WO2018131687A1 - 積層体 - Google Patents

積層体 Download PDF

Info

Publication number
WO2018131687A1
WO2018131687A1 PCT/JP2018/000694 JP2018000694W WO2018131687A1 WO 2018131687 A1 WO2018131687 A1 WO 2018131687A1 JP 2018000694 W JP2018000694 W JP 2018000694W WO 2018131687 A1 WO2018131687 A1 WO 2018131687A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer
polymer layer
base material
latex
polymer latex
Prior art date
Application number
PCT/JP2018/000694
Other languages
English (en)
French (fr)
Inventor
友哉 谷山
健太郎 早坂
慎二 加藤
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Priority to KR1020197020262A priority Critical patent/KR20190105009A/ko
Priority to US16/476,795 priority patent/US11305518B2/en
Priority to CN201880006565.7A priority patent/CN110191800A/zh
Priority to JP2018561431A priority patent/JP7095601B2/ja
Priority to EP18738939.0A priority patent/EP3575083A4/en
Publication of WO2018131687A1 publication Critical patent/WO2018131687A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B25/00Layered products comprising a layer of natural or synthetic rubber
    • B32B25/10Layered products comprising a layer of natural or synthetic rubber next to a fibrous or filamentary layer
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/693Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with natural or synthetic rubber, or derivatives thereof
    • AHUMAN NECESSITIES
    • A41WEARING APPAREL
    • A41DOUTERWEAR; PROTECTIVE GARMENTS; ACCESSORIES
    • A41D19/00Gloves
    • AHUMAN NECESSITIES
    • A41WEARING APPAREL
    • A41DOUTERWEAR; PROTECTIVE GARMENTS; ACCESSORIES
    • A41D19/00Gloves
    • A41D19/0006Gloves made of several layers of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B25/00Layered products comprising a layer of natural or synthetic rubber
    • B32B25/14Layered products comprising a layer of natural or synthetic rubber comprising synthetic rubber copolymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/12Layered products comprising a layer of synthetic resin next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/14Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
    • B32B37/24Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with at least one layer not being coherent before laminating, e.g. made up from granular material sprinkled onto a substrate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/07Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with halogens; with halogen acids or salts thereof; with oxides or oxyacids of halogens or salts thereof
    • D06M11/11Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with halogens; with halogen acids or salts thereof; with oxides or oxyacids of halogens or salts thereof with halogen acids or salts thereof
    • D06M11/17Halides of elements of Groups 3 or 13 of the Periodic Table
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/07Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with halogens; with halogen acids or salts thereof; with oxides or oxyacids of halogens or salts thereof
    • D06M11/11Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with halogens; with halogen acids or salts thereof; with oxides or oxyacids of halogens or salts thereof with halogen acids or salts thereof
    • D06M11/20Halides of elements of Groups 4 or 14 of the Periodic Table, e.g. zirconyl chloride
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/32Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond
    • D06M11/36Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond with oxides, hydroxides or mixed oxides; with salts derived from anions with an amphoteric element-oxygen bond
    • D06M11/45Oxides or hydroxides of elements of Groups 3 or 13 of the Periodic Table; Aluminates
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/51Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with sulfur, selenium, tellurium, polonium or compounds thereof
    • D06M11/55Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with sulfur, selenium, tellurium, polonium or compounds thereof with sulfur trioxide; with sulfuric acid or thiosulfuric acid or their salts
    • D06M11/56Sulfates or thiosulfates other than of elements of Groups 3 or 13 of the Periodic Table
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/51Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with sulfur, selenium, tellurium, polonium or compounds thereof
    • D06M11/55Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with sulfur, selenium, tellurium, polonium or compounds thereof with sulfur trioxide; with sulfuric acid or thiosulfuric acid or their salts
    • D06M11/57Sulfates or thiosulfates of elements of Groups 3 or 13 of the Periodic Table, e.g. alums
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/21Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/31Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of unsaturated nitriles
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/21Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/327Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of unsaturated alcohols or esters thereof
    • D06M15/333Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of unsaturated alcohols or esters thereof of vinyl acetate; Polyvinylalcohol
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/21Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/356Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of other unsaturated compounds containing nitrogen, sulfur, silicon or phosphorus atoms
    • D06M15/3562Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of other unsaturated compounds containing nitrogen, sulfur, silicon or phosphorus atoms containing nitrogen
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/04Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06N3/10Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds with styrene-butadiene copolymerisation products or other synthetic rubbers or elastomers except polyurethanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/14Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
    • B32B37/24Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with at least one layer not being coherent before laminating, e.g. made up from granular material sprinkled onto a substrate
    • B32B2037/243Coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/06Vegetal fibres
    • B32B2262/062Cellulose fibres, e.g. cotton
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2270/00Resin or rubber layer containing a blend of at least two different polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/51Elastic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/546Flexural strength; Flexion stiffness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2310/00Treatment by energy or chemical effects
    • B32B2310/04Treatment by energy or chemical effects using liquids, gas or steam
    • B32B2310/0409Treatment by energy or chemical effects using liquids, gas or steam using liquids
    • B32B2310/0418Treatment by energy or chemical effects using liquids, gas or steam using liquids other than water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2329/00Polyvinylalcohols, polyvinylethers, polyvinylaldehydes, polyvinylketones or polyvinylketals
    • B32B2329/04Polyvinylalcohol
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2333/00Polymers of unsaturated acids or derivatives thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2437/00Clothing
    • B32B2437/02Gloves, shoes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2571/00Protective equipment
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N2211/00Specially adapted uses
    • D06N2211/10Clothing
    • D06N2211/103Gloves
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24942Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree
    • Y10T428/2495Thickness [relative or absolute]
    • Y10T428/24967Absolute thicknesses specified

Definitions

  • the present invention relates to a laminate in which a fiber base composed of a plurality of fibers and a polymer layer formed from a polymer latex are laminated. Moreover, this invention relates to a protective glove provided with the said laminated body.
  • protective gloves for example, protective gloves obtained by forming a film by attaching rubber or resin to the outer surface of a fiber glove attached to a glove mold are known.
  • the rubber or resin may penetrate from the outer surface to the inside of the fiber glove, which causes the rubber or resin to adhere to the glove mold and attach the protective glove to the glove.
  • the productivity of the protective gloves is lowered, and the comfort when the obtained protective gloves are worn is lowered.
  • Patent Document 1 a fiber glove is impregnated with a coagulant solution obtained by dissolving an acid or a polyvalent metal salt, and then the surface of the glove body is applied.
  • a protective glove is disclosed in which a thin film is formed by contacting an emulsion of rubber or synthetic resin, and a coating film of a synthetic resin paste is formed on the thin film.
  • the protective glove obtained by the technique of Patent Document 1 is such that the thickness and the amount of penetration into the fiber glove are not controlled with respect to the thin film formed using an emulsion of rubber or synthetic resin, and the protective glove obtained is obtained There was a problem that the flexibility of.
  • the present invention has been made in view of such a situation, and an object of the present invention is to provide a laminate that is excellent in productivity, and also excellent in flexibility and comfort during wearing. Moreover, this invention also aims at providing a protective glove provided with such a laminated body.
  • the present inventors have found a laminated body in which a fiber base composed of a plurality of fibers and a polymer layer formed from a polymer latex are laminated.
  • the ratio of the thickness of the portion of the polymer layer that has penetrated between the fibers to the average thickness of the base material layer of the fiber base material is controlled within a predetermined range, and the surface of the fiber base material in the polymer layer.
  • a laminate comprising a fiber substrate composed of a plurality of fibers and a polymer layer formed from a polymer latex, wherein the polymer layer is partially Is the surface of the fiber base material of the osmotic polymer layer that is a portion of the polymer layer that has permeated between the fibers.
  • the thickness t 2 [ ⁇ m] of the surface polymer layer is 80 ⁇ m or more when the thickness of the surface polymer layer is t 2 [ ⁇ m].
  • a laminate is provided.
  • the polymer latex preferably contains a nonionic water-soluble polymer as a thickener.
  • the content ratio of the nonionic water-soluble polymer in the polymer latex is preferably 0.1 to 5.0% by weight.
  • the nonionic water-soluble polymer is preferably polyvinyl alcohol and / or polyvinyl pyrrolidone.
  • the polymer constituting the polymer latex is preferably nitrile rubber.
  • the nitrile rubber preferably contains an ethylenically unsaturated nitrile monomer unit, a conjugated diene monomer unit, and an ethylenically unsaturated acid monomer unit.
  • a protective glove provided with the above laminate is provided.
  • it is a manufacturing method of said laminated body, Comprising: Latex adhesion process which adheres the said polymer latex to the said fiber base material, and the said polymer latex adhered to the said fiber base material A coagulation step of bringing the polymer latex into contact with a coagulant solution to coagulate the polymer in the polymer latex, thereby forming the polymer layer, and attaching the polymer latex to the fiber substrate.
  • the polymer latex In the state in which the viscosity of the polymer latex is controlled in the range of 600 to 25,000 mPa ⁇ s at a rotational speed of 10 rpm measured using a B-type viscometer, the polymer latex is A method for producing a laminate to be adhered to a fiber substrate is provided.
  • the polymer latex when the polymer latex is adhered to the fiber substrate, the polymer latex has a temperature of 25 ° C., a solid content concentration of 45% by weight, and a B-type viscometer.
  • the polymer latex is preferably adhered to the fiber base material in a state where the viscosity at a rotational speed of 10 rpm measured using is controlled to 600 to 25,000 mPa ⁇ s.
  • a laminate that is excellent in productivity and also excellent in flexibility and comfort at the time of wearing.
  • a protective glove provided with such a laminated body can be provided.
  • FIG. 1 is a schematic view of a fiber substrate used in the present invention and a schematic view of a laminate of the present invention.
  • the laminate of the present invention is a laminate in which a fiber base composed of a plurality of fibers and a polymer layer formed from a polymer latex are laminated, and the polymer layer is partially From the surface of the fiber base material of the permeation polymer layer that covers the fiber base material in a state of permeation between the fibers, and is a portion of the polymer layer permeated between the fibers.
  • the fiber substrate used in the present invention is not particularly limited as long as it is made of fiber.
  • fibers constituting the fiber base material natural fibers such as cotton, wool, hemp, and wool, synthetic fibers such as polyester, polyurethane, acrylic, and nylon can be used as materials. Among these, cotton is used. Is preferred.
  • the fibers constituting the fiber base material used in the present invention may be single fibers (one by one extracted from the above-mentioned natural fibers or synthetic fibers), or may be twisted yarns composed of a plurality of single fibers. Although it is good, it is preferably a twisted yarn.
  • the fiber substrate may be a knitted or woven fiber as described above, or a non-woven fabric.
  • the fiber base material may be sewn.
  • the ratio (t 1 / d) of the thickness t 1 of the polymer layer to the base layer average thickness d of the fiber substrate is within the above range.
  • the substrate layer average thickness d of the fiber substrate is preferably 50 to 3,000 ⁇ m, more preferably 100 to 2,000 ⁇ m, and still more preferably 400 to 900 ⁇ m.
  • the fiber base material is composed of a plurality of fibers, particularly when the fiber base material is a woven fabric, the portion in which the fibers are usually folded and the overlapping degree of the fibers in the thickness direction is dense. There is a portion (a portion where the number of overlapping fibers is large) and a portion where a degree of overlapping of the fibers in the thickness direction is sparse (a portion where the number of overlapping fibers is small), and a layer including these portions ( It is comprised by the base material layer). For this reason, in the microstructure of the fiber base material, the thickness may be different between the portion where the fiber overlap is dense and the portion where the fiber overlap is sparse.
  • the base material layer average thickness d of the fiber base material is determined as an average value in which the thickness of the portion where the overlapping degree of the fibers is dense is the thickness of the fiber base material. That is, the average of the thicknesses of the portions where the overlapping degree of the fibers is dense is defined as the base layer average thickness d.
  • the linear density of the fibers constituting the fiber substrate is not particularly limited, but is preferably 50 to 500 denier.
  • the gauge number of the fiber base material is not particularly limited, but a part of the polymer layer can be appropriately permeated by the fiber base material (the weight formed when the polymer layer is formed on the fiber base material). From the viewpoint that the thickness t 1 of the osmotic polymer layer in the combined layer can be controlled in a more appropriate range), it is preferably 7 to 18 gauge.
  • the number of gauges refers to the number of knitting machine needles between 1 inch.
  • a polymer latex described later is attached to such a fiber base, and then a coagulant solution is brought into contact with the polymer latex attached to the fiber base. It can be obtained by forming a polymer layer by solidifying the polymer. In this case, the polymer layer is formed so as to cover the fiber base material in a state where a part of the polymer layer penetrates the fiber base material.
  • the polymer latex used in the present invention is not particularly limited, but it is preferable to use a polymer containing a rubbery polymer as the polymer because the resulting laminate can be made more flexible.
  • the rubber-like polymer include natural rubber; conjugated diene rubber obtained by polymerizing or copolymerizing conjugated dienes such as butadiene and isoprene; among these, conjugated diene rubber is preferable.
  • conjugated diene rubber include so-called nitrile rubber, isoprene rubber, styrene-butadiene rubber, chloroprene rubber and the like obtained by copolymerizing nitrile, and among these, nitrile rubber is particularly preferable.
  • the nitrile rubber is not particularly limited, and a nitrile rubber obtained by copolymerizing an ⁇ , ⁇ -ethylenically unsaturated nitrile monomer and other copolymerizable monomers used as necessary can be used.
  • the ⁇ , ⁇ -ethylenically unsaturated nitrile monomer is not particularly limited, and an ethylenically unsaturated compound having a nitrile group and preferably having 3 to 18 carbon atoms can be used.
  • Examples of such ⁇ , ⁇ -ethylenically unsaturated nitrile monomers include acrylonitrile, methacrylonitrile, halogen-substituted acrylonitrile and the like, and among these, acrylonitrile is particularly preferable.
  • These ⁇ , ⁇ -ethylenically unsaturated nitrile monomers may be used alone or in combination of two or more.
  • the content ratio of the ⁇ , ⁇ -ethylenically unsaturated nitrile monomer unit in the nitrile rubber is preferably 10 to 45% by weight, more preferably 20 to 40% by weight, based on the total monomer units.
  • the nitrile rubber preferably contains a conjugated diene monomer unit from the viewpoint of imparting rubber elasticity to the resulting polymer layer.
  • conjugated diene monomer forming the conjugated diene monomer unit examples include 1,3-butadiene, isoprene, 2,3-dimethyl-1,3-butadiene, 1,3-pentadiene, chloroprene and the like having 4 to 4 carbon atoms. 6 conjugated diene monomers are preferred, 1,3-butadiene and isoprene are more preferred, and 1,3-butadiene is particularly preferred. In addition, these conjugated diene monomers may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the content ratio of the conjugated diene monomer unit is preferably 40 to 80% by weight, more preferably 52 to 78% by weight, based on all monomer units constituting the nitrile rubber.
  • Nitrile rubber is also a monomer that forms ⁇ , ⁇ -ethylenically unsaturated nitrile monomer units and other ethylenically unsaturated monomers that are copolymerizable with monomers that form conjugated diene monomer units.
  • An acid monomer may be included.
  • Such other copolymerizable ethylenically unsaturated acid monomer is not particularly limited, and examples thereof include a carboxyl group-containing ethylenically unsaturated monomer, a sulfonic acid group-containing ethylenically unsaturated monomer, Examples thereof include phosphoric acid group-containing ethylenically unsaturated monomers.
  • the carboxyl group-containing ethylenically unsaturated monomer is not particularly limited, but ethylenically unsaturated monocarboxylic acids such as acrylic acid, methacrylic acid, and crotonic acid; fumaric acid, maleic acid, itaconic acid, maleic anhydride, anhydrous And ethylenically unsaturated polyvalent carboxylic acids such as itaconic acid and anhydrides thereof; partially esterified products of ethylenically unsaturated polyvalent carboxylic acids such as methyl maleate and methyl itaconic acid; and the like.
  • monocarboxylic acids such as acrylic acid, methacrylic acid, and crotonic acid
  • fumaric acid, maleic acid, itaconic acid, maleic anhydride anhydrous And ethylenically unsaturated polyvalent carboxylic acids such as itaconic acid and anhydrides thereof
  • the sulfonic acid group-containing ethylenically unsaturated monomer is not particularly limited, but vinyl sulfonic acid, methyl vinyl sulfonic acid, styrene sulfonic acid, (meth) allyl sulfonic acid, (meth) acrylic acid-2-sulfonic acid ethyl And 2-acrylamido-2-hydroxypropanesulfonic acid.
  • the phosphoric acid group-containing ethylenically unsaturated monomer is not particularly limited, but includes (meth) acrylic acid-3-chloro-2-propyl phosphate, (meth) acrylic acid-2-ethyl phosphate, 3-allyloxy. Examples include -2-hydroxypropane phosphoric acid.
  • copolymerizable ethylenically unsaturated acid monomers can be used as alkali metal salts or ammonium salts, and can be used singly or in combination of two or more. Good.
  • carboxyl group-containing ethylenically unsaturated monomers are preferable, ethylenically unsaturated monocarboxylic acids are more preferable, and methacrylic acid is particularly preferable.
  • the content of the other copolymerizable ethylenically unsaturated acid monomer in the polymer constituting the polymer latex used in the present invention is preferably 2 with respect to all monomer units in the polymer. ⁇ 8% by weight.
  • the polymer constituting the polymer latex may contain other monomer units.
  • monomers that form other monomer units include conjugated diene monomers, ethylenically unsaturated nitrile monomer units, and monomers copolymerizable with ethylenically unsaturated acid monomers. There is no particular limitation, and examples thereof include the following monomers.
  • aromatic vinyl monomers such as styrene, ⁇ -methyl styrene, monochloro styrene, dichloro styrene, trichloro styrene, monomethyl styrene, dimethyl styrene, trimethyl styrene, hydroxymethyl styrene; acrylamide, Ethylenically unsaturated carboxylic acid amide monomers such as methacrylamide, N, N-dimethylacrylamide, N-methylolacrylamide; methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, (meth ) Ethylenically unsaturated carboxylic acid alkyl ester monomers such as 2-ethylhexyl acrylate; vinyl acetate monomers such as vinyl acetate, vinyl propionate and vinyl versatate; vinyl chloride, vinylidene chloride
  • the content of other monomer units in the polymer constituting the polymer latex is a point of view that prevents the polymer layer from peeling off from the fiber substrate, and when used as a work glove. From the viewpoint of suppressing fatigue, and from the viewpoint of suppressing permeation of solvent gas when worn as a work glove, it is preferably 26% by weight or less, more preferably 10% by weight, based on the total monomer units in the polymer. % Or less, more preferably 7% by weight or less, and particularly preferably 5% by weight or less.
  • the polymer latex used in the present invention is not particularly limited, and may be, for example, a polymer latex obtained by polymerizing a monomer mixture containing the above monomer.
  • a latex obtained by emulsion polymerization, a latex obtained by phase inversion emulsification of a polymer solution obtained by solution polymerization of the monomer mixture, and the like can be used.
  • the composition of the resulting copolymer can be easily adjusted by adjusting the composition of the monomer mixture used for the emulsion polymerization.
  • a method of emulsion polymerization a conventionally known method can be employed.
  • polymerization auxiliary materials such as an emulsifier, a polymerization initiator, and a molecular weight modifier can be used.
  • the method for adding these polymerization auxiliary materials is not particularly limited, and any method such as an initial batch addition method, a divided addition method, or a continuous addition method may be used.
  • the emulsifier examples include, but are not limited to, anionic surfactants, nonionic surfactants, cationic surfactants, and amphoteric surfactants. Among these, alkylbenzene sulfonates, aliphatics Anionic surfactants such as sulfonates, sulfates of higher alcohols, ⁇ -olefin sulfonates, and alkyl ether sulfates are preferred.
  • the amount of the emulsifier is preferably 0.5 to 10 parts by weight, more preferably 1 to 8 parts by weight with respect to 100 parts by weight of the total monomers used.
  • a radical initiator is preferable.
  • the radical initiator is not particularly limited, and examples thereof include inorganic peroxides such as sodium persulfate, potassium persulfate, ammonium persulfate, potassium perphosphate, and hydrogen peroxide; t-butyl peroxide, cumene hydroperoxide, p-menthane hydroperoxide, di-t-butyl peroxide, t-butylcumyl peroxide, acetyl peroxide, isobutyryl peroxide, octanoyl peroxide, dibenzoyl peroxide, 3,5,5-trimethylhexanoyl Organic peroxides such as peroxide and t-butylperoxyisobutyrate; azo compounds such as azobisisobutyronitrile, azobis-2,4-dimethylvaleronitrile, azobiscyclohexanecarbonitrile, methyl
  • inorganic peroxides or organic peroxides are preferred, inorganic peroxides are more preferable, persulfate are particularly preferred.
  • These polymerization initiators may be used individually by 1 type, and may be used in combination of 2 or more type. The amount of the polymerization initiator used is preferably 0.01 to 2 parts by weight, more preferably 0.05 to 1.5 parts by weight with respect to 100 parts by weight of the total monomers used.
  • the molecular weight modifier is not particularly limited.
  • ⁇ -methylstyrene dimer mercaptans such as t-dodecyl mercaptan, n-dodecyl mercaptan, octyl mercaptan; halogenated carbon tetrachloride, methylene chloride, methylene bromide, etc. Hydrocarbons; sulfur-containing compounds such as tetraethylthiuram disulfide, dipentamethylene thiuram disulfide, diisopropylxanthogen disulfide; and the like.
  • molecular weight regulators may be used alone or in combination of two or more.
  • the amount of the molecular weight modifier used varies depending on the type, but is preferably 0.1 to 1.5 parts by weight, more preferably 0.2 to 1.0 parts by weight, based on 100 parts by weight of all monomers used. Part.
  • Emulsion polymerization is usually performed in water.
  • the amount of water used is preferably 80 to 500 parts by weight, more preferably 100 to 200 parts by weight, based on 100 parts by weight of the total monomers used.
  • polymerization auxiliary materials other than the above may be further used as necessary.
  • the polymerization auxiliary material include a chelating agent, a dispersing agent, a pH adjusting agent, a deoxidizing agent, a particle size adjusting agent and the like, and the type and amount of use thereof are not particularly limited.
  • Examples of the monomer addition method include a method of adding monomers to be used in a reaction vessel all at once, a method of adding continuously or intermittently as the polymerization proceeds, and a part of the monomer is added. And a method in which the remaining monomer is continuously or intermittently added and polymerized, and any method may be employed.
  • the composition of the mixture may be constant or may be changed.
  • Each monomer may be added to the reaction vessel after previously mixing various monomers to be used, or may be added separately to the reaction vessel.
  • the polymerization temperature at the time of emulsion polymerization is not particularly limited, but is usually 0 to 95 ° C., preferably 5 to 70 ° C.
  • the polymerization time is not particularly limited, but is usually about 5 to 40 hours.
  • the monomer is emulsion-polymerized, and when the predetermined polymerization conversion rate is reached, the polymerization reaction is stopped by cooling the polymerization system or adding a polymerization terminator.
  • the polymerization conversion rate when stopping the polymerization reaction is usually 80% by weight or more, preferably 90% by weight or more.
  • the polymerization terminator is not particularly limited as long as it is usually used in emulsion polymerization. Specific examples thereof include hydroxylamine, hydroxyamine sulfate, diethylhydroxyamine, hydroxyaminesulfonic acid and alkali metals thereof.
  • Hydroxyamine compounds such as salts; sodium dimethyldithiocarbamate; hydroquinone derivatives; catechol derivatives; aromatic hydroxydithiocarboxylic acids such as hydroxydimethylbenzenethiocarboxylic acid, hydroxydiethylbenzenedithiocarboxylic acid, hydroxydibutylbenzenedithiocarboxylic acid, and alkali metal salts thereof
  • Aromatic hydroxydithiocarboxylic acid compounds such as;
  • the amount of the polymerization terminator used is not particularly limited, but is usually 0.05 to 2 parts by weight with respect to 100 parts by weight of the total monomers used.
  • unreacted monomers may be removed to adjust the solid content concentration and pH.
  • the weight average particle diameter of the polymer particles constituting the polymer latex is usually 30 to 1000 nm, preferably 50 to 500 nm, more preferably 70 to 200 nm.
  • the solid content concentration of the polymer latex is usually 20 to 65% by weight, preferably 30 to 60% by weight, more preferably 35 to 55% by weight.
  • the pH of the polymer latex is usually 5 to 13, preferably 7 to 10, and more preferably 7.5 to 9.
  • the polymer latex used in the present invention may be a polymer latex composition by adding a crosslinking agent, a crosslinking accelerator, zinc oxide, or the like.
  • a crosslinking agent e.g., a crosslinking accelerator, zinc oxide, or the like.
  • the crosslinking agent it is preferable to use a sulfur-based crosslinking agent.
  • a sulfur type crosslinking agent Sulfur, such as powder sulfur, sulfur white, precipitation sulfur, colloidal sulfur, surface treatment sulfur, insoluble sulfur; sulfur chloride, sulfur dichloride, morpholine disulfide, alkylphenol disulfide, dibenzothia Sulfur-containing compounds such as zirconium disulfide, caprolactam disulfide (N, N′-dithio-bis (hexahydro-2H-azepinone-2)), phosphorus-containing polysulfide, polymer polysulfide; tetramethylthiuram disulfide, selenium dimethyldithiocarbamate, And sulfur-donating compounds such as 2- (4′-morpholinodithio) benzothiazole.
  • These crosslinking agents may be used alone or in combination of two or more.
  • the addition amount of the sulfur-based crosslinking agent is preferably 0.01 to 5 parts by weight, more preferably 0.05 to 3 parts by weight, particularly preferably 0. 0 part by weight with respect to 100 parts by weight of the total solid content in the polymer latex. 1 to 2 parts by weight.
  • the sulfur-based crosslinking agent is preferably added as a dispersion in which the sulfur-based crosslinking agent is dispersed in a solvent.
  • a dispersion By adding it to the polymer latex as a dispersion, a laminate having few defects such as cracks, pinholes, and adhesion of aggregates in the resulting polymer layer can be obtained.
  • the method for preparing the dispersion of the sulfur-based crosslinking agent is not particularly limited, but a method of adding a solvent to the sulfur-based crosslinking agent and pulverizing and stirring with a wet pulverizer such as a ball mill or a bead mill is preferable.
  • sulfur-based crosslinking agent When sulfur is used as the sulfur-based crosslinking agent, it is preferable to use a crosslinking accelerator (vulcanization accelerator) or zinc oxide in combination.
  • vulcanization accelerator vulcanization accelerator
  • zinc oxide zinc oxide
  • the crosslinking accelerator is not particularly limited.
  • dithiocarbamine such as diethyldithiocarbamic acid, dibutyldithiocarbamic acid, di-2-ethylhexyldithiocarbamic acid, dicyclohexyldithiocarbamic acid, diphenyldithiocarbamic acid, and dibenzyldithiocarbamic acid.
  • crosslinking accelerators may be used alone or in combination of two or more.
  • the amount of the crosslinking accelerator used is preferably 0.1 to 10 parts by weight, more preferably 0.5 to 5 parts by weight with respect to 100 parts by weight of the total solid content in the polymer latex.
  • the amount of zinc oxide used is preferably 5 parts by weight or less, more preferably 0.1 to 3 parts by weight, and still more preferably 0.5 to 2 parts by weight with respect to 100 parts by weight of the total solid content in the polymer latex. Part.
  • a polymer latex to which a crosslinking agent is added When a polymer latex to which a crosslinking agent is added is used, a polymer latex that has been aged in advance (also referred to as pre-vulcanization) may be used.
  • the viscosity of the polymer latex is a viscosity measured at a rotational speed of 10 rpm using a B-type viscometer at a temperature of 25 ° C. and a solid content concentration of 45% by weight, preferably 600 to 25,000 mPa ⁇ s. More preferably 800 to 20,000 mPa ⁇ s, still more preferably 900 to 15,000 mPa ⁇ s, and particularly preferably 1,000 to 12,000 mPa ⁇ s.
  • the method for setting the viscosity of the polymer latex in the above range is not particularly limited, but for example, a method of adding a thickener to the polymer latex is preferably used.
  • a thickener for example, Vinyl compounds, such as polyvinyl alcohol and polyvinyl pyrrolidone; Cellulose derivatives, such as hydroxyethyl cellulose, hydroxypropyl cellulose, carboxymethylcellulose salt; Polycarboxylic acid compound and its sodium salt; Polyethylene And polyoxyethylene derivatives such as glycol ethers.
  • nonionic water-soluble polymers are preferable, and polyvinyl alcohol and polyvinyl pyrrolidone are particularly preferable.
  • the content of the nonionic water-soluble polymer in the polymer latex is preferably 0.1 to 5.0% by weight. .
  • the viscosity of the polymer latex can be made more appropriate.
  • the method of adding a thickener to the polymer latex is not particularly limited, but when using a polymer latex with a cross-linking agent added, the generation of aggregates in the polymer latex is prevented. From the viewpoint that the polymer latex can be transferred better, after adding a part of the thickener before aging the polymer latex, add the remaining thickener after the aging. It is preferable to use a method of adding a thickener after ripening the polymer latex, or a method of adding a thickener after aging the polymer latex.
  • a filler such as carbon black, silica, calcium carbonate, aluminum silicate, magnesium silicate, calcium silicate, magnesium oxide, zinc (meth) acrylate, magnesium (meth) acrylate may be added to the polymer latex. Although it is good, it is preferable not to add these fillers to the polymer latex from the viewpoint that the cut resistance when the obtained laminate is used as protective gloves can be further improved.
  • additives such as anti-aging agents, antioxidants, preservatives, antibacterial agents, wetting agents, dispersing agents, pigments, dyes, fillers, reinforcing agents, and pH adjusters are added to the polymer latex as necessary. A predetermined amount can also be added.
  • the solid content concentration of the polymer latex to which the crosslinking agent is added is preferably 25 to 55% by weight, more preferably 35 to 55% by weight.
  • the surface tension of the polymer latex to which a crosslinking agent is added is preferably 25 to 40 mN / m.
  • the coagulant solution used in the present invention is obtained by dissolving or dispersing a coagulant in a solvent.
  • the coagulant is not particularly limited as long as it can coagulate the polymer in the polymer latex, and a metal salt or the like can be used.
  • species which comprises a metal salt For example, Divalent metals, such as lithium, sodium, and potassium; Divalent metals, such as magnesium, calcium, zinc, iron, barium, zirconium, copper; Aluminum And trivalent metals such as
  • the salt species constituting the metal salt is not particularly limited, and examples thereof include organic acids such as nitric acid, sulfuric acid, and acetic acid.
  • the metal species is preferably a polyvalent metal, more preferably a divalent metal, and particularly preferably calcium.
  • the metal salt is preferably a polyvalent metal salt, more preferably a divalent metal nitrate or halide.
  • these metal salts include nitrates such as calcium nitrate, barium nitrate and zinc nitrate; metal halide salts such as barium chloride, calcium chloride, magnesium chloride, zinc chloride and aluminum chloride; barium acetate, calcium acetate and acetic acid Acetates such as zinc; sulfates such as calcium sulfate, magnesium sulfate, and aluminum sulfate; among these, nitrates and metal halides are preferable, calcium nitrate and calcium chloride are more preferable, and calcium nitrate is particularly preferable preferable.
  • These metal salts can be used alone or in combination of two or more.
  • the coagulant solution may further contain an organic acid in addition to the above-described coagulant.
  • an organic acid which has at least 1 type of group of a carboxyl group, a sulfo group, a hydroxy group, and a thiol group is preferable.
  • Specific examples include acetic acid, formic acid, propionic acid, citric acid, and oxalic acid. Among these, acetic acid is preferable.
  • the solvent for dissolving or dispersing the coagulant is not particularly limited, but water, alcohol such as methanol or ethanol, or a mixture thereof can be used, and among these, water is particularly preferable.
  • the concentration of the coagulant in the coagulant solution is usually 5 to 50% by weight, preferably 10 to 30% by weight.
  • the laminate of the present invention allows a polymer latex to adhere to a fiber substrate, and then contacts such a coagulant solution with the polymer latex adhered to the fiber substrate. It can be obtained by forming a polymer layer by coagulating the polymer in the polymer latex. At this time, a part of the polymer latex adhering to the fiber base material penetrates between the fibers constituting the fiber base material, and in this state, when the coagulant solution is brought into contact with the polymer latex, FIG. As shown in (A) and FIG. 1 (B), a polymer layer is formed on the surface of the fiber base material, and part of the polymer layer penetrates to the gaps of the fibers constituting the fiber base material. It becomes.
  • FIG. 1A and 1B are schematic views of a fiber base material and a laminate, respectively.
  • FIG. 1A shows a cross-sectional view of the fiber base material
  • FIG. 1 is a cross-sectional view of a laminate in which a polymer layer is laminated on the fiber base shown in FIG.
  • the polymer layer covers the fiber base material in a state where part of the polymer layer penetrates between the fibers constituting the fiber base material.
  • a portion that penetrates into the gaps between the fibers from the surface of the fiber base material is used as the permeation polymer layer, and among the polymer layers, the fiber base material is used.
  • the part which covers a fiber base material from the surface of is shown as a surface polymer layer.
  • the polymer layer is described as appropriately composed of a osmotic polymer layer and a surface polymer layer.
  • the osmotic polymer layer and the surface polymer layer are integrally formed. It will be.
  • the laminated body of this invention is not specifically limited, For example, it can be used as a protective glove.
  • the fiber substrate is not particularly limited.
  • a single fiber twisted yarn is used as the fiber, and a glove-shaped one is used by weaving this twisted yarn. be able to.
  • a protective glove can be obtained by forming a polymer layer on a glove-shaped fiber substrate.
  • the thickness of the penetrated portion in the fiber i.e., the thickness from the surface of the fiber substrate osmopolymers layer shown in FIG. 1 t 1 ( The unit is ⁇ m)
  • the ratio of the thickness t 1 of the osmotic polymer layer to the average thickness d of the base material layer (t 1 / d), where d is the average thickness of the base material layer of the fiber base material (unit is ⁇ m) Is 0.1 to 0.95, preferably 0.1 to 0.9, more preferably 0.15 to 0.8, still more preferably 0.15 to 0.4, and particularly preferably 0.15. ⁇ 0.35.
  • the ratio (t 1 / d) of the thickness t 1 of the osmotic polymer layer to the base layer average thickness d is in the above range, when the obtained laminate is used as a protective glove, It is possible to prevent the occurrence of a strike through in which the coalesced layer reaches the back surface of the fiber base material, thereby reducing the productivity of protective gloves caused by the back through (for example, a glove-shaped fiber base material)
  • a polymer layer is formed by adhering a polymer latex to a fiber base material in a state where it is attached to a glove mold, the polymer latex adheres to the glove mold due to a back-through, resulting in a protective glove obtained.
  • the ratio (t 1 / d) of the thickness t 1 of the osmotic polymer layer to the average thickness d of the base material layer may be in the above range, but the thickness t 1 of the osmotic polymer layer.
  • the thickness itself is preferably 50 to 600 ⁇ m, more preferably 100 to 550 ⁇ m, still more preferably 120 to 500 ⁇ m, and particularly preferably 120 to 250 ⁇ m.
  • the thickness of the portion of the polymer layer that covers the surface of the fiber substrate is 80 ⁇ m or more, preferably 100 ⁇ m. As mentioned above, More preferably, it is 180 micrometers or more.
  • the thickness t 2 of the surface polymer layer is in the above range, the durability is improved in the case of using the obtained laminate as a protective glove.
  • the upper limit of the thickness t 2 of the surface polymer layer is not particularly limited, preferably 1,000 ⁇ m less, more preferably 800 ⁇ m or less, more preferably 600 ⁇ m or less.
  • the ratio of the thickness of the osmotic polymer layer to the surface polymer layer in the polymer layer is not particularly limited, but the ratio of the thickness t 2 of the surface polymer layer to the thickness t 1 of the osmotic polymer layer (t 2 / t 1 ) is preferably 0.2 to 5, more preferably 0.3 to 4, further preferably 0.8 to 4, and particularly preferably 1 to 2.
  • the total thickness of the polymer layer that is, the sum of the thickness t 1 of the penetrating polymer layer and the thickness t 2 of the surface polymer layer is not particularly limited, but is preferably 150 ⁇ m or more.
  • the laminate of the present invention has a ratio (t 1 / d) of the thickness t 1 of the osmotic polymer layer to the average thickness d of the base material layer and a thickness t 2 [ ⁇ m] of the surface polymer layer.
  • t 1 / d the thickness of the osmotic polymer layer to the average thickness d of the base material layer
  • t 2 [ ⁇ m] the thickness of the surface polymer layer.
  • the production method of the present invention comprises a latex adhesion step for adhering the above polymer latex to a fiber substrate, and a polymer in the polymer latex by bringing a coagulant solution into contact with the polymer latex adhered to the fiber substrate. Coagulating step to form a polymer layer.
  • the viscosity of the polymer latex is the viscosity at a rotational speed of 10 rpm measured using a B-type viscometer.
  • the polymer latex is adhered to the fiber substrate in a state controlled in the range of 600 to 25,000 mPa ⁇ s.
  • the viscosity of the polymer latex is more preferably 800 to 20,000 mPa ⁇ s, still more preferably 900 to 15,000 mPa ⁇ s, and particularly preferably 1,000 to 12,000 mPa ⁇ s.
  • the temperature and solid content concentration of the polymer latex when the polymer latex is adhered to the fiber substrate are not particularly limited, and the viscosity under the condition of the rotation speed of 10 rpm measured using a B-type viscometer is the above.
  • the temperature may be controlled to be within a range, but preferably in a state where the temperature is controlled to 20 to 40 ° C. and the solid content concentration is 30 to 50% by weight, particularly in a state where the temperature is controlled to 25 ° C. and the solid content concentration is 45% by weight. It is preferable to attach the polymer latex to the fiber substrate.
  • the polymer latex when the polymer latex is adhered to the fiber substrate by adhering the polymer latex to the fiber substrate with the viscosity of the polymer latex adjusted to the above range, the polymer latex is The rate of permeation between the fibers of the fiber base material can be made moderate, thereby allowing the polymer latex to permeate appropriately between the fibers of the fiber base material without passing through. Can do. Therefore, the coagulant solution can be brought into contact with the polymer latex adhering to the fiber base material while the polymer latex is appropriately infiltrated into the fiber base material. As a result, a part of the polymer latex is made into the fiber base material.
  • the polymer in the polymer latex coagulates while being appropriately permeated into the polymer layer to form a polymer layer, and the obtained laminate has a thickness t 1 of the osmotic polymer layer with respect to the substrate layer average thickness d of the fiber substrate.
  • the ratio (t 1 / d) can be controlled within the above range.
  • a method of adding a thickener to the polymer latex can be used.
  • a method for adding a thickener when using a polymer latex to which a crosslinking agent is added, it is possible to prevent agglomerates from being generated in the polymer latex and to transfer the polymer latex. From the viewpoint of being able to perform better, a method of adding a thickener before and after aging the polymer latex or a method of adding a thickener after aging the polymer latex is used. It is preferable.
  • the temperature condition for aging the polymer latex is not particularly limited, but is preferably 20 to 50 ° C.
  • the time for aging is the viewpoint of preventing peeling between the fiber substrate and the polymer layer, the viewpoint of improving the durability when the obtained laminate is used as a protective glove, and the protective glove for working. From the viewpoint of suppressing the permeation of solvent gas when used as a glove, it is preferably 4 hours or longer and 120 hours or shorter, more preferably 24 hours or longer and 72 hours or shorter.
  • the method for attaching the polymer latex to the fiber substrate is not particularly limited, and examples thereof include a method of immersing the fiber substrate in the polymer latex.
  • the molding die for covering the fiber substrate is not particularly limited, but various materials such as porcelain, glass, metal, and plastic can be used.
  • the shape of the molding die may be a desired shape according to the shape of the final product.
  • various molds for gloves such as a mold having a shape from the wrist to the fingertip as the mold for covering the fiber base material. .
  • the drying temperature at this time is not particularly limited, but is preferably 180 ° C. or lower, more preferably 10 to 170 ° C.
  • the drying time is not particularly limited, but is preferably 1 second to 60 minutes, more preferably 3 seconds to 30 minutes.
  • the polymer latex adhered to the fiber substrate in this manner is brought into contact with a coagulant solution, so that the polymer in the polymer latex is coagulated to form a polymer layer.
  • the method of bringing the coagulant solution into contact with the polymer latex adhered to the fiber substrate is not particularly limited, and examples thereof include a method of immersing the fiber substrate to which the polymer latex is adhered in the coagulant solution.
  • the fiber base material to which the polymer latex is adhered is immersed in the coagulant solution
  • the fiber base material to which the polymer latex is adhered is placed on a molding die having a desired shape and the coagulant solution. It is preferable to immerse.
  • the fiber base material is attached to the fiber base material as described above in a state where the fiber base material is previously covered with a molding die of a desired shape, and then the fiber base material to which the polymer latex is attached. Is preferably immersed in a coagulant solution while being covered with a molding die.
  • the immersion time when the fiber base material is immersed in the coagulant solution is not particularly limited, but is preferably 30 to 1 second, more preferably 10 to 1 second.
  • the solvent contained in the coagulant solution is dried by bringing the coagulant solution into contact with the polymer latex adhered to the fiber base material and then drying. It is preferable to remove.
  • the drying temperature at this time is not particularly limited and may be selected according to the solvent to be used, but is preferably 10 to 80 ° C., more preferably 15 to 70 ° C.
  • the drying time is not particularly limited, but is preferably 600 to 1 second, more preferably 300 to 5 seconds.
  • the crosslinking agent as polymer latex
  • the polymer latex adhering to the fiber base material is heated.
  • the heating temperature for crosslinking is preferably 60 to 160 ° C, more preferably 80 to 150 ° C. By setting the heating temperature within the above range, the time required for the crosslinking reaction can be shortened to improve the productivity of the laminate, and the obtained laminate can suppress the oxidative degradation of the polymer due to excessive heating. The physical properties of can be improved.
  • the heating time for crosslinking may be appropriately selected according to the heating temperature, but is usually 5 to 120 minutes.
  • a laminate in which a polymer layer is formed on a fiber substrate is obtained as described above.
  • the polymer layer is immersed in warm water at 20 to 80 ° C. for about 0.5 to 60 minutes to remove the polymer layer from the polymer layer. It is preferable to remove water-soluble impurities (emulsifier, water-soluble polymer, coagulant, etc.).
  • water-soluble impurities emulsifier, water-soluble polymer, coagulant, etc.
  • a laminate is obtained by detaching the fiber base material on which the polymer layer is formed from the molding die. Can do.
  • the desorption method it is possible to adopt a method of peeling from the mold by hand, or peeling by water pressure or compressed air pressure.
  • a heat treatment for 10 to 120 minutes may be performed at a temperature of 60 to 120 ° C. Further, a surface treatment layer by chlorination treatment or coating treatment may be formed on the inner and / or outer surface of the laminate.
  • the polymer latex is brought into contact with the polymer latex adhered to the fiber base material.
  • the polymer in the polymer latex coagulates without penetrating through the fibers of the fiber base material, and the polymer layer is formed on the fiber base material. Is obtained. Therefore, according to the production method of the present invention, it is possible to more effectively prevent the polymer layer from being broken through during the production of the laminate, and the occurrence of defects due to the breakthrough is suppressed, producing a laminate.
  • the sex can be further improved.
  • the comfort when the obtained protective gloves are actually worn is further improved.
  • a method for producing a laminate a method of obtaining a laminate by first immersing a fiber substrate in a coagulant solution and then attaching a polymer latex to the fiber substrate is known.
  • the fiber base material since the fiber base material is excessively contacted with the coagulant solution by immersing the fiber base material in the coagulant solution, the fiber base material may be deteriorated.
  • the types of fiber base materials that can be used and the types of coagulants have been limited.
  • the polymer latex is first attached to the fiber substrate, and then the coagulant solution is brought into contact with the polymer latex attached to the fiber substrate. Without excessive contact with the coagulant solution, which allows more types of fiber substrates and coagulants to be applied.
  • the laminate obtained by the production method of the present invention is in a state in which a part of the polymer layer has moderately penetrated into the fiber base material, thereby improving durability and flexibility.
  • the thickness t 1 of the osmotic polymer layer and the thickness t 2 of the surface polymer layer For the laminates produced in the examples and comparative examples, the cross section in which the polymer layer of the palm portion of 12 cm from the tip of the middle finger was laminated was observed using an optical microscope (VHX-200, manufactured by Keyence Corporation). The thickness t 1 of the osmotic polymer layer and the thickness t 2 of the surface polymer layer were measured. A specific measurement method will be described with reference to FIG. 1.
  • the thickness t 1 of the osmotic polymer layer is measured by measuring the distance from the surface of the fiber substrate to the deepest portion of the osmotic polymer at 10 points. It calculated
  • the laminates produced in the demolding examples and comparative examples were evaluated according to the following criteria as to whether or not they could be easily detached when peeled from the metal glove mold during the production of the laminate. 3: Desorption was possible within 10 seconds. 2: Desorption was possible within 5 minutes. 1: Desorption was not possible.
  • the area of the polymer layer reaching the back surface is 5% or less of the entire back surface.
  • the area of the polymer layer reaching the back surface is more than 5% and less than 20% of the entire back surface.
  • the area of the polymer layer reaching the back surface is 20% or more of the entire back surface.
  • the gloves manufactured in the flexible example and the comparative example were each worn by 10 people and evaluated according to the following evaluation criteria. 3: Soft 2: Hard 1: Very hard
  • Example 1 Preparation of latex composition for dip molding
  • latex of nitrile rubber (a1) (trade name “Nipol LX550L”, manufactured by Nippon Zeon Co., Ltd., acrylonitrile unit, 1,3-butadiene unit, and ethylenically unsaturated acid monomer Nitrile rubber latex containing monomer units) is prepared, and colloidal sulfur (manufactured by Hosoi Chemical Co., Ltd.) 1.0 in terms of solid content with respect to 100 parts of nitrile rubber in the latex of nitrile rubber (a1).
  • colloidal sulfur manufactured by Hosoi Chemical Co., Ltd.
  • the viscosity measured under a condition of a temperature of 25 ° C. and a solid content concentration of 45% by weight and a rotational speed of 10 rpm by a B-type viscometer was 10,000 mPa ⁇ s. .
  • coagulant solution A coagulant solution was obtained by mixing 20 parts of calcium nitrate and 80 parts of water.
  • the latex composition for dip molding obtained above was adjusted to 25 ° C., and then a glove-shaped fiber substrate (material: cotton, substrate layer average thickness d of fiber substrate) : 650 ⁇ m, linear density: 300 denier) was immersed in a latex composition for dip molding adjusted to 25 ° C. for 5 seconds, pulled up from the latex composition for dip molding, and then at a temperature of 30 ° C. Dried for 30 minutes. Thereafter, the metal glove mold was immersed in the above-mentioned coagulant solution for 5 seconds, pulled up from the coagulant solution, and then dried at a temperature of 30 ° C. for 1 minute to form a polymer layer on the fiber substrate. .
  • the nitrile rubber in the polymer layer was subjected to a crosslinking treatment by performing a heat treatment at a temperature of 125 ° C. for 60 minutes.
  • the laminated body (protective glove) was obtained by peeling the fiber base material in which the polymer layer was formed from metal glove molds.
  • the thickness t 1 of osmopolymers layer, and the thickness was measured t 2 of the surface polymer layer, demolding property, strike through, durability (peeling resistance), durability
  • the properties (cutting resistance) and flexibility were evaluated. The results are shown in Table 1.
  • the thickness t 1 of the resultant osmopolymers layer based on the value of the thickness t 2 of the surface polymer layer, (the thickness t 1 / substrate layer average thickness of osmopolymer layer d) And the result of calculating the ratio of (the thickness t 2 of the surface polymer layer / the thickness t 1 of the osmotic polymer layer) was also shown (the same applies to Examples 2 to 7 and Comparative Examples 1 to 4 described later). .
  • Example 2 The viscosity of the latex composition for dip molding was changed by changing the addition ratio of the thickener added before the aging of the latex composition to 0.2% by weight and the addition ratio of the thickener added after the aging to 0.1% by weight.
  • a laminate (protective glove) was obtained and evaluated in the same manner as in Example 1 except that (viscosity at 25 ° C. and solid content concentration of 45% by weight) was adjusted to 5,400 mPa ⁇ s. The results are shown in Table 1.
  • Example 3 The viscosity of the latex composition for dip molding was changed by changing the addition ratio of the thickener added before aging of the latex composition to 0.15 wt% and the addition ratio of the thickener added after aging to 0.05 wt%.
  • a laminate (protective glove) was obtained and evaluated in the same manner as in Example 2 except that (viscosity at 25 ° C. and a solid content concentration of 45% by weight) was adjusted to 1,200 mPa ⁇ s. The results are shown in Table 1.
  • Example 4 As a thickener, polyvinyl pyrrolidone (PVP) is used instead of polyvinyl alcohol (PVA), and the addition ratio of the thickener added before aging the latex composition is 0.2% by weight and added after aging. Except for changing the addition ratio of the thickener to 0.5% by weight and adjusting the viscosity of the dip molding latex composition (25 ° C., viscosity of 45% by weight of solid content) to 2,500 mPa ⁇ s. In the same manner as in Example 2, a laminate (protective glove) was obtained and evaluated in the same manner. The results are shown in Table 1.
  • PVP polyvinyl pyrrolidone
  • PVA polyvinyl alcohol
  • Comparative Example 1 As a thickener, carboxymethylcellulose (CMC) is used instead of polyvinyl alcohol (PVA), and the addition ratio of the thickener added before aging of the latex composition is 0.2% by weight and added after aging. Implemented except that the addition ratio of the thickener was changed to 0.4% by weight, and the viscosity of the dip-molding latex composition (25 ° C., viscosity of 45% solids concentration) was adjusted to 5,500 mPa ⁇ s. In the same manner as in Example 1, a laminate (protective glove) was obtained and evaluated in the same manner. The results are shown in Table 1.
  • CMC carboxymethylcellulose
  • PVA polyvinyl alcohol
  • Comparative Example 2 As the thickener, sodium polyacrylate (PAA) is used instead of polyvinyl alcohol (PVA), and the addition ratio of the thickener added before aging the latex composition is 0.05% by weight after aging. Except for changing the addition ratio of the thickener to be added to 0.1% by weight and adjusting the viscosity of the dip molding latex composition (25 ° C., viscosity of 45% by weight of solid content) to 5,800 mPa ⁇ s. In the same manner as in Example 1, a laminate (protective glove) was obtained and evaluated in the same manner. The results are shown in Table 1.
  • Comparative Example 3 A fiber base material similar to that used in Example 1 was prepared, and a metal glove mold covered with the prepared fiber base material was immersed in the above-mentioned coagulant solution for 5 seconds and pulled up from the coagulant solution. Drying was performed at a temperature of 30 ° C. for 1 minute. Thereafter, the metal glove mold was immersed in the same dip-forming latex composition as used in Example 1 for 5 seconds, pulled up from the dip-forming latex composition, and then at a temperature of 30 ° C. for 30 minutes. It was made to dry and the polymer layer was formed on the fiber base material. Thereafter, the nitrile rubber in the polymer layer was subjected to a crosslinking treatment by performing a heat treatment at a temperature of 125 ° C. for 60 minutes. Subsequently, the laminated body (protective glove) was obtained by peeling the fiber base material in which the polymer layer was formed from metal glove molds. The obtained laminate was evaluated in the same manner as in Example 1. The results are shown in Table 1.
  • Viscosity of the latex composition for dip molding was changed by changing the addition ratio of the thickener added before the aging of the latex composition to 0.05 wt% and the addition ratio of the thickener added after the aging to 0.02 wt%.
  • a laminate (protective glove) was obtained and evaluated in the same manner as in Example 2 except that (viscosity at 25 ° C. and a solid content concentration of 45% by weight) was adjusted to 500 mPa ⁇ s. The results are shown in Table 1.
  • the laminate in which the ratio of (thickness t 1 of the penetrating polymer layer / average thickness d of the base material layer) and the thickness t 2 of the surface polymer layer were controlled within the predetermined range of the present invention Both have excellent productivity due to good demolding results, and also have excellent comfort during wearing due to good results of back-through, as well as durability and flexibility. Excellent (Examples 1 to 4).

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Gloves (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Laminated Bodies (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)

Abstract

複数の繊維から構成される繊維基材と、重合体ラテックスから形成される重合体層とが積層されてなる積層体であって、前記重合体層は、一部が、前記繊維の間に浸透した状態で前記繊維基材を被覆しており、前記重合体層のうち、前記繊維の間に浸透した部分である浸透重合体層の、前記繊維基材の表面からの厚みをt[μm]とし、前記繊維基材の基材層平均厚みをd[μm]とした場合に、前記基材層平均厚みdに対する前記浸透重合体層の厚みtの比(t/d)が、0.1~0.95であり、前記重合体層のうち、前記繊維基材の表面を被覆する部分である表面重合体層の、前記繊維基材の表面からの厚みをt[μm]とした場合に、前記表面重合体層の厚みt[μm]が、80μm以上である積層体を提供する。

Description

積層体
 本発明は、複数の繊維から構成される繊維基材と、重合体ラテックスから形成される重合体層とが積層されてなる積層体に関するものである。また、本発明は、上記積層体を備える保護手袋に関するものである。
 従来、工場での製造作業、軽作業、工事作業、農作業等の様々な用途で、繊維製手袋をゴムや樹脂等により被覆することで、耐溶剤性、グリップ性、耐摩耗性等を向上させた保護手袋が作業用手袋として用いられている。
 このような保護手袋としては、たとえば、手袋型に装着した繊維製手袋の外表面に、ゴムや樹脂を付着させて被膜を形成することにより得られる保護手袋等が知られているが、繊維製手袋にゴムや樹脂を付着させる際に、ゴムや樹脂が繊維製手袋の外表面から内部まで浸透してしまう場合があり、これにより、ゴムや樹脂が手袋型に付着して、保護手袋を手袋型から外すのが困難になってしまい、保護手袋の生産性が低下しまうとともに、得られる保護手袋を装着した際の快適性が低下してしまうという問題があった。
 このような問題を解決するために、たとえば、特許文献1には、繊維製手袋に、酸もしくは多価金属塩等を溶解してなる凝固剤溶液を含浸させた後、手袋体の該表面に、ゴムまたは合成樹脂のエマルジョンを接触させて薄膜を形成し、さらに、該薄膜上に合成樹脂のペーストの塗膜を形成してなる保護手袋が開示されている。しかしながら、特許文献1の技術により得られる保護手袋は、ゴムまたは合成樹脂のエマルジョンを用いて形成される薄膜について、厚みや、繊維製手袋への浸透量が制御されておらず、得られる保護手袋の柔軟性が低下してしまうという問題があった。
特開平2-118102号公報
 本発明は、このような実状に鑑みてなされたものであり、生産性に優れ、しかも、柔軟性および装着時の快適性にも優れた積層体を提供することを目的とする。また、本発明は、このような積層体を備える保護手袋を提供することも目的とする。
 本発明者等は、上記目的を達成するために鋭意研究した結果、複数の繊維から構成される繊維基材と、重合体ラテックスから形成される重合体層とが積層されてなる積層体であって、重合体層のうち前記繊維の間に浸透した部分の厚みの、前記繊維基材の基材層平均厚みに対する比を、所定範囲に制御するとともに、重合体層のうち繊維基材の表面を被覆する部分の厚みも、所定範囲に制御することにより、上記目的を達成できることを見出し、本発明を完成させるに至った。
 すなわち、本発明によれば、複数の繊維から構成される繊維基材と、重合体ラテックスから形成される重合体層とが積層されてなる積層体であって、前記重合体層は、一部が、前記繊維の間に浸透した状態で前記繊維基材を被覆しており、前記重合体層のうち、前記繊維の間に浸透した部分である浸透重合体層の、前記繊維基材の表面からの厚みをt[μm]とし、前記繊維基材の基材層平均厚みをd[μm]とした場合に、前記基材層平均厚みdに対する前記浸透重合体層の厚みtの比(t/d)が、0.1~0.95であり、前記重合体層のうち、前記繊維基材の表面を被覆する部分である表面重合体層の、前記繊維基材の表面からの厚みをt[μm]とした場合に、前記表面重合体層の厚みt[μm]が、80μm以上である積層体が提供される。
 本発明の積層体において、前記重合体ラテックスが、増粘剤としてノニオン性水溶性高分子を含有することが好ましい。
 本発明の積層体において、前記重合体ラテックス中における、前記ノニオン性水溶性高分子の含有割合が、0.1~5.0重量%であることが好ましい。
 本発明の積層体において、前記ノニオン性水溶性高分子が、ポリビニルアルコールおよび/またはポリビニルピロリドンであることが好ましい。
 本発明の積層体において、前記重合体ラテックスを構成する重合体がニトリルゴムであることが好ましい。
 本発明の積層体において、前記ニトリルゴムが、エチレン性不飽和ニトリル単量体単位、共役ジエン単量体単位、およびエチレン性不飽和酸単量体単位を含有するものであることが好ましい。
 また、本発明によれば、上記の積層体を備える保護手袋が提供される。
 さらに、本発明によれば、上記の積層体の製造方法であって、前記重合体ラテックスを、前記繊維基材に付着させるラテックス付着工程と、前記繊維基材に付着させた前記重合体ラテックスに、凝固剤溶液を接触させて前記重合体ラテックス中の重合体を凝固させることで、前記重合体層を形成する凝固工程と、を備え、前記重合体ラテックスを前記繊維基材に付着させる際に、前記重合体ラテックスの粘度を、B型粘度計を用いて測定される回転速度10rpmの条件における粘度で、600~25,000mPa・sの範囲に制御した状態にて、前記重合体ラテックスを前記繊維基材に付着させる積層体の製造方法が提供される。
 本発明の積層体の製造方法において、前記重合体ラテックスを前記繊維基材に付着させる際に、前記重合体ラテックスを、温度が25℃、固形分濃度が45重量%、および、B型粘度計を用いて測定される回転速度10rpmの条件における粘度が600~25,000mPa・sに制御された状態にて、前記重合体ラテックスを前記繊維基材に付着させることが好ましい。
 本発明によれば、生産性に優れ、しかも、柔軟性および装着時の快適性にも優れた積層体を提供することができる。また、本発明によれば、このような積層体を備える保護手袋を提供することができる。
図1は、本発明で用いる繊維基材の模式図、および本発明の積層体の模式図である。
 本発明の積層体は、複数の繊維から構成される繊維基材と、重合体ラテックスから形成される重合体層とが積層されてなる積層体であって、前記重合体層は、一部が、前記繊維の間に浸透した状態で前記繊維基材を被覆しており、前記重合体層のうち、前記繊維の間に浸透した部分である浸透重合体層の、前記繊維基材の表面からの厚みをt[μm]とし、前記繊維基材の基材層平均厚みをd[μm]とした場合に、前記基材層平均厚みdに対する前記浸透重合体層の厚みtの比(t/d)が、0.1~0.95であり、前記重合体層のうち、前記繊維基材の表面を被覆する部分である表面重合体層の、前記繊維基材の表面からの厚みをt[μm]とした場合に、前記表面重合体層の厚みt[μm]が、80μm以上であることを特徴とする。
 本発明で用いる繊維基材としては、特に限定されず、繊維製のものであればよい。繊維基材を構成する繊維としては、綿、毛、麻、羊毛等の天然繊維、ポリエステル、ポリウレタン、アクリル、ナイロン等の合成繊維などを素材として用いることができ、これらの中でも、綿を用いることが好ましい。
 本発明で用いる繊維基材を構成する繊維は、単繊維(上記の天然繊維や合成繊維などから取り出される一本一本)であってもよいし、複数の単繊維からなる撚糸であってもよいが、撚糸であることが好ましい。
 繊維基材は、上述した繊維の編物または織物であってもよいし、不織布であってもよい。また、繊維基材は、縫製されたものであってもよい。
 本発明の積層体においては、上述したように、繊維基材の基材層平均厚みdに対する、重合体層の浸透重合体層の厚みtの比(t/d)が上記範囲にあればよいが、繊維基材の基材層平均厚みdは、好ましくは50~3,000μm、より好ましくは100~2,000μm、さらに好ましくは400~900μmである。基材層平均厚みdを上記範囲とすることにより、得られる積層体の強度をより向上させることができる。
 なお、繊維基材は、複数の繊維により構成されるため、特に、繊維基材が織布である場合には、通常、繊維が折り重なって厚み方向における繊維の重なり度合いが密になっている部分(重なり合っている繊維の数が多い部分)と、厚み方向における繊維の重なり度合いが疎になっている部分(重なり合っている繊維の数が少ない部分)とが存在し、これらの部分を含む層(基材層)によって、構成されることとなる。そのため、繊維基材は、そのミクロ構造においては、繊維の重なり度合いが密になっている部分と、繊維の重なり度合いが疎になっている部分とで、その厚みが異なる場合があるが、本発明においては、繊維基材の基材層平均厚みdは、繊維基材について、繊維の重なり度合いが密になっている部分の厚みを、その厚みとした平均値として、求めることとする。すなわち、繊維の重なり度合いが密になっている部分の厚みを平均したものを基材層平均厚みdとする。
 また、繊維基材を構成する繊維の線密度は、特に限定されないが、好ましくは50~500デニールである。
 繊維基材のゲージ数は、特に限定されないが、重合体層の一部を繊維基材により適度に浸透させることができる(繊維基材上に重合体層を形成する際に、形成される重合体層のうち、浸透重合体層の厚みtをより適度な範囲に制御することができる)という観点より、好ましくは7~18ゲージである。ここで、ゲージ数は、1インチの間にある編機の針の数をいう。
 本発明の積層体は、たとえば、このような繊維基材に、後述する重合体ラテックスを付着させた後、繊維基材に付着した重合体ラテックスに凝固剤溶液を接触させて重合体ラテックス中の重合体を凝固させることで、重合体層を形成することにより得ることができる。この際においては、重合体層は、繊維基材に一部が浸透した状態で、繊維基材を被覆するようにして形成される。
 本発明で用いる重合体ラテックスとしては、特に限定されないが、得られる積層体を柔軟性により優れるものとすることができるという点より、重合体としてゴム状重合体を含有するものを用いることが好ましく、ゴム状重合体としては、天然ゴム;ブタジエンやイソプレンなどの共役ジエンを重合または共重合してなる共役ジエン系ゴム;等が挙げられ、これらの中でも、共役ジエン系ゴムが好ましい。共役ジエン系ゴムとしては、ニトリルを共重合してなるいわゆるニトリルゴム、イソプレンゴム、スチレン-ブタジエンゴム、クロロプレンゴム等が挙げられ、これらの中でも、ニトリルゴムが特に好ましい。
 ニトリルゴムとしては、特に限定されないが、α,β-エチレン性不飽和ニトリル単量体および必要に応じて用いられる共重合可能なその他の単量体を共重合したものを用いることができる。
 α,β-エチレン性不飽和ニトリル単量体としては、特に限定されないが、ニトリル基を有し、炭素数が、好ましくは3~18であるエチレン性不飽和化合物を用いることができる。このようなα,β-エチレン性不飽和ニトリル単量体としては、たとえば、アクリロニトリル、メタクリロニトリル、ハロゲン置換アクリロニトリルなどが挙げられ、これらの中でも、アクリロニトリルが特に好ましい。なお、これらのα,β-エチレン性不飽和ニトリル単量体は、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 ニトリルゴムにおけるα,β-エチレン性不飽和ニトリル単量体単位の含有割合は、全単量体単位に対して、好ましくは10~45重量%、より好ましくは20~40重量%である。α,β-エチレン性不飽和ニトリル単量体単位の含有割合を上記範囲にすることにより、得られる積層体の耐溶剤性を向上させることができ、かつ、風合いを向上させることができる。
 また、ニトリルゴムとしては、得られる重合体層にゴム弾性を付与するという観点より、共役ジエン単量体単位を含有するものが好ましい。
 共役ジエン単量体単位を形成する共役ジエン単量体としては、1,3-ブタジエン、イソプレン、2,3-ジメチル-1,3-ブタジエン、1,3-ペンタジエン、クロロプレンなどの炭素数4~6の共役ジエン単量体が好ましく、1,3-ブタジエン及びイソプレンがより好ましく、1,3-ブタジエンが特に好ましい。なお、これらの共役ジエン単量体は、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 共役ジエン単量体単位の含有割合は、ニトリルゴムを構成する全単量体単位に対して、好ましくは40~80重量%、より好ましくは52~78重量%である。共役ジエン単量体単位の含有割合を上記範囲にすることにより、得られる積層体について、耐溶剤性を向上させることができ、かつ、保護手袋として用いた場合における風合いを向上させることができる。
 また、ニトリルゴムは、α,β-エチレン性不飽和ニトリル単量体単位を形成する単量体、および共役ジエン単量体単位を形成する単量体と共重合可能なその他のエチレン性不飽和酸単量体を含んでいてもよい。
 このような共重合可能なその他のエチレン性不飽和酸単量体としては、特に限定されないが、たとえば、カルボキシル基含有エチレン性不飽和単量体、スルホン酸基含有エチレン性不飽和単量体、リン酸基含有エチレン性不飽和単量体などが挙げられる。
 カルボキシル基含有エチレン性不飽和単量体としては、特に限定されないが、アクリル酸、メタクリル酸、クロトン酸等のエチレン性不飽和モノカルボン酸;フマル酸、マレイン酸、イタコン酸、無水マレイン酸、無水イタコン酸等のエチレン性不飽和多価カルボン酸およびその無水物;マレイン酸メチル、イタコン酸メチル等のエチレン性不飽和多価カルボン酸の部分エステル化物;などが挙げられる。
 スルホン酸基含有エチレン性不飽和単量体としては、特に限定されないが、ビニルスルホン酸、メチルビニルスルホン酸、スチレンスルホン酸、(メタ)アリルスルホン酸、(メタ)アクリル酸-2-スルホン酸エチル、2-アクリルアミド-2-ヒドロキシプロパンスルホン酸などが挙げられる。
 リン酸基含有エチレン性不飽和単量体としては、特に限定されないが、(メタ)アクリル酸-3-クロロ-2-リン酸プロピル、(メタ)アクリル酸-2-リン酸エチル、3-アリロキシ-2-ヒドロキシプロパンリン酸などが挙げられる。
 これらの共重合可能なその他のエチレン性不飽和酸単量体は、アルカリ金属塩またはアンモニウム塩として用いることもでき、また、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。上記の共重合可能なその他のエチレン性不飽和酸単量体のなかでも、カルボキシル基含有エチレン性不飽和単量体が好ましく、エチレン性不飽和モノカルボン酸がより好ましく、メタクリル酸が特に好ましい。
 本発明で用いる重合体ラテックスを構成する重合体中における、共重合可能なその他のエチレン性不飽和酸単量体の含有量は、重合体中の全単量体単位に対して、好ましくは2~8重量%である。共重合可能なその他のエチレン性不飽和酸単量体単位の含有量を上記範囲にすることにより、繊維基材上に形成する重合体層の成形性を優れたものとすることができ、かつ、得られる積層体を保護手袋として用いた場合における風合いを向上させることができる。
 重合体ラテックスを構成する重合体は、上述したエチレン性不飽和ニトリル単量体単位、共役ジエン単量体単位、および共重合可能なその他のエチレン性不飽和酸単量体単位に加えて、さらに他の単量体単位を含有していてもよい。
 他の単量体単位を形成する他の単量体としては、共役ジエン単量体、エチレン性不飽和ニトリル単量体単位、およびエチレン性不飽和酸単量体と共重合可能な単量体であればよく、特に限定されないが、たとえば、以下の単量体が挙げられる。
 すなわち、他の単量体としては、スチレン、α-メチルスチレン、モノクロルスチレン、ジクロルスチレン、トリクロルスチレン、モノメチルスチレン、ジメチルスチレン、トリメチルスチレン、ヒドロキシメチルスチレン等の芳香族ビニル単量体;アクリルアミド、メタクリルアミド、N,N-ジメチルアクリルアミド、N-メチロールアクリルアミド等のエチレン性不飽和カルボン酸アミド単量体;(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸ブチル、(メタ)アクリル酸2-エチルヘキシル等のエチレン性不飽和カルボン酸アルキルエステル単量体;酢酸ビニル、プロピオン酸ビニル、バーサチック酸ビニル等のカルボン酸ビニルエステル単量体;塩化ビニル、塩化ビニリデン、フッ化ビニル、フッ化ビニリデン等のハロゲン化ビニル単量体;エチレン、プロピレン、1-ブテン、イソブテン等のオレフィン単量体;メチルビニルエーテル、n-プロピルビニルエーテル、イソブチルビニルエーテル、ドデシルビニルエーテル等のビニルエーテル単量体;酢酸アリル、酢酸メタリル、塩化アリル、塩化メタリル等の(メタ)アリル化合物;ビニルトリメトキシシラン等のビニルシリル化合物;ビニルピリジン、N-ビニルピロリドン;などを挙げることができ、これらの中でも、得られる積層体の強度をより高めることができるという観点より、芳香族ビニル単量体が好ましい。これらの他の単量体は、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 重合体ラテックスを構成する重合体中の他の単量体単位の含有量は、繊維基材から重合体層が剥離してしまうことを防止する観点、作業用手袋として用いた場合の作業時の疲労を抑制する観点、および作業用手袋として着用した場合における溶剤ガスの透過を抑制する観点から、重合体中の全単量体単位に対して、好ましくは26重量%以下、より好ましくは10重量%以下、さらに好ましくは7重量%以下、特に好ましくは5重量%以下である。
 本発明で用いる重合体ラテックスとしては、特に限定されず、たとえば上記の単量体を含有してなる単量体混合物を重合して得られる重合体のラテックスであればよく、前記単量体混合物を乳化重合して得られるラテックス、前記単量体混合物を溶液重合して得られる重合体溶液を転相乳化して得られるラテックス、などを用いることができる。
 乳化重合して得られるラテックスを用いる場合には、乳化重合に用いる単量体混合物の組成を調節することにより、得られる共重合体の組成を容易に調節することができるようになる。乳化重合の方法としては、従来公知の方法を採用することができる。
 上記の単量体の混合物を乳化重合するには、通常用いられる、乳化剤、重合開始剤、分子量調整剤等の重合副資材を使用することができる。これら重合副資材の添加方法は特に限定されず、初期一括添加法、分割添加法、連続添加法などいずれの方法でもよい。
 乳化剤としては、特に限定されないが、たとえば、アニオン性界面活性剤、ノニオン性界面活性剤、カチオン性界面活性剤、および両性界面活性剤などが挙げられ、これらの中でも、アルキルベンゼンスルホン酸塩、脂肪族スルホン酸塩、高級アルコールの硫酸エステル塩、α-オレフィンスルホン酸塩、アルキルエーテル硫酸エステル塩等のアニオン性界面活性剤が好ましい。
 乳化剤の使用量は、使用する全単量体100重量部に対して、好ましくは0.5~10重量部、より好ましくは1~8重量部である。
 重合開始剤としては、特に限定されないが、ラジカル開始剤が好ましい。ラジカル開始剤としては、特に限定されないが、たとえば、過硫酸ナトリウム、過硫酸カリウム、過硫酸アンモニウム、過リン酸カリウム、過酸化水素等の無機過酸化物;t-ブチルパーオキサイド、クメンハイドロパーオキサイド、p-メンタンハイドロパーオキサイド、ジ-t-ブチルパーオキサイド、t-ブチルクミルパーオキサイド、アセチルパーオキサイド、イソブチリルパーオキサイド、オクタノイルパーオキサイド、ジベンゾイルパーオキサイド、3,5,5-トリメチルヘキサノイルパーオキサイド、t-ブチルパーオキシイソブチレート等の有機過酸化物;アゾビスイソブチロニトリル、アゾビス-2,4-ジメチルバレロニトリル、アゾビスシクロヘキサンカルボニトリル、アゾビスイソ酪酸メチル等のアゾ化合物;などが挙げられ、これらの中でも、無機過酸化物または有機過酸化物が好ましく、無機過酸化物がより好ましく、過硫酸塩が特に好ましい。これらの重合開始剤は、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 重合開始剤の使用量は、使用する全単量体100重量部に対して、好ましくは0.01~2重量部、より好ましくは0.05~1.5重量部である。
 分子量調整剤としては、特に限定されないが、たとえば、α-メチルスチレンダイマー;t-ドデシルメルカプタン、n-ドデシルメルカプタン、オクチルメルカプタン等のメルカプタン類;四塩化炭素、塩化メチレン、臭化メチレン等のハロゲン化炭化水素;テトラエチルチウラムダイサルファイド、ジペンタメチレンチウラムダイサルファイド、ジイソプロピルキサントゲンダイサルファイド等の含硫黄化合物;などが挙げられ、これらの中でも、メルカプタン類が好ましく、t-ドデシルメルカプタンがより好ましい。これらの分子量調整剤は、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 分子量調整剤の使用量は、その種類によって異なるが、使用する全単量体100重量部に対して、好ましくは0.1~1.5重量部、より好ましくは0.2~1.0重量部である。
 乳化重合は、通常、水中で行なわれる。水の使用量は、使用する全単量体100重量部に対して、好ましくは80~500重量部、より好ましくは100~200重量部である。
 乳化重合に際し、必要に応じて、上記以外の重合副資材をさらに用いてもよい。重合副資材としては、キレート剤、分散剤、pH調整剤、脱酸素剤、粒子径調整剤等が挙げられ、これらの種類、使用量とも特に限定されない。
 単量体の添加方法としては、たとえば、反応容器に使用する単量体を一括して添加する方法、重合の進行に従って連続的または断続的に添加する方法、単量体の一部を添加して特定の転化率まで反応させ、その後、残りの単量体を連続的または断続的に添加して重合する方法等が挙げられ、いずれの方法を採用してもよい。単量体を混合して連続的または断続的に添加する場合、混合物の組成は、一定としても、あるいは変化させてもよい。
 また、各単量体は、使用する各種単量体を予め混合してから反応容器に添加しても、あるいは別々に反応容器に添加してもよい。
 乳化重合する際の重合温度は、特に限定されないが、通常、0~95℃であり、好ましくは5~70℃である。重合時間は、特に限定されないが、通常、5~40時間程度である。
 以上のように単量体を乳化重合し、所定の重合転化率に達した時点で、重合系を冷却したり、重合停止剤を添加したりして、重合反応を停止する。重合反応を停止する際の重合転化率は、通常、80重量%以上であり、好ましくは90重量%以上である。
 重合停止剤は、通常、乳化重合において使用されているものであれば、特に限定されないが、その具体例としては、ヒドロキシルアミン、ヒドロキシアミン硫酸塩、ジエチルヒドロキシアミン、ヒドロキシアミンスルホン酸及びそのアルカリ金属塩等のヒドロキシアミン化合物;ジメチルジチオカルバミン酸ナトリウム;ハイドロキノン誘導体;カテコール誘導体;ヒドロキシジメチルベンゼンチオカルボン酸、ヒドロキシジエチルベンゼンジチオカルボン酸、ヒドロキシジブチルベンゼンジチオカルボン酸等の芳香族ヒドロキシジチオカルボン酸及びこれらのアルカリ金属塩等の芳香族ヒドロキシジチオカルボン酸化合物;等が挙げられる。
 重合停止剤の使用量は、特に限定されないが、通常、使用する全単量体100重量部に対して、0.05~2重量部である。
 重合反応を停止した後、所望により、未反応の単量体を除去し、固形分濃度やpHを調整してもよい。
 重合体ラテックスを構成する重合体の粒子の重量平均粒子径は、通常、30~1000nm、好ましくは50~500nm、より好ましくは70~200nmである。重合体の粒子の重量平均粒子径を上記範囲にすることにより、重合体ラテックスの粘度が適度なものとなって重合体ラテックスの取扱性がより向上するとともに、重合体層を成形する際の成形性が向上してより均質な重合体層を有する積層体が得られるようになる。
 重合体ラテックスの固形分濃度は、通常、20~65重量%であり、好ましくは30~60重量%、より好ましくは35~55重量%である。この重合体ラテックスの固形分濃度を上記範囲にすることにより、ラテックスの輸送効率を向上させることができ、かつ、重合体ラテックスの粘度が適度なものとなって重合体ラテックスの取扱性が向上する。
 重合体ラテックスのpHは、通常、5~13であり、好ましくは7~10、より好ましくは7.5~9である。重合体ラテックスのpHを上記範囲にすることにより、機械的安定性が向上して重合体ラテックスの移送時における粗大凝集物の発生を抑制することができ、かつ、重合体ラテックスの粘度が適度なものとなって重合体ラテックスの取扱性が向上する。
 さらに、本発明で用いる重合体ラテックスには、架橋剤、架橋促進剤、または酸化亜鉛等を添加することができる。すなわち、本発明で用いる重合体ラテックスは、架橋剤、架橋促進剤、または酸化亜鉛等を添加して、重合体ラテックス組成物としてもよく、重合体ラテックス組成物の形態にて、重合体層の形成に用いてもよい。
 架橋剤としては、硫黄系架橋剤を用いることが好ましい。硫黄系架橋剤としては、特に限定されないが、粉末硫黄、硫黄華、沈降性硫黄、コロイド硫黄、表面処理硫黄、不溶性硫黄などの硫黄;塩化硫黄、二塩化硫黄、モルホリンジスルフィド、アルキルフェノールジスルフィド、ジベンゾチアジルジスルフィド、カプロラクタムジスルフィド(N,N’-ジチオ-ビス(ヘキサヒドロ-2H-アゼピノン-2))、含リンポリスルフィド、高分子多硫化物などの含硫黄化合物;テトラメチルチウラムジスルフィド、ジメチルジチオカルバミン酸セレン、2-(4’-モルホリノジチオ)ベンゾチアゾールなどの硫黄供与性化合物;などが挙げられる。これらの架橋剤は、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 硫黄系架橋剤の添加量は、重合体ラテックス中の全固形分100重量部に対して、好ましくは0.01~5重量部、より好ましくは0.05~3重量部、特に好ましくは0.1~2重量部である。硫黄系架橋剤の添加量を上記範囲にすることにより、得られる積層体について、耐溶剤性を向上させることができ、かつ、保護手袋として用いた場合における風合いを向上させることができる。
 硫黄系架橋剤は、硫黄系架橋剤を溶媒に分散させた分散液として添加することが好ましい。分散液として重合体ラテックスに添加することにより、得られる重合体層におけるき裂、ピンホールの発生、および凝集物の付着等の欠陥が少ない積層体が得られる。
 硫黄系架橋剤の分散液の調製方法としては、特に限定されないが、硫黄系架橋剤に溶媒を添加し、ボールミルやビーズミルなどの湿式粉砕機で粉砕攪拌する方法が好ましい。
 硫黄系架橋剤として硫黄を使用する場合には、架橋促進剤(加硫促進剤)や、酸化亜鉛を併用することが好ましい。
 架橋促進剤(加硫促進剤)としては、特に限定されないが、たとえば、ジエチルジチオカルバミン酸、ジブチルジチオカルバミン酸、ジ-2-エチルヘキシルジチオカルバミン酸、ジシクロヘキシルジチオカルバミン酸、ジフェニルジチオカルバミン酸、ジベンジルジチオカルバミン酸などのジチオカルバミン酸類およびそれらの亜鉛塩;2-メルカプトベンゾチアゾール、2-メルカプトベンゾチアゾール亜鉛、2-メルカプトチアゾリン、ジベンゾチアジル・ジスルフィド、2-(2,4-ジニトロフェニルチオ)ベンゾチアゾール、2-(N,N-ジエチルチオ・カルバイルチオ)ベンゾチアゾール、2-(2,6-ジメチル-4-モルホリノチオ)ベンゾチアゾール、2-(4′-モルホリノ・ジチオ)ベンゾチアゾール、4-モルホリニル-2-ベンゾチアジル・ジスルフィド、1,3-ビス(2-ベンゾチアジル・メルカプトメチル)ユリアなどが挙げられ、これらの中でも、ジエチルジチオカルバミン酸亜鉛、ジブチルジチオカルバミン酸亜鉛、2-メルカプトベンゾチアゾール、2-メルカプトベンゾチアゾール亜鉛が好ましい。これらの架橋促進剤は、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 架橋促進剤の使用量は、重合体ラテックス中の全固形分100重量部に対して、好ましくは0.1~10重量部、より好ましくは0.5~5重量部である。
 また、酸化亜鉛の使用量は、重合体ラテックス中の全固形分100重量部に対して、好ましくは5重量部以下、より好ましく0.1~3重量部、さらに好ましくは0.5~2重量部である。
 重合体ラテックスとして、架橋剤を添加したものを用いる場合には、重合体ラテックスとして、予め熟成(前加硫ともいう。)させたものを用いてもよい。
 重合体ラテックスの粘度は、温度25℃かつ固形分濃度45重量%の条件においてB型粘度計を使用し回転速度10rpmの条件下で測定される粘度で、好ましくは600~25,000mPa・sであり、より好ましくは800~20,000mPa・s、さらに好ましくは900~15,000mPa・s、特に好ましくは1,000~12,000mPa・sである。重合体ラテックスの粘度を上記範囲とすることにより、形成される重合体層が繊維基材の裏面まで到達してしまう裏抜けの発生をより有効に防止することができるとともに、より適切に重合体層を形成することができるようになるため、得られる積層体を保護手袋として用いた場合に、耐久性(重合体層の耐剥離性および耐切創性など)、および柔軟性をより高度にバランスさせることができる。
 なお、重合体ラテックスの粘度を上記範囲とする方法としては、特に限定されないが、たとえば、重合体ラテックスに増粘剤を添加する方法を用いることが好ましい。増粘剤としては、特に限定されないが、たとえば、ポリビニルアルコール、ポリビニルピロリドン等のビニル系化合物;ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、カルボキシメチルセルロース塩等のセルロース誘導体;ポリカルボン系酸化合物およびそのナトリウム塩;ポリエチレングリコールエーテル等のポリオキシエチレン誘導体;等が挙げられる。これらのなかでも、ノニオン性水溶性高分子が好ましく、ポリビニルアルコール、ポリビニルピロリドンが特に好ましい。
 重合体ラテックスに増粘剤としてノニオン性水溶性高分子を添加する場合には、重合体ラテックス中におけるノニオン性水溶性高分子の含有割合は、好ましくは0.1~5.0重量%である。ノニオン性水溶性高分子の含有割合を上記範囲とすることにより、重合体ラテックスの粘度をより適度なものとすることができる。
 重合体ラテックスに増粘剤を添加する方法としては、特に限定されないが、重合体ラテックスとして架橋剤を添加したものを用いる場合には、重合体ラテックス中に凝集物が発生してしまうことを防止し、重合体ラテックスの移送をより良好に行うことができるようになるという観点より、重合体ラテックスの熟成前に一部の増粘剤を添加した後、熟成後にさらに残部の増粘剤を添加する方法(分割添加する方法)、または重合体ラテックスの熟成後に増粘剤を添加する方法を用いることが好ましく、これらのなかでも、分割添加する方法が特に好ましい。
 また、重合体ラテックスには、カーボンブラック、シリカ、炭酸カルシウム、珪酸アルミニウム、珪酸マグネシウム、珪酸カルシウム、酸化マグネシウム、(メタ)アクリル酸亜鉛、(メタ)アクリル酸マグネシウムなどの充填剤を添加してもよいが、得られる積層体を保護手袋として用いた場合における耐切創性をより向上させることができるという観点より、重合体ラテックスにはこれらの充填剤を添加しないことが好ましい。
 重合体ラテックスには、必要に応じて、老化防止剤、酸化防止剤、防腐剤、抗菌剤、湿潤剤、分散剤、顔料、染料、充填剤、補強剤、pH調整剤などの各種添加剤を所定量添加することもできる。
 架橋剤を添加した重合体ラテックスの固形分濃度は、好ましくは25~55重量%、より好ましくは35~55重量%である。また、架橋剤を添加した重合体ラテックスの表面張力は、好ましくは25~40mN/mである。
 次いで、本発明で用いる凝固剤溶液について説明する。
 本発明で用いる凝固剤溶液は、溶媒中に凝固剤を溶解または分散させてなるものである。
 凝固剤としては、重合体ラテックス中の重合体を凝固させることができるものであればよく、特に限定されず、金属塩などを用いることができる。金属塩を構成する金属種としては、特に限定されないが、たとえば、リチウム、ナトリウム、カリウムなどの1価の金属;マグネシウム、カルシウム、亜鉛、鉄、バリウム、ジルコニウム、銅などの2価の金属;アルミニウムなどの3価の金属;などが挙げられる。また、金属塩を構成する塩種としては、特に限定されないが、たとえば、硝酸、硫酸、酢酸などの有機酸;などが挙げられる。これらの中でも、金属種としては多価の金属が好ましく、2価の金属がより好ましく、カルシウムが特に好ましい。また、塩種としては、硝酸または塩素が好ましく、硝酸が特に好ましい。即ち、金属塩としては、多価金属塩が好ましく、2価金属の硝酸塩またはハロゲン化塩がより好ましい。
 これらの金属塩の具体例としては、硝酸カルシウム、硝酸バリウム、硝酸亜鉛等の硝酸塩;塩化バリウム、塩化カルシウム、塩化マグネシウム、塩化亜鉛、塩化アルミニウム等のハロゲン化金属塩;酢酸バリウム、酢酸カルシウム、酢酸亜鉛等の酢酸塩;硫酸カルシウム、硫酸マグネシウム、硫酸アルミニウム等の硫酸塩;等が挙げられ、これらの中でも、硝酸塩およびハロゲン化金属塩が好ましく、硝酸カルシウムおよび塩化カルシウムがより好ましく、硝酸カルシウムが特に好ましい。
 これらの金属塩は、単独または2種以上組み合わせて用いることができる。
 また、凝固剤溶液には、上述した凝固剤に加えて、さらに有機酸を含有していてもよい。有機酸としては、特に限定されないが、カルボキシル基、スルホ基、ヒドロキシ基、チオール基の少なくとも一種類の基を有する有機酸が好ましい。具体的には、酢酸、蟻酸、プロピオン酸、クエン酸、シュウ酸などが挙げられ、これらの中でも、酢酸が好ましい。
 凝固剤を溶解または分散させるための溶媒としては、特に限定されないが、水、もしくはメタノール、エタノール等のアルコール、またはこれらの混合物などを用いることができ、これらの中でも、水が特に好ましい。
 凝固剤溶液中における凝固剤の濃度は、通常、5~50重量%、好ましくは10~30重量%である。
 本発明の積層体は、たとえば、上述したように、繊維基材に重合体ラテックスを付着させ、次いで、このような凝固剤溶液を、繊維基材に付着させた重合体ラテックスと接触させて、重合体ラテックス中の重合体を凝固させることで、重合体層を形成することにより得ることができる。この際には、繊維基材に付着した重合体ラテックスは、一部が繊維基材を構成する繊維の間に浸透し、この状態で、凝固剤溶液を重合体ラテックスに接触させると、図1(A)および図1(B)に示すように、繊維基材の表面上に重合体層が形成されるとともに、重合体層の一部が繊維基材を構成する繊維の隙間まで浸透したものとなる。なお、図1(A)および図1(B)は、それぞれ繊維基材および積層体の模式図であり、図1(A)は、繊維基材の断面図を示し、図1(B)は、図1(A)に示す繊維基材に重合体層が積層されてなる積層体の断面図を示す。図1(B)に示す積層体においては、重合体層は、一部が、繊維基材を構成する繊維の間に浸透した状態で繊維基材を被覆している。図1(B)においては、積層体を構成する重合体層のうち、繊維基材の表面から繊維の隙間に浸透した部分を浸透重合体層とし、また、重合体層のうち、繊維基材の表面から繊維基材を被覆する部分を表面重合体層として示している。なお、本発明においては、重合体層を、適宜、浸透重合体層および表面重合体層からなるものとして説明するが、通常、これら浸透重合体層および表面重合体層は、一体として形成されることとなる。
 なお、本発明の積層体は、特に限定されないが、たとえば、保護手袋として用いることができる。本発明の積層体を保護手袋として用いる場合には、繊維基材としては、特に限定されないが、たとえば、繊維として単繊維の撚糸を使用し、この撚糸を織ることで手袋形状としたものを用いることができる。この場合には、手袋形状とした繊維基材上に、重合体層を形成することによって、保護手袋を得ることができる。
 本発明の積層体においては、積層体を構成する重合体層のうち、繊維に浸透した部分の厚み、すなわち、図1で示す浸透重合体層の繊維基材の表面からの厚みをt(単位はμm)とし、繊維基材の基材層平均厚みをd(単位はμm)とした場合に、基材層平均厚みdに対する浸透重合体層の厚みtの比(t/d)が、0.1~0.95であり、好ましくは0.1~0.9、より好ましくは0.15~0.8、さらに好ましくは0.15~0.4、特に好ましくは0.15~0.35である。本発明によれば、基材層平均厚みdに対する浸透重合体層の厚みtの比(t/d)を上記範囲とすることにより、得られる積層体を保護手袋として用いる場合に、重合体層が繊維基材の裏面まで到達してしまう裏抜けの発生を防止することができ、これにより裏抜けに起因して発生する保護手袋の生産性の低下(たとえば、手袋形状の繊維基材を、手袋型に装着した状態で、繊維基材に重合体ラテックスを付着させることにより重合体層を形成する場合に、裏抜けにより重合体ラテックスが手袋型に付着してしまい、得られる保護手袋を手袋型から脱着しづらくなることによる生産性の低下)を防止することができるとともに、得られる保護手袋の耐久性、柔軟性および装着時の快適性を高度にバランスさせることができる。基材層平均厚みdに対する浸透重合体層の厚みtの比(t/d)が小さすぎると、すなわち、基材層平均厚みdに対して浸透重合体層の厚みtが薄すぎると、得られる積層体を保護手袋として用いた場合に、重合体層が剥離しやすくなることで、耐久性が低下してしまう。一方、基材層平均厚みdに対する浸透重合体層の厚みtの比(t/d)が大きすぎると、すなわち、基材層平均厚みdに対して浸透重合体層の厚みtが厚すぎると、得られる積層体を保護手袋として用いた場合における、柔軟性が低下してしまう。
 また、本発明の積層体においては、基材層平均厚みdに対する浸透重合体層の厚みtの比(t/d)が上記範囲にあればよいが、浸透重合体層の厚みt自体は、好ましくは50~600μm、より好ましくは100~550μm、さらに好ましくは120~500μm、特に好ましくは120~250μmである。浸透重合体層の厚みtを上記範囲とすることにより、得られる積層体を保護手袋として用いた場合における耐久性がより向上する。
 さらに、本発明の積層体においては、重合体層のうち、繊維基材の表面を被覆する部分の厚み、すなわち、図1に示す表面重合体層の厚みtは、80μm以上、好ましくは100μm以上、より好ましくは180μm以上である。表面重合体層の厚みtを上記範囲とすることにより、得られる積層体を保護手袋として用いた場合における耐久性がより向上する。なお、表面重合体層の厚みtの上限は、特に限定されないが、好ましくは1,000μm以下、より好ましくは800μm以下、さらに好ましくは600μm以下である。
 また、重合体層における浸透重合体層と表面重合体層との厚みの比率は、特に限定されないが、浸透重合体層の厚みtに対する表面重合体層の厚みtの比(t/t)で、好ましくは0.2~5、より好ましくは0.3~4、さらに好ましくは0.8~4、特に好ましくは1~2である。浸透重合体層と表面重合体層との厚みの比率を上記範囲にすることにより、得られる積層体を保護手袋として用いた場合に、耐久性および柔軟性を高度にバランスさせることができる。
 また、重合体層の全体の厚み、すなわち、浸透重合体層の厚みtおよび表面重合体層の厚みtの合計は、特に限定されないが、好ましくは150μm以上である。
 本発明の積層体は、以上のように、基材層平均厚みdに対する浸透重合体層の厚みtの比(t/d)、および表面重合体層の厚みt[μm]が、それぞれ上述した範囲に制御されたものであり、これにより、耐久性および柔軟性が高度にバランスされたものとなり、たとえば、作業用手袋、特に家庭用、農業用、漁業用および工業用等の保護手袋として好適に用いることができる。
 次いで、本発明の積層体の製造方法について説明する。
 本発明の製造方法は、上記した重合体ラテックスを繊維基材に付着させるラテックス付着工程と、繊維基材に付着させた重合体ラテックスに、凝固剤溶液を接触させて重合体ラテックス中の重合体を凝固させることで、重合体層を形成する凝固工程と、を備える。この際に、本発明の製造方法においては、重合体ラテックスを繊維基材に付着させる際に、重合体ラテックスの粘度を、B型粘度計を用いて測定される回転速度10rpmの条件における粘度で、600~25,000mPa・sの範囲に制御した状態にて、重合体ラテックスを繊維基材に付着させるものである。この際における、重合体ラテックスの粘度は、より好ましくは800~20,000mPa・s、さらに好ましくは900~15,000mPa・s、特に好ましくは1,000~12,000mPa・sである。なお、重合体ラテックスを、繊維基材に付着させる際における、重合体ラテックスの温度および固形分濃度は特に限定されず、B型粘度計を用いて測定される回転速度10rpmの条件における粘度が上記範囲となるように制御すればよいが、好ましくは温度20~40℃、固形分濃度30~50重量%に制御した状態、特に、温度25℃、固形分濃度45重量%に制御した状態にて、重合体ラテックスを繊維基材に付着させることが好ましい。
 本発明の製造方法によれば、重合体ラテックスの粘度を上記範囲に調整した状態にて、繊維基材に付着させることで、重合体ラテックスを繊維基材に付着させる際に、重合体ラテックスが繊維基材の繊維の間に浸透する速度を適度なものとすることができ、これにより、重合体ラテックスを、裏抜けすることなく、かつ、繊維基材の繊維の間に適度に浸透させることができる。そのため、重合体ラテックスが繊維基材に適度に浸透した状態で、繊維基材に付着した重合体ラテックスに凝固剤溶液を接触させることができ、その結果、重合体ラテックスの一部が繊維基材に適度に浸透したまま、重合体ラテックス中の重合体が凝固して重合体層が形成され、得られる積層体について、繊維基材の基材層平均厚みdに対する浸透重合体層の厚みtの比(t/d)を上記範囲に制御することができるようになる。これにより、得られる積層体を作業用手袋などの保護手袋として用いた場合に、柔軟性および耐久性に優れたものとなる。
 重合体ラテックスの粘度を上記範囲に調製する方法としては、上述したように、重合体ラテックスに増粘剤を添加する方法を用いることができる。なお、増粘剤の添加方法としては、重合体ラテックスとして架橋剤を添加したものを用いる場合には、重合体ラテックス中に凝集物が発生してしまうことを防止し、重合体ラテックスの移送をより良好に行うことができるようになるという観点より、増粘剤を重合体ラテックスの熟成前および熟成後に分割して添加する方法、または増粘剤を重合体ラテックスの熟成後に添加する方法を用いることが好ましい。
 重合体ラテックスを熟成させる際の温度条件は、特に限定されないが、好ましくは20~50℃である。また、熟成させる際の時間は、繊維基材と重合体層との剥離を防止する観点、得られる積層体を保護手袋として用いた場合における耐久性を向上させる観点、および該保護手袋を作業用手袋として用いた場合における溶剤ガスの透過を抑制する観点から、好ましくは4時間以上120時間以下、より好ましくは24時間以上72時間以下である。熟成時間を上記範囲にすることにより、得られる積層体において、重合体層が繊維基材に適度に浸透することで、繊維基材と重合体層との剥離がより有効に防止され、得られる積層体の耐久性がより向上するとともに、積層体を保護手袋として用いた場合における溶剤ガスの透過をより有効に抑制することができる。
 繊維基材に重合体ラテックスを付着させる方法としては、特に限定されないが、たとえば、繊維基材を、重合体ラテックスに浸漬させる方法などが挙げられる。
 なお、繊維基材に重合体ラテックスを付着させる際には、予め繊維基材を所望の形状の成形用型に被せた状態で、繊維基材を重合体ラテックスに浸漬させることが好ましい。
 繊維基材を被せる成形用型としては、特に限定されないが、材質は磁器製、ガラス製、金属製、プラスチック製など種々のものを用いることができる。成形用型の形状は、最終製品の形状に合わせて、所望の形状とすればよい。たとえば、積層体を保護手袋として使用する場合には、繊維基材を被せる成形用型として、手首から指先までの形状を有する成形用型など、各種の手袋用の成形用型を用いることが好ましい。
 本発明の製造方法においては、繊維基材に重合体ラテックスを付着させた後、重合体ラテックスを乾燥させることが好ましい。この際における乾燥温度は、特に限定されないが、好ましくは180℃以下、より好ましくは10~170℃である。また、乾燥時間は、特に限定されないが、好ましくは1秒間~60分間、より好ましくは3秒間~30分間である。
 次いで、このようにして繊維基材に付着させた重合体ラテックスに、凝固剤溶液を接触させることで、重合体ラテックス中の重合体を凝固させて、重合体層を形成する。
 繊維基材に付着させた重合体ラテックスに、凝固剤溶液を接触させる方法としては、特に限定されないが、たとえば、重合体ラテックスが付着した繊維基材を凝固剤溶液に浸漬させる方法が挙げられる。
 また、重合体ラテックスが付着した繊維基材を凝固剤溶液に浸漬させる際には、重合体ラテックスが付着した繊維基材を、所望の形状の成形用型に被せた状態で、凝固剤溶液に浸漬させることが好ましい。この際においては、予め繊維基材を所望の形状の成形用型に被せた状態で、上述したように繊維基材に重合体ラテックスを付着させて、その後、重合体ラテックスが付着した繊維基材を、成形用型に被せたまま、凝固剤溶液に浸漬させることが好ましい。
 繊維基材を凝固剤溶液に浸漬させる場合における浸漬時間は、特に限定されないが、好ましくは30~1秒間、より、好ましくは10~1秒間である。
 また、本発明の製造方法においては、繊維基材に付着させた重合体ラテックスに、凝固剤溶液を接触させて付着させた後、乾燥を行うことで、凝固剤溶液に含まれている溶媒を除去することが好ましい。この際の乾燥温度は、特に限定されず、用いる溶媒に応じて選択すればよいが、好ましくは10~80℃、より好ましくは15~70℃である。また、乾燥時間は、特に限定されないが、好ましくは600~1秒間、より好ましくは300~5秒間である。
 さらに、重合体ラテックスとして、架橋剤を添加したものを用いる場合には、重合体ラテックスが付着した繊維基材を凝固剤溶液に接触させた後、繊維基材に付着した重合体ラテックスを加熱することにより、重合体ラテックスを構成する重合体を架橋させることが好ましい。
 架橋のための加熱温度は、好ましくは60~160℃、より好ましくは80~150℃である。加熱温度を上記範囲にすることにより、架橋反応に要する時間を短くして積層体の生産性を向上させることができるとともに、過剰な加熱による重合体の酸化劣化を抑制して、得られる積層体の物性を向上させることができる。架橋のための加熱時間は、加熱温度に応じて適宜選択すればよいが、通常、5~120分である。
 本発明の製造方法においては、以上のようにして、繊維基材上に重合体層が形成されてなる積層体が得られる。
 なお、本発明の製造方法においては、繊維基材上に重合体層を形成した後、重合体層を20~80℃の温水に0.5~60分程度浸漬することにより、重合体層から水溶性不純物(乳化剤、水溶性高分子、凝固剤など)を除去しておくことが好ましい。
 また、繊維基材を成形用型に被せた状態で重合体層を形成した場合には、重合体層が形成された繊維基材を、成形用型から脱着することによって、積層体を得ることができる。脱着方法としては、手で成形用型から剥したり、水圧や圧縮空気の圧力により剥したりする方法を採用することができる。
 積層体を成形用型から脱着した後には、さらに60~120℃の温度で、10~120分の加熱処理(後架橋工程)を行ってもよい。また、積層体の内側および/または外側の表面に、塩素化処理やコーティング処理などによる表面処理層を形成してもよい。
 本発明の製造方法によれば、以上のようにして、繊維基材に重合体ラテックスを付着させた後、繊維基材に付着した重合体ラテックスに凝固剤溶液を接触させることにより、重合体ラテックスが、裏抜けすることなく、繊維基材の繊維の間に適度に浸透したまま、重合体ラテックス中の重合体が凝固して、これにより繊維基材上に重合体層が形成された積層体が得られる。そのため、本発明の製造方法によれば、積層体を製造する際の重合体層の裏抜けをより有効に防止することができ、裏抜けに起因する不具合の発生が抑制され、積層体の生産性をより向上させることができる。さらに、重合体層の裏抜けが防止されることにより、得られる保護手袋を実際に装着した際の快適性がより向上する。
 また、従来、積層体を製造する方法としては、まず繊維基材を凝固剤溶液に浸漬させ、その後、繊維基材に重合体ラテックスを付着させることにより、積層体を得る方法が知られている。しかしながら、上記の方法では、繊維基材を凝固剤溶液に浸漬させることで、繊維基材が凝固剤溶液と過度に接触してしまうため、繊維基材が劣化してしまう場合があり、このような繊維基材の劣化を抑制するために、使用することができる繊維基材の種類や、凝固剤の種類が制限されてしまっていた。これに対して、本発明の製造方法では、まず繊維基材に重合体ラテックスを付着させ、その後、繊維基材に付着した重合体ラテックスに凝固剤溶液を接触させるものであるため、繊維基材が凝固剤溶液と過度に接触することがなく、これにより、より多くの種類の繊維基材および凝固剤を適用することが可能となる。
 しかも、本発明の製造方法により得られる積層体は、図1に示すように、重合体層の一部が繊維基材に適度に浸透した状態となっており、これにより、耐久性および柔軟性が高度にバランスされたものとなり、たとえば、作業用手袋、特に家庭用、農業用、漁業用および工業用等の保護手袋として好適に用いることができる。
 以下に、実施例および比較例を挙げて、本発明についてより具体的に説明するが、本発明はこの実施例に限られるものではない。以下において、特記しない限り、「部」は重量基準である。物性および特性の試験または評価方法は以下のとおりである。
 浸透重合体層の厚みt 、および表面重合体層の厚みt
 実施例および比較例で製造した積層体について、中指の先から12cmの掌部分の重合体層が積層された断面を、光学顕微鏡(キーエンス社製、VHX-200)を用いて観察することで、浸透重合体層の厚みt、および表面重合体層の厚みtを測定した。具体的な測定方法について図1を参照して説明すると、浸透重合体層の厚みtは、繊維基材の表面から、浸透した重合体の最深部までの距離を、10カ所測定し、測定結果の数平均値を算出することにより求めた。また、表面重合体層の厚みtは、繊維基材の表面から、重合体層の表面までの距離を、10カ所測定し、測定結果の数平均値を算出することにより求めた。
 脱型性
 実施例および比較例で製造した積層体について、積層体の製造中に、金属製手袋型から剥がす際に、容易に脱着することができたか否かを、以下の基準で評価した。
  3:10秒以内に脱着できた。
  2:5分以内に脱着できた。
  1:脱着できなかった。
 裏抜け
 実施例および比較例で製造した積層体について、繊維基材に浸透した重合体層が繊維基材の裏面まで到達しているか否かを目視にて確認し、以下の基準で評価した。
  3:裏面に到達している重合体層の面積が裏面全体の5%以下。
  2:裏面に到達している重合体層の面積が裏面全体の5%超、20%未満。
  1:裏面に到達している重合体層の面積が裏面全体の20%以上。
 耐久性(耐剥離性)
 実施例および比較例で製造した積層体について、重合体層と繊維基材との剥離を意図的に試み、以下の基準で評価した。
  2:重合体層と繊維基材とを人力では容易に剥離できなかった。もしくは剥離できても重合体層と繊維基材とを分離させることができなかった。
  1:重合体層と繊維基材とを人力で容易に剥離でき、重合体層と繊維基材とを分離させることができた。
 耐久性(耐切創性)
 実施例および比較例で製造した積層体について、長さ3cmの未使用カッター刃を積層体の重合体層側に水平に2.5kgfの力で3秒間押し当てた後、カッター刃が当たっていた部分の積層体を目視観察し、以下の基準で評価した。
  2:重合体層の一部が切れずに残った。
  1:重合体層がすべて切れた。
 柔軟性
 実施例および比較例で製造した手袋を10人にそれぞれ着用してもらい下記の評価基準で評価した。
  3:柔らかい
  2:硬い
  1:非常に硬い
 実施例1
 ディップ成形用ラテックス組成物の調製
 重合体ラテックスとして、ニトリルゴム(a1)のラテックス(商品名「Nipol LX550L」、日本ゼオン社製、アクリロニトリル単位、1,3-ブタジエン単位、およびエチレン性不飽和酸単量体単位を含有するニトリルゴムのラテックス)を準備し、ニトリルゴム(a1)のラテックス中のニトリルゴム100部に対して、それぞれ固形分換算で、コロイド硫黄(細井化学工業社製)1.0部、ジブチルジチオカルバミン酸亜鉛(大内新興化学工業社製)0.5部、酸化亜鉛2.0部となるように、各配合剤の水分散液を調製し、調製した水分散液を添加し、ラテックス組成物を得た。なお、添加の際には、ラテックスを撹拌した状態で、各配合剤の水分散液を所定の量ゆっくり添加した。その後、ラテックス組成物の固形分濃度を調整し、ラテックス組成物に対して、増粘剤としてポリビニルアルコール(PVA)0.2重量%を添加し、次いで、温度30℃、48時間の条件で、熟成(前加硫ともいう。)を施した。そして、熟成後のラテックス組成物に対して、増粘剤としてポリビニルアルコール0.18重量%をさらに添加し、固形分濃度が45重量%であるディップ成形用ラテックス組成物を得た。得られたディップ成形用ラテックス組成物における、温度25℃かつ固形分濃度45重量%の条件下、B型粘度計による回転数10rpmの条件で測定される粘度は、10,000mPa・sであった。
 凝固剤溶液の調製
 硝酸カルシウム20部、および水80部を混合することで、凝固剤溶液を得た。
 積層体(保護手袋)の製造
 上記にて得られたディップ成形用ラテックス組成物を25℃に調整し、次いで、手袋形状の繊維基材(材質:綿、繊維基材の基材層平均厚みd:650μm、線密度:300デニール)を被せた金属製手袋型を、25℃に調整したディップ成形用ラテックス組成物に5秒間浸漬し、ディップ成形用ラテックス組成物から引き上げた後、温度30℃、30分間の条件で乾燥させた。その後、金属製手袋型を、上記の凝固剤溶液に5秒間浸漬し、凝固剤溶液から引き上げた後、温度30℃、1分間の条件で乾燥させ、繊維基材上に重合体層を形成した。その後、温度125℃、60分間の条件で熱処理を行う事で、重合体層中のニトリルゴムに架橋処理を施した。次いで、重合体層が形成された繊維基材を金属製手袋型から剥がすことで、積層体(保護手袋)を得た。得られた積層体について、上述した方法に従い、浸透重合体層の厚みt、および表面重合体層の厚みtを測定し、脱型性、裏抜け、耐久性(耐剥離性)、耐久性(耐切創性)および柔軟性の評価を行った。結果を表1に示す。なお、表1においては、得られた浸透重合体層の厚みt、表面重合体層の厚みtの値に基づいて、(浸透重合体層の厚みt/基材層平均厚みd)の比、および(表面重合体層の厚みt/浸透重合体層の厚みt)の比を計算した結果も示した(後述する実施例2~7および比較例1~4についても同様)。
 実施例2
 ラテックス組成物の熟成前に添加する増粘剤の添加割合を0.2重量%、熟成後に添加する増粘剤の添加割合を0.1重量%に変更し、ディップ成形用ラテックス組成物の粘度(25℃、固形分濃度45重量%の粘度)を5,400mPa・sに調整した以外は、実施例1と同様にして、積層体(保護手袋)を得て、同様に評価を行った。結果を表1に示す。
 実施例3
 ラテックス組成物の熟成前に添加する増粘剤の添加割合を0.15重量%、熟成後に添加する増粘剤の添加割合を0.05重量%に変更し、ディップ成形用ラテックス組成物の粘度(25℃、固形分濃度45重量%の粘度)を1,200mPa・sに調整した以外は、実施例2と同様にして、積層体(保護手袋)を得て、同様に評価を行った。結果を表1に示す。
 実施例4
 増粘剤として、ポリビニルアルコール(PVA)に代えてポリビニルピロリドン(PVP)を使用し、かつ、ラテックス組成物の熟成前に添加する増粘剤の添加割合を0.2重量%、熟成後に添加する増粘剤の添加割合を0.5重量%に変更し、ディップ成形用ラテックス組成物の粘度(25℃、固形分濃度45重量%の粘度)を2,500mPa・sに調整した以外は、実施例2と同様にして、積層体(保護手袋)を得て、同様に評価を行った。結果を表1に示す。
 比較例1
 増粘剤として、ポリビニルアルコール(PVA)に代えてカルボキシメチルセルロース(CMC)を使用し、かつ、ラテックス組成物の熟成前に添加する増粘剤の添加割合を0.2重量%、熟成後に添加する増粘剤の添加割合を0.4重量%に変更し、ディップ成形用ラテックス組成物の粘度(25℃、固形分濃度45重量%の粘度)を5,500mPa・sに調整した以外は、実施例1と同様にして、積層体(保護手袋)を得て、同様に評価を行った。結果を表1に示す。
 比較例2
 増粘剤として、ポリビニルアルコール(PVA)に代えてポリアクリル酸ナトリウム(PAA)を使用し、かつ、ラテックス組成物の熟成前に添加する増粘剤の添加割合を0.05重量%、熟成後に添加する増粘剤の添加割合を0.1重量%に変更し、ディップ成形用ラテックス組成物の粘度(25℃、固形分濃度45重量%の粘度)を5,800mPa・sに調整した以外は、実施例1と同様にして、積層体(保護手袋)を得て、同様に評価を行った。結果を表1に示す。
 比較例3
 実施例1で用いたものと同様の繊維基材を準備し、準備した繊維基材を被せた金属製手袋型を、上記の凝固剤溶液に5秒間浸漬し、凝固剤溶液から引き上げた後、温度30℃、1分間の条件で乾燥させた。その後、金属製手袋型を、実施例1で用いたものと同様のディップ成形用ラテックス組成物に5秒間浸漬し、ディップ成形用ラテックス組成物から引き上げた後、温度30℃、30分間の条件で乾燥させ、繊維基材上に重合体層を形成した。その後、温度125℃、60分間の条件で熱処理を行う事で、重合体層中のニトリルゴムに架橋処理を施した。次いで、重合体層が形成された繊維基材を金属製手袋型から剥がすことで、積層体(保護手袋)を得た。得られた積層体について、実施例1と同様に評価した。結果を表1に示す。
 比較例4
 ラテックス組成物の熟成前に添加する増粘剤の添加割合を0.05重量%、熟成後に添加する増粘剤の添加割合を0.02重量%に変更し、ディップ成形用ラテックス組成物の粘度(25℃、固形分濃度45重量%の粘度)を500mPa・sに調整した以外は、実施例2と同様にして、積層体(保護手袋)を得て、同様に評価を行った。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、(浸透重合体層の厚みt/基材層平均厚みd)の比、および表面重合体層の厚みtを、本発明の所定の範囲に制御した積層体は、いずれも、脱型性の結果が良好であることから生産性に優れ、また、裏抜けの結果が良好であることから装着時の快適性にも優れ、さらに、耐久性および柔軟性にも優れるものであった(実施例1~4)。
 一方、(浸透重合体層の厚みt/基材層平均厚みd)の比が大きすぎる場合には、得られる積層体は、脱型性の結果が不良であることから生産性に劣り、また、裏抜けの結果が不良であることから装着時の快適性にも劣り、しかも、柔軟性にも劣るものであった(比較例1,2)。
 また、(浸透重合体層の厚みt/基材層平均厚みd)の比が小さすぎる場合には、得られる積層体は、耐久性に劣るものであった(比較例3)。
 さらに、表面重合体層の厚みtが薄すぎる場合には、得られる積層体は、脱型性の結果が不良であることから生産性に劣り、また、裏抜けの結果が不良であることから装着時の快適性にも劣り、しかも、耐久性にも劣るものであった(比較例4)。

Claims (9)

  1.  複数の繊維から構成される繊維基材と、重合体ラテックスから形成される重合体層とが積層されてなる積層体であって、
     前記重合体層は、一部が、前記繊維の間に浸透した状態で前記繊維基材を被覆しており、
     前記重合体層のうち、前記繊維の間に浸透した部分である浸透重合体層の、前記繊維基材の表面からの厚みをt[μm]とし、前記繊維基材の基材層平均厚みをd[μm]とした場合に、前記基材層平均厚みdに対する前記浸透重合体層の厚みtの比(t/d)が、0.1~0.95であり、
     前記重合体層のうち、前記繊維基材の表面を被覆する部分である表面重合体層の、前記繊維基材の表面からの厚みをt[μm]とした場合に、前記表面重合体層の厚みt[μm]が、80μm以上である積層体。
  2.  前記重合体ラテックスが、増粘剤としてノニオン性水溶性高分子を含有する請求項1に記載の積層体。
  3.  前記重合体ラテックス中における、前記ノニオン性水溶性高分子の含有割合が、0.1~5.0重量%である請求項2に記載の積層体。
  4.  前記ノニオン性水溶性高分子が、ポリビニルアルコールおよび/またはポリビニルピロリドンである請求項2または3に記載の積層体。
  5.  前記重合体ラテックスを構成する重合体がニトリルゴムである請求項1~4のいずれかに記載の積層体。
  6.  前記ニトリルゴムが、エチレン性不飽和ニトリル単量体単位、共役ジエン単量体単位、およびエチレン性不飽和酸単量体単位を含有する請求項5に記載の積層体。
  7.  請求項1~6のいずれかに記載の積層体を備える保護手袋。
  8.  請求項1~6のいずれかに記載の積層体の製造方法であって、
     前記重合体ラテックスを、前記繊維基材に付着させるラテックス付着工程と、
     前記繊維基材に付着させた前記重合体ラテックスに、凝固剤溶液を接触させて前記重合体ラテックス中の重合体を凝固させることで、前記重合体層を形成する凝固工程と、を備え、
     前記重合体ラテックスを前記繊維基材に付着させる際に、前記重合体ラテックスの粘度を、B型粘度計を用いて測定される回転速度10rpmの条件における粘度で、600~25,000mPa・sの範囲に制御した状態にて、前記重合体ラテックスを前記繊維基材に付着させる積層体の製造方法。
  9.  前記重合体ラテックスを前記繊維基材に付着させる際に、前記重合体ラテックスを、温度が25℃、固形分濃度が45重量%、および、B型粘度計を用いて測定される回転速度10rpmの条件における粘度が600~25,000mPa・sに制御された状態にて、前記重合体ラテックスを前記繊維基材に付着させる請求項8に記載の積層体の製造方法。
PCT/JP2018/000694 2017-01-13 2018-01-12 積層体 WO2018131687A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020197020262A KR20190105009A (ko) 2017-01-13 2018-01-12 적층체
US16/476,795 US11305518B2 (en) 2017-01-13 2018-01-12 Laminate
CN201880006565.7A CN110191800A (zh) 2017-01-13 2018-01-12 层叠体
JP2018561431A JP7095601B2 (ja) 2017-01-13 2018-01-12 積層体
EP18738939.0A EP3575083A4 (en) 2017-01-13 2018-01-12 LAMINATE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-004131 2017-01-13
JP2017004131 2017-01-13

Publications (1)

Publication Number Publication Date
WO2018131687A1 true WO2018131687A1 (ja) 2018-07-19

Family

ID=62839557

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/000694 WO2018131687A1 (ja) 2017-01-13 2018-01-12 積層体

Country Status (6)

Country Link
US (1) US11305518B2 (ja)
EP (1) EP3575083A4 (ja)
JP (1) JP7095601B2 (ja)
KR (1) KR20190105009A (ja)
CN (1) CN110191800A (ja)
WO (1) WO2018131687A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110891781A (zh) 2017-07-27 2020-03-17 日本瑞翁株式会社 层叠体的制造方法
CN117944336B (zh) * 2024-03-22 2024-06-25 石狮新远辉化纤纺织科技有限公司 一种抗菌高弹型针织布及其制备工艺

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55163202A (en) * 1979-05-31 1980-12-19 Dainichiseika Color Chem Production of working hand glove with excellent drapability
JPH02118102A (ja) 1988-10-26 1990-05-02 Okamoto Ind Inc 柔軟性皮膜付作業用手袋の製造方法
JPH07109605A (ja) * 1993-10-12 1995-04-25 Reitetsuku Kk 樹脂コート手袋
JP2000239971A (ja) * 1999-02-24 2000-09-05 Kawashima Textile Manuf Ltd 内装布帛樹脂裏打仕上法
JP2001146614A (ja) * 1999-11-17 2001-05-29 Nankai Tekunaato:Kk ウレタン作業用手袋及びその製造方法
JP2004107813A (ja) * 2002-09-17 2004-04-08 Sumitomo Rubber Ind Ltd サポート型手袋
WO2009057524A1 (ja) * 2007-10-31 2009-05-07 Towa Corporation Ltd. 縫製手袋及びその製造方法
JP2009527658A (ja) * 2006-02-23 2009-07-30 アンセル・ヘルスケア・プロダクツ・エルエルシー 軽量薄型可塑性ポリマーでコーティングされた手袋、およびその方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE758354A (fr) * 1969-11-03 1971-04-16 Goodrich Co B F Lamine poromere souple
US20030075828A1 (en) * 1998-08-13 2003-04-24 Thomas Jonathan David Solvent resistant glove
JP4063110B2 (ja) 2003-03-13 2008-03-19 日本ゼオン株式会社 ディップ成形用凝固剤組成物、ディップ成形品およびその製造方法
CN101389250A (zh) * 2006-02-23 2009-03-18 安塞尔保健产品有限责任公司 轻薄型弹性聚合涂层手套和相关方法
AU2009230758B2 (en) * 2008-10-28 2014-03-06 Midas Safety Innovations Limited Production of coated gloves
US8119200B2 (en) * 2008-10-28 2012-02-21 Midas Safety Inc. Method for manufacturing a flexible and breathable matt finish glove
GB201111830D0 (en) 2011-07-11 2011-08-24 Midas Safety Inc Coated fabric
JP2013170319A (ja) 2012-02-20 2013-09-02 Nippon Zeon Co Ltd 手袋用積層体
JP6819588B2 (ja) * 2015-07-22 2021-01-27 日本ゼオン株式会社 ゴム成形品および保護手袋

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55163202A (en) * 1979-05-31 1980-12-19 Dainichiseika Color Chem Production of working hand glove with excellent drapability
JPH02118102A (ja) 1988-10-26 1990-05-02 Okamoto Ind Inc 柔軟性皮膜付作業用手袋の製造方法
JPH07109605A (ja) * 1993-10-12 1995-04-25 Reitetsuku Kk 樹脂コート手袋
JP2000239971A (ja) * 1999-02-24 2000-09-05 Kawashima Textile Manuf Ltd 内装布帛樹脂裏打仕上法
JP2001146614A (ja) * 1999-11-17 2001-05-29 Nankai Tekunaato:Kk ウレタン作業用手袋及びその製造方法
JP2004107813A (ja) * 2002-09-17 2004-04-08 Sumitomo Rubber Ind Ltd サポート型手袋
JP2009527658A (ja) * 2006-02-23 2009-07-30 アンセル・ヘルスケア・プロダクツ・エルエルシー 軽量薄型可塑性ポリマーでコーティングされた手袋、およびその方法
WO2009057524A1 (ja) * 2007-10-31 2009-05-07 Towa Corporation Ltd. 縫製手袋及びその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3575083A4

Also Published As

Publication number Publication date
CN110191800A (zh) 2019-08-30
JP7095601B2 (ja) 2022-07-05
JPWO2018131687A1 (ja) 2019-11-07
EP3575083A1 (en) 2019-12-04
US11305518B2 (en) 2022-04-19
KR20190105009A (ko) 2019-09-11
EP3575083A4 (en) 2020-09-02
US20190375199A1 (en) 2019-12-12

Similar Documents

Publication Publication Date Title
EP3239230B1 (en) Dip-forming latex composition and dip-formed article
WO2018061868A1 (ja) 積層体の製造方法
WO2019039523A1 (ja) ラテックス組成物
US20170342243A1 (en) Dip-formed article
WO2018131687A1 (ja) 積層体
CN111542567A (zh) 胶乳组合物
WO2019058807A1 (ja) ラテックス組成物の製造方法
CN110891781A (zh) 层叠体的制造方法
WO2019139087A1 (ja) ラテックス組成物
CN107709004B (zh) 浸渍成型品及防护手套
JP2016128528A (ja) ディップ成形用ラテックス組成物およびディップ成形品
CN112739761B (zh) 聚合物胶乳及层叠体
JP2020050810A (ja) 重合体ラテックスおよび積層体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18738939

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018561431

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197020262

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018738939

Country of ref document: EP

Effective date: 20190813