WO2018123863A1 - 排気ガス浄化触媒用デラフォサイト型酸化物及びこれを用いた排気ガス浄化触媒 - Google Patents

排気ガス浄化触媒用デラフォサイト型酸化物及びこれを用いた排気ガス浄化触媒 Download PDF

Info

Publication number
WO2018123863A1
WO2018123863A1 PCT/JP2017/046120 JP2017046120W WO2018123863A1 WO 2018123863 A1 WO2018123863 A1 WO 2018123863A1 JP 2017046120 W JP2017046120 W JP 2017046120W WO 2018123863 A1 WO2018123863 A1 WO 2018123863A1
Authority
WO
WIPO (PCT)
Prior art keywords
delafossite
type oxide
exhaust gas
gas purification
site
Prior art date
Application number
PCT/JP2017/046120
Other languages
English (en)
French (fr)
Inventor
純雄 加藤
正剛 小笠原
利春 守屋
克哉 岩品
大典 岩倉
Original Assignee
国立大学法人秋田大学
三井金属鉱業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人秋田大学, 三井金属鉱業株式会社 filed Critical 国立大学法人秋田大学
Priority to CN201780080739.XA priority Critical patent/CN110167670B/zh
Priority to JP2018559151A priority patent/JP6715351B2/ja
Priority to US16/473,335 priority patent/US11110439B2/en
Publication of WO2018123863A1 publication Critical patent/WO2018123863A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/088Decomposition of a metal salt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9445Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC]
    • B01D53/945Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC] characterised by a specific catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • B01J21/04Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/066Zirconium or hafnium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8926Copper and noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8933Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/8986Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with manganese, technetium or rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8933Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/8993Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with chromium, molybdenum or tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/56Foraminous structures having flow-through passages or channels, e.g. grids or three-dimensional monoliths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/038Precipitation; Co-precipitation to form slurries or suspensions, e.g. a washcoat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G37/00Compounds of chromium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/101Three-way catalysts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • F01N3/2803Construction of catalytic reactors characterised by structure, by material or by manufacturing of catalyst support
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/104Silver
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/2073Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20761Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20784Chromium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/209Other metals
    • B01D2255/2092Aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/40Mixed oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/908O2-storage component incorporated in the catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/01Engine exhaust gases
    • B01D2258/014Stoichiometric gasoline engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2370/00Selection of materials for exhaust purification
    • F01N2370/02Selection of materials for exhaust purification used in catalytic reactors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2510/00Surface coverings
    • F01N2510/06Surface coverings for exhaust purification, e.g. catalytic reaction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to a delafossite-type oxide used for an exhaust gas purification catalyst for purifying exhaust gas discharged from an internal combustion engine, and an exhaust gas purification catalyst using the same.
  • the exhaust gas of internal combustion engines such as automobiles that use gasoline as fuel contains harmful components such as hydrocarbons (HC), carbon monoxide (CO), and nitrogen oxides (NOx). It is necessary to purify the components using an oxidation-reduction reaction and exhaust the components. For example, hydrocarbons (HC) are oxidized and converted to water and carbon dioxide, carbon monoxide (CO) is oxidized and converted to carbon dioxide, and nitrogen oxides (NOx) are reduced and converted to nitrogen for purification. There is a need to.
  • hydrocarbons (HC) are oxidized and converted to water and carbon dioxide
  • carbon monoxide (CO) is oxidized and converted to carbon dioxide
  • NOx nitrogen oxides
  • exhaust gas purification catalyst As a catalyst for treating exhaust gas from such an internal combustion engine (hereinafter referred to as “exhaust gas purification catalyst”), a three-way catalyst (Three way catalyst: TWC) capable of oxidizing and reducing CO, HC and NOx. Is used.
  • TWC Three-way catalyst
  • a noble metal is supported on a refractory oxide porous body such as an alumina porous body having a high surface area, and this is made of a base material such as a refractory ceramic or a metal honeycomb structure. It is known that it is supported on a monolith type substrate or supported on refractory particles.
  • the exhaust gas purification catalyst is required to always exhibit high purification performance even under conditions where the air-fuel ratio varies. Therefore, purification performance is ensured by allowing a co-catalyst (also referred to as “OSC material”) having an oxygen storage / release function (OSC) to coexist with a precious metal.
  • An oxide such as ceria is an OSC material having an oxygen storage / release function by reversibly changing the valence III and valence IV of Ce ions in its crystal lattice.
  • OSC materials that is, oxygen storage / release materials
  • OSC materials have a problem in that they do not exhibit oxygen storage / release capability at low temperatures unless there is a rare resource, a noble metal. Therefore, a mixed layer stacked irregular crystal structure delafossite-type oxide having unique oxygen storage / release characteristics has been proposed as an oxygen storage / release material that does not require a noble metal (see Patent Document 1).
  • Patent Document 2 has been proposed as a delafossite-type oxide that does not require the presence of a precious metal and has a high oxygen storage / release function from a low temperature range to a high temperature range and a method for producing the same.
  • Patent Document 2 includes a general formula ABO x (wherein A represents at least one selected from the group consisting of Cu, Ag, Pd, and Pt, and B represents Al, Cr, Ga, Fe, Mn, Co, A delafosite-type oxide having a 3R-type delafossite-type oxide represented by Rh, Ni, In, La, Nd, Sm, Eu, Y, and Ti.
  • ABO x wherein A represents at least one selected from the group consisting of Cu, Ag, Pd, and Pt, and B represents Al, Cr, Ga, Fe, Mn, Co
  • Cu-based delafossite-type oxides have been studied as OSC materials and also as N 2 O decomposition catalysts.
  • a Cu-based delafossite-type oxide was used as a three-way catalyst, it became clear that it was not sufficient as catalyst performance.
  • the present invention relates to a Cu-based delafossite-type oxide that is effective as an exhaust gas purification catalyst.
  • a new Cu-based delera that is more active than before is provided.
  • a fossite oxide is proposed.
  • the present invention is a delafossite-type oxide represented by the general formula ABO 2 , wherein Cu and Ag are contained in the A site of the general formula, and Mn, Al, Cr, Ga, Fe are contained in the B site of the general formula. , Co, Ni, In, La, Nd, Sm, Eu, Y, V, and Ti, and one or more elements selected from the group consisting of Ti and 0.
  • the present invention proposes a delafossite-type oxide for an exhaust gas purification catalyst characterized by containing Ag at a ratio of 001 at.% Or more and less than 20 at.%.
  • Cu-based delafossite-type oxide containing Cu has a layered structure, and can maintain a dispersed state of Cu as an active component in a good state. Furthermore, the delafossite-type oxide proposed by the present invention includes Cu at the A site and Cu contained in the A site at a ratio of 0.001 at.% To less than 20 at. An active low valence state can be obtained, and the activity can be further increased.
  • the delafossite-type oxide for exhaust gas purification catalyst according to an example of the embodiment of the present invention is a delafossite-type oxide represented by the general formula ABO 2 .
  • the A site contains Cu and Ag
  • the B site of the general formula contains Mn, Al, Cr, Ga, Fe, Co, Ni, In, La, Nd, Sm, Eu, Y, V, and Ti. It contains one or more elements selected from the group consisting of:
  • the oxide is a delafossite type oxide can be confirmed by identifying a peak by X-ray diffraction analysis (XRD).
  • XRD X-ray diffraction analysis
  • the present delafossite-type oxide may be composed of only a single phase of delafossite or may be composed of a mixed phase with a by-product phase composed of other elements in addition to the main phase of delafossite. .
  • This delafossite-type oxide contains Cu and Ag at the A site.
  • Cu as an active component in the A site, catalytic activity can be imparted to the delafossite-type oxide.
  • the dispersed state of Cu can be maintained in a good state.
  • Ag at a predetermined ratio in the A site, Cu and can be a catalyst highly active low valence state, it can be an excellent way catalyst in conventional which was difficult the NO x purification performance .
  • whether it is a low valence state can be confirmed by, for example, hydrogen TPR measurement or X-ray photoelectron spectroscopy (XPS).
  • Ag and Cu have poor compatibility and are difficult to disperse with each other.
  • Cu and Ag are in a uniformly dispersed state, and the action of Ag affects Cu, and the reduction temperature of Cu is lowered by Ag. Can be estimated.
  • the Cu content at the A site is preferably 80 at.% Or more of the total content of the elements constituting the A site.
  • the content of Cu at the A site is 80 at.% Or more, it can be used as a three-way catalyst having particularly excellent NOx purification performance.
  • the Cu content at the A site is preferably 80 at.% Or more of the total content of the elements constituting the A site, and more preferably 90 at.% Or more, or less than 99.999 at.%, Of which 95 at. % Or more or 99.9 at.% Or less, more preferably 95 at.% Or more or 99 at.% Or less.
  • the content of Ag at the A site is preferably 0.001 at.% Or more and less than 20 at.%. If the Ag content is 0.001 at.% Or more, Cu is in a low valence state where the catalyst is highly active, so that the CO-NO reactivity is improved and the purification performance of CO and NO can be enhanced. On the other hand, if the Ag content is less than 20 at.%, The layered structure of the delafossite-type oxide is easily maintained. From this point of view, the Ag content at the A site is preferably 0.001 at.% Or more and less than 20 at.%, More preferably 0.001 at.% Or more, or 10 at.% Or less, and more preferably 0.1 at.% Or more. Alternatively, it is 5 at.% Or less, more preferably 0.5 at.% Or more or 3 at.% Or less, and more preferably 1 at.% Or more or 2 at.% Or less.
  • elements other than Cu and Ag may be contained as long as the contents of Cu and Ag are within the above range.
  • examples of elements other than Cu and Ag include one or more elements selected from Pd and Pt.
  • the B site in this delafossite-type oxide has Mn, Al, Cr, Ga, Fe, Co, Ni, In, La, Nd, Sm, and B so that the formal valence of the B site is trivalent. What is necessary is just to be comprised from 1 type, or 2 or more types of elements selected from the group which consists of Eu, Y, V, and Ti.
  • the B site is composed of one or more elements selected from the group consisting of Mn, Al, Cr and Ga, Cu at the A site is stable in a monovalent state, and the catalytic activity Is preferable because it is difficult to achieve a low divalent value.
  • B site contains only Mn, or contains Mn and one or more elements selected from the group consisting of Al, Cr and Ga.
  • the catalytic activity can be further enhanced by including Mn at the B site. This effect can be presumed to be due to the distortion of the crystal structure, ie, the yarn teller effect.
  • the viewpoint of improving the stable purification performance of HC and NO it is preferably 50:50 to 90:10, and more preferably 50:50 to 80:20.
  • the above-described stable purification performance is indicated by, for example, the exhaust gas purification rate ( ⁇ 400) (%) at 400 ° C.
  • the average particle size (D50) of the delafossite-type oxide is preferably 0.1 ⁇ m to 60 ⁇ m. If the average particle diameter (D50) of this delafossite-type oxide is 0.1 ⁇ m or more, it is preferable because the heat resistance can be maintained while maintaining the peel strength between the base material and the catalyst layer described later. On the other hand, if the average particle size (D50) of the delafossite-type oxide is 60 ⁇ m or less, it is preferable because the gas contact property can be enhanced while maintaining the peel strength.
  • the average particle size (D50) of the present delafossite-type oxide is preferably 0.1 ⁇ m to 60 ⁇ m, and more preferably 4 ⁇ m or more or 50 ⁇ m or less.
  • the said average particle diameter (D50) is D50 by the volume reference
  • any of a liquid phase reaction method and a solid phase reaction method can be employed.
  • the liquid phase reaction method is more preferable than the solid phase reaction method in that it can be synthesized by low-temperature firing, can be uniformly atomized, and can increase the specific surface area.
  • nitrate, sulfate or acetate is used as a starting material, and weighed to have a desired composition, and a sodium hydroxide aqueous solution or the like is used as a precipitation material. Then, the precipitate is co-precipitated by dropping it into the nitrate, sulfate or acetate solution of the starting material. Next, the precipitate is preferably filtered, washed and dried, and then calcined at a temperature of 800 to 1200 ° C. for 1 to 48 hours in a nitrogen atmosphere or an air atmosphere. However, it is not limited to this method.
  • An exhaust gas purification catalyst (referred to as “the present catalyst”) according to an example of the embodiment of the present invention is an exhaust gas purification catalyst composition containing the present delafossite-type oxide and an inorganic porous material. preferable.
  • the delafossite-type oxide and the inorganic porous material are preferably present in an independent mixed state.
  • the delafossite-type oxide and the inorganic porous material By including the delafossite-type oxide and the inorganic porous material, it is possible to increase the number of catalytic active points compared to the case where the present delafossite-type oxide is used alone, and to improve the exhaust gas purification performance. Can be increased.
  • the present catalyst may contain other materials as required as long as it contains the present delafossite-type oxide and the inorganic porous material.
  • OSC material an OSC material, a stabilizer, a binder, a noble metal, and other additive components can be mentioned.
  • the content (mass) ratio of the delafossite-type oxide and the inorganic porous material is preferably 10:90 to 70:30. If the delafossite-type oxide ratio is 10% or more in the total content (mass) of the delafossite-type oxide and the inorganic porous material, Cu as the active site is sufficiently present in the catalyst. On the other hand, if the ratio is 70% or less, it is preferable because the contact probability with the exhaust gas can be maintained at a high level. From such a viewpoint, the content (mass) ratio of the delafossite-type oxide and the inorganic porous material is preferably 10:90 to 70:30, and more preferably 15:85 to 70:30. More preferably, it is more preferably 15:85 to 60:40, and more preferably 20:80 to 50:50, and the content of the inorganic porous material is higher than the delafossite type oxide. Is particularly preferred.
  • the ratio of the average particle diameter (D50) of the present delafossite-type oxide to the average particle diameter (D50) of the inorganic porous material is preferably 10:90 to 85:15, more preferably 10 : 90 to 75:25, among them, 15:85 to 60:40, more preferably 15:85 to 50:50.
  • the delafossite-type oxide and the inorganic porous material are not in a relationship of being carried by each other, but are present in a relationship of independent mixed states, and are preferable because they can be maintained in a state of high contact probability with exhaust gas.
  • the delafossite-type oxide is contained in the inorganic porous material when the average particle size (D50) of the delafossite-type oxide is smaller than the average particle size (D50) of the inorganic porous material. Since it distributes highly dispersedly, it is more preferable from a gas diffusivity viewpoint.
  • the inorganic porous material in the present catalyst (referred to as “the present inorganic porous material”) is not for supporting the present delafossite-type oxide, but for increasing the effective catalytic activity point in the present catalyst. .
  • the inorganic porous material examples include porous particles of a compound selected from the group consisting of silicon, zirconium, aluminum and titanium compounds. More specifically, for example, porous particles made of a compound selected from alumina, silica, silica-alumina, alumino-silicates, alumina-zirconia, alumina-chromia, alumina-ceria, and silica-zirconia-alumina. Can do.
  • the material enumerated as an OSC material mentioned later can also be used as an inorganic porous material.
  • examples of alumina include ⁇ , ⁇ , ⁇ , and ⁇ alumina.
  • ⁇ , ⁇ , or ⁇ alumina is preferably used.
  • trace amount La can also be included. It is also preferable to modify the above alumina with an alkaline earth metal oxide, silicon dioxide, zirconium dioxide, rare earth oxide, or transition metal oxide such as Cr, Mn, Fe, Co, Ni, Cu, Ag.
  • the present inorganic porous material may contain two or more kinds of inorganic porous materials having different particle sizes, and may contain two or more kinds of inorganic porous materials made of different materials.
  • the average particle size (D50) of the inorganic porous material is preferably 1 ⁇ m to 60 ⁇ m. If the average particle diameter (D50) of the inorganic porous material is 1 ⁇ m or more, it is preferable because the peel strength can be maintained. On the other hand, if the average particle diameter (D50) of this inorganic porous material is 60 ⁇ m or less, it is preferable because the delafossite-type oxide can be distributed in a highly dispersed manner while maintaining the peel strength.
  • the average particle diameter (D50) of the inorganic porous material is preferably 1 ⁇ m to 60 ⁇ m, more preferably 7 ⁇ m or more and 45 ⁇ m or less, and particularly preferably 10 ⁇ m or more or 40 ⁇ m or less.
  • the specific surface area of the present inorganic porous material is preferably 70 to 150 m 2 / g. If the specific surface area of the inorganic porous material is 70 m 2 / g or more, it is preferable because the delafossite-type oxide can be distributed in a highly dispersed state, while if it is 150 m 2 / g or less, the heat resistance is improved. It is preferable because it can be maintained.
  • the specific surface area of the inorganic porous material and even preferably at 70 ⁇ 150 meters 2 / g, among them more preferable 75m or less 2 / g or more or 140 m 2 / g, among them 80 m 2 / g or more Or it is more preferable that it is 130 m ⁇ 2 > / g or less.
  • the present catalyst may include other materials as necessary.
  • an OSC material, a binder, a stabilizer, a noble metal, and other additive components can be mentioned.
  • OSC material examples of the OSC material, that is, a promoter having an oxygen storage / release function, include cerium oxide, zirconium oxide, and cerium-zirconium composite oxide.
  • an inorganic binder such as an aqueous solution such as alumina sol, silica sol, or zirconia sol can be used. These can take the form of inorganic oxides upon firing.
  • Stabilizer examples include alkaline earth metals and alkali metals. Among them, it is possible to select one or more metals selected from the group consisting of magnesium, barium, calcium and strontium, preferably strontium and barium.
  • the present catalyst is useful as an exhaust gas purification catalyst, particularly a three-way catalyst for an internal combustion engine such as an automobile using gasoline as fuel, even if it contains no precious metal.
  • it may contain a noble metal.
  • the noble metal include palladium (Pd), platinum (Pt), and rhodium (Rh), and one or more of these can be used in combination.
  • the form of the present catalyst may be in the form of a powder, a lump, or a layer, that is, a catalyst layer formed on a substrate.
  • support as a catalyst layer on a base material is demonstrated.
  • a powder made of the present delafossite-type oxide, a powder made of the present inorganic porous material, water, and other materials such as an OSC material, a binder, a stabilizer, and the like as necessary are mixed and This catalyst can be produced by stirring to obtain a slurry-like catalyst composition and supporting the catalyst composition on a substrate.
  • a slurry is prepared by ball milling or the like, and the slurry is applied to a substrate, dried and fired to form a catalyst layer.
  • a powder made of the present delafossite-type oxide, a powder made of the present inorganic porous material, water, and other materials such as an OSC material, a binder, a stabilizer, etc. are mixed as necessary.
  • the material of the substrate examples include refractory materials such as ceramics and metal materials.
  • Materials for the ceramic substrate include refractory ceramic materials such as cordierite, cordierite-alpha alumina, silicon nitride, zircon mullite, spojumen, alumina-silica magnesia, zircon silicate, sillimanite, magnesium silicate, Examples thereof include zircon, petalite, alpha alumina, and aluminosilicates.
  • the material of the metal substrate can include refractory metals such as other suitable corrosion resistant alloys based on stainless steel or iron.
  • the shape of the substrate can include a honeycomb shape, a filter shape, a pellet shape, and a spherical shape.
  • a honeycomb-shaped base material for example, a monolith type base material having many fine gas flow passages, that is, a large number of channels parallel to the inside of the base material can be used so that the gas flows inside the base material.
  • the catalyst layer can be formed by coating the inner wall surface of each channel of the monolith substrate with the catalyst composition by wash coating or the like.
  • Catalyst layer One or two or more catalyst layers may be laminated on the substrate, or different catalyst layers may be formed on the upstream side and the downstream side when exhaust gas flows.
  • Example 1 Copper nitrate trihydrate equivalent to 54.2 parts by mass in terms of Cu metal, silver nitrate equivalent to 0.9 parts by mass in terms of Ag metal, and chromium nitrate nine equivalent to 44.8 parts by mass in terms of Cr metal
  • the hydrate was added to pure water and stirred sufficiently to obtain a 1 mol / L transparent nitrate solution.
  • a 1 mol / L sodium hydroxide (NaOH) solution was dropped into this transparent nitrate solution to obtain a precipitate.
  • the resulting precipitate was aged at room temperature for 24 hours, then washed thoroughly with water, filtered, and dried at 120 ° C. to obtain a precursor.
  • the precursor was calcined at 900 ° C. for 12 hours in an air atmosphere to obtain a CuAg-based delafossite-type oxide powder (Cu 0.99 Ag 0.01 CrO 2 ).
  • a honeycomb substrate made of stainless steel (size ⁇ 40 ⁇ 60 mm) is immersed in the slurry, pulled up to blow off excess slurry, dried at 90 ° C. for 10 minutes, and fired at 500 ° C. for 1.5 hours.
  • a catalyst layer was formed, and an exhaust gas purification catalyst (sample) was obtained.
  • Example 2 Copper nitrate trihydrate equivalent to 52.9 parts by mass in terms of Cu metal, silver nitrate equivalent to 0.9 parts by mass in terms of Ag metal, and manganese nitrate equivalent to 46.2 parts by mass in terms of Mn metal
  • the mixture was sufficiently stirred to obtain a 1 mol / L transparent nitrate solution.
  • a 1 mol / L sodium hydroxide (NaOH) solution was dropped into this transparent nitrate solution to obtain a precipitate.
  • the resulting precipitate was aged at room temperature for 24 hours, then washed thoroughly with water, filtered, and dried at 120 ° C. to obtain a precursor.
  • the precursor was calcined at 850 ° C.
  • Example 2 an exhaust gas purification catalyst (sample) was obtained in the same manner as in Example 1.
  • Example 3 Copper nitrate trihydrate equivalent to 53.5 parts by mass in terms of Cu metal, silver nitrate equivalent to 1.9 parts by mass in terms of Ag metal, and chromium nitrate nine equivalent to 44.7 parts by mass in terms of Cr metal
  • the hydrate was added to pure water and stirred sufficiently to obtain a 1 mol / L transparent nitrate solution.
  • a 1 mol / L sodium hydroxide (NaOH) solution was dropped into this transparent nitrate solution to obtain a precipitate.
  • the resulting precipitate was aged at room temperature for 24 hours, then washed thoroughly with water, filtered, and dried at 120 ° C. to obtain a precursor.
  • the precursor was calcined at 900 ° C.
  • Example 2 an exhaust gas purification catalyst (sample) was obtained in the same manner as in Example 1.
  • Example 4 Copper nitrate trihydrate equivalent to 50.5 parts by mass in terms of Cu metal, silver nitrate equivalent to 5.5 parts by mass in terms of Ag metal, and chromium nitrate nine equivalent to 44.0 parts by mass in terms of Cr metal
  • the hydrate was added to pure water and stirred sufficiently to obtain a 1 mol / L transparent nitrate solution.
  • a 1 mol / L sodium hydroxide (NaOH) solution was dropped into this transparent nitrate solution to obtain a precipitate.
  • the resulting precipitate was aged at room temperature for 24 hours, then washed thoroughly with water, filtered, and dried at 120 ° C. to obtain a precursor. Then the precursor was obtained 900 ° C.
  • Example 2 an exhaust gas purification catalyst (sample) was obtained in the same manner as in Example 1.
  • Example 5 Copper nitrate trihydrate equivalent to 47.7 parts by mass in terms of Cu metal, silver nitrate equivalent to 9 parts by mass in terms of Ag metal, and chromium nitrate nonahydrate equivalent to 41.8 parts by mass in terms of Cr metal
  • the product was added to pure water and sufficiently stirred to obtain a 1 mol / L transparent nitrate solution.
  • a 1 mol / L sodium hydroxide (NaOH) solution was dropped into this transparent nitrate solution to obtain a precipitate.
  • the resulting precipitate was aged at room temperature for 24 hours, then washed thoroughly with water, filtered, and dried at 120 ° C. to obtain a precursor. Then the precursor was obtained 900 ° C.
  • Example 2 an exhaust gas purification catalyst (sample) was obtained in the same manner as in Example 1.
  • Example 6 Copper nitrate trihydrate equivalent to 65.2 parts by mass in terms of Cu metal, silver nitrate equivalent to 1.1 parts by mass in terms of Ag metal, and aluminum nitrate 9 equivalent to 22.4 parts by mass in terms of Al metal Hydrate and manganese nitrate hexahydrate corresponding to 11.4 parts by mass in terms of Mn metal were added to pure water and sufficiently stirred to obtain a 1 mol / L transparent nitrate solution. A 1 mol / L sodium hydroxide (NaOH) solution was dropped into this transparent nitrate solution to obtain a precipitate. The resulting precipitate was aged at room temperature for 24 hours, then washed thoroughly with water, filtered, and dried at 120 ° C. to obtain a precursor.
  • NaOH sodium hydroxide
  • the precursor was calcined at 850 ° C. for 12 hours in a nitrogen atmosphere to obtain a CuAg-based delafossite type oxide powder (Cu 0.99 Ag 0.01 Al 0.8 Mn 0.2 O 2 ).
  • an exhaust gas purification catalyst (sample) was obtained in the same manner as in Example 1.
  • Example 7 Copper nitrate trihydrate equivalent to 54.0 parts by mass in terms of Cu metal, silver nitrate equivalent to 0.9 parts by mass in terms of Ag metal, and chromium nitrate nine equivalent to 35.7 parts by mass in terms of Cr metal Hydrate and manganese nitrate hexahydrate corresponding to 9.4 parts by mass in terms of Mn metal were added to pure water and sufficiently stirred to obtain a 1 mol / L transparent nitrate solution. A 1 mol / L sodium hydroxide (NaOH) solution was dropped into this transparent nitrate solution to obtain a precipitate. The resulting precipitate was aged at room temperature for 24 hours, then washed thoroughly with water, filtered, and dried at 120 ° C.
  • NaOH sodium hydroxide
  • Example 2 an exhaust gas purification catalyst (sample) was obtained in the same manner as in Example 1.
  • Example 8 Copper nitrate trihydrate equivalent to 53.6 parts by mass in terms of Cu metal, silver nitrate equivalent to 0.9 parts by mass in terms of Ag metal, and chromium nitrate nine equivalent to 22.1 parts by mass in terms of Cr metal Hydrate and manganese nitrate hexahydrate corresponding to 23.4 parts by mass in terms of Mn metal were added to pure water and sufficiently stirred to obtain a 1 mol / L transparent nitrate solution. A 1 mol / L sodium hydroxide (NaOH) solution was dropped into this transparent nitrate solution to obtain a precipitate. The resulting precipitate was aged at room temperature for 24 hours, then washed thoroughly with water, filtered, and dried at 120 ° C.
  • NaOH sodium hydroxide
  • Example 2 an exhaust gas purification catalyst (sample) was obtained in the same manner as in Example 1.
  • Example 9 Copper nitrate trihydrate equivalent to 53.2 parts by mass in terms of Cu metal, silver nitrate equivalent to 0.9 parts by mass in terms of Ag metal, and chromium nitrate nine equivalent to 8.8 parts by mass in terms of Cr metal Hydrate and manganese nitrate hexahydrate corresponding to 37.1 parts by mass in terms of Mn metal were added to pure water and sufficiently stirred to obtain a 1 mol / L transparent nitrate solution. A 1 mol / L sodium hydroxide (NaOH) solution was dropped into this transparent nitrate solution to obtain a precipitate. The resulting precipitate was aged at room temperature for 24 hours, then washed thoroughly with water, filtered, and dried at 120 ° C.
  • NaOH sodium hydroxide
  • Example 1 An exhaust gas purification catalyst (sample) was obtained in the same manner as in Example 1.
  • the peak pattern of the AgCu-based delafossite-type oxide powder used in Examples 1 to 9 was measured using an X-ray diffractometer (manufactured by Rigaku Corporation, Mini Flex 600, target: Cu, acceleration voltage 40 kV). As a result, it was confirmed that the crystal structure of 3R type delafossite type oxide was obtained. Further, as a result of observing the exhaust gas purification catalyst (sample) obtained in Examples 1 to 9 with an electron microscope, the delafossite-type oxide particles and the inorganic porous particles are not supported on each other. It was confirmed that they existed in an independent mixed state relationship.
  • the hydrate was added to pure water and stirred sufficiently to obtain a 1 mol / L transparent nitrate solution.
  • a 1 mol / L sodium hydroxide (NaOH) solution was dropped into this transparent nitrate solution to obtain a precipitate.
  • the resulting precipitate was aged at room temperature for 24 hours, then washed thoroughly with water, filtered, and dried at 120 ° C. to obtain a precursor. Then the precursor 900 ° C.
  • Example 2 An exhaust gas purification catalyst (sample) was obtained in the same manner as in Example 1 using the CuAg-based oxide powder thus obtained.
  • the average particle size (D50) of delafossite oxide and alumina was measured using laser diffraction / scattering particle size distribution, and Table 1 and It is shown in Table 2.
  • a sample (powder) is charged into a water-soluble solvent, and 30 W ultrasonic waves are transmitted at a flow rate of 50%.
  • the particle size distribution was measured using a laser diffraction particle size distribution analyzer “MT3000II” manufactured by Nikkiso Co., Ltd., and D50 was measured from the obtained volume-based particle size distribution chart.
  • the measurement conditions were determined as an average value of particle refractive index 1.5, particle shape true sphere, solvent refractive index 1.3, set zero 30 seconds, measurement time 30 seconds, and twice measurement.
  • an exhaust gas purification catalyst (sample) was set in the reactor, CO: 1.4%, NO: 1500 ppm, C 3 H 6 : 500 ppmC, O 2 : circulated through the reactor so as to consist of 0.7% and the balance N 2, and measured the outlet gas component at 100 to 600 ° C. using an automobile exhaust gas measuring device (MEXA-7100, manufactured by HORIBA) did. From the obtained light-off performance evaluation results, the temperature at which the model gas is purified by 50% (T50) (° C.) and the purification rate of the model gas at 400 ° C. ( ⁇ 400) (%) are obtained. This is shown in FIG.
  • the Ag content in the A site is 0.001 at.% Or more and less than 20 at.%, So that the three-way catalyst performance including NO x purification performance becomes suitable.
  • the purification performance is more suitably achieved by setting the content to 0.001 at.% Or more or 10 at.% Or less, of which 0.1 at.% Or more or 5 at.% Or less, of which 1 at.% Or more or 5 at.% Or less.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Toxicology (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

排気ガス浄化触媒として有効なCu系デラフォサイト型酸化物に関し、Cuを触媒高活性な低価数状態にすることで、これまでよりも高活性な、新たなCu系デラフォサイト型酸化物を提供する。 一般式ABOで示されるデラフォサイト型酸化物であって、前記一般式のAサイトにCu及びAgを含み、前記一般式のBサイトにMn、Al、Cr、Ga、Fe、Co、Ni、In、La、Nd、Sm、Eu、Y、V及びTiからなる群から選択される1種又は2種以上の元素を含み、且つ、前記一般式のAサイト中に0.001at.%以上20at.%未満の割合でAgを含むことを特徴とする排気ガス浄化触媒用デラフォサイト型酸化物を提案する。

Description

排気ガス浄化触媒用デラフォサイト型酸化物及びこれを用いた排気ガス浄化触媒
 本発明は、内燃機関から排出される排気ガスを浄化するための排気ガス浄化触媒に用いるデラフォサイト型酸化物及びこれを用いた排気ガス浄化触媒に関する。
 ガソリンを燃料とする自動車等の内燃機関の排気ガス中には、炭化水素(HC)、一酸化炭素(CO)、窒素酸化物(NOx)等の有害成分が含まれているため、それぞれの有害成分を、酸化還元反応を用いて浄化して排気する必要がある。例えば炭化水素(HC)は酸化して水と二酸化炭素に転化させ、一酸化炭素(CO)は酸化して二酸化炭素に転化させ、窒素酸化物(NOx)は還元して窒素に転化させて浄化する必要がある。
 このような内燃機関からの排気ガスを処理するための触媒(以下「排気ガス浄化触媒」と称する)として、CO、HC及びNOxを酸化還元することができる三元触媒(Three way catalysts:TWC)が用いられている。
 この種の三元触媒としては、例えば高い表面積を有するアルミナ多孔質体などの耐火性酸化物多孔質体に貴金属を担持し、これを基材、例えば耐火性セラミック又は金属製ハニカム構造で出来ているモノリス型基材に担持したり、或いは、耐火性粒子に担持したりしたものが知られている。
 排気ガス浄化用触媒には、空燃比が変動する条件下でも常に高い浄化性能を発揮することが要求される。そのため、酸素吸蔵放出機能(OSC:Oxygen Storage Capacity)を有する助触媒(「OSC材」とも称する)を貴金属と共存させることにより、浄化性能を確保することが行われている。
 セリアなどの酸化物は、その結晶格子のCeイオンのIII価とIV価とが可逆的に変化することによる酸素吸蔵放出機能を有するOSC材である。このようなOSC材を貴金属と共存させることで、排気ガスの雰囲気変動を緩和することができ、浄化率を大きく向上させることができる。
 従来のOSC材すなわち酸素吸蔵放出材料は、希少な資源である貴金属が存在しないと低温での酸素吸蔵放出能力を示さないという問題を抱えていた。
 そこで、貴金属を必要としない酸素吸蔵放出材料として、特異な酸素吸蔵・放出特性を有する混合層積層不整結晶構造デラフォサイト型酸化物が提案されている(特許文献1参照)。
 しかしながら、これらは比較的高温での酸素吸蔵放出機能を有するものであった。そこで、貴金属の存在を必要とせず、且つ低温域から高温域まで高い酸素吸蔵放出機能を有するデラフォサイト型酸化物およびその製造方法として、特許文献2が提案されている。特許文献2には、一般式ABO(式中、AはCu、Ag、Pd及びPtからなる群から選択される少なくとも1種を表し、BはAl、Cr、Ga、Fe、Mn、Co、Rh、Ni、In、La、Nd、Sm、Eu、Y及びTiからなる群から選択される少なくとも1種を表す)で示される3R型デラフォサイト型酸化物であることを特徴とするデラフォサイト型酸化物、及び、その製造方法として、原料粉末を所望組成の比で混合し、加圧成形した後、不活性雰囲気下で焼成する製造方法が開示されている。
 他方、デラフォサイト型酸化物に関しては、六方晶系型の2Hデラフォサイト型酸化物としてのCuMO2(M=Al,Cr,Fe)がNO分解触媒として検討されている(非特許文献1参照)。
J.of Material Science,27,1353~1356,1992年
特開2002-255548号公報 特開2008-156130号公報
 前述のようにCu系デラフォサイト型酸化物は、OSC材として検討されていたほか、NO分解触媒としても検討されていた。
 しかし、Cu系デラフォサイト型酸化物を三元触媒として使用してみたところ、それのみでは触媒性能として十分ではないことが明かになった。
 そこで本発明は、排気ガス浄化触媒として有効なCu系デラフォサイト型酸化物に関し、Cuを触媒高活性な低価数状態にすることで、これまでよりも高活性な、新たなCu系デラフォサイト型酸化物を提案せんとするものである。
 本発明は、一般式ABOで示されるデラフォサイト型酸化物であって、前記一般式のAサイトにCu及びAgを含み、前記一般式のBサイトにMn、Al、Cr、Ga、Fe、Co、Ni、In、La、Nd、Sm、Eu、Y、V及びTiからなる群から選択される1種又は2種以上の元素を含み、且つ、前記一般式のAサイト中に0.001at.%以上20at.%未満の割合でAgを含むことを特徴とする排気ガス浄化触媒用デラフォサイト型酸化物を提案するものである。
 Cuを含有するCu系デラフォサイト型酸化物は、層状構造を有しており、活性成分であるCuの分散状態を良好な状態で保持することができる。さらに、本発明が提案するデラフォサイト型酸化物は、AサイトにCuと、Aサイト中に0.001at.%以上20at.%未満の割合でAgとを含ませることにより、Cuを触媒高活性な低価数状態にすることができ、更に活性を高めることができる。
 次に、本発明の実施形態の例について説明する。但し、本発明がここで説明する実施形態に限定されるものではない。
<本デラフォサイト型酸化物>
 本発明の実施形態の一例に係る排気ガス浄化触媒用デラフォサイト型酸化物(「本デラフォサイト型酸化物」と称する)は、一般式ABOで示されるデラフォサイト型酸化物であり、前記一般式のAサイトにCu及びAgを含み、前記一般式のBサイトにMn、Al、Cr、Ga、Fe、Co、Ni、In、La、Nd、Sm、Eu、Y、V及びTiからなる群から選択される1種又は2種以上の元素を含むものである。
 デラフォサイト型酸化物であるかどうかは、X線回折分析(XRD)でピークを同定することで確認することができる。
 本デラフォサイト型酸化物は、デラフォサイト単相のみからなるものであっても、デラフォサイトの主相に加えて他元素からなる副生成相との混相からなるものであってもよい。
 本デラフォサイト型酸化物は、AサイトにCu及びAgを含んでいる。当該Aサイトに活性成分であるCuを含むことで、デラフォサイト型酸化物に触媒活性を付与することができる。しかも、層状構造を呈するデラフォサイト型酸化物においては、Cuの分散状態を良好な状態で保持することができる。さらに、Aサイトに所定割合でAgを含むことにより、Cuを触媒高活性な低価数状態にすることができ、従来困難であったNO浄化性能に優れた三元触媒とすることができる。なお、低価数状態かどうかは、例えば水素TPR測定や、X線光電子分光法(XPS)により確認することができる。
 本来AgとCuとは相性が悪く、互いに分散し難いものである。しかし、層状構造を呈するデラフォサイト型酸化物のAサイトにおいては、CuとAgは均一に分散した状態となり、Cuに対してAgの作用が影響して、AgによりCuの還元温度を低くすることができるものと推定することができる。
 AサイトにおけるCuの含有量は、Aサイトを構成する元素の合計含有量中80at.%以上であるのが好ましい。
 AサイトにおけるCuの含有量が80at.%以上であれば、特にNOx浄化性能に優れた三元触媒として用いることができる。他方、Aサイトが全てCuであれば、Cuは触媒低活性な高価数状態になる可能性がある。
 かかる観点から、AサイトにおけるCuの含有量は、Aサイトを構成する元素の合計含有量中80at.%以上であるのが好ましく、中でも90at.%以上或いは99.999at.%未満、その中でも95at.%以上或いは99.9at.%以下、その中でも95at.%以上或いは99at.%以下であるのがさらに好ましい。
 AサイトにおけるAgの含有量は、0.001at.%以上20at.%未満であるのが好ましい。
 Agの含有量が0.001at.%以上であれば、Cuが触媒高活性な低価数状態になることで、CO-NO反応性が向上しCOとNOの浄化性能を高めることができる。他方、Agの含有量が20at.%未満であれば、デラフォサイト型酸化物の層状構造が維持されやすくなる。
 かかる観点から、AサイトにおけるAgの含有量は、0.001at.%以上20at.%未満であるのが好ましく、中でも0.001at.%以上或いは10at.%以下、その中でも0.1at.%以上或いは5at.%以下、その中でも0.5at.%以上或いは3at.%以下、その中でもさらに1at.%以上或いは2at.%以下であるのがさらに好ましい。
 Aサイトにおいては、Cu及びAgの含有量が上記範囲内であれば、Cu及びAg以外の元素が含有されていてもよい。この際、Cu及びAg以外の元素としては、例えばPd及びPtから選択される1種又は2種以上の元素を挙げることができる。
 他方、本デラフォサイト型酸化物におけるBサイトは、Bサイトの形式価数が3価となるように、Mn、Al、Cr、Ga、Fe、Co、Ni、In、La、Nd、Sm、Eu、Y、V及びTiからなる群から選択される1種又は2種以上の元素から構成されていればよい。
 中でも、Bサイトは、Mn、Al、Cr及びGaからなる群から選択される1種又は2種以上の元素から構成されていれば、AサイトのCuが1価の状態で安定となり、触媒活性が低い2価になり難いため、好ましい。
 また、BサイトにMnのみを含むか、或いは、Mnと、Al、Cr及びGaからなる群から選択される1種又は2種以上の元素とを含むのが好ましい。このように、BサイトにMnを含むことで、触媒活性をより高めることができる。この効果は、結晶構造の歪の影響すなわちヤーンテラー効果によるものと推定することができる。
 この際、Bサイト中のMnの含有量と、Al、Cr及びGaの合計含有量(Al+Cr+Ga)の原子比率が、Mn:Al+Cr+Ga=10:90~90:10であるのが好ましく、中でも30:70~90:10、その中でも40:60~90:10であることが好ましい。特に、HC及びNOの安定した浄化性能を向上させる観点から、50:50~90:10であるのが好ましく、50:50~80:20であるのがさらに好ましい。なお、上述の安定した浄化性能とは、例えば400℃における排ガス浄化率(η400)(%)により示される。
(平均粒子径)
 本デラフォサイト型酸化物の平均粒子径(D50)は0.1μm~60μmであるのが好ましい。
 本デラフォサイト型酸化物の平均粒子径(D50)が0.1μm以上であれば、後述する基材と触媒層との剥離強度を維持しつつ、耐熱性を維持できるから好ましい。他方、本デラフォサイト型酸化物の平均粒子径(D50)が60μm以下であれば、剥離強度を維持しつつガス接触性を高めることができるから好ましい。
 かかる観点から、本デラフォサイト型酸化物の平均粒子径(D50)は0.1μm~60μmであるのが好ましく、中でも4μm以上或いは50μm以下であるのがさらに好ましい。
 なお、上記平均粒子径(D50)は、レーザー回折散乱式粒度分布測定法により測定して得られる体積基準粒度分布によるD50である。後述するD50も同様である。
(本デラフォサイト型酸化物の合成)
 本デラフォサイト型酸化物を得るには、液相反応法及び固相反応法のいずれの方法も採用可能である。
 但し、液相反応法によれば、固相反応法よりも低温焼成で合成でき、均一に微粒化することができ、比表面積を高くすることができる点で、より好ましい。
 例えば、液相反応法の1つである共沈法では、出発原料として硝酸塩、硫酸塩或いは酢酸塩を用いて、所望の組成になるように秤量し、沈殿材として水酸化ナトリウム水溶液などを用いて、前記出発原料の硝酸塩、硫酸塩或いは酢酸塩溶液に滴下して沈殿物を共沈させる。次に、当該沈殿物を濾過、洗浄、乾燥した後、窒素雰囲気又は大気雰囲気で800~1200℃の温度で1時間~48時間焼成するのが好ましい。但し、この方法に限定するものではない。
<本触媒>
 本発明の実施形態の一例に係る排気ガス浄化触媒(「本触媒」と称する)は、前記本デラフォサイト型酸化物と、無機多孔質材料とを含む排気ガス浄化触媒組成物であるのが好ましい。
 本触媒において、本デラフォサイト型酸化物と無機多孔質材料とは、それぞれ独立した混合状態の関係で存在しているのが好ましい。
 本デラフォサイト型酸化物と無機多孔質材料とを含むことにより、本デラフォサイト型酸化物を単独で用いた場合に比べて、触媒活性点を多くすることができ、排気ガス浄化性能を高めることができる。
 本触媒は、本デラフォサイト型酸化物と無機多孔質材料とを含んでいれば、必要に応じて他の材料を含んでいてもよい。例えばOSC材、安定剤、バインダ、貴金属、その他の添加成分を挙げることができる。
 本触媒において、本デラフォサイト型酸化物と前記無機多孔質材料の含有量(質量)比率は10:90~70:30であるのが好ましい。
 本デラフォサイト型酸化物と前記無機多孔質材料の合計含有量(質量)のうち本デラフォサイト型酸化物比率が10%以上であれば、活性点であるCuが触媒中に十分存在するため好ましく、他方、当該比率が70%以下であれば、排ガスとの接触確率が高い状態で維持できるため好ましい。
 かかる観点から、前記デラフォサイト型酸化物と前記無機多孔質材料の含有量(質量)比率は10:90~70:30であるのが好ましく、中でも15:85~70:30であるのがさらに好ましく、その中でも15:85~60:40、さらにその中でも20:80~50:50であるのがさらに好ましく、中でも前記デラフォサイト型酸化物よりも前記無機多孔質材料の含有量が多い方が特に好ましい。
 本触媒において、本デラフォサイト型酸化物の平均粒子径(D50)と、前記無機多孔質材料の平均粒子径(D50)の比率は10:90~85:15であるのが好ましく、中でも10:90~75:25、その中でも15:85~60:40、さらにその中でも15:85~50:50であるのがさらに好ましい。
 前記デラフォサイト型酸化物の平均粒子径(D50)と、前記無機多孔質材料の平均粒子径(D50)の比率が上記範囲内であれば、デラフォサイト型酸化物と無機多孔質材料とは、互いに何れかに担持される関係にはなく、それぞれ独立した混合状態の関係で存在し、排ガスとの接触確率が高い状態で維持できるため好ましい。特に、デラフォサイト型酸化物の平均粒子径(D50)の方が前記無機多孔質材料の平均粒子径(D50)よりも小さい方が、デラフォサイト型酸化物が前記無機多孔質材料中に高分散に分布するため、ガス拡散性の観点からより好ましい。
<本無機多孔質材料>
 本触媒における無機多孔質材料(「本無機多孔質材料」と称する)は、本デラフォサイト型酸化物を担持するためのものではなく、本触媒における有効触媒活性点を増やすためのものである。
 本無機多孔質材料としては、例えばケイ素、ジルコニウム、アルミニウムおよびチタン化合物から成る群から選択される化合物の多孔質粒子を挙げることができる。より具体的には、例えばアルミナ、シリカ、シリカ-アルミナ、アルミノ-シリケート類、アルミナ-ジルコニア、アルミナ-クロミア、アルミナ-セリアおよびシリカ-ジルコニア-アルミナから選択される化合物からなる多孔質粒子を挙げることができる。なお、後述するOSC材として列挙された材料を無機多孔質材として用いることもできる。
 このうちアルミナとしては、γ,δ,θもしくはαアルミナを挙げることができる。中でも、γ、δもしくはθアルミナを用いるのが好ましい。なお、アルミナについては、耐熱性を上げるため、微量のLaを含むこともできる。
 上記アルミナにアルカリ土類金属酸化物、二酸化珪素、二酸化ジルコニウム、希土類の酸化物又はCr、Mn、Fe、Co、Ni、Cu、Ag等の遷移金属の酸化物を修飾させたものも好ましい。
 本無機多孔質材料は、粒度の異なる2種類以上の無機多孔質材料を含んでいてもよいし、また、異なる材質からなる2種類以上の無機多孔質材料を含んでいてもよい。
(平均粒子径)
 本無機多孔質材料の平均粒子径(D50)は1μm~60μmであるのが好ましい。
 本無機多孔質材料の平均粒子径(D50)が1μm以上であれば、剥離強度を維持できるから好ましい。他方、本無機多孔質材料の平均粒子径(D50)が60μm以下であれば、剥離強度を維持しつつデラフォサイト型酸化物を高分散に分布させることができるから好ましい。
 かかる観点から、本無機多孔質材料の平均粒子径(D50)は1μm~60μmであるのが好ましく、中でも7μmより大きく或いは45μm以下、その中でも特に10μm以上或いは40μm以下であるのが好ましい。
(比表面積)
 本無機多孔質材料の比表面積は70~150m2/gであるのが好ましい。
 本無機多孔質材料の比表面積が70m2/g以上であれば、デラフォサイト型酸化物を高分散に分布させることができるから好ましく、他方、150m2/g以下であれば、耐熱性を維持できるから好ましい。
 かかる観点から、本無機多孔質材料の比表面積は70~150m2/gであるのが好ましく、中でも75m2/g以上或いは140m2/g以下であるのがさらに好ましく、中でも80m2/g以上或いは130m2/g以下であるのがさらに好ましい。
<その他の含有材料>
 上述のように、本触媒は、本デラフォサイト型酸化物及び本無機多孔質材料を含んでいれば、必要に応じて他の材料を含んでいてもよい。例えばOSC材、バインダ、安定剤、貴金属、その他の添加成分を挙げることができる。
(OSC材)
 OSC材、すなわち、酸素吸蔵放出機能を有する助触媒としては、例えばセリウム酸化物、ジルコニウム酸化物、セリウム・ジルコニウム複合酸化物などを挙げることができる。
(バインダ)
 バインダとしては、無機系バインダ、例えばアルミナゾル、シリカゾル、ジルコニアゾル等の水溶性溶液を使用することができる。これらは、焼成すると無機酸化物の形態をとることができる。
(安定剤)
 安定剤としては、例えばアルカリ土類金属やアルカリ金属を挙げることができる。中でも、マグネシウム、バリウム、カルシウムおよびストロンチウム、好適にはストロンチウムおよびバリウムから成る群から選択される金属のうちの一種又は二種以上を選択可能である。
(貴金属)
 本触媒は、貴金属を含まなくても、排気ガス浄化触媒、特にガソリンを燃料とする自動車等の内燃機関用の三元触媒として有用である。但し、貴金属を含んでいてもよい。
 その場合、貴金属としては、例えばパラジウム(Pd)、白金(Pt)、ロジウム(Rh)を挙げることができ、これらのうちの一種又は二種以上を組み合わせて使用することができる。
<本触媒の製造方法>
 本触媒の形態は、粉状であっても、塊状であっても、層状すなわち基材上に形成された触媒層の状態であってもよい。
 ここでは、基材上に触媒層として担持されるように形成する製造方法について説明する。
 先ず、本デラフォサイト型酸化物からなる粉体と、本無機多孔質材料からなる粉体と、水と、必要に応じて他の材料例えば、OSC材、バインダ、安定剤などとを混合及び撹拌してスラリー状の触媒組成物を得、この触媒組成物を、基材に担持させることで本触媒を作製することができる。
 具体的には、例えば本デラフォサイト型酸化物からなる粉体と、本無機多孔質材料からなる粉体と、水と、必要に応じて他の材料例えば、OSC材、バインダ、安定剤などとを混合し、ボールミリングなどでスラリーを作製し、このスラリーを基材に塗布、乾燥、焼成するなどして触媒層を形成することができる。
 また、本デラフォサイト型酸化物からなる粉体と、本無機多孔質材料からなる粉体と、水と、必要に応じて他の材料例えば、OSC材、バインダ、安定剤などとを混合し、ボールミリングなどでスラリーを作製し、次に、このスラリー中に基材を浸漬し、これを引き上げて焼成して、基材表面に触媒層を形成することもできる。
 ただし、本触媒を製造するための方法は公知のあらゆる方法を採用することが可能であり、上記例に限定するものではない。
(基材)
 上記基材の材質としては、セラミックス等の耐火性材料や金属材料を挙げることができる。
 セラミック製基材の材質としては、耐火性セラミック材料、例えばコージライト、コージライト-アルファアルミナ、窒化ケイ素、ジルコンムライト、スポジュメン、アルミナ-シリカマグネシア、ケイ酸ジルコン、シリマナイト(sillimanite)、ケイ酸マグネシウム、ジルコン、ペタライト(petalite)、アルファアルミナおよびアルミノシリケート類などを挙げることができる。
 金属製基材の材質としては、耐火性金属、例えばステンレス鋼または鉄を基とする他の適切な耐食性合金などを挙げることができる。
 基材の形状は、ハニカム状、フィルター状、ペレット状、球状を挙げることができる。
 ハニカム形状の基材を用いる場合、例えば基材内部を気体が流通するように、基材内部に平行で微細な気体流通路、すなわちチャンネルを多数有するモノリス型基材を使用することができる。この際、モノリス型基材の各チャンネル内壁表面に、触媒組成物をウォッシュコートなどによってコートして触媒層を形成することができる。
(触媒層)
 触媒層は、基材上に一層或いは二層以上積層してもよいし、また、排気ガスが流通する際の上流側と下流側とで異なる触媒層を形成してもよい。
<語句の説明>
 本明細書において「X~Y」(X,Yは任意の数字)と表現する場合、特にことわらない限り「X以上Y以下」の意と共に、「好ましくはXより大きい」或いは「好ましくはYより小さい」の意も包含する。
 また、「X以上」(Xは任意の数字)或いは「Y以下」(Yは任意の数字)と表現した場合、「Xより大きいことが好ましい」或いは「Y未満であることが好ましい」旨の意図も包含する。
 次に、実施例に基づいて本発明について説明する。但し、本発明が実施例に限定されるものではない。
<実施例1>
 Cuメタル換算で54.2質量部に相当する硝酸銅三水和物と、Agメタル換算で0.9質量部に相当する硝酸銀と、Crメタル換算で44.8質量部に相当する硝酸クロム九水和物を純水に加え十分に撹拌して、1mol/Lの透明な硝酸塩溶液を得た。この透明な硝酸塩溶液中に、1mol/L水酸化ナトリウム(NaOH)溶液を滴下して沈殿物を得た。
 得られた沈殿物を常温で24時間熟成させた後、十分に水洗し、濾過し、120℃で乾燥させて前駆体を得た。そしてこの前駆体を空気雰囲気で900℃、12時間焼成してCuAg系デラフォサイト型酸化物粉末(Cu0.99Ag0.01CrO)を得た。
 次に、θアルミナ(Al23)粒子粉末(D50=12.4μm、BET比表面積=105m/g)を用意し、得られたCuAg系デラフォサイト型酸化物とθアルミナ(Al23)粒子粉末との合計量に対するCuの含有量が5.2質量%になるように、CuAg系デラフォサイト型酸化物粉末11.1質量部と、θアルミナ(Al23)粒子粉末80.4質量部と、ジルコニアバインダ8.5質量部とを、水に加えて、2時間プロペラ撹拌してスラリーを作製した。
 次に、ステンレス製のハニカム基材(サイズ φ40×60mm)を前記スラリー中に浸漬し、引き上げて過剰なスラリーを吹き払った後、90℃で10分間乾燥させ、500℃で1.5時間焼成して触媒層を形成し、排気ガス浄化用触媒(サンプル)を得た。
<実施例2>
 Cuメタル換算で52.9質量部に相当する硝酸銅三水和物と、Agメタル換算で0.9質量部に相当する硝酸銀と、Mnメタル換算で46.2質量部に相当する硝酸マンガンを純水に加え十分に撹拌して、1mol/Lの透明な硝酸塩溶液を得た。この透明な硝酸塩溶液中に、1mol/L水酸化ナトリウム(NaOH)溶液を滴下して沈殿物を得た。
 得られた沈殿物を常温で24時間熟成させた後、十分に水洗し、濾過し、120℃で乾燥させて前駆体を得た。そしてこの前駆体を窒素雰囲気で850℃、12時間焼成してCuAg系デラフォサイト型酸化物粉末(Cu0.99Ag0.01MnO)を得た。
 このようにして得られたCuAg系デラフォサイト型酸化物粉末を用いて、実施例1と同様に排気ガス浄化触媒(サンプル)を得た。
<実施例3>
 Cuメタル換算で53.5質量部に相当する硝酸銅三水和物と、Agメタル換算で1.9質量部に相当する硝酸銀と、Crメタル換算で44.7質量部に相当する硝酸クロム九水和物を純水に加え十分に撹拌して、1mol/Lの透明な硝酸塩溶液を得た。この透明な硝酸塩溶液中に、1mol/L水酸化ナトリウム(NaOH)溶液を滴下して沈殿物を得た。
 得られた沈殿物を常温で24時間熟成させた後、十分に水洗し、濾過し、120℃で乾燥させて前駆体を得た。そしてこの前駆体を空気雰囲気で900℃、12時間焼成してCuAg系デラフォサイト型酸化物粉末(Cu0.98Ag0.02CrO)を得た。
 このようにして得られたCuAg系デラフォサイト型酸化物粉末を用いて、実施例1と同様に排気ガス浄化触媒(サンプル)を得た。
<実施例4>
 Cuメタル換算で50.5質量部に相当する硝酸銅三水和物と、Agメタル換算で5.5質量部に相当する硝酸銀と、Crメタル換算で44.0質量部に相当する硝酸クロム九水和物を純水に加え十分に撹拌して、1mol/Lの透明な硝酸塩溶液を得た。この透明な硝酸塩溶液中に、1mol/L水酸化ナトリウム(NaOH)溶液を滴下して沈殿物を得た。
 得られた沈殿物を常温で24時間熟成させた後、十分に水洗し、濾過し、120℃で乾燥させて前駆体を得た。そしてこの前駆体を空気雰囲気で900℃、12時間焼成してCuAg系デラフォサイト型酸化物粉末(Cu0.94Ag0.06CrO)を得た。
 このようにして得られたCuAg系デラフォサイト型酸化物粉末を用いて、実施例1と同様に排気ガス浄化触媒(サンプル)を得た。
<実施例5>
 Cuメタル換算で47.7質量部に相当する硝酸銅三水和物と、Agメタル換算で9質量部に相当する硝酸銀と、Crメタル換算で41.8質量部に相当する硝酸クロム九水和物を純水に加え十分に撹拌して、1mol/Lの透明な硝酸塩溶液を得た。この透明な硝酸塩溶液中に、1mol/L水酸化ナトリウム(NaOH)溶液を滴下して沈殿物を得た。
 得られた沈殿物を常温で24時間熟成させた後、十分に水洗し、濾過し、120℃で乾燥させて前駆体を得た。そしてこの前駆体を空気雰囲気で900℃、12時間焼成してCuAg系デラフォサイト型酸化物粉末(Cu0.9Ag0.1CrO)を得た。
 このようにして得られたCuAg系デラフォサイト型酸化物粉末を用いて、実施例1と同様に排気ガス浄化触媒(サンプル)を得た。
<実施例6>
 Cuメタル換算で65.2質量部に相当する硝酸銅三水和物と、Agメタル換算で1.1質量部に相当する硝酸銀と、Alメタル換算で22.4質量部に相当する硝酸アルミニウム九水和物と、Mnメタル換算で11.4質量部に相当する硝酸マンガン六水和物を純水に加え十分に撹拌して、1mol/Lの透明な硝酸塩溶液を得た。この透明な硝酸塩溶液中に、1mol/L水酸化ナトリウム(NaOH)溶液を滴下して沈殿物を得た。
 得られた沈殿物を常温で24時間熟成させた後、十分に水洗し、濾過し、120℃で乾燥させて前駆体を得た。そしてこの前駆体を窒素雰囲気で850℃、12時間焼成してCuAg系デラフォサイト型酸化物粉末(Cu0.99Ag0.01Al0.8Mn0.2)を得た。
 このようにして得られたCuAg系デラフォサイト型酸化物粉末を用いて、実施例1と同様に排気ガス浄化触媒(サンプル)を得た。
<実施例7>
 Cuメタル換算で54.0質量部に相当する硝酸銅三水和物と、Agメタル換算で0.9質量部に相当する硝酸銀と、Crメタル換算で35.7質量部に相当する硝酸クロム九水和物と、Mnメタル換算で9.4質量部に相当する硝酸マンガン六水和物を純水に加え十分に撹拌して、1mol/Lの透明な硝酸塩溶液を得た。この透明な硝酸塩溶液中に、1mol/L水酸化ナトリウム(NaOH)溶液を滴下して沈殿物を得た。
 得られた沈殿物を常温で24時間熟成させた後、十分に水洗し、濾過し、120℃で乾燥させて前駆体を得た。そしてこの前駆体を窒素雰囲気で900℃、12時間焼成してCuAg系デラフォサイト型酸化物粉末(Cu0.99Ag0.01Cr0.8Mn0.2)を得た。
 このようにして得られたCuAg系デラフォサイト型酸化物粉末を用いて、実施例1と同様に排気ガス浄化触媒(サンプル)を得た。
<実施例8>
 Cuメタル換算で53.6質量部に相当する硝酸銅三水和物と、Agメタル換算で0.9質量部に相当する硝酸銀と、Crメタル換算で22.1質量部に相当する硝酸クロム九水和物と、Mnメタル換算で23.4質量部に相当する硝酸マンガン六水和物を純水に加え十分に撹拌して、1mol/Lの透明な硝酸塩溶液を得た。この透明な硝酸塩溶液中に、1mol/L水酸化ナトリウム(NaOH)溶液を滴下して沈殿物を得た。
 得られた沈殿物を常温で24時間熟成させた後、十分に水洗し、濾過し、120℃で乾燥させて前駆体を得た。そしてこの前駆体を窒素雰囲気で900℃、12時間焼成してCuAg系デラフォサイト型酸化物粉末(Cu0.99Ag0.01Cr0.5Mn0.5)を得た。
 このようにして得られたCuAg系デラフォサイト型酸化物粉末を用いて、実施例1と同様に排気ガス浄化触媒(サンプル)を得た。
<実施例9>
 Cuメタル換算で53.2質量部に相当する硝酸銅三水和物と、Agメタル換算で0.9質量部に相当する硝酸銀と、Crメタル換算で8.8質量部に相当する硝酸クロム九水和物と、Mnメタル換算で37.1質量部に相当する硝酸マンガン六水和物を純水に加え十分に撹拌して、1mol/Lの透明な硝酸塩溶液を得た。この透明な硝酸塩溶液中に、1mol/L水酸化ナトリウム(NaOH)溶液を滴下して沈殿物を得た。
 得られた沈殿物を常温で24時間熟成させた後、十分に水洗し、濾過し、120℃で乾燥させて前駆体を得た。そしてこの前駆体を窒素雰囲気で900℃、12時間焼成してCuAg系デラフォサイト型酸化物粉末(Cu0.99Ag0.01Cr0.2Mn0.8)を得た。
 このようにして得られたCuAg系デラフォサイト型酸化物粉末を用いて、実施例1と同様に排気ガス浄化触媒(サンプル)を得た。
 なお、X線回折装置(Rigaku社製、Mini Flex 600、ターゲット:Cu、加速電圧40kV)を用いて、実施例1~9で用いたAgCu系デラフォサイト型酸化物粉末のピークパターンを測定した結果、3R型デラフォサイト型酸化物の結晶構造が得られたことが確認された。
 また、実施例1~9で得られた排気ガス浄化触媒(サンプル)を電子顕微鏡観察した結果、デラフォサイト型酸化物粒子と無機多孔質粒子は、互いに何れかに担持される関係にはなく、それぞれ独立した混合状態の関係で存在していることが確認された。
<比較例1>
 Cuメタル換算で55.0質量部に相当する硝酸銅三水和物と、Crメタル換算で45.0質量部に相当する硝酸クロム九水和物とを純水に加え十分に撹拌して、1moL/Lの透明な硝酸塩溶液を得た。この透明な硝酸塩溶液中に、1moL/L水酸化ナトリウム(NaOH)溶液を滴下して沈殿物を得た。
 得られた沈殿物を常温で24時間熟成させた後、十分に水洗し、濾過し、120℃で乾燥させて前駆体を得た。そしてこの前駆体を窒素雰囲気で900℃、12時間焼成してCuCr酸化物粉末(CuCrO)を得た。
 このようにして得られたCuCr酸化物粉末を用いて、実施例1と同様に排気ガス浄化触媒(サンプル)を得た。
<比較例2>
 Cuメタル換算で40.9質量部に相当する硝酸銅三水和物と、Agメタル換算で17.3質量部に相当する硝酸銀と、Crメタル換算で35.7質量部に相当する硝酸クロム九水和物とを純水に加え十分に撹拌して、1mol/Lの透明な硝酸塩溶液を得た。この透明な硝酸塩溶液中に、1mol/L水酸化ナトリウム(NaOH)溶液を滴下して沈殿物を得た。
 得られた沈殿物を常温で24時間熟成させた後、十分に水洗し、濾過し、120℃で乾燥させて前駆体を得た。そしてこの前駆体を空気雰囲気で900℃、12時間焼成してCuAg系酸化物粉末(Cu0.8Ag0.2CrO)を得た。
 このようにして得られたCuAg系酸化物粉末を用いて、実施例1と同様に排気ガス浄化触媒(サンプル)を得た。
<Cu及びAg含有量の測定>
 実施例・比較例で得た排気ガス浄化触媒(サンプル)について、蛍光X線分析装置(Rigaku社製,ZSX PrimusII)を用いて、検量線法を用いてCuの含有量及びAg含有量を測定した。
 得られたCu含有量及びAg含有量をデラフォサイト型酸化物と無機多孔質材料の合計含有量に対する質量割合として表1及び表2に示した。
<平均粒子径の測定>
 実施例・比較例で得た排気ガス浄化触媒(サンプル)について、レーザー回折・散乱式粒度径分布を用いて、デラフォサイト酸化物及びアルミナの平均粒子径(D50)を測定し、表1及び表2に示した。
 レーザー回折粒子径分布測定装置用自動試料供給機(日機装株式会社製「Microtorac SDC」)を用い、サンプル(粉体)を水溶性溶媒に投入し、50%の流速中、30Wの超音波を360秒間照射した後、日機装株式会社製レーザー回折粒度分布測定機「MT3000II」を用いて粒度分布を測定し、得られた体積基準粒度分布のチャートからD50を測定した。この際、測定条件は、粒子屈折率1.5、粒子形状真球形、溶媒屈折率1.3、セットゼロ30秒、測定時間30秒、2回測定の平均値として求めた。
<排ガス浄化性能試験>
 実施例及び比較例で得られた各々の排気ガス浄化用触媒(サンプル)を、耐久処理(Aged)した後、触媒活性を以下のようにして評価した。なお、耐久条件は、大気雰囲気中で950℃で4時間とした。
 触媒評価装置(HORIBA社製、SIGU-1000型)を用い、反応炉部に排気ガス浄化触媒(サンプル)をセットし、CO:1.4%、NO:1500ppm、C36:500ppmC、O2:0.7%、残余Nから成るから成るように反応炉部に流通させ、100~600℃における出口ガス成分を自動車排ガス測定装置(HORIBA社製、MEXA-7100型)を用いて測定した。得られたライトオフ性能評価結果より、モデルガスが50%浄化される温度(T50)(℃)及び400℃におけるモデルガスの浄化率(η400)(%)を求め、その結果を表3及び表4に示した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 表1及び表3の結果より、Aサイト中のAgの含有量が0.001at.%以上20at.%未満であることにより、NO浄化性能をはじめとする三元触媒性能が好適となることが確認できた。特に0.001at.%以上或いは10at.%以下、その中でも0.1at.%以上或いは5at.%以下、その中でも1at.%以上或いは5at.%以下とすることにより、より好適に浄化性能が発揮されることが分かった。
 また、表2及び表4の結果より、Bサイト中のMnの含有量と、Al、Cr及びGaの合計含有量(Al+Cr+Ga)の原子比率を、Mn:Al+Cr+Ga=10:90~90:10とすることにより、三元触媒性能が好適となることが確認できた。中でも30:70~90:10、その中でも40:60~90:10であることが好ましいことが分かった。特に、HC及びNOの安定した浄化性能を向上させる観点から、50:50~90:10であるのが好ましく、50:50~80:20であるのがさらに好ましいことが分かった。

 

Claims (6)

  1.  一般式ABOで示されるデラフォサイト型酸化物であって、前記一般式のAサイトにCu及びAgを含み、前記一般式のBサイトにMn、Al、Cr、Ga、Fe、Co、Ni、In、La、Nd、Sm、Eu、Y、V及びTiからなる群から選択される1種又は2種以上の元素を含み、且つ、前記一般式のAサイト中に0.001at.%以上20at.%未満の割合でAgを含むことを特徴とする排気ガス浄化触媒用デラフォサイト型酸化物。
  2.  前記一般式のBサイトにMn、Al、Cr及びGaからなる群から選択される1種又は2種以上の元素を含むことを特徴とする請求項1に記載の排気ガス浄化触媒用デラフォサイト型酸化物。
  3.  前記一般式のBサイトにMnのみを含むか、或いは、Mnと、Al、Cr及びGaからなる群から選択される1種又は2種以上の元素とを含むことを特徴とする請求項1に記載の排気ガス浄化触媒用デラフォサイト型酸化物。
  4.  前記一般式のBサイトにMnと、Al、Cr及びGaからなる群から選択される1種又は2種以上の元素とを含み、且つ、Bサイト中のMnの含有量と、Al、Cr及びGaの合計含有量の原子比率が10:90~90:10であることを特徴とする請求項1に記載の排気ガス浄化触媒用デラフォサイト型酸化物。
  5.  請求項1~4の何れかに記載のデラフォサイト型酸化物と無機多孔質材料とを含む排気ガス浄化触媒。
  6.  請求項5に記載の排気ガス浄化触媒が、金属又はセラミックス製の基材に担持されてなる構成を備えた排気ガス浄化触媒。

     
PCT/JP2017/046120 2016-12-27 2017-12-22 排気ガス浄化触媒用デラフォサイト型酸化物及びこれを用いた排気ガス浄化触媒 WO2018123863A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201780080739.XA CN110167670B (zh) 2016-12-27 2017-12-22 废气净化催化剂用铜铁矿型氧化物和使用该铜铁矿型氧化物的废气净化催化剂
JP2018559151A JP6715351B2 (ja) 2016-12-27 2017-12-22 排気ガス浄化触媒用デラフォサイト型酸化物及びこれを用いた排気ガス浄化触媒
US16/473,335 US11110439B2 (en) 2016-12-27 2017-12-22 Delafossite-type oxide for exhaust gas purification catalyst, and exhaust gas purification catalyst using same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016252337 2016-12-27
JP2016-252337 2016-12-27

Publications (1)

Publication Number Publication Date
WO2018123863A1 true WO2018123863A1 (ja) 2018-07-05

Family

ID=62708128

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/046120 WO2018123863A1 (ja) 2016-12-27 2017-12-22 排気ガス浄化触媒用デラフォサイト型酸化物及びこれを用いた排気ガス浄化触媒

Country Status (4)

Country Link
US (1) US11110439B2 (ja)
JP (1) JP6715351B2 (ja)
CN (1) CN110167670B (ja)
WO (1) WO2018123863A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3560576A1 (en) * 2018-04-24 2019-10-30 Toyota Jidosha Kabushiki Kaisha Nitrogen oxide storage material and exhaust gas purification method
JP2020033246A (ja) * 2018-08-24 2020-03-05 国立大学法人秋田大学 デラフォサイト型酸化物及びその製造方法
US11298674B2 (en) 2018-04-24 2022-04-12 Toyota Jidosha Kabushiki Kaisha Nitrogen oxide storage material and exhaust gas purification method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002255548A (ja) * 2001-02-26 2002-09-11 Japan Science & Technology Corp 混合層積層不整結晶構造デラフォサイト型酸化物とその製造方法
JP2008156130A (ja) * 2006-12-20 2008-07-10 Mitsui Mining & Smelting Co Ltd デラフォサイト型酸化物およびその製造方法並びに排気ガス浄化用触媒
WO2014103597A1 (ja) * 2012-12-27 2014-07-03 三井金属鉱業株式会社 排気ガス浄化用触媒組成物及び排気ガス浄化用触媒

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6186944A (ja) * 1984-10-02 1986-05-02 Matsushita Electric Ind Co Ltd 排ガス浄化用触媒体
DE19606657C1 (de) * 1996-02-23 1997-07-10 Basf Ag Verfahren und Vorrichtung zum Reinigen von Gasen
JPWO2002035621A1 (ja) * 2000-10-27 2004-03-04 新光電気工業株式会社 気体状化合物の酸化触媒
US6979435B1 (en) * 2001-04-03 2005-12-27 Northwestern University p-Type transparent conducting oxides and methods for preparation
JP4904456B2 (ja) * 2004-12-27 2012-03-28 Dowaエレクトロニクス株式会社 電池正極用材料
JP2009219971A (ja) 2007-03-20 2009-10-01 Denso Corp セラミックハニカム構造体
WO2009045293A2 (en) * 2007-09-25 2009-04-09 First Solar, Inc. Photovoltaic devices including an interfacial layer
KR101615846B1 (ko) * 2009-12-17 2016-04-26 비와이디 컴퍼니 리미티드 표면 금속화 방법, 플라스틱 제품 제조 방법 및 이로부터 제조된 플라스틱 제품
KR20120014821A (ko) * 2010-08-10 2012-02-20 엘지이노텍 주식회사 고효율 실리콘 태양전지의 후면전극 형성용 페이스트 조성물 및 그 제조방법과 이를 포함하는 실리콘 태양전지
TW201221476A (en) * 2010-11-26 2012-06-01 Weng Wei Chung Nano-sized delafossite-type oxide powder and preparation method thereof
US9985139B2 (en) * 2014-11-12 2018-05-29 Qualcomm Incorporated Hydrogenated p-channel metal oxide semiconductor thin film transistors
BR112017023268A2 (pt) * 2015-04-29 2018-08-07 Shepherd Color Co pigmentos de delafossite refletores de infravermelho próximo livre de cromo

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002255548A (ja) * 2001-02-26 2002-09-11 Japan Science & Technology Corp 混合層積層不整結晶構造デラフォサイト型酸化物とその製造方法
JP2008156130A (ja) * 2006-12-20 2008-07-10 Mitsui Mining & Smelting Co Ltd デラフォサイト型酸化物およびその製造方法並びに排気ガス浄化用触媒
WO2014103597A1 (ja) * 2012-12-27 2014-07-03 三井金属鉱業株式会社 排気ガス浄化用触媒組成物及び排気ガス浄化用触媒

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
OKUDA, T. ET AL.: "Dimensional Crossover of Low-Energy Magnetic Excitation for Delafossite Oxide Cu1-x AgxCrO2 with a Spin-3/2 Antiferromagnetic Triangular Sublattice", JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, vol. 78, 13 January 2009 (2009-01-13), pages 013604 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3560576A1 (en) * 2018-04-24 2019-10-30 Toyota Jidosha Kabushiki Kaisha Nitrogen oxide storage material and exhaust gas purification method
US11298674B2 (en) 2018-04-24 2022-04-12 Toyota Jidosha Kabushiki Kaisha Nitrogen oxide storage material and exhaust gas purification method
JP2020033246A (ja) * 2018-08-24 2020-03-05 国立大学法人秋田大学 デラフォサイト型酸化物及びその製造方法

Also Published As

Publication number Publication date
CN110167670B (zh) 2022-04-26
US11110439B2 (en) 2021-09-07
JP6715351B2 (ja) 2020-07-01
CN110167670A (zh) 2019-08-23
US20200122129A1 (en) 2020-04-23
JPWO2018123863A1 (ja) 2019-10-31

Similar Documents

Publication Publication Date Title
US9533290B2 (en) Exhaust gas purifying catalyst composition and exhaust gas purifying catalyst
US10350581B2 (en) Catalyst composition for exhaust gas purification and catalyst for exhaust gas purification
WO2014156676A1 (ja) 排気ガス処理用触媒構造体
JP6715351B2 (ja) 排気ガス浄化触媒用デラフォサイト型酸化物及びこれを用いた排気ガス浄化触媒
JP6763555B2 (ja) 排気ガス浄化触媒
CN106232228B (zh) 废气净化用催化剂组合物以及废气净化催化剂
JP6438384B2 (ja) 排ガス浄化触媒用担体及び排ガス浄化触媒
WO2014104181A1 (ja) 触媒担体及び排ガス浄化用触媒
US20200070126A1 (en) Exhaust gas-purifying catalyst composition and method for producing the same, and automobile exhaust gas-purifying catalyst
JP2014223587A (ja) 排ガス浄化用触媒担体、排ガス浄化用触媒担体の製造方法、および排ガス浄化用触媒、排ガス浄化用触媒の製造方法
JP2005254047A (ja) 排ガス浄化触媒並びに、金属酸化物粒子及びその製造方法
JP7213822B2 (ja) 排ガス浄化用組成物
JP6216234B2 (ja) 排ガス浄化触媒
JP2016209862A (ja) 排ガス浄化触媒
WO2021075316A1 (ja) 排気ガス浄化用触媒、排気ガスの浄化方法、及び排気ガス浄化用触媒の製造方法
JP2014046274A (ja) 触媒担体及び排ガス浄化用触媒
WO2016002344A1 (ja) 触媒担体及び排ガス浄化用触媒
JP5606191B2 (ja) 排気ガス浄化用触媒およびその製造方法ならびに排気ガス浄化方法
JP2022096327A (ja) 排気ガス浄化触媒
JP2017023999A (ja) 排気ガス浄化用触媒
JP2018103093A (ja) 排ガス浄化触媒
WO2017212944A1 (ja) 排気ガス浄化触媒

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17885945

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018559151

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17885945

Country of ref document: EP

Kind code of ref document: A1