WO2018128099A1 - 二次電池 - Google Patents

二次電池 Download PDF

Info

Publication number
WO2018128099A1
WO2018128099A1 PCT/JP2017/046214 JP2017046214W WO2018128099A1 WO 2018128099 A1 WO2018128099 A1 WO 2018128099A1 JP 2017046214 W JP2017046214 W JP 2017046214W WO 2018128099 A1 WO2018128099 A1 WO 2018128099A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
negative electrode
volume
secondary battery
electrode
Prior art date
Application number
PCT/JP2017/046214
Other languages
English (en)
French (fr)
Inventor
野田 優
Original Assignee
学校法人早稲田大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人早稲田大学 filed Critical 学校法人早稲田大学
Priority to US16/476,499 priority Critical patent/US11081701B2/en
Priority to CN201780081766.9A priority patent/CN110199427B/zh
Publication of WO2018128099A1 publication Critical patent/WO2018128099A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/80Porous plates, e.g. sintered carriers
    • H01M4/808Foamed, spongy materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/581Chalcogenides or intercalation compounds thereof
    • H01M4/5815Sulfides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/663Selection of materials containing carbon or carbonaceous materials as conductive part, e.g. graphite, carbon fibres

Definitions

  • the present invention relates to a secondary battery.
  • a lithium ion secondary battery uses a lithium transition metal composite oxide such as lithium cobaltate (LiCoO 2 ) as a positive electrode active material, a carbon material such as graphite (C) as a negative electrode active material, and has a crystal structure of the active material.
  • LiCoO 2 lithium cobaltate
  • C graphite
  • the lithium transition metal composite oxide and the carbon material have a large mass and volume with respect to lithium ions that can be held, and it is difficult to further increase the capacity density.
  • An object of the present invention is to provide a secondary battery that can maintain the stability of the entire battery during charge and discharge and has a high capacity density.
  • a secondary battery according to the present invention includes an electrode structure in which a positive electrode whose volume changes by expansion or contraction during discharging or charging, and a negative electrode whose volume changes opposite to the positive electrode is provided via a separator.
  • the positive electrode and the negative electrode have a volume ratio of 1.1 or more, which is a value obtained by dividing the volume when expanded by the volume when contracted, and the positive electrode or the negative electrode has a volume ratio of 1.9 or more.
  • the total volume of the positive electrode and the negative electrode at the time of discharging, and the total volume of the positive electrode and the negative electrode at the time of charging divided by a larger value and a smaller value.
  • the ratio is 1.2 or less.
  • the positive electrode and the negative electrode in the electrode structure have a large volume change at the time of charge / discharge, while using a high capacity density active material can increase the capacity density of the secondary battery.
  • One of the positive electrode and the negative electrode has a large volume ratio of 1.9 or more during charge / discharge.
  • the total volume ratio that is a value obtained by dividing a small value by a large value is 1.2 or less. It is. Since the volume change at the time of charging / discharging is restricted as the whole electrode structure, the deterioration of the structure is suppressed and the stability can be maintained.
  • the secondary that combines the overall stability and high capacity density during charging and discharging A battery can be provided.
  • FIG. 1A is at the time of discharge
  • FIG. 1B is sectional drawing at the time of charge
  • FIG. 2A is a schematic diagram illustrating a configuration of a positive electrode or a negative electrode included in the electrode structure illustrated in FIG. 1
  • FIG. 2A is a positive electrode during discharge
  • FIG. 2B is a positive electrode during charging
  • FIG. 2C is a negative electrode during discharge
  • FIG. 2A is a schematic diagram showing the structure of the negative electrode at the time of charge.
  • It is a schematic diagram of the electrode structure in which the metal wire was provided in the positive electrode and the negative electrode.
  • FIG. 1A is at the time of discharge
  • FIG. 1B is sectional drawing at the time of charge
  • FIG. 2A is a positive electrode during discharge
  • FIG. 2B is a positive electrode during charging
  • FIG. 2C is a negative electrode during discharge
  • FIG. It is a schematic diagram showing the structure of the negative electrode at the time of charge.
  • It is a schematic diagram of the electrode structure in
  • FIG. 4A is a sectional view at the time of discharge
  • FIG. 4B is at the time of charge.
  • It is sectional drawing showing the structure of the electrode structure contained in the conventional secondary battery
  • FIG. 5A is the sectional view at the time of discharge
  • FIG. 5B is at the time of charge. It is the graph which plotted the volume capacity density with respect to the mass capacity density of the secondary battery of an Example and a comparative example.
  • the secondary battery according to the present embodiment includes an electrode structure in which a positive electrode and a negative electrode are provided via a separator.
  • the electrode structure will be described with reference to FIGS. 1A and 1B.
  • the electrode structure 10 is provided with a positive electrode 20 on one surface of the separator 12 and a negative electrode 30 on the other surface of the separator 12.
  • the positive electrode 20 expands during discharging (FIGS. 1A and 20A) and contracts during charging (FIGS. 1B and 20B).
  • the negative electrode 30 contracts during discharging (FIGS. 1A and 30A) and expands during charging (FIGS. 1B and 30B).
  • the electrode structure 10A during discharge includes an expanded positive electrode 20A and a contracted negative electrode 30A provided via a separator 12.
  • the electrode structure 10B at the time of charging includes a contracted positive electrode 20B and an expanded negative electrode 30B provided via the separator 12.
  • the positive electrode 20 and the negative electrode 30 have a volume ratio of 1.1 or more, for example, 1.1, which is a value obtained by dividing the volume when expanded by the volume when contracted.
  • the positive electrode 20 and the negative electrode 30 preferably have a volume ratio of 1.2 or more, more preferably 1.4 or more, which is a value obtained by dividing the volume when expanded by the volume when contracted.
  • One of the positive electrode 20 and the negative electrode 30 has a volume ratio of 1.9 or more, for example, 1.9, which is a value obtained by dividing the volume when expanded by the volume when contracted.
  • Either one of the positive electrode 20 and the negative electrode 30 has a volume ratio, which is a value obtained by dividing the volume when expanded by the volume when contracted, preferably 2.2 or more, and more preferably 2.8 or more. .
  • the positive electrode 20 and the negative electrode 30 do not substantially change the area of the surface in contact with the separator 12 during charge and discharge, and expand or contract as the film thickness changes. For this reason, the volume ratio can be calculated from the film thickness.
  • the volume ratio of the positive electrode 20 is obtained by dividing the film thickness during discharge (20A) by the film thickness during charge (20B).
  • the volume ratio of the negative electrode 30 is obtained by dividing the film thickness during charging (30B) by the film thickness during discharging (30A).
  • the total volume of the positive electrode 20 and the negative electrode 30 is a total volume ratio (hereinafter referred to as a total volume charge / discharge time) which is a value obtained by dividing a large value during discharge (FIG. 1A) or charge (FIG. 1B) by a small value. (Also referred to as a ratio) is 1.2 or less, for example 1.2.
  • the ratio of the total volume during charge / discharge is preferably 1.1 or less, and more preferably 1.05 or less.
  • the ratio of the total volume of the positive electrode 20 and the negative electrode 30 during charging / discharging can be determined using the total film thickness of the positive electrode 20 and the negative electrode 30.
  • Total film thickness of positive electrode 20A and negative electrode 30A during discharge hereinafter referred to as total film thickness of positive and negative electrodes during discharge
  • total film thickness of positive and negative electrodes during charging total film thickness of positive and negative electrodes during charging
  • the ratio during charging / discharging of the total volume is obtained by dividing the small value by the large value.
  • the positive electrode 20 (20A, 20B) is included in the first three-dimensional current collector 22 made of a sponge-like structure of CNT and the first three-dimensional current collector 22.
  • the positive electrode active material 24A included in the positive electrode 20A during discharge (FIG. 2A) is, for example, Li 2 S
  • the positive electrode active material 24B included in the positive electrode 20B during charge (FIG. 2B) is, for example, S.
  • the positive electrode active material may be in an intermediate state such as Li 2 S 2, and the positive electrode can also be formed of other materials.
  • the positive electrode active materials 24 ⁇ / b> A and 24 ⁇ / b> B may have a structure that covers the three-dimensional current collector 22.
  • the positive electrode active materials 24A and 24B may have a particulate structure, or may have another structure.
  • the positive electrode active material 24A and the positive electrode active material 24B may have different structures.
  • the negative electrode 30 (30A, 30B) is included in the second three-dimensional current collector 32 made of a sponge-like structure of CNT and the second three-dimensional current collector 32.
  • Negative electrode active material 34 (34A, 34B).
  • the negative electrode active material 34A included in the negative electrode 30A during discharge (FIG. 2C) is, for example, Si
  • the negative electrode active material 34B included in the negative electrode 30B during charge is, for example, Li 15 Si 4 .
  • the negative electrode active material may be in a state where the composition of Li and Si is different like Li 22 Si 5 , and the negative electrode may be composed of other materials such as Sn.
  • the negative electrode active materials 34 ⁇ / b> A and 34 ⁇ / b> B may have a structure that covers the three-dimensional current collector 32. It may have a particulate structure or may have another structure.
  • the negative electrode active material 34A and the negative electrode active material 34B may have different structures.
  • the negative electrode 30 preferably has the same porosity as that of the positive electrode 20, but does not necessarily have to have the same porosity. Even in a state where the gap is filled with the electrolyte, the volume ratio including the electrolyte is referred to as the porosity. There is no particular problem if the difference between the porosity of the negative electrode 30 and the porosity of the positive electrode 20 is within a range of about ⁇ 30%.
  • the positive electrode 20 and the negative electrode 30 can increase the volumetric capacity density as the porosity decreases. However, when the porosity is too small, the electrolyte does not easily penetrate into the electrode, or the volume change during charge / discharge increases. End up.
  • the porosity of the positive electrode 20 and the negative electrode 30 is preferably 5% or more, and more preferably 10% or more. On the other hand, when the porosity is too large, the volume capacity density is lowered.
  • the porosity of the positive electrode 20 and the negative electrode 30 is preferably less than 80%, more preferably less than 70%, and most preferably 60% or less.
  • the porosity is a volume ratio of the void.
  • the size of the porosity in the positive electrode 20 and the negative electrode 30 can be adjusted, for example, by changing the porosity of the three-dimensional current collector or changing the amount of the active material.
  • the positive electrode 20 and the negative electrode 30 preferably do not contain a metal foil. Including a metal foil in contact with the positive electrode and the negative electrode over the entire surface makes the electrode heavier, the metal foil inhibits the volume change of the positive electrode and the negative electrode, and stress between the metal foil and the positive electrode and between the metal foil and the negative electrode This is because it causes deterioration.
  • the positive electrode 20 includes a first three-dimensional current collector 22 made of a CNT sponge-like structure, and a positive electrode active material 24 (24A, 24B) contained in the first three-dimensional current collector 22. It consists of.
  • the negative electrode 30 includes a second three-dimensional current collector 32 made of a CNT sponge-like structure and a negative electrode active material 34 (34A, 34B) contained in the second three-dimensional current collector 32. Is done.
  • the positive electrode 20 and the negative electrode 30 may include a metal wire 40 that partially contacts the positive electrode 20 and the negative electrode 30 as shown in FIG.
  • the metal wire 40 can be changed to a metal grid or the like.
  • the metal wire 40 and the metal grid are lighter than the metal foil, and in the structure in which the positive electrode 20 and the negative electrode 30 are partially in contact with each other, the volume change of the positive electrode 20 and the negative electrode 30 is not inhibited and the generation of stress can be suppressed. It is.
  • the metal wire 40 of the positive electrode 20 and the metal wire 40 of the negative electrode 30 each have a comb shape, and the comb teeth of the metal wire 40 of the positive electrode 20 and the comb teeth of the metal wire 40 of the negative electrode 30 are shown.
  • the present invention is not limited to this, and the planar shape may be such that the comb-tooth portion of the metal wire 40 of the positive electrode 20 is disposed between the two comb-tooth portions of the metal wire of the negative electrode 30.
  • the shape of the metal wire 40 of the positive electrode 20 and the metal wire 40 of the negative electrode 30 can be various other shapes. As for the manner in which the positive electrode 20 and the negative electrode 30 are in contact with the metal wire 40, as shown in FIG. 3, the positive electrode 20 and the negative electrode 30 may be in contact with each other, or the positive electrode 20 and the negative electrode 30 may be in contact with each other. It may be.
  • the positive electrode 20 and the negative electrode 30 are reversibly changed in volume by a flexible CNT sponge-like structure without being limited in volume change during charging and discharging. And the increase in the mass resulting from metal foil is avoided, and it leads to the weight reduction of a secondary battery.
  • the electrode structure as described above is housed in a container together with the electrolytic solution to constitute the secondary battery of this embodiment.
  • the secondary battery of this embodiment is a lithium secondary battery in which Li is contained in the positive electrode during discharge and the negative electrode during charging.
  • the mass ratio of Li is preferably 5% or more of the entire secondary battery.
  • the mass ratio of Li is more preferably 7% or more, and most preferably 9% or more of the entire secondary battery.
  • the mass ratio of Li is desirably about 18% of the whole secondary battery at the maximum.
  • the mass ratio of S is preferably 12% or more of the entire secondary battery.
  • the mass ratio of S is more preferably 16% or more, and most preferably 20% or more of the entire secondary battery. It is desirable that the mass ratio of S is about 40% of the entire secondary battery at the maximum.
  • the mass ratio of Si is preferably 6% or more of the entire secondary battery.
  • the mass ratio of Si is more preferably 8% or more of the whole secondary battery, and most preferably 10% or more.
  • the mass ratio of Si is desirably about 20% of the entire secondary battery at the maximum.
  • an electrode structure is obtained by laminating a positive electrode and a negative electrode on one surface and the other surface of a separator, respectively.
  • the separator can be composed of a microporous polypropylene film.
  • a polyolefin-based, polyester-based, polyacrylonitrile-based, polyphenylene sulfide-based, polyimide-based or fluororesin-based microporous film or nonwoven fabric may be used.
  • the positive electrode can be formed by co-dispersing and filtering CNT as a raw material for the sponge-like structure and Li 2 S as the positive electrode active material.
  • a self-supporting film is formed by filtration using a dispersion liquid in which CNT and nanoparticulate Li 2 S are dispersed in a dispersion medium such as ethanol or isopropanol.
  • the ratio of CNT to Li 2 S is preferably about 1: 1 to 1: 100 by mass.
  • the porosity of the positive electrode can be adjusted by changing the dispersion state of the ratios and CNT and Li 2 S of CNT and Li 2 S. Moreover, you may adjust the porosity of a positive electrode by giving processes, such as a press, after film
  • the CNT to be used is preferably long (diameter of about 1 to 15 nm, average length of about 10 to 1000 ⁇ m).
  • Such CNTs can be synthesized by a CVD method.
  • a CVD method For example, Japanese Patent No. 5447367, Japanese Patent No. 5862559, DY Kim, H. Sugime, K. Hasegawa, T. Osawa, and S. Noda, Carbon 49 (6), 1972-1979 (2011).
  • CNTs may be synthesized by a floating catalyst CVD method or a substrate-supported catalyst CVD method.
  • Nanoparticulate Li 2 S can be obtained by a general method such as pulverization of Li 2 S powder by a ball mill method.
  • Li 2 S as the positive electrode active material is taken into the gaps in the first three-dimensional current collector made of the CNT sponge-like structure to form the positive electrode.
  • the negative electrode can be formed by co-dispersing and filtering CNT as a raw material for the sponge-like structure and Si as the negative electrode active material.
  • a self-supporting film is formed by filtration using a dispersion liquid in which CNT and nanoparticulate Si are dispersed in a dispersion medium such as ethanol or isopropanol.
  • the ratio of CNT to Si is preferably about 1: 1 to 1: 100 by mass.
  • CNTs are preferably long as described above.
  • Nanoparticulate Si can be obtained by various methods. Examples thereof include a method of boiling Si in an inert gas by a gas evaporation method, a method of thermally decomposing a silane-based gas by a CVD method, and a method of pulverizing a lump of silicon by a ball mill method.
  • the porosity of the negative electrode can also be adjusted by applying a treatment such as pressing after the film production, which changes the ratio of CNT to Si or the dispersion state of CNT and Si.
  • CNT forms a network by van der Waals force while incorporating nanoparticulate Si.
  • Si as the negative electrode active material is taken into the gaps in the second three-dimensional current collector made of the CNT sponge-like structure to form the negative electrode.
  • the positive electrode and negative electrode obtained by the above steps are laminated on one surface and the other surface of the separator to produce an electrode structure.
  • the ratio of the total volume of the positive electrode and the negative electrode during charging / discharging is 1.2 or less.
  • the ratio of charge / discharge of the total volume can be controlled by adjusting the thickness of the positive electrode and the negative electrode and / or the size of the porosity.
  • the porosity can be adjusted by changing the porosity of the three-dimensional current collector and the amount of the active material.
  • the electrode structure has a metal wire for power transmission disposed on the surface thereof and is accommodated in the container together with the electrolytic solution.
  • the electrolytic solution is not particularly limited, and a commonly used electrolytic solution such as a nonaqueous electrolytic solution, an ionic liquid, and a gel electrolytic solution can be used.
  • the nonaqueous electrolytic solution can be prepared by dissolving 1.0 mol / liter of LiPF 6 in a mixed solution of ethylene carbonate (EC) and dimethyl carbonate (DMC).
  • EC ethylene carbonate
  • DMC dimethyl carbonate
  • the container is not particularly limited, and metal cans such as iron, stainless steel, and aluminum generally used as battery cans can be used. From the viewpoint of energy density per weight, a metal resin composite material in which a metal foil and a resin film are laminated is preferable.
  • the metal wire for example, fine metal wires having a diameter of 10 to 100 ⁇ m can be placed on the surfaces of the positive electrode and the negative electrode at intervals of 0.1 to 10 mm.
  • the metal wire for the positive electrode is preferably composed of a metal such as aluminum or stainless steel.
  • the metal wire for the negative electrode is preferably composed of a metal such as copper, nickel, and stainless steel.
  • a secondary battery according to the present embodiment having a predetermined electrode structure is manufactured through a predetermined process as necessary.
  • the secondary battery according to the present embodiment includes an electrode structure in which the volume change as a whole is suppressed while the volumes of the positive electrode and the negative electrode change by a predetermined ratio or more during charging and discharging.
  • the ratio of the total volume of the positive electrode and the negative electrode during charging / discharging is 1.2 or less, the volume change of the entire electrode structure is suppressed. Thereby, deterioration of the structure is suppressed, stability can be maintained during charging and discharging, and cycle life is also improved.
  • the positive electrode and the negative electrode included in the electrode structure change in volume during charge and discharge, and the volume when expanded is 1.1 times or more the volume when contracted. Moreover, either one of the positive electrode and the negative electrode has a volume when expanded of 1.9 times or more of a volume when contracted.
  • the larger the volume ratio which is a value obtained by dividing the volume at the time of expansion by the volume at the time of contraction, the larger the capacity density, the larger the volume ratio.
  • the present invention is not limited to the above-described embodiment, and can be appropriately changed within the scope of the gist of the present invention.
  • the positive electrode 20 containing S is used, but instead of S, various transition metal oxides, various transition metal fluorophosphates, various transition metal silicates, redox activity
  • a positive electrode containing a polymer compound, an organic compound or the like can also be used.
  • the negative electrode 30 containing Si was used, instead of Si, various carbon materials, such as Sn, metal hydride, metal sulfide, hard carbon, and graphene oxide, the polymer which has redox activity
  • a negative electrode containing a compound, an organic compound, or the like can also be used. In some cases, two or more kinds of raw materials can be combined and used for the positive electrode 20 or the negative electrode 30.
  • the first three-dimensional current collector in the positive electrode 20 and the second three-dimensional current collector in the negative electrode 30 are CNT sponge-like structures, but are other sponges of nanocarbon materials such as graphene. There may be.
  • the secondary battery including the electrode structure including the pair of positive and negative electrodes has been described.
  • the present invention is not limited to this.
  • a secondary battery including an electrode structure 100 including a plurality of positive electrodes 20 and negative electrodes 30 provided via a separator 12 may be used.
  • the electrode structure 100A during discharge includes an expanded positive electrode 20A and a contracted negative electrode 30A.
  • the electrode structure 100B during charging includes a contracted positive electrode 20B and an expanded negative electrode 30B.
  • the positive electrode 20 has a volume ratio of 1.1 or more, which is a value obtained by dividing the total volume when expanded (20A) by the total volume when contracted (20B).
  • the negative electrode 30 has a volume ratio of 1.1 or more, which is a value obtained by dividing the total volume during expansion (30B) by the total volume during contraction (30A).
  • Either one of the positive electrode 20 and the negative electrode 30 has a volume ratio of 1.9 or more, which is a value obtained by dividing the total volume during expansion by the total volume during contraction.
  • the positive electrode 20 and the negative electrode 30 have a total volume ratio of 1.2 or less, which is a value obtained by dividing a large value by a small value among the total volume during discharging (FIG. 4A) and the total volume during charging (FIG. 4B). It is.
  • the ratio of the total volume of the positive electrode 20 and the negative electrode 30 at the time of discharge to the total volume of the positive electrode 20 and the negative electrode 30 at the time of charge is the total film thickness (discharge of the positive electrode 20A and the negative electrode 30A in the electrode structure 100A at the time of discharge.
  • the positive and negative electrode total film thickness and the total film thickness of the positive electrode 20B and the negative electrode 30B (positive and negative electrode total film thickness during charging) in the electrode structure 100B during charging. it can.
  • Examples Table 1 below summarizes the configurations of the positive electrode and the negative electrode in secondary batteries of Examples and Comparative Examples. The numerical values in the table were obtained by a predetermined calculation formula with conditions set as described later.
  • lithium cobalt oxide LiCoO 2 in a discharged state and Li 0.5 CoO 2 in a charged state
  • graphite C in a discharged state and LiC 6 in a charged state
  • Comparative Example 2 uses lithium cobalt oxide (LiCoO 2 in a discharged state, Li 0.5 CoO 2 in a charged state) as a positive electrode active material, and silicon (Si in a discharged state, Li 15 Si 4 in a charged state) as a negative electrode active material. It is the used secondary battery.
  • Comparative Example 3 is a secondary battery that uses sulfur (Li 2 S in the discharged state, S in the charged state) as the positive electrode active material, and graphite (C in the discharged state, LiC 6 in the charged state) as the negative electrode active material. is there.
  • Example 1 to 6 and Comparative Example 4 the porosity of the positive electrode and the negative electrode is changed from 10% to 80%. In Comparative Examples 1 to 3 and 5, the porosity of the positive electrode and the negative electrode was 20%.
  • the positive electrode and the negative electrode are composed of only a three-dimensional current collector made of a CNT sponge-like structure and an active material.
  • the positive electrode includes an Al foil current collector, and the negative electrode includes a Cu foil current collector.
  • the positive electrode includes an Al foil current collector, and the negative electrode is composed of only a three-dimensional current collector made of a CNT sponge-like structure and an active material.
  • the negative electrode includes a Cu current collector, and the positive electrode is composed of only a three-dimensional current collector made of a CNT sponge-like structure and an active material.
  • FIGS. 5A and 5B schematically show the state of the electrode structure in the secondary battery of Comparative Example 1 during discharging and charging.
  • the electrode structure 200 includes a positive electrode 220 and a negative electrode 230 provided via a separator 212.
  • the positive electrode 220 includes an Al foil current collector 222 and a positive electrode active material 224
  • the negative electrode 230 includes a Cu foil current collector 232 and a negative electrode active material 234.
  • the metal foil current collector Al foil current collector 222, Cu foil current collector 232 limits the volume change of the electrode due to charge and discharge and increases the mass of the secondary battery.
  • the positive electrode 220A includes LiCoO 2 as the positive electrode active material 224A, and the negative electrode 230A includes C as the negative electrode active material 232A.
  • the positive electrode 220B includes Li 0.5 CoO 2 as the positive electrode active material 224B, and the negative electrode 230B includes LiC 6 as the negative electrode active material 234B.
  • the positive electrode active material mass (a) during discharge is the mass of the positive electrode per unit area during discharge.
  • the positive electrode active material mass (a) at the time of discharge was calculated using the charge amount obtained from the positive and negative electrode pair reference capacity and the molecular weight of Li 2 S (45.95 g / mol).
  • the positive electrode mass (b) during discharge is obtained by adding the mass per unit area of the three-dimensional current collector, binder, and metal foil current collector to the positive electrode active material mass (a) during discharge.
  • Examples 1 to 6 and Comparative Example 4 do not contain a binder and a metal foil current collector.
  • the mass (a) of the positive electrode active material during discharge calculated as described above is 34.3 g / m 2 .
  • the mass ratio of the three-dimensional current collector to the positive electrode mass is set to 10% and the mass per unit area of the three-dimensional current collector is calculated, it is 3.8 g / m 2 .
  • the value of the positive electrode mass (b) at the time of discharge is a total value of these, and is 38.1 g / m 2 .
  • the weight ratio of the binder to the weight of the positive electrode is 5%
  • the weight ratio of the conductive material is 5%
  • the thickness of the positive electrode metal foil current collector (Al foil) is 7.5 ⁇ m.
  • the thickness of 7.5 ⁇ m is that the 15 ⁇ m thick Al foil is shared by the positive electrodes on both sides, and half the thickness of the Al foil is used as the thickness of the positive electrode current collector for one positive electrode.
  • a polymer compound density 1.0 g / cm 3
  • PVDF polyvinylidene fluoride
  • the positive electrode film thickness (c) during discharge was calculated as follows. Based on the calculated mass per unit area of the positive electrode active material, the three-dimensional current collector and the binder, and the density of each material, the film thicknesses assumed to be dense (hereinafter referred to as “dense film thickness”). Calculate The total film thickness of the above film thickness and the metal foil current collector is determined. A void film thickness (a value assuming that voids are gathered) is calculated so that the void ratio becomes a predetermined value set. The dense film thickness of the positive electrode active material, the three-dimensional current collector, and the binder, the film thickness of the metal foil current collector, and the gap film thickness are added together to calculate the positive electrode film thickness (c) during discharge.
  • the dense film thickness of the positive electrode active material is Calculated as 20.7 ⁇ m.
  • the dense film thickness of the three-dimensional current collector is calculated as 1.9 ⁇ m from the mass per unit area of the three-dimensional current collector of 3.8 g / m 2 and the density of CNTs of 2 g / cm 3 .
  • the void thickness is calculated for the porosity to be 10%, it is calculated to be 2.5 ⁇ m.
  • the positive electrode film thickness (c) during discharge is 25.1 ⁇ m.
  • the negative electrode active material mass during discharge (d), the negative electrode mass during discharge (e), and the negative electrode film thickness during discharge (f) were also calculated in the same way as the positive electrode.
  • the thickness of the negative electrode metal foil current collector (Cu foil) used was 7.5 ⁇ m, which is half the thickness of 15 ⁇ m of Cu foil.
  • the total positive and negative film thickness (c + f) during discharge is the total film thickness of the positive electrode film thickness (c) during discharge and the negative electrode film thickness (f) during discharge.
  • the volume ratio of the positive electrode and the negative electrode in Table 1 above is a value obtained by dividing the film thickness when expanded by the film thickness of the positive electrode when contracted.
  • For the sulfur positive electrode the value obtained by dividing the film thickness during discharge by the film thickness during charge.
  • For the lithium cobaltate positive electrode the value obtained by dividing the film thickness during charging by the film thickness during discharge.
  • For silicon negative electrode and graphite negative electrode the value obtained by dividing the film thickness at the time of charging by the film thickness at the time of discharging.
  • the volume ratio of the total positive and negative electrodes is a value obtained by dividing a large value by a small value among the total positive and negative film thickness during discharge and the total positive and negative film thickness during charging.
  • Table 2 below shows the configurations of the secondary batteries of the examples and comparative examples together with the mass capacity density and the volume capacity density.
  • the secondary battery has a structure in which an electrode structure as shown in Table 1 is housed in a container together with an electrolytic solution.
  • the Li mass (g) per unit area is calculated from the charge amount calculated from the positive and negative electrode pair reference capacity and the atomic amount of Li (6.941 g / mol).
  • the positive electrode active material was Li 2 S
  • the Li utilization was calculated as 100%
  • the positive electrode active material was LiCoO 2
  • the Li utilization was calculated as 50%.
  • S mass per unit area (a ′′) is the mass of positive electrode active material during charging (a ′) described in Table 1 for Examples 1 to 5 and Comparative Examples 3 to 5 using S as the positive electrode active material. Was used.
  • Comparative Example 1 and Comparative Example 2 since S is not used for the positive electrode active material, the S mass (a ′′) per unit area is zero.
  • the Si mass per unit area (d ′′) is the negative electrode active material mass during discharge (d) described in Table 1 above for Examples 1 to 5 and Comparative Examples 2, 4 and 5 using Si as the negative electrode active material. ) Was used. In Comparative Example 1 and Comparative Example 3, since Si is not used for the negative electrode active material, the Si mass (d ′′) per unit area is zero.
  • the positive / negative pair mass (h) was calculated by adding the mass per unit area of the separator, the electrolytic solution, and the battery container to the positive electrode mass (b) during discharge and the negative electrode mass (e) during discharge.
  • the mass per unit area of the separator was 7.5 g / m 2 common to the examples and comparative examples, and the mass per unit area of the electrolyte solution was 22.5 g / m 2 common to the examples and comparative examples.
  • the mass per unit area of the battery container was a value at which the mass ratio of the container to the total mass of the secondary battery was 20%.
  • the Li mass ratio is 5.0 mass% or more
  • the S mass ratio is 12 mass% or more
  • the Si mass ratio is 6 mass% or more.
  • the mass capacity density (n) is obtained by multiplying the positive and negative electrode pair reference capacity (k) by the electromotive force (l) which is a value determined by the positive and negative electrode active material, and the positive and negative electrode pair reference mass (h )
  • the volume capacity density (o) is obtained by multiplying the positive and negative electrode pair reference capacity (k) by the electromotive force (l) which is a value determined by the positive and negative electrode active material, and the positive and negative electrode pair film thickness (i ) Or a pair of positive and negative electrodes divided by the larger value of the film thickness (j) during charging.
  • the positive and negative electrode pair film thickness (i) and the positive and negative electrode pair film thickness (j) were calculated by adding the separator film thickness and the battery container film thickness to the positive and negative electrode total film thickness during discharge and charge.
  • the separator film thickness was 15 ⁇ m common to the examples and comparative examples.
  • the film thickness of the battery container was set to a value at which the ratio of the container thickness to the total thickness of the secondary battery was 5%.
  • FIG. 6 shows the results plotted with the mass capacity density (n) on the horizontal axis and the volume capacity density (o) on the vertical axis.
  • the secondary batteries of Examples 1 to 6 have a mass capacity density of 400 Wh / kg or more and a volume capacity density of 700 Wh / L or more.
  • the volume ratio of the positive electrode and the negative electrode during charging / discharging is 1.1 or more, and the volume ratio of the negative electrode is 1.9 or more. Furthermore, the total volume of the positive electrode and the negative electrode is 1.2 or less during charging / discharging. In Examples 1 to 6, the volume ratio of the positive electrode and the negative electrode is 1.1 or more, the volume ratio of the positive electrode or the negative electrode is 1.9 or more, and the ratio of the total volume of the positive electrode and the negative electrode is 1.2 or less. All conditions are met.
  • the secondary batteries of the examples have higher Li mass ratios, S mass ratios, and Si mass ratios than the comparative examples.
  • the high capacity density of the secondary batteries of the examples is due to these requirements.
  • Comparative Examples 1 to 5 although the ratio of the total volume of the positive electrode and the negative electrode during charging / discharging is 1.2 or less, the respective volume ratios of the positive electrode and the negative electrode do not satisfy the above-mentioned conditions.
  • the positive electrode and the negative electrode have a volume ratio during charge / discharge of less than 1.1.
  • the volume ratio during charging and discharging of the positive electrode is less than 1.1, and in Comparative Example 3, the volume ratio during charging and discharging of the negative electrode is less than 1.1.
  • the volume ratio of the positive electrode and the negative electrode during charging / discharging is less than 1.9.
  • the secondary battery of the comparative example cannot have a mass capacity density of 400 Wh / kg or more and a volume capacity density of 700 Wh / L or more.
  • the positive and negative electrode porosity is 80% (Comparative Example 4)
  • at least one of the positive electrode and the negative electrode contains a metal foil (Comparative Examples 1 to 3 and 5)
  • the Li mass ratio is less than 5 mass%.
  • S mass ratio is less than 12 mass% (Comparative Examples 1 to 3, 5)
  • Si mass ratio is less than 6 mass% (Comparative Examples 1 to 3, 5) This is one reason why the capacity density cannot be increased.
  • Electrode structure 12 Separator 20, 20A, 20B Positive electrode 30, 30A, 30B Negative electrode

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

充放電の際に電池全体の安定性を維持でき、容量密度の高い二次電池を提供する。放電時または充電時に膨張または収縮して体積が変化する正極20と、前記正極20とは逆に体積が変化する負極30とがセパレータ12を介して設けられた電極構造体10を備え、前記正極20および前記負極30は、膨張時の体積を収縮時の体積で割った値である体積比が1.1以上であり、前記正極20または前記負極30は、前記体積比が1.9以上であり、前記放電時における前記正極20と前記負極30との合計体積、および前記充電時における前記正極20の体積と前記負極30の体積との合計体積のうち、大きい値で小さい値を割った値である合計体積比が1.2以下であることを特徴とする。

Description

二次電池
 本発明は、二次電池に関する。
 近年、高エネルギー密度二次電池の開発が活発に行われているが、エネルギーシステムを本格的に支えるには、更なる高容化と低コスト化が要求される。リチウムイオン二次電池は、正極活物質にコバルト酸リチウム(LiCoO2)等のリチウム遷移金属複合酸化物を用い、負極活物質に黒鉛(C)等の炭素材料を用い、活物質の結晶構造の隙間にリチウムイオン(Li)を挿入・脱離することにより、正極・負極ともに体積変化が小さく、安定な充放電が実現されている。しかしながら、リチウム遷移金属複合酸化物および炭素材料は、保持できるリチウムイオンに対する質量や体積が大きく、さらなる高容量密度化は困難である。
 そこで、活物質に、硫黄、シリコン、スズ等の、リチウムと反応して化合物を形成する材料を用いた、高容量電池の研究が進められている。硫黄やシリコンからなる活物質を用いた場合には、活物質に対して反応するリチウムイオンの量が多いため、高容量密度が実現できる一方、充放電時の体積変化が大きい。体積変化は、電池や電極の構造の劣化の原因となる。体積変化を抑制するために、活物質をシェル材料で覆うなどの複合化技術が研究されているが、追加材料により、電極の質量や体積が増加してしまう。また、活物質が膨張できる空隙を電極内に予め設けることで、電極の体積変化を抑える技術も研究されているが、電極体積あたりの容量密度が低下してしまう。電極の体積変化を抑制しつつ、電池容量密度を増加させることは難しい。
 リチウムイオン二次電池において、正極に用いる導電材の凝集を防止し、正極活物質の導通を確実なものとするとともに、容量密度を大きくし、高出力における容量密度の低下を抑制するために、カーボンナノチューブ(以下、CNTと称する)を導電材として用いた正極が提案されている(例えば、特許文献1)。
 しかしながら、充放電時における正極および負極それぞれの体積変化に起因した電池全体の劣化を抑制でき、しかも高容量密度の二次電池は未だ得られていない。
特開2016-48698号公報
 本発明は、充放電の際に電池全体の安定性を維持でき、容量密度の高い二次電池を提供することを目的とする。
 本発明に係る二次電池は、放電時または充電時に膨張または収縮して体積が変化する正極と、前記正極とは逆に体積が変化する負極とがセパレータを介して設けられた電極構造体を備え、前記正極および前記負極は、膨張時の体積を収縮時の体積で割った値である体積比が1.1以上であり、前記正極または前記負極は、前記体積比が1.9以上であり、前記放電時における前記正極と前記負極との合計体積、および前記充電時における前記正極の体積と前記負極の体積との合計体積のうち、大きい値で小さい値を割った値である合計体積比が1.2以下であることを特徴とする。
 本発明によれば、電極構造体における正極および負極は、充放電時の体積変化が大きい一方、高容量密度の活物質を用いることで、二次電池の容量密度を高めることができる。正極および負極のいずれか一方は、充放電時の体積比が1.9以上と大きい。しかしながら、放電時における正極と負極との合計体積、および充電時における正極の体積と負極の体積との合計体積のうち、大きい値で小さい値を割った値である合計体積比が1.2以下である。電極構造体全体として、充放電時における体積変化が制限されているので、構造の劣化は抑制されて安定性を維持できる。
 充放電の際に正極および負極の体積が変化しつつも、全体としての体積変化が抑制された電極構造体を用いるので、充放電時における全体の安定性と高い容量密度とを兼ね備えた二次電池を提供することができる。
本実施形態に係る二次電池に含まれる電極構造体の構成を表わす断面図であり、図1Aは放電時、図1Bは充電時の断面図である。 図1に示した電極構造体に含まれる正極または負極の構成を表わす模式図であり、図2Aは放電時の正極、図2Bは充電時の正極、図2Cは放電時の負極、図2Dは充電時の負極の構成を表わす模式図である。 正極および負極に金属ワイヤが設けられた電極構造体の模式図である。 変形例の二次電池に含まれる電極構造体の構成を表わす断面図であり、図4Aは放電時、図4Bは充電時の断面図である。 従来の二次電池に含まれる電極構造体の構成を表わす断面図であり、図5Aは放電時、図5Bは充電時の断面図である。 実施例および比較例の二次電池の質量容量密度に対する体積容量密度をプロットしたグラフ図である。
 以下、図面を参照して本実施形態について詳細に説明する。
1.全体構成
 本実施形態に係る二次電池は、正極と負極とがセパレータを介して設けられた電極構造体を備える。図1Aおよび図1Bを参照して、電極構造体について説明する。
 電極構造体10は、セパレータ12の一表面に正極20が設けられ、セパレータ12の他表面には負極30が設けられている。正極20は、放電時に膨張し(図1A,20A)、充電時に収縮する(図1B,20B)。一方、負極30は、放電時に収縮し(図1A,30A)、充電時に膨張する(図1B,30B)。
 放電時の電極構造体10Aは、図1Aに示すように、セパレータ12を介して設けられた膨張した正極20Aと収縮した負極30Aとを含む。充電時の電極構造体10Bは、図1Bに示すように、セパレータ12を介して設けられた収縮した正極20Bと膨張した負極30Bとを含む。
 正極20および負極30は、膨張時の体積を収縮時の体積で割った値である体積比が1.1以上、例えば1.1である。正極20および負極30は、膨張時の体積を収縮時の体積で割った値である体積比が、1.2以上であることが好ましく、1.4以上であることがより好ましい。正極20および負極30のいずれか一方は、膨張時の体積を収縮時の体積で割った値である体積比が、1.9以上、例えば1.9である。正極20および負極30のいずれか一方は、膨張時の体積を収縮時の体積で割った値である体積比が、2.2以上であることが好ましく、2.8以上であることがより好ましい。
 正極20および負極30は、充放電の際、セパレータ12に接する面の面積が実質的に変化せず、膜厚が変化することで膨張または収縮する。このため、体積比は、膜厚から算出することができる。正極20の体積比は、放電時(20A)の膜厚を充電時(20B)の膜厚で割ることにより得られる。負極30の体積比は、充電時(30B)の膜厚を放電時(30A)の膜厚で割ることにより得られる。
 正極20と負極30との合計体積は、放電時(図1A)または充電時(図1B)における大きい値を、小さい値で割った値である合計体積比(以下、合計体積の充放電時の比とも称する)が1.2以下、例えば1.2である。合計体積の充放電時の比は、1.1以下であることが好ましく、1.05以下であることがより好ましい。
 正極20と負極30との合計体積の充放電時の比は、正極20の膜厚と負極30の膜厚との合計膜厚を用いて求めることができる。放電時の正極20Aと負極30Aとの合計膜厚(以下、放電時正負極合計膜厚と称する)、および充電時の正極20Bと負極30Bとの合計膜厚(以下、充電時正負極合計膜厚と称する)のうち、大きい値で小さい値を割ることにより、合計体積の充放電時の比が得られる。
 図2A、2Bに示すように、正極20(20A,20B)は、CNTのスポンジ状構造体からなる第1の三次元集電体22と、第1の三次元集電体22の内部に包含された正極活物質24(24A,24B)とを備える。放電時の正極20A(図2A)に含まれる正極活物質24Aは、例えばLi2Sであり、充電時の正極20B(図2B)に含まれる正極活物質24Bは、例えばSである。
 なお、正極活物質は、Liなどの中間状態であってもよく、他の材料で正極を構成することもできる。正極活物質24Aおよび24Bは、三次元集電体22を覆うような構造をしていてもよい。正極活物質24Aおよび24Bは、粒子状の構造をしていてもよく、他の構造を取っていてもよい。正極活物質24Aと正極活物質24Bとが、互いに異なる構造となるようにしてもよい。
 図2C、2Dに示すように、負極30(30A,30B)は、CNTのスポンジ状構造体からなる第2の三次元集電体32と、第2の三次元集電体32の内部に包含された負極活物質34(34A,34B)とを備える。放電時の負極30A(図2C)に含まれる負極活物質34Aは、例えばSiであり、充電時の負極30B(図2D)に含まれる負極活物質34Bは、例えばLi15Si4である。
 なお、負極活物質は、Li22Si5のようにLiとSiとの組成が異なる状態であってもよく、Snなどの他の材料で負極を構成してもよい。負極活物質34Aおよび34Bは、三次元集電体32を覆うような構造をしていてもよい。粒子状の構造をしていてもよく、他の構造を取っていてもよい。負極活物質34Aと負極活物質34Bとが、互いに異なる構造となるようにしてもよい。
 負極30は、正極20と同程度の空隙率を有することが好ましいが、必ずしも同じ空隙率でなくてもよい。空隙を電解液が満たしている状態であっても、その電解液を含めた体積割合を空隙率と呼ぶ。負極30の空隙率と、正極20の空隙率の差は、±30%程度の範囲内であれば、特に問題はない。
 正極20および負極30は、空隙率が小さくなるほど、体積容量密度を大きくできるが、小さすぎる場合には、電解液が電極中に浸透しにくくなったり、充放電の際の体積変化が大きくなってしまう。正極20および負極30の空隙率は、5%以上であることが好ましく、10%以上であることがより好ましい。一方、空隙率が大きすぎる場合には、体積容量密度が低下してしまう。正極20および負極30の空隙率は、80%未満であることが好ましく、70%未満であることがより好ましく、60%以下であることが最も好ましい。空隙率は、空隙の体積割合である。正極20および負極30における空隙率の大きさは、例えば、三次元集電体の空隙率を変化させたり、活物質の量を変化させることにより、調整することができる。
 正極20および負極30は、金属箔を含まないことが好ましい。正極および負極と全面で接する金属箔を含むと、電極が重くなり、金属箔が正極および負極の体積変化を阻害し、また金属箔と正極との間、および金属箔と負極との間で応力が発生し劣化の原因となるからである。この場合、正極20は、CNTのスポンジ状構造体からなる第1の三次元集電体22と、第1の三次元集電体22の内部に包含された正極活物質24(24A,24B)とから構成される。負極30は、CNTのスポンジ状構造体からなる第2の三次元集電体32と、第2の三次元集電体32の内部に包含された負極活物質34(34A,34B)とから構成される。
 なお、正極20および負極30は、図3に示すように正極20および負極30と部分的に接する金属ワイヤ40を含んでもよい。金属ワイヤ40は、金属グリッドなどに変更することができる。金属ワイヤ40や金属グリッドは金属箔と比べて軽量であり、正極20および負極30と部分的に接する構造では、正極20および負極30の体積変化が阻害されず、また応力の発生も抑えられるからである。図3には、正極20の金属ワイヤ40と、負極30の金属ワイヤ40とが、それぞれ櫛型形状であり、正極20の金属ワイヤ40の櫛歯部分と、負極30の金属ワイヤ40の櫛歯部分とが、平面視において互いに重なる場合を示した。これに限られず、平面視において、正極20の金属ワイヤ40の櫛歯部分が、負極30の金属ワイヤの2本の櫛歯部分の中間に配置されるような形態としても良い。また、正極20の金属ワイヤ40および負極30の金属ワイヤ40の形状は、その他の種々の形状とすることができる。正極20および負極30と金属ワイヤ40との接し方についても、図3に示したように、正極20および負極30の表面に接するようにしてもよいし、正極20および負極30の内部に接するようにしてもよい。
 金属箔を含まないことによって、正極20および負極30は、充放電の際の体積変化が制限されることがなく、柔軟なCNTのスポンジ状構造体により、可逆的に体積変化する。しかも、金属箔に起因した質量の増加は回避され、二次電池の軽量化に繋がる。
 上述したような電極構造体を電解液とともに容器に収容して、本実施形態の二次電池が構成される。本実施形態の二次電池は、放電時の正極および充電時の負極にLiが含まれるリチウム二次電池である。高い電池容量密度を得るために、Liの質量割合は、二次電池全体の5%以上であることが好ましい。Liの質量割合は、二次電池全体の7%以上であることがより好ましく、9%以上であることが最も好ましい。Liの質量割合は、最大でも二次電池全体の18%程度とすることが望まれる。
 本実施形態の二次電池は、高い電池容量密度を得るために、Sの質量割合が、二次電池全体の12%以上であることが好ましい。Sの質量割合は、二次電池全体の16%以上であることがより好ましく、20%以上であることが最も好ましい。Sの質量割合は、最大でも二次電池全体の40%程度とすることが望まれる。
 本実施形態の二次電池は、高い電池容量密度を得るために、Siの質量割合が、二次電池全体の6%以上であることが好ましい。Siの質量割合は、二次電池全体の8%以上であることがより好ましく、10%以上であることが最も好ましい。Siの質量割合は、最大でも二次電池全体の20%程度とすることが望まれる。
2.製造方法
 本実施形態に係る二次電池を製造するには、まず、セパレータの一表面および他表面に、正極および負極をそれぞれ積層して電極構造体を得る。セパレータは、微多孔性ポリプロピレンフィルムで構成することができる。セパレータとしては、ポリオレフィン系、ポリエステル系、ポリアクリロニトリル系、ポリフェニレンサルファイド系、ポリイミド系またはフッ素樹脂系の微孔膜や不織布を用いてもよい。
 正極は、スポンジ状構造体の原料となるCNTと正極活物質としてのLi2Sとを、共分散、ろ過することにより形成することができる。具体的には、CNTとナノ粒子状のLi2Sとがエタノールやイソプロパノール等の分散媒に分散された分散液を用いて、ろ過により自立膜を形成する。CNTとLi2Sとの割合は、質量で1:1~1:100程度とすることが好ましい。正極の空隙率は、CNTとLiSの比率やCNTとLiSの分散状態を変更して調節することができる。また、膜作製後にプレスなどの処理を施すことによって、正極の空隙率を調節してもよい。
 用いるCNTは、長尺(直径1~15nm程度、平均長さ10~1000μm程度)であることが好ましい。そのようなCNTは、CVD法により合成することができる。例えば、特許第5447367号公報、特許第5862559号公報、D.Y. Kim, H. Sugime, K. Hasegawa, T. Osawa, and S. Noda, Carbon 49(6), 1972-1979 (2011).、Z. Chen, D.Y. Kim, K. Hasegawa, T. Osawa, and S. Noda, Carbon 80, 339-350 (2014).などに記載されている流動層CVD法が挙げられる。CNTは、浮遊触媒CVD法、基板担持触媒CVD法により合成してもよい。ナノ粒子状のLi2Sは、ボールミル法によりLi2S粉末を粉砕するなどの一般的な手法により得ることができる。
 CNTは、ナノ粒子状のLi2Sを取り込みながら、ファンデルワールス力によりネットワークを構成する。こうして、正極活物質としてのLi2Sが、CNTのスポンジ状構造体からなる第1の三次元集電体中の隙間に取り込まれて正極が形成される。
 負極は、スポンジ状構造体の原料となるCNTと負極活物質としてのSiとを、共分散、ろ過することによって、形成することができる。具体的には、CNTとナノ粒子状のSiとがエタノールやイソプロパノール等の分散媒に分散された分散液を用いて、ろ過により自立膜を形成する。CNTとSiとの割合は、質量で1:1~1:100程度とすることが好ましい。CNTは、上述したように長尺であることが好ましい。
 ナノ粒子状のSiは、種々の方法により得ることができる。例えば、ガス中蒸発法により不活性ガス中でSiを沸騰させる方法、CVD法によりシラン系ガスを熱分解させる方法、ボールミル法によってシリコンの塊を粉砕する方法などが挙げられる。負極の空隙率も、CNTとSiの比率やCNTとSiの分散状態を変更する、膜作製後にプレスなどの処理を施すことにより調節することができる。
 CNTは、ナノ粒子状のSiを取り込みながら、ファンデルワールス力によりネットワークを構成する。こうして、負極活物質としてのSiが、CNTのスポンジ状構造体からなる第2の三次元集電体中の隙間に取り込まれて負極が形成される。
 以上の工程により得られた正極および負極を、セパレータの一表面および他表面に積層して電極構造体が作製される。作製された電極構造体においては、正極と負極との合計体積の充放電時の比が1.2以下である。合計体積の充放電時の比は、正極および負極の厚さおよび/または空隙率の大きさを調整して制御することができる。上述したように、空隙率は、三次元集電体の空隙率や活物質の量を変化させることで調整することができる。電極構造体は、その表面に送電用の金属ワイヤを配置して、電解液とともに容器に収容する。
 電解液は特に限定されず、非水電解液、イオン液体、およびゲル電解液等の一般的に用いられている電解液を用いることができる。例えば非水電解液は、エチレンカーボネート(EC)とジメチルカーボネート(DMC)との混合液に、1.0モル/リットルのLiPF6を溶解して調製することができる。ECとDMCとの体積比は、一般的には1:2程度である。
 容器は特に限定されず、電池缶として一般的に用いられている鉄、ステンレススチール、アルミニウム等の金属缶を用いることができる。重量当たりのエネルギー密度の観点から、金属箔と樹脂フィルムとを積層した金属樹脂複合材が好ましい。
 金属ワイヤは、例えば直径10~100μmの金属細線を、0.1~10mm間隔で正極および負極の表面に設置することができる。正極用の金属ワイヤは、アルミニウムまたはステンレスなどの金属で構成することが好ましい。負極用の金属ワイヤは、銅、ニッケル、ステンレスなどの金属で構成することが好ましい。金属ワイヤを用いることによって、金属量が大幅に削減され、従来の1/10~1/100の質量の金属で導電性を十分に確保することが可能となる。
 必要に応じて所定の工程を経ることで、所定の電極構造体を備えた本実施形態に係る二次電池が作製される。
3.作用および効果
 本実施形態に係る二次電池は、充放電の際に正極および負極の体積が所定の割合以上変化しつつも、全体としての体積変化が抑制された電極構造体を備えている。
 正極および負極は、合計体積の充放電時の比が1.2以下であるので、電極構造体全体としての体積変化が抑制されている。これにより、構造の劣化が抑制されて、充放電の際に安定性を維持することができ、サイクル寿命も向上する。
 電極構造体に含まれている正極および負極は、充放電の際に体積が変化し、膨張時の体積が収縮時の体積の1.1倍以上である。しかも、正極および負極のいずれか一方は、膨張時の体積が収縮時の体積の1.9倍以上である。膨張時の体積を収縮時の体積で割った値である体積比が大きいほど容量密度を大きくできるので、この体積比は大きいほど好ましい。充放電時の体積変化が大きい一方、高容量密度の活物質を用いた正極および負極を備えることから、本実施形態に係る二次電池は、高い容量密度を達成することができる。
4.変形例
 本発明は上記実施形態に限定されるものではなく、本発明の趣旨の範囲内で適宜変更することが可能である。例えば、上記実施形態では、Sを含む正極20を用いたが、Sの代りに各種遷移金属の酸化物、各種遷移金属のフッ化リン酸塩、各種遷移金属のケイ酸塩、酸化還元活性を有す高分子化合物や有機化合物等を含む正極を用いることもできる。また、上記実施形態では、Siを含む負極30を用いたが、Siの代りにSn、金属水素化物、金属硫化物、ハードカーボンや酸化グラフェンなどの各種炭素材料、酸化還元活性を有す高分子化合物や有機化合物等を含む負極を用いることもできる。場合によっては、2種以上の原料を組み合わせて、正極20または負極30に用いることも可能である。
 正極20における第1の三次元集電体、および負極30における第2の三次元集電体は、CNTのスポンジ状構造体としたが、グラフェン等の他のナノ炭素材料のスポンジ状構造体であってもよい。
 また、上記実施形態においては、一対の正極および負極を含む電極構造体を備えた二次電池について説明したが、これに限定されない。図4A,4Bに示すように、セパレータ12を介して設けられた複数の正極20および負極30を含む電極構造体100を備えた二次電池としてもよい。放電時の電極構造体100Aは、図4Aに示すように、膨張した正極20Aと収縮した負極30Aとを含む。充電時の電極構造体100Bは、図4Bに示すように、収縮した正極20Bと膨張した負極30Bとを含む。
 このような電極構造体100の場合、正極20は、膨張時(20A)の体積の合計を収縮時(20B)の体積の合計で割った値である体積比が1.1以上である。負極30も同様に、膨張時(30B)の体積の合計を収縮時(30A)の体積の合計で割った値である体積比が1.1以上である。正極20および負極30のいずれか一方は、膨張時の体積の合計を収縮時の体積の合計で割った値である体積比が、1.9以上である。
 さらに、正極20および負極30は、放電時(図4A)の合計体積と充電時(図4B)の合計体積のうち、大きい値を小さい値で割った値である合計体積比が1.2以下である。放電時の正極20と負極30との合計体積と充電時の正極20と負極30との合計体積との比は、放電時の電極構造体100Aにおける正極20Aと負極30Aとの合計膜厚(放電時正負極合計膜厚)、および充電時の電極構造体100Bにおける正極20Bと負極30Bとの合計膜厚(充電時正負極合計膜厚)のうち、大きい値を小さい値で割って求めることができる。
5.実施例
 下記表1に、実施例および比較例の二次電池における正極および負極の構成をまとめる。表中の数値は、後述するように条件を設定して所定の計算式により求めた。
Figure JPOXMLDOC01-appb-T000001
 実施例1~6および比較例4,5は、正極活物質に硫黄(放電状態ではLi2S、充電状態ではS)を用い、負極活物質にシリコン(放電状態ではSi、充電状態ではLi15Si4)を用いた二次電池である。
 比較例1は、正極活物質にコバルト酸リチウム(放電状態ではLiCoO2、充電状態ではLi0.5CoO2)を用い、負極活物質に黒鉛(放電状態ではC、充電状態ではLiC6)を用いた二次電池である。
 比較例2は、正極活物質にコバルト酸リチウム(放電状態ではLiCoO2、充電状態ではLi0.5CoO2)を用い、負極活物質にシリコン(放電状態ではSi、充電状態ではLi15Si4)を用いた二次電池である。比較例3は、正極活物質に硫黄(放電状態ではLi2S、充電状態ではS)を用い、負極活物質に黒鉛(放電状態ではC、充電状態ではLiC6)を用いた二次電池である。
 実施例1~6、比較例4で、正極、負極の空隙率を、10%~80%まで変化させている。比較例1~3,5では、正極、負極の空隙率を20%とした。
 実施例1~6、比較例4では、正極および負極が、CNTのスポンジ状構造体からなる三次元集電体と活物質のみとから構成されている。比較例1,5では、正極がAl箔集電体を含み、負極がCu箔集電体を含む。比較例2では、正極がAl箔集電体を含み、負極は、CNTのスポンジ状構造体からなる三次元集電体と活物質のみとから構成されている。比較例3では、負極がCu集電体を含み、正極はCNTのスポンジ状構造体からなる三次元集電体と活物質のみとから構成されている。
 ここで、比較例1の二次電池における電極構造体の放電時および充電時の状態を、図5Aおよび図5Bに模式的に示す。電極構造体200は、セパレータ212を介して設けられた正極220と負極230とを備えている。正極220は、Al箔集電体222と正極活物質224とを含み、負極230は、Cu箔集電体232と負極活物質234とを含む。金属箔集電体(Al箔集電体222,Cu箔集電体232)は、充放電による電極の体積変化を制限し、二次電池の質量を増加させる。
 放電時の電極構造体200A(図5A)では、正極220Aは、正極活物質224AとしてLiCoO2を含み、負極230Aは、負極活物質232AとしてCを含む。充電時の電極構造体200B(図5B)では、正極220Bは、正極活物質224BとしてLi0.5CoO2を含み、負極230Bは、負極活物質234BとしてLiC6を含む。
 実施例1~6、比較例1~5の二次電池は、単位面積当たりの正負極一対基準容量を、40Ah/m2とすることを前提に、以下の計算を行った。なお、正負極を繰り返し積層した電池を想定して計算する場合は、一つの正極の半面はセパレータを介して一つの負極と、同じ正極の他の半面は他のセパレータを介して他の負極とLiイオンを交換すると考えることとする。この場合は、正極または負極の半面の基準容量を、40Ah/m2とすることが前提になる。
 放電時正極活物質質量(a)は、放電時の単位面積当たりの正極の質量である。放電時正極活物質質量(a)は、上記の正負極一対基準容量から求めた電荷量と、Li2Sの分子量(45.95g/mol)とを用いて算出した。放電時正極質量(b)は、放電時正極活物質質量(a)に、三次元集電体、バインダー、金属箔集電体の単位面積当たりの質量を加えたものである。
 実施例1~6、比較例4は、バインダーおよび金属箔集電体が含まれていない。上記のように算出された放電時正極活物質質量(a)は、34.3g/m2である。正極質量に対する三次元集電体の質量割合を10%と設定し、三次元集電体の単位面積当たりの質量を算出すると3.8g/m2となる。放電時正極質量(b)の値は、これらを合計した値であり、38.1g/m2である。
 比較例1~3,5についても、同様の考え方で計算する。ただし、正極質量に対する、バインダーの質量割合を5%、導電材の質量割合を5%とし、正極の金属箔集電体(Al箔)の厚さは7.5μmとして計算する。7.5μmという厚さは、厚さ15μmのAl箔を両面の正極で共有すると考え、Al箔の半分の厚さを一つの正極分の正極集電体の厚さとして用いたものである。バインダーとしては、ポリフッ化ビニリデン(PVDF)などの高分子化合物(密度1.0g/cm3)を用いるものとする。
 放電時正極膜厚(c)は、以下のように計算した。上記で計算された、正極活物質、三次元集電体、バインダーの単位面積当たりの質量と、それぞれの材料の密度より、それぞれが緻密であると仮定した膜厚(以下「緻密膜厚」)を計算する。上記の膜厚と、金属箔集電体の膜厚との合計膜厚を求める。空隙率が設定した所定の値となるような、空隙膜厚(空隙が集まったと仮定した値)を計算する。正極活物質、三次元集電体、およびバインダーの緻密膜厚と、金属箔集電体の膜厚と、空隙膜厚とを合計して、放電時正極膜厚(c)を算出する。
 例えば、実施例1については、放電時正極活物質質量(a)34.3g/m2とLi2Sの密度(1.66g/cm3)とを用いて、正極活物質の緻密膜厚は、20.7μmと計算される。三次元集電体の緻密膜厚は、三次元集電体の単位面積当たりの質量3.8g/m2とCNTの密度2g/cm3より、1.9μmと計算される。空隙率が10%となるための、空隙膜厚を計算すると、2.5μmと計算される。正極活物質の緻密膜厚、三次元集電体の緻密膜厚、および空隙膜厚を合計すると、放電時正極膜厚(c)は25.1μmとなる。
 放電時負極活物質質量(d)、放電時負極質量(e)、および放電時負極膜厚(f)についても、正極と同様の考え方で計算した。ただし、負極の金属箔集電体(Cu箔)の厚さは、Cu箔の厚さ15μmの半分の厚さの7.5μmという値を用いた。
 表1中の、放電時正負極合計膜厚(c+f)は、放電時正極膜厚(c)と放電時負極膜厚(f)の合計膜厚である。
 「充電時」についても、「放電時」と同様の考え方で計算した。ただし、三次元集電体、バインダー、導電材、金属箔集電体の単位面積当たりの質量、緻密膜厚は、放電時と変化しないものであるので、放電時と同じ値を用いた。また、空隙膜厚について、CNTのスポンジ状構造体からなる三次元集電体を用いた場合には、電極が、膨張・収縮しても、柔軟に体積変化するので、空隙膜厚は充電時と放電時で保たれる。
 上記表1中の正極および負極についての体積比は、膨張時の膜厚を収縮時の正極の膜厚で割って得られた値である。硫黄正極については、放電時の膜厚を充電時の膜厚で割って得た値である。コバルト酸リチウム正極については、充電時の膜厚を放電時の膜厚で割って得た値である。シリコン負極および黒鉛負極については、充電時の膜厚を放電時の膜厚で割って得た値である。正負極合計についての体積比は、放電時正負極合計膜厚および充電時正負極合計膜厚のうち、大きい値を小さい値で割って得られた値である。
 下記表2には、実施例、比較例の二次電池全体の構成を、質量容量密度および体積容量密度とともに示す。二次電池は、上記表1に示したような電極構造体が、電解液とともに容器内に収容された構成である。
Figure JPOXMLDOC01-appb-T000002
 単位面積当たりのLi質量(g)は、正負極一対基準容量より計算された電荷量と、Liの原子量(6.941g/mol)より算出される。正極活物質がLi2Sの場合は、Li利用率が100%として計算し、正極活物質がLiCoO2の場合はLi利用率が50%として計算した。単位面積当たりのS質量(a’’)は、正極活物質にSを用いた実施例1~5および比較例3~5について、上記表1に記載した充電時正極活物質質量(a’)を用いた。比較例1および比較例2では、正極活物質にSを用いていないため、単位面積当たりのS質量(a’’)は0である。単位面積当たりのSi質量(d’’)は、負極活物質にSiを用いた実施例1~5および比較例2,4,5について、上記表1に記載した放電時負極活物質質量(d)を用いた。比較例1および比較例3では、負極活物質にSiを用いていないため、単位面積当たりのSi質量(d’’)は0である。
 単位面積当たりのLi質量、単位面積当たりのS質量、単位面積当たりのSi質量の、正負極一対基準質量(h)に対する割合より、二次電池における、Li、S、Siの質量割合を求めた。正負極一対基準質量(h)は、放電時正極質量(b)、放電時負極質量(e)に、セパレータ、電解液、電池容器の単位面積当たり質量を加えて算出した。
 セパレータの単位面積当たり質量は、実施例、比較例共通で、7.5g/m2とし、電解液の単位面積当たり質量は、実施例、比較例共通で、22.5g/m2とした。電池容器の単位面積当たり質量は、二次電池全体の質量における容器の質量割合が20%になる値とした。
 実施例1~6の二次電池は、Li質量割合が5.0質量%以上であり、S質量割合が12質量%以上であり、Si質量割合が6質量%以上であることが、上記表2に示されている。
 質量容量密度(n)は、正負極一対基準容量(k)に、正負極活物質材料により決まる値である起電力(l)を乗じて得た値を、上述の正負極一対基準質量(h)で除して求めた。
 体積容量密度(o)は、正負極一対基準容量(k)に、正負極活物質材料により決まる値である起電力(l)を乗じて得た値を、正負極一対放電時膜厚(i)または正負極一対充電時膜厚(j)の厚い方の値で除して求めた。正負極一対放電時膜厚(i)、正負極一対充電時膜厚(j)は、放電時・充電時の正負極合計膜厚に、セパレータ膜厚、電池容器膜厚を加えて算出した。セパレータ膜厚は、実施例、比較例共通で、15μmとした。電池容器膜厚は、二次電池全体の厚さにおける容器の厚さ割合が5%になる値とした。
 図6に、質量容量密度(n)を横軸に、体積容量密度(o)を縦軸にしてプロットした結果を示す。
 図6を参照すると、実施例1~6の二次電池は、400Wh/kg以上の質量容量密度と、700Wh/L以上の体積容量密度とを備えることがわかる。正負極空隙率が小さいほど、より高い体積容量密度を得ることができる。
 上記表1に示したとおり、実施例1~6においては、正極および負極の充放電時の体積比が1.1以上であり、負極の体積比が1.9以上である。さらに、正極と負極との合計体積は、充放電時の比が1.2以下である。実施例1~6では、正極および負極の体積比が1.1以上、正極または負極の体積比が1.9以上、正極と負極との合計体積の充放電時の比が1.2以下という条件を全て満たしている。
 実施例の二次電池は、上述したような体積比の条件を満たしていることに加えて、Li質量割合、S質量割合およびSi質量割合が比較例よりも高い。実施例の二次電池の高い容量密度は、こうした要件に起因するものである。
 比較例1~5では、正極と負極との合計体積の充放電時の比が1.2以下であるものの、正極および負極のそれぞれの体積比が前述の条件を満たしていない。比較例1では、正極および負極は、充放電時の体積比が1.1未満である。比較例2、4では、正極の充放電時の体積比が1.1未満であり、比較例3では、負極の充放電時の体積比が1.1未満である。比較例5では、正極および負極の充放電時の体積比が1.9未満である。
 このため、比較例の二次電池では、400Wh/kg以上の質量容量密度と、700Wh/L以上の体積容量密度とを備えることができない。さらに、正負極空隙率が80%であること(比較例4)、正極および負極の少なくとも一方が金属箔を含むこと(比較例1~3,5)、Li質量割合が5質量%未満であること(比較例1~3)、S質量割合が12質量%未満であること(比較例1~3,5)、Si質量割合が6質量%未満であること(比較例1~3,5)も、容量密度を高めることができない理由の一つとなっている。
 10,10A,10B 電極構造体
         12 セパレータ
 20,20A,20B 正極
 30,30A,30B 負極
 

Claims (8)

  1.  放電時または充電時に膨張または収縮して体積が変化する正極と、前記正極とは逆に体積が変化する負極とがセパレータを介して設けられた電極構造体を備え、
     前記正極および前記負極は、膨張時の体積を収縮時の体積で割った値である体積比が1.1以上であり、
     前記正極または前記負極は、前記体積比が1.9以上であり、
     前記放電時における前記正極と前記負極との合計体積、および前記充電時における前記正極の体積と前記負極の体積との合計体積のうち、大きい値で小さい値を割った値である合計体積比が1.2以下である
    ことを特徴とする二次電池。
  2.  前記正極は、カーボンナノチューブのスポンジ状構造体からなる第1の三次元集電体と、前記第1の三次元集電体の内部に包含された正極活物質とを備え、
     前記負極は、カーボンナノチューブのスポンジ状構造体からなる第2の三次元集電体と、前記第2の三次元集電体の内部に包含された負極活物質とを備える
    ことを特徴とする請求項1記載の二次電池。
  3.  前記正極および前記負極は、空隙率が5%以上80%未満であることを特徴とする請求項1または2記載の二次電池。
  4.  前記正極および前記負極は、金属箔を含まないことを特徴とする請求項1~3のいずれか1項記載の二次電池。
  5.  前記二次電池はリチウム二次電池であり、前記正極または前記負極はLiを含み、前記Liの質量は、前記二次電池の5%以上であることを特徴とする請求項1~4のいずれか1項記載の二次電池。
  6.  前記正極はSを含み、前記Sの質量は、前記二次電池の12%以上であることを特徴とする請求項5記載の二次電池。
  7.  前記負極はSiを含み、前記Siの質量は、前記二次電池の6%以上であることを特徴とする請求項5または6記載の二次電池。
  8.  質量容量密度が400Wh/kg以上であり、体積容量密度が700Wh/L以上であることを特徴とする請求項1~7のいずれか1項記載の二次電池。
     
PCT/JP2017/046214 2017-01-06 2017-12-22 二次電池 WO2018128099A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/476,499 US11081701B2 (en) 2017-01-06 2017-12-22 Secondary battery
CN201780081766.9A CN110199427B (zh) 2017-01-06 2017-12-22 二次电池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017001386A JP6860125B2 (ja) 2017-01-06 2017-01-06 二次電池
JP2017-001386 2017-01-06

Publications (1)

Publication Number Publication Date
WO2018128099A1 true WO2018128099A1 (ja) 2018-07-12

Family

ID=62791293

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/046214 WO2018128099A1 (ja) 2017-01-06 2017-12-22 二次電池

Country Status (4)

Country Link
US (1) US11081701B2 (ja)
JP (1) JP6860125B2 (ja)
CN (1) CN110199427B (ja)
WO (1) WO2018128099A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6998715B2 (ja) * 2017-09-28 2022-01-18 国立大学法人信州大学 スズ粒子担持シートおよびリチウムイオン二次電池用負極
JP7411966B2 (ja) * 2019-02-26 2024-01-12 学校法人早稲田大学 二次電池用負極、二次電池、および二次電池用負極の製造方法
JP7426039B2 (ja) * 2019-08-20 2024-02-01 国立研究開発法人産業技術総合研究所 非水電解質二次電池用の電極、非水電解質二次電池及び非水電解質二次電池用の電極に用いるための集電体
WO2021182614A1 (ja) * 2020-03-13 2021-09-16 学校法人早稲田大学 二次電池用正極、二次電池用正極の製造方法、二次電池
WO2023032499A1 (ja) * 2021-08-31 2023-03-09 パナソニックIpマネジメント株式会社 非水電解質二次電池
WO2024070065A1 (ja) * 2022-09-28 2024-04-04 株式会社村田製作所 二次電池用正極および二次電池

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007042329A (ja) * 2005-08-01 2007-02-15 Mitsui Chemicals Inc リチウム二次電池
JP2008243786A (ja) * 2007-03-01 2008-10-09 Sony Corp 非水電解液二次電池及び非水電解液
JP2009527095A (ja) * 2006-02-15 2009-07-23 エフエムシー・コーポレイション‐リチウム・ディヴィジョン カーボンナノチューブリチウム金属粉末電池
JP2015506899A (ja) * 2011-12-22 2015-03-05 ボード・オブ・リージエンツ,ザ・ユニバーシテイ・オブ・テキサス・システム 再充電可能リチウム−硫黄電池のための結合剤を含まない硫黄−カーボンナノチューブ複合体カソードおよびその作製方法
JP2015138777A (ja) * 2014-01-23 2015-07-30 ツィンファ ユニバーシティ リチウムイオン電池
JP2015167065A (ja) * 2012-07-11 2015-09-24 シャープ株式会社 非水電解質二次電池
JP2016131123A (ja) * 2015-01-14 2016-07-21 株式会社日立製作所 リチウム二次電池、リチウム二次電池を含む蓄電装置、およびリチウム二次電池の製造方法
WO2016129528A1 (ja) * 2015-02-10 2016-08-18 株式会社カネカ 蓄電装置
JP2016173985A (ja) * 2015-03-17 2016-09-29 株式会社リコー 非水電解液蓄電素子
JP2016184484A (ja) * 2015-03-26 2016-10-20 Tdk株式会社 リチウムイオン二次電池用負極およびリチウムイオン二次電池

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5447367A (en) 1977-09-21 1979-04-13 Toshiba Corp Washer
JPS5862559A (ja) 1981-10-12 1983-04-14 Nippon Oil Co Ltd 内燃機関用潤滑油の全塩基価簡易測定方法
US9559362B2 (en) * 2008-04-01 2017-01-31 Panasonic Intellectual Property Management Co., Ltd. Nonaqueous electrolyte secondary battery and method for manufacturing the same
JPWO2014103281A1 (ja) * 2012-12-26 2017-01-12 三洋電機株式会社 非水電解質二次電池用負極およびそれを用いる非水電解質二次電池
US10734639B2 (en) * 2013-07-03 2020-08-04 California Institute Of Technology Carbon nanotubes—graphene hybrid structures for separator free silicon—sulfur batteries
JP6081339B2 (ja) * 2013-10-11 2017-02-15 オートモーティブエナジーサプライ株式会社 非水電解質二次電池
EP3216071B1 (en) * 2014-11-03 2022-01-05 24m Technologies, Inc. Battery cell comprising a semi-solid electrode
JP6178350B2 (ja) * 2014-11-25 2017-08-09 イルジン エレクトリック カンパニー リミテッド 二次電池用負極活物質及びこれを用いた二次電池
JP2016048698A (ja) 2016-01-04 2016-04-07 日立化成株式会社 リチウムイオン二次電池正極用導電剤並びにこれを用いたリチウムイオン二次電池用正極材料、リチウムイオン二次電池用正極合剤、リチウムイオン二次電池用正極及びリチウムイオン二次電池

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007042329A (ja) * 2005-08-01 2007-02-15 Mitsui Chemicals Inc リチウム二次電池
JP2009527095A (ja) * 2006-02-15 2009-07-23 エフエムシー・コーポレイション‐リチウム・ディヴィジョン カーボンナノチューブリチウム金属粉末電池
JP2008243786A (ja) * 2007-03-01 2008-10-09 Sony Corp 非水電解液二次電池及び非水電解液
JP2015506899A (ja) * 2011-12-22 2015-03-05 ボード・オブ・リージエンツ,ザ・ユニバーシテイ・オブ・テキサス・システム 再充電可能リチウム−硫黄電池のための結合剤を含まない硫黄−カーボンナノチューブ複合体カソードおよびその作製方法
JP2015167065A (ja) * 2012-07-11 2015-09-24 シャープ株式会社 非水電解質二次電池
JP2015138777A (ja) * 2014-01-23 2015-07-30 ツィンファ ユニバーシティ リチウムイオン電池
JP2016131123A (ja) * 2015-01-14 2016-07-21 株式会社日立製作所 リチウム二次電池、リチウム二次電池を含む蓄電装置、およびリチウム二次電池の製造方法
WO2016129528A1 (ja) * 2015-02-10 2016-08-18 株式会社カネカ 蓄電装置
JP2016173985A (ja) * 2015-03-17 2016-09-29 株式会社リコー 非水電解液蓄電素子
JP2016184484A (ja) * 2015-03-26 2016-10-20 Tdk株式会社 リチウムイオン二次電池用負極およびリチウムイオン二次電池

Also Published As

Publication number Publication date
US11081701B2 (en) 2021-08-03
CN110199427A (zh) 2019-09-03
CN110199427B (zh) 2022-06-28
US20200006780A1 (en) 2020-01-02
JP2018113108A (ja) 2018-07-19
JP6860125B2 (ja) 2021-04-14

Similar Documents

Publication Publication Date Title
WO2018128099A1 (ja) 二次電池
An et al. Micron-sized nanoporous antimony with tunable porosity for high-performance potassium-ion batteries
Cai et al. Graphene and graphene-based composites as Li-ion battery electrode materials and their application in full cells
Deng et al. Sandwich-stacked SnO2/Cu hybrid nanosheets as multichannel anodes for lithium ion batteries
Wang et al. Recent progress of silicon composites as anode materials for secondary batteries
JP5999442B2 (ja) 非水電解質二次電池
JP2016185902A (ja) グラフェンで金属と金属酸化物をカプセル化する方法とこれらの材料の使用方法
US20120050950A1 (en) Lithium ion capacitor
JP6769334B2 (ja) 非水電解質蓄電素子用の負極、非水電解質蓄電素子及び非水電解質蓄電素子用の負極の製造方法
JP2016207614A (ja) 固体電池
JP2017139168A (ja) 非水電解質二次電池用正極
JP2016024987A (ja) 非水系二次電池
JP6329888B2 (ja) 二次電池用負極材及びこれを用いた二次電池
US11387442B2 (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery comprising the same
Liu et al. Constructing high-capacitance electrochemical capacitors through the introduction of V ions into MoS2/Ni3S2 nanosheets
JP6407265B2 (ja) 二次電池用のリチウムイオンセル
JP2012048838A (ja) 非水電解質二次電池用活物質、非水電解質二次電池用電極、非水電解質二次電池及び非水電解質二次電池用活物質の製造方法
KR20180022706A (ko) 리튬 셀용 규소 단일체 흑연 애노드
WO2021241001A1 (ja) 電池
WO2021177382A1 (ja) 正極材料および電池
EP3301742B1 (en) Electrode
US20220359868A1 (en) Anode active material comprising silicon composite formed by network of conductive fibers, preparation method therefor, and lithium secondary battery comprising same
KR102667695B1 (ko) 도전성 탄소 코팅으로 저항 특성을 향상시킨 리튬이온 커패시터
WO2023007939A1 (ja) 負極材料、負極および電池及びそれらの製造方法
WO2022270041A1 (ja) 複合活物質粒子およびそれを用いた電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17890643

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17890643

Country of ref document: EP

Kind code of ref document: A1