WO2018131495A1 - カバー膜形成方法、基材の処理方法及び組成物 - Google Patents

カバー膜形成方法、基材の処理方法及び組成物 Download PDF

Info

Publication number
WO2018131495A1
WO2018131495A1 PCT/JP2017/047081 JP2017047081W WO2018131495A1 WO 2018131495 A1 WO2018131495 A1 WO 2018131495A1 JP 2017047081 W JP2017047081 W JP 2017047081W WO 2018131495 A1 WO2018131495 A1 WO 2018131495A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
cover film
polymer
atom
structural unit
Prior art date
Application number
PCT/JP2017/047081
Other languages
English (en)
French (fr)
Inventor
康太 古市
裕之 小松
研 丸山
岳彦 成岡
Original Assignee
Jsr株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jsr株式会社 filed Critical Jsr株式会社
Priority to JP2018561317A priority Critical patent/JPWO2018131495A1/ja
Publication of WO2018131495A1 publication Critical patent/WO2018131495A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02118Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer carbon based polymeric organic or inorganic material, e.g. polyimides, poly cyclobutene or PVC
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D125/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Coating compositions based on derivatives of such polymers
    • C09D125/02Homopolymers or copolymers of hydrocarbons
    • C09D125/04Homopolymers or copolymers of styrene
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/04Homopolymers or copolymers of esters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives

Definitions

  • the present invention relates to a cover film forming method, a substrate processing method, and a composition.
  • a cover film is formed to protect a metal-containing substrate, a metal-containing substrate on which a pattern is formed, and a region containing a surface metal in a base material such as an inorganic insulating film.
  • This cover film is known to use a polymer such as polyimide, silicone resin, or epoxy resin as a material so that it can be more easily removed using plasma ashing or the like (Japanese Patent Laid-Open No. 2012-089904). And Japanese Patent Application Laid-Open No. 2007-019528).
  • the metal surface can be surely protected and not only has excellent mask performance, but also when the metal surface is exposed again after being detached from the metal surface after exhibiting the mask performance. It is required that the surface can be peeled off by a method that does not damage the surface, such as an acid-added organic solvent, and that the desorption performance is also excellent.
  • a method that does not damage the surface such as an acid-added organic solvent
  • the desorption performance is also excellent.
  • the present invention has been made based on the circumstances as described above, and its purpose is to form a cover film capable of forming a cover film excellent in both desorption performance and mask performance, a substrate processing method, and It is to provide a composition.
  • the invention made in order to solve the above problems includes a step of preparing a substrate having a region containing a metal atom in a surface layer, and a coating containing a first polymer and a solvent on the surface of the substrate. And a step of heating the coating film formed by the coating step, wherein the first polymer has a first structural unit represented by the following formula (1).
  • R A is a hydrogen atom, a methyl group, a fluorine atom or a trifluoromethyl group.
  • A is a monovalent organic group having a nitrogen atom.
  • Another invention made in order to solve the above problems includes a step of preparing a substrate having a region containing a metal atom in a surface layer, and a composition containing a first polymer and a solvent on the surface of the substrate.
  • composition used for a method for forming a cover film on a substrate surface having a region containing a metal atom in a surface layer which is represented by the above formula (1). It contains a polymer having a structural unit and a solvent.
  • organic group means a group containing at least one carbon atom.
  • the “hydrocarbon group” includes a chain hydrocarbon group, an alicyclic hydrocarbon group, and an aromatic hydrocarbon group.
  • the “hydrocarbon group” may be a saturated hydrocarbon group or an unsaturated hydrocarbon group.
  • the “chain hydrocarbon group” refers to a hydrocarbon group that does not include a cyclic structure but includes only a chain structure, and includes both a linear hydrocarbon group and a branched hydrocarbon group.
  • alicyclic hydrocarbon group refers to a hydrocarbon group that includes only an alicyclic structure as a ring structure and does not include an aromatic ring structure, and includes a monocyclic alicyclic hydrocarbon group and a polycyclic alicyclic group. Includes both hydrocarbon groups. However, it is not necessary to be composed only of the alicyclic structure, and a part thereof may include a chain structure.
  • “Aromatic hydrocarbon group” refers to a hydrocarbon group containing an aromatic ring structure as a ring structure. However, it is not necessary to be composed only of an aromatic ring structure, and a part thereof may include a chain structure or an alicyclic structure.
  • Numberer of ring members means the number of atoms constituting the ring of the alicyclic structure, aromatic ring structure, aliphatic heterocyclic structure and aromatic heterocyclic structure, and in the case of polycyclic, the number of atoms constituting this polycyclic ring Say.
  • cover film forming method, substrate processing method and composition of the present invention a cover film having excellent desorption performance and mask performance can be formed. Therefore, the cover film forming method, the substrate processing method, and the composition can be suitably used for a semiconductor device processing process and the like that are expected to be further miniaturized in the future.
  • the cover film forming method includes a step of preparing a base material having a region (hereinafter, also referred to as “region (I)”) containing a metal atom (hereinafter, also referred to as “metal atom (A)”) (hereinafter, referred to as “region (I)”). And a first polymer (hereinafter also referred to as “[A] polymer”) and a solvent (hereinafter also referred to as “[B] solvent”) on the surface of the substrate.
  • region (I) containing a metal atom (hereinafter, also referred to as “metal atom (A)”)
  • first polymer hereinafter also referred to as “[A] polymer”
  • solvent hereinafter also referred to as “[B] solvent
  • composition (I) a composition
  • coating step a step of applying a composition (hereinafter, also referred to as “coating step”)
  • coating step a step of heating a coating film formed by the coating step
  • heating step also referred to as “heating step”.
  • the [A] polymer has a first structural unit represented by the following formula (1) (hereinafter also referred to as “structural unit (I)”).
  • RA is a hydrogen atom, a methyl group, a fluorine atom, or a trifluoromethyl group.
  • A is a monovalent organic group having a nitrogen atom.
  • a cover film having both the above steps and having a composition (I) containing the [A] polymer can form a cover film excellent in both desorption performance and mask performance.
  • the cover film forming method has the above-described configuration and exhibits the above-mentioned effects is not necessarily clear, but for example, the [A] polymer includes an organic group having a nitrogen atom. It is considered that the region containing metal atoms can interact strongly, and as a result, the formed cover film has excellent mask performance. This interaction is considered to be easily reduced by the action of acid, and the cover film can be easily peeled off by acid or the like.
  • each step will be described.
  • a substrate having a region (I) containing a metal atom (A) on the surface layer is prepared.
  • the metal atom (A) is not particularly limited as long as it is a metal element.
  • the metal element include copper, iron, zinc, cobalt, aluminum, tin, tungsten, zirconium, titanium, tantalum, germanium, molybdenum, ruthenium, gold, silver, platinum, palladium, nickel and the like.
  • titanium, copper, cobalt, aluminum, ruthenium and tungsten are preferred.
  • Examples of the form of the metal atom (A) in the region (I) include a metal simple substance, an alloy, a metal nitride, a metal oxide, and a silicide.
  • metal simple substance metal simple substance, such as copper, cobalt, aluminum, tungsten, etc. are mentioned, for example.
  • the alloy include a nickel-copper alloy, a cobalt-nickel alloy, and a gold-silver alloy.
  • the metal nitride include titanium nitride, tantalum nitride, iron nitride, and aluminum nitride.
  • the metal oxide include tantalum oxide, aluminum oxide, iron oxide, copper oxide, and the like.
  • silicide include iron silicide and molybdenum silicide. Of these, simple metals, alloys, metal nitrides and silicides are preferred, simple metals and metal nitrides are more preferred, metal nitrides are more preferred, and titanium nitride is even more preferred.
  • nonmetallic atoms (B) a region substantially composed of only nonmetallic atoms (hereinafter also referred to as “nonmetallic atoms (B)”) (hereinafter also referred to as “region (II)”) You may have.
  • the region (II) is preferably an insulating region, and preferred examples of the nonmetallic atom (B) in the region (II) include silicon and carbon. Examples of the content include non-metal simple substances such as carbon, SiO 2 , SiOC, and silicon nitride.
  • the existence shape of the region (I) and / or the region (II) on the surface layer of the substrate is not particularly limited, and examples thereof include a planar shape, a dot shape, and a stripe shape in a plan view. Further, at least one region may form a pattern shape such as a line and space pattern or a hole pattern.
  • the sizes of the region (I) and the region (II) are not particularly limited, and can be appropriately set as desired.
  • the base material prepared in this step is not particularly limited as long as it has the region (I) on the surface layer. As this base material, the whole may have the same composition as the region (I).
  • Specific examples of the base material include a substrate composed of a single metal such as copper, cobalt, aluminum, and tungsten, a substrate composed of an alloy such as a nickel-copper alloy, a cobalt-nickel alloy, a gold-silver alloy, A substrate composed of a metal nitride such as titanium nitride (TiN), tantalum nitride, iron nitride, aluminum nitride, a substrate composed of a metal oxide such as tantalum oxide, aluminum oxide, iron oxide, copper oxide, iron silicide, A substrate made of a silicide such as molybdenum silicide can be given.
  • the shape of the base material is not particularly limited, and can be a desired shape such as a plate shape (substrate) or a spherical shape.
  • composition (I) is applied to the surface of the substrate.
  • Examples of the coating method of the composition (I) include a spin coating method.
  • composition (I) contains a [A] polymer and a [B] solvent.
  • the composition (I) may contain an additive [C] in addition to the [A] polymer and the [B] solvent, and may contain other components as long as the effects of the present invention are not impaired. Also good.
  • each component will be described.
  • the polymer is a polymer having the structural unit (I).
  • the polymer may have other structural units different from the structural unit (I). Examples of the other structural unit include a second structural unit (hereinafter also referred to as “structural unit (II)”) and the like.
  • the polymer may have one or more of each structural unit.
  • the polymer may be a block copolymer or a random copolymer. Hereinafter, each structural unit will be described.
  • RA is a hydrogen atom, a methyl group, a fluorine atom, or a trifluoromethyl group.
  • A is a monovalent organic group (hereinafter also referred to as “group (I)”) having a nitrogen atom (hereinafter also referred to as “nitrogen atom (A)”).
  • R A is preferably a hydrogen atom or a methyl group, more preferably a methyl group, from the viewpoint of copolymerization of the monomer that gives the structural unit (I).
  • the nitrogen atom (A) in the group (I) preferably has an unshared electron pair.
  • Examples of the nitrogen atom (A) having an unshared electron pair include a nitrogen atom in which atoms other than 1 to 3 hydrogen atoms are bonded by a single bond, a nitrogen atom in an aromatic heterocyclic group, and the like.
  • the lower limit of the pKa of the conjugate acid obtained by adding a proton to the nitrogen atom (A) is preferably 3, more preferably 5, more preferably 7, and particularly preferably 9.
  • the upper limit of the pKa is 14, for example.
  • Examples of the group (I) include a group containing a divalent nitrogen atom-containing group between carbon-carbon of a monovalent hydrocarbon group having 1 to 20 carbon atoms, a part or all of the hydrogen atoms of the hydrocarbon group. And a group in which is substituted with a monovalent nitrogen atom-containing group. Both the divalent nitrogen atom-containing group and the monovalent nitrogen atom-containing group may be contained in one group (I).
  • the group (I) may further contain a divalent group containing a heteroatom other than a nitrogen atom between the carbon-carbon, and a part or all of the hydrogen atoms of the group (I) It may be further substituted with a monovalent group containing a hetero atom other than.
  • Examples of the monovalent hydrocarbon group having 1 to 20 carbon atoms include a monovalent chain hydrocarbon group having 1 to 20 carbon atoms, a monovalent alicyclic hydrocarbon group having 3 to 20 carbon atoms, and 6 to 6 carbon atoms. 20 monovalent aromatic hydrocarbon groups and the like.
  • Examples of the monovalent chain hydrocarbon group having 1 to 20 carbon atoms include alkyl groups such as a methyl group, an ethyl group, an n-propyl group, and an i-propyl group; An alkenyl group such as an ethenyl group, a propenyl group, a butenyl group; Examples thereof include alkynyl groups such as ethynyl group, propynyl group and butynyl group.
  • Examples of the monovalent alicyclic hydrocarbon group having 3 to 20 carbon atoms include monocyclic alicyclic saturated hydrocarbon groups such as a cyclopentyl group and a cyclohexyl group; Monocyclic alicyclic unsaturated hydrocarbon groups such as cyclopentenyl group and cyclohexenyl group; Polycyclic alicyclic saturated hydrocarbon groups such as norbornyl group, adamantyl group and tricyclodecyl group; Examples thereof include polycyclic alicyclic unsaturated hydrocarbon groups such as a norbornenyl group and a tricyclodecenyl group.
  • Examples of the monovalent aromatic hydrocarbon group having 6 to 20 carbon atoms include aryl groups such as a phenyl group, a tolyl group, a xylyl group, a naphthyl group, and an anthryl group; Examples thereof include aralkyl groups such as benzyl group, phenethyl group, naphthylmethyl group and anthrylmethyl group.
  • Examples of the divalent nitrogen atom-containing group include —NH—, —NR′—, —C ⁇ N— and the like.
  • R ′ is a monovalent hydrocarbon group having 1 to 10 carbon atoms.
  • Examples of the monovalent nitrogen atom-containing group include —NH 2 , —NHR ′′, —NR ′′ 2 , and a cyano group.
  • R ′′ is a monovalent hydrocarbon group having 1 to 10 carbon atoms.
  • heteroatoms constituting monovalent and divalent groups containing heteroatoms other than nitrogen atoms include oxygen atoms, sulfur atoms, phosphorus atoms, silicon atoms, and halogen atoms.
  • halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • Examples of the divalent group containing a hetero atom other than a nitrogen atom include —O—, —CO—, —S—, —CS—, a group in which two or more of these are combined, and the like. Of these, —O— or —CO— is preferable.
  • Examples of the monovalent group containing a hetero atom other than a nitrogen atom include a halogen atom such as a fluorine atom, a chlorine atom, a bromine atom and an iodine atom, a hydroxy group, a carboxy group, and a sulfanyl group.
  • a halogen atom such as a fluorine atom, a chlorine atom, a bromine atom and an iodine atom, a hydroxy group, a carboxy group, and a sulfanyl group.
  • A is preferably a group represented by the following formula (i).
  • X is a single bond, —COO—, —OCO—, —CO—, —O—, —NH—, —NHCO— or —CONH—.
  • Q is a single bond, a divalent hydrocarbon group having 1 to 20 carbon atoms, a monovalent primary, secondary or tertiary amino group having 0 to 20 carbon atoms, or a monovalent nitrogen having 5 to 20 ring members. A divalent hydrocarbon group having 1 to 20 carbon atoms, which is substituted with a containing heterocyclic group.
  • R B is a monovalent primary, secondary, or tertiary amino group having 0 to 20 carbon atoms, or a monovalent nitrogen-containing heterocyclic group having 5 to 20 ring members.
  • n is an integer of 0 to 10. However, when n is 1 or more, Q is not a single bond. When n is 2 or more, a plurality of Xs may be the same or different, and a plurality of Qs may be the same or different. * Indicates a binding site to the carbon atom to which R A is bonded.
  • X is preferably a single bond or —COO—.
  • Examples of the divalent hydrocarbon group having 1 to 20 carbon atoms represented by Q include the same groups as the divalent hydrocarbon group having 1 to 20 carbon atoms exemplified in A above.
  • Examples of the monovalent primary, secondary, or tertiary amino group include a primary amino group represented by —NH 2 ; Secondary amino groups such as methylamino group, ethylamino group, cyclohexylamino group, phenylamino group; Examples thereof include tertiary amino groups such as dimethylamino group, diethylamino group, dicyclohexylamino group and diphenylamino group.
  • Divalent monovalent nitrogen-containing heterocyclic of the hydrocarbon group ring members 5-20 is represented by a monovalent nitrogen-containing heterocyclic group ring members 5-20 and R B as a substituent of 1 to 20 carbon atoms
  • the ring group include nitrogen-containing fats such as azacyclopentyl group, azacyclohexyl group, 3,3,5,5-tetramethylazacyclohexyl group, N-methyl-3,3,5,5-tetramethylazacyclohexyl group, etc.
  • Group heterocyclic group examples thereof include nitrogen-containing aromatic heterocyclic groups such as pyridyl group, pyrazyl group, pyrimidyl group, pyridazyl group, quinolyl group and isoquinolyl group.
  • N is preferably 0 to 2, more preferably 0 and 1.
  • structural unit (I) examples include structural units represented by the following formulas (1-1) to (1-14) (hereinafter also referred to as “structural units (I-1) to (I-14)”), etc. Is mentioned.
  • R A has the same meaning as in the above formula (1).
  • Examples of the monomer that gives the structural unit (I) include vinyl compounds containing the group (I) such as vinylpyridine, vinylpyrazine, and vinylquinoline; A styrene compound containing a group (I) such as aminostyrene or dimethylaminostyrene; And (meth) acrylic ester containing group (I) such as diethylaminoethyl (meth) acrylate and N-methyl-3,3,5,5-tetramethylazacyclohexane-1-yl (meth) acrylate.
  • vinyl compounds containing the group (I) such as vinylpyridine, vinylpyrazine, and vinylquinoline
  • a styrene compound containing a group (I) such as aminostyrene or dimethylaminostyrene
  • And (meth) acrylic ester containing group (I) such as diethylaminoethyl (meth) acrylate and N-methyl-3,3,5,5-tetramethylazacyclo
  • the lower limit of the content ratio of the structural unit (I) is preferably 2 mol%, more preferably 10 mol%, further preferably 20 mol%, particularly preferably 30 mol%, and particularly preferably 40 mol%.
  • 100% is preferable, 90 mol% is more preferable, and 70 mol% is further more preferable.
  • the polymer may further have another structural unit different from the structural unit (I).
  • Other structural units include a structural unit represented by the following formula (2-1) (hereinafter also referred to as “structural unit (II-1)”) and a structural unit represented by the following formula (2-2) ( Hereinafter, at least one structural unit selected from “structural unit (II-2)” (hereinafter also referred to as “structural unit (II)”) is preferable.
  • R 1 and R 3 are each independently a hydrogen atom, a methyl group, a fluorine atom or a trifluoromethyl group.
  • R 2 is a monovalent organic group having 1 to 20 carbon atoms.
  • R 4 is a (1 + b) -valent hydrocarbon group having 1 to 20 carbon atoms.
  • R 5 is a monovalent group having a hydrogen atom or a hetero atom.
  • a is an integer of 0 to 5. When a is 2 or more, a plurality of R 2 may be the same or different.
  • b is an integer of 1 to 3. When b is 2 or more, the plurality of R 5 may be the same or different.
  • R 1 and R 3 are preferably a hydrogen atom or a methyl group from the viewpoint of the copolymerizability of the monomer that gives the structural unit (II).
  • Examples of the monovalent organic group having 1 to 20 carbon atoms represented by R 2 include a monovalent hydrocarbon group having 1 to 20 carbon atoms and a carboxy group.
  • A is preferably 0 to 2, more preferably 0 or 1, and still more preferably 0.
  • Examples of the (1 + b) -valent hydrocarbon group having 1 to 20 carbon atoms represented by R 4 include, among monovalent hydrocarbon groups exemplified in A above, those having 1 to 20 carbon atoms to b hydrogen atoms. Examples include groups other than atoms.
  • B is preferably 1 or 2, and more preferably 1.
  • Examples of the monovalent group having a hetero atom represented by R 5 include a group having an oxygen atom such as a hydroxy group and a hydroxymethyl group; A group having a sulfur atom such as a sulfanyl group and a sulfanylmethyl group; Examples thereof include a group having a fluorine atom such as a fluorine atom or a trifluoromethyl group.
  • R 5 is preferably a hydrogen atom.
  • structural unit (II) for example, the structural unit (II-1) represented by the following formulas (2-1-1) to (2-1-3) (hereinafter referred to as “structural unit (II-1) -1) to (II-1-3) ”are structural units represented by the following formulas (2-2-1) to (2-2-6) as structural units (II-2) And “structural units (II-2-1) to (II-2-6)”).
  • R 1 has the same meaning as in the above formula (2-1).
  • R 3 has the same meaning as the above formula (2-2).
  • structural units (II-1-1) and (II-2-1) are preferred.
  • the lower limit of the content ratio of the structural unit (II) is preferably 5 mol%, more preferably 20 mol%, further preferably 30 mol%, more preferably 40 mol. % Is particularly preferable, and 50 mol% is further particularly preferable.
  • As an upper limit of the said content rate 95 mol% is preferable, 80 mol% is more preferable, and 70 mol% is further more preferable.
  • Examples of the structural unit other than the structural unit (I) and the structural unit (II) include, for example, a structural unit derived from substituted or unsubstituted ethylene (provided that the structural unit (I) and the structural unit (II) correspond). Except what you do).
  • the upper limit of the content ratio of the structural unit other than the structural unit (I) and the structural unit (II) is 10 mol. % Is preferable, 5 mol% is more preferable, and 1 mol% is more preferable. As a minimum of the above-mentioned content rate, it is 0.1 mol%, for example.
  • At least one terminal of the main chain is modified with a functional group such as a sulfanyl group, an ethylenic carbon-carbon double bond-containing group, an oxazoline ring-containing group, a phosphate group, an epoxy group, or a disulfide group. It may be what has been done.
  • a monomer that gives the structural unit (I) for example, a monomer that gives the structural unit (I), a monomer that gives the structural unit (II), if necessary, an anionic polymerization, a cationic polymerization, a radical polymerization, etc. It can be synthesized by polymerizing in a solvent. Among these, in order to obtain a block copolymer, anionic polymerization is preferable, and living anionic polymerization is more preferable. To obtain a random copolymer, radical polymerization is preferred.
  • anionic polymerization initiator used for living anionic polymerization examples include alkyl lithium, alkyl magnesium halide, sodium naphthalene, alkylated lanthanoid compounds; potassium alkoxides such as t-butoxypotassium; Alkyl zinc such as dimethyl zinc; Alkyl aluminums such as trimethylaluminum; Examples include aromatic metal compounds such as benzyl potassium. Of these, alkyl lithium is preferred.
  • Examples of the solvent used for living anionic polymerization include alkanes such as n-hexane; Cycloalkanes such as cyclohexane; Aromatic hydrocarbons such as toluene; Saturated carboxylic acid esters such as ethyl acetate, n-butyl acetate, i-butyl acetate and methyl propionate; Ketones such as 2-butanone and cyclohexanone; Examples include ethers such as tetrahydrofuran and dimethoxyethane. These solvents can be used alone or in combination of two or more.
  • the reaction temperature in the living anion polymerization can be appropriately selected according to the type of the anion polymerization initiator.
  • the lower limit of the reaction temperature is preferably ⁇ 150 ° C., more preferably ⁇ 80 ° C.
  • As an upper limit of reaction temperature 50 degreeC is preferable and 40 degreeC is more preferable.
  • As a minimum of reaction time 5 minutes are preferred and 20 minutes are more preferred.
  • the upper limit of the reaction time is preferably 24 hours, and more preferably 12 hours.
  • radical polymerization initiators used for radical polymerization include azo radical initiators such as azobisisobutyronitrile (AIBN) and 2,2′-azobis (4-methoxy-2,4-dimethylvaleronitrile); benzoyl And peroxide radical initiators such as peroxide and cumene hydroperoxide. Of these, AIBN and dimethyl 2,2'-azobisisobutyrate are preferred, and AIBN is more preferred. These radical polymerization initiators can be used alone or in combination of two or more.
  • azo radical initiators such as azobisisobutyronitrile (AIBN) and 2,2′-azobis (4-methoxy-2,4-dimethylvaleronitrile); benzoyl And peroxide radical initiators such as peroxide and cumene hydroperoxide. Of these, AIBN and dimethyl 2,2'-azobisisobutyrate are preferred, and AIBN is more preferred.
  • These radical polymerization initiators can be used alone or in combination of two or more
  • Examples of the solvent used for radical polymerization include the same solvents as in the living anion polymerization.
  • the lower limit of the reaction temperature in radical polymerization is preferably 40 ° C, more preferably 50 ° C.
  • 150 degreeC is preferable and 120 degreeC is more preferable.
  • polymerization 1 hour is preferable and 2 hours is more preferable.
  • the upper limit of the reaction time is preferably 48 hours, more preferably 24 hours.
  • the polymer formed by polymerization is preferably recovered by a reprecipitation method. That is, after completion of the reaction, the target polymer is recovered as a powder by introducing the reaction solution into a reprecipitation solvent.
  • a reprecipitation solvent alcohol, ultrapure water, alkane or the like can be used alone or in admixture of two or more.
  • the polymer can also be recovered by removing low molecular weight components such as monomers and oligomers by a liquid separation operation, a column operation, an ultrafiltration operation, or the like.
  • the lower limit of the number average molecular weight (Mn) of the polymer is preferably 1,000, more preferably 2,000, still more preferably 3,000, and particularly preferably 4,000.
  • the upper limit of Mn is preferably 50,000, more preferably 20,000, still more preferably 10,000, and particularly preferably 7,000.
  • the upper limit of the ratio (dispersion degree) of the polymer weight average molecular weight (Mw) to Mn is preferably 5, more preferably 2, more preferably 1.5, and particularly preferably 1.3.
  • the lower limit of the ratio is usually 1 and preferably 1.1.
  • the lower limit of the content of the polymer is preferably 60% by mass, more preferably 80% by mass, still more preferably 90% by mass, and 95% by mass with respect to the total solid content in the composition (I). Particularly preferred. As an upper limit of the said content, it is 100 mass%, for example.
  • the “total solid content” refers to the sum of components other than the solvent [B] in the composition (I).
  • the solvent is not particularly limited as long as it can dissolve or disperse at least the [A] polymer and the [C] additive.
  • Examples of the solvent include alcohol solvents, ether solvents, ketone solvents, amide solvents, ester solvents, hydrocarbon solvents, and the like.
  • the alcohol solvent examples include monoalcohol solvents such as methanol and ethanol; Polyhydric alcohol solvents such as ethylene glycol and 1,2-propylene glycol; Polyhydric alcohol partial ether solvents such as ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether; Examples thereof include lactic acid ester solvents such as methyl lactate, ethyl lactate, n-butyl lactate, and n-amyl lactate.
  • ether solvents examples include dialkyl ether solvents such as diethyl ether; Cyclic ether solvents such as tetrahydrofuran; And aromatic ring-containing ether solvents such as anisole.
  • ketone solvent examples include chain ketone solvents such as butanone and methyl-iso-butyl ketone; Examples thereof include cyclic ketone solvents such as cyclopentanone and cyclohexanone.
  • amide solvent examples include cyclic amide solvents such as N, N′-dimethylimidazolidinone and N-methylpyrrolidone; Examples thereof include chain amide solvents such as N-methylformamide and N, N-dimethylformamide.
  • ester solvents include acetate solvents such as ethyl acetate and n-butyl acetate; Polyhydric alcohol partial ether carboxylate solvents such as ethylene glycol monomethyl ether acetate, diethylene glycol monomethyl ether acetate, propylene glycol monomethyl ether acetate; Lactone solvents such as ⁇ -butyrolactone and valerolactone; Examples thereof include carbonate solvents such as ethylene carbonate and propylene carbonate.
  • acetate solvents such as ethyl acetate and n-butyl acetate
  • Polyhydric alcohol partial ether carboxylate solvents such as ethylene glycol monomethyl ether acetate, diethylene glycol monomethyl ether acetate, propylene glycol monomethyl ether acetate
  • Lactone solvents such as ⁇ -butyrolactone and valerolactone
  • Examples thereof include carbonate solvents such as ethylene carbonate and propylene carbonate.
  • hydrocarbon solvent examples include aliphatic hydrocarbon solvents such as n-hexane; Examples thereof include aromatic hydrocarbon solvents such as toluene.
  • composition (I) may contain one or more [B] solvents.
  • composition (I) contains an acid generator, the crosslinking reaction of the [A] polymer is promoted, and the hardness of the formed cover film can be further increased.
  • Composition (I) may contain one or more acid generators.
  • Examples of the acid generator include onium salt compounds and N-sulfonyloxyimide compounds.
  • onium salt compounds examples include sulfonium salts, tetrahydrothiophenium salts, iodonium salts, ammonium salts, and the like.
  • sulfonium salt examples include triphenylsulfonium trifluoromethanesulfonate, triphenylsulfonium nonafluoro-n-butanesulfonate, 4-cyclohexylphenyldiphenylsulfonium trifluoromethanesulfonate, and the like.
  • tetrahydrothiophenium salt examples include 1- (4-n-butoxynaphthalen-1-yl) tetrahydrothiophenium trifluoromethanesulfonate, 1- (4-n-butoxynaphthalen-1-yl) tetrahydrothiophenium nona. And fluoro-n-butanesulfonate.
  • iodonium salt examples include diphenyliodonium trifluoromethanesulfonate, diphenyliodonium nonafluoro-n-butanesulfonate, diphenyliodonium 2-bicyclo [2.2.1] hept-2-yl-1,1,2,2-tetrafluoro Examples include ethane sulfonate, bis (4-t-butylphenyl) iodonium trifluoromethane sulfonate, and the like.
  • ammonium salts include triethylammonium trifluoromethanesulfonate, triethylammonium nonafluoro-n-butanesulfonate, and the like.
  • N-sulfonyloxyimide compound examples include N- (trifluoromethanesulfonyloxy) bicyclo [2.2.1] hept-5-ene-2,3-dicarboximide.
  • an onium salt compound is preferable, an iodonium salt is more preferable, and bis (4-t-butylphenyl) iodonium nonafluoro-n-butanesulfonate is more preferable.
  • the lower limit of the content of the acid generator is preferably 1 part by weight and more preferably 5 parts by weight with respect to 100 parts by weight of the polymer [A]. 10 parts by mass is more preferable, and 20 parts by mass is particularly preferable. As an upper limit of the said content, 100 mass parts is preferable, 70 mass parts is more preferable, 40 mass parts is further more preferable, 30 mass parts is especially preferable.
  • membrane can be raised more by making content of an acid generator into the said range.
  • composition (I) contains a crosslinking agent, the hardness of the cover film to be formed can be increased.
  • Composition (I) may contain one or more crosslinking agents.
  • cross-linking agent examples include polyfunctional (meth) acrylate compounds, epoxy compounds, hydroxymethyl group-substituted phenol compounds, alkoxyalkyl group-containing phenol compounds, compounds having an alkoxyalkylated amino group, acenaphthylene and hydroxymethylacenaphthylene. And a random copolymer.
  • polyfunctional (meth) acrylate compound examples include trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, dipentaerythritol penta (meth) acrylate, and the like.
  • Examples of the epoxy compound include novolak type epoxy resins, bisphenol type epoxy resins, alicyclic epoxy resins, and aliphatic epoxy resins.
  • hydroxymethyl group-substituted phenol compound examples include 2-hydroxymethyl-4,6-dimethylphenol and 3,5-dihydroxymethyl-4-methoxytoluene (2,6-bis (hydroxymethyl) -p-cresol). Is mentioned.
  • alkoxyalkyl group-containing phenol compound examples include 4,4 ′-(1- (4- (1- (4-hydroxy-3,5-bis (methoxymethyl) phenyl) -1-methylethyl) phenyl). And ethylidene) bis (2,6-bis (methoxymethyl) phenol.
  • Examples of the compound having an alkoxyalkylated amino group include (poly) methylolated melamine, (poly) methylolated glycoluril and the like.
  • an alkoxyalkyl group-containing phenol compound is preferable, and 4,4 ′-(1- (4- (1- (4-hydroxy-3,5-bis (methoxymethyl) phenyl) -1-methylethyl) More preferred is phenyl) ethylidene) bis (2,6-bis (methoxymethyl) phenol.
  • the lower limit of the content of the crosslinking agent is preferably 1 part by mass, more preferably 5 parts by mass, with respect to 100 parts by mass of the polymer [A]. Part is more preferable, and 20 parts by mass is particularly preferable. As an upper limit of the said content, 100 mass parts is preferable, 70 mass parts is more preferable, 40 mass parts is further more preferable, 30 mass parts is especially preferable.
  • composition (I) contains a surfactant, the coating property to the substrate surface can be improved.
  • the upper limit of the other components is preferably 10 parts by weight, more preferably 2 parts by weight, and more preferably 1 part by weight with respect to 100 parts by weight of the [A] polymer. Is more preferable. As a minimum of the above-mentioned content, it is 0.1 mass part, for example.
  • composition (I) is, for example, a membrane filter in which [A] polymer, [B] solvent, [C] additive and other components as necessary are mixed in a predetermined ratio, and preferably a pore size of about 0.2 ⁇ m. It can prepare by filtering with.
  • a minimum of solid content concentration of composition (I) 0.1 mass% is preferred, 0.5 mass% is more preferred, and 0.7 mass% is still more preferred.
  • the upper limit of the solid content concentration is preferably 30% by mass, more preferably 10% by mass, and still more preferably 3% by mass.
  • the heating means include an oven and a hot plate.
  • 80 ° C is preferred, 150 ° C is more preferred, and 200 ° C is still more preferred.
  • 400 degreeC is preferable, 350 degreeC is more preferable, and 300 degreeC is further more preferable.
  • the lower limit of the heating time is preferably 10 seconds, more preferably 30 seconds, and even more preferably 45 seconds.
  • the upper limit of the heating time is preferably 120 minutes, more preferably 10 minutes, and even more preferably 3 minutes.
  • the heating step it is preferable to rinse the coating film (I) using an organic solvent such as a mixture of propylene glycol monomethyl ether and propylene glycol monomethyl ether acetate after the heating.
  • an organic solvent such as a mixture of propylene glycol monomethyl ether and propylene glycol monomethyl ether acetate.
  • the average thickness of the coating film (I) to be formed can be obtained by appropriately selecting conditions such as the type and concentration of the [A] polymer in the composition (I) and the heating temperature and heating time in the heating step. Can be a value. As a minimum of coating film (I), 0.1 nm is preferred, 1 nm is more preferred, and 1.5 nm is still more preferred. The upper limit of the average thickness is preferably 30 nm, more preferably 20 nm, and even more preferably 10 nm.
  • the cover film is formed in the surface region including the metal atoms.
  • the cover film obtained by the cover film forming method of the present invention can also be suitably used as a lower layer film of a photoresist that is exposed with ArF, EUV or the like.
  • a resist film can be suitably formed on the formed lower layer film.
  • the processing method of the said base material is the process (preparation process) which prepares the base material which has the area
  • a process (coating process), a process of heating the coating film formed by the coating process (heating process), and a process of removing the coating film after the heating process hereinafter also referred to as “removing process”.
  • the above-mentioned composition (I) is used as a composition containing the said 1st polymer and a solvent.
  • a cover film having both the above-described steps and the composition (I) containing the [A] polymer can form a cover film excellent in both desorption performance and mask performance.
  • the substrate surface can be reliably protected by the cover film, and after exhibiting excellent mask performance, the cover film is detached from the substrate surface and the substrate surface is exposed again. Less damage to the substrate surface.
  • the preparation process, the coating process, and the heating process of the substrate processing method can be performed in the same manner as the above-described cover film forming method, the coating process, and the heating process. Hereinafter, the removal process will be described.
  • composition (I) is used in the processing method of the base material, the coating film after the heating step is simply and reduced in damage to the base material surface using an acid-containing organic solvent. It can be peeled off and removed.
  • organic solvent in the acid-containing organic solvent examples include the same solvents as the organic solvent exemplified as the [B] solvent of the composition (I).
  • alcohol solvents and amide solvents are preferable, polyhydric alcohol partial ether solvents and chain amide solvents are more preferable, and propylene glycol monoethyl ether and dimethylformamide are more preferable.
  • Examples of the acid contained in the acid-containing organic solvent include inorganic acids such as hydrochloric acid, nitric acid, sulfuric acid, and phosphoric acid; Examples thereof include organic acids such as p-toluenesulfonic acid, formic acid and acetic acid. Of these, inorganic acids are preferred, and hydrochloric acid is more preferred.
  • the lower limit of the acid concentration in the acid-containing organic solvent is preferably 0.1N (normative), more preferably 0.2N, and even more preferably 0.5N.
  • the upper limit of the acid concentration is preferably 10N, more preferably 6N, and even more preferably 4N.
  • the acid-containing organic solvent may contain water.
  • the upper limit of the water content in the acid-containing organic solvent is preferably 30% by mass, more preferably 20% by mass, and even more preferably 15% by mass. As a minimum of the above-mentioned content, it is 0.1 mass%, for example.
  • an inorganic acid-containing organic solvent is preferable, a hydrochloric acid-containing alcohol solvent is more preferable, hydrochloric acid-containing propylene glycol monomethyl ether is more preferable, and 2N hydrochloric acid-containing propylene glycol monomethyl ether is particularly preferable.
  • an acid-containing organic solvent By using such an acid-containing organic solvent, the formed cover film can be more easily peeled off and removed.
  • composition of the present invention is a composition for use in a method for forming a cover film on a substrate surface having a region containing a metal atom as a surface layer, and a polymer and a solvent having a structural unit represented by the above formula (1) It is characterized by containing.
  • composition is described as the composition (I) described above.
  • Mw and Mn of the polymer were measured using GPC columns (two “G2000HXL”, one “G3000HXL” and one “G4000HXL” from Tosoh Corporation), flow rate: 1.0 mL / min, elution solvent: N, N ⁇ Dimethylformamide (containing 30 mmol / L of lithium bromide and 5.6 mmol / L of phosphoric acid), column temperature: Measured by gel permeation chromatography (GPC) using monodisperse polystyrene as a standard under analysis conditions of 40 ° C.
  • GPC gel permeation chromatography
  • the 1 H-NMR analysis for determining the content of the structural unit of the polymer was measured using a nuclear magnetic resonance apparatus (“JNM-Delta 400” manufactured by JEOL Ltd.) using a deuterated chloroform solvent.
  • a polymer (A-1) as a white block copolymer.
  • This polymer (A-1) had Mn of 4,300 and Mw / Mn of 1.18.
  • the content ratios of structural units derived from (M-1) and (M-3) were 74.3 mol% and 25.7 mol%, respectively.
  • the polymerization reaction solution was cooled with water and cooled to 30 ° C. or lower.
  • the cooled polymerization reaction liquid was put into 2,000 g of n-hexane, and the precipitated white powder was separated by filtration.
  • the filtered white powder was washed twice with 400 g of n-hexane, filtered, and dried at 50 ° C. for 17 hours to obtain 86.2 g of a white powdery polymer (A-8).
  • This polymer (A-8) had Mn of 4,900 and Mw / Mn of 1.28.
  • the content ratios of structural units derived from (M-1) and (M-3) were 51.3 mol% and 48.7 mol%, respectively.
  • composition for forming cover film ⁇ Preparation of composition for forming cover film>
  • [B] solvent and [C] additive constituting the composition for forming a cover film are shown below.
  • C-1 Bis (4-tert-butylphenyl) iodonium nonafluorobutanesulfonate (compound represented by the following formula (C-1))
  • C-2 4,4 ′-(1- (4- (1- (4-hydroxy-3,5-bis (methoxymethyl) phenyl) -1-methylethyl) phenyl) ethylidene) bis (2,6- Bis (methoxymethyl) phenol (compound represented by the following formula (C-2))
  • ⁇ Cover film formation> The composition for forming a cover film prepared above was applied to an 8-inch TiN substrate surface at 1,500 rpm using a spin coater (“CLEAN TRACK ACT8” manufactured by Tokyo Electron Co., Ltd.). Baked for 2 seconds. This substrate was rinsed with OK thinner (propylene glycol monomethyl ether / propylene glycol monomethyl ether acetate) for 12 seconds. The thickness of the cover film formed on the substrate was measured with an ellipsometer (“M-2000D” from JA Woollam Japan), and was about 1.5 nm to 5.0 nm.
  • M-2000D ellipsometer
  • the cover film forming method and composition of the present invention it is possible to form a cover film that is excellent in both desorption performance and mask performance. Further, according to the substrate processing method of the present invention, the substrate surface can be reliably protected with the cover film, and after exhibiting excellent mask performance, the cover film is detached from the substrate surface, When exposed again, there is little damage to the substrate surface. Therefore, the cover film forming method, the substrate processing method, and the composition can be suitably used for a semiconductor device processing process and the like that are expected to be further miniaturized in the future.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Paints Or Removers (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

本発明は、金属原子を含む領域を表層に有する基材を準備する工程と、上記基材の表面に、第1重合体及び溶媒を含有する組成物を塗工する工程と、上記塗工工程により形成される塗膜を加熱する工程とを備え、上記第1重合体が下記式(1)で表される第1構造単位を有するカバー膜形成方法である。下記式(1)中、Aは、窒素原子を有する1価の有機基である。上記式(1)におけるAは、下記式(i)で表されることが好ましい。下記式(i)中、Qは、単結合又は炭素数1~20の2価の炭化水素基又は炭素数0~20の1価の1級、2級若しくは3級のアミノ基若しくは環員数5~20の1価の窒素含有複素環基で置換された炭素数1~20の2価の炭化水素基である。Rは、炭素数0~20の1価の1級、2級若しくは3級のアミノ基又は環員数5~20の1価の窒素含有複素環基である。

Description

カバー膜形成方法、基材の処理方法及び組成物
 本発明は、カバー膜形成方法、基材の処理方法及び組成物に関する。
 半導体装置の製造等の際、金属含有基板、パターンが形成された金属含有基板、無機絶縁膜等の基材における表層の金属を含む領域を保護するためにカバー膜を形成することが行われている。このカバー膜は、プラズマアッシング等を用いて、より簡便に除去できるよう、その材料として、ポリイミド、シリコーン樹脂、エポキシ樹脂等の重合体を用いるものが知られている(特開2012-089904号公報及び特開2007-019528号公報参照)。
特開2012-089904号公報 特開2007-019528号公報
 このようなカバー膜には、金属表面を確実に保護することができ、マスク性能に優れるだけでなく、マスク性能を発揮した後、金属表面から脱着させて、再び金属表面を露出させる際、金属表面にダメージを与えない方法、例えば酸添加有機溶媒等により剥離させることができ、脱着性能にも優れることが要求されている。しかし、上記従来のカバー膜では、脱着性能とマスク性能とを両立させることが難しく、上記要求を満たすことができていない。
 本発明は、以上のような事情に基づいてなされたものであり、その目的は、脱着性能とマスク性能とに共に優れるカバー膜を形成することができるカバー膜形成方法、基材の処理方法及び組成物を提供することにある。
 上記課題を解決するためになされた発明は、金属原子を含む領域を表層に有する基材を準備する工程と、上記基材の表面に、第1重合体及び溶媒を含有する組成物を塗工する工程と、上記塗工工程により形成される塗膜を加熱する工程とを備え、上記第1重合体が下記式(1)で表される第1構造単位を有するカバー膜形成方法である。
Figure JPOXMLDOC01-appb-C000006
(式(1)中、Rは、水素原子、メチル基、フッ素原子又はトリフルオロメチル基である。Aは、窒素原子を有する1価の有機基である。)
 上記課題を解決するためになされた別の発明は、金属原子を含む領域を表層に有する基材を準備する工程と、上記基材の表面に、第1重合体及び溶媒を含有する組成物を塗工する工程と、上記塗工工程により形成される塗膜を加熱する工程と、上記加熱工程後の塗膜を除去する工程とを備え、上記第1重合体が上記式(1)で表される第1構造単位を有する基材の処理方法である。
 上記課題を解決するためになされたさらに別の発明は、金属原子を含む領域を表層に有する基材表面のカバー膜形成方法に用いられる組成物であって、上記式(1)で表される構造単位を有する重合体及び溶媒を含有することを特徴とする。
 ここで、「有機基」とは、少なくとも1個の炭素原子を含む基をいう。また、「炭化水素基」とは、鎖状炭化水素基、脂環式炭化水素基及び芳香族炭化水素基が含まれる。この「炭化水素基」は、飽和炭化水素基でも不飽和炭化水素基でもよい。「鎖状炭化水素基」とは、環状構造を含まず、鎖状構造のみで構成された炭化水素基をいい、直鎖状炭化水素基及び分岐状炭化水素基の両方を含む。「脂環式炭化水素基」とは、環構造としては脂環構造のみを含み、芳香環構造を含まない炭化水素基をいい、単環の脂環式炭化水素基及び多環の脂環式炭化水素基の両方を含む。但し、脂環構造のみで構成されている必要はなく、その一部に鎖状構造を含んでいてもよい。「芳香族炭化水素基」とは、環構造として芳香環構造を含む炭化水素基をいう。但し、芳香環構造のみで構成されている必要はなく、その一部に鎖状構造や脂環構造を含んでいてもよい。「環員数」とは、脂環構造、芳香環構造、脂肪族複素環構造及び芳香族複素環構造の環を構成する原子数をいい、多環の場合は、この多環を構成する原子数をいう。
 本発明のカバー膜形成方法、基材の処理方法及び組成物によれば、脱着性能とマスク性能とに共に優れるカバー膜を形成することができる。従って、当該カバー膜形成方法、基材の処理方法及び組成物は、今後ますます微細化が進行すると予想される半導体デバイスの加工プロセス等に好適に用いることができる。
 以下、当該カバー膜形成方法及び基材の処理方法の実施の形態について詳述する。
<カバー膜形成方法>
 当該カバー膜形成方法は、金属原子(以下、「金属原子(A)」ともいう)を含む領域(以下、「領域(I)」ともいう)を表層に有する基材を準備する工程(以下、「準備工程」ともいう)と、上記基材の表面に、第1重合体(以下、「[A]重合体」ともいう)及び溶媒(以下、「[B]溶媒」ともいう)を含有する組成物(以下、「組成物(I)」ともいう)を塗工する工程(以下、「塗工工程」ともいう)と、上記塗工工程により形成される塗膜を加熱する工程(以下、「加熱工程」ともいう)とを備える。当該カバー膜形成方法においては、上記[A]重合体が下記式(1)で表される第1構造単位(以下、「構造単位(I)」ともいう)を有する。
Figure JPOXMLDOC01-appb-C000007
 上記式(1)中、Rは、水素原子、メチル基、フッ素原子又はトリフルオロメチル基である。Aは、窒素原子を有する1価の有機基である。
 当該カバー膜形成方法によれば、上記工程を備え、組成物(I)が[A]重合体を含有することで、脱着性能とマスク性能とに共に優れるカバー膜を形成することができる。当該カバー膜形成方法が上記構成を備えることで、上記効果を奏する理由については、必ずしも明確ではないが、例えば[A]重合体が窒素原子を有する有機基を備えていることで、基材の金属原子を含む領域に強く相互作用することができると考えられ、その結果、形成されるカバー膜はマスク性能に優れる。また、この相互作用は、酸の作用により容易に低減されるものであると考えられ、カバー膜は、酸等により、容易に剥離することができる。以下、各工程について説明する。
[準備工程]
 本工程では、金属原子(A)を含む領域(I)を表層に有する基材を準備する。
 金属原子(A)としては、金属元素であれば特に限定されない。金属元素としては、例えば銅、鉄、亜鉛、コバルト、アルミニウム、スズ、タングステン、ジルコニウム、チタン、タンタル、ゲルマニウム、モリブデン、ルテニウム、金、銀、白金、パラジウム、ニッケル等が挙げられる。これらの中で、チタン、銅、コバルト、アルミニウム、ルテニウム及びタングステンが好ましい。
 領域(I)中における金属原子(A)の含有形態としては、例えば金属単体、合金、金属窒化物、金属酸化物、シリサイド等が挙げられる。
 金属単体としては、例えば銅、コバルト、アルミニウム、タングステン等の金属の単体等が挙げられる。
 合金としては、例えばニッケル-銅合金、コバルト-ニッケル合金、金-銀合金等が挙げられる。
 金属窒化物としては、例えば窒化チタン、窒化タンタル、窒化鉄、窒化アルミニウム等が挙げられる。
 金属酸化物としては、例えば酸化タンタル、酸化アルミニウム、酸化鉄、酸化銅等が挙げられる。
 シリサイドとしては、例えば鉄シリサイド、モリブデンシリサイド等が挙げられる。これらの中で、金属単体、合金、金属窒化物及びシリサイドが好ましく、金属単体及び金属窒化物がより好ましく、金属窒化物がさらに好ましく、窒化チタンがさらに好ましい。
 基材の表層には、領域(I)以外に、実質的に非金属原子(以下、「非金属原子(B)」ともいう)のみからなる領域(以下、「領域(II)」ともいう)を有していてもよい。
 領域(II)は、好ましくは絶縁領域であり、領域(II)中における非金属原子(B)としては、ケイ素、炭素などが好ましいものとして挙げられる。またその含有形態としては、例えば炭素等の非金属単体、SiO、SiOC、窒化ケイ素などが挙げられる。
 基材の表層における領域(I)及び/又は領域(II)の存在形状としては特に限定されず、例えば平面視で面状、点状、ストライプ状等が挙げられる。また、少なくとも1種の領域がライン・アンド・スペースパターン、ホールパターン等のパターン形状を構成していてもよい。領域(I)及び領域(II)の大きさは特に限定されず、適宜所望の大きさの領域とすることができる。
 本工程で準備する基材としては、領域(I)を表層に有するものである限り、特に限定されない。この基材としては、全体が領域(I)と同一の組成を有するものであってもよい。上記基材の具体例としては、銅、コバルト、アルミニウム、タングステン等の金属の単体から構成される基板、ニッケル-銅合金、コバルト-ニッケル合金、金-銀合金等の合金から構成される基板、窒化チタン(TiN)、窒化タンタル、窒化鉄、窒化アルミニウム等の金属窒化物から構成される基板、酸化タンタル、酸化アルミニウム、酸化鉄、酸化銅等の金属酸化物から構成される基板、鉄シリサイド、モリブデンシリサイド等のシリサイドから構成される基板が挙げられる。
 基材の形状としては、特に限定されず、板状(基板)、球状等、適宜所望の形状とすることができる。
[塗工工程]
 本工程では、上記基材の表面に、組成物(I)を塗工する。
 組成物(I)の塗工方法としては、例えばスピンコート法等が挙げられる。
[組成物(I)]
 組成物(I)は、[A]重合体及び[B]溶媒を含有する。組成物(I)は、[A]重合体及び[B]溶媒以外に[C]添加剤を含有していてもよく、本発明の効果を損なわない範囲において、その他の成分を含有していてもよい。以下、各成分について説明する。
([A]重合体)
 [A]重合体は、構造単位(I)を有する重合体である。[A]重合体は、構造単位(I)とは異なるその他の構造単位を有していてもよい。上記その他の構造単位としては、後述する第2構造単位(以下、「構造単位(II)」ともいう)等が挙げられる。[A]重合体は、各構造単位を1種又は2種以上有していてもよい。[A]重合体は、ブロック共重合体でも、ランダム共重合体でもよい。以下、各構造単位について説明する。
(構造単位(I))
 構造単位(I)は、下記式(I)で表される。
Figure JPOXMLDOC01-appb-C000008
 上記式(1)中、Rは、水素原子、メチル基、フッ素原子又はトリフルオロメチル基である。Aは、窒素原子(以下、「窒素原子(A)」ともいう)を有する1価の有機基(以下、「基(I)」ともいう)である。
 Rとしては、構造単位(I)を与える単量体の共重合性の観点から、水素原子又はメチル基が好ましく、メチル基がより好ましい。
 基(I)における窒素原子(A)は、非共有電子対を有することが好ましい。
 非共有電子対を有する窒素原子(A)としては、例えば1~3個の水素原子以外の原子が一重結合で結合している窒素原子、芳香族複素環基中の窒素原子等が挙げられる。
 窒素原子(A)にプロトンを付加して得られる共役酸のpKaの下限としては、3が好ましく、5がより好ましく、7がさらに好ましく、9が特に好ましい。上記pKaの上限としては、例えば14である。窒素原子(A)の共役酸のpKaを上記範囲とすることで、脱着性能及びマスク性能をより向上させることができる。窒素原子(A)の共役酸とは、窒素原子(A)が有する非共有電子対に、プロトンが配位結合したものを意味する。
 基(I)としては、例えば炭素数1~20の1価の炭化水素基の炭素-炭素間に2価の窒素原子含有基を含む基、上記炭化水素基が有する水素原子の一部又は全部を1価の窒素原子含有基で置換した基等が挙げられる。上記2価の窒素原子含有基と1価の窒素原子含有基は、ひとつの基(I)に両方とも含まれていてもよい。また基(I)は、その炭素-炭素間に窒素原子以外のヘテロ原子を含む2価の基をさらに含んでいてもよく、基(I)が有する水素原子の一部又は全部を、窒素原子以外のヘテロ原子を含む1価の基でさらに置換していてもよい。
 炭素数1~20の1価の炭化水素基としては、炭素数1~20の1価の鎖状炭化水素基、炭素数3~20の1価の脂環式炭化水素基、炭素数6~20の1価の芳香族炭化水素基等が挙げられる。
 炭素数1~20の1価の鎖状炭化水素基としては、例えば
 メチル基、エチル基、n-プロピル基、i-プロピル基等のアルキル基;
 エテニル基、プロペニル基、ブテニル基等のアルケニル基;
 エチニル基、プロピニル基、ブチニル基等のアルキニル基などが挙げられる。
 炭素数3~20の1価の脂環式炭化水素基としては、例えば
 シクロペンチル基、シクロヘキシル基等の単環の脂環式飽和炭化水素基;
 シクロペンテニル基、シクロヘキセニル基等の単環の脂環式不飽和炭化水素基;
 ノルボルニル基、アダマンチル基、トリシクロデシル基等の多環の脂環式飽和炭化水素基;
 ノルボルネニル基、トリシクロデセニル基等の多環の脂環式不飽和炭化水素基などが挙げられる。
 炭素数6~20の1価の芳香族炭化水素基としては、例えば
 フェニル基、トリル基、キシリル基、ナフチル基、アントリル基等のアリール基;
 ベンジル基、フェネチル基、ナフチルメチル基、アントリルメチル基等のアラルキル基などが挙げられる。
 2価の窒素原子含有基としては、例えば-NH-、-NR’-、-C=N-等が挙げられる。R’は、炭素数1~10の1価の炭化水素基である。
 1価の窒素原子含有基としては、例えば-NH、-NHR”、-NR”、シアノ基等が挙げられる。R”は、炭素数1~10の1価の炭化水素基である。
 窒素原子以外のヘテロ原子を含む1価及び2価の基を構成するヘテロ原子としては、例えば酸素原子、硫黄原子、リン原子、ケイ素原子、ハロゲン原子等が挙げられる。ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられる。
 窒素原子以外のヘテロ原子を含む2価の基としては、例えば-O-、-CO-、-S-、-CS-、これらのうちの2つ以上を組み合わせた基等が挙げられる。これらの中で、-O-又は-CO-が好ましい。
 窒素原子以外のヘテロ原子を含む1価の基としては、例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子、ヒドロキシ基、カルボキシ基、スルファニル基等が挙げられる。
 Aとしては、下記式(i)で表される基が好ましい。
Figure JPOXMLDOC01-appb-C000009
 上記式(i)中、Xは、単結合、-COO-、-OCO-、-CO-、-O-、-NH-、-NHCO-又は-CONH-である。Qは、単結合、炭素数1~20の2価の炭化水素基又は炭素数0~20の1価の1級、2級若しくは3級のアミノ基若しくは環員数5~20の1価の窒素含有複素環基で置換された炭素数1~20の2価の炭化水素基である。Rは、炭素数0~20の1価の1級、2級若しくは3級のアミノ基又は環員数5~20の1価の窒素含有複素環基である。nは、0~10の整数である。但し、nが1以上の場合、Qが単結合である場合はない。nが2以上の場合、複数存在するXは、それぞれ同一でも異なっていてもよく、複数存在するQは、それぞれ同一でも異なっていてもよい。*は、Rが結合する炭素原子との結合部位を示す。
 Xとしては、単結合及び-COO-が好ましい。
 Qで表される炭素数1~20の2価の炭化水素基としては、例えば上記Aにおいて例示した炭素数1~20の2価の炭化水素基と同様の基等が挙げられる。
 炭素数1~20の2価の炭化水素基の置換基としての炭素数0~20の1価の1級、2級若しくは3級のアミノ基及びRで表される炭素数0~20の1価の1級、2級若しくは3級のアミノ基としては、例えば
 -NHで表される1級アミノ基;
 メチルアミノ基、エチルアミノ基、シクロヘキシルアミノ基、フェニルアミノ基等の2級アミノ基;
 ジメチルアミノ基、ジエチルアミノ基、ジシクロヘキシルアミノ基、ジフェニルアミノ基等の3級アミノ基などが挙げられる。
 炭素数1~20の2価の炭化水素基の置換基としての環員数5~20の1価の窒素含有複素環基及びRで表される環員数5~20の1価の窒素含有複素環基としては、例えば
 アザシクロペンチル基、アザシクロヘキシル基、3,3,5,5-テトラメチルアザシクロヘキシル基、N-メチル-3,3,5,5-テトラメチルアザシクロヘキシル基等の窒素含有脂肪族複素環基;
 ピリジル基、ピラジル基、ピリミジル基、ピリダジル基、キノリル基、イソキノリル基等の窒素含有芳香族複素環基などが挙げられる。
 nとしては、0~2が好ましく、0及び1がより好ましい。
 構造単位(I)としては、例えば下記式(1-1)~(1-14)で表される構造単位(以下、「構造単位(I-1)~(I-14)」ともいう)等が挙げられる。
Figure JPOXMLDOC01-appb-C000010
 上記式(1-1)~(1-14)中、Rは、上記式(1)と同義である。
 これらの中で、構造単位(I-1)、(I-2)、(I-5)、(1-7)及び(I-9)が好ましい。
 構造単位(I)を与える単量体としては、例えば
 ビニルピリジン、ビニルピラジン、ビニルキノリン等の基(I)を含むビニル化合物;
 アミノスチレン、ジメチルアミノスチレン等の基(I)を含むスチレン化合物;
 ジエチルアミノエチル(メタ)アクリレート、N-メチル-3,3,5,5-テトラメチルアザシクロヘキサン-1-イル(メタ)アクリレート等の基(I)を含む(メタ)アクリルエステルなどが挙げられる。
 構造単位(I)の含有割合の下限としては、2モル%が好ましく、10モル%がより好ましく、20モル%がさらに好ましく、30モル%が特に好ましく、40モル%がさらに特に好ましい。上記含有割合の上限としては、100%が好ましく、90モル%がより好ましく、70モル%がさらに好ましい。構造単位(I)の含有割合を上記範囲とすることで、脱着性能及びマスク性能をさらに向上させることができる。
(その他の構造単位)
 [A]重合体は、構造単位(I)とは異なるその他の構造単位をさらに有してもよい。その他の構造単位としては、下記式(2-1)で表される構造単位(以下、「構造単位(II-1)」ともいう)及び下記式(2-2)で表される構造単位(以下、「構造単位(II-2)」ともいう)から選ばれる少なくとも1種の構造単位(以下、「構造単位(II)」ともいう)が好ましい。
Figure JPOXMLDOC01-appb-C000011
 上記式(2-1)及び(2-2)中、R及びRは、それぞれ独立して、水素原子、メチル基、フッ素原子又はトリフルオロメチル基である。Rは、炭素数1~20の1価の有機基である。Rは、炭素数1~20の(1+b)価の炭化水素基である。Rは、水素原子又はヘテロ原子を有する1価の基である。aは、0~5の整数である。aが2以上の場合、複数のRは同一でも異なっていてもよい。bは、1~3の整数である。bが2以上の場合、複数のRは同一でも異なっていてもよい。
 R及びRとしては、構造単位(II)を与える単量体の共重合性の観点から、水素原子又はメチル基が好ましい。
 Rで表される炭素数1~20の1価の有機基としては、例えば炭素数1~20の1価の炭化水素基、カルボキシ基等が挙げられる。
 aとしては、0~2が好ましく、0及び1がより好ましく、0がさらに好ましい。
 Rで表される炭素数1~20の(1+b)価の炭化水素基としては、例えば上記Aにおいて例示した1価の炭化水素基のうち、炭素数1~20のものからb個の水素原子を除いた基等が挙げられる。
 bとしては、1及び2が好ましく、1がより好ましい。
 Rで表されるヘテロ原子を有する1価の基としては、例えば
 ヒドロキシ基、ヒドロキシメチル基等の酸素原子を有する基;
 スルファニル基、スルファニルメチル基等の硫黄原子を有する基;
 フッ素原子、トリフルオロメチル基等のフッ素原子を有する基などが挙げられる。
 Rとしては、水素原子が好ましい。
 構造単位(II)としては、例えば構造単位(II-1)として下記式(2-1-1)~(2-1-3)で表される構造単位(以下、「構造単位(II-1-1)~(II-1-3)」ともいう)が、構造単位(II-2)として下記式(2-2-1)~(2-2-6)で表される構造単位(以下、「構造単位(II-2-1)~(II-2-6)」ともいう)等が挙げられる。
Figure JPOXMLDOC01-appb-C000012
 上記式(2-1-1)~(2-1-3)中、Rは、上記式(2-1)と同義である。
 上記式(2-2-1)~(2-2-6)中、Rは、上記式(2-2)と同義である。
 これらの中で、構造単位(II-1-1)及び(II-2-1)が好ましい。
 [A]重合体が構造単位(II)を有する場合、構造単位(II)の含有割合の下限としては、5モル%が好ましく、20モル%がより好ましく、30モル%がさらに好ましく、40モル%が特に好ましく、50モル%がさらに特に好ましい。上記含有割合の上限としては、95モル%が好ましく、80モル%がより好ましく、70モル%がさらに好ましい。構造単位(II)の含有割合を上記範囲とすることで、脱着性能及びマスク性能をより向上させることができる。
 構造単位(I)及び構造単位(II)以外の構造単位としては、例えば置換又は非置換のエチレンに由来する構造単位等が挙げられる(但し、構造単位(I)及び構造単位(II)に該当するものを除く)。
 [A]重合体が構造単位(I)及び構造単位(II)以外の構造単位を有する場合、構造単位(I)及び構造単位(II)以外の構造単位の含有割合の上限としては、10モル%が好ましく、5モル%がより好ましく、1モル%がさらに好ましい。上記含有割合の下限としては、例えば0.1モル%である。
 [A]重合体は、主鎖の少なくとも1つの末端が、スルファニル基、エチレン性炭素-炭素二重結合含有基、オキサゾリン環含有基、リン酸基、エポキシ基、ジスルフィド基等の官能基で修飾されているものであってもよい。
([A]重合体の合成方法)
 [A]重合体は、例えば構造単位(I)を与える単量体、必要に応じて構造単位(II)を与える単量体等を用い、アニオン重合、カチオン重合、ラジカル重合等により、適当な溶媒中で重合することにより合成することができる。これらの中で、ブロック共重合体を得るには、アニオン重合が好ましく、リビングアニオン重合がより好ましい。ランダム共重合体を得るには、ラジカル重合が好ましい。
 リビングアニオン重合に用いるアニオン重合開始剤としては、例えば
 アルキルリチウム、アルキルマグネシウムハライド、ナフタレンナトリウム、アルキル化ランタノイド化合物;
 t-ブトキシカリウム等のカリウムアルコキシド;
 ジメチル亜鉛等のアルキル亜鉛;
 トリメチルアルミニウム等のアルキルアルミニウム;
 ベンジルカリウム等の芳香族系金属化合物などが挙げられる。これらの中で、アルキルリチウムが好ましい。
 リビングアニオン重合に用いる溶媒としては、例えば
 n-ヘキサン等のアルカン;
 シクロヘキサン等のシクロアルカン;
 トルエン等の芳香族炭化水素;
 酢酸エチル、酢酸n-ブチル、酢酸i-ブチル、プロピオン酸メチル等の飽和カルボン酸エステル;
 2-ブタノン、シクロヘキサノン等のケトン;
 テトラヒドロフラン、ジメトキシエタン等のエーテルなどが挙げられる。これらの溶媒は、1種又は2種以上を用いることができる。
 リビングアニオン重合における反応温度は、アニオン重合開始剤の種類に応じて適宜選択することができる。反応温度の下限としては、-150℃が好ましく、-80℃がより好ましい。反応温度の上限としては、50℃が好ましく、40℃がより好ましい。反応時間の下限としては、5分が好ましく、20分がより好ましい。反応時間の上限としては、24時間が好ましく、12時間がより好ましい。
 ラジカル重合に用いるラジカル重合開始剤としては、例えばアゾビスイソブチロニトリル(AIBN)、2,2’-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)等のアゾ系ラジカル開始剤;ベンゾイルパーオキサイド、クメンハイドロパーオキサイド等の過酸化物系ラジカル開始剤等が挙げられる。これらの中で、AIBN及びジメチル2,2’-アゾビスイソブチレートが好ましく、AIBNがより好ましい。これらのラジカル重合開始剤は1種単独で又は2種以上を混合して用いることができる。
 ラジカル重合に用いる溶媒としては、上記リビングアニオン重合の場合と同様の溶媒等が挙げられる。
 ラジカル重合における反応温度の下限としては、40℃が好ましく、50℃がより好ましい。上記反応温度の上限としては、150℃が好ましく、120℃がより好ましい。重合における反応時間の下限としては、1時間が好ましく、2時間がより好ましい。上記反応時間の上限としては、48時間が好ましく、24時間がより好ましい。
 重合により形成された[A]重合体は、再沈殿法により回収することが好ましい。すなわち反応終了後、反応液を再沈溶媒に投入することにより、目的の重合体を粉体として回収する。再沈溶媒としては、アルコール、超純水、アルカン等を単独で又は2種以上を混合して使用することができる。再沈殿法の他に分液操作やカラム操作、限外濾過操作等により、単量体、オリゴマー等の低分子量成分を除去して重合体を回収することもできる。
 [A]重合体の数平均分子量(Mn)の下限としては、1,000が好ましく、2,000がより好ましく、3,000がさらに好ましく、4,000が特に好ましい。上記Mnの上限としては、50,000が好ましく、20,000がより好ましく、10,000がさらに好ましく、7,000が特に好ましい。
 [A]重合体の重量平均分子量(Mw)のMnに対する比(分散度)の上限としては、5が好ましく、2がより好ましく、1.5がより好ましく、1.3が特に好ましい。上記比の下限としては、通常1であり、1.1が好ましい。
 [A]重合体の含有量の下限としては、組成物(I)における全固形分に対して、60質量%が好ましく、80質量%がより好ましく、90質量%がさらに好ましく、95質量%が特に好ましい。上記含有量の上限としては、例えば100質量%である。「全固形分」とは、組成物(I)における[B]溶媒以外の成分の総和をいう。
([B]溶媒)
 [B]溶媒としては、少なくとも[A]重合体及び[C]添加剤等を溶解又は分散可能な溶媒であれば特に限定されない。
 [B]溶媒としては、例えばアルコール系溶媒、エーテル系溶媒、ケトン系溶媒、アミド系溶媒、エステル系溶媒、炭化水素系溶媒等が挙げられる。
 アルコール系溶媒としては、例えば
 メタノール、エタノール等のモノアルコール系溶媒;
 エチレングリコール、1,2-プロピレングリコール等の多価アルコール系溶媒;
 エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル等の多価アルコール部分エーテル系溶媒;
 乳酸メチル、乳酸エチル、乳酸n-ブチル、乳酸n-アミル等の乳酸エステル系溶媒などが挙げられる。
 エーテル系溶媒としては、例えば
 ジエチルエーテル等のジアルキルエーテル系溶媒;
 テトラヒドロフラン等の環状エーテル系溶媒;
 アニソール等の芳香環含有エーテル系溶媒などが挙げられる。
 ケトン系溶媒としては、例えば
 ブタノン、メチル-iso-ブチルケトン等の鎖状ケトン系溶媒;
 シクロペンタノン、シクロヘキサノン等の環状ケトン系溶媒などが挙げられる。
 アミド系溶媒としては、例えば
 N,N’-ジメチルイミダゾリジノン、N-メチルピロリドン等の環状アミド系溶媒;
 N-メチルホルムアミド、N,N-ジメチルホルムアミド等の鎖状アミド系溶媒などが挙げられる。
 エステル系溶媒としては、例えば
 酢酸エチル、酢酸n-ブチル等の酢酸エステル系溶媒;
 エチレングリコールモノメチルエーテルアセテート、ジエチレングリコールモノメチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート等の多価アルコール部分エーテルカルボキシレート系溶媒;
 γ-ブチロラクトン、バレロラクトン等のラクトン系溶媒;
 エチレンカーボネート、プロピレンカーボネート等のカーボネート系溶媒などが挙げられる。
 炭化水素系溶媒としては、例えば
 n-ヘキサン等の脂肪族炭化水素系溶媒;
 トルエン等の芳香族炭化水素系溶媒などが挙げられる。
 これらの中で、アルコール系溶媒及びエステル系溶媒が好ましく、アルコール系溶媒がより好ましく、乳酸エステル系溶媒がさらに好ましく、乳酸エチルが特に好ましい。エステル系溶媒としては、多価アルコール部分エーテルカルボキシレート系溶媒が好ましく、プロピレングリコールモノメチルエーテルアセテートがより好ましい。組成物(I)は、[B]溶媒を1種又は2種以上含有していてもよい。
([C]添加剤)
 [C]添加剤としては、例えば酸発生剤、架橋剤等が挙げられる。
(酸発生剤)
 酸発生剤は、熱や放射線の作用により酸を発生し、[A]重合体の架橋を促進する成分である。組成物(I)が酸発生剤を含有すると、[A]重合体の架橋反応が促進され、形成されるカバー膜の硬度をより高めることができる。組成物(I)は、酸発生剤を1種又は2種以上を含有していてもよい。
 酸発生剤としては、例えばオニウム塩化合物、N-スルホニルオキシイミド化合物等が挙げられる。
 上記オニウム塩化合物としては、例えばスルホニウム塩、テトラヒドロチオフェニウム塩、ヨードニウム塩、アンモニウム塩等が挙げられる。
 スルホニウム塩としては、例えばトリフェニルスルホニウムトリフルオロメタンスルホネート、トリフェニルスルホニウムノナフルオロ-n-ブタンスルホネート、4-シクロヘキシルフェニルジフェニルスルホニウムトリフルオロメタンスルホネート等が挙げられる。
 テトラヒドロチオフェニウム塩としては、例えば1-(4-n-ブトキシナフタレン-1-イル)テトラヒドロチオフェニウムトリフルオロメタンスルホネート、1-(4-n-ブトキシナフタレン-1-イル)テトラヒドロチオフェニウムノナフルオロ-n-ブタンスルホネート等が挙げられる。
 ヨードニウム塩としては、例えばジフェニルヨードニウムトリフルオロメタンスルホネート、ジフェニルヨードニウムノナフルオロ-n-ブタンスルホネート、ジフェニルヨードニウム2-ビシクロ[2.2.1]ヘプト-2-イル-1,1,2,2-テトラフルオロエタンスルホネート、ビス(4-t-ブチルフェニル)ヨードニウムトリフルオロメタンスルホネート等が挙げられる。
 アンモニウム塩としては、例えばトリエチルアンモニウムトリフルオロメタンスルホネート、トリエチルアンモニウムノナフルオロ-n-ブタンスルホネート等が挙げられる。
 N-スルホニルオキシイミド化合物としては、例えばN-(トリフルオロメタンスルホニルオキシ)ビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボキシイミド等が挙げられる。
 酸発生剤としては、オニウム塩化合物が好ましく、ヨードニウム塩がより好ましく、ビス(4-t-ブチルフェニル)ヨードニウムノナフルオロ-n-ブタンスルホネートがさらに好ましい。
 組成物(I)が酸発生剤を含有する場合、酸発生剤の含有量の下限としては、[A]重合体100質量部に対して、1質量部が好ましく、5質量部がより好ましく、10質量部がさらに好ましく、20質量部が特に好ましい。上記含有量の上限としては、100質量部が好ましく、70質量部がより好ましく、40質量部がさらに好ましく、30質量部が特に好ましい。酸発生剤の含有量を上記範囲とすることで、カバー膜の硬度をより高めることができる。
(架橋剤)
 架橋剤は、熱や酸の作用により、[A]重合体等の成分同士の架橋結合を形成するか、又は自らが架橋構造を形成する成分である。組成物(I)が架橋剤を含有すると、形成されるカバー膜の硬度を高めることができる。組成物(I)は、架橋剤を1種又は2種以上含有していてもよい。
 架橋剤としては、例えば多官能(メタ)アクリレート化合物、エポキシ化合物、ヒドロキシメチル基置換フェノール化合物、アルコキシアルキル基含有フェノール化合物、アルコキシアルキル化されたアミノ基を有する化合物、アセナフチレンとヒドロキシメチルアセナフチレンとのランダム共重合体等が挙げられる。
 上記多官能(メタ)アクリレート化合物としては、例えばトリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート等が挙げられる。
 上記エポキシ化合物としては、例えばノボラック型エポキシ樹脂、ビスフェノール型エポキシ樹脂、脂環式エポキシ樹脂、脂肪族エポキシ樹脂等が挙げられる。
 上記ヒドロキシメチル基置換フェノール化合物としては、例えば2-ヒドロキシメチル-4,6-ジメチルフェノール、3,5-ジヒドロキシメチル-4-メトキシトルエン(2,6-ビス(ヒドロキシメチル)-p-クレゾール)等が挙げられる。
 上記アルコキシアルキル基含有フェノール化合物としては、例えば、4,4’-(1-(4-(1-(4-ヒドロキシ-3,5-ビス(メトキシメチル)フェニル)-1-メチルエチル)フェニル)エチリデン)ビス(2,6-ビス(メトキシメチル)フェノール等が挙げられる。
 上記アルコキシアルキル化されたアミノ基を有する化合物としては、例えば(ポリ)メチロール化メラミン、(ポリ)メチロール化グリコールウリル等が挙げられる。
 架橋剤としては、アルコキシアルキル基含有フェノール化合物が好ましく、4,4’-(1-(4-(1-(4-ヒドロキシ-3,5-ビス(メトキシメチル)フェニル)-1-メチルエチル)フェニル)エチリデン)ビス(2,6-ビス(メトキシメチル)フェノールがより好ましい。
 組成物(I)が架橋剤を含有する場合、架橋剤の含有量の下限としては、[A]重合体100質量部に対して、1質量部が好ましく、5質量部がより好ましく、10質量部がさらに好ましく、20質量部が特に好ましい。上記含有量の上限としては、100質量部が好ましく、70質量部がより好ましく、40質量部がさらに好ましく、30質量部が特に好ましい。架橋剤の含有量を上記範囲とすることで、カバー膜の硬度をより高めることができる。
(その他の成分)
 その他の成分としては、例えば界面活性剤等が挙げられる。組成物(I)は、界面活性剤を含有すると、基材表面への塗工性を向上させることができる。
 組成物(I)がその他の成分を含有する場合、その他の成分の上限としては、[A]重合体100質量部に対して、10質量部が好ましく、2質量部がより好ましく、1質量部がさらに好ましい。上記含有量の下限としては、例えば0.1質量部である。
[組成物(I)の調製方法]
 組成物(I)は、例えば[A]重合体、[B]溶媒、[C]添加剤及び必要に応じてその他の成分を所定の割合で混合し、好ましくは孔径0.2μm程度のメンブランフィルターで濾過することにより調製することができる。組成物(I)の固形分濃度の下限としては、0.1質量%が好ましく、0.5質量%がより好ましく、0.7質量%がさらに好ましい。上記固形分濃度の上限としては、30質量%が好ましく、10質量%がより好ましく、3質量%がさらに好ましい。
[加熱工程]
 本工程では、上記塗工工程により形成される塗膜を加熱する。これにより、基材表層の金属原子(A)と、組成物(I)の[A]重合体とが相互作用すると考えられ、基材表面の領域(I)に、[A]重合体を含む塗膜(以下、「塗膜(I)」ともいう)が積層される。
 加熱の手段としては、例えばオーブン、ホットプレート等が挙げられる。加熱の温度の下限としては、80℃が好ましく、150℃がより好ましく、200℃がさらに好ましい。加熱の温度の上限としては、400℃が好ましく、350℃がより好ましく、300℃がさらに好ましい。加熱の時間の下限としては、10秒が好ましく、30秒がより好ましく、45秒がさらに好ましい。加熱の時間の上限としては、120分が好ましく、10分がより好ましく、3分がさらに好ましい。
 加熱工程において、加熱の後に、プロピレングリコールモノメチルエーテルとプロピレングリコールモノメチルエーテルアセテートとの混合物等の有機溶媒などを用いて塗膜(I)をリンスすることが好ましい。このリンスにより、塗膜のうち金属原子(A)と相互作用していない部分が除去される。リンスする時間の下限としては、1秒が好ましく、5秒がより好ましい。上記時間の上限としては、10分が好ましく、1分がより好ましい。
 形成される塗膜(I)の平均厚みは、組成物(I)における[A]重合体の種類及び濃度、並びに加熱工程における加熱温度、加熱時間等の条件を適宜選択することで、所望の値にすることができる。塗膜(I)の下限としては、0.1nmが好ましく、1nmがより好ましく、1.5nmがさらに好ましい。上記平均厚みの上限としては、30nmが好ましく、20nmがより好ましく、10nmがさらに好ましい。
 以上により、金属原子を含む表層領域にカバー膜が形成される。
 本発明のカバー膜形成方法により得られるカバー膜は、ArF、EUV等で露光を行うフォトレジストの下層膜としても好適に用いることができる。この場合、形成した下層膜の上にレジスト膜を好適に形成することができる。
<基材の処理方法>
 当該基材の処理方法は、金属原子を含む領域を表層に有する基材を準備する工程(準備工程)と、上記基材の表面に、第1重合体及び溶媒を含有する組成物を塗工する工程(塗工工程)と、上記塗工工程により形成される塗膜を加熱する工程(加熱工程)と、上記加熱工程後の塗膜を除去する工程(以下、「除去工程」ともいう)とを備える。当該基材の処理方法においては、上記第1重合体及び溶媒を含有する組成物として、上述の組成物(I)を用いる。
 当該基材の処理方法によれば、上記工程を備え、組成物(I)が[A]重合体を含有することで、脱着性能とマスク性能とに共に優れるカバー膜を形成することができる。また、上記構成を備えることで、カバー膜で基板表面を確実に保護することができ、優れたマスク性能を発揮した後、基板表面からそのカバー膜を脱着させて、基板表面を再び露出させる際、基板表面に与えるダメージが少ない。当該基材の処理方法の準備工程、塗工工程及び加熱工程は、上述のカバー膜形成方法の準備工程、塗工工程及び加熱工程と同様に行うことができる。以下、除去工程について説明する。
[除去工程]
 本工程では、上記加熱工程後の塗膜を除去する。
 当該基材の処理方法においては、上述の組成物(I)を用いているので、加熱工程後の塗膜を、酸含有有機溶媒を用いて、簡便にかつ基材表面へのダメージを低減しつつ剥離して除去することができる。
 酸含有有機溶媒における有機溶媒としては、例えば上記組成物(I)の[B]溶媒として例示した有機溶媒と同様の溶媒等が挙げられる。これらの中で、アルコール系溶媒及びアミド系溶媒が好ましく、多価アルコール部分エーテル系溶媒及び鎖状アミド系溶媒がより好ましく、プロピレングリコールモノエチルエーテル及びジメチルホルムアミドがさらに好ましい。
 酸含有有機溶媒が含有する酸としては、例えば
 塩酸、硝酸、硫酸、リン酸等の無機酸;
 p-トルエンスルホン酸、ギ酸、酢酸等の有機酸などが挙げられる。
 これらの中で、無機酸が好ましく、塩酸がより好ましい。
 酸含有有機溶媒における酸の濃度の下限としては、0.1N(規定)が好ましく、0.2Nがより好ましく、0.5Nがさらに好ましい。上記酸の濃度の上限としては、10Nが好ましく、6Nがより好ましく、4Nがさらに好ましい。
 酸含有有機溶媒は、水を含有していてもよい。酸含有有機溶媒が水を含有する場合、酸含有有機溶媒中の水の含有量の上限としては、30質量%が好ましく、20質量%がより好ましく、15質量%がさらに好ましい。上記含有量の下限としては、例えば0.1質量%である。
 酸含有有機溶媒としては、無機酸含有有機溶媒が好ましく、塩酸含有アルコール系溶媒がより好ましく、塩酸含有プロピレングリコールモノメチルエーテルがさらに好ましく、2N塩酸含有プロピレングリコールモノメチルエーテルが特に好ましい。このような酸含有有機溶媒を用いることにより、形成されたカバー膜をより簡便に剥離させて除去することができる。
 このように、当該基材の処理方法によれば、基材表面のダメージを低減しつつ、カバー膜の形成及び剥離を行うことができる。
<組成物>
 本発明の組成物は、金属原子を含む領域を表層に有する基材表面のカバー膜形成方法に用いられる組成物であって、上記式(1)で表される構造単位を有する重合体及び溶媒を含有することを特徴とする。
 当該組成物については、上述の組成物(I)として説明している。
 以下、本発明を実施例に基づいて具体的に説明するが、本発明はこれらの実施例に限定されるものではない。各種物性値の測定方法を以下に示す。
[Mn及びMwの測定]
 重合体のMw及びMnは、GPCカラム(東ソー社の「G2000HXL」2本、「G3000HXL」1本及び「G4000HXL」1本)を用い、流量:1.0mL/分、溶出溶媒:N,N-ジメチルホルムアミド(臭化リチウム30mmol/L及びリン酸5.6mmol/Lを含有)、カラム温度:40℃の分析条件で、単分散ポリスチレンを標準とするゲルパーミエーションクロマトグラフィー(GPC)により測定した。
H-NMR分析]
 重合体の構造単位の含有割合を求めるためのH-NMR分析は、核磁気共鳴装置(日本電子社の「JNM-Delta400」)を用い、重クロロホルム溶媒を用いて測定した。
<[A]重合体の合成>
 [A]重合体の合成に用いた単量体を以下に示す。
Figure JPOXMLDOC01-appb-C000013
[合成例1](重合体(A-1)の合成)
 500mLのフラスコ反応容器を減圧乾燥した後、窒素雰囲気下、蒸留脱水処理を行ったテトラヒドロフラン120gを注入し、-78℃まで冷却した。その後、このテトラヒドロフランにsec-ブチルリチウム(sec-BuLi)の1Nシクロヘキサン溶液を2.02mL注入し、その後、重合禁止剤除去のためのシリカゲルによる吸着濾別と蒸留脱水処理とを行った上記化合物(M-1)11.4mLを30分かけて滴下注入した。滴下終了後に30分間熟成した。この後、1,1-ジフェニルエチレン1.15mL及び塩化リチウム0.5Nテトラヒドロフラン溶液8.07mLを加えた。5分後、上記化合物(M-3)3.5mLを滴下注入し、滴下終了から30分経過後、メタノール0.082mLを加え、重合反応を停止させた。得られた反応溶液へメチルイソブチルケトン(MIBK)200gを加えた。その後、超純水1,000gを注入し、撹拌し、静置後、下層の水層を取り除いた。この操作を5回繰り返した後、溶液を濃縮してヘキサン500g中に滴下することで重合体を析出させ、ブフナーロートにて固体を回収した。この固体を60℃で減圧乾燥させることで白色のブロック共重合体である重合体(A-1)12.9gを得た。この重合体(A-1)は、Mnが4,300、Mw/Mnが1.18であった。H-NMR分析の結果、(M-1)及び(M-3)に由来する構造単位の含有割合は、それぞれ74.3モル%及び25.7モル%であった。
[合成例2~6](重合体(A-2)~(A-6)の合成)
 下記表1に示す種類及び使用量の単量体を用い、開始剤量を適宜選択し、合成例1と同様の操作を行うことによって、重合体(A-2)~(A-6)を合成した。表1の合成例6における「-」は構造単位(I)を与える単量体を用いなかったことを示す。
[合成例7](重合体(A-7)の合成)
 500mLのフラスコ反応容器を減圧乾燥した後、窒素雰囲気下、蒸留脱水処理を行ったテトラヒドロフラン120gを注入し、-78℃まで冷却した。その後、このテトラヒドロフランに、1,1-ジフェニルエチレン0.80mL、塩化リチウムの0.5Nテトラヒドロフラン溶液6.00mL及びsec-ブチルリチウム(sec-BuLi)の1Nシクロヘキサン溶液1.50mLを注入し、5分後、重合禁止剤除去のためのシリカゲルによる吸着濾別と蒸留脱水処理とを行った上記化合物(M-3)7.8mLを30分かけて滴下注入し、次に、上記化合物(M-2)7.8mLを滴下注入し、滴下終了から120分経過後、メタノール0.082mLを加え、重合反応を停止させた。得られた反応溶液へMIBK200gを加えた。その後、超純水1,000gを注入し、撹拌し、静置後、下層の水層を取り除いた。この操作を5回繰り返した後、溶液を濃縮してヘキサン500g中に滴下することで重合体を析出させ、ブフナーロートにて固体を回収した。この固体を60℃で減圧乾燥させることで白色のブロック共重合体である重合体(A-7)13.7gを得た。この重合体(A-7)は、Mnが4,300、Mw/Mnが1.23であった。H-NMR分析の結果、(M-2)及び(M-3)に由来する構造単位の含有割合は、それぞれ53.0モル%及び47.0モル%であった。
[合成例8](重合体(A-8)の合成)
 上記化合物(M-1)49.76g及び化合物(M-3)50.24gを2-ブタノン200gに溶解し、開始剤としてのAIBN4.71gを添加して単量体溶液を調製した。次いで、100gの2-ブタノンを入れた1,000mLの三口フラスコを30分窒素パージした後、撹拌しながら80℃に加熱し、上記調製した単量体溶液を滴下漏斗にて3時間かけて滴下した。滴下開始を重合反応の開始時間とし、重合反応を6時間実施した。重合反応終了後、重合反応液を水冷して30℃以下に冷却した。2,000gのn-ヘキサン中に冷却した重合反応液を投入し、析出した白色粉末をろ別した。ろ別した白色粉末を400gのn-ヘキサンで2回洗浄した後、ろ別し、50℃で17時間乾燥させて白色粉末状の重合体(A-8)86.2gを得た。この重合体(A-8)は、Mnが4,900、Mw/Mnが1.28であった。H-NMR分析の結果、(M-1)及び(M-3)に由来する構造単位の含有割合は、それぞれ51.3モル%及び48.7モル%であった。
[合成例9~14](重合体(A-9)~(A-14)の合成)
 下記表1に示す種類及び使用量の単量体を用い、開始剤量を適宜選択し、合成例8と同様の操作を行うことによって、重合体(A-9)~(A-14)を合成した。表1の合成例9及び合成例14における「-」は構造単位(II)を与える単量体を用いなかったことを示し、合成例13における「-」は構造単位(I)を与える単量体を用いなかったことを示す。
Figure JPOXMLDOC01-appb-T000014
<カバー膜形成用組成物の調製>
 カバー膜形成用組成物を構成する[B]溶媒及び[C]添加剤について以下に示す。
[[B]溶媒]
 B-1:プロピレングリコールモノメチルエーテルアセテート
 B-2:乳酸エチル
[[C]添加剤]
 C-1:ビス(4-tert-ブチルフェニル)ヨードニウムノナフルオロブタンスルホネート(下記式(C-1)で表される化合物)
 C-2:4,4’-(1-(4-(1-(4-ヒドロキシ-3,5-ビス(メトキシメチル)フェニル)-1-メチルエチル)フェニル)エチリデン)ビス(2,6-ビス(メトキシメチル)フェノール(下記式(C-2)で表される化合物)
Figure JPOXMLDOC01-appb-C000015
[調製例1]
 [A]重合体としての(A-1)0.90g、並びに[B]溶媒としての(B-1)69.37g及び(B-2)29.73gを混合し、撹拌した後、0.2μmのメンブランフィルターで濾過することにより、カバー膜形成用組成物(J-1)を調製した。
[調製例2~17]
 下記表2に示す種類及び含有量の各成分を用いた以外は調製例1と同様にして、カバー膜形成用組成物(J-2)~(J-17)を調製した。表2中の「-」は[C]添加剤を用いなかったことを示す。
Figure JPOXMLDOC01-appb-T000016
<カバー膜の形成>
 8インチのTiN基板表面に、スピンコーター(東京エレクトロン社の「CLEAN TRACK ACT8」)を使用して、上記調製したカバー膜形成用組成物を1,500rpmにて塗工した後、250℃で60秒間焼成した。この基板をOKシンナー(プロピレングリコールモノメチルエーテル/プロピレングリコールモノメチルエーテルアセテート)にて12秒間リンスした。基板上に形成されたカバー膜の膜厚をエリプソメーター(J.A.Woollam Japan社の「M-2000D」)にて測定したところ、1.5nm~5.0nm程度であった。
<評価>
 上記作製したカバー膜が形成されたウェハについて、下記方法に従い、脱着性能及びマスク性能を評価した。評価結果を下記表3に示す。
[脱着性能]
 上記作製したカバー膜が形成されたウェハを、塩酸2Nプロピレングリコールモノメチルエーテル溶液(13.4質量%水含有)に12時間浸漬させ、接触角計(協和界面化学社の「Drop master DM-501」)を用いて接触角を測定し、カバー膜の脱着性能を評価した。カバー膜形成用組成物を用いない場合のTiN基板の接触角は50°であった。接触角が55°以下の場合は、基板上のカバー膜は除去されており、脱着性能は「A」(良好)と、接触角が78°以上の場合は、脱着性能は「B」(不良)と判断した。
[マスク性能]
 上記作製したカバー膜が形成されたウェハを、SPM溶液(硫酸:過酸化水素=1:5(質量比))に浸漬させ、TiN基板のウェットエッチングを行った。カバー膜をドライエッチングにて除去した後、走査型電子顕微鏡(日立ハイテクノロジーズ社の「S-9380」)を用いて、基板の表面状態を観察し、ウェットエッチングに対するカバー膜のマスク性能を評価した。マスク性能は、観察したTiN表面の15%以上の面積がエッチングされている場合は「B」(不良)と、5%以上15%未満の面積がエッチングされている場合は「A」(良好)と、0%以上5%未満の面積がエッチングされている場合を「AA」(特に良好)と判断した。
Figure JPOXMLDOC01-appb-T000017
 基板をCu、Co、Al、Wに変更して、上記手順と類似の操作により評価を行っても、同様の結果が得られた。
 上記結果から明らかなように、実施例のカバー膜形成方法では、脱着性能とマスク性能とのいずれもが、比較例のカバー膜形成方法に比べて良好であった。
 本発明のカバー膜形成方法及び組成物によれば、脱着性能とマスク性能とに共に優れるカバー膜を形成することができる。また、本発明の基材の処理方法によれば、カバー膜で基板表面を確実に保護することができ、優れたマスク性能を発揮した後、基板表面からそのカバー膜を脱着させて、基板表面を再び露出させる際、基板表面に与えるダメージが少ない。従って、当該カバー膜形成方法、基材の処理方法及び組成物は、今後ますます微細化が進行すると予想される半導体デバイスの加工プロセス等に好適に用いることができる。

Claims (9)

  1.  金属原子を含む領域を表層に有する基材を準備する工程と、
     上記基材の表面に、第1重合体及び溶媒を含有する組成物を塗工する工程と、
     上記塗工工程により形成される塗膜を加熱する工程と
     を備え、
     上記第1重合体が下記式(1)で表される第1構造単位を有するカバー膜形成方法。
    Figure JPOXMLDOC01-appb-C000001
    (式(1)中、Rは、水素原子、メチル基、フッ素原子又はトリフルオロメチル基である。Aは、窒素原子を有する1価の有機基である。)
  2.  上記式(1)におけるAが、下記式(i)で表される請求項1に記載のカバー膜形成方法。
    Figure JPOXMLDOC01-appb-C000002
    (式(i)中、Xは、単結合、-COO-、-OCO-、-CO-、-O-、-NH-、-NHCO-又は-CONH-である。Qは、単結合、炭素数1~20の2価の炭化水素基又は炭素数0~20の1価の1級、2級若しくは3級のアミノ基若しくは環員数5~20の1価の窒素含有複素環基で置換された炭素数1~20の2価の炭化水素基である。Rは、炭素数0~20の1価の1級、2級若しくは3級のアミノ基又は環員数5~20の1価の窒素含有複素環基である。nは、0~10の整数である。但し、nが1以上の場合、Qが単結合である場合はない。nが2以上の場合、複数存在するXは、それぞれ同一でも異なっていてもよく、複数存在するQは、それぞれ同一でも異なっていてもよい。*は、Rが結合する炭素原子との結合部位を示す。)
  3.  上記第1重合体が、上記第1構造単位とは異なる第2構造単位をさらに有し、この第2構造単位が下記式(2-1)で表される構造単位及び下記式(2-2)で表される構造単位から選ばれる少なくとも1種である請求項1又は請求項2に記載のカバー膜形成方法。
    Figure JPOXMLDOC01-appb-C000003
    (式(2-1)及び(2-2)中、R及びRは、それぞれ独立して、水素原子、メチル基、フッ素原子又はトリフルオロメチル基である。Rは、炭素数1~20の1価の有機基である。Rは、炭素数1~20の(1+b)価の炭化水素基である。Rは、水素原子又はヘテロ原子を有する1価の基である。aは、0~5の整数である。aが2以上の場合、複数のRは同一でも異なっていてもよい。bは、1~3の整数である。bが2以上の場合、複数のRは同一でも異なっていてもよい。)
  4.  上記式(1)のAが有する窒素原子にプロトンを付加して得られる共役酸のpKaが3以上である請求項1、請求項2又は請求項3に記載のカバー膜形成方法。
  5.  上記第1重合体を構成する全構造単位に対する上記第1構造単位の含有割合が5モル%以上である請求項1から請求項4のいずれか1項に記載のカバー膜形成方法。
  6.  上記溶媒がアルコール系溶媒を含む請求項1から請求項5のいずれか1項に記載のカバー膜形成方法。
  7.  上記金属原子が、金属単体、合金、金属窒化物又はシリサイドを構成している請求項1から請求項6のいずれか1項に記載のカバー膜形成方法。
  8.  金属原子を含む領域を表層に有する基材を準備する工程と、
     上記基材の表面に、第1重合体及び溶媒を含有する組成物を塗工する工程と、
     上記塗工工程により形成される塗膜を加熱する工程と、
     上記加熱工程後の塗膜を除去する工程と
     を備え、
     上記第1重合体が下記式(1)で表される第1構造単位を有する基材の処理方法。
    Figure JPOXMLDOC01-appb-C000004
    (式(1)中、Rは、水素原子、メチル基、フッ素原子又はトリフルオロメチル基である。Aは、窒素原子を有する1価の有機基である。)
  9.  金属原子を含む領域を表層に有する基材表面のカバー膜形成方法に用いられる組成物であって、
     下記式(1)で表される構造単位を有する重合体及び溶媒を含有することを特徴とする組成物。
    Figure JPOXMLDOC01-appb-C000005
    (式(1)中、Rは、水素原子、メチル基、フッ素原子又はトリフルオロメチル基である。Aは、窒素原子を有する1価の有機基である。)
     
PCT/JP2017/047081 2017-01-10 2017-12-27 カバー膜形成方法、基材の処理方法及び組成物 WO2018131495A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018561317A JPWO2018131495A1 (ja) 2017-01-10 2017-12-27 カバー膜形成方法、基材の処理方法及び組成物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-002180 2017-01-10
JP2017002180 2017-01-10

Publications (1)

Publication Number Publication Date
WO2018131495A1 true WO2018131495A1 (ja) 2018-07-19

Family

ID=62839513

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/047081 WO2018131495A1 (ja) 2017-01-10 2017-12-27 カバー膜形成方法、基材の処理方法及び組成物

Country Status (2)

Country Link
JP (1) JPWO2018131495A1 (ja)
WO (1) WO2018131495A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04272193A (ja) * 1990-08-16 1992-09-28 Phillips Petroleum Co 防食剤または接着剤として有用な塗料組成物
JP2006028497A (ja) * 2004-06-21 2006-02-02 Samsung Electronics Co Ltd 有機絶縁膜組成物およびこれを用いた有機絶縁膜のパターン形成方法および有機薄膜トランジスタおよびこれを含む表示素子
JP2009147294A (ja) * 2007-12-17 2009-07-02 Korea Electronics Telecommun 光反応性有機高分子ゲート絶縁膜組成物及びこれを利用した有機薄膜トランジスタ
JP2011526641A (ja) * 2008-07-01 2011-10-13 アルスィメール 電気絶縁膜の形成方法及び貫通ビアの金属化への適用
WO2014097993A1 (ja) * 2012-12-18 2014-06-26 日産化学工業株式会社 多環芳香族ビニル化合物を含む自己組織化膜の下層膜形成組成物
JP2016526183A (ja) * 2013-05-17 2016-09-01 アーゼッド・エレクトロニック・マテリアルズ(ルクセンブルグ)ソシエテ・ア・レスポンサビリテ・リミテ ポリマー型熱酸発生剤を含む組成物及びそれの方法
JP2016204597A (ja) * 2015-04-28 2016-12-08 Kjケミカルズ株式会社 N−置換(メタ)アクリルアミドを用いた重合性組成物、その重合物及びそれらからなる成形品

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04272193A (ja) * 1990-08-16 1992-09-28 Phillips Petroleum Co 防食剤または接着剤として有用な塗料組成物
JP2006028497A (ja) * 2004-06-21 2006-02-02 Samsung Electronics Co Ltd 有機絶縁膜組成物およびこれを用いた有機絶縁膜のパターン形成方法および有機薄膜トランジスタおよびこれを含む表示素子
JP2009147294A (ja) * 2007-12-17 2009-07-02 Korea Electronics Telecommun 光反応性有機高分子ゲート絶縁膜組成物及びこれを利用した有機薄膜トランジスタ
JP2011526641A (ja) * 2008-07-01 2011-10-13 アルスィメール 電気絶縁膜の形成方法及び貫通ビアの金属化への適用
WO2014097993A1 (ja) * 2012-12-18 2014-06-26 日産化学工業株式会社 多環芳香族ビニル化合物を含む自己組織化膜の下層膜形成組成物
JP2016526183A (ja) * 2013-05-17 2016-09-01 アーゼッド・エレクトロニック・マテリアルズ(ルクセンブルグ)ソシエテ・ア・レスポンサビリテ・リミテ ポリマー型熱酸発生剤を含む組成物及びそれの方法
JP2016204597A (ja) * 2015-04-28 2016-12-08 Kjケミカルズ株式会社 N−置換(メタ)アクリルアミドを用いた重合性組成物、その重合物及びそれらからなる成形品

Also Published As

Publication number Publication date
JPWO2018131495A1 (ja) 2019-11-07

Similar Documents

Publication Publication Date Title
JP7071661B2 (ja) カバー膜形成方法
TWI603985B (zh) 光阻下層膜材料用聚合物、光阻下層膜材料及圖案形成方法
TW201239537A (en) Composition for formation of resist underlayer film, method of forming pattern and resist underlayer film
TWI826475B (zh) 微影用膜形成材料、微影用膜形成用組成物、微影用下層膜及圖型形成方法
TW200907581A (en) Coating compositions
TW200819914A (en) Method of ion implantation and radiation-sensitive resin composition for use therein
US20170015785A1 (en) Polymer for Preparing Resist Underlayer Film, Resist Underlayer Film Composition Containing the Polymer and Method for Manufacturing Semiconductor Device Using the Composition
TW201809098A (zh) 感放射線性組成物及圖案形成方法
KR102604652B1 (ko) 패턴 형성 방법
US10923342B2 (en) Selective modification method of a base material surface
TW202030227A (zh) 微影用膜形成材料、微影用膜形成用組成物、微影用下層膜及圖型形成方法
WO2018131495A1 (ja) カバー膜形成方法、基材の処理方法及び組成物
US20200379348A1 (en) Pattern-forming method and radiation-sensitive composition
JP7081377B2 (ja) 組成物及び基板表面の修飾方法
JP7298428B2 (ja) パターン形成方法及びパターン化された基板
WO2018181217A1 (ja) カバー膜形成方法、基材の処理方法及び組成物
JP7135554B2 (ja) 下層膜形成用組成物、自己組織化膜の下層膜及びその形成方法並びに自己組織化リソグラフィープロセス
WO2020250783A1 (ja) 組成物、基板の製造方法及び重合体
JP7136182B2 (ja) 基材表面の修飾方法、組成物及び重合体
JP7310471B2 (ja) パターン形成方法及び組成物
WO2021095766A1 (ja) 組成物、基板の製造方法及び重合体
TW201821557A (zh) 使用含矽墊層之方法
TW202112906A (zh) 微影用膜形成材料、微影用膜形成用組成物、微影用下層膜及圖型形成方法
TW202424003A (zh) 圖案形成方法
WO2020071339A1 (ja) 基板の製造方法、組成物及び重合体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17891956

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018561317

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17891956

Country of ref document: EP

Kind code of ref document: A1