진제일 경우, 상기 원료 내에 미세하게 분산된 불활성 가스들이 서로 합쳐지는 시간이 줄어들어, 포어의 평균 입경을 감소시킬 수 있다.
성형
상기 성형은 몰드(mold)를 이용하여 수행된다. 구체적으로, 믹싱헤드 등에서 충분히 교반된 원료(우레탄계 프리폴리머, 경화제 및 고상 발포제를 포함하는 혼합물)는 몰드로 토출되어 몰드 내부를 채울 수 있다.
상기 혼합물을 경화시켜 고상화된 케이크 형태의 성형체가 수득된다. 구체적으로, 우레탄계 프리폴리머와 경화제 간의 반응은 몰드 내에서 완료되어, 몰드의 형상대로 고상화된 케이크 형태의 성형체가 수득될 수 있다.
이후, 수득한 성형체를 적절히 슬라이싱 또는 절삭하여, 연마패드의 제조를 위한 시트로 가공할 수 있다. 일례로서, 최종 제조될 연마패드의 두께의 5 내지 50 배 높이의 몰드에 성형한 뒤, 성형체를 동일 두께 간격으로 슬라이싱하여 다수의 연마패드용 시트를 한꺼번에 제조할 수 있다. 이 경우, 충분한 고상화 시간을 확보하기 위해 반응속도 조절제로서 반응 지연제를 사용할 수 있으며, 이에 따라 몰드의 높이를 최종 제조되는 연마패드의 두께의 약 5 배 내지 약 50 배로 구성한 뒤 성형하여 시트를 제조할 수 있다. 다만, 슬라이싱된 시트들은 몰드 내 성형된 위치에 따라 다른 입경의 포어를 가질 수 있다. 즉 몰드의 하부에서 성형된 시트의 경우 미세한 입경의 포어들을 갖는 반면, 몰드의 상부에서 성형된 시트는, 하부에서 형성된 시트에 비해 입경이 큰 포어들을 가질 수 있다.
따라서, 바람직하게는, 각 시트별로 균일한 입경의 포어를 갖도록 하기 위해서, 1회 성형으로 1매의 시트의 제조가 가능한 몰드를 사용할 수 있다. 이를 위해, 상기 몰드의 높이는 최종 제조될 다공성 폴리우레탄 연마패드의 두께와 크게 차이가 나지 않을 수 있다. 예를 들어, 상기 성형은 최종 제조되는 다공성 폴리우레탄 연마패드의 두께의 1 내지 3 배에 해당하는 높이를 가지는 몰드를 이용하여 수행될 수 있다. 보다 구체적으로, 상기 몰드는 최종 제조되는 연마패드의 두께의 1.1 내지 2.5 배, 또는 1.2 내지 2 배의 높이를 가질 수 있다. 이때, 보다 균일한 입경의 포어를 형성하기 위해 반응 속도 조절제로서 반응 촉진제를 사용할 수 있다.
이후 상기 몰드로부터 얻은 성형체의 상단 및 하단 각각을 절삭할 수 있다. 예를 들어, 상기 성형체의 상단 및 하단 각각을 성형체 총 두께의 1/3 이하, 1/22 내지 3/10, 또는 1/12 내지 1/4 만큼씩 절삭할 수 있다.
구체적인 일례로서, 상기 성형이 최종 제조되는 다공성 폴리우레탄 연마패드의 두께의 1.2 내지 2 배에 해당하는 높이를 가지는 몰드를 이용하여 수행되고, 상기 성형 이후에 상기 몰드로부터 얻은 성형체의 상단 및 하단 각각을 성형체 총 두께의 1/12 내지 1/4 만큼씩 절삭하는 공정을 추가로 포함할 수 있다.
상기 제조방법은, 상기 표면 절삭 후에, 표면에 그루브를 가공하는 공정, 하층부와의 접착 공정, 검사 공정, 포장 공정 등을 더 포함할 수 있다. 이들 공정들은 통상적인 연마패드 제조방법의 방식대로 수행할 수 있다.
일 실시예에 따른 다공성 폴리우레탄 연마패드의 제조방법은 제조된 연마패드의 기공의 크기 및 분포를 조절함으로써 상기 연마패드의 연마성능(연마율)을 조절할 수 있다.
또한, 본 발명은 상술한 바와 같은 방법에 따라 제조된 다공성 폴리우레탄 연마패드를 제공한다. 구체적으로, 상기 다공성 폴리우레탄 연마패드는 우레탄계 프리폴리머 및 경화제를 포함하고, 두께가 1.5 내지 2.5 mm이고, 평균 기공 직경이 10 내지 40 ㎛이며, 비중이 0.7 내지 0.9 g/㎤이고, 25 ℃에서의 표면경도가 50 내지 65 shore D이며, 인장 강도가 15 내지 25 N/㎟이고, 신율이 80 내지 250 %이며, 기공의 총 면적이 연마패드 총 면적을 기준으로 30 내지 60 %이고, 내전압이 14 내지 23 kV이다.
구체적으로, 상기 다공성 폴리우레탄 연마패드는 내전압이 14 내지 22 kV일 수 있다.
상기 우레탄계 프리폴리머 및 경화제의 종류 및 함량은 상기 제조방법에서 설명한 바와 같다.
상기 다공성 폴리우레탄 연마패드는 여러 종류의 기공을 포함할 수 있고, 구체적으로, 서로 크기가 상이한 제1 기공 및 제2 기공을 포함할 수 있다. 또한, 상기 제1 기공 및 상기 제2 기공은 각각 고상 발포제 또는 불활성 기체를 이용하여 형성될 수 있다.
구체적으로, 상기 다공성 폴리우레탄 연마패드는 반응속도 조절제를 더 포함하고, 서로 크기가 상이한 제1 기공 및 제2 기공을 포함할 수 있다.
일 구현예에서, 상기 다공성 폴리우레탄 연마패드는 고상 발포제로부터 형성된 제1 기공 및 불활성 기체로부터 형성된 제2 기공을 포함할 수 있다. 상기 제1 기공의 평균 입경은 상기 고상 발포제의 평균 입경과 실질적으로 동일할 수 있다.
다른 구현예에서, 상기 다공성 폴리우레탄 연마패드는 제1 고상 발포제로부터 형성된 제1 기공 및 상기 제1 고상 발포제와 평균 입경이 상이한 제2 고상 발포제로부터 형성된 제2 기공을 포함할 수 있다.
상기 제2 기공의 총 면적 중 5 내지 45 %를 차지하는 제2-1 기공의 입경은 제1 기공의 평균 입경보다 5 ㎛ 이상 작을 수 있으며, 상기 제2 기공 총 면적 중 5 내지 45 %를 차지하는 제2-2 기공의 입경은 제1 기공의 평균 입경보다 5 ㎛ 이하로 클 수 있다.
상기 반응속도 조절제의 종류 및 함량은 상기 제조방법에서 설명한 바와 같다.
상기 다공성 폴리우레탄 연마패드는 폴리우레탄 수지로 이루어지며, 상기 폴리우레탄 수지는 이소시아네이트 말단기를 갖는 우레탄계 프리폴리머로부터 유도된 것일 수 있다. 이 경우, 상기 폴리우레탄 수지는 상기 우레탄계 프리폴리머를 구성하는 모노머 단위를 포함한다.
상기 폴리우레탄 수지는 500 내지 3,000 g/mol의 중량평균분자량을 가질 수 있다. 구체적으로, 상기 폴리우레탄 수지는 600 내지 2,000 g/mol, 또는 700 내지 1,500 g/mol의 중량평균분자량(Mw)을 가질 수 있다.
상기 다공성 폴리우레탄 연마패드는 1.5 내지 2.5 mm의 두께를 갖는다. 구체적으로, 상기 다공성 폴리우레탄 연마패드는 1.8 내지 2.5 mm의 두께를 가질 수 있다. 연마패드의 두께가 상기 범위 내일 때, 연마패드로서의 기본적 물성을 충분히 발휘할 수 있다.
상기 다공성 폴리우레탄 연마패드는 표면에 기계적 연마를 위한 그루브(groove)를 가질 수 있다. 상기 그루브는 기계적 연마를 위한 적절한 깊이, 너비 및 간격을 가질 수 있고, 특별히 한정되지 않는다.
상기 다공성 폴리우레탄 연마패드는 적절한 크기 분포의 기공들을 가지며, 상기 기공들은 상기 연마패드의 전체에 균일하게 배치됨으로써, 상술한 바와 같은 평균 기공 직경, 비중, 표면경도, 인장 강도, 신율 및 내전압 특징을 가질 수 있다. 즉, 상대적으로 큰 기공들이 균일하게 배치되고 상기 큰 기공들 사이에 작은 기공들이 배치됨으로써, 상기 연마패드는 전체적으로 기공들에 의한 빈 공간과 폴리우레탄 매트릭스가 균일하게 분포되는 구조를 가질 수 있다. 따라서, 상기 연마패드는 기공이 많은 부분 및 기공이 거의 없는 부분이 거의 없다. 이에, 상기 연마패드는 웨이퍼 등과 같은 연마 대상에 발생되는 스크래치 등을 방지할 수 있다.
일 실시예에 따른 다공성 폴리우레탄 연마패드는 기공의 크기 및 분포가 조절되어 연마성능(연마율)이 조절된 것일 수 있다.
이하, 본 발명을 하기 실시예에 의하여 더욱 상세하게 설명한다. 단, 하기 실시예는 본 발명을 예시하기 위한 것일 뿐, 본 발명의 범위가 이들만으로 한정되는 것은 아니다.
실시예 1. 다공성 폴리우레탄 연마패드의 제조
1-1: 장치의 구성
우레탄계 프리폴리머, 경화제, 불활성 가스 주입 라인 및 반응속도 조절제 주입 라인이 구비된 캐스팅 장비에서, 프리폴리머 탱크에 미반응 NCO의 함량이 9.1 중량%인 PUGL-550D(SKC사 제품, 중량평균분자량: 1,200 g/mol)을 충진하고, 경화제 탱크에 비스(4-아미노-3-클로로포닐)메탄)(bis(4-amino-3-chlorophenyl)methane, Ishihara 사 제품)을 충진하고, 불활성 가스로는 질소(N2)를, 반응속도 조절제로는 반응 촉진제(제조사: Airproduct, 제품명: A1, 3차 아민계 화합물)를 준비했다. 또한, 상기 우레탄계 프리폴리머 100 중량부에 대하여 2 중량부의 고상 발포제(제조사: Akzonobel사, 제품명: Expancel 461 DET 20 d40, 평균 입경: 20 ㎛) 및 1 중량부의 실리콘 계면활성제(제조사: Evonik 사, 제품명: B8462)를 미리 혼합한 후 프리폴리머 탱크에 주입하였다.
1-2: 시트의 제조
각각의 투입 라인을 통해 우레탄계 프리폴리머, 경화제, 고상 발포제, 반응속도 조절제 및 불활성 가스를 믹싱 헤드에 일정한 속도로 투입하면서 교반하였다. 이때, 우레탄계 프리폴리머의 NCO기의 몰 당량과 경화제의 반응성 기의 몰 당량을 1:1로 맞추고 합계 투입량을 10 kg/분의 속도로 유지하였다. 또한, 불활성 가스는 우레탄계 프리폴리머, 경화제, 고상 발포제, 반응속도 조절제 및 실리콘 계면활성제의 합계 부피의 30 %의 부피로 일정하게 투입하고, 반응속도 조절제는 우레탄계 프리폴리머 100 중량부를 기준으로 1 중량부의 양으로 투입하였다.
교반된 원료를 몰드(가로 1,000 mm, 세로 1,000 mm, 높이 3 mm)에 주입하고, 고상화 시켜 시트를 얻었다. 이후 시트는 표면을 연삭기를 사용하여 연삭하고, ㅌ팁을 사용하여 그루브하는 과정을 거쳐 평균두께 2 mm의 다공성 폴리우레탄 연마패드를 제조하였다.
실시예 2.
불활성 가스를 우레탄계 프리폴리머, 경화제, 고상 발포제, 반응속도 조절제 및 실리콘 계면활성제의 합계 부피의 25 %의 부피로 일정하게 투입한 것을 제외하고는, 실시예 1과 동일한 방법으로 평균두께 2 mm의 다공성 폴리우레탄 연마패드를 제조하였다.
비교예 1.
고상 발포제를 사용하지 않고 불활성 가스를 우레탄계 프리폴리머, 경화제, 고상 발포제, 반응속도 조절제 및 실리콘 계면활성제의 합계 부피의 35 %의 부피로 일정하게 투입한 것을 제외하고는, 실시예 1과 동일한 방법으로 다공성 폴리우레탄 연마패드를 제조하였다.
비교예 2.
불활성 가스를 우레탄계 프리폴리머, 경화제, 고상 발포제, 반응속도 조절제 및 실리콘 계면활성제의 합계 부피의 17 %의 부피로 일정하게 투입한 것을 제외하고는, 실시예 1과 동일한 방법으로 다공성 폴리우레탄 연마패드를 제조하였다.
시험예.
상기 실시예 및 비교예에서 제조한 연마패드에 대해, 아래와 같은 조건 및 절차에 따라 각각의 물성을 측정하여, 하기 표 1, 및 도 1 내지 4에 나타냈다.
(1) 경도
Shore D 경도를 측정하였으며, 연마패드를 2 cm × 2 cm(두께: 약 2 mm)의 크기로 자른 후 온도 23 ℃, 30 ℃, 50 ℃ 및 70 ℃, 및 습도 50±5 %의 환경에서 16 시간 정치하였다. 이후 경도계(D형 경도계)를 사용하여 연마패드의 경도를 측정하였다.
(2) 비중
연마패드를 4 cm × 8.5 cm의 직사각형(두께: 2 mm)으로 자른 후 온도 23±2 ℃, 습도 50±5 %의 환경에서 16 시간 정치하였다. 비중계를 사용하여 연마패드의 비중을 측정하였다.
(3) 인장강도
만능시험계(UTM)를 사용하여 50 mm/분의 속도로 테스트하면서 파단 직전의 최고 강도 값을 취득하였다.
(4) 신율
인장강도 측정방식과 동일하게 테스트하여 파단 직전의 최대 변형량을 측정한 뒤, 최초 길이 대비 최대 변형량의 비율을 퍼센트(%)로 나타내었다.
(5) 포어 평균 입경, 포어의 면적 비율 및 포어 개수
연마패드를 2 ㎝ × 2 ㎝의 정사각형(두께: 2 ㎜)으로 자른 후, 주사전자현미경(SEM)을 사용하여 100 배로 관찰했다. 화상 해석 소프트웨어를 사용하여 얻어진 화상으로부터 전체 포어 입경을 측정하여, 포어 평균 입경, 단위 면적당 포어 개수, 기공 면적 비율 및 포어 입경 분포도를 산출하였다. 실시예 1의 SEM 사진은 도 1에, 실시예 2의 SEM 사진은 도 2에, 비교예 1의 SEM 사진은 도 3에 나타냈다. 또한, 산출된 포어 입경 분포도는 도 4에 나타냈다.
(6) 내전압(break down voltage)
SMEM Instruments사의 SM-100BDV(모델명), 100kV Brake Down Voltage Tester(장치명)를 사용하여, 10 포인트의 내전압을 측정하여, 평균값을 구하였다.
구체적으로, 상기 10 포인트는 2 ㎝ × 2 ㎝의 정사각형(두께: 2 ㎜)의 연마패드를 대상으로 가로 4 mm 및 세로 4 mm 간격으로 포인트를 선정하여 측정하였다.
(7) 산화규소(SiOx)의 연마율
CMP polishing 장비를 사용하여, TEOS-플라즈마 CVD법으로 제작한 산화규소막이 형성된 직경 300 ㎜의 실리콘 웨이퍼를 설치한 후, 실리콘 웨이퍼의 산화규소막 면을 아래로 하여 상기 다공성 폴리우레탄 연마패드를 붙인 정반 상에 세팅하였다. 이후, 연마 하중이 1.4 psi가 되도록 조정하고 121 rpm으로 연마패드를 회전시키면서 연마패드 상에 하소 실리카 슬러리를 190 ㎖/분의 속도로 투입하면서 정반을 115 rpm으로 60 초간 회전시켜 산화규소막을 연마하였다. 연마 후 실리콘 웨이퍼를 캐리어로부터 떼어내어, spin dryer에 장착하여 정제수(DIW)로 세정한 후 공기로 15 초 동안 건조하였다. 건조된 실리콘 웨이퍼를 광간섭식 두께 측정 장치를 사용하여 연마 전후 막 두께 변화를 측정하고 연마율을 계산하였다. 실시예 2의 연마율을 100 %로 기준하여, 실시예 및 비교예의 연마율을 측정하였다.
비교예 1 비교예 2 실시예 1 실시예 2
비중 (g/㎤) 0.817 0.90 0.801 0.812
25 ℃에서의 경도 (Shore D) 58 65 58 59
온도별 경도(Shore D) (30℃/50℃/70℃) 58/53/49 63/60/56 57/53/46 59/55/49
인장강도 (N/㎟) 22.4 22.8 21.1 21.0
신율 (%) 190 76.3 185 180
평균 기공 크기 (㎛) 49.5 14.4 21.4 15.0
기공 면적 비율 (%) 45.5 38.8 41.7 40.7
기공 개수 (개) (가로 2cm × 세로 2cm × 높이 2cm) 78 399 258 411
내전압 (Break Down Voltage) 13 kV 23.3 kV 17.5 kV 21.2kV
산화규소(SiOx)의 연마율 (%) 55 65 80 100
표 1에서 보는 바와 같이, 실시예 1 및 2의 연마패드는 비교예 1의 연마패드에 비해 평균 기공 크기가 작고 동일 면적에 대하여 기공 개수가 많아, 내전압 및 산화규소의 연마율이 높음을 알 수 있었다. 또한, 실시예 1 및 2의 연마패드는 비교예 2의 연마패드에 비해 높은 신율 및 적정 내전압을 가져 산화규소의 연마율이 높음을 알 수 있다.

Claims (13)

  1. 우레탄계 프리폴리머 및 경화제를 포함하는 연마패드로서,
    두께가 1.5 내지 2.5 mm이고, 평균 기공 직경이 10 내지 40 ㎛이며, 비중이 0.7 내지 0.9 g/㎤이고, 25 ℃에서의 표면경도가 50 내지 65 shore D이며, 인장 강도가 15 내지 25 N/㎟이고, 신율이 80 내지 250 %이며, 기공의 총 면적이 연마패드 총 면적을 기준으로 30 내지 60 %이고, 내전압이 14 내지 23 kV인, 다공성 폴리우레탄 연마패드.
  2. 제1항에 있어서,
    상기 우레탄계 프리폴리머 100 중량부를 기준으로 0.5 내지 10 중량부의 고상 발포제를 포함하는, 다공성 폴리우레탄 연마패드.
  3. 제2항에 있어서,
    상기 고상 발포제는 평균 입경이 10 내지 50 ㎛이고,
    상기 다공성 폴리우레탄 연마패드는 내전압이 14 내지 22 kV인, 다공성 폴리우레탄 연마패드
  4. 제2항에 있어서,
    상기 다공성 폴리우레탄 연마패드가 반응속도 조절제를 더 포함하고,
    상기 다공성 폴리우레탄 연마패드가 서로 크기가 상이한 제1 기공 및 제2 기공을 포함하는, 다공성 폴리우레탄 연마패드.
  5. 제4항에 있어서,
    상기 제1 기공이 고상 발포제로부터 형성되고,
    상기 제2 기공이 불활성 기체로부터 형성된, 다공성 폴리우레탄 연마패드.
  6. 제4항에 있어서,
    상기 제1 기공이 제1 고상 발포제로부터 형성되고,
    상기 제2 기공이 상기 제1 고상 발포제와 평균 입경이 상이한 제2 고상 발포제로부터 형성된, 다공성 폴리우레탄 연마패드.
  7. 제4항에 있어서,
    상기 제2 기공 총 면적 중 5 내지 45 %를 차지하는 제2-1 기공의 입경이 제1 기공의 평균 입경보다 5 ㎛ 이상 작으며, 상기 제2 기공 총 면적 중 5 내지 45 %를 차지하는 제2-2 기공의 입경이 제1기공의 평균 입경보다 5 ㎛ 이하로 큰, 다공성 폴리우레탄 연마패드.
  8. 제4항에 있어서,
    상기 반응속도 조절제가 트리에틸렌 디아민, 디메틸 에탄올 아민, 테트라메틸 부탄 디아민, 2-메틸-트리에틸렌 디아민, 디메틸 사이클로헥실 아민, 트리에틸 아민, 트리이소프로판올 아민, 1,4-디아조바이사이클로(2,2,2)옥탄, 비스(2-메틸아미노에틸) 에테르, 트리메틸아미노에틸에탄올 아민, N,N,N,N,N''-펜타메틸디에틸렌트리아민, 디메틸아미노에틸 아민, 디메틸아미노프로필 아민, 벤질디메틸 아민, N-에틸모르폴린, N,N-디메틸아미노에틸모르폴린, N,N-디메틸사이클로헥실 아민, 2-메틸-2-아자노보네인, 디부틸틴 디라우레이트, 스태너스 옥토에이트, 디부틸틴 디아세테이트, 디옥틸틴 디아세테이트, 디부틸틴 말리에이트, 디부틸틴 디-2-에틸헥사노에이트 및 디부틸틴 디머캅타이드로 이루어진 군으로부터 선택된 1종 이상을 포함하는, 다공성 폴리우레탄 연마패드.
  9. 제1항에 있어서,
    상기 우레탄계 프리폴리머가 이소시아네이트 화합물과 폴리올을 반응시켜 제조되고,
    상기 경화제가 아민 화합물 및 알콜 화합물로 이루어진 군으로부터 선택된 1종 이상을 포함하는, 다공성 폴리우레탄 연마패드.
  10. (1) 우레탄계 프리폴리머, 경화제 및 고상 발포제를 포함하는 혼합물을 몰드 내에 주입하여 성형하는 단계; 및
    (2) 상기 혼합물을 경화시키는 단계를 포함하는 연마패드의 제조방법으로서,
    상기 고상 발포제가 우레탄계 프리폴리머 100 중량부를 기준으로 0.5 내지 10 중량부의 함량으로 포함되고,
    두께가 1.5 내지 2.5 mm이고, 평균 기공 직경이 10 내지 40 ㎛이며, 비중이 0.7 내지 0.9 g/㎤이고, 25 ℃에서의 표면경도가 50 내지 65 shore D이며, 인장 강도가 15 내지 25 N/㎟이고, 신율이 80 내지 250 %이며, 기공의 총 면적이 연마패드 총 면적을 기준으로 30 내지 60 %이고, 내전압이 14 내지 23 kV인, 다공성 폴리우레탄 연마패드의 제조방법.
  11. 제10항에 있어서,
    상기 단계 (1)에서 상기 혼합물의 몰드 내 주입시 몰드 내에 불활성 가스를 투입하고,
    상기 불활성 가스가 상기 혼합물 총 부피를 기준으로 20 내지 35 %의 부피로 투입되는, 다공성 폴리우레탄 연마패드의 제조방법.
  12. 제11항에 있어서,
    상기 혼합물이 반응속도 조절제를 더 포함하고,
    상기 반응속도 조절제가 3차 아민계 화합물 및 유기금속계 화합물로 이루어진 군으로부터 선택된 1종 이상인, 다공성 폴리우레탄 연마패드의 제조방법.
  13. 제12항에 있어서,
    상기 반응속도 조절제가 트리에틸렌 디아민, 디메틸 에탄올 아민, 테트라메틸 부탄 디아민, 2-메틸-트리에틸렌 디아민, 디메틸 사이클로헥실 아민, 트리에틸 아민, 트리이소프로판올 아민, 1,4-디아조바이사이클로(2,2,2)옥탄, 비스(2-메틸아미노에틸) 에테르, 트리메틸아미노에틸에탄올 아민, N,N,N,N,N''-펜타메틸디에틸렌트리아민, 디메틸아미노에틸 아민, 디메틸아미노프로필 아민, 벤질디메틸 아민, N-에틸모르폴린, N,N-디메틸아미노에틸모르폴린, N,N-디메틸사이클로헥실 아민, 2-메틸-2-아자노보네인, 디부틸틴 디라우레이트, 스태너스 옥토에이트, 디부틸틴 디아세테이트, 디옥틸틴 디아세테이트, 디부틸틴 말리에이트, 디부틸틴 디-2-에틸헥사노에이트 및 디부틸틴 디머캅타이드로 이루어진 군으로부터 선택된 1종 이상을 포함하는, 다공성 폴리우레탄 연마패드의 제조방법.
PCT/KR2018/000415 2017-01-12 2018-01-09 다공성 폴리우레탄 연마패드 및 이의 제조방법 WO2018131868A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/462,180 US11325222B2 (en) 2017-01-12 2018-01-09 Porous polyurethane polishing pad and method for manufacturing same
CN201880006888.6A CN110191781B (zh) 2017-01-12 2018-01-09 多孔性聚胺酯抛光垫及其制备方法
JP2019537816A JP6991224B2 (ja) 2017-01-12 2018-01-09 多孔質ポリウレタン研磨パッドおよびその作製方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020170005301A KR101853021B1 (ko) 2017-01-12 2017-01-12 다공성 폴리우레탄 연마패드 및 이의 제조방법
KR10-2017-0005301 2017-01-12

Publications (1)

Publication Number Publication Date
WO2018131868A1 true WO2018131868A1 (ko) 2018-07-19

Family

ID=62080913

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/000415 WO2018131868A1 (ko) 2017-01-12 2018-01-09 다공성 폴리우레탄 연마패드 및 이의 제조방법

Country Status (6)

Country Link
US (1) US11325222B2 (ko)
JP (1) JP6991224B2 (ko)
KR (1) KR101853021B1 (ko)
CN (1) CN110191781B (ko)
TW (1) TWI707744B (ko)
WO (1) WO2018131868A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021070153A (ja) * 2019-10-29 2021-05-06 エスケイシー・カンパニー・リミテッドSkc Co., Ltd. 研磨パッド、その製造方法、およびそれを用いた半導体素子の製造方法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102058877B1 (ko) * 2018-04-20 2019-12-24 에스케이씨 주식회사 다공성 폴리우레탄 연마패드 및 이의 제조방법
KR102129664B1 (ko) * 2018-07-26 2020-07-02 에스케이씨 주식회사 연마패드, 이의 제조방법 및 이를 이용한 연마방법
KR102129665B1 (ko) * 2018-07-26 2020-07-02 에스케이씨 주식회사 연마패드, 이의 제조방법 및 이를 이용한 연마방법
KR102141743B1 (ko) 2018-12-18 2020-08-05 에스케이씨 주식회사 연마층의 제조방법, 연마층 제조용 분급장치 및 이를 포함하는 연마층의 제조장치
TWI735101B (zh) * 2018-12-26 2021-08-01 南韓商Skc索密思股份有限公司 用於研磨墊之組成物、研磨墊及用於製備其之方法
KR102277418B1 (ko) * 2019-05-21 2021-07-14 에스케이씨솔믹스 주식회사 가교 밀도가 향상된 연마패드 및 이의 제조방법
US11628535B2 (en) 2019-09-26 2023-04-18 Skc Solmics Co., Ltd. Polishing pad, method for manufacturing polishing pad, and polishing method applying polishing pad
KR102317123B1 (ko) 2019-11-22 2021-10-22 에스케이씨솔믹스 주식회사 고상발포제 분급 정제 장치 및 고상발포제의 분급정제 방법
CN114310656B (zh) * 2020-09-29 2024-03-08 Sk恩普士有限公司 抛光垫、抛光垫的制造方法及半导体器件的制造方法
CN114589620B (zh) * 2020-12-03 2023-05-23 中国科学院微电子研究所 半导体研磨垫及制备方法
KR102561824B1 (ko) * 2021-06-02 2023-07-31 에스케이엔펄스 주식회사 연마패드 및 이를 이용한 반도체 소자의 제조방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100804275B1 (ko) * 2006-07-24 2008-02-18 에스케이씨 주식회사 고분자 쉘로 둘러싸인 액상 유기물 코어를 포함하는 cmp연마패드 및 그 제조방법
KR20090078846A (ko) * 2005-05-17 2009-07-20 도요 고무 고교 가부시키가이샤 연마 패드
JP2010135493A (ja) * 2008-12-03 2010-06-17 Kyushu Univ 研磨パッド及び研磨方法
KR20100101565A (ko) * 2007-11-20 2010-09-17 프랙스에어 테크놀로지, 인코포레이티드 마이크로충전제를 갖는 감쇠 폴리우레탄 cmp 패드
KR101186531B1 (ko) * 2009-03-24 2012-10-08 차윤종 폴리우레탄 다공질체의 제조방법과 그 제조방법에 따른 폴리우레탄 다공질체 및 폴리우레탄 다공질체를 구비한 연마패드

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69430762D1 (de) 1994-05-10 2002-07-11 Asahi Chemical Ind Herstellungsverfahren eines Fluorharz Schaums
TWI385050B (zh) 2005-02-18 2013-02-11 Nexplanar Corp 用於cmp之特製拋光墊及其製造方法及其用途
US7435364B2 (en) * 2005-04-11 2008-10-14 Rohm And Haas Electronic Materials Cmp Holdings, Inc. Method for forming a porous polishing pad
JP4897238B2 (ja) 2005-05-17 2012-03-14 東洋ゴム工業株式会社 研磨パッド
JP2009117815A (ja) 2007-10-18 2009-05-28 Jsr Corp 化学機械研磨パッドの製造方法
US20100035529A1 (en) * 2008-08-05 2010-02-11 Mary Jo Kulp Chemical mechanical polishing pad
US8702479B2 (en) 2010-10-15 2014-04-22 Nexplanar Corporation Polishing pad with multi-modal distribution of pore diameters
US9102034B2 (en) * 2013-08-30 2015-08-11 Rohm And Haas Electronic Materials Cmp Holdings, Inc. Method of chemical mechanical polishing a substrate
JP6434266B2 (ja) 2013-12-17 2018-12-05 富士紡ホールディングス株式会社 ラッピング用樹脂定盤及びそれを用いたラッピング方法
JP6315246B2 (ja) * 2014-03-31 2018-04-25 富士紡ホールディングス株式会社 研磨パッド及びその製造方法
US9586304B2 (en) * 2014-12-19 2017-03-07 Rohm And Haas Electronic Materials Cmp Holdings, Inc. Controlled-expansion CMP PAD casting method
KR101835090B1 (ko) * 2017-05-29 2018-03-06 에스케이씨 주식회사 다공성 폴리우레탄 연마패드 및 이를 사용하여 반도체 소자를 제조하는 방법
KR101835087B1 (ko) * 2017-05-29 2018-03-06 에스케이씨 주식회사 다공성 폴리우레탄 연마패드 및 이를 사용하여 반도체 소자를 제조하는 방법
US10391606B2 (en) * 2017-06-06 2019-08-27 Rohm And Haas Electronic Materials Cmp Holdings, Inc. Chemical mechanical polishing pads for improved removal rate and planarization
KR101949905B1 (ko) * 2017-08-23 2019-02-19 에스케이씨 주식회사 다공성 폴리우레탄 연마패드 및 이의 제조방법
KR102058877B1 (ko) * 2018-04-20 2019-12-24 에스케이씨 주식회사 다공성 폴리우레탄 연마패드 및 이의 제조방법
US11628535B2 (en) * 2019-09-26 2023-04-18 Skc Solmics Co., Ltd. Polishing pad, method for manufacturing polishing pad, and polishing method applying polishing pad

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090078846A (ko) * 2005-05-17 2009-07-20 도요 고무 고교 가부시키가이샤 연마 패드
KR100804275B1 (ko) * 2006-07-24 2008-02-18 에스케이씨 주식회사 고분자 쉘로 둘러싸인 액상 유기물 코어를 포함하는 cmp연마패드 및 그 제조방법
KR20100101565A (ko) * 2007-11-20 2010-09-17 프랙스에어 테크놀로지, 인코포레이티드 마이크로충전제를 갖는 감쇠 폴리우레탄 cmp 패드
JP2010135493A (ja) * 2008-12-03 2010-06-17 Kyushu Univ 研磨パッド及び研磨方法
KR101186531B1 (ko) * 2009-03-24 2012-10-08 차윤종 폴리우레탄 다공질체의 제조방법과 그 제조방법에 따른 폴리우레탄 다공질체 및 폴리우레탄 다공질체를 구비한 연마패드

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021070153A (ja) * 2019-10-29 2021-05-06 エスケイシー・カンパニー・リミテッドSkc Co., Ltd. 研磨パッド、その製造方法、およびそれを用いた半導体素子の製造方法
JP2022059606A (ja) * 2019-10-29 2022-04-13 エスケーシー ソルミックス カンパニー,リミテッド 研磨パッド、その製造方法、およびそれを用いた半導体素子の製造方法
JP7219743B2 (ja) 2019-10-29 2023-02-08 エスケーシー ソルミックス カンパニー,リミテッド 研磨パッド、その製造方法、およびそれを用いた半導体素子の製造方法

Also Published As

Publication number Publication date
TWI707744B (zh) 2020-10-21
CN110191781B (zh) 2021-05-07
US20190329376A1 (en) 2019-10-31
KR101853021B1 (ko) 2018-04-30
JP6991224B2 (ja) 2022-01-12
US11325222B2 (en) 2022-05-10
JP2020506070A (ja) 2020-02-27
CN110191781A (zh) 2019-08-30
TW201829123A (zh) 2018-08-16

Similar Documents

Publication Publication Date Title
WO2018131868A1 (ko) 다공성 폴리우레탄 연마패드 및 이의 제조방법
KR101949905B1 (ko) 다공성 폴리우레탄 연마패드 및 이의 제조방법
KR101835090B1 (ko) 다공성 폴리우레탄 연마패드 및 이를 사용하여 반도체 소자를 제조하는 방법
KR101835087B1 (ko) 다공성 폴리우레탄 연마패드 및 이를 사용하여 반도체 소자를 제조하는 방법
KR102058877B1 (ko) 다공성 폴리우레탄 연마패드 및 이의 제조방법
KR102088919B1 (ko) 다공성 폴리우레탄 연마패드 및 이의 제조방법
WO2019050365A1 (ko) 다공성 폴리우레탄 연마패드 및 이의 제조방법
KR102202076B1 (ko) 연마패드용 조성물, 연마패드 및 이의 제조방법
KR20190121009A (ko) 다공성 연마 패드 및 이의 제조방법
KR20190135449A (ko) 다공성 연마 패드 및 이의 제조방법
KR20210002429A (ko) 연마패드용 조성물, 연마패드 및 이의 제조방법
US11400559B2 (en) Polishing pad, process for preparing the same, and process for preparing a semiconductor device using the same
KR102304965B1 (ko) 연마패드, 이의 제조방법, 및 이를 이용한 반도체 소자의 제조방법
KR102185265B1 (ko) 연마패드용 조성물, 연마패드 및 이의 제조방법
KR102197481B1 (ko) 연마패드 및 이의 제조방법
KR102206485B1 (ko) 연마패드 및 이를 이용한 반도체 소자의 제조방법
KR102293765B1 (ko) 연마패드, 이의 제조방법, 및 이를 이용한 반도체 소자의 제조방법
KR101949911B1 (ko) 다공성 폴리우레탄 연마패드 및 이의 제조방법
KR20200105790A (ko) 연마패드용 조성물, 연마패드 및 이의 제조방법
KR102298112B1 (ko) 연마패드용 조성물, 연마패드 및 이를 이용한 반도체 소자의 제조방법
KR102198769B1 (ko) 연마패드 및 이를 이용한 반도체 소자의 제조방법
KR20200105465A (ko) 연마패드용 조성물, 연마패드 및 이의 제조방법
KR20200079847A (ko) 연마패드용 조성물, 연마패드 및 이의 제조방법
KR20200079865A (ko) 연마패드용 조성물, 연마패드 및 이의 제조방법
KR20210054388A (ko) 연마패드, 이의 제조방법 및 이를 이용한 반도체 소자의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18739011

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019537816

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18739011

Country of ref document: EP

Kind code of ref document: A1