JP6745284B2 - タイヤ - Google Patents

タイヤ Download PDF

Info

Publication number
JP6745284B2
JP6745284B2 JP2017555995A JP2017555995A JP6745284B2 JP 6745284 B2 JP6745284 B2 JP 6745284B2 JP 2017555995 A JP2017555995 A JP 2017555995A JP 2017555995 A JP2017555995 A JP 2017555995A JP 6745284 B2 JP6745284 B2 JP 6745284B2
Authority
JP
Japan
Prior art keywords
resin
metal
tire
adhesive layer
resin composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017555995A
Other languages
English (en)
Other versions
JPWO2017104483A1 (ja
Inventor
壮一 京
壮一 京
啓之 筆本
啓之 筆本
行紀 中北
行紀 中北
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Publication of JPWO2017104483A1 publication Critical patent/JPWO2017104483A1/ja
Application granted granted Critical
Publication of JP6745284B2 publication Critical patent/JP6745284B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/005Reinforcements made of different materials, e.g. hybrid or composite cords
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C5/00Inflatable pneumatic tyres or inner tubes
    • B60C5/01Inflatable pneumatic tyres or inner tubes without substantial cord reinforcement, e.g. cordless tyres, cast tyres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D30/00Producing pneumatic or solid tyres or parts thereof
    • B29D30/06Pneumatic tyres or parts thereof (e.g. produced by casting, moulding, compression moulding, injection moulding, centrifugal casting)
    • B29D30/08Building tyres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • B60C1/0041Compositions of the carcass layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C5/00Inflatable pneumatic tyres or inner tubes
    • B60C5/007Inflatable pneumatic tyres or inner tubes made from other material than rubber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/0007Reinforcements made of metallic elements, e.g. cords, yarns, filaments or fibres made from metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/02Carcasses
    • B60C9/04Carcasses the reinforcing cords of each carcass ply arranged in a substantially parallel relationship
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/18Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
    • B60C9/20Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/18Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
    • B60C9/20Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel
    • B60C9/2003Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel characterised by the materials of the belt cords
    • B60C9/2006Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel characterised by the materials of the belt cords consisting of steel cord plies only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/18Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
    • B60C9/20Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel
    • B60C9/22Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel the plies being arranged with all cords disposed along the circumference of the tyre
    • B60C9/2204Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel the plies being arranged with all cords disposed along the circumference of the tyre obtained by circumferentially narrow strip winding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • B60C2001/0066Compositions of the belt layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/0007Reinforcements made of metallic elements, e.g. cords, yarns, filaments or fibres made from metal
    • B60C2009/0021Coating rubbers for steel cords
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/02Carcasses
    • B60C2009/0269Physical properties or dimensions of the carcass coating rubber
    • B60C2009/0276Modulus; Hardness; Loss modulus or "tangens delta"
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/18Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
    • B60C9/20Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel
    • B60C2009/2061Physical properties or dimensions of the belt coating rubber
    • B60C2009/2064Modulus; Hardness; Loss modulus or "tangens delta"
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/18Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
    • B60C9/20Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel
    • B60C9/22Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel the plies being arranged with all cords disposed along the circumference of the tyre
    • B60C2009/2238Physical properties or dimensions of the ply coating rubber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/18Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
    • B60C9/20Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel
    • B60C9/22Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel the plies being arranged with all cords disposed along the circumference of the tyre
    • B60C2009/2252Physical properties or dimension of the zero degree ply cords
    • B60C2009/2266Density of the cords in width direction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/18Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
    • B60C9/20Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel
    • B60C9/22Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel the plies being arranged with all cords disposed along the circumference of the tyre
    • B60C2009/2252Physical properties or dimension of the zero degree ply cords
    • B60C2009/2285Twist structures

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Tires In General (AREA)
  • Laminated Bodies (AREA)

Description

本開示は、タイヤに関する。
近年、軽量化、成形の容易さ、リサイクルのし易さ等の理由から、構成部材として樹脂材料を用いたタイヤの開発が進められている。樹脂材料を含むタイヤの耐久性(耐応力、耐内圧及び剛性)を高める試みのひとつとして、樹脂製のタイヤ本体(以下、タイヤ骨格体ともいう)に補強コードを螺旋状に巻回す方法が提案されている。
上記のような構造を有するタイヤの耐久性を向上させるためには、タイヤ骨格体と補強コードとの接着耐久性を向上させることが重要である。そこで例えば、スチールコード等の金属製のコードを樹脂材料で被覆することにより、金属コードとタイヤ骨格体との間の剛性の差を緩和して、タイヤ骨格体と補強コードの接着耐久性を向上させる方法が提案されている。
金属コードを樹脂材料で被覆する方法としては、金属コードと、金属コードを被覆する樹脂層とを熱可塑性樹脂を含む接着層を介して接着させる方法が提案されている(例えば、国際公開第2014/175453号参照)。
国際公開第2014/175453号に記載の方法では、金属コードと樹脂層とを接着層で接着させるため、金属コードと樹脂層とを強固に接着できる。しかしながら、接着層の金属コードに対する接着性については更なる改善の余地がある。
接着層の接着力を向上させる手法としては、弾性率の高い樹脂を含む接着剤で接着層を形成することが挙げられる。しかしながら、樹脂の弾性率を高くするのみでは接着層が硬くなり、乗り心地に影響するという問題がある。また、金属コードが複数の金属コードからなるマルチフィラメント式である場合は、弾性率が高いと接着剤が金属コードの隙間に流入しにくく、アンカー効果による接着力が充分得られないという問題や、金属コードの隙間が空隙として残りそこに外部から水が浸入すると金属コードが錆びて耐久性が低下するという問題もある。
従って、金属樹脂複合体における接着層の接着性に優れ、かつ乗り心地に優れるタイヤの開発が待たれている。
樹脂材料を含む環状のタイヤ骨格体と、金属樹脂複合体と、を含み、
前記金属樹脂複合体は、金属部材と、酸変性ポリプロピレンを含み結晶化度が21%〜40%である接着層と、樹脂層と、がこの順に配置された構造を有する、タイヤ。
本開示によれば、金属樹脂複合体を用いたタイヤであって、金属樹脂複合体における接着層の接着性に優れ、かつ乗り心地に優れるタイヤが提供される。
本開示の一実施形態に係るタイヤの一部の断面を示す斜視図である。 リムに装着したビード部の断面図である。 第一の実施形態のタイヤのタイヤ骨格体のクラウン部に金属樹脂複合体が埋設された状態を示すタイヤ回転軸に沿った断面図である。 金属樹脂複合体加熱装置、およびローラ類を用いてタイヤ骨格体のクラウン部に金属樹脂複合体を設置する動作を説明するための説明図である。 第二の実施形態のタイヤのタイヤ骨格体のクラウン部上に金属樹脂複合体が埋設された補強コード被覆層を有する態様を示すタイヤ回転軸に沿った断面図である。
以下、本開示の具体的な実施形態について詳細に説明するが、本開示は、以下の実施形態に何ら限定されるものではなく、適宜変更を加えて実施することができる。
本明細書において「樹脂」とは、熱可塑性樹脂、熱可塑性エラストマー及び熱硬化性樹脂を含む概念であり、加硫ゴムは含まない。また、以下の樹脂の説明において「同種」とは、エステル系同士、スチレン系同士等、樹脂の主鎖を構成する骨格と共通する骨格を備えたものを意味する。
本明細書において「〜」を用いて表される数値範囲は、「〜」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。
本明細書において「工程」との語には、独立した工程だけではなく、他の工程と明確に区別できない場合であっても、その目的が達成されるものであれば、当該工程も本用語に含まれる。
本開示のタイヤは、樹脂材料を含む環状のタイヤ骨格体と、金属樹脂複合体と、を含む。また、金属樹脂複合体は、金属部材と、酸変性ポリプロピレンを含み結晶化度が21%〜40%である接着層と、樹脂層と、がこの順に配置された構造を有する。
本発明者らは検討の結果、金属樹脂複合体における接着層が酸変性ポリプロピレンを含み結晶化度が21%〜40%であることで、接着層の接着性が向上するとともに良好な乗り心地も達成されることを見出した。
以下、本開示のタイヤに含まれる金属樹脂複合体を構成する金属部材、樹脂層及び接着層について順に説明する。さらに、本開示のタイヤの一実施態様で用いられるタイヤ骨格体及びタイヤの実施形態について説明する。
金属樹脂複合体は、金属部材と、接着層と、樹脂層とがこの順に配置された構造を有し、その形状や、タイヤにおける位置は特に制限されない。金属樹脂複合体の形状としては、例えば、コード状、シート状等が挙げられる。金属樹脂複合体の断面の形状は特に制限されず、例えば、円形、楕円形、多角形等が挙げられる。
金属樹脂複合体は、例えば、タイヤ骨格体の外周部(クラウン部)に配置されてベルト部を形成しても、タイヤ骨格体のビード部に用いられる環状のビードコア等として配置されてもよい。金属樹脂複合体を含むベルト部の具体的な構成としては、一本又は複数本のコード状の金属樹脂複合体がタイヤ骨格体の外周部に、タイヤの周方向に沿って配置されて形成されたベルト部(ベルト層)、複数のコード状の金属樹脂複合体がタイヤの周方向に対して角度を有し、互いに交錯するように配置されたベルト部(交錯ベルト層)等が挙げられる。
金属樹脂複合体において「金属部材と、接着層と、樹脂層とがこの順に配置された構造」には、例えば、金属部材の表面の全部が接着層を介して樹脂層で被覆された状態と、金属部材の表面の一部が接着層を介して樹脂層で被覆された状態とが含まれる。金属樹脂複合体を環状のタイヤ骨格体の周方向に巻回して使用する場合、少なくとも金属樹脂複合体とタイヤ骨格体とが接する領域において、金属部材と、接着層と、樹脂層とがこの順に配置された構造となっていることが好ましい。
金属樹脂複合体が、タイヤ骨格体の外周面に配置されてベルト部を形成する場合、下記の式(1)の条件を満たすことが好ましい。
23≦ベルト部に含まれる金属樹脂複合体の本数/ベルト部の幅(mm)×100 ・・・ 式(1)
金属樹脂複合体が式(1)の条件を満たすことで、タイヤ骨格体のベルト部に充分な数の金属樹脂複合体が配置されて充分な補強効果が得られる傾向にある。
本明細書において「ベルト部」とは、タイヤ骨格体の外周部に金属樹脂複合体が配置されている部分を意味する。
「ベルト部に含まれる金属樹脂複合体の本数」とは、金属樹脂複合体が配置されたタイヤ骨格体をタイヤの径方向に垂直な方向に切断して得られる断面において観察される金属樹脂複合体の数を意味する。
「ベルト部の幅」とは、上記断面において観察される金属樹脂複合体のうち、ベルト部の両端部(タイヤ骨格体のセンターラインから左右方向にそれぞれ最も離れた位置)にある金属樹脂複合体の間の長さであって、タイヤ骨格体の外周面に沿った長さ(mm)を意味する。
例えば、幅が200mmであるベルト部に含まれる金属樹脂複合体の本数が150である場合の「ベルト部に含まれる金属樹脂複合体の本数/ベルト部の幅(mm)×100」の値は「150/200×100=75」である。
金属樹脂複合体がタイヤ骨格体の厚み方向に重なるように配置されている場合(例えば、タイヤ骨格体の上に金属樹脂複合体を巻き回した後にさらに金属樹脂複合体を巻き回した場合)も、上記断面において観察される金属樹脂複合体の合計数を「金属樹脂複合体の本数」とする。
タイヤの充分な耐内圧性を確保する観点からは、「ベルト部に含まれる金属樹脂複合体の本数/ベルト部の幅(mm)×100」の値は23以上であり、30以上であることが好ましく、40以上であることがより好ましい。
「ベルト部に含まれる金属樹脂複合体の本数/ベルト部の幅(mm)×100」の値の上限は特に制限されないが、タイヤの軽量化の観点からは86以下であることが好ましく、75以下であることがより好ましい。
金属樹脂複合体が、タイヤ骨格体の外周面に配置されてベルト部を構成する場合、タイヤの耐内圧性と軽量化とを両立する観点からは、タイヤ骨格体上に配置された隣り合う金属樹脂複合体の金属部材間の距離(以下、金属部材間の距離ともいう)が0.2mm〜3.3mmであることが好ましい。
本明細書において「隣り合う金属樹脂複合体」とは、ある金属樹脂複合体と、当該金属樹脂複合体に最も近い位置にある他の金属樹脂複合体とのことをいい、互いに異なる金属樹脂複合体が隣り合っている場合と、同じ金属樹脂複合体の異なる部位が隣り合っている場合(例えば、一本の金属樹脂複合体をタイヤ骨格体の外周に複数回巻きつけた場合)の双方が含まれる。
本明細書において「金属部材間の距離」は、以下の式(2)により求められる値とする。式(2)において「n」は、ベルト部に含まれる金属樹脂複合体の本数である。

金属部材間の距離={ベルト部の幅−(金属部材の太さ×n)}/(n−1) ・・・ 式(2)
式(2)において「金属部材の太さ」は、任意に選択した5箇所における太さの測定値の数平均値とする。太さの測定値は、金属部材が1本の金属コードからなる場合は、金属部材の断面の最大径(金属部材の断面の輪郭線上で任意に選択される2点間の距離が最大となるときの当該2点間の距離)とする。金属部材が複数の金属コードからなる場合は、金属部材の断面に観察される複数の金属コードの断面が全て含まれる円のうち最も小さい円の直径とする。
太さの異なる金属部材がベルト部に含まれている場合は、最も太い金属部材の太さを「金属部材の太さ」とする。
タイヤの軽量化の観点からは、金属部材間の距離は0.2mm以上であることが好ましく、0.4mm以上であることがより好ましく、0.8mm以上であることが更に好ましい。タイヤの耐内圧性の観点からは、金属部材間の距離は3.3mm以下であることが好ましく、2.5mm以下であることがより好ましく、2.1mm以下であることが更に好ましい。
タイヤの耐内圧性と軽量化とを両立する観点からは、金属樹脂複合体の太さは、0.2mm〜2mmであることが好ましい。
金属樹脂複合体の太さは、任意に選択した5箇所における太さの測定値の数平均値とする。太さの測定値は、金属樹脂複合体の断面の最大径(金属部材の断面の輪郭線上で任意に選択される2点間の距離が最大となるときの当該2点間の距離)とする。
タイヤの軽量化の観点からは、金属樹脂複合体の太さは、0.2mm以上であることが好ましく、0.5mm以上であることがより好ましく、0.8mm以上であることが更に好ましい。タイヤの耐内圧性の観点からは、金属樹脂複合体の太さは、6.5mm以下であることが好ましく、4mm以下であることがより好ましく、3mm以下であることが更に好ましい。
[金属部材]
金属部材は特に制限されず、例えば、従来のゴム製タイヤに用いられる金属製のコード等を適宜用いることができる。金属製のコードとしては、例えば、一本の金属コードからなるモノフィラメント(単線)、複数本の金属コードを撚った状態のマルチフィラメント(撚り線)等が挙げられる。金属部材としては、タイヤの耐久性をより向上させる観点からは、マルチフィラメントが好ましい。金属部材の断面形状、サイズ(直径)等は、特に限定されるものではなく、所望のタイヤに適したものを適宜選定して用いることができる。
金属部材が複数本のコードの撚り線である場合、複数本のコードの数は特に制限されない。例えば、2本〜10本の範囲から選択することができ、5本〜9本であることが好ましい。
タイヤの耐内圧性と軽量化とを両立する観点からは、金属部材の太さは、0.2mm〜2mmであることが好ましく、0.8mm〜1.6mmであることがより好ましい。金属部材の太さは、任意に選択した5箇所において測定した太さの数平均値とする。金属部材の太さは、上述した方法により定められる。
金属部材自体の引張弾性率(以下、特定しない限り、本明細書で「弾性率」とは引張弾性率を意味する。)は、通常、100000MPa〜300000MPa程度であり、120000MPa〜270000MPaであることが好ましく、150000MPa〜250000MPaであることが更に好ましい。なお、金属部材の引張弾性率は、引張試験機にてZWICK型チャックを用いて応力-歪曲線を描き、その傾きから算出する。
金属部材自体の破断伸び(引張破断伸び)は、通常、0.1%〜15%程度であり、1%〜15%が好ましく、1%〜10%が更に好ましい。金属部材の引張破断伸びは、引張試験機にてZWICK型チャックを用いて応力−歪曲線を描き、歪から求めることができる。
[樹脂層]
樹脂層の材質は特に制限されず、例えば、熱可塑性樹脂及び熱可塑性エラストマーからなる群より選ばれる少なくとも1種の熱可塑性材料を用いることができる。良好な乗り心地を達成する観点からは、樹脂層は熱可塑性エラストマーを含むことが好ましく、融着性の観点からはポリアミド系熱可塑性エラストマーを含むことがより好ましい。
本明細書において「熱可塑性樹脂」とは、温度上昇とともに材料が軟化、流動し、冷却すると比較的硬く強度のある状態になるが、ゴム状弾性を有しない高分子化合物を意味する。
本明細書において「熱可塑性エラストマー」とは、結晶性で融点の高いハードセグメント又は高い凝集力のハードセグメントを構成するポリマーと、非晶性でガラス転移温度の低いソフトセグメントを構成するポリマーと、を有する共重合体からなり、温度上昇とともに材料が軟化、流動し、冷却すると比較的硬く強度のある状態になり、かつ、ゴム状弾性を有する高分子化合物を意味する。
(熱可塑性樹脂)
熱可塑性樹脂としては、後述のタイヤ骨格体に用いられる熱可塑性樹脂と同種のものを挙げることができ、具体的には、ポリアミド系熱可塑性樹脂、ポリエステル系熱可塑性樹脂、オレフィン系熱可塑性樹脂、ポリウレタン系熱可塑性樹脂、塩化ビニル系熱可塑性樹脂、ポリスチレン系熱可塑性樹脂等を例示することができる。これらは単独で又は2種以上を組み合わせて用いてもよい。これらの中でも、熱可塑性樹脂としては、ポリアミド系熱可塑性樹脂、ポリエステル系熱可塑性樹脂、及びオレフィン系熱可塑性樹脂から選ばれる少なくとも1種が好ましく、ポリアミド系熱可塑性樹脂及びオレフィン系熱可塑性樹脂から選ばれる少なくとも1種が更に好ましい。
樹脂層がポリアミド系熱可塑性樹脂及びオレフィン系熱可塑性樹脂の少なくとも一方を含む場合、後述のホットメルト接着剤を含む接着層との接着性が高くなる傾向にある。そのため、金属部材と樹脂層とがより強固に固定され、樹脂層に対する金属部材の引き抜き耐性を更に高めることができる。
樹脂層が熱可塑性樹脂を含む場合、熱可塑性樹脂は、タイヤ骨格体に用いられる樹脂材料との接着性を考慮して選定されることが好ましい。特に、タイヤ骨格体を形成する樹脂材料と樹脂層に含まれる熱可塑性樹脂とが同種の樹脂であると、タイヤ骨格体と樹脂層との間の接着性を更に高めることができる。例えば、樹脂層に含まれる熱可塑性樹脂としてポリアミド系熱可塑性樹脂を用いた場合には、タイヤ骨格体を形成する樹脂材料としてポリアミド系熱可塑性エラストマーを用いることが好ましい。
−ポリアミド系熱可塑性樹脂−
ポリアミド系熱可塑性樹脂としては、後述のタイヤ骨格体に用いられるポリアミド系熱可塑性エラストマーのハードセグメントを形成するポリアミドを挙げることができる。ポリアミド系熱可塑性樹脂としては、具体的には、ε−カプロラクタムを開環重縮合したポリアミド(アミド6)、ウンデカンラクタムを開環重縮合したポリアミド(アミド11)、ラウリルラクタムを開環重縮合したポリアミド(アミド12)、ジアミンと二塩基酸とを重縮合したポリアミド(アミド66)、メタキシレンジアミンを構成単位として有するポリアミド(アミドMX)等を例示することができる。
アミド6は、例えば、{CO−(CH−NH}で表すことができる。アミド11は、例えば、{CO−(CH10−NH}で表すことができる。アミド12は、例えば、{CO−(CH11−NH}で表すことができる。アミド66は、例えば、{CO(CHCONH(CHNH}で表すことができる。アミドMXは、例えば、下記構造式(A−1)で表すことができる。ここで、nは繰り返し単位数を表す。
アミド6の市販品としては、例えば、宇部興産(株)製の「UBEナイロン」シリーズ(例えば、1022B、1011FB等)を用いることができる。アミド11の市販品としては、例えば、アルケマ(株)製の「Rilsan B」シリーズを用いることができる。アミド12の市販品としては、例えば、宇部興産(株)製の「UBEナイロン」シリーズ(例えば、3024U、3020U、3014U等)を用いることができる。アミド66の市販品としては、例えば、宇部興産(株)製の「UBEナイロン」シリーズ(例えば、2020B、2015B等)を用いることができる。アミドMXの市販品としては、例えば、三菱ガス化学(株)製の「MXナイロン」シリーズ(例えば、S6001、S6021、S6011等)を用いることができる。
ポリアミド系熱可塑性樹脂は、上記の構成単位のみで形成されるホモポリマーであってもよく、上記の構成単位と他のモノマーとのコポリマーであってもよい。コポリマーの場合、各ポリアミド系熱可塑性樹脂における上記構成単位の含有率は、40質量%以上であることが好ましい。
−ポリエステル系熱可塑性樹脂−
ポリエステル系熱可塑性樹脂としては、後述のタイヤ骨格体に用いられるポリエステル系熱可塑性エラストマーのハードセグメントを形成するポリエステルを挙げることができる。
ポリエステル系熱可塑性樹脂としては、具体的には、ポリ乳酸、ポリヒドロキシ−3−ブチル酪酸、ポリヒドロキシ−3−ヘキシル酪酸、ポリ(ε−カプロラクトン)、ポリエナントラクトン、ポリカプリロラクトン、ポリブチレンアジペート、ポリエチレンアジペート等の脂肪族ポリエステル、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリスチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンナフタレート等の芳香族ポリエステルなどを例示することができる。これらの中でも、耐熱性及び加工性の観点から、ポリエステル系熱可塑性樹脂としては、ポリブチレンテレフタレートが好ましい。
ポリエステル系熱可塑性樹脂の市販品としては、例えば、ポリプラスチック(株)製の「ジュラネックス」シリーズ(例えば、2000、2002等)、三菱エンジニアリングプラスチック(株)製の「ノバデュラン」シリーズ(例えば、5010R5、5010R3−2等)、東レ(株)製の「トレコン」シリーズ(例えば、1401X06、1401X31等)等を用いることができる。
−オレフィン系熱可塑性樹脂−
オレフィン系熱可塑性樹脂としては、後述のタイヤ骨格体に用いられるオレフィン系熱可塑性エラストマーのハードセグメントを形成するポリオレフィンを挙げることができる。
オレフィン系熱可塑性樹脂としては、具体的には、ポリエチレン系熱可塑性樹脂、ポリプロピレン系熱可塑性樹脂、ポリブタジエン系熱可塑性樹脂等を例示することができる。これらの中でも、耐熱性及び加工性の点から、オレフィン系熱可塑性樹脂としては、ポリプロピレン系熱可塑性樹脂が好ましい。
ポリプロピレン系熱可塑性樹脂の具体例としては、プロピレンホモ重合体、プロピレン−α−オレフィンランダム共重合体、プロピレン−α−オレフィンブロック共重合体等が挙げられる。α−オレフィンとしては、例えば、プロピレン、1−ブテン、1−ペンテン、3−メチル−1−ブテン、1−ヘキセン、4−メチル−1−ペンテン、3−メチル−1−ペンテン、1−ヘプテン、1−オクテン、1−デセン、1−ドデセン、1−テトラデセン、1−ヘキサデセン、1−オクタデセン、1−エイコセン等の炭素数3〜20程度のα−オレフィン等が挙げられる。
(熱可塑性エラストマー)
熱可塑性エラストマーとしては、後述のタイヤ骨格体に用いられる熱可塑性エラストマーと同種のものを挙げることができる。
熱可塑性エラストマーとしては、具体的には、ポリアミド系熱可塑性エラストマー、ポリエステル系熱可塑性エラストマー、オレフィン系熱可塑性エラストマー、ポリウレタン系熱可塑性エラストマー等を例示することができる。これらは単独で又は2種以上を組み合わせて用いてもよい。これらの中でも、熱可塑性エラストマーとしては、ポリアミド系熱可塑性エラストマー、ポリエステル系熱可塑性エラストマー、及びオレフィン系熱可塑性エラストマーから選ばれる少なくとも1種が好ましく、ポリアミド系熱可塑性エラストマー及びオレフィン系熱可塑性エラストマーから選ばれる少なくとも1種が更に好ましい。樹脂層に含まれる熱可塑性材料として、ポリアミド系熱可塑性エラストマー及びオレフィン系熱可塑性エラストマーの少なくとも一方を用いると、後述のホットメルト接着剤を含む接着層と樹脂層との接着性が高くなる傾向にある。そのため、金属部材と樹脂層とがより強固に固定され、樹脂層に対する金属部材の引き抜き耐性を更に高めることができる。
樹脂層が熱可塑性エラストマーを含む場合は、熱可塑性エラストマーは、タイヤ骨格体に用いられる樹脂材料との接着性を考慮して選定されることが好ましい。特に、タイヤ骨格体を形成する樹脂材料と樹脂層に含まれる熱可塑性エラストマーとが同種の樹脂であると、タイヤ骨格体と樹脂層との接着性を更に高めることができる。例えば、樹脂層に含まれる熱可塑性エラストマーとして、ポリアミド系熱可塑性エラストマーを用いた場合には、タイヤ骨格体を形成する樹脂材料としてポリアミド系熱可塑性エラストマーを用いることが好ましい。
−ポリアミド系熱可塑性エラストマー−
ポリアミド系熱可塑性エラストマーとしては、後述のタイヤ骨格体に用いられるポリアミド系熱可塑性エラストマーと同様であり、好ましい態様も同様である。したがって、ここでは、詳細な説明を省略する。
−ポリエステル系熱可塑性エラストマー−
ポリエステル系熱可塑性エラストマーとしては、後述のタイヤ骨格体に用いられるポリエステル系熱可塑性エラストマーと同様であり、好ましい態様も同様である。したがって、ここでは、詳細な説明を省略する。
−オレフィン系熱可塑性エラストマー−
オレフィン系熱可塑性エラストマーとしては、後述のタイヤ骨格体に用いられるオレフィン系熱可塑性エラストマーと同様であり、好ましい態様も同様である。したがって、ここでは、詳細な説明を省略する。
樹脂層は、熱可塑性樹脂及び熱可塑性エラストマーの両方を含み、かつ、熱可塑性樹脂を含むマトリックス相である海相と、熱可塑性エラストマーを含む分散相である島相とを有する態様であってもよい。樹脂層が、熱可塑性樹脂のマトリックスに熱可塑性エラストマーが分散した海島構造を有することで、樹脂層に対する金属部材の引き抜き耐性をより向上させることができる。
樹脂層が海島構造を有する場合における樹脂層中の熱可塑性樹脂(p)と熱可塑性エラストマー(e)との質量比(p/e)は、熱可塑性樹脂を含む海相と熱可塑性エラストマーを含む島相とで構成される海島構造を容易に形成する観点から、95/5〜55/45であることが好ましく、90/10〜60/40であることがより好ましく、85/15〜70/30であることが更に好ましい。
樹脂層中に熱可塑性エラストマーを含む島相が熱可塑性樹脂を含む海相中に分散しているか否かは、SEM(走査型電子顕微鏡、scanning electron microscope)を用いた写真観察により確認することができる。
また、熱可塑性エラストマーを含む島相のサイズ(島相の長径)は、0.4μm〜10.0μm程度であることが好ましく、0.5μm〜7μm程度であることがより好ましく、0.5μm〜5μm程度であることが更に好ましい。これら各相のサイズは、SEMを用いた観察写真を用いて測定することができる。
(樹脂層の厚み)
樹脂層の平均厚みは、特に限定されない。耐久性に優れる点や溶着性の観点からは、10μm〜1000μmであることが好ましく、50μm〜700μmであることがより好ましい。
樹脂層の平均厚みは、金属部材、接着層及び樹脂層の積層方向に沿って金属樹脂複合体を切断して得られる断面のSEM画像を任意の5箇所から取得し、得られたSEM画像から測定される樹脂層の厚みの数平均値とする。各SEM画像における樹脂層の厚みは、最も厚みの小さい部分(接着層と樹脂層との間の界面と、金属樹脂複合体の外縁との距離が最小となる部分)で測定される値とする。
(その他の成分)
樹脂層は、樹脂以外の他の成分を含んでもよい。他の成分としては、ゴム、エラストマー、熱可塑性樹脂、各種充填剤(例えば、シリカ、炭酸カルシウム、クレイ等)、老化防止剤、オイル、可塑剤、発色剤、耐候剤等が挙げられる。
[接着層]
接着層は、酸変性ポリプロピレンを含み結晶化度が21%〜40%であり、金属部材と樹脂層との間に配置されている。接着層に含まれる酸変性ポリプロピレンは結晶性樹脂であり、その結晶化度が特定の範囲であることで、乗り心地性を損なうことなく良好な接着性が達成される。
本明細書において接着層の結晶化度は、示差走査型熱量分析(DSC)により求められる値である。具体的には、接着層(又は接着層を形成する材料)を用いてペレット状の試料を作製し、示差走査型熱量分析(DSC)装置〔ティー・エイ・インスツルメント社製、Q2000〕を用いて−60℃から220℃まで10℃/分で昇温して試料の融解熱量を測定する。次いで、融解熱量の測定値と、試料に含まれる結晶性樹脂の完全結晶体における融解熱量の理論値とから結晶性樹脂の結晶化度を算出する。
試料が結晶性樹脂以外の成分を含む場合は、試料中の結晶性樹脂の含有率をさらに乗じて(例えば、結晶性樹脂の含有率が70質量%である場合は0.7を乗じる)結晶化度を算出する。試料が2種以上の結晶性樹脂を含む場合は、DSCによって得られる各々の融解熱量の測定値によって結晶化度を算出する。
接着層の結晶化度を21%〜40%の範囲にする方法としては、加熱処理が挙げられる。加熱条件(温度及び時間)は特に制限されず、所望の結晶化度に応じて設定できる。結晶性樹脂における結晶成長は、一般に低い温度で長時間加熱する方が高い温度で短時間加熱するよりも促進される傾向にある。その他、接着層に含まれる樹脂の種類及び含有率、接着層の厚み、加熱処理の際のタイヤの構成(トレッド厚み等)なども結晶化度に影響するため、これらに応じて加熱条件を変更することで所望の結晶化度となるように制御することができる。
接着層の結晶化度を21%〜40%の範囲にするための加熱処理を行う時期は、特に制限されない。例えば、金属樹脂複合体が配置された状態のタイヤ骨格体の周囲に配置されるトレッドゴムを加硫する際の加熱処理を利用してもよく、金属樹脂複合体をタイヤ骨格体の周囲に配置する前の状態で加熱処理を行ってもよい。
接着性向上の観点からは、接着層の結晶化度は21%以上であり、24%以上であることが好ましく、26%以上であることがより好ましい。接着層が硬くなりすぎず、良好な乗り心地を達成する観点からは、接着層の結晶化度は40%以下であり、36%以下であることが好ましく、33%以下であることがより好ましい。
接着層の弾性率は、1600MPa以下であることが好ましい。この場合、接着層が固すぎず、良好な乗り心地が維持される。接着性の観点からは、接着層の弾性率は400MPa以上であることがより好ましい。
本明細書において接着層の弾性率は引張弾性率を意味し、JIS K7113:1995に準拠して測定した値である。
タイヤの使用中に高温になる場合を考慮すると、酸変性ポリプロピレンは、軟化点が100℃を超えるものから選択することが好ましい。
所望の結晶化度を達成する観点からは、接着層中の酸変性ポリプロピレンの含有率は50質量%以上であることが好ましく、60質量%以上であることがより好ましく、70質量%以上であることが更に好ましい。
本明細書において酸変性ポリプロピレンとは、不飽和カルボン酸で酸変性されたポリプロピレンを意味する。ここで、「不飽和カルボン酸で酸変性されたポリプロピレン」とは、ポリプロピレンに不飽和カルボン酸をグラフト共重合させたものを意味する。不飽和カルボン酸としては、アクリル酸、メタクリル酸、マレイン酸、フマル酸、イタコン酸等が挙げられる。
温度や湿度の環境変化に強く、金属部材及び樹脂層との接着性が高く、樹脂層に対する金属部材の引き抜き耐性に優れるという観点から、酸変性ポリプロピレンとしては、マレイン酸変性ポリプロピレンが好ましい。
接着層は、酸変性ポリプロピレンを含むホットメルト接着剤を用いて形成されることが好ましい。
本明細書において「ホットメルト接着剤」とは、熱可塑性樹脂を主成分とし、固形分の含有率が95質量%以上、好ましくは99質量%以上、より好ましくは99.5質量%以上、更に好ましくは100%の接着剤であって、常温(25℃)では固体又は半固体であるが、加熱により溶融する接着剤を意味する。
ホットメルト接着剤は、加熱溶融しながら被着体に塗布等を行い、冷却することで固化して被着体に接着するので、被着体の表面に凹凸があってもホットメルト接着剤を密に付着させることができる。このため、被着体である金属部材と樹脂層とを強固に固定することができ、樹脂層に対する金属部材の引き抜き耐性が向上するものと考えられる。また、ホットメルト接着剤は有機溶剤の含有率が少ないか有機溶剤を含まないので、溶剤を除去するための乾燥工程が不要であり、環境面及び生産面の観点からも優れている。
接着層は、酸変性ポリプロピレン以外の樹脂又はエラストマーを含んでもよい。
タイヤの低温耐久性向上の観点からは、接着層はさらにエラストマーを含むことが好ましい。エラストマーとしては、ポリプロピレン系エラストマー、ポリアミド系エラストマー、ポリスチレン系エラストマー、ポリエステル系エラストマー、ポリウレタン系エラストマー等が挙げられる。
接着層がエラストマーを含む場合のエラストマーの含有率は、接着層全体の5質量%〜40質量%であることが好ましく、20質量%〜40質量%であることがより好ましい。
接着層は、酸変性ポリプロピレンその他の樹脂又はエラストマー以外の成分を含んでもよい。このような成分としては、カーボンブラック、ラジカル捕捉剤、ゴム、各種充填剤(例えば、シリカ、炭酸カルシウム、クレイ等)、老化防止剤、オイル、可塑剤、発色剤、耐候剤等が挙げられる。接着層が樹脂又はエラストマー以外の成分を含む場合、その合計含有率は接着層全体の10質量%以下であることが好ましく、5質量%以下であることがより好ましい。
接着層の金属部材に対する接着性を向上させる観点からは、接着層は、カーボンブラックを含むことが好ましい。
カーボンブラックとしては、ファーネス法により得られるファーネスブラック、チャンネル法により得られるチャンネルブラック、アセチレン法により得られるアセチレンブラック、サーマル法により得られるサーマルブラック等が挙げられる。カーボンブラックの種類は特に制限されず、1種を単独で用いても2種以上を併用してもよい。
カーボンブラックの粒子径は特に制限されず、例えば、平均粒子径が0.03μm〜20μmの範囲とすることができ、0.05μm〜10μmの範囲であることが好ましく、0.1μm〜5μmの範囲であることがより好ましい。平均粒子径が異なるカーボンブラックを2種以上併用してもよい。
接着層の金属部材に対する接着性を向上させる観点からは、接着層中のカーボンブラックの含有率は、接着層の全体に対して0.2質量%以上であることが好ましく、0.4質量%以上であることがより好ましく、0.5質量%以上であることが更に好ましい。
接着層の耐久性を維持する観点からは、接着層中のカーボンブラックの含有率は、接着層の全体に対して10質量%未満であり、5質量%以下であることが好ましく、3質量%以下であることがより好ましく、2質量%以下であることが更に好ましい。
カーボンブラックは、そのまま酸変性ポリプロピレンと混合しても、マスターバッチの状態で酸変性ポリプロピレンと混合してもよい。また、接着層中でカーボンブラックが分散しているほど耐久性が良好になるため、カーボンブラックは高度に分散させることが好ましい。この観点から、マスターバッチであればカーボンブラックをそのまま酸変性ポリプロピレンと混合するよりも分散しやすいため、分散させるまでの混合時間を短くすることが出来るため好ましい。
マスターバッチとしては、例えば、ポリエチレン、ポリプロピレン、ポリアミド等の分散媒(好ましくは、接着層の形成に用いる酸変性ポリプロピレンと相溶性のある分散媒)とカーボンブラックとの混合物が挙げられる。マスターバッチは、分散媒以外の添加剤を含んでもよい。
カーボンブラックとして具体的には、旭カーボン(株)の製品名:旭#8、旭#66、旭#70、旭#78、旭#80、旭#15HS、SBX55、HS−500、東海カーボン(株)の製品名:9H、9、7HM600、5H等が挙げられる。マスターバッチとして具体的には、日本ピグメント(株)の製品名:BEK−8136−A、レジノカラー工業(株)の製品名:ブラック PBF−640等が挙げられる。
(平均厚み)
接着層の平均厚みは、特に制限されない。接着層の形成容易性、接着性能等の観点からは、5μm〜500μmであることが好ましく、20μm〜150μmであることがより好ましく、20μm〜100μmであることが更に好ましい。
接着層の平均厚みは、金属部材、接着層及び樹脂層の積層方向に沿って金属樹脂複合体を切断して得られる断面のSEM画像を任意の5箇所から取得し、得られたSEM画像から測定される接着層の厚みの数平均値とする。各SEM画像における接着層の厚みは、最も厚みの小さい部分(金属部材と接着層との間の界面と、接着層と樹脂層との間の界面との距離が最小となる部分)で測定される値とする。
[タイヤ骨格体]
タイヤ骨格体は、樹脂材料を含む。樹脂材料は樹脂を少なくとも含み、樹脂としては熱硬化性樹脂、熱可塑性エラストマー及び熱硬化性樹脂が挙げられる。融着性の観点からは、樹脂材料は熱可塑性エラストマーを含むことが好ましく、ポリアミド系熱可塑性エラストマーを含むことがより好ましい。
熱硬化性樹脂としては、例えば、フェノール系熱硬化性樹脂、ユリア系熱硬化性樹脂、メラミン系熱硬化性樹脂、エポキシ系熱硬化性樹脂等が挙げられる。
熱可塑性樹脂としては、ポリアミド系熱可塑性樹脂、ポリエステル系熱可塑性樹脂、オレフィン系熱可塑性樹脂、ポリウレタン系熱可塑性樹脂、塩化ビニル系熱可塑性樹脂、ポリスチレン系熱可塑性樹脂等を例示することができる。これらは単独で又は2種以上を組み合わせて用いてもよい。これらの中でも、熱可塑性樹脂としては、ポリアミド系熱可塑性樹脂、ポリエステル系熱可塑性樹脂、及びオレフィン系熱可塑性樹脂から選ばれる少なくとも1種が好ましく、ポリアミド系熱可塑性樹脂及びオレフィン系熱可塑性樹脂から選ばれる少なくとも1種が更に好ましい。
熱可塑性エラストマーとしては、例えば、JIS K6418に規定されるポリアミド系熱可塑性エラストマー(TPA)、ポリスチレン系熱可塑性エラストマー(TPS)、ポリウレタン系熱可塑性エラストマー(TPU)、オレフィン系熱可塑性エラストマー(TPO)、ポリエステル系熱可塑性エラストマー(TPEE)、熱可塑性ゴム架橋体(TPV)、若しくはその他の熱可塑性エラストマー(TPZ)等が挙げられる。なお、走行時に必要とされる弾性、製造時の成形性等を考慮すると、タイヤ骨格体を形成する樹脂材料としては、熱可塑性樹脂を用いることが好ましく、熱可塑性エラストマーを用いることが更に好ましい。さらに、金属樹脂複合体に含まれる樹脂層としてポリアミド系熱可塑性樹脂を用いる場合には、ポリアミド系熱可塑性エラストマーを用いることが好ましい。
−ポリアミド系熱可塑性エラストマー−
ポリアミド系熱可塑性エラストマーとは、結晶性で融点の高いハードセグメントを形成するポリマーと非晶性でガラス転移温度の低いソフトセグメントを形成するポリマーとを有する共重合体からなる熱可塑性の樹脂材料であって、ハードセグメントを形成するポリマーの主鎖にアミド結合(−CONH−)を有するものを意味する。
ポリアミド系熱可塑性エラストマーとしては、例えば、少なくともポリアミドが結晶性で融点の高いハードセグメントを形成し、他のポリマー(例えば、ポリエステル、ポリエーテル等)が非晶性でガラス転移温度の低いソフトセグメントを形成している材料が挙げられる。また、ポリアミド系熱可塑性エラストマーは、ハードセグメント及びソフトセグメントの他に、ジカルボン酸等の鎖長延長剤を用いて形成されてもよい。
ポリアミド系熱可塑性エラストマーとしては、具体的には、JIS K6418:2007に規定されるアミド系熱可塑性エラストマー(TPA)等や、特開2004−346273号公報に記載のポリアミド系エラストマー等を挙げることができる。
ポリアミド系熱可塑性エラストマーにおいて、ハードセグメントを形成するポリアミドとしては、例えば、下記一般式(1)又は一般式(2)で表されるモノマーによって生成されるポリアミドを挙げることができる。
[一般式(1)中、Rは、炭素数2〜20の炭化水素の分子鎖(例えば炭素数2〜20のアルキレン基)を表す。]
[一般式(2)中、Rは、炭素数3〜20の炭化水素の分子鎖(例えば炭素数3〜20のアルキレン基)を表す。]
一般式(1)中、Rとしては、炭素数3〜18の炭化水素の分子鎖、例えば炭素数3〜18のアルキレン基が好ましく、炭素数4〜15の炭化水素の分子鎖、例えば炭素数4〜15のアルキレン基が更に好ましく、炭素数10〜15の炭化水素の分子鎖、例えば炭素数10〜15のアルキレン基が特に好ましい。
また、一般式(2)中、Rとしては、炭素数3〜18の炭化水素の分子鎖、例えば炭素数3〜18のアルキレン基が好ましく、炭素数4〜15の炭化水素の分子鎖、例えば炭素数4〜15のアルキレン基が更に好ましく、炭素数10〜15の炭化水素の分子鎖、例えば炭素数10〜15のアルキレン基が特に好ましい。
一般式(1)又は一般式(2)で表されるモノマーとしては、ω−アミノカルボン酸又はラクタムが挙げられる。また、ハードセグメントを形成するポリアミドとしては、これらω−アミノカルボン酸又はラクタムの重縮合体、ジアミンとジカルボン酸との共縮重合体等が挙げられる。
ω−アミノカルボン酸としては、6−アミノカプロン酸、7−アミノヘプタン酸、8−アミノオクタン酸、10−アミノカプリン酸、11−アミノウンデカン酸、12−アミノドデカン酸等の炭素数5〜20の脂肪族ω−アミノカルボン酸等を挙げることができる。また、ラクタムとしては、ラウリルラクタム、ε−カプロラクタム、ウデカンラクタム、ω−エナントラクタム、2−ピロリドン等の炭素数5〜20の脂肪族ラクタム等を挙げることができる。
ジアミンとしては、例えば、エチレンジアミン、トリメチレンジアミン、テトラメチレンジアミン、ヘキサメチレンジアミン、ヘプタメチレンジアミン、オクタメチレンジアミン、ノナメチレンジアミン、デカメチレンジアミン、ウンデカメチレンジアミン、ドデカメチレンジアミン、2,2,4−トリメチルヘキサメチレンジアミン、2,4,4−トリメチルヘキサメチレンジアミン、3−メチルペンタメチレンジアミン、メタキシレンジアミン等の炭素数2〜20の脂肪族ジアミン等のジアミン化合物を挙げることができる。
また、ジカルボン酸は、HOOC−(R)m−COOH(R:炭素数3〜20の炭化水素の分子鎖、m:0又は1)で表すことができ、例えば、シュウ酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、ドデカン二酸等の炭素数2〜20の脂肪族ジカルボン酸を挙げることができる。
ハードセグメントを形成するポリアミドとしては、ラウリルラクタム、ε−カプロラクタム、又はウデカンラクタムを開環重縮合したポリアミドを好ましく用いることができる。
また、ソフトセグメントを形成するポリマーとしては、例えば、ポリエステル、ポリエーテル等が挙げられ、具体的には、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレンエーテルグリコール、ABA型トリブロックポリエーテル等が挙げられる。これらは単独で又は2種以上を組み合わせて用いることができる。また、ポリエーテルの末端にアンモニア等を反応させることによって得られるポリエーテルジアミン等も用いることができる。
ここで、「ABA型トリブロックポリエーテル」とは、下記一般式(3)に示されるポリエーテルを意味する。
[一般式(3)中、x及びzは、1〜20の整数を表す。yは、4〜50の整数を表す。]
一般式(3)において、x及びzは、それぞれ、1〜18の整数が好ましく、1〜16の整数がより好ましく、1〜14の整数が更に好ましく、1〜12の整数が特に好ましい。また、一般式(3)において、yは、5〜45の整数が好ましく、6〜40の整数がより好ましく、7〜35の整数が更に好ましく、8〜30の整数が特に好ましい。
ハードセグメントとソフトセグメントとの組合せとしては、上述で挙げたハードセグメントとソフトセグメントとのそれぞれの組合せを挙げることができる。これらの中でも、ハードセグメントとソフトセグメントとの組合せとしては、ラウリルラクタムの開環重縮合体/ポリエチレングリコールの組合せ、ラウリルラクタムの開環重縮合体/ポリプロピレングリコールの組合せ、ラウリルラクタムの開環重縮合体/ポリテトラメチレンエーテルグリコールの組合せ、又はラウリルラクタムの開環重縮合体/ABA型トリブロックポリエーテルの組合せが好ましく、ラウリルラクタムの開環重縮合体/ABA型トリブロックポリエーテルの組合せがより好ましい。
ハードセグメントを形成するポリマー(ポリアミド)の数平均分子量は、溶融成形性の観点から、300〜15000が好ましい。また、ソフトセグメントを形成するポリマーの数平均分子量としては、強靱性及び低温柔軟性の観点から、200〜6000が好ましい。さらに、ハードセグメント(x)及びソフトセグメント(y)との質量比(x:y)は、成形性の観点から、50:50〜90:10が好ましく、50:50〜80:20がより好ましい。
ポリアミド系熱可塑性エラストマーは、ハードセグメントを形成するポリマー及びソフトセグメントを形成するポリマーを公知の方法によって共重合することで合成することができる。
ポリアミド系熱可塑性エラストマーの市販品としては、例えば、宇部興産(株)の「UBESTA XPA」シリーズ(例えば、XPA9063X1、XPA9055X1、XPA9048X2、XPA9048X1、XPA9040X1、XPA9040X2XPA9044等)、ダイセル・エポニック(株)の「ベスタミド」シリーズ(例えば、E40−S3、E47−S1、E47−S3、E55−S1、E55−S3、EX9200、E50−R2等)等を用いることができる。
ポリアミド系熱可塑性エラストマーは、弾性率(柔軟性)、強度等の観点からタイヤ骨格体として要求される性能を満たすため、樹脂材料として好適である。また、ポリアミド系熱可塑性エラストマーは、熱可塑性樹脂や熱可塑性エラストマーとの接着性も良好であることが多い。したがって、タイヤ骨格体を形成する樹脂材料としてポリアミド系熱可塑性エラストマーを用いると、タイヤ骨格体と金属樹脂複合体に含まれる樹脂層との接着性の観点から、被覆用組成物の材料の選択自由度が高くなる傾向がある。
−ポリスチレン系熱可塑性エラストマー−
ポリスチレン系熱可塑性エラストマーとしては、例えば、少なくともポリスチレンがハードセグメントを形成し、他のポリマー(例えば、ポリブタジエン、ポリイソプレン、ポリエチレン、水添ポリブタジエン、水添ポリイソプレン等)が非晶性でガラス転移温度の低いソフトセグメントを形成している材料が挙げられる。ハードセグメントを形成するポリスチレンとしては、例えば、公知のラジカル重合法、イオン性重合法等で得られるものが好ましく用いられ、具体的には、アニオンリビング重合を持つポリスチレンが挙げられる。また、ソフトセグメントを形成するポリマーとしては、例えば、ポリブタジエン、ポリイソプレン、ポリ(2,3−ジメチル−ブタジエン)等が挙げられる。
ハードセグメントとソフトセグメントとの組合せとしては、上述で挙げたハードセグメントとソフトセグメントとのそれぞれの組合せを挙げることができる。これらの中でも、ハードセグメントとソフトセグメントとの組合せとしては、ポリスチレン/ポリブタジエンの組合せ、又はポリスチレン/ポリイソプレンの組合せが好ましい。また、熱可塑性エラストマーの意図しない架橋反応を抑制するため、ソフトセグメントは水素添加されていることが好ましい。
ハードセグメントを形成するポリマー(ポリスチレン)の数平均分子量は、5000〜500000が好ましく、10000〜200000がより好ましい。
また、ソフトセグメントを形成するポリマーの数平均分子量としては、5000〜1000000が好ましく、10000〜800000がより好ましく、30000〜500000が更に好ましい。さらに、ハードセグメント(x)及びソフトセグメント(y)との体積比(x:y)は、成形性の観点から、5:95〜80:20が好ましく、10:90〜70:30がより好ましい。
ポリスチレン系熱可塑性エラストマーは、ハードセグメントを形成するポリマー及びソフトセグメントを形成するポリマーを公知の方法によって共重合することで合成することができる。
ポリスチレン系熱可塑性エラストマーとしては、例えば、スチレン−ブタジエン系共重合体[SBS(ポリスチレン−ポリ(ブチレン)ブロック−ポリスチレン)、SEBS(ポリスチレン−ポリ(エチレン/ブチレン)ブロック−ポリスチレン)]、スチレン−イソプレン共重合体(ポリスチレン−ポリイソプレンブロック−ポリスチレン)、スチレン−プロピレン系共重合体[SEP(ポリスチレン−(エチレン/プロピレン)ブロック)、SEPS(ポリスチレン−ポリ(エチレン/プロピレン)ブロック−ポリスチレン)、SEEPS(ポリスチレン−ポリ(エチレン−エチレン/プロピレン)ブロック−ポリスチレン)、SEB(ポリスチレン(エチレン/ブチレン)ブロック)]等が挙げられる。
ポリスチレン系熱可塑性エラストマーの市販品としては、例えば、旭化成(株)製の「タフテック」シリーズ(例えば、H1031、H1041、H1043、H1051、H1052、H1053、H1062、H1082、H1141、H1221、H1272等)、(株)クラレ製の「SEBS」シリーズ(8007、8076等)、「SEPS」シリーズ(2002、2063等)等を用いることができる。
−ポリウレタン系熱可塑性エラストマー−
ポリウレタン系熱可塑性エラストマーとしては、例えば、少なくともポリウレタンが物理的な凝集によって疑似架橋を形成しているハードセグメントを形成し、他のポリマーが非晶性でガラス転移温度の低いソフトセグメントを形成している材料が挙げられる。
ポリウレタン系熱可塑性エラストマーとしては、具体的には、JIS K6418:2007に規定されるポリウレタン系熱可塑性エラストマー(TPU)が挙げられる。ポリウレタン系熱可塑性エラストマーは、下記式Aで表される単位構造を含むソフトセグメントと、下記式Bで表される単位構造を含むハードセグメントとを含む共重合体として表すことができる。
[式中、Pは、長鎖脂肪族ポリエーテル又は長鎖脂肪族ポリエステルを表す。Rは、脂肪族炭化水素、脂環族炭化水素、又は芳香族炭化水素を表す。P’は、短鎖脂肪族炭化水素、脂環族炭化水素、又は芳香族炭化水素を表す。]
式A中、Pで表される長鎖脂肪族ポリエーテル又は長鎖脂肪族ポリエステルとしては、例えば、分子量500〜5000のものを使用することができる。Pは、Pで表される長鎖脂肪族ポリエーテル及び長鎖脂肪族ポリエステルを含むジオール化合物に由来する。このようなジオール化合物としては、例えば、分子量が前記範囲内にある、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレンエーテルグリコール、ポリ(ブチレンアジベート)ジオール、ポリ−ε−カプロラクトンジオール、ポリ(ヘキサメチレンカーボネート)ジオール、ABA型トリブロックポリエーテル等が挙げられる。
これらは、単独で又は2種以上を組み合わせて用いることができる。
式A及び式B中、Rは、Rで表される脂肪族炭化水素、脂環族炭化水素、又は芳香族炭化水素を含むジイソシアネート化合物に由来する。Rで表される脂肪族炭化水素を含む脂肪族ジイソシアネート化合物としては、例えば、1,2−エチレンジイソシアネート、1,3−プロピレンジイソシアネート、1,4−ブタンジイソシアネート、1,6−ヘキサメチレンジイソシアネート等が挙げられる。
また、Rで表される脂環族炭化水素を含むジイソシアネート化合物としては、例えば、1,4−シクロヘキサンジイソシアネート、4,4−シクロヘキサンジイソシアネート等が挙げられる。さらに、Rで表される芳香族炭化水素を含む芳香族ジイソシアネート化合物としては、例えば、4,4’−ジフェニルメタンジイソシアネート、トリレンジイソシアネート等が挙げられる。
これらは、単独で又は2種以上を組み合わせて用いることができる。
式B中、P’で表される短鎖脂肪族炭化水素、脂環族炭化水素、又は芳香族炭化水素としては、例えば、分子量500未満のものを使用することができる。また、P’は、P’で表される短鎖脂肪族炭化水素、脂環族炭化水素、又は芳香族炭化水素を含むジオール化合物に由来する。P’で表される短鎖脂肪族炭化水素を含む脂肪族ジオール化合物としては、例えば、グリコール及びポリアルキレングリコールが挙げられ、具体的には、エチレングリコール、プロピレングリコール、トリメチレングリコール、1,4−ブタンジオール、1,3−ブタンジオール、1,5−ペンタンジオール、1,6−ヘキサンジオール、1,7−ヘプタンジオール、1,8−オクタンジオール、1,9−ノナンジオール、1,10−デカンジオール等が挙げられる。
また、P’で表される脂環族炭化水素を含む脂環族ジオール化合物としては、例えば、シクロペンタン−1,2−ジオール、シクロヘキサン−1,2−ジオール、シクロヘキサン−1,3−ジオール、シクロヘキサン−1,4−ジオール、シクロヘキサン−1,4−ジメタノール等が挙げられる。
さらに、P’で表される芳香族炭化水素を含む芳香族ジオール化合物としては、例えば、ヒドロキノン、レゾルシン、クロロヒドロキノン、ブロモヒドロキノン、メチルヒドロキノン、フェニルヒドロキノン、メトキシヒドロキノン、フェノキシヒドロキノン、4,4’−ジヒドロキシビフェニル、4,4’−ジヒドロキシジフェニルエーテル、4,4’−ジヒドロキシジフェニルサルファイド、4,4’−ジヒドロキシジフェニルスルホン、4,4’−ジヒドロキシベンゾフェノン、4,4’−ジヒドロキシジフェニルメタン、ビスフェノールA、1,1−ジ(4−ヒドロキシフェニル)シクロヘキサン、1,2−ビス(4−ヒドロキシフェノキシ)エタン、1,4−ジヒドロキシナフタリン、2,6−ジヒドロキシナフタリン等が挙げられる。
これらは、単独で又は2種以上を組み合わせて用いることができる。
ハードセグメントを形成するポリマー(ポリウレタン)の数平均分子量は、溶融成形性の観点から、300〜1500が好ましい。また、ソフトセグメントを形成するポリマーの数平均分子量としては、ポリウレタン系熱可塑性エラストマーの柔軟性及び熱安定性の観点から、500〜20000が好ましく、500〜5000が更に好ましく、500〜3000が特に好ましい。また、ハードセグメント(x)及びソフトセグメント(y)との質量比(x:y)は、成形性の観点から、15:85〜90:10が好ましく、30:70〜90:10が更に好ましい。
ポリウレタン系熱可塑性エラストマーは、ハードセグメントを形成するポリマー及びソフトセグメントを形成するポリマーを公知の方法によって共重合することで合成することができる。ポリウレタン系熱可塑性エラストマーとしては、例えば、特開平5−331256号公報に記載の熱可塑性ポリウレタンを用いることができる。
ポリウレタン系熱可塑性エラストマーとしては、具体的には、芳香族ジオールと芳香族ジイソシアネートとからなるハードセグメントと、ポリ炭酸エステルからなるソフトセグメントとの組合せが好ましく、より具体的には、トリレンジイソシアネート(TDI)/ポリエステル系ポリオール共重合体、TDI/ポリエーテル系ポリオール共重合体、TDI/カプロラクトン系ポリオール共重合体、TDI/ポリカーボネート系ポリオール共重合体、4,4’−ジフェニルメタンジイソシアネート(MDI)/ポリエステル系ポリオール共重合体、MDI/ポリエーテル系ポリオール共重合体、MDI/カプロラクトン系ポリオール共重合体、MDI/ポリカーボネート系ポリオール共重合体、及びMDI+ヒドロキノン/ポリヘキサメチレンカーボネート共重合体から選ばれる少なくとも1種が好ましく、TDI/ポリエステル系ポリオール共重合体、TDI/ポリエーテル系ポリオール共重合体、MDI/ポリエステルポリオール共重合体、MDI/ポリエーテル系ポリオール共重合体、及びMDI+ヒドロキノン/ポリヘキサメチレンカーボネート共重合体から選ばれる少なくとも1種が更に好ましい。
また、ポリウレタン系熱可塑性エラストマーの市販品としては、例えば、BASF社製の「エラストラン」シリーズ(例えば、ET680、ET880、ET690、ET890等)、(株)クラレ社製「クラミロンU」シリーズ(例えば、2000番台、3000番台、8000番台、9000番台等)、日本ミラクトラン(株)製の「ミラクトラン」シリーズ(例えば、XN−2001、XN−2004、P390RSUP、P480RSUI、P26MRNAT、E490、E590、P890等)等を用いることができる。
−オレフィン系熱可塑性エラストマー−
オレフィン系熱可塑性エラストマーとしては、例えば、少なくともポリオレフィンが結晶性で融点の高いハードセグメントを形成し、他のポリマー(例えば、ポリオレフィン、他のポリオレフィン、ポリビニル化合物等)が非晶性でガラス転移温度の低いソフトセグメントを形成している材料が挙げられる。ハードセグメントを形成するポリオレフィンとしては、例えば、ポリエチレン、ポリプロピレン、アイソタクチックポリプロピレン、ポリブテン等が挙げられる。
オレフィン系熱可塑性エラストマーとしては、例えば、オレフィン−α−オレフィンランダム共重合体、オレフィンブロック共重合体等が挙げられ、具体的には、プロピレンブロック共重合体、エチレン−プロピレン共重合体、プロピレン−1−ヘキセン共重合体、プロピレン−4−メチル−1ペンテン共重合体、プロピレン−1−ブテン共重合体、エチレン−1−ヘキセン共重合体、エチレン−4−メチル−ペンテン共重合体、エチレン−1−ブテン共重合体、1−ブテン−1−ヘキセン共重合体、1−ブテン−4−メチル−ペンテン、エチレン−メタクリル酸共重合体、エチレン−メタクリル酸メチル共重合体、エチレン−メタクリル酸エチル共重合体、エチレン−メタクリル酸ブチル共重合体、エチレン−メチルアクリレート共重合体、エチレン−エチルアクリレート共重合体、エチレン−ブチルアクリレート共重合体、プロピレン−メタクリル酸共重合体、プロピレン−メタクリル酸メチル共重合体、プロピレン−メタクリル酸エチル共重合体、プロピレン−メタクリル酸ブチル共重合体、プロピレン−メチルアクリレート共重合体、プロピレン−エチルアクリレート共重合体、プロピレン−ブチルアクリレート共重合体、エチレン−酢酸ビニル共重合体、プロピレン−酢酸ビニル共重合体等が挙げられる。
これらの中でも、オレフィン系熱可塑性エラストマーとしては、プロピレンブロック共重合体、エチレン−プロピレン共重合体、プロピレン−1−ヘキセン共重合体、プロピレン−4−メチル−1ペンテン共重合体、プロピレン−1−ブテン共重合体、エチレン−1−ヘキセン共重合体、エチレン−4−メチル−ペンテン共重合体、エチレン−1−ブテン共重合体、エチレン−メタクリル酸共重合体、エチレン−メタクリル酸メチル共重合体、エチレン−メタクリル酸エチル共重合体、エチレン−メタクリル酸ブチル共重合体、エチレン−メチルアクリレート共重合体、エチレン−エチルアクリレート共重合体、エチレン−ブチルアクリレート共重合体、プロピレン−メタクリル酸共重合体、プロピレン−メタクリル酸メチル共重合体、プロピレン−メタクリル酸エチル共重合体、プロピレン−メタクリル酸ブチル共重合体、プロピレン−メチルアクリレート共重合体、プロピレン−エチルアクリレート共重合体、プロピレン−ブチルアクリレート共重合体、エチレン−酢酸ビニル共重合体、及びプロピレン−酢酸ビニル共重合体から選ばれる少なくとも1種が好ましく、エチレン−プロピレン共重合体、プロピレン−1−ブテン共重合体、エチレン−1−ブテン共重合体、エチレン−メタクリル酸メチル共重合体、エチレン−メチルアクリレート共重合体、エチレン−エチルアクリレート共重合体、及びエチレン−ブチルアクリレート共重合体から選ばれる少なくとも1種が更に好ましい。
また、エチレンとプロピレンといったように2種以上のオレフィン樹脂を組み合わせて用いてもよい。また、オレフィン系熱可塑性エラストマー中のオレフィン樹脂含有率は、50質量%以上100質量%以下が好ましい。
オレフィン系熱可塑性エラストマーの数平均分子量は、5000〜10000000であることが好ましい。オレフィン系熱可塑性エラストマーの数平均分子量が5000〜10000000であると、熱可塑性樹脂材料の機械的物性が十分であり、加工性にも優れる。同様の観点から、オレフィン系熱可塑性エラストマーの数平均分子量は、7000〜1000000であることが更に好ましく、10000〜1000000が特に好ましい。これにより、熱可塑性樹脂材料の機械的物性及び加工性を更に向上させることができる。また、ソフトセグメントを形成するポリマーの数平均分子量としては、強靱性及び低温柔軟性の観点から、200〜6000が好ましい。更に、ハードセグメント(x)及びソフトセグメント(y)との質量比(x:y)は、成形性の観点から、50:50〜95:15が好ましく、50:50〜90:10が更に好ましい。
オレフィン系熱可塑性エラストマーは、公知の方法によって共重合することで合成することができる。
また、オレフィン熱可塑性エラストマーとしては、熱可塑性エラストマーを酸変性してなるものを用いてもよい。
「オレフィン熱可塑性エラストマーを酸変性してなるもの」とは、オレフィン熱可塑性エラストマーに、カルボン酸基、硫酸基、燐酸基等の酸性基を有する不飽和化合物を結合させることをいう。
オレフィン熱可塑性エラストマーに、カルボン酸基、硫酸基、燐酸基等の酸性基を有する不飽和化合物を結合させることとしては、例えば、オレフィン系熱可塑性エラストマーに、酸性基を有する不飽和化合物として、不飽和カルボン酸(一般的には、無水マレイン酸)の不飽和結合部位を結合(例えば、グラフト重合)させることが挙げられる。
酸性基を有する不飽和化合物としては、オレフィン熱可塑性エラストマーの劣化抑制の観点からは、弱酸基であるカルボン酸基を有する不飽和化合物が好ましく、例えば、アクリル酸、メタクリル酸、イタコン酸、クロトン酸、イソクロトン酸、マレイン酸等が挙げられる。
オレフィン系熱可塑性エラストマーの市販品としては、例えば、三井化学(株)製の「タフマー」シリーズ(例えば、A0550S、A1050S、A4050S、A1070S、A4070S、A35070S、A1085S、A4085S、A7090、A70090、MH7007、MH7010、XM−7070、XM−7080、BL4000、BL2481、BL3110、BL3450、P−0275、P−0375、P−0775、P−0180、P−0280、P−0480、P−0680等)、三井・デュポンポリケミカル(株)製の「ニュクレル」シリーズ(例えば、AN4214C、AN4225C、AN42115C、N0903HC、N0908C、AN42012C、N410、N1050H、N1108C、N1110H、N1207C、N1214、AN4221C、N1525、N1560、N0200H、AN4228C、AN4213C、N035C)等、「エルバロイAC」シリーズ(例えば、1125AC、1209AC、1218AC、1609AC、1820AC、1913AC、2112AC、2116AC、2615AC、2715AC、3117AC、3427AC、3717AC等)、住友化学(株)の「アクリフト」シリーズ、「エバテート」シリーズ等、東ソー(株)製の「ウルトラセン」シリーズ等、プライムポリマー製の「プライムTPO」シリーズ(例えば、E−2900H、F−3900H、E−2900、F−3900、J−5900、E−2910、F−3910、J−5910、E−2710、F−3710、J−5910、E−2740、F−3740、R110MP、R110E、T310E、M142E等)等も用いることができる。
−ポリエステル系熱可塑性エラストマー−
ポリエステル系熱可塑性エラストマーとしては、例えば、少なくともポリエステルが結晶性で融点の高いハードセグメントを形成し、他のポリマー(例えば、ポリエステル又はポリエーテル等)が非晶性でガラス転移温度の低いソフトセグメントを形成している材料が挙げられる。
ハードセグメントを形成するポリエステルとしては、芳香族ポリエステルを用いることができる。芳香族ポリエステルは、例えば、芳香族ジカルボン酸又はそのエステル形成性誘導体と脂肪族ジオールとから形成することができる。芳香族ポリエステルは、好ましくは、テレフタル酸及び/又はジメチルテレフタレートと、1,4−ブタンジオールとから誘導されるポリブチレンテレフタレートであり、更に、イソフタル酸、フタル酸、ナフタレン−2,6−ジカルボン酸、ナフタレン−2,7−ジカルボン酸、ジフェニル−4,4’−ジカルボン酸、ジフェノキシエタンジカルボン酸、5−スルホイソフタル酸、或いは、これらのエステル形成性誘導体等のジカルボン酸成分と、分子量300以下のジオール、例えば、エチレングリコール、トリメチレングリコール、ペンタメチレングリコール、ヘキサメチレングリコール、ネオペンチルグリコール、デカメチレングリコール等の脂肪族ジオール、1,4−シクロヘキサンジメタノール、トリシクロデカンジメチロール等の脂環式ジオール、キシリレングリコール、ビス(p−ヒドロキシ)ジフェニル、ビス(p−ヒドロキシフェニル)プロパン、2,2−ビス[4−(2−ヒドロキシエトキシ)フェニル]プロパン、ビス[4−(2−ヒドロキシ)フェニル]スルホン、1,1−ビス[4−(2−ヒドロキシエトキシ)フェニル]シクロヘキサン、4,4’−ジヒドロキシ−p−ターフェニル、4,4’−ジヒドロキシ−p−クオーターフェニル等の芳香族ジオール等から誘導されるポリエステル、或いはこれらのジカルボン酸成分及びジオール成分を2種以上併用した共重合ポリエステルであってもよい。また、3官能以上の多官能カルボン酸成分、多官能オキシ酸成分、多官能ヒドロキシ成分等を5モル%以下の範囲で共重合することも可能である。
ハードセグメントを形成するポリエステルとしては、例えば、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリメチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンナフタレート等が挙げられ、ポリブチレンテレフタレートが好ましい。
また、ソフトセグメントを形成するポリマーとしては、例えば、脂肪族ポリエステル、脂肪族ポリエーテル等が挙げられる。
脂肪族ポリエーテルとしては、ポリ(エチレンオキシド)グリコール、ポリ(プロピレンオキシド)グリコール、ポリ(テトラメチレンオキシド)グリコール、ポリ(ヘキサメチレンオキシド)グリコール、エチレンオキシドとプロピレンオキシドとの共重合体、ポリ(プロピレンオキシド)グリコールのエチレンオキシド付加重合体、エチレンオキシドとテトラヒドロフランとの共重合体等が挙げられる。
脂肪族ポリエステルとしては、ポリ(ε−カプロラクトン)、ポリエナントラクトン、ポリカプリロラクトン、ポリブチレンアジペート、ポリエチレンアジペート等が挙げられる。
これらの脂肪族ポリエーテル及び脂肪族ポリエステルの中でも、得られるポリエステルブロック共重合体の弾性特性の観点から、ソフトセグメントを形成するポリマーとしては、ポリ(テトラメチレンオキシド)グリコール、ポリ(プロピレンオキシド)グリコールのエチレンオキシド付加物、ポリ(ε−カプロラクトン)、ポリブチレンアジペート、ポリエチレンアジペート等が好ましい。
また、ソフトセグメントを形成するポリマーの数平均分子量は、強靱性及び低温柔軟性の観点から、300〜6000が好ましい。さらに、ハードセグメント(x)とソフトセグメント(y)との質量比(x:y)は、成形性の観点から、99:1〜20:80が好ましく、98:2〜30:70が更に好ましい。
上述のハードセグメントとソフトセグメントとの組合せとしては、例えば、上述で挙げたハードセグメントとソフトセグメントとのそれぞれの組合せを挙げることができる。これらの中でも、上述のハードセグメントとソフトセグメントとの組合せとしては、ハードセグメントがポリブチレンテレフタレートであり、ソフトセグメントが脂肪族ポリエーテルである組み合わせが好ましく、ハードセグメントがポリブチレンテレフタレートであり、ソフトセグメントがポリ(エチレンオキシド)グリコールである組み合わせが更に好ましい。
ポリエステル系熱可塑性エラストマーの市販品としては、例えば、東レ・デュポン(株)製の「ハイトレル」シリーズ(例えば、3046、5557、6347、4047、4767等)、東洋紡(株)製の「ペルプレン」シリーズ(例えば、P30B、P40B、P40H、P55B、P70B、P150B、P280B、P450B、P150M、S1001、S2001、S5001、S6001、S9001等)等を用いることができる。
ポリエステル系熱可塑性エラストマーは、ハードセグメントを形成するポリマー及びソフトセグメントを形成するポリマーを公知の方法によって共重合することで合成することができる。
樹脂材料の融点は、通常100℃〜350℃程度であるが、タイヤの耐久性及び生産性の観点から、100℃〜250℃程度が好ましく、120℃〜250℃がより好ましい。
また、樹脂材料には、所望に応じて、ゴム、エラストマー、熱可塑性樹脂、各種充填剤(例えば、シリカ、炭酸カルシウム、クレイ等)、老化防止剤、オイル、可塑剤、発色剤、耐候剤等の各種添加剤を含有(ブレンド)させてもよい。
樹脂材料(タイヤ骨格体)自体のJIS K7113:1995に規定される引張弾性率は、50MPa〜1000MPaが好ましく、50MPa〜800MPaが更に好ましく、50MPa〜700MPaが特に好ましい。樹脂材料の引張弾性率が、50MPa〜1000MPaであると、タイヤ骨格の形状を保持しつつ、リム組みを効率的に行なうことができる。
樹脂材料(タイヤ骨格体)自体のJIS K7113(1995)に規定される引張強さは、通常、15MPa〜70MPa程度であり、17MPa〜60MPaが好ましく、20MPa〜55MPaが更に好ましい。
樹脂材料(タイヤ骨格体)自体のJIS K7113(1995)に規定される引張降伏強さは、5MPa以上が好ましく、5MPa〜20MPaが更に好ましく、5MPa〜17MPaが特に好ましい。樹脂材料の引張降伏強さが、5MPa以上であると、走行時等にタイヤにかかる荷重に対する変形に耐えることができる。
樹脂材料(タイヤ骨格体)自体のJIS K7113(1995)に規定される引張降伏伸びは、10%以上が好ましく、10%〜70%が更に好ましく、15%〜60%が特に好ましい。樹脂材料の引張降伏伸びが、10%以上であると、弾性領域が大きく、リム組み性を良好にすることができる。
樹脂材料(タイヤ骨格体)自体のJIS K7113(1995)に規定される引張破断伸びは、50%以上が好ましく、100%以上が更に好ましく、150%以上が特に好ましく、200%以上が最も好ましい。樹脂材料の引張破断伸びが、50%以上であると、リム組み性が良好であり、衝突に対して破壊し難くすることができる。
樹脂材料(タイヤ骨格体)自体のISO 75−2又はASTM D648に規定される荷重たわみ温度(0.45MPa荷重時)は、50℃以上が好ましく、50℃〜150℃が更に好ましく、50℃〜130℃が特に好ましい。樹脂材料の荷重たわみ温度が、50℃以上であると、タイヤの製造において加硫を行う場合であってもタイヤ骨格体の変形を抑制するこができる。
本開示のタイヤでは、タイヤ骨格体のマルテンス硬度(d1)、樹脂層のマルテンス硬度(d2)、及び接着層のマルテンス硬度(d3)が、d1≦d2<d3の関係を満たすことが好ましい。樹脂層のマルテンス硬度を、接着層のマルテンス硬度よりも小さく、かつ、タイヤ骨格体のマルテンス硬度よりも大きく又は同等に設定することで、タイヤ骨格体を構成する樹脂材料と金属部材との剛性段差が効果的に緩和される。その結果、タイヤの耐久性を更に向上させることができる。
以下、図面に従って、本開示の実施形態に係るタイヤについて説明する。なお、以下に示す各図(図1A、図1B、図2、図3、及び図4)は、模式的に示した図であり、各部の大きさ及び形状は、理解を容易にするために、適宜誇張して示している。また、以下の実施形態では金属樹脂複合体をベルト部に適用しているが、ビード部等のその他の部位に金属樹脂複合体を適用してもよい。
[第一の実施形態]
まず、図1A及び図1Bを参照しながら、本開示の第一の実施形態に係るタイヤ10について説明する。
図1Aは、第一の実施形態に係るタイヤの一部の断面を示す斜視図である。図1Bは、リムに装着したビード部の断面図である。図1Aに示すように、第一の実施形態に係るタイヤ10は、従来の一般的なゴム製の空気入りタイヤと略同様の断面形状を呈している。
タイヤ10は、リム20のビードシート21とリムフランジ22とに接触する1対のビード部12と、ビード部12からタイヤ径方向外側に延びるサイド部14と、一方のサイド部14のタイヤ径方向外側端と他方のサイド部14のタイヤ径方向外側端とを連結するクラウン部(外周部)16と、からなるタイヤ骨格体17を備えている。タイヤ骨格体17は、樹脂材料(例えば、ポリアミド系熱可塑性エラストマー)を用いて形成されている。
タイヤ骨格体17は、一つのビード部12と一つのサイド部14と半幅のクラウン部16とを一体として射出成形された同一形状の円環状のタイヤ骨格体半体(タイヤ骨格片)17Aを互いに向かい合わせ、タイヤ赤道面部分で接合することにより形成されている。
ビード部12には、従来の一般的な空気入りタイヤと同様に、スチールコードからなる円環状のビードコア18が埋設されている。また、ビード部12のリム20と接触する部分や、少なくともリム20のリムフランジ22と接触する部分には、タイヤ骨格体17を構成する樹脂材料よりもシール性に優れた材料であるゴムからなる円環状のシール層24が形成されている。
クラウン部16には、補強コードである金属樹脂複合体26が、タイヤ骨格体17の軸方向に沿った断面視で、少なくとも一部がクラウン部16に埋設された状態で、タイヤ骨格体17の周方向に螺旋状に巻回されている。また、金属樹脂複合体26のタイヤ径方向外周側には、タイヤ骨格体17を構成する樹脂材料よりも耐摩耗性に優れた材料であるゴムからなるトレッド30が配置されている。なお、金属樹脂複合体26の詳細については、後述する。
第一の実施形態に係るタイヤ10によれば、タイヤ骨格体17が樹脂材料で形成されているので、従来のゴム製のタイヤ骨格体と異なり、加硫を行う必要がなく、製造工程を大幅に簡略化することができ、成形時間の短縮が可能となる。また、タイヤ骨格体半体17Aは左右対称形状、即ち、一方のタイヤ骨格体半体17Aと他方のタイヤ骨格体Aとが同一形状であるので、タイヤ骨格体半体17Aを成形する金型が1種類で済むというメリットがある。
なお、第一の実施形態に係るタイヤ10では、タイヤ骨格体17は、単一の樹脂材料で形成されているが、このような態様に限定されず、従来の一般的なゴム製の空気入りタイヤと同様に、タイヤ骨格体17の各部位(例えば、サイド部14、クラウン部16、ビード部12等)毎に異なる特徴を有する樹脂材料を用いてもよい。また、タイヤ骨格体17の各部位(例えば、サイド部14、クラウン部16、ビード部12等)に、補強材(高分子材料や金属製の繊維、コード、不織布、織布等)を埋設配置し、該補強材でタイヤ骨格体17を補強してもよい。
第一の実施形態に係るタイヤ10では、タイヤ骨格体半体17Aが射出成形により成形されているが、これに限定されず、例えば、真空成形、圧空成形、メルトキャスティング等により成形されていてもよい。また、第一の実施形態に係るタイヤ10では、タイヤ骨格体17は、2つの部材(タイヤ骨格体半体17A)を接合して形成されているが、これに限定されず、低融点金属を用いた溶融中子方式、割り中子方式、又はブロー成形によってタイヤ骨格体を1つの部材としてもよく、3つ以上の部材を接合して形成されていてもよい。
タイヤ10のビード部12には、スチールコードからなる円環状のビードコア18が埋設されている。ビードコア18は、スチールコード以外に、有機繊維コード、樹脂被覆した有機繊維コード、又は硬質樹脂で形成されていてもよい。なお、ビードコア18は、ビード部12の剛性が確保され、リム20との嵌合に問題がないのであれば、省略してもよい。
ビード部12のリム20と接触する部分や、少なくともリム20のリムフランジ22と接触する部分には、ゴムからなる円環状のシール層24が形成されている。シール層24は、タイヤ骨格体17(ビード部12)とビードシート21とが接触する部分にも形成されていてもよい。シール層24の形成材料としてゴムを用いる場合には、従来の一般的なゴム製の空気入りタイヤのビード部外面に用いられているゴムと同種のゴムを用いることが好ましい。なお、ゴムのシール層24は、タイヤ骨格体17を形成する樹脂材料のみでリム20との間のシール性が確保できるのであれば、省略してもよい。
シール層24は、タイヤ骨格体17を形成する樹脂材料よりもシール性に優れる他の熱可塑性樹脂又は熱可塑性エラストマーを用いて形成されてもよい。このような他の熱可塑性樹脂としては、ポリウレタン系樹脂、オレフィン系樹脂、ポリスチレン系樹脂、ポリエステル系樹脂等の樹脂や、これら樹脂とゴム若しくはエラストマーとのブレンド物等が挙げられる。また、熱可塑性エラストマーを用いることもでき、例えば、ポリエステル系熱可塑性エラストマー、ポリウレタン系熱可塑性エラストマー、オレフィン系熱可塑性エラストマー、又はこれらエラストマー同士の組み合わせや、ゴムとのブレンド物等が挙げられる。
次に、図2を参照しながら、金属樹脂複合体26について説明する。図2は、第一の実施形態に係るタイヤ10のタイヤ回転軸に沿った断面図であり、金属樹脂複合体26がタイヤ骨格体17のクラウン部に埋設された状態を示す。
図2に示すように、金属樹脂複合体26は、タイヤ骨格体17の軸方向に沿った断面視で、その少なくとも一部がクラウン部16に埋設された状態で螺旋状に巻回されている。そして、金属樹脂複合体26のクラウン部16に埋設された部分は、クラウン部16(タイヤ骨格体17)を構成する樹脂材料と密着した状態となっている。図2におけるLは、クラウン部16(タイヤ骨格体17)に対する金属樹脂複合体26のタイヤ回転軸方向への埋設深さを示す。ある実施態様では、金属樹脂複合体26のクラウン部16に対する埋設深さLは、金属樹脂複合体26の直径Dの1/2である。
金属樹脂複合体26は、金属部材27(例えば、スチール繊維を撚ったスチールコード)を芯として、金属部材27の外周が、接着層25を介して、樹脂層28で被覆された構造を有している。
金属樹脂複合体26のタイヤ径方向外周側には、ゴム製のトレッド30が配置されている。また、トレッド30には、従来のゴム製の空気入りタイヤと同様に、路面との接地面に複数の溝からなるトレッドパターンが形成されている。
ある実施態様では、タイヤ10では、熱可塑性エラストマーを含む樹脂層28で被覆した金属樹脂複合体26が、同種の熱可塑性エラストマーを含む樹脂材料で形成されているタイヤ骨格体17に密着した状態で埋設されている。そのため、金属部材27を被覆する樹脂層28とタイヤ骨格体17との接触面積が大きくなり、金属樹脂複合体26とタイヤ骨格体17との接着耐久性が向上し、その結果、タイヤの耐久性が優れたものとなる。
金属樹脂複合体26のクラウン部16に対する埋設深さLは、金属樹脂複合体26の直径Dの1/5以上であれば好ましく、1/2を超えることがより好ましい。そして、金属樹脂複合体26の全体がクラウン部16に埋設されることが更に好ましい。金属樹脂複合体26の埋設深さLが、金属樹脂複合体26の直径Dの1/2を超えると、金属樹脂複合体26の寸法上、埋設部から飛び出し難くなる。そして、金属樹脂複合体26の全体がクラウン部16に埋設されると、表面(外周面)がフラットになり、金属樹脂複合体26が埋設されたクラウン部16上に部材が載置された場合であっても、金属樹脂複合体26の周辺部に空気が入るのを抑制することができる。
金属部材27を被覆する樹脂層28の層厚は、特に限定されるものではなく、平均層厚が0.2mm〜4.0mmであることが好ましく、0.5mm〜3.0mmであることが更に好ましく、0.5mm〜2.5mmであることが特に好ましい。
第一の実施形態に係るタイヤ10では、トレッド30がゴムで形成されているが、ゴムの代わりに、タイヤ骨格体17を構成する樹脂材料よりも耐摩耗性に優れる他の種類の熱可塑性樹脂材料で形成したトレッドを用いてもよい。
以下、第一の実施形態に係るタイヤの製造方法について説明する。
[タイヤ骨格体成形工程]
まず、薄い金属の支持リングに支持されたタイヤ骨格体半体同士を互いに向かい合わせる。次に、タイヤ骨格体半体の突き当て部分の外周面と接するように、接合金型を設置する。ここで、上記接合金型は、タイヤ骨格体半体の接合部(突き当て部分)周辺を所定の圧力で押圧するように構成されている(図示せず)。次に、タイヤ骨格体半体の接合部周辺を、タイヤ骨格体を形成する熱可塑性樹脂材料(本実施形態では、ポリアミド系熱可塑性エラストマー)の融点(又は軟化点)以上で押圧する。タイヤ骨格体半体の接合部が接合金型によって加熱・加圧されると、上記接合部が溶融し、タイヤ骨格体半体同士が融着し、これら部材が一体となってタイヤ骨格体17が形成される。
[金属樹脂複合体成形工程]
次に、金属樹脂複合体成形工程について説明する。リールから金属部材27を巻出し、その表面を洗浄する。次に、金属部材27の外周を、押出機から押し出した(本実施形態では、酸変性ポリプロピレン)で被覆して、接着層25となる層を形成する。さらにその上を、押出機から押し出した樹脂層(本実施形態では、ポリアミド系熱可塑性エラストマー)で被覆することで樹脂層28を形成し、得られた金属樹脂複合体26をリール58に巻き取る。
[樹脂被覆コード巻回工程]
次に、図3を参照しながら、金属樹脂複合体巻回工程について説明する。図3は、金属樹脂複合体加熱装置及びローラ類を用いてタイヤ骨格体のクラウン部に金属樹脂複合体を設置する動作を説明するための説明図である。図3において、金属樹脂複合体供給装置56は、金属樹脂複合体26を巻き付けたリール58と、リール58のコード搬送方向下流側に配置された、金属樹脂複合体加熱装置59と、金属樹脂複合体26の搬送方向下流側に配置された第1のローラ60と、第1のローラ60をタイヤ外周面に対して接離する方向に移動する第1のシリンダ装置62と、第1のローラ60の金属樹脂複合体26の搬送方向下流側に配置される第2のローラ64と、第2のローラ64をタイヤ外周面に対して接離する方向に移動する第2のシリンダ装置66と、を備えている。第2のローラ64は、金属製の冷却用ローラとして利用することができる。また、第1のローラ60又は第2のローラ64の表面は、溶融又は軟化した樹脂材料の付着を抑制するために、フッ素樹脂(本実施形態では、テフロン(登録商標))でコーティングされている。以上により、加熱された金属樹脂複合体は、タイヤ骨格体のケース樹脂に強固に一体化される。
金属樹脂複合体加熱装置59は、熱風を生じさせるヒーター70及びファン72を備えている。また、金属樹脂複合体加熱装置59は、内部に熱風が供給される、内部空間を金属樹脂複合体26が通過する加熱ボックス74と、加熱された金属樹脂複合体26を排出する排出口76とを備えている。
本工程では、まず、金属樹脂複合体加熱装置59のヒーター70の温度を上昇させ、ヒーター70で加熱された周囲の空気をファン72の回転によって生じる風によって加熱ボックス74へ送る。次に、リール58から巻き出した金属樹脂複合体26を、熱風で内部空間が加熱された加熱ボックス74内へ送り、加熱(例えば、金属樹脂複合体26の温度を100℃〜250℃程度に加熱)する。加熱された金属樹脂複合体26は、排出口76を通り、図3の矢印R方向に回転するタイヤ骨格体17のクラウン部16の外周面に、一定のテンションをもって螺旋状に巻きつけられる。ここで、加熱された金属樹脂複合体26の樹脂層がクラウン部16の外周面に接触すると、接触部分の樹脂材料が溶融又は軟化し、タイヤ骨格体の樹脂と溶融接合してクラウン部16の外周面に一体化される。このとき、金属樹脂複合体は隣接する金属樹脂複合体とも溶融接合される為、隙間のない状態で巻回される。これにより、金属樹脂複合体26を埋設した部分へのエア入りが抑制される。
金属樹脂複合体26の埋設深さLは、金属樹脂複合体26の加熱温度、金属樹脂複合体26に作用させるテンション、及び第1のローラ60による押圧力等によって調整することができる。ある実施態様では、金属樹脂複合体26の埋設深さLが、金属樹脂複合体26の直径Dの1/5以上となるように設定される。
次に、金属樹脂複合体26が埋設されたタイヤ骨格体17の外周面に帯状のトレッド30を巻き付け、これを加硫缶やモールドに収容して加熱(加硫)する。本実施形態では、この加熱によって接着層の結晶成長が促進される。トレッド30は、未加硫ゴムであっても、加硫ゴムであってもよい。
そして、タイヤ骨格体17のビード部12に、加硫済みのゴムからなるシール層24を、接着剤等を用いて接着すれば、タイヤ10の完成となる。
第一の実施形態に係るタイヤの製造方法では、接合金型を用いてタイヤ骨格体半体17Aの接合部を加熱したが、本開示はこれに限定されず、例えば、別に設けた高周波加熱機等によって上記接合部を加熱したり、予め熱風や赤外線の照射等によって軟化又は溶融させ、接合金型によって加圧したりして、タイヤ骨格体半体17Aを接合させてもよい。
第一の実施形態に係るタイヤの製造方法では、金属樹脂複合体供給装置56は、第1のローラ60及び第2のローラ64の2つのローラを有しているが、本開示はこれに限定されず、何れか一方のローラのみ(即ち、ローラ1個)を有していてもよい。
第一の実施形態に係るタイヤの製造方法では、金属樹脂複合体26を加熱し、加熱した金属樹脂複合体26が接触する部分のタイヤ骨格体17の表面を溶融又は軟化させる態様としたが、本開示はこの態様に限定されず、金属樹脂複合体26を加熱せずに熱風生成装置を用い、金属樹脂複合体26が埋設されるクラウン部16の外周面を加熱した後、金属樹脂複合体26をクラウン部16に埋設するようにしてもよい。
また、第一の実施形態に係るタイヤの製造方法では、金属樹脂複合体加熱装置59の熱源をヒーター及びファンとする態様としたが、本開示はこの態様に限定されず、金属樹脂複合体26を輻射熱(例えば、赤外線等)で直接加熱する態様としてもよい。
さらに、第一の実施形態に係るタイヤの製造方法では、金属樹脂複合体26を埋設した熱可塑性の樹脂材料が溶融又は軟化した部分を、金属製の第2のローラ64で強制的に冷却する態様としたが、本開示はこの態様に限定されず、熱可塑性の樹脂材料が溶融又は軟化した部分に冷風を直接吹きかけて、熱可塑性の樹脂材料の溶融又は軟化した部分を強制的に冷却固化する態様としてもよい。
金属樹脂複合体26は、螺旋巻きすることが製造上は容易であるが、幅方向で金属樹脂複合体26を不連続に配置する方法等も考えられる。
第一の実施形態に係るタイヤ10は、ビード部12をリム20に装着することでタイヤ10とリム20との間で空気室を形成する、いわゆるチューブレスタイヤであるが、本開示はこの態様に限定されず、完全なチューブ形状であってもよい。
[第二の実施形態]
次に、図4を参照しながら、第二の実施形態に係るタイヤについて説明する。図4は、本開示の第二の実施形態に係るタイヤのタイヤ骨格体のクラウン部上に、補強金属コード部材である金属部材が埋設された補強コード被覆層を有する態様を示す、タイヤ回転軸に沿った断面図である。
図4に示すように、第二の実施形態に係るタイヤは、タイヤ骨格体のクラウン部16の表面に金属部材27が埋設された補強コード被覆層29を有し、補強コード被覆層29の上にトレッド30が配置されている。第二の実施形態に係るタイヤは、上記の点以外は第一の実施形態と同様の構成を有し、上記第一の実施形態と同様の構成については同様の番号を付している。
図4に示すように、第二の実施形態に係るタイヤには、クラウン部16に、タイヤ骨格体17の周方向に巻回された金属部材27が埋設された補強コード被覆層29が設けられている。ここで、金属部材27は、その一部が接着層25を介してタイヤ骨格体17のクラウン部16の表面に埋設されている。補強コード被覆層29の材料は、第一の実施形態における樹脂層28の材料と同様であってよい。接着層25は、第一の実施形態と同じく酸変性ポリプロピレンを用いて形成されている。
補強コード被覆層29の層厚は、特に限定されるものではなく、耐久性や、タイヤ骨格体17及びトレッド30との接着性を考慮すると、平均層厚がおおよそ0.2mm〜4.0mmであることが好ましく、0.5mm〜3.0mmであることがより好ましく、0.5mm〜2.5mmであることが更に好ましい。
また、補強コード被覆層29の弾性率は、タイヤ骨格体17を形成する樹脂材料の弾性率よりも高く、金属部材27の弾性率よりも低い範囲内に設定することが好ましい。また、補強コード被覆層29の弾性率がタイヤ骨格体17を形成する熱可塑性の樹脂材料の弾性率の20倍以下である場合には、クラウン部が硬くなり過ぎず、リム組みが容易になる。
以下、第二の実施形態に係るタイヤの製造方法について説明する。
[タイヤ骨格体形成工程]
まず、上述の第一の実施形態と同様にして、タイヤ骨格体半体17Aを形成し、これを接合金型によって加熱・押圧し、タイヤ骨格体17を形成する。
[補強金属コード部材巻回工程]
第二の実施形態に係るタイヤの製造装置は、上述の第一の実施形態と同様であり、上述の第一の実施形態の図3に示す金属樹脂複合体供給装置56におけるリール58には、金属部材27を巻き付けたものが用いられる。次いで、リール58に巻き付けられた金属部材27は、第一の実施形態と同様にして、タイヤ骨格体17の外周面にその一部が埋設されながら、タイヤ骨格体17の外周面に沿って巻回される。第二の実施形態に係るタイヤの製造方法では、後述のように、補強コード被覆層29を形成した後、接着層25を介して金属部材27を補強コード被覆層29に埋設させる。このため、第二の実施形態に係るタイヤの製造方法では、金属部材27のクラウン部16に対する埋設深さLは、金属部材27の直径(D2)の1/5以下となるように設定することが好ましい。
[積層工程]
次に、金属部材27を埋設させたタイヤ骨格体17の外周面に、樹脂層28を形成するための被覆用組成物を、溶融押出機等(図示せず)を用いて塗布し、補強コード被覆層29を形成する。形成した補強コード被覆層29上に、未加硫状態のクッションゴムを1周分巻き付け、そのクッションゴムの上に帯状のトレッド30を巻き付け、これを加硫缶やモールドに収容して加熱(加硫)する。本実施形態では、この加熱によって接着層の結晶成長が促進される。トレッド30は、未加硫ゴムであっても、加硫ゴムであってもよい。
そして、タイヤ骨格体17のビード部12に、加硫済みのゴムからなるシール層24を、接着剤等を用いて接着すれば、タイヤ10の完成となる。
第二の実施形態に係るタイヤでは、タイヤ骨格体17の外周面上に補強コード被覆層29を設けているので、第一の実施形態に係るタイヤに比べて金属部材27を更に強固にタイヤ骨格体17上に固定することができる。
第二の実施形態に係るタイヤでは、第一の実施形態と同様に、金属部材27をクラウン部16へ螺旋状に巻回する構成としたが、金属部材27が幅方向で不連続となるように巻回してもよい。
また、以上の実施形態では金属樹脂複合体をクラウン部の補強コードとして用いているが、金属樹脂複合体をビード部のビードコアとして用いてもよく、その他の態様で用いてもよい。
以上、実施形態を挙げて本開示を説明したが、これらの実施形態は一例であり、本開示は、その要旨を逸脱しない範囲内において、種々変更を加えて実施することができる。また、本開示の権利範囲がこれらの実施形態に限定されないことは言うまでもない。
本開示のタイヤには、以下に示す態様のタイヤが含まれる。
<1>樹脂材料を含む環状のタイヤ骨格体と、金属樹脂複合体と、を含み、
前記金属樹脂複合体は、金属部材と、酸変性ポリプロピレンを含み結晶化度が21%〜40%である接着層と、樹脂層と、がこの順に配置された構造を有する、タイヤ。
<2>前記金属部材が、2本〜10本の金属コードの撚り線である、<1>に記載のタイヤ。
<3>前記金属樹脂複合体は前記タイヤ骨格体の外周部に配置されてベルト部を形成し、かつ下記式(1)の条件を満たす、<1>又は<2>に記載のタイヤ。
23≦ベルト部に含まれる金属樹脂複合体の本数/ベルト部の幅(mm)×100 ・・・ 式(1)
<4>前記接着層がさらにエラストマーを含み、前記エラストマーの含有率が接着層全体の5質量%〜40質量%である、<1>〜<3>のいずれか1項に記載のタイヤ。
<5>前記樹脂層がポリアミド系熱可塑性エラストマーを含む、<1>〜<4>のいずれか1項に記載のタイヤ。
<6>前記タイヤ骨格体に含まれる前記樹脂材料がポリアミド系熱可塑性エラストマーを含む、<1>〜<5>のいずれか1項に記載のタイヤ。
以下、実施例により、本開示を具体的に説明するが、本開示はこれらの記載に何ら制限を受けるものではない。
[実施例1]
<金属樹脂複合体の作製>
上述の第一の実施形態のタイヤの製造方法における金属樹脂複合体成形工程に従い、平均直径φ1.15mmのマルチフィラメント(φ0.35mmの5本のモノフィラメント(スチール製、強力:280N、伸度:3%)を撚った撚り線)に、加熱溶融した樹脂Aを、平均厚みが100μmとなるように付着させて、接着層となる層を形成した。
次いで、接着層となる層の上を押出機にて押し出したポリアミド系熱可塑性エラストマー(UBE(株)製、商品名「XPA9055」)で被覆し、冷却して平均厚みが400μmの樹脂被覆(樹脂層)を形成した。押出条件は、金属部材の温度を140℃、ポリアミド系熱可塑性エラストマーの温度を240℃、押出速度を30m/分とした。
以上のようにして、金属部材の外周が接着層となる層を介して樹脂層で被覆された構造を有する金属樹脂複合体を作製した。
<金属樹脂複合体を有するタイヤの作製>
上述の第一の実施形態におけるタイヤの製造方法に従って、金属樹脂複合体がポリアミド系熱可塑性エラストマーから形成されたタイヤ骨格体のクラウン部に巻き回して配置され、そのうえにトレッドゴムが配置された生タイヤを作製した。金属樹脂複合体のタイヤ骨格体への配置は、隣り合う金属樹脂複合体の金属部材間の平均距離が1000μmとなるように行った。タイヤサイズは245/35 R18とした。トレッドゴムの厚みは、10mmとした。
<生タイヤの加硫(加熱)>
作製した生タイヤについて、160℃、20分の条件で加熱を行った。この際、接着層となる層中の酸変性ポリプロピレンを結晶成長させて接着層とした。
<結晶化度の測定>
上記タイヤの加熱(トレッドゴムの加硫)の条件を再現することで、接着層の結晶化度を測定するための試料を準備し、上述の方法で結晶化度を測定し、得られた値を接着層の結晶化度とした。結果を表1に示す。
具体的には、接着層の形成に用いた酸変性ポリプロピレンを用いて試料を作製し、タイヤの加熱と同じ条件で加熱して、加熱後の試料の結晶化度を測定した。試料の加熱をタイヤの金属樹脂複合体に含まれる接着層と同じ条件で行うために、上記条件で加熱したタイヤを用いて、加熱中におけるタイヤのセンターライン部付近の金属樹脂複合体の接着層に相当する部分の温度を測定し、測定により得られた温度条件と時間でサンプルの加熱処理を行った。
[実施例2〜12、比較例1〜4]
金属樹脂複合体の作製条件、生タイヤの加熱条件(温度及び時間)、接着層の形成に用いる樹脂の種類、樹脂層及び接着層の厚み、コード本数を変更した以外は変更した以外は実施例1と同様にして、タイヤを作製した。接着層の形成に用いる樹脂の種類、樹脂層及び接着層の厚み、及びコード本数もあわせて表1に示す。また、実施例1と同様にして結晶化度を測定するための試料を作製し、接着層の結晶化度を測定した。結果を表1に示す。
[実施例13]
接着層の形成に用いる樹脂に、接着層全体に対する含有率が0.5質量%となるようにカーボンブラックを添加した以外は実施例1と同様にして、タイヤを作製した。また、実施例1と同様にして結晶化度を測定するための試料を作製し、接着層の結晶化度を測定した。結果を表1に示す。
<接着性の評価>
接着層・金属部材間の接着性の指標として、金属樹脂複合体の作製直後に金属部材から接着層及び樹脂層を剥離した際の剥離力を測定した。
具体的には、(株)エー・アンド・デイ製の「TENSIRON RTF−1210」を用いて、室温環境(25℃)で引張速度100mm/minで180°剥離試験を行って、剥離力(単位:N)を測定し、以下の評価基準に従って接着性を評価した。評価結果がA〜Cであれば、本願規定のタイヤ用途として十分な強度を有しており、評価結果がDであれば、本願規定のタイヤ用途として不適当であることを示す。
A:剥離力が16N以上のもの
B:剥離力が12以上16N未満のもの
C:剥離力が10以上12N未満のもの
D:剥離力が10N未満のもの
<乗り心地の評価>
試作したタイヤを乗用車の4輪に装着し、テストドライバーがテストコース走行を行った。テストドライバーによる各タイヤの乗り心地についてのフィーリング結果につき、コントロールタイヤ(実施例1)との対比にて、以下に示す評価基準に従い評点付けを行った。
+2:一般ドライバーが分かる程度に良いと感じる場合
+1:テストドライバーが分かる程度に良いと感じる場合
0:テストドライバーがタイヤとしての使用に問題がないと感じる場合(コントロールタイヤと同等)
−1:テストドライバーが分かる程度に悪いと感じる場合
実施例及び比較例で接着層の形成に使用した樹脂及びカーボンブラックの詳細は以下の通りである。
・樹脂A
酸変性ポリプロピレン(三井化学(株)製、商品名「アドマー QE060」、MFR:7g/10min、ショアD硬度:63、弾性率:957MPa、酸変性率:0.083%)
・樹脂B
酸変性ポリプロピレン(三井化学(株)製、商品名「アドマー QB515」、MFR:3.2g/10min、ショアD硬度:60、弾性率:786MPa、酸変性率:0.059%)
・樹脂C
酸変性ポリプロピレン(三井化学(株)製、商品名「アドマー QB550」、MFR:2.8g/10min、ショアD硬度:58、弾性率:713MPa、酸変性率:0.073%)
・樹脂D
酸変性ポリプロピレン(三井化学(株)製、商品名「アドマー QB580」、MFR:7.7g/10min、ショアD硬度:59、弾性率:731MPa、酸変性率:0.22%)
・樹脂E
樹脂Aと未変性ポリプロピレン(住友化学(株)製、商品名「タフセレン T1712」)の混合物、質量比(QE060:T1712)=70:30、MFR:3.5g/10min、ショアD硬度:55、弾性率:470MPa、酸変性率:0.058%)
・カーボンブラック
日本ピグメント(株)製、商品名「BEK−8136−A」(カーボンブラック配合量40質量%〜50質量%のポリオレフィンマスターバッチ)
表1に示すように、接着層の結晶化度が21%〜40%の範囲内である実施例1〜13では、金属樹脂複合体の接着性が良好であり、乗り心地も良好であった。
接着層がカーボンブラックを含む実施例13では、接着層がカーボンブラックを含まない以外は条件が同じである実施例1に比べ、金属樹脂複合体の接着性により優れていた。
接着層の結晶化度が40%を超える比較例1、2では、金属樹脂複合体の接着性は良好であっても乗り心地の評価が低かった。これは、結晶成長が進みすぎて接着層が硬くなりすぎたためと考えられる。
接着層の結晶化度が21%に満たない比較例3、4では、乗り心地の評価は良好であっても接着性の評価が低かった。これは、結晶成長が不充分で接着層の充分な接着性が得られなかったためと考えられる。
以上より、本開示のタイヤは、金属樹脂複合体における接着層の接着性に優れ、かつ乗り心地に優れることがわかった。
日本国特許出願第2015−245425号の開示は、その全体が参照により本明細書に取り込まれる。本明細書に記載された全ての文献、特許出願、および技術規格は、個々の文献、特許出願、および技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。

Claims (5)

  1. 樹脂材料を含む環状のタイヤ骨格体と、金属樹脂複合体と、を含み、
    前記金属樹脂複合体は、金属部材と、酸変性ポリプロピレンを含み結晶化度が21%〜40%である接着層と、ポリアミド系熱可塑性エラストマーを含む樹脂層と、がこの順に配置された構造を有する、タイヤ。
  2. 前記金属部材が、2本〜10本の金属コードの撚り線である、請求項1に記載のタイヤ。
  3. 前記金属樹脂複合体は前記タイヤ骨格体の外周部に配置されてベルト部を形成し、かつ下記式(1)の条件を満たす、請求項1又は請求項2に記載のタイヤ。
    23≦ベルト部に含まれる金属樹脂複合体の本数/ベルト部の幅(mm)×100 ・・・ 式(1)
  4. 前記接着層がさらにエラストマーを含み、前記エラストマーの含有率が接着層全体の5質量%〜40質量%である、請求項1〜請求項3のいずれか1項に記載のタイヤ。
  5. 前記タイヤ骨格体に含まれる前記樹脂材料がポリアミド系熱可塑性エラストマーを含む、請求項1〜請求項のいずれか1項に記載のタイヤ。
JP2017555995A 2015-12-16 2016-12-06 タイヤ Active JP6745284B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2015245425 2015-12-16
JP2015245425 2015-12-16
PCT/JP2016/086209 WO2017104483A1 (ja) 2015-12-16 2016-12-06 タイヤ

Publications (2)

Publication Number Publication Date
JPWO2017104483A1 JPWO2017104483A1 (ja) 2018-10-04
JP6745284B2 true JP6745284B2 (ja) 2020-08-26

Family

ID=59056448

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017555995A Active JP6745284B2 (ja) 2015-12-16 2016-12-06 タイヤ

Country Status (5)

Country Link
US (1) US20180361795A1 (ja)
EP (1) EP3392061B1 (ja)
JP (1) JP6745284B2 (ja)
CN (1) CN108472993B (ja)
WO (1) WO2017104483A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3805013A4 (en) * 2018-05-30 2022-02-23 Bridgestone Corporation COMPOSITE RESIN METAL COMPONENT FOR TIRES, PRODUCTION METHOD THEREOF, AND TIRE

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5280334A (en) * 1975-12-27 1977-07-06 Mitsui Petrochem Ind Ltd Method of adhering polyolefin and polar substrate
JP3034130B2 (ja) 1992-06-02 2000-04-17 株式会社三光開発科学研究所 熱可塑性ポリウレタンの製造方法
US6288171B2 (en) * 1998-07-01 2001-09-11 Advanced Elastomer Systems, L.P. Modification of thermoplastic vulcanizates using random propylene copolymers
JP4447159B2 (ja) * 2000-12-26 2010-04-07 株式会社トクヤマ 金属ラミネート用積層フィルム
US7541402B2 (en) * 2002-10-15 2009-06-02 Exxonmobil Chemical Patents Inc. Blend functionalized polyolefin adhesive
JP4193587B2 (ja) 2003-05-26 2008-12-10 宇部興産株式会社 ポリアミド系エラストマー及びその製造方法
JP4975279B2 (ja) * 2005-06-24 2012-07-11 東燃化学合同会社 包装用接着剤及びそれを用いてなる易開封性包装体
EP1940615B1 (en) * 2005-10-27 2014-03-26 ExxonMobil Chemical Patents Inc. Construction comprising tie layer
WO2011025587A1 (en) * 2009-08-27 2011-03-03 Exxonmobil Chemical Patents Inc. Polyolefin adhesive compositions and method of making thereof
EP2450389B1 (de) * 2010-11-08 2015-03-18 EMS-Patent AG Haftvermittler für textile Verstärkungseinlagen und dessen Verwendung
RU2573479C1 (ru) * 2011-12-26 2016-01-20 Бриджстоун Корпорейшн Резиновая композиция и шина с ее использованием
US20160152079A1 (en) 2013-04-25 2016-06-02 Bridgestone Corporation Tire
JP6051141B2 (ja) * 2013-10-22 2016-12-27 日新製鋼株式会社 複合体およびその製造方法

Also Published As

Publication number Publication date
EP3392061B1 (en) 2021-02-17
EP3392061A1 (en) 2018-10-24
CN108472993A (zh) 2018-08-31
EP3392061A4 (en) 2018-12-05
US20180361795A1 (en) 2018-12-20
CN108472993B (zh) 2021-05-28
WO2017104483A1 (ja) 2017-06-22
JPWO2017104483A1 (ja) 2018-10-04

Similar Documents

Publication Publication Date Title
JP6356664B2 (ja) タイヤ
WO2013129525A1 (ja) タイヤ
US10821690B2 (en) Tire and method for manufacturing tire
JP6057981B2 (ja) タイヤ
JP6086643B2 (ja) タイヤ
WO2013129627A1 (ja) タイヤ
WO2017104484A1 (ja) タイヤ
JP6138412B2 (ja) タイヤ
WO2017104472A1 (ja) タイヤ
JP6785245B2 (ja) タイヤ
JP5840535B2 (ja) タイヤ
JP2018176872A (ja) タイヤ用樹脂金属複合部材及びタイヤ
JP5840534B2 (ja) タイヤ
JP5905298B2 (ja) タイヤ
JP6745284B2 (ja) タイヤ
WO2017104214A1 (ja) タイヤ
JP7221951B2 (ja) タイヤ用樹脂金属複合部材、及びその製造方法、並びにタイヤ
JP6114498B2 (ja) タイヤ
JP6049273B2 (ja) タイヤ
JP5905289B2 (ja) タイヤ
JP5865732B2 (ja) タイヤ
JP2020062935A (ja) タイヤ用ワイヤー樹脂複合部材、及びタイヤ
JP2016035067A (ja) タイヤ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200407

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200514

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200707

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200803

R150 Certificate of patent or registration of utility model

Ref document number: 6745284

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250