WO2018131423A1 - タイヤ - Google Patents

タイヤ Download PDF

Info

Publication number
WO2018131423A1
WO2018131423A1 PCT/JP2017/046033 JP2017046033W WO2018131423A1 WO 2018131423 A1 WO2018131423 A1 WO 2018131423A1 JP 2017046033 W JP2017046033 W JP 2017046033W WO 2018131423 A1 WO2018131423 A1 WO 2018131423A1
Authority
WO
WIPO (PCT)
Prior art keywords
tire
resin
belt layer
groove
cord
Prior art date
Application number
PCT/JP2017/046033
Other languages
English (en)
French (fr)
Inventor
福島 敦
啓之 筆本
誓志 今
修 本居
Original Assignee
株式会社ブリヂストン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ブリヂストン filed Critical 株式会社ブリヂストン
Priority to CN201780088253.0A priority Critical patent/CN110402202B/zh
Priority to US16/476,696 priority patent/US20200039296A1/en
Priority to EP17891221.8A priority patent/EP3569423A4/en
Publication of WO2018131423A1 publication Critical patent/WO2018131423A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C5/00Inflatable pneumatic tyres or inner tubes
    • B60C5/01Inflatable pneumatic tyres or inner tubes without substantial cord reinforcement, e.g. cordless tyres, cast tyres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/18Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
    • B60C9/20Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel
    • B60C9/22Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel the plies being arranged with all cords disposed along the circumference of the tyre
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D30/00Producing pneumatic or solid tyres or parts thereof
    • B29D30/06Pneumatic tyres or parts thereof (e.g. produced by casting, moulding, compression moulding, injection moulding, centrifugal casting)
    • B29D30/70Annular breakers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C5/00Inflatable pneumatic tyres or inner tubes
    • B60C5/007Inflatable pneumatic tyres or inner tubes made from other material than rubber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/18Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
    • B60C9/20Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel
    • B60C9/22Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel the plies being arranged with all cords disposed along the circumference of the tyre
    • B60C9/2204Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel the plies being arranged with all cords disposed along the circumference of the tyre obtained by circumferentially narrow strip winding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D30/00Producing pneumatic or solid tyres or parts thereof
    • B29D30/06Pneumatic tyres or parts thereof (e.g. produced by casting, moulding, compression moulding, injection moulding, centrifugal casting)
    • B29D30/08Building tyres
    • B29D2030/086Building the tyre carcass by combining two or more sub-assemblies, e.g. two half-carcasses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D30/00Producing pneumatic or solid tyres or parts thereof
    • B29D30/06Pneumatic tyres or parts thereof (e.g. produced by casting, moulding, compression moulding, injection moulding, centrifugal casting)
    • B29D30/08Building tyres
    • B29D30/10Building tyres on round cores, i.e. the shape of the core is approximately identical with the shape of the completed tyre
    • B29D30/16Applying the layers; Guiding or stretching the layers during application
    • B29D30/1628Applying the layers; Guiding or stretching the layers during application by feeding a continuous band and winding it helically, i.e. the band is fed while being advanced along the core axis, to form an annular element
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/18Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
    • B60C9/20Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel
    • B60C9/22Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel the plies being arranged with all cords disposed along the circumference of the tyre
    • B60C2009/2238Physical properties or dimensions of the ply coating rubber

Definitions

  • the present invention relates to a tire.
  • a rubber member When a rubber member is provided on the outer side in the tire radial direction of the belt layer provided on the tire frame member, air may enter the interface between the belt layer and the rubber member.
  • pre-vulcanized rubber member when the whole rubber member before vulcanization (hereinafter also referred to as “pre-vulcanized rubber member”) is wound around the outer side in the tire radial direction of the belt layer and then heated as a whole, the rubber member before vulcanization is used. In the winding process, air is entrapped at the interface with the belt layer.
  • a belt layer composed of a resin-coated cord in which the reinforcing cord is coated with a coating resin is less likely to expand and contract than when the reinforcing cord is coated with a rubber material.
  • the present disclosure includes a tire frame member, a belt layer including a resin-coated cord, and a rubber member provided on the outer surface of the belt layer in the tire radial direction, and an interface between the belt layer and the rubber member.
  • An object of the present invention is to provide a tire that suppresses a decrease in durability caused by air that has entered.
  • the tire skeleton member is provided on the outer side in the tire radial direction, includes a plurality of reinforcing cords and a coating resin that covers the reinforcing cords, and a surface on the outer side in the tire radial direction has a groove along the extending direction of the reinforcing cords.
  • Belt layer A rubber member provided on the outer surface of the belt layer in the tire radial direction; Tire with.
  • a belt layer including a tire frame member and a resin-coated cord, and a rubber member provided on a surface of the belt layer on the outer side in the tire radial direction, air that has entered the interface between the belt layer and the rubber member.
  • FIG. 1 is a cross-sectional view along the tire width direction showing the configuration of the tire according to the first embodiment.
  • FIG. 2 is an enlarged schematic view of the belt layer of FIG. 1 and its peripheral part.
  • FIG. 3 is an enlarged schematic diagram of a belt layer and a peripheral portion thereof in a tire according to another embodiment.
  • FIG. 4 is a cross-sectional perspective view showing a step of winding a resin-coated cord around a tire case.
  • FIG. 5 is a cross-sectional view along the tire width direction showing the configuration of the tire according to the second embodiment.
  • a numerical range indicated by using “to” means a range including the numerical values described before and after “to” as the minimum value and the maximum value, respectively.
  • the amount of each component in the composition is the total amount of the plurality of substances present in the composition unless there is a specific indication when there are a plurality of substances corresponding to each component in the composition. Means.
  • resin is a concept that includes a thermoplastic resin, a thermoplastic elastomer, and a thermosetting resin, and does not include vulcanized rubber.
  • resin “same species” means those having a skeleton that is common to the skeleton constituting the main chain of the resin, such as esters and styrenes.
  • the “thermoplastic resin” means a polymer compound that softens as the temperature rises and becomes relatively hard and strong when cooled, but does not have rubbery elasticity.
  • the “thermoplastic elastomer” means a copolymer having a hard segment and a soft segment. Examples of the thermoplastic elastomer include those that soften as the temperature rises, become relatively hard and strong when cooled, and have rubber-like elasticity.
  • the “hard segment” includes a structure having a rigid group such as an aromatic group or an alicyclic group in the main skeleton, or a structure enabling intermolecular packing by intermolecular hydrogen bonding or ⁇ - ⁇ interaction, etc. Can be mentioned.
  • the “soft segment” includes a segment having a long chain group (for example, a long chain alkylene group) in the main chain, a high degree of molecular rotation freedom, and a stretchable structure.
  • the “tire radial direction” refers to a direction that passes through the rotation axis of the tire and is orthogonal to the tire width direction.
  • a side far from the tire rotation axis along the tire radial direction may be referred to as “tire radial direction outside”, and a side near the tire rotation axis along the tire width direction may be referred to as “tire radial direction inner side”.
  • the outer surface in the tire radial direction may be referred to as an “outer peripheral surface”, and the inner surface in the tire radial direction may be referred to as an “inner peripheral surface”.
  • “Tire width direction” refers to a direction parallel to the tire rotation axis.
  • Tire circumferential direction refers to the direction in which the tire rotates about the rotation axis of the tire.
  • the “radial direction” is a direction orthogonal to the tire circumferential direction and refers to a direction including the tire radial direction and the tire width direction.
  • a tire according to an embodiment includes a tire frame member, a belt layer provided on the tire radial direction outer side of the tire frame member, and a rubber member provided on an outer peripheral surface of the belt layer.
  • the belt layer includes a plurality of reinforcing cords and a coating resin that covers the reinforcing cords.
  • the outer peripheral surface of the belt layer has a groove along the extending direction of the reinforcing cord.
  • the “groove” is a recess provided on the outer peripheral surface of the belt layer, and the value of the length of the groove in the extending direction of the reinforcing cord is larger than the value of the width of the groove in the tire width direction, And the groove
  • the “groove length” refers to the length of the recess along the extending direction of the reinforcing cord.
  • the above-mentioned “groove width” is a region in which a virtual outer peripheral surface and a concave portion that are assumed to be flat (that is, not having a concave portion) and a concave portion overlap in a cross section perpendicular to the extending direction of the reinforcing cord ( Hereinafter, the width is also referred to as “groove opening”.
  • the “groove depth” is the groove opening and the bottom of the recess (that is, the position farthest from the virtual outer circumferential surface in the cross section perpendicular to the extending direction of the reinforcing cord, and is also referred to as “groove bottom” hereinafter. ) (Specifically, the distance along the tire radial direction).
  • the “groove” may be entirely closed by a member (that is, a rubber member) provided on the outer peripheral surface of the belt layer, or only the opening of the groove may be closed.
  • the value of the length of the groove is not particularly limited as long as it is larger than the value of the width of the groove, but is equal to or greater than the length in the tire circumferential direction on the outer peripheral surface (hereinafter also referred to as “circumferential length”), that is, in the tire circumferential direction. It is preferable that the length is equal to or greater than the length of one circle, and it is more preferable that the length is equal to or longer than the circumference.
  • the value of the width of the groove is not particularly limited as long as it is smaller than the value of the length of the groove, but is preferably 200 ⁇ m or more, more preferably 500 ⁇ m or more.
  • the value of the depth of the groove is not particularly limited as long as it is smaller than the thickness of the belt layer, but is preferably 100 ⁇ m or more, and more preferably 300 ⁇ m or more.
  • the width of the groove and the depth of the groove are measured by observing a cross section perpendicular to the extending direction of the reinforcing cord using, for example, a microscope (optical microscope, manufactured by Keyence, model number: VHX-5000). .
  • the belt layer since the belt layer has a groove on the outer peripheral surface, a decrease in durability due to air entering the interface between the belt layer and the rubber member is suppressed.
  • the outer peripheral surface of the belt layer is flat, for example, in the step of winding the pre-vulcanized rubber member around the outer peripheral surface of the belt layer, air is not entrapped at the interface with the belt layer. Thus, it is difficult to wind the rubber member before vulcanization. And if it heats in the state where air entered between the belt layer and the rubber member before vulcanization, adhesion failure of a belt layer and a rubber member will occur by expansion of air, and it will become easy to obtain a tire with low endurance. In addition, a tire in which air remains at the interface between the belt layer and the rubber member is likely to be peeled off due to expansion of air due to heat at the time of running and the durability is lowered.
  • the groove on the outer peripheral surface of the belt layer becomes an air escape path even if air is embraced when the pre-vulcanized rubber member is wrapped around the outer peripheral surface of the belt layer. Air is easily discharged.
  • the tire frame member provided with the belt layer after contacting one end of the pre-vulcanized rubber member with the outer peripheral surface of the belt layer Rotate the wrap while gradually expanding the contact surface. Even when air enters in this process, if there is a groove on the outer peripheral surface of the belt layer, the air is discharged through the groove before the groove is closed by the rubber member before vulcanization. Therefore, air hardly remains at the interface between the belt layer and the rubber member before vulcanization.
  • the belt layer has grooves on the outer peripheral surface, so that the dimensional stability of the tire is improved.
  • the pre-vulcanized rubber member may expand non-uniformly and the resulting tire dimensions may not be stable. is there.
  • the tire with the outer peripheral surface of the belt layer has grooves, even if the rubber member before vulcanization expands unevenly by heating in the manufacturing process, the expanded rubber enters the grooves on the outer peripheral surface of the belt layer, The dimensions of the obtained tire as a whole are easily stabilized.
  • an arrow W indicates a direction parallel to the tire rotation axis (hereinafter sometimes referred to as “tire width direction”), and an arrow S passes through the tire rotation axis and is orthogonal to the tire width direction (hereinafter referred to as “tire width direction”). May be referred to as “tire radial direction”).
  • the alternate long and short dash line CL indicates a tire center line (hereinafter also referred to as “tire equatorial plane”).
  • the tire frame member includes a resin, and the reinforcing cord is present along the tire circumferential direction.
  • a tire frame member including a resin is less likely to expand and contract as compared with a tire frame member including a rubber material. Therefore, in the form in which the tire frame member includes a resin, air easily enters when the rubber member is provided, and therefore, the role of the groove on the outer peripheral surface of the belt layer is particularly important.
  • the tire skeleton member includes a crystalline resin among the resins, the air permeability is lower than that of the rubber, so that it is more difficult to escape the air, and the role of the groove on the outer peripheral surface of the belt layer becomes more important.
  • FIG. 1 is a cross-sectional view along the tire width direction (that is, perpendicular to the extending direction of the reinforcing cord) showing the configuration of the tire according to the first embodiment.
  • the tire 10 according to the first embodiment includes a tire case 17 that is an example of an annular tire skeleton member made of a resin material, a belt layer 12, and a tread 30 that is an example of a rubber member.
  • the belt layer 12 includes a plurality of reinforcing cords 24 covered with a coating resin 26.
  • the tire case 17 may be a tire case (not shown) for a rubber tire having a carcass ply, but the tire case 17 of the present embodiment uses a thermoplastic elastomer as an example of a resin material for a tire frame. It is comprised and is formed in the annular
  • the tire case 17 includes a pair of bead portions 14 arranged at intervals in the tire width direction, a pair of side portions 16 extending from the pair of bead portions 14 outward in the tire radial direction, and a pair of side portions. And a crown portion 18 for connecting 16 to each other.
  • the bead part 14 is a part which contacts a rim (not shown).
  • the side portion 16 forms a side portion of the tire 10 and is gently curved so as to protrude outward in the tire width direction from the bead portion 14 toward the crown portion 18.
  • the crown portion 18 is a portion that connects the tire radial direction outer end of one side portion 16 and the tire radial direction outer end of the other side portion 16 and supports the tread 30 disposed on the outer side in the tire radial direction. .
  • the crown portion 18 has a substantially constant thickness.
  • the outer peripheral surface 18A of the crown portion 18 of the tire case 17 may be formed flat in a cross section in the tire width direction, or may be a curved shape bulging outward in the tire radial direction. Note that the outer peripheral surface 18A of the crown portion 18 of the present embodiment is the outer periphery of the tire case 17 on which the belt layer 12 is provided.
  • the tire case 17 forms a pair of annular tire halves 17H having one bead portion 14, one side portion 16, and a half-width crown portion 18, and these tire halves 17H face each other.
  • the ends of the half-width crown portions 18 are joined to each other at the tire equatorial plane CL.
  • the ends are joined using, for example, a resin material for welding 17A.
  • the bead core 20 includes a bead cord (not shown).
  • the bead cord is composed of a metal cord such as a steel cord, an organic fiber cord, a resin-coated organic fiber cord, or a hard resin.
  • the bead core 20 itself may be omitted if the rigidity of the bead portion 14 can be sufficiently secured.
  • the tire case 17 may be an integrally molded product, or the tire case 17 may be manufactured by dividing it into three or more resin members, and these may be joined.
  • the tire case 17 may be manufactured separately for each part (for example, the bead part 14, the side part 16, and the crown part 18), and these may be joined and formed.
  • each part (for example, bead part 14, side part 16, crown part 18) of tire case 17 may be formed with a resin material which has a different characteristic.
  • a reinforcing material for example, a polymer material, metal fiber, cord, nonwoven fabric, woven fabric, etc.
  • a reinforcing material for example, a polymer material, metal fiber, cord, nonwoven fabric, woven fabric, etc.
  • a coating layer for improving the airtightness between the bead portion 14 and the rim may be formed on the surface of the bead portion 14 in contact with the rim (not shown).
  • the material of the covering layer include a material such as a rubber material that is softer and has higher weather resistance than the tire case 17.
  • the coating layer is folded back from the inner surface in the tire width direction of the bead portion 14 to the outer side in the tire width direction, and extends to the vicinity of the end portion of the belt layer 12 on the outer side in the tire width direction through the outer surface of the side portion 16. May be provided.
  • the extended end part of the coating layer may be covered with a tread 30 described later. However, if only the bead portion 14 of the tire case 17 can ensure the sealing property (air tightness) with the rim (not shown), the coating layer may not be provided.
  • FIG. 2 is an enlarged schematic view of the belt layer 12 of FIG. 1 and its peripheral part.
  • the belt layer 12 is provided on the outer periphery of the tire case 17.
  • the outer periphery of the tire case 17 in the present embodiment is the outer peripheral surface 18A of the crown portion 18.
  • the resin-coated cord 28 is spirally wound around the outer periphery of the tire case 17 in the tire circumferential direction and joined to the tire case 17, and the portions of the resin-coated cord 28 adjacent to each other in the tire width direction are adjacent to each other. It is comprised by joining.
  • the resin-coated cord 28 is configured by covering the reinforcing cord 24 with a coating resin 26.
  • the portions adjacent to each other in the tire width direction in the resin coating cord 28 means the side surface 28 ⁇ / b> C of one resin coating cord 28 adjacent to the tire width direction and the other resin coating. It is a side surface 28D of the cord 28.
  • the side surfaces 28C and 28D face each other when the resin-coated cord 28 is spirally wound. That is, in the belt layer 12, the resin is continuously present in the tire width direction.
  • an inner peripheral surface 28A in the tire radial direction of the resin-coated cord 28 is joined to the outer peripheral surface 18A of the crown portion 18 of the tire case 17.
  • a tread 30 is joined to the outer circumferential surface 28B of the resin-coated cord 28 in the tire radial direction.
  • the resin-coated cord 28 is provided directly on the outer peripheral surface 18A of the crown portion 18 of the tire case 17, but the resin-coated cord 28 is interposed via another layer such as an adhesive layer. May be provided.
  • the reinforcing cord 24 is composed of a monofilament (single wire) such as a metal fiber or an organic fiber, or a multifilament (twisted wire) obtained by twisting these fibers.
  • the coating resin 26 is made of, for example, a thermoplastic elastomer. Details of the reinforcing cord 24 and the coating resin 26 will be described later.
  • the resin-coated cord 28 includes one reinforcing cord 24 in the coating resin 26, but a plurality of reinforcing cords 24 may be included in the coating resin 26, for example, two A resin-coated cord 28 in which the reinforcing cord 24 is coated with a coating resin 26 may be used.
  • the resin-coated cord 28 in which the reinforcing cord 24 is directly coated with the coating resin 26 is used.
  • the present invention is not limited to this.
  • the reinforcing cord 24 is covered with another layer such as an adhesive layer.
  • a multilayer coating cord coated with the resin 26 may be used. Details of the adhesive layer will be described later.
  • the cross-sectional shape of the resin-coated cord 28 shown in FIG. 2 is a rectangle in which the inner peripheral surface 28A in the tire radial direction and the outer peripheral surface 28B in the tire radial direction are not displaced in the tire width direction, but are not limited thereto. .
  • the cross-sectional shape of the resin-coated cord 28 may be a shape in which the side surfaces 28C and 28D have curved surfaces such as an arc shape or an S shape, and is a shape in which stepped portions are provided on the side surfaces 28C and 28D. Also good.
  • the side surfaces 28C and 28D when the side surfaces 28C and 28D are inclined, curved, or stepped, the side surface is compared to the rectangular shape that is not displaced in the tire width direction. The contact area of 28C and 28D is large, and the bonding strength is improved.
  • a groove 32 is provided along the extending direction of the reinforcing cord 24. As described above, by having the grooves 32 on the outer peripheral surface 12A of the belt layer 12, a decrease in durability due to air entering the interface between the belt layer and the rubber member is suppressed.
  • the groove 32 is not particularly limited as long as it extends along the extending direction of the reinforcing cord 24.
  • the outer periphery of the belt layer 12 corresponding to the space between two reinforcing cords 24 adjacent in the tire width direction. It is preferably located on the surface 12A. That is, it is preferable that an extension line from the groove 32 to the inner side in the tire radial direction passes between the two reinforcing cords 24 adjacent in the tire width direction.
  • the distance from the interface between the reinforcing cord 24 and the coating resin 26 to the groove bottom 32B becomes longer than when the groove 32 is positioned on the outer peripheral surface 12A of the belt layer 12 on the reinforcing cord 24. Therefore, the crack starting from the groove 32 hardly reaches the interface between the reinforcing cord 24 and the coating resin 26, and the durability of the tire is improved.
  • the resin-coated cord 28 is a single layer and the reinforcing cords 24 are arranged in a row in the tire width direction, but the invention is not limited thereto.
  • the belt layer 12 may be a belt layer having a laminated structure in which the resin-coated cord 28 is spirally wound in the tire circumferential direction to form a layer, and then the resin-coated cord 28 is further wound around the outer peripheral surface of the layer. Good.
  • the “between two reinforcing cords 24 adjacent in the tire width direction” means two reinforcing cords included in the outermost layer in the tire radial direction in the laminated structure. Means between 24.
  • the groove 32 is provided at the interface between the two resin-coated cords 28 adjacent to each other, but the groove 32 may be provided in a region other than the interface.
  • the cross-sectional shape of the groove 32 shown in FIG. 2 is such that the width of the opening 32A is wider than the width of the groove bottom 32B. Therefore, compared with the case where the width of the opening 32A is narrow, air easily enters the groove 32, and the groove 32 easily functions as an air escape path, which is caused by the air that has entered the interface between the belt layer and the rubber member. A decrease in durability is suppressed. Note that the value of the width of the opening 32A preferably exceeds 1.0 times the value of the width of the groove bottom 32B.
  • the “width of the groove bottom 32B” in the case where the groove bottom 32B does not have a flat surface (for example, when the groove bottom 32B is a curved surface as described later, or when the cross-sectional shape of the groove 32 is V-shaped) This means the width of the groove 32 at a position that is 1/5 times the "depth of the groove 32" from the groove bottom 32B toward the virtual outer peripheral surface.
  • the depth value D of the groove 32 is the value of the distance from the outer peripheral surface 12 ⁇ / b> A of the belt layer 12 to the central portion 24 ⁇ / b> M of the cross section of the reinforcing cord 24 as shown in FIG. 2.
  • Less than L. Therefore, compared to the case where the depth value D of the groove 32 is larger than the distance value L, the distance from the groove bottom 32B to the inner peripheral surface of the belt layer 12 becomes longer, and cracks starting from the groove 32 occur. It is difficult to reach the inner peripheral surface of the belt layer 12, and the durability of the tire is increased. Further, as shown in FIG.
  • the depth value D of the groove 32 is smaller than the shortest distance value M from the outer peripheral surface 12 ⁇ / b> A of the belt layer 12 to the reinforcing cord 24. Therefore, in the same manner as described above, the durability of the tire is increased as compared with the case where the depth value D of the groove 32 is larger than the shortest distance value M.
  • the cross-sectional shape of the groove 32 shown in FIG. 2 is a trapezoidal shape in which the groove bottom 32B has a corner, but is not limited thereto.
  • the cross-sectional shape of the groove 32 along the tire width direction is more preferable from the viewpoint of durability, for example, as shown in FIG. 3, the groove bottom 32 ⁇ / b> B has a shape having no corners (for example, an arc shape). .
  • the groove bottom 32B has no corner, that is, the groove bottom 32B is a curved surface, cracks starting from the corner of the groove bottom 32B are less likely to occur, and the durability of the tire is enhanced.
  • the length of the groove 32 in the extending direction of the reinforcing cord 24 is not particularly limited as long as it is longer than the width of the groove 32 in the tire width direction (the width of the opening 32A and the width of the groove bottom 32B).
  • the length is 10 times or more the width of 32A, and may be a length that goes around in the tire circumferential direction.
  • the number of the grooves 32 in the tire width direction is not particularly limited, and examples thereof include a number of 1/3 times or more the number of the reinforcing cords 24 in the tire width direction.
  • the resin-coated cord 28 is spirally wound in the tire circumferential direction. That is, since the reinforcing cord 24 is spirally wound in the tire circumferential direction, the grooves 32 along the extending direction of the reinforcing cord 24 are also provided in the tire circumferential direction.
  • a tread before vulcanization a rubber member that becomes a tread by vulcanization, that is, the rubber member before vulcanization
  • the tire layer faces in the tire circumferential direction. Wrap the tread before vulcanization. Therefore, by providing the grooves 32 in the tire circumferential direction, air that has entered the interface between the belt layer 12 and the tread before vulcanization is easily discharged through the grooves 32.
  • the average distance between the reinforcing cords 24 adjacent to each other in the tire width direction in the belt layer 12 is, for example, 400 ⁇ m or more and 3200 ⁇ m or less, preferably 600 ⁇ m or more and 2200 ⁇ m or less, and more preferably 800 ⁇ m or more and 1500 ⁇ m or less.
  • the average distance between the adjacent reinforcing cords 24 is 400 ⁇ m or more, an increase in the weight of the tire is suppressed and the fuel efficiency during running tends to be excellent.
  • the average distance between adjacent reinforcing cords 24 is 3200 ⁇ m or less, a sufficient tire reinforcing effect tends to be obtained.
  • the thickness of the belt layer 12 is not particularly limited, but examples include a range of 0.2 mm or more and 1.2 mm or less, and a range of 0.3 mm or more and 1.0 mm or less is preferable from the viewpoint of tire durability. The range of 0.3 mm or more and 0.8 mm or less is more preferable.
  • the belt layer 12 shown in FIGS. 1 and 2 is configured by spirally winding the resin-coated cord 28 around the outer peripheral surface of the tire case 17, but is not limited thereto.
  • it may be a belt layer formed by winding a plurality of reinforcing cords 24 and coating resin 26 that are integrated in a sheet shape around the outer peripheral surface of the tire case 17.
  • a tread 30 is disposed outside the belt layer 12 in the tire radial direction.
  • the tread 30 is vulcanized and bonded after being laminated on the belt layer 12 on the tire case 17.
  • the tread 30 is formed to include a rubber having higher wear resistance than the resin material forming the tire case 17, and is the same type as the tread rubber used in a conventional rubber pneumatic tire. Can be used.
  • a drainage groove 30A extending in the tire circumferential direction is formed on the outer circumferential surface of the tread 30 in the tire radial direction.
  • two grooves 30A are formed, but the present invention is not limited to this, and more grooves 30A may be formed.
  • a well-known thing can be used as a tread pattern.
  • the tread 30 is composed of a single-layer rubber member.
  • the present invention is not limited to this.
  • the tread 30 is a rubber member in which a cushion rubber layer and a tread layer are laminated. Also good.
  • a set of tire halves 17H including bead cores 20 is formed by injection molding using a thermoplastic material.
  • the pair of tire halves 17H face each other, the ends of the portions that become the crown portions 18 are butted together, and a molten welding resin material 17A is attached to the butted portions to join the pair of tire halves 17H. To do. In this way, an annular tire case 17 is formed.
  • the tire case 17 is attached to a tire support device (not shown) that rotatably supports the tire case 17, and as shown in FIG. 4, a cord supply device 40 and a heating device 50 are provided near the outer periphery of the tire case 17. Then, the pressing roller 60 as a pressing device and the cooling roller 70 as a cooling device are moved.
  • the cord supply device 40 includes a reel 42 around which the resin-coated cord 28 is wound and a guide member 44.
  • the guide member 44 is a member for guiding the resin-coated cord 28 unwound from the reel 42 to the outer periphery of the tire case 17 (the outer peripheral surface 18A of the crown portion 18).
  • the guide member 44 is cylindrical, and the resin-coated cord 28 passes through the guide member 44. Further, the resin-coated cord 28 is sent out from the mouth portion 46 of the guide member 44 toward the outer peripheral surface 18A of the crown portion 18.
  • the heating device 50 blows hot air on the thermoplastic resin, and heats and melts the blown portion.
  • the locations where the hot air is blown are the portions where the inner peripheral surface 28A of the resin-coated cord 28 pressed against the outer peripheral surface 18A of the crown portion 18 and the resin-coated cord 28 on the outer peripheral surface 18A of the crown portion 18 are disposed. is there.
  • hot air is blown against the side surface 28C. It is done.
  • the heating device 50 is configured to blow out air heated by a heating wire (not shown) from an outlet 52 with an air flow generated by a fan (not shown).
  • the structure of the heating apparatus 50 is not limited to the said structure, What kind of structure may be sufficient if a thermoplastic resin can be heat-melted.
  • the contact portion may be heated and melted by bringing a hot metal into contact with the portion to be melted.
  • the part to be melted may be heated and melted by radiant heat, or may be heated and melted by irradiation with infrared rays.
  • the cooling roller 70 is disposed downstream of the pressing roller 60 in the rotation direction (arrow A direction) of the tire case 17.
  • the cooling roller 70 cools the crown portion 18 side through the resin coating cord 28 and the resin coating cord 28 while pressing the resin coating cord 28 against the outer periphery of the tire case 17 (the outer circumferential surface 18A of the crown portion 18). It is.
  • the cooling roller 70 can adjust the pressing force and is processed to prevent adhesion of a molten resin material to the roller surface.
  • the cooling roller 70 is rotatable in the same manner as the pressing roller 60, and in a state where the resin-coated cord 28 is pressed against the outer periphery of the tire case 17, the rotation direction of the tire case 17 (arrow A direction).
  • the cooling roller 70 is configured such that a liquid (for example, water) circulates inside the roller, and the resin-coated cord 28 that contacts the roller surface can be cooled by heat exchange of the liquid. Note that the cooling roller 70 may be omitted when the molten resin material is naturally cooled.
  • a liquid for example, water
  • the melted portion of the crown portion 18 and the melted portion of the resin-coated cord 28 are solidified by the outer peripheral surface 28B of the resin-coated cord 28 coming into contact with the cooling roller 70 and being cooled through the resin-coated cord 28. Thereby, the resin-coated cord 28 and the crown portion 18 are welded.
  • the resin-coated cord 28 is spirally wound around the outer circumferential surface 18A of the crown portion 18 in the tire circumferential direction and pressed against the outer circumferential surface 18A, so that the outer circumference of the tire case 17, more specifically, the crown portion A layer of resin-coated cord 28 is formed on the outer periphery of 18.
  • the position of the mouth portion 46 of the cord supply device 40 is moved in the tire axial direction as the tire case 17 rotates, or the tire case 17 is moved in the tire axial direction. You can move it.
  • the tension of the resin-coated cord 28 is adjusted by applying a brake to the reel 42 of the cord supply device 40 or providing a tension adjusting roller (not shown) in the guide path of the resin-coated cord 28. Also good. By adjusting the tension, the meandering arrangement of the resin-coated cord 28 can be suppressed.
  • the belt layer 12 is formed by providing a groove 32 on the outer peripheral surface of the layer of the formed resin-coated cord 28.
  • the tire case 17 is attached to a tire support device that rotatably supports the tire case 17 on which the layer of the resin-coated cord 28 is formed, and the attached tire case 17 is rotated in the tire rotation axis direction.
  • a part of the outer peripheral surface of the layer of the resin-coated cord 28 is ground by a grinding means to form a groove 32 along the extending direction of the reinforcing cord 24, and the belt layer Get 12.
  • the grinding means include a cutter and a drill.
  • the method for obtaining the belt layer 12 having the grooves 32 on the outer peripheral surface 12A is not limited to the above method. Specifically, for example, before the resin-coated cord 28 is wound around the outer periphery of the tire case 17, the outer surface 28 ⁇ / b> B in the tire radial direction of the resin-coated cord 28 (that is, the surface constituting the outer peripheral surface 12 ⁇ / b> A of the belt layer 12). A groove 32 along the extending direction of the reinforcing cord 24 may be provided in advance.
  • a recess along the extending direction of the reinforcing cord 24 may be provided by chamfering the corner portion where the outer peripheral surface 28B and the side surface 28C in the tire radial direction of the resin-coated cord 28 intersect. Good.
  • the belt layer 12 having grooves on the outer peripheral surface 12A along the extending direction of the reinforcing cord 24 is formed.
  • the tread before vulcanization is wound around the outer peripheral surface 12A of the belt layer 12 provided with the grooves 32.
  • the belt-shaped tread before vulcanization is wound for one turn.
  • the air that has entered between the outer peripheral surface 12 ⁇ / b> A of the belt layer 12 and the tread before vulcanization is discharged through the groove 32.
  • the tire case 17 in which the belt layer 12 and the tread before vulcanization are laminated is vulcanized.
  • the tire case 17 is accommodated in a vulcanizing can or a mold and heated, whereby the tread before vulcanization is vulcanized to form the tread 30.
  • the vulcanization temperature examples include 180 ° C. to 220 ° C.
  • examples of the vulcanization time include 1 minute to 10 minutes.
  • the groove 30A is formed on the outer circumferential surface of the tread 30 in the tire radial direction.
  • a tread before vulcanization in which the groove 30A is provided in advance may be used.
  • 30A may be formed. As described above, the tire 10 of the first embodiment is obtained.
  • the resin material used for the tire frame member only needs to contain at least a resin, and may contain other components such as an additive. However, the resin content in the resin material is preferably 50% by mass or more, and more preferably 90% by mass or more based on the total amount of the resin material.
  • the tire frame member of the first embodiment can be formed using a resin material.
  • the resin contained in the tire frame member examples include thermoplastic resins, thermoplastic elastomers, and thermosetting resins. From the viewpoint of ride comfort during traveling, the resin material preferably includes a thermoplastic elastomer, and more preferably includes a polyamide-based thermoplastic elastomer.
  • thermosetting resin examples include phenol-based thermosetting resins, urea-based thermosetting resins, melamine-based thermosetting resins, and epoxy-based thermosetting resins.
  • thermoplastic resin examples include polyamide-based thermoplastic resins, polyester-based thermoplastic resins, olefin-based thermoplastic resins, polyurethane-based thermoplastic resins, vinyl chloride-based thermoplastic resins, polystyrene-based thermoplastic resins, and the like. You may use these individually or in combination of 2 or more types.
  • thermoplastic resin is preferably at least one selected from polyamide-based thermoplastic resins, polyester-based thermoplastic resins, and olefin-based thermoplastic resins, and is selected from polyamide-based thermoplastic resins and olefin-based thermoplastic resins. More preferably, at least one selected from the group consisting of
  • thermoplastic elastomer examples include polyamide-based thermoplastic elastomer (TPA), polystyrene-based thermoplastic elastomer (TPS), polyurethane-based thermoplastic elastomer (TPU), olefin-based thermoplastic elastomer (TPO) specified in JIS K6418, Examples thereof include polyester-based thermoplastic elastomer (TPEE), crosslinked thermoplastic rubber (TPV), and other thermoplastic elastomers (TPZ).
  • TPA polyamide-based thermoplastic elastomer
  • TPS polystyrene-based thermoplastic elastomer
  • TPU polyurethane-based thermoplastic elastomer
  • TPO olefin-based thermoplastic elastomer
  • TPEE polyester-based thermoplastic elastomer
  • TPV crosslinked thermoplastic rubber
  • TPZ thermoplastic elastomers
  • the polyamide-based thermoplastic elastomer is a thermoplastic resin material made of a copolymer having a crystalline polymer having a high melting point and a non-crystalline polymer having a low glass transition temperature. It means that having an amide bond (—CONH—) in the main chain of the polymer forming the hard segment.
  • the polyamide-based thermoplastic elastomer for example, at least a polyamide is a crystalline hard crystalline segment with a high melting point, and other polymers (for example, polyester, polyether, etc.) are amorphous and have a soft glass transition temperature low soft segment. The material which forms is mentioned.
  • the polyamide-based thermoplastic elastomer may be formed using a chain extender such as dicarboxylic acid in addition to the hard segment and the soft segment.
  • a chain extender such as dicarboxylic acid
  • Specific examples of polyamide-based thermoplastic elastomers include amide-based thermoplastic elastomers (TPA) defined in JIS K6418: 2007, polyamide-based elastomers described in JP-A No. 2004-346273, and the like. it can.
  • examples of the polyamide forming the hard segment include polyamides produced by monomers represented by the following general formula (1) or general formula (2).
  • R 1 represents a molecular chain of a hydrocarbon having 2 to 20 carbon atoms (for example, an alkylene group having 2 to 20 carbon atoms).
  • R 2 represents a hydrocarbon molecular chain having 3 to 20 carbon atoms (for example, an alkylene group having 3 to 20 carbon atoms).
  • R 1 is preferably a hydrocarbon molecular chain having 3 to 18 carbon atoms, such as an alkylene group having 3 to 18 carbon atoms, and a hydrocarbon molecular chain having 4 to 15 carbon atoms, such as carbon.
  • An alkylene group having 4 to 15 carbon atoms is more preferable, and a molecular chain of a hydrocarbon having 10 to 15 carbon atoms, for example, an alkylene group having 10 to 15 carbon atoms is particularly preferable.
  • R 2 is preferably a hydrocarbon molecular chain having 3 to 18 carbon atoms, for example, an alkylene group having 3 to 18 carbon atoms, and a hydrocarbon molecular chain having 4 to 15 carbon atoms,
  • an alkylene group having 4 to 15 carbon atoms is more preferable
  • a molecular chain of a hydrocarbon having 10 to 15 carbon atoms for example, an alkylene group having 10 to 15 carbon atoms is particularly preferable.
  • the monomer represented by the general formula (1) or the general formula (2) include ⁇ -aminocarboxylic acid or lactam.
  • the polyamide forming the hard segment include polycondensates of these ⁇ -aminocarboxylic acids or lactams, and co-condensation polymers of diamines and dicarboxylic acids.
  • Examples of the ⁇ -aminocarboxylic acid include those having 5 to 20 carbon atoms such as 6-aminocaproic acid, 7-aminoheptanoic acid, 8-aminooctanoic acid, 10-aminocapric acid, 11-aminoundecanoic acid, 12-aminododecanoic acid and the like. Examples thereof include aliphatic ⁇ -aminocarboxylic acids.
  • Examples of the lactam include aliphatic lactams having 5 to 20 carbon atoms such as lauryl lactam, ⁇ -caprolactam, udecan lactam, ⁇ -enantolactam, and 2-pyrrolidone.
  • diamine examples include aliphatic diamines having 2 to 20 carbon atoms and aromatic diamines having 6 to 20 carbon atoms.
  • examples of the aliphatic diamine having 2 to 20 carbon atoms and the aromatic diamine having 6 to 20 carbon atoms include ethylenediamine, trimethylenediamine, tetramethylenediamine, hexamethylenediamine, heptamethylenediamine, octamethylenediamine, nonamethylenediamine, Decamethylene diamine, undecamethylene diamine, dodecamethylene diamine, 2,2,4-trimethylhexamethylene diamine, 2,4,4-trimethylhexamethylene diamine, 3-methylpentamethylene diamine, metaxylene diamine, etc. it can.
  • the dicarboxylic acid can be represented by HOOC- (R 3 ) m-COOH (R 3 : a hydrocarbon molecular chain having 3 to 20 carbon atoms, m: 0 or 1).
  • R 3 a hydrocarbon molecular chain having 3 to 20 carbon atoms, m: 0 or 1.
  • oxalic acid, succinic acid And aliphatic dicarboxylic acids having 2 to 20 carbon atoms such as glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid and dodecanedioic acid.
  • a polyamide obtained by ring-opening polycondensation of lauryl lactam, ⁇ -caprolactam, or decane lactam can be preferably used.
  • polyester, polyether, etc. are mentioned, for example, Polyethylene glycol, polypropylene glycol, polytetramethylene ether glycol, ABA type
  • mold triblock polyether etc. are mentioned specifically ,. These can be used alone or in combination of two or more.
  • polyether diamine etc. which are obtained by making ammonia etc. react with the terminal of polyether can also be used.
  • the “ABA type triblock polyether” means a polyether represented by the following general formula (3).
  • x and z represent an integer of 1 to 20.
  • y represents an integer of 4 to 50.
  • each of x and z is preferably an integer of 1 to 18, more preferably an integer of 1 to 16, still more preferably an integer of 1 to 14, and particularly preferably an integer of 1 to 12.
  • y is preferably an integer of 5 to 45, more preferably an integer of 6 to 40, still more preferably an integer of 7 to 35, and particularly preferably an integer of 8 to 30.
  • combinations of hard segment and soft segment include lauryl lactam ring-opening polycondensate / polyethylene glycol combination, lauryl lactam ring-opening polycondensate / polypropylene glycol combination, and lauryl lactam ring-opening polycondensation.
  • the number average molecular weight of the polymer (polyamide) forming the hard segment is preferably 300 to 15000 from the viewpoint of melt moldability.
  • the number average molecular weight of the polymer forming the soft segment is preferably 200 to 6000 from the viewpoint of toughness and low temperature flexibility.
  • the mass ratio (x: y) to the hard segment (x) and the soft segment (y) is preferably 50:50 to 90:10, and more preferably 50:50 to 80:20, from the viewpoint of moldability. .
  • the polyamide-based thermoplastic elastomer can be synthesized by copolymerizing a polymer forming a hard segment and a polymer forming a soft segment by a known method.
  • Examples of commercially available products of polyamide-based thermoplastic elastomer include “UBESTA XPA” series (for example, XPA9063X1, XPA9055X1, XPA9048X2, XPA9048X1, XPA9040X1, XPA9040X2XPA9044, etc.) manufactured by Ube Industries, Ltd. Series (for example, E40-S3, E47-S1, E47-S3, E55-S1, E55-S3, EX9200, E50-R2, etc.) can be used.
  • Ube Industries, Ltd. Series for example, E40-S3, E47-S1, E47-S3, E55-S1, E55-S3, EX9200, E50-R2, etc.
  • polystyrene-based thermoplastic elastomer for example, at least polystyrene forms a hard segment, and other polymers (for example, polybutadiene, polyisoprene, polyethylene, hydrogenated polybutadiene, hydrogenated polyisoprene, etc.) are not. Examples thereof include materials that form a soft segment having a crystallinity and a low glass transition temperature.
  • the polystyrene forming the hard segment for example, those obtained by a known radical polymerization method, ionic polymerization method and the like are preferably used, and specifically, polystyrene having anion living polymerization can be mentioned.
  • the polymer that forms the soft segment include polybutadiene, polyisoprene, poly (2,3-dimethyl-butadiene), and the like.
  • the combination of the hard segment and the soft segment mentioned above can be mentioned.
  • the combination of the hard segment and the soft segment is preferably a combination of polystyrene / polybutadiene or a combination of polystyrene / polyisoprene.
  • the soft segment is preferably hydrogenated.
  • the number average molecular weight of the polymer (polystyrene) forming the hard segment is preferably 5,000 to 500,000, and more preferably 10,000 to 200,000. Further, the number average molecular weight of the polymer forming the soft segment is preferably from 5,000 to 1,000,000, more preferably from 10,000 to 800,000, and even more preferably from 30,000 to 500,000. Furthermore, the volume ratio (x: y) to the hard segment (x) and the soft segment (y) is preferably 5:95 to 80:20, more preferably 10:90 to 70:30, from the viewpoint of moldability. .
  • the polystyrene-based thermoplastic elastomer can be synthesized by copolymerizing a polymer forming a hard segment and a polymer forming a soft segment by a known method.
  • polystyrene-based thermoplastic elastomers include styrene-butadiene copolymers [SBS (polystyrene-poly (butylene) block-polystyrene), SEBS (polystyrene-poly (ethylene / butylene) block-polystyrene)], styrene-isoprene.
  • Copolymer polystyrene-polyisoprene block-polystyrene
  • styrene-propylene copolymer [SEP (polystyrene- (ethylene / propylene) block), SEPS (polystyrene-poly (ethylene / propylene) block-polystyrene), SEEPS ( Polystyrene-poly (ethylene-ethylene / propylene) block-polystyrene), SEB (polystyrene (ethylene / butylene) block)] and the like.
  • SEP polystyrene- (ethylene / propylene) block
  • SEPS polystyrene-poly (ethylene / propylene) block-polystyrene
  • SEEPS Polystyrene-poly (ethylene-ethylene / propylene) block-polystyrene
  • SEB polystyrene (ethylene / butylene) block
  • thermoplastic elastomer As a commercially available product of polystyrene-based thermoplastic elastomer, for example, “Tough Tech” series (for example, H1031, H1041, H1043, H1051, H1052, H1053, H1062, H1082, H1141, H1221, H1272, etc.) manufactured by Asahi Kasei Corporation, “SEBS” series (8007, 8076, etc.) and “SEPS” series (2002, 2063, etc.) manufactured by Kuraray Co., Ltd. can be used.
  • “Tough Tech” series for example, H1031, H1041, H1043, H1051, H1052, H1053, H1062, H1082, H1141, H1221, H1272, etc.
  • SEBS 8007, 8076, etc.
  • SEPS 2002, 2063, etc.
  • thermoplastic elastomer As polyurethane-based thermoplastic elastomers, for example, at least polyurethane forms a hard segment in which pseudo-crosslinking is formed by physical aggregation, and other polymers form a soft segment with a low glass transition temperature that is amorphous. Material.
  • Specific examples of the polyurethane-based thermoplastic elastomer include a polyurethane-based thermoplastic elastomer (TPU) defined in JIS K6418: 2007.
  • TPU polyurethane-based thermoplastic elastomer
  • the polyurethane-based thermoplastic elastomer can be represented as a copolymer including a soft segment including a unit structure represented by the following formula A and a hard segment including a unit structure represented by the following formula B.
  • P represents a long-chain aliphatic polyether or a long-chain aliphatic polyester.
  • R represents an aliphatic hydrocarbon, an alicyclic hydrocarbon, or an aromatic hydrocarbon.
  • P ′ represents a short chain aliphatic hydrocarbon, an alicyclic hydrocarbon, or an aromatic hydrocarbon.
  • the long-chain aliphatic polyether or long-chain aliphatic polyester represented by P for example, those having a molecular weight of 500 to 5000 can be used.
  • P is derived from a diol compound containing a long-chain aliphatic polyether represented by P and a long-chain aliphatic polyester.
  • diol compounds include polyethylene glycol, polypropylene glycol, polytetramethylene ether glycol, poly (butylene abido) diol, poly- ⁇ -caprolactone diol, poly (hexamethylene carbonate) having a molecular weight within the above range.
  • Diol, ABA type triblock polyether and the like These can be used alone or in combination of two or more.
  • R is a partial structure introduced using a diisocyanate compound containing an aliphatic hydrocarbon, an alicyclic hydrocarbon, or an aromatic hydrocarbon represented by R.
  • the aliphatic diisocyanate compound containing an aliphatic hydrocarbon represented by R include 1,2-ethylene diisocyanate, 1,3-propylene diisocyanate, 1,4-butane diisocyanate, 1,6-hexamethylene diisocyanate, and the like.
  • Examples of the diisocyanate compound containing an alicyclic hydrocarbon represented by R include 1,4-cyclohexane diisocyanate and 4,4-cyclohexane diisocyanate.
  • examples of the aromatic diisocyanate compound containing an aromatic hydrocarbon represented by R include 4,4′-diphenylmethane diisocyanate and tolylene diisocyanate. These can be used alone or in combination of two or more.
  • P ′ is derived from a diol compound containing a short-chain aliphatic hydrocarbon, alicyclic hydrocarbon, or aromatic hydrocarbon represented by P ′.
  • Examples of the aliphatic diol compound containing a short-chain aliphatic hydrocarbon represented by P ′ include glycol and polyalkylene glycol.
  • ethylene glycol, propylene glycol, trimethylene glycol, 1, 4 -Butanediol, 1,3-butanediol, 1,5-pentanediol, 1,6-hexanediol, 1,7-heptanediol, 1,8-octanediol, 1,9-nonanediol, 1,10- A decanediol etc. are mentioned.
  • Examples of the alicyclic diol compound containing an alicyclic hydrocarbon represented by P ′ include cyclopentane-1,2-diol, cyclohexane-1,2-diol, cyclohexane-1,3-diol, Examples include cyclohexane-1,4-diol and cyclohexane-1,4-dimethanol.
  • examples of the aromatic diol compound containing an aromatic hydrocarbon represented by P ′ include hydroquinone, resorcin, chlorohydroquinone, bromohydroquinone, methylhydroquinone, phenylhydroquinone, methoxyhydroquinone, phenoxyhydroquinone, 4,4′- Dihydroxybiphenyl, 4,4′-dihydroxydiphenyl ether, 4,4′-dihydroxydiphenyl sulfide, 4,4′-dihydroxydiphenylsulfone, 4,4′-dihydroxybenzophenone, 4,4′-dihydroxydiphenylmethane, bisphenol A, 1, Examples thereof include 1-di (4-hydroxyphenyl) cyclohexane, 1,2-bis (4-hydroxyphenoxy) ethane, 1,4-dihydroxynaphthalene, 2,6-dihydroxynaphthalene and the like. These can be used alone or in combination of two or more.
  • the number average molecular weight of the polymer (polyurethane) forming the hard segment is preferably 300 to 1500 from the viewpoint of melt moldability.
  • the number average molecular weight of the polymer forming the soft segment is preferably 500 to 20000, more preferably 500 to 5000, and particularly preferably 500 to 3000, from the viewpoints of flexibility and thermal stability of the polyurethane-based thermoplastic elastomer.
  • the mass ratio (x: y) to the hard segment (x) and the soft segment (y) is preferably 15:85 to 90:10, more preferably 30:70 to 90:10, from the viewpoint of moldability. .
  • the polyurethane-based thermoplastic elastomer can be synthesized by copolymerizing a polymer forming a hard segment and a polymer forming a soft segment by a known method.
  • a polyurethane-based thermoplastic elastomer for example, thermoplastic polyurethane described in JP-A-5-331256 can be used.
  • a combination of a hard segment composed of an aromatic diol and an aromatic diisocyanate and a soft segment composed of a polycarbonate is preferable.
  • At least one selected from carbonate copolymers is preferable, TDI / polyester polyol copolymer, TDI / polyether polyol copolymer, MDI / polyester polyol copolymer, MDI / polyether polyol copolymer, And at least one selected from MDI +
  • thermoplastic elastomers examples include, for example, “Elastollan” series (for example, ET680, ET880, ET690, ET890, etc.) manufactured by BASF, and “Clamiron U” series (for example, Kuraray Co., Ltd.) 2000 series, 3000 series, 8000 series, 9000 series, etc.) “Milactolan” series (for example, XN-2001, XN-2004, P390RSUP, P480RSUI, P26MRNAT, E490, E590, P890, etc.) manufactured by Japan Miraclan Co., Ltd. Etc. can be used.
  • “Elastollan” series for example, ET680, ET880, ET690, ET890, etc.
  • Clamiron U for example, Kuraray Co., Ltd. 2000 series, 3000 series, 8000 series, 9000 series, etc.
  • Milactolan for example, XN-2001, XN-2004, P390RS
  • thermoplastic elastomer for example, at least a polyolefin forms a hard segment with a crystalline and high melting point, and other polymers (for example, polyolefin, other polyolefins, polyvinyl compounds, etc.) are amorphous and have a glass transition temperature. Examples include materials that form low soft segments. Examples of the polyolefin forming the hard segment include polyethylene, polypropylene, isotactic polypropylene, polybutene, and the like.
  • olefinic thermoplastic elastomers include olefin- ⁇ -olefin random copolymers, olefin block copolymers, and the like.
  • propylene block copolymers ethylene-propylene copolymers, propylene- 1-hexene copolymer, propylene-4-methyl-1-pentene copolymer, propylene-1-butene copolymer, ethylene-1-hexene copolymer, ethylene-4-methyl-pentene copolymer, ethylene- 1-butene copolymer, 1-butene-1-hexene copolymer, 1-butene-4-methyl-pentene, ethylene-methacrylic acid copolymer, ethylene-methyl methacrylate copolymer, ethylene-ethyl methacrylate Copolymer, ethylene-butyl methacrylate copolymer, ethylene-methyl acrylate copolymer Ethylene-eth
  • thermoplastic elastomers include propylene block copolymers, ethylene-propylene copolymers, propylene-1-hexene copolymers, propylene-4-methyl-1-pentene copolymers, propylene-1- Butene copolymer, ethylene-1-hexene copolymer, ethylene-4-methyl-pentene copolymer, ethylene-1-butene copolymer, ethylene-methacrylic acid copolymer, ethylene-methyl methacrylate copolymer , Ethylene-ethyl methacrylate copolymer, ethylene-butyl methacrylate copolymer, ethylene-methyl acrylate copolymer, ethylene-ethyl acrylate copolymer, ethylene-butyl acrylate copolymer, propylene-methacrylic acid copolymer , Propylene-methyl methacrylate copolymer, pro Lene-e
  • olefin resins such as ethylene and propylene may be used in combination.
  • 50 mass% or more and 100 mass% or less of the olefin resin content rate in an olefin type thermoplastic elastomer are preferable.
  • the number average molecular weight of the olefinic thermoplastic elastomer is preferably 5,000 to 10,000,000.
  • the mechanical properties of the thermoplastic resin material are sufficient and the processability is excellent.
  • the number average molecular weight of the olefinic thermoplastic elastomer is more preferably 7,000 to 1,000,000, and particularly preferably 10,000 to 1,000,000. Thereby, the mechanical properties and processability of the thermoplastic resin material can be further improved.
  • the number average molecular weight of the polymer forming the soft segment is preferably 200 to 6000 from the viewpoint of toughness and low temperature flexibility.
  • the mass ratio (x: y) to the hard segment (x) and the soft segment (y) is preferably 50:50 to 95:15, more preferably 50:50 to 90:10, from the viewpoint of moldability.
  • the olefinic thermoplastic elastomer can be synthesized by copolymerization by a known method.
  • thermoplastic elastomer one obtained by acid-modifying a thermoplastic elastomer may be used.
  • a product obtained by acid-modifying an olefinic thermoplastic elastomer means that an unsaturated compound having an acidic group such as a carboxylic acid group, a sulfuric acid group, or a phosphoric acid group is bonded to the olefinic thermoplastic elastomer.
  • Examples of bonding an unsaturated compound having an acidic group such as a carboxylic acid group, sulfuric acid group or phosphoric acid group to an olefinic thermoplastic elastomer include, for example, an unsaturated compound having an acidic group to an olefinic thermoplastic elastomer, Examples include bonding (for example, graft polymerization) an unsaturated bond site of an unsaturated carboxylic acid (generally maleic anhydride).
  • an unsaturated compound having an acidic group an unsaturated compound having a carboxylic acid group which is a weak acid group is preferable from the viewpoint of suppressing deterioration of the olefin-based thermoplastic elastomer.
  • Examples of the unsaturated compound having a carboxylic acid group include acrylic acid, methacrylic acid, itaconic acid, crotonic acid, isocrotonic acid, maleic acid and the like.
  • thermoplastic elastomers examples include “Tuffmer” series (for example, A0550S, A1050S, A4050S, A1070S, A4070S, A35070S, A1085S, A4085S, A7090, A70090, MH7007, MH7010, manufactured by Mitsui Chemicals, Inc.
  • E-2900H, F-3900H, E-2900, F-3900, J-5900, E-2910, F-3910, J-5910, E-2710, F 3710, J-5910, E-2740, F-3740, R110MP, R110E, can be used T310E, also M142E, etc.) and the like.
  • thermoplastic elastomer for example, at least a polyester is crystalline and a hard segment having a high melting point is formed, and another polymer (eg, polyester or polyether) is amorphous and has a low glass transition temperature.
  • the polyester-based thermoplastic elastomer for example, at least a polyester is crystalline and a hard segment having a high melting point is formed, and another polymer (eg, polyester or polyether) is amorphous and has a low glass transition temperature. The material which forms is mentioned.
  • An aromatic polyester can be used as the polyester forming the hard segment.
  • the aromatic polyester can be formed, for example, from an aromatic dicarboxylic acid or an ester-forming derivative thereof and an aliphatic diol.
  • the aromatic polyester is preferably polybutylene terephthalate derived from at least one of terephthalic acid and dimethyl terephthalate and 1,4-butanediol.
  • the aromatic polyester includes, for example, isophthalic acid, phthalic acid, naphthalene-2,6-dicarboxylic acid, naphthalene-2,7-dicarboxylic acid, diphenyl-4,4′-dicarboxylic acid, diphenoxyethanedicarboxylic acid, 5
  • a dicarboxylic acid component such as sulfoisophthalic acid or an ester-forming derivative thereof and a diol having a molecular weight of 300 or less (for example, ethylene glycol, trimethylene glycol, pentamethylene glycol, hexamethylene glycol, neopentyl glycol, decamethylene glycol, etc.
  • Aliphatic diols such as: 1,4-cyclohexanedimethanol, tricyclodecane dimethylol and other alicyclic diols; xylylene glycol, bis (p-hydroxy) diphenyl, bis (p-hydroxyphenyl) propane, 2,2- Bi [4- (2-hydroxyethoxy) phenyl] propane, bis [4- (2-hydroxy) phenyl] sulfone, 1,1-bis [4- (2-hydroxyethoxy) phenyl] cyclohexane, 4,4′- Aromatic diols such as dihydroxy-p-terphenyl and 4,4′-dihydroxy-p-quarterphenyl; and the like, and polyesters derived from these, or a combination of two or more of these dicarboxylic acid components and diol components Polymerized polyester may also be used.
  • polyester forming the hard segment examples include polyethylene terephthalate, polybutylene terephthalate, polymethylene terephthalate, polyethylene naphthalate, polybutylene naphthalate, and the like, and polybutylene terephthalate is preferable.
  • Aliphatic polyethers include poly (ethylene oxide) glycol, poly (propylene oxide) glycol, poly (tetramethylene oxide) glycol, poly (hexamethylene oxide) glycol, copolymers of ethylene oxide and propylene oxide, poly (propylene oxide) And ethylene oxide addition polymer of glycol, and a copolymer of ethylene oxide and tetrahydrofuran.
  • the aliphatic polyester include poly ( ⁇ -caprolactone), polyenantlactone, polycaprylolactone, polybutylene adipate, and polyethylene adipate.
  • poly (tetramethylene oxide) glycol poly (propylene oxide) glycol are polymers that form soft segments from the viewpoint of the elastic properties of the resulting polyester block copolymer.
  • Preferred are ethylene oxide adducts, poly ( ⁇ -caprolactone), polybutylene adipate, polyethylene adipate and the like.
  • the number average molecular weight of the polymer forming the soft segment is preferably 300 to 6000 from the viewpoint of toughness and low temperature flexibility. Furthermore, the mass ratio (x: y) between the hard segment (x) and the soft segment (y) is preferably 99: 1 to 20:80, more preferably 98: 2 to 30:70, from the viewpoint of moldability. .
  • the combination of the hard segment and the soft segment described above examples include, for example, combinations of the hard segment and the soft segment mentioned above.
  • the combination of the hard segment and the soft segment described above is preferably a combination in which the hard segment is polybutylene terephthalate, the soft segment is an aliphatic polyether, and the hard segment is polybutylene terephthalate. More preferred is a combination wherein is poly (ethylene oxide) glycol.
  • polyester-based thermoplastic elastomers examples include “Hytrel” series (for example, 3046, 5557, 6347, 4047, 4767, etc.) manufactured by Toray DuPont Co., Ltd., and “Perprene” series manufactured by Toyobo Co., Ltd. (For example, P30B, P40B, P40H, P55B, P70B, P150B, P280B, P450B, P150M, S1001, S2001, S5001, S6001, S9001, etc.) can be used.
  • Hytrel for example, 3046, 5557, 6347, 4047, 4767, etc.
  • Perprene manufactured by Toyobo Co., Ltd.
  • the polyester-based thermoplastic elastomer can be synthesized by copolymerizing a polymer that forms a hard segment and a polymer that forms a soft segment by a known method.
  • the resin material may contain components other than the resin as desired.
  • components other than the resin include rubber, various fillers (for example, silica, calcium carbonate, clay), anti-aging agent, oil, plasticizer, colorant, weathering agent, reinforcing material, and the like.
  • reinforcing cord 24 examples include a monofilament (single wire) made of a single metal cord, a multifilament (twisted wire) obtained by twisting a plurality of metal cords, and the like. Is preferably a multifilament. Examples of the number of the plurality of metal cords include 2 to 10, and 5 to 9 are preferable.
  • the thickness of the reinforcing cord 24 is preferably 0.2 mm to 2 mm, and more preferably 0.8 mm to 1.6 mm.
  • the thickness of a metal member be the number average value of the thickness measured in five places chosen arbitrarily. The thickness of the metal member is determined by the method described above.
  • the material of the coating resin 26 is not particularly limited as long as it contains a resin, and for example, at least one thermoplastic material selected from the group consisting of a thermoplastic resin and a thermoplastic elastomer can be used.
  • the coating resin 26 desirably contains a thermoplastic elastomer from the viewpoint of ease of molding and adhesiveness to the adhesive layer. In particular, from the viewpoint of adhesiveness between the coating resin 26 and the tire case 17, it is desirable that the resin contained in the tire case 17 and the resin contained in the coating resin 26 be the same type of material.
  • a polyamide-based thermoplastic resin is used as the resin included in the coating resin 26, it is preferable to use at least one of a polyamide-based thermoplastic resin and a polyamide-based thermoplastic elastomer as the resin included in the tire case 17.
  • thermoplastic resin examples include the same type as the thermoplastic resin used for the tire case 17, and specifically, polyamide-based thermoplastic resins, polyester-based thermoplastic resins, olefin-based thermoplastic resins, polyurethane-based resins. Examples thereof include a thermoplastic resin, a vinyl chloride thermoplastic resin, and a polystyrene thermoplastic resin. You may use these individually or in combination of 2 or more types. Among these, as the thermoplastic resin, at least one selected from polyamide-based thermoplastic resins, polyester-based thermoplastic resins, and olefin-based thermoplastic resins is preferable.
  • polyamide-based thermoplastic resin examples include a polyamide that forms a hard segment of the polyamide-based thermoplastic elastomer.
  • polyamide-based thermoplastic resins include polyamide (amide 6) obtained by ring-opening polycondensation of ⁇ -caprolactam, polyamide (amide 11) obtained by ring-opening polycondensation of undecane lactam, and ring-opening polycondensation of lauryl lactam.
  • the amide 6 can be represented by, for example, ⁇ CO— (CH 2 ) 5 —NH ⁇ n .
  • the amide 11 can be represented by ⁇ CO— (CH 2 ) 10 —NH ⁇ n , for example.
  • the amide 12 can be represented by, for example, ⁇ CO— (CH 2 ) 11 —NH ⁇ n .
  • the amide 66 can be represented by ⁇ CO (CH 2 ) 4 CONH (CH 2 ) 6 NH ⁇ n , for example.
  • Amide MX can be represented, for example, by the following structural formula (A-1). Here, n represents the number of repeating units.
  • polyester-based thermoplastic resin examples include a polyester that forms a hard segment of the polyester-based thermoplastic elastomer.
  • Specific examples of the polyester-based thermoplastic resin include polylactic acid, polyhydroxy-3-butylbutyric acid, polyhydroxy-3-hexylbutyric acid, poly ( ⁇ -caprolactone), polyenantlactone, polycaprylolactone, and polybutylene.
  • Examples include aliphatic polyesters such as adipate and polyethylene adipate, and aromatic polyesters such as polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, and polybutylene naphthalate.
  • polybutylene terephthalate is preferable as the polyester-based thermoplastic resin.
  • the olefin-based thermoplastic resin examples include polyolefin that forms a hard segment of the olefin-based thermoplastic elastomer.
  • Specific examples of the olefin-based thermoplastic resin include a polyethylene-based thermoplastic resin, a polypropylene-based thermoplastic resin, a polybutadiene-based thermoplastic resin, and the like.
  • the olefin thermoplastic resin is preferably a polypropylene thermoplastic resin.
  • polypropylene-based thermoplastic resin examples include a propylene homopolymer, a propylene- ⁇ -olefin random copolymer, a propylene- ⁇ -olefin block copolymer, and the like.
  • Examples of the ⁇ -olefin include propylene, 1-butene, 1-pentene, 3-methyl-1-butene, 1-hexene, 4-methyl-1-pentene, 3-methyl-1-pentene, 1-heptene, Examples thereof include ⁇ -olefins having about 3 to 20 carbon atoms such as 1-octene, 1-decene, 1-dodecene, 1-tetradecene, 1-hexadecene, 1-octadecene and 1-eicocene.
  • thermoplastic elastomer examples include the same type as the thermoplastic elastomer used for the tire case 17.
  • the coating resin 26 may include components other than the resin. Examples of other components include rubbers, elastomers, thermoplastic resins, various fillers (eg, silica, calcium carbonate, clay), anti-aging agents, oils, plasticizers, color formers, weathering agents, and the like. However, the resin contained in the coating resin 26 is preferably 50% by mass or more, more preferably 80% by mass or more, and further preferably 90% by mass or more.
  • the average thickness of the coating resin 26 is not particularly limited, but is preferably 10 ⁇ m or more and 1000 ⁇ m or less, and more preferably 50 ⁇ m or more and 700 ⁇ m or less from the viewpoint of excellent durability and weldability.
  • the adhesive layer is formed using, for example, an adhesive.
  • examples of the type of adhesive used to form the adhesive layer include hot melt adhesives and solvent-based adhesives.
  • the adhesive used for forming the adhesive layer may be only one type, or two or more types may be used in combination.
  • the adhesive used for forming the adhesive layer is a non-reactive adhesive
  • the adhesive layer is a layer containing the non-reactive adhesive
  • the adhesive used for forming the adhesive layer is a reactive adhesive.
  • the adhesive layer is a layer containing a reaction product of the reactive adhesive.
  • hot melt adhesives examples include modified olefin resins (modified polyethylene resins, modified polypropylene resins, etc.), polyamide resins, polyurethane resins, polyester resins, modified polyester resins, ethylene-ethyl acrylate copolymer
  • modified olefin resins modified polyethylene resins, modified polypropylene resins, etc.
  • polyamide resins polyurethane resins
  • polyester resins modified polyester resins
  • ethylene-ethyl acrylate copolymer examples thereof include those containing one or two or more thermoplastic resins as a main component (main agent) such as a polymer, an ethylene-vinyl acetate copolymer and the like.
  • the metal member and the resin layer it is composed of a modified olefin resin, a polyester resin, a modified polyester resin, an ethylene-ethyl acrylate copolymer, and an ethylene-vinyl acetate copolymer.
  • a hot melt adhesive containing at least one selected from the group is preferred, and a hot melt adhesive containing at least one selected from a modified olefin resin and a modified polyester resin is more preferred, and among them, an acid-modified olefin resin and a modified More preferred is a hot melt adhesive containing at least one selected from polyester resins, particularly preferred is a hot melt adhesive containing at least one selected from acid-modified olefin resins and acid-modified polyester resins, and acid-modified olefins. Hot melt adhesive containing resin is the best Preferred.
  • the solvent-based adhesive is not particularly limited, and for example, epoxy resin, phenol resin, olefin resin, polyurethane resin, vinyl resin (for example, vinyl acetate resin, polyvinyl alcohol resin, etc.) And those containing one or more synthetic rubbers as a main component (main agent).
  • the average thickness of the adhesive layer is not particularly limited, but is preferably 5 ⁇ m to 500 ⁇ m, more preferably 20 ⁇ m to 150 ⁇ m, and more preferably 20 ⁇ m to 100 ⁇ m from the viewpoint of riding comfort during running and tire durability. More preferably.
  • the adhesive layer may contain components other than the adhesive.
  • components other than the adhesive include radical scavengers, rubbers, elastomers, thermoplastic resins, various fillers (for example, silica, calcium carbonate, clay, etc.), anti-aging agents, oils, plasticizers, color formers, weathering agents, etc. Is mentioned.
  • FIG. 5 is a cross-sectional view along the tire width direction (that is, perpendicular to the extending direction of the reinforcing cord) showing the configuration of the tire according to the second embodiment.
  • a tire 80 according to the second embodiment includes a tire case 94 that is an example of an annular tire skeleton member that includes a rubber material containing rubber, a belt layer 12, and a rubber member.
  • a tread 30 which is an example. About the belt layer 12 and the tread 30, since it is the same as that of 1st Embodiment, description is abbreviate
  • the tire 80 of the present embodiment is, for example, a so-called radial tire, and includes a pair of bead portions 14 in which the bead cores 20 are embedded, and includes one bead portion 14 and the other bead portion 14.
  • a carcass 86 composed of one carcass ply 82 is straddling the gap. 5 shows the shape of the tire 80 in a natural state before air filling.
  • the carcass ply 82 is formed, for example, by covering a plurality of cords (not shown) extending in the radial direction of the pneumatic tire 80 with a coating rubber (not shown).
  • Examples of the cord material of the carcass ply 82 include PET, but other conventionally known materials may be used.
  • the end portion in the tire width direction of the carcass ply 82 is folded back outward in the tire radial direction at the bead core 20.
  • a portion extending from one bead core 20 to the other bead core 20 is called a main body portion 82A
  • a portion folded from the bead core 20 is called a folded portion 82B.
  • a bead filler 88 whose thickness gradually decreases from the bead core 20 toward the outer side in the tire radial direction is disposed.
  • a bead portion 14 is a portion on the inner side in the tire radial direction from the outer end 88 ⁇ / b> A in the tire radial direction of the bead filler 88.
  • An inner liner 90 made of rubber is arranged inside the tire of the carcass 86, and a side rubber layer 92 made of a rubber material containing rubber is arranged outside the carcass 86 in the tire width direction.
  • the tire case 94 is configured by the bead core 20, the carcass 86, the bead filler 88, the inner liner 90, and the side rubber layer 92.
  • the belt layer 12 is disposed on the outer side of the crown portion of the carcass 86, in other words, on the outer side in the tire radial direction of the carcass 86, and the belt layer 12 is in close contact with the outer peripheral surface of the carcass 86.
  • a tread 30 made of a rubber material containing rubber is disposed outside the belt layer 12 in the tire radial direction. Conventionally known rubber materials are used for the tread 30.
  • the tread 30 is formed with a groove 30A for drainage. Conventionally known patterns are also used in the grooves 30A of the tread 30.
  • an inner liner 90 made of a rubber material, a bead core 20, a bead filler 88 made of a rubber material, a carcass ply 82 in which a cord is covered with a rubber material, and a side rubber layer 92 are provided on the outer periphery of a known tire molding drum (not shown).
  • An unvulcanized tire case 94 is formed.
  • the belt layer 12 is formed as follows. Specifically, the resin-coated cord 28 is sent out toward the outer peripheral surface of a belt forming drum (not shown). The resin-coated cord 28 is pressed against the outer peripheral surface of the belt forming drum while being heated and melted by hot air, and then cooled. In addition, as a method of heating and cooling, the same method as in the first embodiment can be mentioned. In this manner, the resin-coated cord 28 is spirally wound around the outer peripheral surface of the belt forming drum and pressed against the outer peripheral surface, whereby a layer of the resin-coated cord 28 is formed on the outer peripheral surface of the belt forming drum.
  • the belt layer 12 is obtained by forming the groove
  • the step of forming the groove 32 in the belt layer 12 may be performed before the resin-coated cord 28 is wound around the outer peripheral surface of the belt forming drum, as in the first embodiment. Further, as will be described later, the belt layer 12 having the grooves 32 may be obtained by forming the grooves 32 after the layer of the resin-coated cord 28 before forming the grooves 32 is disposed in the tire case 94.
  • the resin coating cord 28 is cooled to solidify the coating resin 26, and the belt layer 12 in which the grooves 32 are formed is removed from the belt forming drum. And the removed belt layer 12 is arrange
  • the tire according to one embodiment of the present invention includes a tire having the following aspect. ⁇ 1> an annular tire frame member;
  • the tire skeleton member is provided on the outer side in the tire radial direction, includes a plurality of reinforcing cords and a coating resin that covers the reinforcing cords, and the outer surface in the tire radial direction has a groove along the extending direction of the reinforcing cords.
  • Belt layer A rubber member provided on the outer surface of the belt layer in the tire radial direction; Tire with.
  • ⁇ 2> The tire according to ⁇ 1>, wherein a depth of the groove is equal to or less than a depth from a tire radial direction outer side surface of the belt layer to a tire radial direction central portion of the reinforcing cord.
  • ⁇ 3> The tire according to ⁇ 1> or ⁇ 2>, wherein a width at the opening of the groove is wider than a width at a groove bottom of the groove.
  • ⁇ 4> In a cross section perpendicular to the extending direction of the reinforcing cord, the groove exists on the outer surface in the tire radial direction of the belt layer corresponding between the plurality of reinforcing cords.
  • ⁇ 5> The tire according to any one of ⁇ 1> to ⁇ 4>, wherein a groove bottom of the groove in a cross section perpendicular to the extending direction of the reinforcing cord does not have a corner.
  • ⁇ 6> The tire according to any one of ⁇ 1> to ⁇ 5>, wherein the reinforcing cord is present along a tire circumferential direction.
  • ⁇ 7> The tire according to any one of ⁇ 1> to ⁇ 6>, wherein the tire frame member includes a resin.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Tires In General (AREA)

Abstract

環状のタイヤ骨格部材と、前記タイヤ骨格部材のタイヤ径方向外側に設けられ、複数の補強コードと前記補強コードを被覆する被覆樹脂とを含み、タイヤ径方向外側の面が前記補強コードの延在方向に沿った溝を有するベルト層と、前記ベルト層のタイヤ径方向外側の面に設けられたゴム部材と、を有するタイヤ。

Description

タイヤ
 本発明は、タイヤに関する。
 従来、乗用車等の車両には、ゴム、有機繊維材料、スチール部材などから構成された空気入りタイヤが用いられている。
 また、近年では、軽量化や、成形の容易さ、リサイクルのしやすさから、樹脂材料、特に熱可塑性樹脂や熱可塑性エラストマーなどをタイヤ材料として用いることが検討されている。例えば、樹脂材料としてポリアミド系熱可塑性エラストマーを用いたタイヤ骨格部材に、ゴムを用いたトレッド等の外装用部材を取り付けたタイヤが提案されている(例えば、特開2012-46030号公報参照)。
 タイヤ骨格部材に設けられたベルト層のタイヤ径方向外側にゴム部材を設ける際に、ベルト層とゴム部材との界面に空気が入り込んでしまう場合がある。
 具体的には、例えば、加硫前のゴム部材(以下「加硫前ゴム部材」ともいう)をベルト層のタイヤ径方向外側に巻きつけた上で全体を加熱する場合、加硫前ゴム部材巻き付ける工程で、ベルト層との界面に空気を抱き込んでしまう。特に、補強コードが被覆樹脂で被覆された樹脂被覆コードで構成されたベルト層は、補強コードがゴム材料で被覆された場合に比べて伸縮しにくい。そのため、樹脂被覆コードで構成されたベルト層におけるタイヤ径方向外側の面に対して、空気を抱き込まないように加硫前ゴム部材を巻き付けることは難しい。さらに、ベルト層におけるタイヤ径方向外側の面が平坦であると、加硫前ゴム部材を巻き付ける際の空気の逃げ道が無く、特に空気の抱きこみが起こりやすくなると考えられる。
 そして、ベルト層と加硫前ゴム部材との界面に空気が入り込んだ状態で、加硫前ゴム部材を加硫する加熱を行うと、界面に入り込んだ空気が膨張し、ベルト層とゴム部材との界面において接着不良が起こることで、得られたタイヤの耐久性が下がる。
 また、最終的に得られたタイヤにおけるベルト層とゴム部材との界面に空気が残っていると、例えば走行時の熱による空気の膨張等に起因して、ベルト層とゴム部材との界面が剥離しやすくなり、タイヤの耐久性が低下する。
 上記事実を考慮し、本開示は、タイヤ骨格部材と樹脂被覆コードを備えるベルト層とベルト層のタイヤ径方向外側の面に設けられたゴム部材とを有し、ベルト層とゴム部材との界面に入り込んだ空気に起因する耐久性の低下を抑制したタイヤを提供することを目的とする。
<1> 環状のタイヤ骨格部材と、
 前記タイヤ骨格部材のタイヤ径方向外側に設けられ、複数の補強コードと前記補強コードを被覆する被覆樹脂とを含み、タイヤ径方向外側の面が前記補強コードの延在方向に沿った溝を有するベルト層と、
 前記ベルト層のタイヤ径方向外側の面に設けられたゴム部材と、
 を有するタイヤ。
 本開示によれば、タイヤ骨格部材と樹脂被覆コードを備えるベルト層とベルト層のタイヤ径方向外側の面に設けられたゴム部材とを有し、ベルト層とゴム部材との界面に入り込んだ空気に起因する耐久性の低下を抑制したタイヤを提供することができる。
図1は、第1実施形態に係るタイヤの構成を示すタイヤ幅方向に沿った断面図である。 図2は、図1のベルト層及びその周辺部の拡大模式図である。 図3は、他の実施形態に係るタイヤにおけるベルト層及びその周辺部の拡大模式図である。 図4は、タイヤケースに樹脂被覆コードを巻き付ける工程を示す断面斜視図である。 図5は、第2実施形態に係るタイヤの構成を示すタイヤ幅方向に沿った断面図である。
 以下、本発明の具体的な実施形態について詳細に説明するが、本発明は、以下の実施形態に何ら限定されるものではなく、本発明の目的の範囲内において、適宜変更を加えて実施することができる。
 本明細書において「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を意味する。
 本明細書において組成物中の各成分の量は、各成分に該当する物質が組成物中に複数存在する場合には、特に断らない限り、組成物中に存在する当該複数の物質の合計量を意味する。
 本明細書において「樹脂」とは、熱可塑性樹脂、熱可塑性エラストマー、及び熱硬化性樹脂を含む概念であり、加硫ゴムは含まない。また、以下の樹脂の説明において「同種」とは、エステル系同士、スチレン系同士等、樹脂の主鎖を構成する骨格と共通する骨格を備えたものを意味する。
 本明細書において「熱可塑性樹脂」とは、温度上昇とともに材料が軟化し、冷却すると比較的硬く強度のある状態になるが、ゴム状弾性を有しない高分子化合物を意味する。
 本明細書において「熱可塑性エラストマー」とは、ハードセグメント及びソフトセグメントを有する共重合体を意味する。熱可塑性エラストマーとしては、例えば、温度上昇とともに材料が軟化し、冷却すると比較的硬く強度のある状態になり、かつ、ゴム状弾性を有するものが挙げられる。
 なお、上記「ハードセグメント」は、主骨格に芳香族基若しくは脂環式基等の剛直な基を有する構造、又は分子間水素結合若しくはπ-π相互作用による分子間パッキングを可能にする構造等のセグメントが挙げられる。また、「ソフトセグメント」は、主鎖に長鎖の基(例えば長鎖のアルキレン基等)を有し、分子回転の自由度が高く、伸縮性を有する構造のセグメントが挙げられる。
 また、本明細書において、「タイヤ径方向」とは、タイヤの回転軸を通りタイヤ幅方向と直交する方向を言う。そして、タイヤ径方向に沿ったタイヤ回転軸から遠い側を「タイヤ径方向外側」、タイヤ幅方向に沿ったタイヤ回転軸に近い側を「タイヤ径方向内側」と称する場合がある。また、タイヤ径方向外側の面を「外周面」、タイヤ径方向内側の面を「内周面」と称する場合がある。
 「タイヤ幅方向」とは、タイヤ回転軸と平行な方向を言う。
 「タイヤ周方向」とは、タイヤの回転軸を回転中心としてタイヤが回転する方向をいう。
 「ラジアル方向」とは、タイヤ周方向と直交する方向であり、タイヤ半径方向及びタイヤ幅方向を含む方向を言う。
(タイヤ)
 一実施形態に係るタイヤは、タイヤ骨格部材と、タイヤ骨格部材のタイヤ径方向外側に設けられたベルト層と、ベルト層の外周面に設けられたゴム部材と、を有する。上記ベルト層は、複数の補強コードと、補強コードを被覆する被覆樹脂と、を含む。また、上記ベルト層の外周面は、補強コードの延在方向に沿った溝を有する。
 ここで、上記「溝」は、ベルト層の外周面に設けられた凹部であって、補強コードの延在方向における溝の長さの値がタイヤ幅方向における溝の幅の値よりも大きく、かつ、タイヤ径方向における溝の深さの値がベルト層の厚みよりも小さい凹部を言う。
 上記「溝の長さ」は、補強コードの延在方向に沿った凹部の長さを言う。
 上記「溝の幅」は、補強コードの延在方向に垂直な断面において、ベルト層の外周面が平坦である(つまり凹部を有さない)と仮定した仮想外周面と凹部とが重なる領域(以下「溝の開口部」ともいう)における幅を言う。
 上記「溝の深さ」は、補強コードの延在方向に垂直な断面において、溝の開口部と凹部の底(すなわち、仮想外周面から最も離れた位置であり、以下「溝底」ともいう)との距離(具体的には、タイヤ径方向に沿った距離)を言う。
 なお、上記「溝」は、ベルト層の外周面に設けられた部材(すなわちゴム部材)によって、全体が塞がれていてもよく、溝の開口部のみが塞がれていてもよい。
 溝の長さの値は、溝の幅の値よりも大きければ特に限定されないが、外周面におけるタイヤ周方向の長さ(以下「周長」ともいう)と等しい長さ以上、すなわちタイヤ周方向に一周する長さ以上が好ましく、周長と等しい長さを超えてつながっていることがより好ましい。
 溝の幅の値は、溝の長さの値よりも小さければ特に限定されないが、200μm以上が好ましく、500μm以上がより好ましい。
 溝の深さの値は、ベルト層の厚みよりも小さければ特に限定されないが、100μm以上が好ましく、300μm以上がより好ましい。
 なお、溝の幅及び溝の深さは、補強コードの延在方向に垂直な断面を、例えば顕微鏡(光学顕微鏡、keyence社製、型番:VHX-5000)を用いて観察することで測定される。
 上記タイヤでは、ベルト層が外周面に溝を有することにより、ベルト層とゴム部材との界面に入り込んだ空気に起因する耐久性の低下が抑制される。
 具体的には、前述のように、特にベルト層の外周面が平坦である場合、例えばベルト層の外周面に加硫前ゴム部材を巻き付ける工程で、ベルト層との界面に空気を抱き込まないように加硫前ゴム部材を巻き付けることは難しい。そして、ベルト層と加硫前ゴム部材との間に空気が入り込んだ状態で加熱すると、空気の膨張によりベルト層とゴム部材との接着不良が起こり、耐久性の低いタイヤが得られやすくなる。また、ベルト層とゴム部材との界面に空気が残ったタイヤは、走行時の熱による空気の膨張等により剥離しやすくなり、耐久性が低下する。
 一方、ベルト層が外周面に溝を有すると、ベルト層の外周面に加硫前ゴム部材を巻き付ける際に空気を抱き込んでも、ベルト層の外周面における溝が空気の逃げ道となり、上記溝を通じて空気が排出されやすくなる。具体的には、例えば、ベルト層の外周面に加硫ゴム部材を巻き付ける工程において、ベルト層の外周面に加硫前ゴム部材の一端を接触させた後、ベルト層が設けられたタイヤ骨格部材を回転させながら、接触面を徐々に広げながら巻きつけていく。この過程で空気が入り込んだ場合でも、ベルト層の外周面に溝が存在していると、溝が加硫前ゴム部材によって塞がる前であれば、溝を通じて空気が排出される。そのため、ベルト層と加硫前ゴム部材との界面に空気が残りにくくなる。
 また、ベルト層と加硫前ゴム部材との界面に空気が残った場合でも、ベルト層が外周面に溝を有すると、加硫前ゴム部材を加硫するための加熱を行う工程で、膨張した空気が上記溝に逃げ込み、空気の膨張に起因するベルト層とゴム部材との接着不良が抑制される。
 さらに、最終的に得られたタイヤにおけるベルト層とゴム部材との界面に空気が残った場合でも、上記と同様に、ベルト層が外周面に溝を有すると、走行時の熱等によって膨張した空気が上記溝に逃げ込むため、空気に起因する耐久性の低下が抑制される。
 以上のように、ベルト層の外周面に溝を有する上記タイヤでは、上記溝を有さないタイヤに比べ、ベルト層とゴム部材との界面に入り込んだ空気に起因する耐久性の低下が抑制されると考えられる。
 また、上記タイヤでは、ベルト層が外周面に溝を有することにより、タイヤの寸法安定性が向上する。
 具体的には、例えば、ベルト層に加硫前ゴム部材を設けた後に加熱してタイヤを得る場合、加硫前ゴム部材が不均一に膨張し、得られたタイヤの寸法が安定しない場合がある。一方、ベルト層の外周面が溝を有する上記タイヤは、製造過程における加熱によって加硫前ゴム部材が不均一に膨張しても、膨張したゴムがベルト層の外周面の溝に入りこむことで、得られたタイヤ全体としての寸法が安定しやすくなる。
[第1実施形態]
 以下、第1実施形態について、図を参照して説明する。なお、図中矢印Wはタイヤ回転軸と平行な方向(以下、「タイヤ幅方向」と称する場合がある)を示し、矢印Sはタイヤの回転軸を通りタイヤ幅方向と直交する方向(以下、「タイヤ径方向」と称する場合がある)を示す。さらに、一点鎖線CLは、タイヤのセンターライン(以下「タイヤ赤道面」ともいう)を示す。
 第1実施形態に係るタイヤの構造について説明する。なお、第1実施形態は、タイヤ骨格部材が樹脂を含み、補強コードがタイヤ周方向に沿って存在する形態である。
 特に、樹脂を含むタイヤ骨格部材は、ゴム材料を含んで構成されたタイヤ骨格部材に比べて伸縮しにくい。そのため、タイヤ骨格部材が樹脂を含む形態では、ゴム部材を設ける際に空気が入り込みやすいため、ベルト層の外周面における溝の役割が特に重要となる。そして、樹脂の中でも結晶性樹脂をタイヤ骨格部材が含む場合、空気透過性がゴムより低いため、空気を逃すことがより困難となり、ベルト層の外周面における溝の役割がさらに重要となる。
 図1は、第1実施形態に係るタイヤの構成を示すタイヤ幅方向に沿った(すなわち補強コードの延在方向に垂直な)断面図である。
 図1に示すように、第1実施形態に係るタイヤ10は、樹脂材料で構成された環状のタイヤ骨格部材の一例であるタイヤケース17と、ベルト層12と、ゴム部材の一例であるトレッド30と、を備えている。また、ベルト層12は、被覆樹脂26で被覆された複数の補強コード24を備えている。
(タイヤ骨格部材)
 タイヤケース17は、カーカスプライを有するゴムタイヤ用のタイヤケース(図示せず)であってもよいが、本実施形態のタイヤケース17は、タイヤ骨格用の樹脂材料の一例たる熱可塑性エラストマーを用いて構成され、タイヤ周方向に円環状に形成されている。なお、タイヤ骨格部材に用いる樹脂材料の詳細については後述する。
 タイヤケース17は、タイヤ幅方向に間隔をあけて配置された一対のビード部14と、これら一対のビード部14からタイヤ径方向外側へそれぞれ延出する一対のサイド部16と、一対のサイド部16を連結するクラウン部18と、を含んで構成されている。ビード部14は、リム(図示せず)に接触する部位である。また、サイド部16は、タイヤ10の側部を形成し、ビード部14からクラウン部18に向かってタイヤ幅方向外側に凸となるように緩やかに湾曲している。
 クラウン部18は、一方のサイド部16のタイヤ径方向外側端と他方のサイド部16のタイヤ径方向外側端とを連結する部位であり、タイヤ径方向外側に配設されるトレッド30を支持する。
 また、本実施形態では、クラウン部18は、略一定厚みとされている。タイヤケース17のクラウン部18における外周面18Aは、タイヤ幅方向断面において平坦状に形成されていてもよいし、またタイヤ径方向外側に膨らんだ湾曲形状であってもよい。なお、本実施形態のクラウン部18の外周面18Aは、ベルト層12が設けられるタイヤケース17の外周である。
 また、タイヤケース17は、1つのビード部14、一つのサイド部16、及び半幅のクラウン部18を有する円環状のタイヤ半体17Hを一対形成し、これらのタイヤ半体17Hを互いに向かい合わせ、各々の半幅のクラウン部18の端部同士をタイヤ赤道面CLで接合して形成されている。この端部同士は、例えば溶接用樹脂材料17Aを用いて接合されている。
 ビード部14には、タイヤ周方向に沿って延びる円環状のビードコア20が埋設されている。このビードコア20は、ビードコード(図示せず)で構成されている。このビードコードは、スチールコード等の金属コード、有機繊維コード、樹脂被覆した有機繊維コード、または硬質樹脂などで構成される。なお、ビード部14の剛性を十分に確保できれば、ビードコア20自体を省略してもよい。
 なお、タイヤケース17を一体成型品としてもよく、タイヤケース17を3以上の樹脂部材に分けて製造し、これらを接合して形成してもよい。例えば、タイヤケース17を各部位(例えば、ビード部14、サイド部16、クラウン部18)ごとに分けて製造し、これらを接合して形成してもよい。このとき、タイヤケース17の各部位(例えば、ビード部14、サイド部16、クラウン部18)を異なる特徴を有する樹脂材料で形成してもよい。
 また、タイヤケース17に、補強材(例えば、高分子材料や金属製の繊維、コード、不織布、織布等)を埋設配置してもよい。
 また、ビード部14の表面のうち、リム(図示せず)との接触部分に、該リムとの間の気密性を高めるための被覆層を形成してもよい。被覆層の材料としては、例えば、タイヤケース17よりも軟質で且つ耐候性が高いゴム材等の材料が挙げられる。被覆層は、ビード部14のタイヤ幅方向内側の内面からタイヤ幅方向外側へ折り返され、サイド部16の外面を経由して、ベルト層12のタイヤ幅方向外側の端部近傍まで延びているように設けられてもよい。また、被覆層の延出端部は、後述するトレッド30によって覆われていてもよい。ただし、タイヤケース17のビード部14のみにより、リム(図示せず)との間のシール性(気密性)を確保できれば、被覆層を設けなくてもよい。
(ベルト層)
 次に、ベルト層12について説明する。
 図2は、図1のベルト層12及びその周辺部の拡大模式図である。図1及び図2に示されるように、ベルト層12は、タイヤケース17の外周に設けられている。本実施形態におけるタイヤケース17の外周とは、クラウン部18の外周面18Aである。
 ベルト層12は、樹脂被覆コード28がタイヤケース17の外周にタイヤ周方向に螺旋状に巻かれてタイヤケース17に接合されると共に、樹脂被覆コード28におけるタイヤ幅方向に互いに隣接する部分同士が接合されることで構成されている。なお、樹脂被覆コード28は、補強コード24を被覆樹脂26で被覆して構成されている
 ここで、図2に示されるように、「樹脂被覆コード28におけるタイヤ幅方向に互いに隣接する部分同士」とは、タイヤ幅方向に隣り合う一方の樹脂被覆コード28の側面28Cと他方の樹脂被覆コード28の側面28Dである。側面28C、28Dは、樹脂被覆コード28が螺旋状に巻かれる際に相対する。つまり、ベルト層12においては、タイヤ幅方向に樹脂が連続的に存在する。
 また、タイヤケース17のクラウン部18における外周面18Aには、樹脂被覆コード28のタイヤ径方向の内周面28Aが接合されている。そして、樹脂被覆コード28のタイヤ径方向の外周面28Bには、トレッド30が接合されている。
 なお、図1及び図2においては、タイヤケース17のクラウン部18における外周面18Aに直接、樹脂被覆コード28が設けられているが、例えば接着層等の他の層を介して樹脂被覆コード28が設けられてもよい。
 以下、樹脂被覆コード28について説明する。
 補強コード24は、金属繊維や有機繊維等のモノフィラメント(単線)、又はこれらの繊維を撚ったマルチフィラメント(撚り線)で構成されている。被覆樹脂26は、例えば熱可塑性エラストマーで構成されている。なお、補強コード24及び被覆樹脂26の詳細については後述する。
 なお、図2においては、樹脂被覆コード28が被覆樹脂26の中に1本の補強コード24を含んでいるが、被覆樹脂26中に複数本の補強コード24を含んでもよく、例えば2本の補強コード24が被覆樹脂26に被覆された樹脂被覆コード28を用いてもよい。
 また、図2においては、補強コード24を被覆樹脂26で直接被覆した樹脂被覆コード28を用いているが、これに限られず、例えば、接着層等の他の層を介して補強コード24を被覆樹脂26で被覆した多層被覆コードを用いてもよい。なお、接着層の詳細については後述する。
 図2に示す樹脂被覆コード28の断面形状は、タイヤ径方向の内周面28Aとタイヤ径方向の外周面28Bとが、タイヤ幅方向に変位していない矩形であるが、これに限られない。樹脂被覆コード28の断面形状としては、例えば、タイヤ径方向の内周面28Aとタイヤ径方向の外周面28Bとがタイヤ幅方向に変位した形状(具体的には、例えば、側面28C及び28Dが傾斜した平行四辺形等)が挙げられる。また、樹脂被覆コード28の断面形状は、側面28C及び28Dが円弧状やS字形状のように曲面を有する形状であってもよく、側面28C及び28Dに段部が設けられた形状であってもよい。樹脂被覆コード28の断面形状において、側面28C及び28Dが傾斜した形状、曲面を有する形状、又は段部が設けられた形状である場合は、前記タイヤ幅方向に変位していない矩形に比べて側面28C及び28Dの接触面積が大きく、接合強度が向上する。
 次に、ベルト層12に設けられた溝32について説明する。
 ベルト層12の外周面12Aには、補強コード24の延在方向に沿った溝32が設けられている。前述のように、ベルト層12の外周面12Aに溝32を有することで、ベルト層とゴム部材との界面に入り込んだ空気に起因する耐久性の低下が抑制される。
 溝32は、補強コード24の延在方向に沿っていれば特に限定されないが、図2に示すように、タイヤ幅方向に隣り合う2本の補強コード24の間に対応するベルト層12の外周面12Aに位置することが好ましい。つまり、溝32からタイヤ径方向内側への延長線が、タイヤ幅方向に隣り合う2本の補強コード24間を通ることが好ましい。
 それにより、溝32が補強コード24上におけるベルト層12の外周面12Aに位置する場合に比べて、補強コード24と被覆樹脂26との界面から溝底32Bまでの距離が長くなる。そのため、溝32を起点とするクラックが、補強コード24と被覆樹脂26との界面に到達しにくく、タイヤの耐久性が向上する。
 なお、図1及び図2に示すベルト層12では、樹脂被覆コード28の層が単層であり、補強コード24がタイヤ幅方向に一列に並んだ構成となっているが、これに限られない。ベルト層12は、樹脂被覆コード28がタイヤ周方向に螺旋状に巻かれて層を形成した後に、前記層の外周面にさらに樹脂被覆コード28が巻かれた積層構造のベルト層であってもよい。
 なお、ベルト層12が積層構造である場合、上記「タイヤ幅方向に隣り合う2本の補強コード24間」とは、上記積層構造のうちタイヤ径方向における最外層に含まれる2本の補強コード24の間を意味する。
 なお、図2においては、互いに隣接する2本の樹脂被覆コード28の界面に溝32が設けられているが、上記界面以外の領域に溝32を設けてもよい。
 図2に示す溝32の断面形状は、溝底32Bの幅よりも開口部32Aの幅の方が広い形状となっている。そのため、開口部32Aの幅が狭い場合に比べて、溝32に空気が入り込みやすく、溝32が空気の逃げ道として機能しやすいことで、ベルト層とゴム部材との界面に入り込んだ空気に起因する耐久性の低下が抑制される。
 なお、開口部32Aの幅の値は、溝底32Bの幅の値の1.0倍を超えることが好ましい。
 また、溝底32Bが平面を有さない場合(例えば、後述するように溝底32Bが曲面である場合、溝32の断面形状がV字である場合等)における「溝底32Bの幅」は、溝底32Bから仮想外周面に向かって、「溝32の深さ」の5分の1倍となる位置における溝32の幅を意味する。
 図2に示す溝32の断面形状において、溝32の深さの値Dは、図2に示すように、ベルト層12の外周面12Aから補強コード24における断面の中心部24Mまでの距離の値Lよりも小さい。そのため、溝32の深さの値Dが上記距離の値Lよりも大きい場合に比べて、溝底32Bからベルト層12の内周面までの距離が長くなり、溝32を起点とするクラックがベルト層12の内周面に到達しにくく、タイヤの耐久性が高くなる。
 また、溝32の深さの値Dは、図2に示すように、ベルト層12の外周面12Aから補強コード24までの最短距離の値Mよりも小さい。そのため、上記と同様に、溝32の深さの値Dが上記最短距離の値Mよりも大きい場合に比べて、タイヤの耐久性が高くなる。
 図2に示す溝32の断面形状は、溝底32Bが角を有する台形の形状となっているがこれに限られない。タイヤ幅方向に沿った溝32の断面形状は、例えば図3に示すように、溝底32Bが角を有さない形状(例えば、円弧状等)であることが、耐久性の観点からより好ましい。
 溝底32Bが角を有さない形状、すなわち、溝底32Bが曲面であることにより、溝底32Bの角を起点とするクラックが発生しにくくなり、タイヤの耐久性が高くなる。
 なお、補強コード24の延在方向における溝32の長さは、タイヤ幅方向における溝32の幅(開口部32Aの幅及び溝底32Bの幅)よりも長ければ特に限定されず、例えば開口部32Aの幅の10倍以上の長さが挙げられ、タイヤ周方向に一周する長さであってもよい。
 また、タイヤ幅方向における溝32の本数は、特に限定されないが、例えば、タイヤ幅方向における補強コード24の本数の1/3倍以上の本数が挙げられる。
 図1及び図2に示すベルト層12では、樹脂被覆コード28がタイヤ周方向に螺旋状に巻かれている。すなわち、補強コード24がタイヤ周方向に螺旋状に巻かれているため、補強コード24の延在方向に沿った溝32もタイヤ周方向に設けられている。一般的に、タイヤを製造する過程においてベルト層12に加硫前のトレッド(加硫することでトレッドとなるゴム部材。すなわち前記加硫前ゴム部材)を設ける際には、タイヤ周方向に向かって加硫前のトレッドを巻き付けていく。そのため、溝32がタイヤ周方向に設けられていることで、ベルト層12と加硫前のトレッドとの界面に入り込んだ空気が溝32を通じて排出されやすくなる。
 なお、ベルト層12におけるタイヤ幅方向に隣り合う補強コード24間の平均距離としては、例えば400μm以上3200μm以下が挙げられ、600μm以上2200μm以下が好ましく、800μm以上1500μm以下がより好ましい。隣り合う補強コード24間の平均距離が400μm以上であると、タイヤの重量増加が抑制されて走行時の燃費性に優れる傾向にある。隣接する補強コード24間の平均距離が3200μm以下であると、充分なタイヤ補強効果が得られる傾向にある。
 また、ベルト層12の厚みは、特に限定されないが、例えば0.2mm以上1.2mm以下の範囲が挙げられ、タイヤの耐久性の観点から、0.3mm以上1.0mm以下の範囲が好ましく、0.3mm以上0.8mm以下の範囲がより好ましい。
 なお、図1及び図2に示すベルト層12は、タイヤケース17の外周面に樹脂被覆コード28を螺旋状に巻いて接合することで構成されているが、これに限られない。例えば、複数本の補強コード24と被覆樹脂26とがシート状に一体化されたものをタイヤケース17の外周面に巻くことで構成されたベルト層であってもよい。
(ゴム部材)
 次に、ゴム部材の一例であるトレッド30について説明する。
 図1に示すように、ベルト層12のタイヤ径方向外側に、トレッド30が配置されている。なお、トレッド30は、タイヤケース17上のベルト層12に積層された後、加硫接着されている。
 トレッド30は、タイヤケース17を形成している樹脂材料よりも耐摩耗性に優れたゴムを含んで形成されており、従来のゴム製の空気入りタイヤに用いられているトレッドゴムと同種のものを用いることができる。
 また、トレッド30のタイヤ径方向の外周面には、タイヤ周方向に延びる排水用の溝30Aが形成されている。本実施形態では、2本の溝30Aが形成されているが、これに限らず、さらに多くの溝30Aを形成してもよい。また、トレッドパターンとしては、公知のものを用いることができる。
 なお、図1及び図2においては、トレッド30が単層のゴム部材で構成されているが、これに限られず、例えば、クッションゴムの層とトレッドの層とが積層されたゴム部材であってもよい。
(タイヤの製造方法)
 次に、本実施形態のタイヤ10の製造方法について説明する。まず、熱可塑性材料を用いた射出成型により、ビードコア20を含むタイヤ半体17Hを一組形成する。
 次に、一対のタイヤ半体17Hを互いに向かい合わせ、クラウン部18となる部分の端部同士を突き合わせ、突き合わせ部分に溶融状態の溶接用樹脂材料17Aを付着させて一対のタイヤ半体17Hを接合する。このようにして、円環状のタイヤケース17が形成される。
 次に、タイヤケース17の外周に樹脂被覆コード28を巻き付ける工程について説明する。まず、タイヤケース17を回転可能に支持するタイヤ支持装置(図示せず)に該タイヤケース17を取り付け、図4に示されるように、タイヤケース17の外周近傍にコード供給装置40、加熱装置50、押付器としての押付ローラ60、及び冷却器としての冷却ローラ70を移動させる。
 コード供給装置40は、樹脂被覆コード28を巻き付けたリール42と、ガイド部材44とを含んで構成されている。ガイド部材44は、リール42から巻き出された樹脂被覆コード28をタイヤケース17の外周(クラウン部18の外周面18A)に案内するための部材である。ガイド部材44は筒状とされ、内部を樹脂被覆コード28が通過するようになっている。また、ガイド部材44の口部46からは、クラウン部18の外周面18Aに向かって樹脂被覆コード28が送り出される。
 加熱装置50は、熱可塑性樹脂に熱風を吹き当てて、吹き当てた部分を加熱し溶融させるものである。この熱風が吹き当てられる箇所は、クラウン部18の外周面18Aに押し当てられる樹脂被覆コード28の内周面28A、及びクラウン部18の外周面18Aにおける樹脂被覆コード28が配設される部分である。なお、樹脂被覆コード28がクラウン部18の外周面18Aに1周以上巻き付けられ、該外周面18Aに押し当てられた樹脂被覆コード28が存在する場合、その側面28Cに対しても熱風が吹き当てられる。
 加熱装置50は、電熱線(図示せず)で加熱した空気をファン(図示せず)で発生させた気流で吹出し口52から吹き出すようになっている。なお、加熱装置50の構成は、上記構成に限定されず、熱可塑性樹脂を加熱溶融できれば、どのような構成であってもよい。例えば、溶融させる箇所に熱鏝を接触させて接触部分を加熱溶融させてもよい。また、溶融させる箇所を、輻射熱で加熱溶融させてもよく、赤外線を照射して加熱溶融させてもよい。
 図4において、冷却ローラ70は、押付ローラ60よりもタイヤケース17の回転方向(矢印A方向)下流側に配置されている。この冷却ローラ70は、樹脂被覆コード28をタイヤケース17の外周(クラウン部18の外周面18A)に押し付けつつ、樹脂被覆コード28及びこの樹脂被覆コード28を介してクラウン部18側を冷却するものである。また、冷却ローラ70は、押付ローラ60と同様に、押付力を調整でき、かつ、ローラ表面に溶融状態の樹脂材料の付着を防ぐための加工が施されている。更に、冷却ローラ70は、押付ローラ60と同様に回転自在となっており、樹脂被覆コード28をタイヤケース17の外周に押し付けている状態では、タイヤケース17の回転方向(矢印A方向)に対して従動回転するようになっている。また、冷却ローラ70は、ローラ内部を液体(例えば、水など)が流通するようになっており、この液体の熱交換により、ローラ表面に接触した樹脂被覆コード28を冷却することができる。なお、溶融状態の樹脂材料を自然冷却させる場合には、冷却ローラ70を省略してもよい。
 図4に示されるように、タイヤケース17の外周に樹脂被覆コード28を巻き付ける際には、タイヤ支持装置(図示せず)に取り付けたタイヤケース17を矢印A方向に回転させると共に、コード供給装置40の口部46から樹脂被覆コード28をクラウン部18の外周面18Aに向けて送り出す。
 また、加熱装置50の吹出し口52から熱風を吹き出して、樹脂被覆コード28の内周面28A、クラウン部18の樹脂被覆コード28が配設される部分を加熱し溶融させながら、樹脂被覆コード28の内周面28Aをクラウン部18の溶融部分に付着させる。そして、樹脂被覆コード28を押付ローラ60でクラウン部18の外周面18Aに押し付ける。このとき、タイヤ軸方向に互いに隣り合う樹脂被覆コード28の側面28C、28Dも互いに接合される。その後、クラウン部18の溶融部分及び樹脂被覆コード28の溶融部分は、樹脂被覆コード28の外周面28Bが冷却ローラ70に接触し、この樹脂被覆コード28を介して冷却されることで固化する。これにより、樹脂被覆コード28とクラウン部18とが溶着される。
 このようにして、樹脂被覆コード28をクラウン部18の外周面18Aにタイヤ周方向に螺旋状に巻き付けると共に外周面18Aに押し付けていくことで、タイヤケース17の外周、具体的には、クラウン部18の外周に樹脂被覆コード28の層が形成される。なお、樹脂被覆コード28を螺旋状に巻き付けるには、コード供給装置40の口部46の位置を、タイヤケース17の回転に伴ってタイヤ軸方向に移動させたり、タイヤケース17をタイヤ軸方向に移動させたりすればよい。
 なお、コード供給装置40のリール42にブレーキを掛けたり、樹脂被覆コード28の案内経路中にテンション調整用のローラ(図示せず)などを設けたりして樹脂被覆コード28のテンションを調整してもよい。テンションを調整することで、樹脂被覆コード28の蛇行配置を抑制することができる。
 次に、形成された樹脂被覆コード28の層の外周面に溝32を設けることで、ベルト層12を形成する。
 具体的には、樹脂被覆コード28の層が形成されたタイヤケース17を回転可能に支持するタイヤ支持装置に該タイヤケース17を取り付け、取り付けられた該タイヤケース17をタイヤ回転軸方向に回転させる。そして、タイヤケース17を回転させながら、研削手段によって、樹脂被覆コード28の層の外周面の一部を研削することで、補強コード24の延在方向に沿った溝32を形成し、ベルト層12を得る。なお、研削手段としては、例えば、カッター、ドリル等が挙げられる。
 なお、外周面12Aに溝32を有するベルト層12を得る方法は、上記方法に限定されない。具体的には、例えば、樹脂被覆コード28をタイヤケース17の外周に巻き付ける前に、樹脂被覆コード28のタイヤ径方向の外周面28B(すなわち、ベルト層12の外周面12Aを構成する面)に、予め補強コード24の延在方向に沿った溝32を設けてもよい。また、例えば、樹脂被覆コード28のタイヤ径方向の外周面28Bと側面28Cとが交差する角部に対して、面取りを行う等により、補強コード24の延在方向に沿った窪みを設けてもよい。上記窪みが設けられた樹脂被覆コード28をタイヤケース17の外周に巻き付けることで、補強コード24の延在方向に沿った溝を外周面12Aに有するベルト層12が形成される。
 次に、溝32が設けられたベルト層12の外周面12Aに、加硫前のトレッドを巻き付ける。具体的には、例えば、ベルト層12が設けられたタイヤケース17を回転させながら、帯状の加硫前のトレッドを1周分巻き付ける。このとき、ベルト層12の外周面12Aと加硫前のトレッドとの間に入り込んだ空気が、溝32を通じて排出される。
 そして、ベルト層12及び加硫前のトレッドが積層されたタイヤケース17を加硫する。具体的には、例えば、タイヤケース17を加硫缶やモールドに収容して加熱することで、加硫前のトレッドが加硫されてトレッド30が形成される。加硫温度としては、例えば180℃~220℃が挙げられ、加硫時間としては、例えば1分間~10分間が挙げられる。
 なお、図1に示すタイヤでは、トレッド30のタイヤ径方向の外周面に溝30Aが形成されているが、予め溝30Aが設けられた加硫前のトレッドを用いてもよく、加硫後に溝30Aを形成してもよい。
 以上のようにして、第1実施形態のタイヤ10が得られる。
(タイヤ骨格部材に用いる樹脂材料)
 タイヤ骨格部材に用いる樹脂材料は、樹脂を少なくとも含んでいればよく、添加剤等の他の成分を含んでもよい。ただし、樹脂材料中における樹脂の含有量は、樹脂材料の総量に対して、50質量%以上が好ましく、90質量%以上が更に好ましい。第1実施形態のタイヤ骨格部材は、樹脂材料を用いて形成することができる。
 タイヤ骨格部材に含まれる樹脂としては、熱可塑性樹脂、熱可塑性エラストマー、及び熱硬化性樹脂が挙げられる。走行時の乗り心地の観点から、樹脂材料は、熱可塑性エラストマーを含むことが好ましく、ポリアミド系熱可塑性エラストマーを含むことがより好ましい。
 熱硬化性樹脂としては、例えば、フェノール系熱硬化性樹脂、ユリア系熱硬化性樹脂、メラミン系熱硬化性樹脂、エポキシ系熱硬化性樹脂等が挙げられる。
 熱可塑性樹脂としては、ポリアミド系熱可塑性樹脂、ポリエステル系熱可塑性樹脂、オレフィン系熱可塑性樹脂、ポリウレタン系熱可塑性樹脂、塩化ビニル系熱可塑性樹脂、ポリスチレン系熱可塑性樹脂等を例示することができる。これらは単独で又は2種以上を組み合わせて用いてもよい。これらの中でも、熱可塑性樹脂としては、ポリアミド系熱可塑性樹脂、ポリエステル系熱可塑性樹脂、及びオレフィン系熱可塑性樹脂から選ばれる少なくとも1種が好ましく、ポリアミド系熱可塑性樹脂及びオレフィン系熱可塑性樹脂から選ばれる少なくとも1種が更に好ましい。
 熱可塑性エラストマーとしては、例えば、JIS K6418に規定されるポリアミド系熱可塑性エラストマー(TPA)、ポリスチレン系熱可塑性エラストマー(TPS)、ポリウレタン系熱可塑性エラストマー(TPU)、オレフィン系熱可塑性エラストマー(TPO)、ポリエステル系熱可塑性エラストマー(TPEE)、熱可塑性ゴム架橋体(TPV)、若しくはその他の熱可塑性エラストマー(TPZ)等が挙げられる。なお、走行時に必要とされる弾性、製造時の成形性等を考慮すると、タイヤ骨格体を形成する樹脂材料としては、熱可塑性樹脂を用いることが好ましく、熱可塑性エラストマーを用いることが更に好ましい。さらに、金属樹脂複合体に含まれる樹脂層としてポリアミド系熱可塑性樹脂を用いる場合には、ポリアミド系熱可塑性エラストマーを用いることが好ましい。
-ポリアミド系熱可塑性エラストマー-
 ポリアミド系熱可塑性エラストマーとは、結晶性で融点の高いハードセグメントを形成するポリマーと非晶性でガラス転移温度の低いソフトセグメントを形成するポリマーとを有する共重合体からなる熱可塑性の樹脂材料であって、ハードセグメントを形成するポリマーの主鎖にアミド結合(-CONH-)を有するものを意味する。
 ポリアミド系熱可塑性エラストマーとしては、例えば、少なくともポリアミドが結晶性で融点の高いハードセグメントを形成し、他のポリマー(例えば、ポリエステル、ポリエーテル等)が非晶性でガラス転移温度の低いソフトセグメントを形成している材料が挙げられる。また、ポリアミド系熱可塑性エラストマーは、ハードセグメント及びソフトセグメントの他に、ジカルボン酸等の鎖長延長剤を用いて形成されてもよい。
 ポリアミド系熱可塑性エラストマーとしては、具体的には、JIS K6418:2007に規定されるアミド系熱可塑性エラストマー(TPA)等や、特開2004-346273号公報に記載のポリアミド系エラストマー等を挙げることができる。
 ポリアミド系熱可塑性エラストマーにおいて、ハードセグメントを形成するポリアミドとしては、例えば、下記一般式(1)又は一般式(2)で表されるモノマーによって生成されるポリアミドを挙げることができる。
Figure JPOXMLDOC01-appb-C000001
[一般式(1)中、Rは、炭素数2~20の炭化水素の分子鎖(例えば炭素数2~20のアルキレン基)を表す。]
Figure JPOXMLDOC01-appb-C000002
[一般式(2)中、Rは、炭素数3~20の炭化水素の分子鎖(例えば炭素数3~20のアルキレン基)を表す。]
 一般式(1)中、Rとしては、炭素数3~18の炭化水素の分子鎖、例えば炭素数3~18のアルキレン基が好ましく、炭素数4~15の炭化水素の分子鎖、例えば炭素数4~15のアルキレン基が更に好ましく、炭素数10~15の炭化水素の分子鎖、例えば炭素数10~15のアルキレン基が特に好ましい。
 また、一般式(2)中、Rとしては、炭素数3~18の炭化水素の分子鎖、例えば炭素数3~18のアルキレン基が好ましく、炭素数4~15の炭化水素の分子鎖、例えば炭素数4~15のアルキレン基が更に好ましく、炭素数10~15の炭化水素の分子鎖、例えば炭素数10~15のアルキレン基が特に好ましい。
 一般式(1)又は一般式(2)で表されるモノマーとしては、ω-アミノカルボン酸又はラクタムが挙げられる。また、ハードセグメントを形成するポリアミドとしては、これらω-アミノカルボン酸又はラクタムの重縮合体、ジアミンとジカルボン酸との共縮重合体等が挙げられる。
 ω-アミノカルボン酸としては、6-アミノカプロン酸、7-アミノヘプタン酸、8-アミノオクタン酸、10-アミノカプリン酸、11-アミノウンデカン酸、12-アミノドデカン酸等の炭素数5~20の脂肪族ω-アミノカルボン酸等を挙げることができる。また、ラクタムとしては、ラウリルラクタム、ε-カプロラクタム、ウデカンラクタム、ω-エナントラクタム、2-ピロリドン等の炭素数5~20の脂肪族ラクタム等を挙げることができる。
 ジアミンとしては、例えば、炭素数2~20の脂肪族ジアミン及び炭素数6~20の芳香族ジアミン等が挙げられる。炭素数2~20の脂肪族ジアミン及び炭素数6~20の芳香族ジアミンとしては、例えば、エチレンジアミン、トリメチレンジアミン、テトラメチレンジアミン、ヘキサメチレンジアミン、ヘプタメチレンジアミン、オクタメチレンジアミン、ノナメチレンジアミン、デカメチレンジアミン、ウンデカメチレンジアミン、ドデカメチレンジアミン、2,2,4-トリメチルヘキサメチレンジアミン、2,4,4-トリメチルヘキサメチレンジアミン、3-メチルペンタメチレンジアミン、メタキシレンジアミン等を挙げることができる。
 また、ジカルボン酸は、HOOC-(R)m-COOH(R:炭素数3~20の炭化水素の分子鎖、m:0又は1)で表すことができ、例えば、シュウ酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、ドデカン二酸等の炭素数2~20の脂肪族ジカルボン酸を挙げることができる。
 ハードセグメントを形成するポリアミドとしては、ラウリルラクタム、ε-カプロラクタム、又はウデカンラクタムを開環重縮合したポリアミドを好ましく用いることができる。
 また、ソフトセグメントを形成するポリマーとしては、例えば、ポリエステル、ポリエーテル等が挙げられ、具体的には、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレンエーテルグリコール、ABA型トリブロックポリエーテル等が挙げられる。これらは単独で又は2種以上を組み合わせて用いることができる。また、ポリエーテルの末端にアンモニア等を反応させることによって得られるポリエーテルジアミン等も用いることができる。
 ここで、「ABA型トリブロックポリエーテル」とは、下記一般式(3)に示されるポリエーテルを意味する。
Figure JPOXMLDOC01-appb-C000003
[一般式(3)中、x及びzは、1~20の整数を表す。yは、4~50の整数を表す。]
 一般式(3)において、x及びzは、それぞれ、1~18の整数が好ましく、1~16の整数がより好ましく、1~14の整数が更に好ましく、1~12の整数が特に好ましい。また、一般式(3)において、yは、5~45の整数が好ましく、6~40の整数がより好ましく、7~35の整数が更に好ましく、8~30の整数が特に好ましい。
 ハードセグメントとソフトセグメントとの組合せとしては、上述で挙げたハードセグメントとソフトセグメントとのそれぞれの組合せを挙げることができる。これらの中でも、ハードセグメントとソフトセグメントとの組合せとしては、ラウリルラクタムの開環重縮合体/ポリエチレングリコールの組合せ、ラウリルラクタムの開環重縮合体/ポリプロピレングリコールの組合せ、ラウリルラクタムの開環重縮合体/ポリテトラメチレンエーテルグリコールの組合せ、又はラウリルラクタムの開環重縮合体/ABA型トリブロックポリエーテルの組合せが好ましく、ラウリルラクタムの開環重縮合体/ABA型トリブロックポリエーテルの組合せがより好ましい。
 ハードセグメントを形成するポリマー(ポリアミド)の数平均分子量は、溶融成形性の観点から、300~15000が好ましい。また、ソフトセグメントを形成するポリマーの数平均分子量としては、強靱性及び低温柔軟性の観点から、200~6000が好ましい。さらに、ハードセグメント(x)及びソフトセグメント(y)との質量比(x:y)は、成形性の観点から、50:50~90:10が好ましく、50:50~80:20がより好ましい。
 ポリアミド系熱可塑性エラストマーは、ハードセグメントを形成するポリマー及びソフトセグメントを形成するポリマーを公知の方法によって共重合することで合成することができる。
 ポリアミド系熱可塑性エラストマーの市販品としては、例えば、宇部興産(株)の「UBESTA XPA」シリーズ(例えば、XPA9063X1、XPA9055X1、XPA9048X2、XPA9048X1、XPA9040X1、XPA9040X2XPA9044等)、ダイセル・エポニック(株)の「ベスタミド」シリーズ(例えば、E40-S3、E47-S1、E47-S3、E55-S1、E55-S3、EX9200、E50-R2等)等を用いることができる。
-ポリスチレン系熱可塑性エラストマー
 ポリスチレン系熱可塑性エラストマーとしては、例えば、少なくともポリスチレンがハードセグメントを形成し、他のポリマー(例えば、ポリブタジエン、ポリイソプレン、ポリエチレン、水添ポリブタジエン、水添ポリイソプレン等)が非晶性でガラス転移温度の低いソフトセグメントを形成している材料が挙げられる。ハードセグメントを形成するポリスチレンとしては、例えば、公知のラジカル重合法、イオン性重合法等で得られるものが好ましく用いられ、具体的には、アニオンリビング重合を持つポリスチレンが挙げられる。また、ソフトセグメントを形成するポリマーとしては、例えば、ポリブタジエン、ポリイソプレン、ポリ(2,3-ジメチル-ブタジエン)等が挙げられる。
 ハードセグメントとソフトセグメントとの組合せとしては、上述で挙げたハードセグメントとソフトセグメントとのそれぞれの組合せを挙げることができる。これらの中でも、ハードセグメントとソフトセグメントとの組合せとしては、ポリスチレン/ポリブタジエンの組合せ、又はポリスチレン/ポリイソプレンの組合せが好ましい。また、熱可塑性エラストマーの意図しない架橋反応を抑制するため、ソフトセグメントは水素添加されていることが好ましい。
 ハードセグメントを形成するポリマー(ポリスチレン)の数平均分子量は、5000~500000が好ましく、10000~200000がより好ましい。
 また、ソフトセグメントを形成するポリマーの数平均分子量としては、5000~1000000が好ましく、10000~800000がより好ましく、30000~500000が更に好ましい。さらに、ハードセグメント(x)及びソフトセグメント(y)との体積比(x:y)は、成形性の観点から、5:95~80:20が好ましく、10:90~70:30がより好ましい。
 ポリスチレン系熱可塑性エラストマーは、ハードセグメントを形成するポリマー及びソフトセグメントを形成するポリマーを公知の方法によって共重合することで合成することができる。
 ポリスチレン系熱可塑性エラストマーとしては、例えば、スチレン-ブタジエン系共重合体[SBS(ポリスチレン-ポリ(ブチレン)ブロック-ポリスチレン)、SEBS(ポリスチレン-ポリ(エチレン/ブチレン)ブロック-ポリスチレン)]、スチレン-イソプレン共重合体(ポリスチレン-ポリイソプレンブロック-ポリスチレン)、スチレン-プロピレン系共重合体[SEP(ポリスチレン-(エチレン/プロピレン)ブロック)、SEPS(ポリスチレン-ポリ(エチレン/プロピレン)ブロック-ポリスチレン)、SEEPS(ポリスチレン-ポリ(エチレン-エチレン/プロピレン)ブロック-ポリスチレン)、SEB(ポリスチレン(エチレン/ブチレン)ブロック)]等が挙げられる。
 ポリスチレン系熱可塑性エラストマーの市販品としては、例えば、旭化成(株)製の「タフテック」シリーズ(例えば、H1031、H1041、H1043、H1051、H1052、H1053、H1062、H1082、H1141、H1221、H1272等)、(株)クラレ製の「SEBS」シリーズ(8007、8076等)、「SEPS」シリーズ(2002、2063等)等を用いることができる。
-ポリウレタン系熱可塑性エラストマー-
 ポリウレタン系熱可塑性エラストマーとしては、例えば、少なくともポリウレタンが物理的な凝集によって疑似架橋を形成しているハードセグメントを形成し、他のポリマーが非晶性でガラス転移温度の低いソフトセグメントを形成している材料が挙げられる。
 ポリウレタン系熱可塑性エラストマーとしては、具体的には、JIS K6418:2007に規定されるポリウレタン系熱可塑性エラストマー(TPU)が挙げられる。ポリウレタン系熱可塑性エラストマーは、下記式Aで表される単位構造を含むソフトセグメントと、下記式Bで表される単位構造を含むハードセグメントとを含む共重合体として表すことができる。
Figure JPOXMLDOC01-appb-C000004
 [式中、Pは、長鎖脂肪族ポリエーテル又は長鎖脂肪族ポリエステルを表す。Rは、脂肪族炭化水素、脂環族炭化水素、又は芳香族炭化水素を表す。P’は、短鎖脂肪族炭化水素、脂環族炭化水素、又は芳香族炭化水素を表す。]
 式A中、Pで表される長鎖脂肪族ポリエーテル又は長鎖脂肪族ポリエステルとしては、例えば、分子量500~5000のものを使用することができる。Pは、Pで表される長鎖脂肪族ポリエーテル及び長鎖脂肪族ポリエステルを含むジオール化合物に由来する。このようなジオール化合物としては、例えば、分子量が前記範囲内にある、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレンエーテルグリコール、ポリ(ブチレンアジベート)ジオール、ポリ-ε-カプロラクトンジオール、ポリ(ヘキサメチレンカーボネート)ジオール、ABA型トリブロックポリエーテル等が挙げられる。
 これらは、単独で又は2種以上を組み合わせて用いることができる。
 式A及び式B中、Rは、Rで表される脂肪族炭化水素、脂環族炭化水素、又は芳香族炭化水素を含むジイソシアネート化合物を用いて導入された部分構造である。Rで表される脂肪族炭化水素を含む脂肪族ジイソシアネート化合物としては、例えば、1,2-エチレンジイソシアネート、1,3-プロピレンジイソシアネート、1,4-ブタンジイソシアネート、1,6-ヘキサメチレンジイソシアネート等が挙げられる。
 また、Rで表される脂環族炭化水素を含むジイソシアネート化合物としては、例えば、1,4-シクロヘキサンジイソシアネート、4,4-シクロヘキサンジイソシアネート等が挙げられる。さらに、Rで表される芳香族炭化水素を含む芳香族ジイソシアネート化合物としては、例えば、4,4’-ジフェニルメタンジイソシアネート、トリレンジイソシアネート等が挙げられる。
 これらは、単独で又は2種以上を組み合わせて用いることができる。
 式B中、P’で表される短鎖脂肪族炭化水素、脂環族炭化水素、又は芳香族炭化水素としては、例えば、分子量500未満のものを使用することができる。また、P’は、P’で表される短鎖脂肪族炭化水素、脂環族炭化水素、又は芳香族炭化水素を含むジオール化合物に由来する。P’で表される短鎖脂肪族炭化水素を含む脂肪族ジオール化合物としては、例えば、グリコール及びポリアルキレングリコールが挙げられ、具体的には、エチレングリコール、プロピレングリコール、トリメチレングリコール、1,4-ブタンジオール、1,3-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、1,7-ヘプタンジオール、1,8-オクタンジオール、1,9-ノナンジオール、1,10-デカンジオール等が挙げられる。
 また、P’で表される脂環族炭化水素を含む脂環族ジオール化合物としては、例えば、シクロペンタン-1,2-ジオール、シクロヘキサン-1,2-ジオール、シクロヘキサン-1,3-ジオール、シクロヘキサン-1,4-ジオール、シクロヘキサン-1,4-ジメタノール等が挙げられる。
 さらに、P’で表される芳香族炭化水素を含む芳香族ジオール化合物としては、例えば、ヒドロキノン、レゾルシン、クロロヒドロキノン、ブロモヒドロキノン、メチルヒドロキノン、フェニルヒドロキノン、メトキシヒドロキノン、フェノキシヒドロキノン、4,4’-ジヒドロキシビフェニル、4,4’-ジヒドロキシジフェニルエーテル、4,4’-ジヒドロキシジフェニルサルファイド、4,4’-ジヒドロキシジフェニルスルホン、4,4’-ジヒドロキシベンゾフェノン、4,4’-ジヒドロキシジフェニルメタン、ビスフェノールA、1,1-ジ(4-ヒドロキシフェニル)シクロヘキサン、1,2-ビス(4-ヒドロキシフェノキシ)エタン、1,4-ジヒドロキシナフタリン、2,6-ジヒドロキシナフタリン等が挙げられる。
 これらは、単独で又は2種以上を組み合わせて用いることができる。
 ハードセグメントを形成するポリマー(ポリウレタン)の数平均分子量は、溶融成形性の観点から、300~1500が好ましい。また、ソフトセグメントを形成するポリマーの数平均分子量としては、ポリウレタン系熱可塑性エラストマーの柔軟性及び熱安定性の観点から、500~20000が好ましく、500~5000が更に好ましく、500~3000が特に好ましい。また、ハードセグメント(x)及びソフトセグメント(y)との質量比(x:y)は、成形性の観点から、15:85~90:10が好ましく、30:70~90:10が更に好ましい。
 ポリウレタン系熱可塑性エラストマーは、ハードセグメントを形成するポリマー及びソフトセグメントを形成するポリマーを公知の方法によって共重合することで合成することができる。ポリウレタン系熱可塑性エラストマーとしては、例えば、特開平5-331256号公報に記載の熱可塑性ポリウレタンを用いることができる。
 ポリウレタン系熱可塑性エラストマーとしては、具体的には、芳香族ジオールと芳香族ジイソシアネートとからなるハードセグメントと、ポリ炭酸エステルからなるソフトセグメントとの組合せが好ましく、より具体的には、トリレンジイソシアネート(TDI)/ポリエステル系ポリオール共重合体、TDI/ポリエーテル系ポリオール共重合体、TDI/カプロラクトン系ポリオール共重合体、TDI/ポリカーボネート系ポリオール共重合体、4,4’-ジフェニルメタンジイソシアネート(MDI)/ポリエステル系ポリオール共重合体、MDI/ポリエーテル系ポリオール共重合体、MDI/カプロラクトン系ポリオール共重合体、MDI/ポリカーボネート系ポリオール共重合体、及びMDI+ヒドロキノン/ポリヘキサメチレンカーボネート共重合体から選ばれる少なくとも1種が好ましく、TDI/ポリエステル系ポリオール共重合体、TDI/ポリエーテル系ポリオール共重合体、MDI/ポリエステルポリオール共重合体、MDI/ポリエーテル系ポリオール共重合体、及びMDI+ヒドロキノン/ポリヘキサメチレンカーボネート共重合体から選ばれる少なくとも1種が更に好ましい。
 また、ポリウレタン系熱可塑性エラストマーの市販品としては、例えば、BASF社製の「エラストラン」シリーズ(例えば、ET680、ET880、ET690、ET890等)、(株)クラレ社製「クラミロンU」シリーズ(例えば、2000番台、3000番台、8000番台、9000番台等)、日本ミラクトラン(株)製の「ミラクトラン」シリーズ(例えば、XN-2001、XN-2004、P390RSUP、P480RSUI、P26MRNAT、E490、E590、P890等)等を用いることができる。
-オレフィン系熱可塑性エラストマー-
 オレフィン系熱可塑性エラストマーとしては、例えば、少なくともポリオレフィンが結晶性で融点の高いハードセグメントを形成し、他のポリマー(例えば、ポリオレフィン、他のポリオレフィン、ポリビニル化合物等)が非晶性でガラス転移温度の低いソフトセグメントを形成している材料が挙げられる。ハードセグメントを形成するポリオレフィンとしては、例えば、ポリエチレン、ポリプロピレン、アイソタクチックポリプロピレン、ポリブテン等が挙げられる。
 オレフィン系熱可塑性エラストマーとしては、例えば、オレフィン-α-オレフィンランダム共重合体、オレフィンブロック共重合体等が挙げられ、具体的には、プロピレンブロック共重合体、エチレン-プロピレン共重合体、プロピレン-1-ヘキセン共重合体、プロピレン-4-メチル-1ペンテン共重合体、プロピレン-1-ブテン共重合体、エチレン-1-ヘキセン共重合体、エチレン-4-メチル-ペンテン共重合体、エチレン-1-ブテン共重合体、1-ブテン-1-ヘキセン共重合体、1-ブテン-4-メチル-ペンテン、エチレン-メタクリル酸共重合体、エチレン-メタクリル酸メチル共重合体、エチレン-メタクリル酸エチル共重合体、エチレン-メタクリル酸ブチル共重合体、エチレン-メチルアクリレート共重合体、エチレン-エチルアクリレート共重合体、エチレン-ブチルアクリレート共重合体、プロピレン-メタクリル酸共重合体、プロピレン-メタクリル酸メチル共重合体、プロピレン-メタクリル酸エチル共重合体、プロピレン-メタクリル酸ブチル共重合体、プロピレン-メチルアクリレート共重合体、プロピレン-エチルアクリレート共重合体、プロピレン-ブチルアクリレート共重合体、エチレン-酢酸ビニル共重合体、プロピレン-酢酸ビニル共重合体等が挙げられる。
 これらの中でも、オレフィン系熱可塑性エラストマーとしては、プロピレンブロック共重合体、エチレン-プロピレン共重合体、プロピレン-1-ヘキセン共重合体、プロピレン-4-メチル-1ペンテン共重合体、プロピレン-1-ブテン共重合体、エチレン-1-ヘキセン共重合体、エチレン-4-メチル-ペンテン共重合体、エチレン-1-ブテン共重合体、エチレン-メタクリル酸共重合体、エチレン-メタクリル酸メチル共重合体、エチレン-メタクリル酸エチル共重合体、エチレン-メタクリル酸ブチル共重合体、エチレン-メチルアクリレート共重合体、エチレン-エチルアクリレート共重合体、エチレン-ブチルアクリレート共重合体、プロピレン-メタクリル酸共重合体、プロピレン-メタクリル酸メチル共重合体、プロピレン-メタクリル酸エチル共重合体、プロピレン-メタクリル酸ブチル共重合体、プロピレン-メチルアクリレート共重合体、プロピレン-エチルアクリレート共重合体、プロピレン-ブチルアクリレート共重合体、エチレン-酢酸ビニル共重合体、及びプロピレン-酢酸ビニル共重合体から選ばれる少なくとも1種が好ましく、エチレン-プロピレン共重合体、プロピレン-1-ブテン共重合体、エチレン-1-ブテン共重合体、エチレン-メタクリル酸メチル共重合体、エチレン-メチルアクリレート共重合体、エチレン-エチルアクリレート共重合体、及びエチレン-ブチルアクリレート共重合体から選ばれる少なくとも1種が更に好ましい。
 また、エチレンとプロピレンといったように2種以上のオレフィン樹脂を組み合わせて用いてもよい。また、オレフィン系熱可塑性エラストマー中のオレフィン樹脂含有率は、50質量%以上100質量%以下が好ましい。
 オレフィン系熱可塑性エラストマーの数平均分子量は、5000~10000000であることが好ましい。オレフィン系熱可塑性エラストマーの数平均分子量が5000~10000000であると、熱可塑性樹脂材料の機械的物性が十分であり、加工性にも優れる。同様の観点から、オレフィン系熱可塑性エラストマーの数平均分子量は、7000~1000000であることが更に好ましく、10000~1000000が特に好ましい。これにより、熱可塑性樹脂材料の機械的物性及び加工性を更に向上させることができる。また、ソフトセグメントを形成するポリマーの数平均分子量としては、強靱性及び低温柔軟性の観点から、200~6000が好ましい。更に、ハードセグメント(x)及びソフトセグメント(y)との質量比(x:y)は、成形性の観点から、50:50~95:15が好ましく、50:50~90:10が更に好ましい。
 オレフィン系熱可塑性エラストマーは、公知の方法によって共重合することで合成することができる。
 また、オレフィン系熱可塑性エラストマーとしては、熱可塑性エラストマーを酸変性してなるものを用いてもよい。
 「オレフィン系熱可塑性エラストマーを酸変性してなるもの」とは、オレフィン系熱可塑性エラストマーに、カルボン酸基、硫酸基、燐酸基等の酸性基を有する不飽和化合物を結合させることをいう。
 オレフィン系熱可塑性エラストマーに、カルボン酸基、硫酸基、燐酸基等の酸性基を有する不飽和化合物を結合させることとしては、例えば、オレフィン系熱可塑性エラストマーに、酸性基を有する不飽和化合物として、不飽和カルボン酸(一般的には、無水マレイン酸)の不飽和結合部位を結合(例えば、グラフト重合)させることが挙げられる。
 酸性基を有する不飽和化合物としては、オレフィン系熱可塑性エラストマーの劣化抑制の観点からは、弱酸基であるカルボン酸基を有する不飽和化合物が好ましい。カルボン酸基を有する不飽和化合物としては、例えば、アクリル酸、メタクリル酸、イタコン酸、クロトン酸、イソクロトン酸、マレイン酸等が挙げられる。
 オレフィン系熱可塑性エラストマーの市販品としては、例えば、三井化学(株)製の「タフマー」シリーズ(例えば、A0550S、A1050S、A4050S、A1070S、A4070S、A35070S、A1085S、A4085S、A7090、A70090、MH7007、MH7010、XM-7070、XM-7080、BL4000、BL2481、BL3110、BL3450、P-0275、P-0375、P-0775、P-0180、P-0280、P-0480、P-0680等)、三井・デュポンポリケミカル(株)製の「ニュクレル」シリーズ(例えば、AN4214C、AN4225C、AN42115C、N0903HC、N0908C、AN42012C、N410、N1050H、N1108C、N1110H、N1207C、N1214、AN4221C、N1525、N1560、N0200H、AN4228C、AN4213C、N035C)等、「エルバロイAC」シリーズ(例えば、1125AC、1209AC、1218AC、1609AC、1820AC、1913AC、2112AC、2116AC、2615AC、2715AC、3117AC、3427AC、3717AC等)、住友化学(株)の「アクリフト」シリーズ、「エバテート」シリーズ等、東ソー(株)製の「ウルトラセン」シリーズ等、プライムポリマー製の「プライムTPO」シリーズ(例えば、E-2900H、F-3900H、E-2900、F-3900、J-5900、E-2910、F-3910、J-5910、E-2710、F-3710、J-5910、E-2740、F-3740、R110MP、R110E、T310E、M142E等)等も用いることができる。
-ポリエステル系熱可塑性エラストマー-
 ポリエステル系熱可塑性エラストマーとしては、例えば、少なくともポリエステルが結晶性で融点の高いハードセグメントを形成し、他のポリマー(例えば、ポリエステル又はポリエーテル等)が非晶性でガラス転移温度の低いソフトセグメントを形成している材料が挙げられる。
 ハードセグメントを形成するポリエステルとしては、芳香族ポリエステルを用いることができる。芳香族ポリエステルは、例えば、芳香族ジカルボン酸又はそのエステル形成性誘導体と脂肪族ジオールとから形成することができる。芳香族ポリエステルは、好ましくは、テレフタル酸及びジメチルテレフタレートの少なくとも1種と、1,4-ブタンジオールと、から誘導されるポリブチレンテレフタレートである。また、芳香族ポリエステルは、例えば、イソフタル酸、フタル酸、ナフタレン-2,6-ジカルボン酸、ナフタレン-2,7-ジカルボン酸、ジフェニル-4,4’-ジカルボン酸、ジフェノキシエタンジカルボン酸、5-スルホイソフタル酸、若しくはこれらのエステル形成性誘導体等のジカルボン酸成分と、分子量300以下のジオール(例えば、エチレングリコール、トリメチレングリコール、ペンタメチレングリコール、ヘキサメチレングリコール、ネオペンチルグリコール、デカメチレングリコール等の脂肪族ジオール;1,4-シクロヘキサンジメタノール、トリシクロデカンジメチロール等の脂環式ジオール;キシリレングリコール、ビス(p-ヒドロキシ)ジフェニル、ビス(p-ヒドロキシフェニル)プロパン、2,2-ビス[4-(2-ヒドロキシエトキシ)フェニル]プロパン、ビス[4-(2-ヒドロキシ)フェニル]スルホン、1,1-ビス[4-(2-ヒドロキシエトキシ)フェニル]シクロヘキサン、4,4’-ジヒドロキシ-p-ターフェニル、4,4’-ジヒドロキシ-p-クオーターフェニル等の芳香族ジオール;等)と、から誘導されるポリエステル、又はこれらのジカルボン酸成分及びジオール成分を2種以上併用した共重合ポリエステルであってもよい。また、3官能以上の多官能カルボン酸成分、多官能オキシ酸成分、多官能ヒドロキシ成分等を5モル%以下の範囲で共重合することも可能である。
 ハードセグメントを形成するポリエステルとしては、例えば、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリメチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンナフタレート等が挙げられ、ポリブチレンテレフタレートが好ましい。
 また、ソフトセグメントを形成するポリマーとしては、例えば、脂肪族ポリエステル、脂肪族ポリエーテル等が挙げられる。
 脂肪族ポリエーテルとしては、ポリ(エチレンオキシド)グリコール、ポリ(プロピレンオキシド)グリコール、ポリ(テトラメチレンオキシド)グリコール、ポリ(ヘキサメチレンオキシド)グリコール、エチレンオキシドとプロピレンオキシドとの共重合体、ポリ(プロピレンオキシド)グリコールのエチレンオキシド付加重合体、エチレンオキシドとテトラヒドロフランとの共重合体等が挙げられる。
 脂肪族ポリエステルとしては、ポリ(ε-カプロラクトン)、ポリエナントラクトン、ポリカプリロラクトン、ポリブチレンアジペート、ポリエチレンアジペート等が挙げられる。
 これらの脂肪族ポリエーテル及び脂肪族ポリエステルの中でも、得られるポリエステルブロック共重合体の弾性特性の観点から、ソフトセグメントを形成するポリマーとしては、ポリ(テトラメチレンオキシド)グリコール、ポリ(プロピレンオキシド)グリコールのエチレンオキシド付加物、ポリ(ε-カプロラクトン)、ポリブチレンアジペート、ポリエチレンアジペート等が好ましい。
 また、ソフトセグメントを形成するポリマーの数平均分子量は、強靱性及び低温柔軟性の観点から、300~6000が好ましい。さらに、ハードセグメント(x)とソフトセグメント(y)との質量比(x:y)は、成形性の観点から、99:1~20:80が好ましく、98:2~30:70が更に好ましい。
 上述のハードセグメントとソフトセグメントとの組合せとしては、例えば、上述で挙げたハードセグメントとソフトセグメントとのそれぞれの組合せを挙げることができる。これらの中でも、上述のハードセグメントとソフトセグメントとの組合せとしては、ハードセグメントがポリブチレンテレフタレートであり、ソフトセグメントが脂肪族ポリエーテルである組み合わせが好ましく、ハードセグメントがポリブチレンテレフタレートであり、ソフトセグメントがポリ(エチレンオキシド)グリコールである組み合わせが更に好ましい。
 ポリエステル系熱可塑性エラストマーの市販品としては、例えば、東レ・デュポン(株)製の「ハイトレル」シリーズ(例えば、3046、5557、6347、4047、4767等)、東洋紡(株)製の「ペルプレン」シリーズ(例えば、P30B、P40B、P40H、P55B、P70B、P150B、P280B、P450B、P150M、S1001、S2001、S5001、S6001、S9001等)等を用いることができる。
 ポリエステル系熱可塑性エラストマーは、ハードセグメントを形成するポリマー及びソフトセグメントを形成するポリマーを公知の方法によって共重合することで合成することができる。
-他の成分-
 樹脂材料は、所望に応じて、樹脂以外の他の成分を含んでもよい。他の成分としては、例えば、ゴム、各種充填剤(例えば、シリカ、炭酸カルシウム、クレイ)、老化防止剤、オイル、可塑剤、着色剤、耐候剤、補強材等が挙げられる。
(補強コード)
 補強コード24としては、例えば、一本の金属コードからなるモノフィラメント(単線)、複数本の金属コードを撚ったマルチフィラメント(撚り線)等が挙げられるが、タイヤの耐久性をより向上させる観点からは、マルチフィラメントが好ましい。複数本の金属コードの数としては、例えば2本~10本が挙げられ、5本~9本が好ましい。
 タイヤの耐内圧性と軽量化とを両立する観点からは、補強コード24の太さは、0.2mm~2mmであることが好ましく、0.8mm~1.6mmであることがより好ましい。金属部材の太さは、任意に選択した5箇所において測定した太さの数平均値とする。金属部材の太さは、上述した方法により定められる。
(被覆樹脂)
 被覆樹脂26の材質は、樹脂を含んでいれば特に制限されず、例えば、熱可塑性樹脂及び熱可塑性エラストマーからなる群より選ばれる少なくとも1種の熱可塑性材料を用いることができる。
 被覆樹脂26は、成形容易性の観点及び接着層に対する接着性の観点から、熱可塑性エラストマーを含むことが望ましい。
 特に、被覆樹脂26とタイヤケース17との接着性の観点から、タイヤケース17に含まれる樹脂と被覆樹脂26に含まれる樹脂とが同種の材料であることが望ましい。例えば、被覆樹脂26に含まれる樹脂としてポリアミド系熱可塑性樹脂を用いた場合には、タイヤケース17に含まれる樹脂としてポリアミド系熱可塑性樹脂及びポリアミド系熱可塑性エラストマーの少なくとも一種を用いることが好ましい。
 熱可塑性樹脂としては、タイヤケース17に用いられる熱可塑性樹脂と同種のものを挙げることができ、具体的には、ポリアミド系熱可塑性樹脂、ポリエステル系熱可塑性樹脂、オレフィン系熱可塑性樹脂、ポリウレタン系熱可塑性樹脂、塩化ビニル系熱可塑性樹脂、ポリスチレン系熱可塑性樹脂等を例示することができる。これらは単独で又は2種以上を組み合わせて用いてもよい。これらの中でも、熱可塑性樹脂としては、ポリアミド系熱可塑性樹脂、ポリエステル系熱可塑性樹脂、及びオレフィン系熱可塑性樹脂から選ばれる少なくとも1種が好ましい。
-ポリアミド系熱可塑性樹脂-
 ポリアミド系熱可塑性樹脂としては、前記ポリアミド系熱可塑性エラストマーのハードセグメントを形成するポリアミドを挙げることができる。ポリアミド系熱可塑性樹脂としては、具体的には、ε-カプロラクタムを開環重縮合したポリアミド(アミド6)、ウンデカンラクタムを開環重縮合したポリアミド(アミド11)、ラウリルラクタムを開環重縮合したポリアミド(アミド12)、ジアミンと二塩基酸とを重縮合したポリアミド(アミド66)、メタキシレンジアミンを構成単位として有するポリアミド(アミドMX)等を例示することができる。
 アミド6は、例えば、{CO-(CH-NH}で表すことができる。アミド11は、例えば、{CO-(CH10-NH}で表すことができる。アミド12は、例えば、{CO-(CH11-NH}で表すことができる。アミド66は、例えば、{CO(CHCONH(CHNH}で表すことができる。アミドMXは、例えば、下記構造式(A-1)で表すことができる。ここで、nは繰り返し単位数を表す。
Figure JPOXMLDOC01-appb-C000005
-ポリエステル系熱可塑性樹脂-
 ポリエステル系熱可塑性樹脂としては、前記ポリエステル系熱可塑性エラストマーのハードセグメントを形成するポリエステルを挙げることができる。
 ポリエステル系熱可塑性樹脂としては、具体的には、ポリ乳酸、ポリヒドロキシ-3-ブチル酪酸、ポリヒドロキシ-3-ヘキシル酪酸、ポリ(ε-カプロラクトン)、ポリエナントラクトン、ポリカプリロラクトン、ポリブチレンアジペート、ポリエチレンアジペート等の脂肪族ポリエステル、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンナフタレート等の芳香族ポリエステルなどを例示することができる。これらの中でも、耐熱性及び加工性の観点から、ポリエステル系熱可塑性樹脂としては、ポリブチレンテレフタレートが好ましい。
-オレフィン系熱可塑性樹脂-
 オレフィン系熱可塑性樹脂としては、前記オレフィン系熱可塑性エラストマーのハードセグメントを形成するポリオレフィンを挙げることができる。
 オレフィン系熱可塑性樹脂としては、具体的には、ポリエチレン系熱可塑性樹脂、ポリプロピレン系熱可塑性樹脂、ポリブタジエン系熱可塑性樹脂等を例示することができる。これらの中でも、耐熱性及び加工性の点から、オレフィン系熱可塑性樹脂としては、ポリプロピレン系熱可塑性樹脂が好ましい。
 ポリプロピレン系熱可塑性樹脂の具体例としては、プロピレンホモ重合体、プロピレン-α-オレフィンランダム共重合体、プロピレン-α-オレフィンブロック共重合体等が挙げられる。α-オレフィンとしては、例えば、プロピレン、1-ブテン、1-ペンテン、3-メチル-1-ブテン、1-ヘキセン、4-メチル-1-ペンテン、3-メチル-1-ペンテン、1-ヘプテン、1-オクテン、1-デセン、1-ドデセン、1-テトラデセン、1-ヘキサデセン、1-オクタデセン、1-エイコセン等の炭素数3~20程度のα-オレフィン等が挙げられる。
-熱可塑性エラストマー-
 熱可塑性エラストマーとしては、前記タイヤケース17に用いられる熱可塑性エラストマーと同種のものを挙げることができる。
 被覆樹脂26は、樹脂以外の他の成分を含んでもよい。他の成分としては、ゴム、エラストマー、熱可塑性樹脂、各種充填剤(例えば、シリカ、炭酸カルシウム、クレイ等)、老化防止剤、オイル、可塑剤、発色剤、耐候剤等が挙げられる。
 ただし、被覆樹脂26に含まれる樹脂は、50質量%以上であることが好ましく、80質量%以上であることがより好ましく、90質量%以上であることがさらに好ましい。
 また、被覆樹脂26の平均厚みは、特に限定されないが、耐久性に優れる点や溶着性の観点から、10μm以上1000μm以下であることが好ましく、50μm以上700μm以下であることがより好ましい。
(接着層)
 接着層は、例えば接着剤を用いて形成される。
 接着層の形成に用いる接着剤の種類としては、例えば、ホットメルト接着剤、溶剤系接着剤等が挙げられる。接着層の形成に用いる接着剤は、1種のみでもよく、2種以上を併用してもよい。
 なお、接着層の形成に用いる接着剤が非反応性の接着剤である場合、接着層は前記非反応性の接着剤を含む層であり、接着層の形成に用いる接着剤が反応性の接着剤である場合、接着層は前記反応性の接着剤の反応生成物を含む層である。
 ホットメルト接着剤としては、例えば、変性オレフィン系樹脂(変性ポリエチレン系樹脂、変性ポリプロピレン系樹脂等)、ポリアミド系樹脂、ポリウレタン系樹脂、ポリエステル系樹脂、変性ポリエステル系樹脂、エチレン-アクリル酸エチル共重合体、エチレン-酢酸ビニル共重合体等の1種又は2種以上の熱可塑性樹脂を主成分(主剤)として含むものが挙げられる。これらの中でも、金属部材及び樹脂層との接着性の観点から、変性オレフィン系樹脂、ポリエステル系樹脂、変性ポリエステル系樹脂、エチレン-アクリル酸エチル共重合体、及びエチレン-酢酸ビニル共重合体からなる群より選ばれる少なくとも1種を含むホットメルト接着剤が好ましく、変性オレフィン系樹脂及び変性ポリエステル系樹脂より選ばれる少なくとも1種を含むホットメルト接着剤がより好ましく、その中でも酸変性オレフィン系樹脂及び変性ポリエステル系樹脂より選ばれる少なくとも1種を含むホットメルト接着剤がさらに好ましく、酸変性オレフィン系樹脂及び酸変性ポリエステル系樹脂より選ばれる少なくとも1種を含むホットメルト接着剤が特に好ましく、酸変性オレフィン系樹脂を含むホットメルト接着剤が最も好ましい。
 溶剤系接着剤としては、特に限定されるものではなく、例えば、エポキシ系樹脂、フェノール系樹脂、オレフィン系樹脂、ポリウレタン系樹脂、ビニル系樹脂(例えば、酢酸ビニル系樹脂、ポリビニルアルコール系樹脂等)、合成ゴム等の1種又は2種以上を主成分(主剤)として含むものが挙げられる。
 接着層の平均厚みは、特に制限されないが、走行時の乗り心地及びタイヤの耐久性の観点で、5μm~500μmであることが好ましく、20μm~150μmであることがより好ましく、20μm~100μmであることが更に好ましい。
 接着層は、接着剤以外の他の成分を含んでもよい。他の成分としては、例えば、ラジカル捕捉剤、ゴム、エラストマー、熱可塑性樹脂、各種充填剤(例えば、シリカ、炭酸カルシウム、クレイ等)、老化防止剤、オイル、可塑剤、発色剤、耐候剤等が挙げられる。
[第2実施形態]
 次に、第2実施形態に係るタイヤの構造について説明する。なお、第2実施形態は、タイヤ骨格部材がゴムを含み、補強コードがタイヤ周方向に沿って存在する形態である。
 図5は、第2実施形態に係るタイヤの構成を示すタイヤ幅方向に沿った(すなわち補強コードの延在方向に垂直な)断面図である。図5において他の図と共通する部材については同様の符号を付して説明を省略する。
 図5に示すように、第2実施形態に係るタイヤ80は、ゴムを含有するゴム材料を含んで構成された環状のタイヤ骨格部材の一例であるタイヤケース94と、ベルト層12と、ゴム部材の一例であるトレッド30と、を備えている。
 ベルト層12及びトレッド30については、第1実施形態と同様であるため、説明を省略する。
 図5に示すように、本実施形態のタイヤ80は、例えば、所謂ラジアルタイヤであり、ビードコア20が埋設された一対のビード部14を備え、一方のビード部14と他方のビード部14との間に、1枚のカーカスプライ82からなるカーカス86が跨っている。なお、図5は、タイヤ80の空気充填前の自然状態の形状を示している。
 カーカスプライ82は、例えば、空気入りタイヤ80のラジアル方向に延びる複数本のコード(図示せず)をコーティングゴム(図示せず)で被覆して形成されている。カーカスプライ82のコードの材料は、例えば、PETが挙げられるが、従来公知の他の材料であってもよい。
 カーカスプライ82は、タイヤ幅方向の端部分がビードコア20においてタイヤ径方向外側に折り返されている。カーカスプライ82は、一方のビードコア20から他方のビードコア20に跨る部分が本体部82Aと呼ばれ、ビードコア20から折り返されている部分が折り返し部82Bと呼ばれる。
 カーカスプライ82の本体部82Aと折返し部82Bとの間には、ビードコア20からタイヤ径方向外側に向けて厚さが漸減するビードフィラー88が配置されている。なお、タイヤ80において、ビードフィラー88のタイヤ径方向外側端88Aからタイヤ径方向内側の部分がビード部14とされている。
 カーカス86のタイヤ内側にはゴムからなるインナーライナー90が配置されており、カーカス86のタイヤ幅方向外側には、ゴムを含有するゴム材料からなるサイドゴム層92が配置されている。
 なお、本実施形態では、ビードコア20、カーカス86、ビードフィラー88、インナーライナー90、及びサイドゴム層92によってタイヤケース94が構成されている。
 カーカス86のクラウン部の外側、言い換えればカーカス86のタイヤ径方向外側には、ベルト層12が配置されており、ベルト層12はカーカス86の外周面に密着している。
 そして、ベルト層12のタイヤ径方向外側には、ゴムを含有するゴム材料からなるトレッド30が配置されている。トレッド30に用いるゴム材料は、従来一般公知のものが用いられる。トレッド30には、排水用の溝30Aが形成されている。トレッド30の溝30Aにおけるパターンも従来一般公知のものが用いられる。
(タイヤの製造方法)
 次に、本実施形態のタイヤ80の製造方法の一例を説明する。
 まず、公知のタイヤ成形ドラム(不図示)の外周に、ゴム材料からなるインナーライナー90、ビードコア20、ゴム材料からなるビードフィラー88、コードをゴム材料で被覆したカーカスプライ82、及びサイドゴム層92からなる未加硫のタイヤケース94を形成する。
 一方、ベルト層12は、以下のようにして形成する。
 具体的には、ベルト成形ドラム(図示せず)の外周面に向かって樹脂被覆コード28を送り出す。樹脂被覆コード28は、熱風により加熱され溶融した状態でベルト成形ドラムの外周面に押し付けられ、その後冷却される。なお、加熱及び冷却の方法としては、第1実施形態と同様の方法が挙げられる。このようにして、樹脂被覆コード28をベルト成形ドラムの外周面に螺旋状に巻き付けると共に該外周面に押し付けていくことで、ベルト成形ドラムの外周面に樹脂被覆コード28の層が形成される。
 そして、樹脂被覆コード28の層の外周面に、溝32を形成することで、ベルト層12が得られる。なお、ベルト層12における溝32を形成する工程は、第1実施形態と同様に、樹脂被覆コード28をベルト成形ドラムの外周面に巻き付ける前に行っておいてもよい。また、後述するように、溝32を形成する前の樹脂被覆コード28の層をタイヤケース94に配置した後に、溝32を形成し、溝32を有するベルト層12を得てもよい。
 次に、樹脂被覆コード28が冷却されて被覆樹脂26が固化し、かつ、溝32が形成されたベルト層12を、ベルト成形ドラムから取り外す。そして、タイヤ成形ドラムにおける前記未加硫のタイヤケース94の径方向外側に、取り外したベルト層12を配置する。その後、タイヤケース94を拡張し、タイヤケース94の外周面、言い換えればカーカス86の外周面を、ベルト層12の内周面に圧着する。
 最後に、ベルト層12の外周面に、未加硫のトレッドを貼り付け、生タイヤが完成する。
 このようにして製造された生タイヤは、加硫成形モールドで加硫成形され、タイヤ80が完成する。
 なお、本発明について実施形態の一例を説明したが、本発明はこれら実施形態に限定されるものではなく、本発明の範囲内にて他の種々の実施形態が可能である。
 さらに、前記第1実施形態及び第2実施形態は、適宜組み合わせることができる。
 なお、本発明の一実施形態に係るタイヤは、以下に示す態様のタイヤが含まれる。
<1> 環状のタイヤ骨格部材と、
 前記タイヤ骨格部材のタイヤ径方向外側に設けられ、複数の補強コードと前記補強コードを被覆する被覆樹脂とを含み、タイヤ径方向外側の面が前記補強コードの延在方向に沿った溝を有するベルト層と、
 前記ベルト層のタイヤ径方向外側の面に設けられたゴム部材と、
 を有するタイヤ。
<2> 前記溝の深さは、前記ベルト層におけるタイヤ径方向外側の面から前記補強コードのタイヤ径方向中心部までの深さ以下である<1>に記載のタイヤ。
<3> 前記溝の開口部における幅は、前記溝の溝底における幅より広い<1>又は<2>に記載のタイヤ。
<4> 前記補強コードの延在方向に垂直な断面において、前記溝は、前記複数の補強コードの間に対応する前記ベルト層のタイヤ径方向外側の面に存在する<1>~<3>のいずれか1つに記載のタイヤ。
<5> 前記補強コードの延在方向に垂直な断面における前記溝の溝底は角を有さない<1>~<4>のいずれか1つに記載のタイヤ。
<6> 前記補強コードは、タイヤ周方向に沿って存在する<1>~<5>のいずれか1つに記載のタイヤ。
<7> 前記タイヤ骨格部材が樹脂を含む<1>~<6>のいずれか1つに記載のタイヤ。
 2017年1月11日に出願された日本国特許出願2017-002860号の開示は、その全体が参照により本明細書に取り込まれる。
 本明細書に記載された全ての文献、特許出願、および技術規格は、個々の文献、特許出願、および技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。

Claims (7)

  1.  環状のタイヤ骨格部材と、
     前記タイヤ骨格部材のタイヤ径方向外側に設けられ、複数の補強コードと前記補強コードを被覆する被覆樹脂とを含み、タイヤ径方向外側の面が前記補強コードの延在方向に沿った溝を有するベルト層と、
     前記ベルト層のタイヤ径方向外側の面に設けられたゴム部材と、
     を有するタイヤ。
  2.  前記溝の深さは、前記ベルト層におけるタイヤ径方向外側の面から前記補強コードのタイヤ径方向中心部までの深さ以下である請求項1に記載のタイヤ。
  3.  前記溝の開口部における幅は、前記溝の溝底における幅より広い請求項1又は請求項2に記載のタイヤ。
  4.  前記補強コードの延在方向に垂直な断面において、前記溝は、前記複数の補強コードの間に対応する前記ベルト層のタイヤ径方向外側の面に存在する請求項1~請求項3のいずれか1項に記載のタイヤ。
  5.  前記補強コードの延在方向に垂直な断面における前記溝の溝底は角を有さない請求項1~請求項4のいずれか1項に記載のタイヤ。
  6.  前記補強コードは、タイヤ周方向に沿って存在する請求項1~請求項5のいずれか1項に記載のタイヤ。
  7.  前記タイヤ骨格部材が樹脂を含む請求項1~請求項6のいずれか1項に記載のタイヤ。
PCT/JP2017/046033 2017-01-11 2017-12-21 タイヤ WO2018131423A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201780088253.0A CN110402202B (zh) 2017-01-11 2017-12-21 轮胎
US16/476,696 US20200039296A1 (en) 2017-01-11 2017-12-21 Tire
EP17891221.8A EP3569423A4 (en) 2017-01-11 2017-12-21 TIRE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017002860A JP2018111400A (ja) 2017-01-11 2017-01-11 タイヤ
JP2017-002860 2017-01-11

Publications (1)

Publication Number Publication Date
WO2018131423A1 true WO2018131423A1 (ja) 2018-07-19

Family

ID=62840590

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/046033 WO2018131423A1 (ja) 2017-01-11 2017-12-21 タイヤ

Country Status (5)

Country Link
US (1) US20200039296A1 (ja)
EP (1) EP3569423A4 (ja)
JP (1) JP2018111400A (ja)
CN (1) CN110402202B (ja)
WO (1) WO2018131423A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019235323A1 (ja) * 2018-06-08 2019-12-12 株式会社ブリヂストン 空気入りタイヤ

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113165447A (zh) 2018-10-26 2021-07-23 株式会社普利司通 轮胎

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05331256A (ja) 1992-06-02 1993-12-14 Sanko Chem Co Ltd 熱可塑性ポリウレタンの製造方法
JP2004346273A (ja) 2003-05-26 2004-12-09 Ube Ind Ltd ポリアミド系エラストマー及びその製造方法
JP2011207156A (ja) * 2010-03-30 2011-10-20 Bridgestone Corp タイヤの製造方法、タイヤの製造装置、及びタイヤ
JP2012046030A (ja) 2010-08-25 2012-03-08 Bridgestone Corp タイヤ
JP2014210487A (ja) * 2013-04-18 2014-11-13 株式会社ブリヂストン タイヤ及びタイヤの製造方法
JP2016199689A (ja) * 2015-04-10 2016-12-01 株式会社ブリヂストン ポリアミド系熱可塑性エラストマー及びタイヤ
JP2016203899A (ja) * 2015-04-27 2016-12-08 株式会社ブリヂストン タイヤ
JP2017002860A (ja) 2015-06-12 2017-01-05 トヨタ自動車株式会社 オイルミストセパレータ

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4826169B2 (ja) * 2005-08-11 2011-11-30 横浜ゴム株式会社 空気入りタイヤ及びその製造方法
JP5689789B2 (ja) * 2009-02-17 2015-03-25 株式会社ブリヂストン タイヤの製造方法
US20120152428A1 (en) * 2009-08-20 2012-06-21 Bridgestone Corporation Tire and tire manufacturing method
US9649819B2 (en) * 2010-03-30 2017-05-16 Bridgestone Corporation Tire manufacturing method using jig to fix covered bead inside tire mold
WO2012026547A1 (ja) * 2010-08-25 2012-03-01 株式会社ブリヂストン タイヤ、及びタイヤの製造方法
IN2014DN07459A (ja) * 2012-02-29 2015-04-24 Bridgestone Corp
JP6114739B2 (ja) * 2012-02-29 2017-04-12 株式会社ブリヂストン タイヤ
WO2014010353A1 (ja) * 2012-07-13 2014-01-16 横浜ゴム株式会社 空気入りタイヤ
JP6001488B2 (ja) * 2013-03-29 2016-10-05 株式会社ブリヂストン タイヤ
WO2015057981A1 (en) * 2013-10-17 2015-04-23 Bridgestone Americas Tire Operations, Llc Tire innerliner with carbon black blend

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05331256A (ja) 1992-06-02 1993-12-14 Sanko Chem Co Ltd 熱可塑性ポリウレタンの製造方法
JP2004346273A (ja) 2003-05-26 2004-12-09 Ube Ind Ltd ポリアミド系エラストマー及びその製造方法
JP2011207156A (ja) * 2010-03-30 2011-10-20 Bridgestone Corp タイヤの製造方法、タイヤの製造装置、及びタイヤ
JP2012046030A (ja) 2010-08-25 2012-03-08 Bridgestone Corp タイヤ
JP2014210487A (ja) * 2013-04-18 2014-11-13 株式会社ブリヂストン タイヤ及びタイヤの製造方法
JP2016199689A (ja) * 2015-04-10 2016-12-01 株式会社ブリヂストン ポリアミド系熱可塑性エラストマー及びタイヤ
JP2016203899A (ja) * 2015-04-27 2016-12-08 株式会社ブリヂストン タイヤ
JP2017002860A (ja) 2015-06-12 2017-01-05 トヨタ自動車株式会社 オイルミストセパレータ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3569423A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019235323A1 (ja) * 2018-06-08 2019-12-12 株式会社ブリヂストン 空気入りタイヤ

Also Published As

Publication number Publication date
EP3569423A4 (en) 2019-12-18
CN110402202B (zh) 2021-09-24
CN110402202A (zh) 2019-11-01
EP3569423A1 (en) 2019-11-20
JP2018111400A (ja) 2018-07-19
US20200039296A1 (en) 2020-02-06

Similar Documents

Publication Publication Date Title
JP6356664B2 (ja) タイヤ
JP6356663B2 (ja) タイヤ
JP6619432B2 (ja) タイヤ及びタイヤの製造方法
JP6057981B2 (ja) タイヤ
JP6086643B2 (ja) タイヤ
JP6138412B2 (ja) タイヤ
WO2017104484A1 (ja) タイヤ
WO2017104472A1 (ja) タイヤ
WO2017104663A1 (ja) タイヤ
JP5840535B2 (ja) タイヤ
WO2018131423A1 (ja) タイヤ
JP5911731B2 (ja) タイヤ
JP5778402B2 (ja) タイヤ
WO2018230167A1 (ja) タイヤ
JP5840534B2 (ja) タイヤ
JP6649766B2 (ja) タイヤ
JP6114498B2 (ja) タイヤ
JP6049273B2 (ja) タイヤ
JP5905289B2 (ja) タイヤ
JP6745284B2 (ja) タイヤ
WO2018230168A1 (ja) タイヤ
JP6014714B2 (ja) タイヤ及びその製造方法
JP2020062935A (ja) タイヤ用ワイヤー樹脂複合部材、及びタイヤ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17891221

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017891221

Country of ref document: EP

Effective date: 20190812