WO2018123772A1 - 位相差フィルム、その製造方法、偏光板及び表示装置 - Google Patents

位相差フィルム、その製造方法、偏光板及び表示装置 Download PDF

Info

Publication number
WO2018123772A1
WO2018123772A1 PCT/JP2017/045751 JP2017045751W WO2018123772A1 WO 2018123772 A1 WO2018123772 A1 WO 2018123772A1 JP 2017045751 W JP2017045751 W JP 2017045751W WO 2018123772 A1 WO2018123772 A1 WO 2018123772A1
Authority
WO
WIPO (PCT)
Prior art keywords
inorganic particles
retardation film
thermoplastic resin
layer
less
Prior art date
Application number
PCT/JP2017/045751
Other languages
English (en)
French (fr)
Inventor
浅田 毅
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Priority to CN201780065876.6A priority Critical patent/CN109863431B/zh
Priority to KR1020197016602A priority patent/KR102510655B1/ko
Priority to JP2018559103A priority patent/JP7014182B2/ja
Publication of WO2018123772A1 publication Critical patent/WO2018123772A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/8791Arrangements for improving contrast, e.g. preventing reflection of ambient light

Definitions

  • the present invention relates to a retardation film, a manufacturing method thereof, a polarizing plate and a display device.
  • a method of viewing angle compensation in an in-plane switching (IPS) type liquid crystal display device a method using a single biaxial ⁇ / 2 plate having an NZ coefficient of approximately 0.5 has been proposed.
  • a method for producing a retardation film in which 0 ⁇ NZ coefficient ⁇ 1 a shrinkable film is bonded to the surface of the resin film to form a laminate, and the shrinkage force of the shrinkable film is used in the thickness direction of the resin film.
  • a method for controlling the refractive index is known (Patent Document 1).
  • Patent Document 1 As another viewing angle compensation method in the IPS liquid crystal display device, a method of combining a negative C plate and a negative A plate has been proposed.
  • Japanese Patent No. 2818983 (corresponding to other countries: US Pat. No. 5,245,456) Japanese Patent No. 3206132
  • the method using one biaxial ⁇ / 2 plate having an NZ coefficient of approximately 0.5 as described above has a plurality of optical films from the viewpoint that the number of parts may be small. It is better than the combination method.
  • methods for realizing the characteristics of 0 ⁇ NZ coefficient ⁇ 1 with a single retardation film are limited.
  • a method of stretching a thermoplastic resin which is a general method for producing a retardation film
  • a retardation film having a NZ coefficient ⁇ 1 or a NZ coefficient ⁇ 0 can be obtained, but 0 ⁇ NZ coefficient ⁇ 1 It is difficult to obtain a retardation film.
  • Patent Document 1 Since the technology of Patent Document 1 requires not only a resin film but also a plurality of materials such as a shrinkable film and an adhesive for the production of a retardation film, the productivity of the retardation film is poor, and production is difficult. Cost is high. Since the technology of Patent Document 2 requires a coating process of an inorganic layered compound for the extrusion process and the stretching process of the thermoplastic resin in addition to the increase in the number of parts, the productivity of the retardation film is poor and the production Cost is high. Accordingly, there is a need for a retardation film that is excellent in terms of productivity and production cost and has suitable performance for viewing angle compensation.
  • the present inventor has obtained a predetermined thermoplastic resin A and a predetermined ratio of inorganic particles I, and a retardation film having in-plane retardation Re and NZ coefficients in a predetermined range.
  • the present invention is as follows.
  • thermoplastic resin A is a resin having a negative intrinsic birefringence value
  • the inorganic particles I are plate-like inorganic particles, The average diameter in the plate surface direction of the inorganic particles I is 10 nm or more and 60 nm or less,
  • the retardation film in which the content ratio of the inorganic particles I in the layer A is 5% by weight or more and 20% by weight or less.
  • the thermoplastic resin A includes a polymer containing a styrene unit and one or more units selected from the group consisting of a maleic anhydride unit, a methacrylic acid unit, and a maleimide unit. Retardation film.
  • the retardation film according to [3] wherein the glass transition temperature TgA (° C.) of the thermoplastic resin A and the glass transition temperature TgB (° C.) of the thermoplastic resin B satisfy a relationship of TgA> TgB.
  • the in-plane retardation Re (B) at 540 nm of the layer B is 0 nm or more and less than 10 nm, and the absolute value of the thickness direction retardation Rth (B) at 540 nm is 0 nm or more and less than 10 nm.
  • the retardation film includes a layer A containing a thermoplastic resin A and inorganic particles I, NZ coefficient of the retardation film at 540 nm is more than 0.1 and less than 1.0, In-plane retardation Re of the retardation film at 540 nm is more than 50 nm and less than 300 nm,
  • the thermoplastic resin A is a resin having a negative intrinsic birefringence value
  • the inorganic particles I are plate-like inorganic particles,
  • the content ratio of the inorganic particles I in the layer A is 5 wt% or more and 20 wt% or less,
  • the average diameter in the plate surface direction of the inorganic particles I is 10 nm or more and 60 nm or less
  • the method A step of obtaining a pre-stretching film comprising the thermoplastic resin A and the inorganic particles I and including a layer a in which the content of the inorganic particles I is 5% by weight or more and 20% by weight or less; and
  • the retardation film further includes a layer B containing the thermoplastic resin B as a main component and having a 50% fracture energy of 1.0 ⁇ 10 ⁇ 2 J or more,
  • a polarizing plate comprising a polarizer and the retardation film according to any one of [1] to [5].
  • a display device comprising the polarizing plate according to [8].
  • a retardation film that is excellent in productivity and production cost and has suitable performance for viewing angle compensation.
  • a “long” film refers to a film having a length of at least 5 times the width, preferably 10 times or more, specifically, A film having such a length that it is wound up in a roll and stored or transported.
  • the upper limit of the ratio of the length to the width is not particularly limited, but may be, for example, 100,000 times or less.
  • the NZ coefficient is a value represented by (nx ⁇ nz) / (nx ⁇ ny) unless otherwise specified.
  • nx represents a refractive index in a direction (in-plane direction) perpendicular to the thickness direction of the film and giving the maximum refractive index.
  • ny represents the refractive index in the in-plane direction and orthogonal to the nx direction.
  • nz represents the refractive index in the thickness direction.
  • d represents the thickness of the film.
  • the measurement wavelength is 540 nm unless otherwise specified.
  • the intrinsic birefringence value is a positive value when the refractive index in the stretching direction is larger than the refractive index in the direction orthogonal thereto, and the direction in which the refractive index in the stretching direction is orthogonal thereto. A case where the refractive index is smaller than the refractive index is negative.
  • the intrinsic birefringence value can be calculated from the dielectric constant distribution of the material.
  • (meth) acrylic acid alkyl ester includes “acrylic acid alkyl ester”, “methacrylic acid alkyl ester” and combinations thereof, and “(meth) acrylate” means “acrylate”, “methacrylate”. And combinations thereof.
  • the directions of the elements “parallel”, “vertical”, and “orthogonal” include errors within a range that does not impair the effects of the present invention, for example, ⁇ 5 °, unless otherwise specified. You may go out.
  • the longitudinal direction of the long film is usually parallel to the film flow direction in the production line.
  • the oblique direction is a direction that is neither the width direction nor the longitudinal direction.
  • polarizing plate “1/2 wavelength plate”, and “1 ⁇ 4 wavelength plate” are not limited to rigid members unless otherwise specified, such as a resin film. A member having flexibility is also included.
  • the adhesive is not only a narrowly defined adhesive (an adhesive having a shear storage modulus of 1 MPa to 500 MPa at 23 ° C. after irradiation with energy rays or after heat treatment), A pressure-sensitive adhesive having a shear storage modulus at 23 ° C. of less than 1 MPa is also included.
  • the slow axis of the film represents the slow axis in the plane of the film.
  • the retardation film of the present invention includes a layer A containing a thermoplastic resin A and inorganic particles I.
  • Layer A preferably has a single layer structure.
  • the thermoplastic resin A is a thermoplastic resin having a negative intrinsic birefringence value.
  • the thermoplastic resin having a negative intrinsic birefringence value includes a polymer having a negative intrinsic birefringence value.
  • the thermoplastic resin A is not particularly limited as long as it includes a polymer having a negative intrinsic birefringence value.
  • the resin A includes a polymer including a styrene unit or a styrene derivative unit (also simply referred to as a polystyrene resin).
  • the polystyrene resin include a resin containing a polymer composed of a styrene unit or a styrene derivative unit, and a resin containing a polymer containing a styrene unit or a styrene derivative unit and another monomer unit.
  • styrene derivative unit examples include an alkyl styrene unit, a halogenated styrene unit, and an alkoxy styrene unit.
  • Other monomer units that can be included in the polymer containing styrene units or styrene derivative units include acrylonitrile units, maleic anhydride units, methyl (meth) acrylate units, (meth) acrylic acid units, maleimide units, and butadiene. Units are listed.
  • the thermoplastic resin A is preferably a polystyrene resin from the viewpoint of easy development of retardation, and more preferably comprises a styrene unit or a styrene derivative unit, a maleic anhydride unit, a methacrylic acid unit, and a maleimide unit. It is a polystyrene resin containing a polymer containing at least one selected from the group, and more preferably a polystyrene resin containing a polymer containing a styrene unit or a styrene derivative unit and a maleic anhydride unit from the viewpoint of high heat resistance. is there.
  • the thermoplastic resin A is particularly preferably a polystyrene resin containing a polymer containing a styrene unit and one or more units selected from the group consisting of a maleic anhydride unit, a methacrylic acid unit, and a maleimide unit, Preferably, it is a polystyrene resin containing a polymer containing a styrene unit and a maleic anhydride unit.
  • the ratio of the polymer having a negative intrinsic birefringence value in the thermoplastic resin A is preferably 50% by weight or more, more preferably 60% by weight or more, and further preferably 70% by weight or more.
  • the upper limit of the ratio of the polymer having a negative intrinsic birefringence value in the thermoplastic resin A is 100% by weight.
  • the thermoplastic resin A may be a single type or a combination of two or more types.
  • the glass transition temperature TgA of the thermoplastic resin A is not particularly limited, but is preferably 120 ° C or higher, more preferably 125 ° C or higher, further preferably 130 ° C or higher, preferably 160 ° C or lower. More preferably, it is 155 degrees C or less, More preferably, it is 150 degrees C or less.
  • thermoplastic resin A of the present invention may contain any component other than the polymer having a negative intrinsic birefringence value.
  • Optional components that can be included in the thermoplastic resin A include, for example, an antioxidant; a light stabilizer; a wax; a nucleating agent; a fluorescent whitening agent; an ultraviolet absorber; a coloring agent; a flame retardant; An inhibitor; a plasticizer; a near infrared absorber; a lubricant; a filler;
  • the arbitrary component which may be contained in the thermoplastic resin A may be single 1 type, and the combination in 2 or more arbitrary ratios may be sufficient as it.
  • the inorganic particles I are plate-like inorganic particles.
  • “plate-like” for the inorganic particles means that the diameter in the plate surface direction is 10 times or more of the thickness.
  • the upper limit of the ratio of the diameter with respect to thickness is not specifically limited, For example, it can be 100 times or less.
  • the average diameter of the inorganic particles I in the plate surface direction is 10 nm or more and 60 nm or less.
  • the inorganic particle I may be a plate-like inorganic particle or a composite of a plate-like inorganic material and an organic compound.
  • the inorganic substance constituting the inorganic particle I include a clay mineral having a layered structure, and more specifically, for example, a smectite group clay mineral (eg, hectorite, montmorillonite, and bentonite; substitution products thereof. These derivatives) and mixtures thereof.
  • the inorganic substance constituting the inorganic particles I is preferably a smectite group clay mineral or a mixture thereof.
  • the inorganic substance constituting the inorganic particles I may be a chemically synthesized product or a natural product, but is preferably a chemically synthesized product, more preferably a synthetic hectorite, because it has few impurities and is excellent in transparency. is there.
  • the inorganic particle I is a composite of a plate-like inorganic substance and an organic compound
  • examples of the organic compound constituting the inorganic particle I include a compound capable of reacting with an oxygen atom or a hydroxy group of a clay mineral, clay mineral
  • An ionic compound containing an ion capable of exchanging with an exchangeable cation existing between the crystal layers is specifically mentioned, and specific examples include a quaternary ammonium compound.
  • the organic compound to be complexed with the inorganic substance is preferably a quaternary ammonium compound, more preferably a compound containing an ammonium ion substituted with an alkyl group and / or a benzyl group (eg, dimethyl).
  • a quaternary ammonium compound more preferably a compound containing an ammonium ion substituted with an alkyl group and / or a benzyl group (eg, dimethyl).
  • the quaternary ammonium compound is a solvent for dispersing the inorganic particles I (eg, aromatic hydrocarbon such as benzene, toluene, xylene; ketone such as acetone, methyl ethyl ketone, methyl isobutyl ketone; lower alcohol such as methanol, ethanol, propanol;
  • the halogenated hydrocarbons such as carbon chloride, chloroform, dichloromethane, dichloroethane, etc. may be selected as appropriate.
  • inorganic particles I When inorganic particles I are compounded with inorganic substances and quaternary ammonium compounds to form inorganic particles I, quaternary ammonium compounds are usually introduced into inorganic substances as quaternary ammonium ions to form a complex of inorganic substances and quaternary ammonium ions. Yes.
  • the inorganic particles I are a composite of an inorganic substance and an organic compound
  • the method for manufacturing the composite of the inorganic substance and the organic compound is not particularly limited, and can be manufactured by a known method.
  • an inorganic substance such as a clay mineral is brought into contact with an organic compound such as a quaternary ammonium compound, and exchangeable cations existing between crystal layers of the inorganic substance such as clay mineral are converted into quaternary constituting the organic compound.
  • a method of exchanging with a cation such as ammonium ion can be mentioned.
  • a method of dispersing a clay mineral (eg, synthetic hectorite) in water, adding an organic compound (eg, quaternary ammonium compound such as dimethyldioctadecylammonium chloride), and stirring the mixture can be mentioned.
  • the reaction time can be, for example, 2 hours.
  • the reaction temperature can be, for example, room temperature.
  • the complex and water as a dispersion medium may be separated from the complex by, for example, filtration, and then washing by-product salts with the dispersion medium.
  • the quaternary ammonium compound is preferably 0.5 to 1.5 times equivalent to the cation exchange capacity of the clay mineral, more preferably Is used in an amount of 1.0 equivalent.
  • the inorganic particles I are excellent in dispersibility in a solvent and dispersibility in a resin, it is preferably a composite of a plate-like inorganic substance and an organic compound, more preferably a composite of a clay mineral and a quaternary ammonium compound. More preferably, it is a complex of hectorite and a quaternary ammonium compound.
  • organic hectorite manufactured by Kunimine Industries, Ltd.
  • Kunimine Industries, Ltd. can be used.
  • board surface direction of the inorganic particle I is measured by the following method. After the inorganic particles I are dispersed in a solvent (eg, toluene), the inorganic particles I are dropped on the substrate surface, the solvent is evaporated, and the inorganic particles remaining on the surface of the substrate are removed by a scanning electron microscope (eg, “JSM— 7200F ”, magnification is 150,000 times), the area A of the plate surface is calculated for 200 arbitrarily selected inorganic particles, and the plate surface of 200 inorganic particles is obtained from the plate surface area of the obtained 200 inorganic particles.
  • the diameter r in the direction is calculated by the following formula (I).
  • the average value of the calculated diameters r in the plate surface direction of 200 inorganic particles is defined as the average diameter R in the plate surface direction of the inorganic particles.
  • the inorganic particles I of the present invention have an average diameter in the plate surface direction of 10 nm or more, preferably 15 nm or more. As a result, the NZ coefficient can be greater than 0 and less than 1.0.
  • the inorganic particles I of the present invention have an average diameter in the plate surface direction of 60 nm or less, preferably 50 nm or less, more preferably 40 nm or less. Thereby, the haze value of a retardation film can be made low.
  • the inorganic particles I have a content ratio in the layer A of 5% by weight or more, preferably 7% by weight or more. Thereby, NZ coefficient can be made to exceed 0.1 and less than 1.0.
  • the inorganic particles I have a content ratio in the layer A of 20% by weight or less, preferably 15% by weight or less. Thereby, the mechanical strength of the layer A can be maintained.
  • the thickness of the layer A can be appropriately set, but is preferably 10 ⁇ m or more, more preferably 20 ⁇ m or more, preferably 100 ⁇ m or less, more preferably 80 ⁇ m or less.
  • the layer A can contain an arbitrary component in addition to the thermoplastic resin A and the inorganic particles I.
  • the optional component include a surfactant.
  • the retardation film of the present invention may have an arbitrary layer in addition to the layer A.
  • the optional layer include a layer B containing the thermoplastic resin B as a main component and having a 50% fracture energy of 1.0 ⁇ 10 ⁇ 2 J or more.
  • the layer B has a 50% fracture energy of 1.0 ⁇ 10 ⁇ 2 J or more, preferably 1.5 ⁇ 10 ⁇ 2 J or more, more preferably 2.0 ⁇ 10 ⁇ 2 J or more.
  • the mechanical strength of a retardation film can be improved rather than the case where a retardation film has only the layer A.
  • FIG. A larger 50% fracture energy is preferable. Therefore, the upper limit of the 50% fracture energy is not particularly limited, but may be, for example, 10 ⁇ 10 ⁇ 2 J or less.
  • the 50% fracture energy can be measured according to JIS-K7124-1 (staircase method). As a measuring device, an impact tester (eg, “S gauge” manufactured by Asuka Company) can be used.
  • the in-plane retardation Re (B) at 540 nm of the layer B is preferably less than 10 nm, more preferably 5 nm or less, and further preferably 2 nm or less. Thereby, the influence which the layer B has with respect to the optical characteristic of retardation film can be decreased.
  • the in-plane retardation Re (B) at 540 nm of the layer B is usually 0 nm or more.
  • the absolute value of retardation Rth (B) in the thickness direction at 540 nm of layer B is preferably less than 10 nm, more preferably 5 nm or less, and even more preferably 2 nm or less. Thereby, the influence which the layer B has with respect to the optical characteristic of retardation film can be decreased.
  • the absolute value of retardation Rth (B) in the thickness direction at 540 nm of layer B is usually 0 nm or more.
  • the layer B includes the thermoplastic resin B.
  • the thermoplastic resin B is not particularly limited as long as it can make the 50% fracture energy of the layer B 1.0 ⁇ 10 ⁇ 2 J or more, and examples thereof include acrylic resins.
  • the acrylic resin is a resin containing a polymer containing a (meth) acrylic acid alkyl ester unit.
  • alkyl acrylate for constituting the alkyl acrylate unit include, for example, methyl acrylate, ethyl acrylate, n-propyl acrylate, i-propyl acrylate, n-butyl acrylate, isobutyl acrylate, acrylic Examples include sec-butyl acid, tert-butyl acrylate, n-hexyl acrylate, cyclohexyl acrylate, n-octyl acrylate, 2-ethylhexyl acrylate, n-decyl acrylate, and n-dodecyl acrylate.
  • alkyl methacrylate for constituting the alkyl methacrylate unit examples include, for example, methyl methacrylate, ethyl methacrylate, n-propyl methacrylate, isopropyl methacrylate, n-butyl methacrylate, isobutyl methacrylate, sec sec methacrylate.
  • the (meth) acrylic acid alkyl ester unit may have an arbitrary substituent such as a hydroxy group or a halogen atom.
  • the ester constituting the (meth) acrylic acid ester unit having these substituents include 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, 4-hydroxybutyl acrylate, 2-hydroxyethyl methacrylate, Examples thereof include 2-hydroxypropyl methacrylate, 4-hydroxybutyl methacrylate, 3-chloro-2-hydroxypropyl methacrylate, and glycidyl methacrylate.
  • the acrylic resin may contain a homopolymer composed of one kind of (meth) acrylic acid alkyl ester unit, or contain a copolymer composed of two or more kinds of (meth) acrylic acid alkyl ester units. It may be. Further, the acrylic resin may include a copolymer of (meth) acrylic acid alkyl ester and a monomer copolymerizable with (meth) acrylic acid alkyl ester.
  • the content ratio of the (meth) acrylic acid alkyl ester unit in the polymer containing the (meth) acrylic acid alkyl ester unit in the acrylic resin is preferably 50% by weight or more, more preferably 60% by weight or more, More preferably, it is 70 weight% or more.
  • the monomer copolymerizable with the (meth) acrylic acid alkyl ester is not particularly limited.
  • (meth) acrylic such as dimethyl fumarate, diethyl fumarate, dimethyl maleate, diethyl maleate, dimethyl itaconate, etc.
  • the monomer copolymerizable with the (meth) acrylic acid alkyl ester is preferably at least one selected from aromatic alkenyl and ⁇ , ⁇ -ethylenically unsaturated carboxylic acid, more preferably styrene, maleic anhydride. And at least one selected from methacrylic acid.
  • the content ratio of the monomer unit copolymerizable with the (meth) acrylic acid alkyl ester in the polymer containing the (meth) acrylic acid alkyl ester unit in the acrylic resin is preferably 50% by weight or less, more preferably. Is 40% by weight or less, more preferably 30% by weight or less.
  • acrylic resin containing a copolymer of (meth) acrylic acid alkyl ester and a monomer copolymerizable with (meth) acrylic acid alkyl ester specifically, for example, methyl methacrylate / methyl acrylate / Resin containing butyl acrylate / styrene copolymer, resin containing methyl methacrylate / methyl acrylate copolymer, resin containing methyl methacrylate / styrene / butyl acrylate copolymer, methyl methacrylate / methacrylic acid / styrene
  • examples thereof include a resin containing a copolymer and a resin containing a methyl methacrylate / styrene / maleic anhydride copolymer.
  • the thermoplastic resin B is preferably an acrylic resin, more preferably a resin containing a polymer containing an alkyl methacrylate unit (alkyl methacrylate resin), and more preferably a resin containing a methyl methacrylate polymer (methacrylic resin). Acid methyl resin).
  • the ratio of the polymer containing the (meth) acrylic acid alkyl ester unit in the thermoplastic resin B is preferably 80% by weight or more, more preferably 90% by weight or more, and further preferably 95% by weight or more.
  • the thermoplastic resin B may be a single type or a combination of two or more types.
  • the thermoplastic resin B may contain any component other than the polymer.
  • the component illustrated as arbitrary components other than the polymer which can be contained in the thermoplastic resin A is mentioned.
  • the arbitrary component which may be contained in the thermoplastic resin B may be 1 type individual, and the combination in 2 or more types of arbitrary ratios may be sufficient as it.
  • the glass transition temperature TgB of the thermoplastic resin B is not particularly limited, but is preferably 90 ° C or higher, more preferably 100 ° C or higher, preferably 120 ° C or lower, more preferably 115 ° C or lower. More preferably, it is 110 degrees C or less.
  • the glass transition temperature TgA (° C.) of the thermoplastic resin A and the glass transition temperature TgB (° C.) of the thermoplastic resin B satisfy the relationship of TgA> TgB.
  • TgA> TgB glass transition temperature
  • the difference between TgA and TgB (TgA ⁇ TgB) (° C.) is preferably 10 ° C. or higher, more preferably 15 ° C. or higher, further preferably 20 ° C. or higher, preferably 40 ° C.
  • Glass transition temperatures TgA and TgB can be measured using a differential scanning calorimeter (eg, “DSC-6100” manufactured by Seiko Instruments Inc.) under the conditions of a sample amount of 10 mg and a heating rate of 10 ° C./min.
  • a differential scanning calorimeter eg, “DSC-6100” manufactured by Seiko Instruments Inc.
  • the layer B contains the thermoplastic resin B as a main component.
  • the main component means a component having the largest content weight ratio among the components contained in the layer B.
  • the content ratio of the thermoplastic resin B in the layer B is preferably 50% by weight or more, more preferably 70% by weight or more, and further preferably 90% by weight or more.
  • the upper limit of the content ratio of the thermoplastic resin B in the layer B is 100% by weight.
  • the layer B may contain arbitrary components in addition to the thermoplastic resin B.
  • the thickness of the layer B can be appropriately set, but is preferably 10 ⁇ m or more, more preferably 15 ⁇ m or more, preferably 70 ⁇ m or less, and more preferably 50 ⁇ m or less.
  • the NZ coefficient at 540 nm is more than 0.1 and less than 1.0.
  • the NZ coefficient at 540 nm is preferably 0.2 or more, more preferably 0.25 or more, preferably 0.9 or less, more preferably 0.8 or less. Yes, more preferably 0.75 or less.
  • a retardation film can be used suitably for the viewing angle compensation of a liquid crystal display device.
  • the retardation film of the present invention has an in-plane retardation Re at 540 nm of more than 50 nm and less than 300 nm.
  • the retardation film of the present invention has an in-plane retardation Re at 540 nm of preferably 100 nm or more, more preferably 120 nm or more, preferably 290 nm or less, and more preferably 280 nm or less.
  • In-plane retardation Re, retardation Rth in the thickness direction, and NZ coefficient of the retardation film of the present invention can be measured with a retardation measuring device.
  • a retardation measuring device for example, “RE-200” manufactured by Otsuka Electronics Co., Ltd., and “AxoScan” manufactured by Axometrics Co., Ltd. can be used.
  • the in-plane retardation Re (B) of the layer B and the retardation Rth (B) in the thickness direction can be measured in the same manner as the in-plane retardation Re and the retardation Rth in the thickness direction of the retardation film.
  • the haze of the retardation film of the present invention is preferably 1% or less, more preferably 0.5% or less, and further preferably 0.3% or less.
  • the haze is preferably as small as possible, but is usually 0% or more.
  • Haze can be measured according to JIS-K-7136.
  • a haze meter eg, “NDH-4000” manufactured by Nippon Denshoku Industries Co., Ltd.
  • NDH-4000 manufactured by Nippon Denshoku Industries Co., Ltd.
  • the thickness of the retardation film of the present invention can be appropriately set depending on the application, and is not particularly limited, but is preferably 10 ⁇ m or more, more preferably 15 ⁇ m or more, further preferably 20 ⁇ m or more, preferably Is 70 ⁇ m or less, more preferably 60 ⁇ m or less, and even more preferably 50 ⁇ m or less.
  • the method for obtaining the pre-stretched film is not limited, and examples thereof include resin molding methods such as a solution casting method and an extrusion molding method.
  • the pre-stretch film preferably further includes a layer b containing the thermoplastic resin B.
  • the film before stretching includes the layer b in addition to the layer a and has a layer structure of (layer a / layer b)
  • the film b including the layer b is first manufactured, and the film b It may be a method of forming a layer a by a method such as a solution pouring method to obtain a film before stretching, or a method of obtaining a film before stretching by coextrusion of the material of layer a and the material of layer b It may be.
  • Co-extrusion can be performed, for example, by an extruder equipped with a two-layer type multi-manifold die.
  • the film before stretching is stretched in at least one direction.
  • the stretching temperature of the film before stretching is preferably (TgA (glass transition temperature of thermoplastic resin A) ⁇ 10 ° C.) or more, more preferably (TgA-5 ° C.) or more, preferably Is (TgA + 30 ° C.) or less, more preferably (TgA + 20 ° C.) or less.
  • the draw ratio can be appropriately selected, but is preferably 1.2 times or more, more preferably 1.3 times or more, further preferably 1.4 times or more, preferably 4 times or less, more preferably 3 times or less, Preferably it is 2.5 times or less.
  • the said draw ratio means the draw ratio in each direction, when extending
  • the stretched film may be stretched in at least one direction and may be stretched in two or more directions.
  • Examples of the direction in which the stretched film is stretched include a width direction, a longitudinal direction, and an oblique direction.
  • these pre-stretched films are stretched in two directions, for example, they are stretched in the width direction and the longitudinal direction of the film.
  • step (ii) when the stretched film is stretched in two or more directions, stretching in each direction may be performed at different temperatures or may be performed at different stretching ratios.
  • the retardation film of the present invention can be combined with a polarizer to form a polarizing plate.
  • a polarizer for example, an appropriate hydrophilic polymer film such as polyvinyl alcohol or partially formalized polyvinyl alcohol is subjected to dyeing treatment and stretching treatment with a dichroic substance such as iodine and a dichroic dye, and further required.
  • a dichroic substance such as iodine and a dichroic dye
  • those subjected to appropriate treatment such as crosslinking treatment in an appropriate order and manner can be used.
  • a polarizing plate having a layer configuration of (retardation film / adhesive layer / polarizer) can be produced by laminating the retardation film of the present invention and a polarizer using an appropriate adhesive.
  • the polarizing plate may further include an arbitrary layer such as a protective film layer.
  • the retardation film of the present invention may be produced by combining one sheet with a polarizer to produce a polarizing plate, or two or more sheets with a polarizer to produce a polarizing plate. Therefore, the polarizing plate may include a plurality of retardation films of the present invention.
  • the polarizing plate including the retardation film and the polarizer of the present invention can be combined with an image display element such as a liquid crystal display element and an organic electroluminescence display element to form a display device.
  • an image display element such as a liquid crystal display element and an organic electroluminescence display element to form a display device.
  • the image display element to be combined include a liquid crystal display element (a liquid crystal display element in any mode such as an in-plane switching (IPS) mode) and an organic electroluminescence element.
  • IPS in-plane switching
  • the retardation film of the present invention can be used, for example, as a half-wave plate or a quarter-wave plate, and can be suitably used, for example, for compensating a viewing angle of a liquid crystal display device or for suppressing reflection of a display device. .
  • the diameter r in the plate surface direction of the 200 inorganic particles was calculated by the above formula (I).
  • the average value of the diameters r in the plate surface direction of the 200 inorganic particles calculated was defined as the average diameter R (nm) in the plate surface direction of the inorganic particles.
  • In-plane retardation Re The film to be evaluated was measured using a retardation measuring device (“RE-200” manufactured by Otsuka Electronics Co., Ltd.). In-plane retardation was measured at points of 5 cm intervals arranged on the same straight line in the width direction, and the same measurement was repeated 5 times at 1 m intervals in the longitudinal direction (flow direction). The average value of the measured values obtained was defined as the in-plane retardation Re of the film.
  • Retardation Rth in thickness direction The film to be evaluated was measured using a retardation measuring device (“RE-200” manufactured by Otsuka Electronics Co., Ltd.). Retardation in the thickness direction was measured at points of 5 cm intervals aligned on the same straight line in the width direction, and the same measurement was repeated 5 times at 1 m intervals in the longitudinal direction (flow direction). The average value of the measured values obtained was defined as retardation Rth in the thickness direction of the film.
  • RE-200 manufactured by Otsuka Electronics Co., Ltd.
  • NZ coefficient For the film to be evaluated, the NZ coefficient was measured at 5 cm intervals aligned on the same straight line in the width direction using a retardation measuring device (“AxoScan” manufactured by Axometrics Co., Ltd.), and the same measurement was performed in the longitudinal direction of the film ( 5 times at 1 m intervals in the flow direction). The average value of the obtained measured values was defined as the NZ coefficient of the film.
  • Glass-transition temperature (Glass-transition temperature) Using a differential scanning calorimeter (“DSC-6100” manufactured by Seiko Instruments Inc.), the glass transition temperature was measured under the conditions of a sample amount of 10 mg and a heating rate of 10 ° C./min.
  • thermoplastic resin A a styrene-maleic anhydride copolymer (“Dylark D332” manufactured by Nova Chemicals, glass transition temperature: 135 ° C.) was used.
  • thermoplastic resin A pellets were added, and further ultrasonic treatment was performed for 120 minutes to obtain a dope A1.
  • the ratio of the thermoplastic resin A in all the components (inorganic particles and the thermoplastic resin A) excluding the solvent (toluene) in the dope A1 is 10% by weight.
  • the dope A1 was cast (cast) on a steel belt, and after removing toluene in a drying furnace, both edges were trimmed to obtain an unstretched film A having a width of 600 mm and a thickness of 100 ⁇ m.
  • the content ratio of the inorganic particles in the unstretched film A is 10% by weight.
  • Unstretched film A was continuously supplied to a tenter stretching machine, and stretched in the width direction at a stretching temperature of 150 ° C. and a stretching ratio of 2.0 times to obtain a laterally stretched film.
  • the obtained laterally stretched film is further supplied to a longitudinal stretching apparatus, stretched in the longitudinal direction (flow direction) at a stretching temperature of 140 ° C. and a stretch ratio of 1.5 times, and a retardation film 1 having the characteristics shown in Table 1 Got.
  • the retardation film 1 corresponds to the layer A containing inorganic particles and the thermoplastic resin A.
  • the content ratio of inorganic particles in the retardation film 1 (that is, the content ratio of inorganic particles in the layer A) is 10% by weight.
  • Example 2 By the following procedure, the retardation film 2 which is a laminated film having the characteristics shown in Table 1 was obtained.
  • thermoplastic resin B an acrylic resin (“SUMIPEX HT55X” manufactured by Sumitomo Chemical Co., Ltd., glass transition temperature 105 ° C.) was used.
  • the thermoplastic resin B was put into an extruder having a diameter of 60 mm equipped with a T die, and the resin melted at 270 ° C. was extruded from the T die onto a casting drum to prepare a long film B having a width of 700 mm and a thickness of 50 ⁇ m. .
  • the 50% breaking energy of Film B was 6.0 ⁇ 10 ⁇ 2 (J).
  • the in-plane retardation Re of the film B at 540 nm was 0.5 nm, and the absolute value of the retardation Rth in the thickness direction was 0.5 nm.
  • the dope A1 prepared in Example 1 was cast (cast) on the film B, and after removing toluene in a drying furnace, both edges were trimmed to obtain an unstretched laminated film B having a width of 600 mm and a thickness of 80 ⁇ m. It was.
  • the obtained unstretched laminated film B was continuously supplied to a tenter stretching machine, and stretched in the width direction at a stretching temperature of 150 ° C. and a stretching ratio of 2.0 times to obtain a laterally stretched laminated film.
  • the obtained laterally stretched laminated film is further supplied to a longitudinal stretching apparatus, stretched in the longitudinal direction (flow direction) at a stretching temperature of 135 ° C. and a stretching ratio of 1.5 times, and has the characteristics shown in Table 1.
  • a retardation film 2 was obtained.
  • a polarizing plate and a display device 2 incorporating the same were obtained in the same manner as in Example 1 except that the retardation film 2 was used instead of the retardation film 1.
  • the display characteristics of the display device 2 were evaluated in the same manner as in Example 1, the display characteristics were very good in all directions compared to before replacement.
  • Example 3 (Preparation of pellet A) From the dope A1 prepared in Example 1, the solvent toluene was removed at a temperature of 270 ° C. and a pressure of 1 kPa or less using a cylindrical concentration dryer (manufactured by Hitachi, Ltd.) and directly connected to the concentration dryer. Pellets A were obtained by extruding into a strand from the die of the extruder in a molten state, and cutting after cooling.
  • a cylindrical concentration dryer manufactured by Hitachi, Ltd.
  • thermoplastic resin B acrylic resin (Sumitomo Chemical Co., Ltd., “Sumipex HT55X”, glass transition point 105 ° C.) are fed to an extruder with a screw diameter of 40 mm and 20 mm, respectively.
  • a laminated unstretched film C having a thickness of 80 ⁇ m (layer A containing inorganic particles and thermoplastic resin A: 50 ⁇ m, layer B containing thermoplastic resin B: 30 ⁇ m) and a width of 600 mm is extruded from a multi-manifold die onto a cooling drum and cooled.
  • layer A which is a layer containing inorganic particles and thermoplastic resin A
  • layer B which is a layer containing thermoplastic resin B
  • the obtained unstretched laminated film C was continuously supplied to a tenter stretching machine, and stretched in the width direction at a stretching temperature of 150 ° C. and a stretching ratio of 2.0 times to obtain a laterally stretched laminated film.
  • the obtained laterally stretched laminated film is further supplied to a longitudinal stretching apparatus, stretched in the longitudinal direction (flow direction) at a stretching temperature of 135 ° C. and a stretching ratio of 1.5 times, and has the characteristics shown in Table 1.
  • a retardation film 3 was obtained.
  • a polarizing plate and a display device 3 incorporating the same were obtained in the same manner as in Example 1 except that the retardation film 3 was used instead of the retardation film 1.
  • the display characteristics of the display device 3 were evaluated in the same manner as in Example 1, the display characteristics were very good in all directions compared to before replacement.
  • Example 4 Manufacture of retardation film
  • 20 g of synthetic hectorite (“Laponite” manufactured by BYK) was dispersed in 1000 mL of water, 20 g of dimethyl dioctadecyl ammonium chloride was added thereto, and the mixture was reacted at room temperature for 2 hours with stirring to obtain a reaction product.
  • the reaction product was filtered and washed with water to remove by-produced salts, dried and ground to obtain organically modified hectorite.
  • the obtained organic modified hectorite is a complex of an inorganic substance and an organic compound.
  • a dope A2 was prepared in the same manner as the dope A1 described in 1.
  • a retardation film 4 was obtained in the same manner as in Example 2 except that the dope A2 was used instead of the dope A1 and the stretching conditions were changed as shown in Table 1. (Manufacture of polarizing plates and display devices)
  • a polarizing plate and a display device 4 incorporating the same were obtained in the same manner as in Example 1 except that the retardation film 4 was used instead of the retardation film 1.
  • the display characteristics of the display device 4 were evaluated in the same manner as in Example 1, the display characteristics were very good in all directions compared to before replacement.
  • Example 5 Manufacture of retardation film
  • a dope A3 is prepared in the same manner as the dope A1 except that the addition amount of the inorganic particles and the thermoplastic resin A is adjusted so that the weight ratio of the inorganic particles to the thermoplastic resin A in the dope is 15:85. did.
  • a retardation film 5 was obtained in the same manner as in Example 2 except that the dope A3 was used instead of the dope A1 and the stretching conditions were changed as shown in Table 1.
  • a polarizing plate and a display device 5 incorporating the same were obtained in the same manner as in Example 1 except that the retardation film 5 was used instead of the retardation film 1.
  • thermoplastic resin A a styrene-maleic anhydride copolymer (“Dylark D332” manufactured by Nova Chemicals) was used instead of polystyrene (“HF77” manufactured by PS Japan Co., Ltd., glass transition temperature 100 ° C.).
  • Dope A4 was prepared in the same manner as the preparation.
  • a retardation film 6 was obtained in the same manner as in Example 2 except that the dope A4 was used instead of the dope A1 and the stretching conditions were changed as shown in Table 1.
  • a polarizing plate and a display device 6 incorporating the same were obtained in the same manner as in Example 1 except that the retardation film 6 was used instead of the retardation film 1.
  • the display characteristics of the display device 6 were evaluated in the same manner as in Example 1, the display characteristics were very good in all directions compared to before replacement.
  • Example 7 Manufacture of retardation film
  • a retardation film 7 was obtained in the same manner as in Example 2 except that the stretching conditions were changed as shown in Table 1.
  • Table 1 Manufacture of polarizing plates and display devices
  • a polarizing plate and a display device 7 incorporating the same were obtained in the same manner as in Example 1 except that the retardation film 7 was used instead of the retardation film 1.
  • the display characteristics of the display device 7 were evaluated in the same manner as in Example 1, the display characteristics were better in all directions than before replacement.
  • Example 8 Manufacture of retardation film
  • a retardation film 8 was obtained in the same manner as in Example 2 except that the stretching conditions were changed as shown in Table 1.
  • Table 1 Manufacture of polarizing plates and display devices
  • a polarizing plate and a display device 8 incorporating the same were obtained in the same manner as in Example 1 except that the retardation film 8 was used instead of the retardation film 1.
  • the display characteristics of the display device 8 were evaluated in the same manner as in Example 1, the display characteristics were better in all directions than before replacement.
  • Example 1 Manufacture of retardation film
  • a retardation film c1 was obtained in the same manner as in Example 2 except that the dope A5 was used instead of the dope A1 and the stretching conditions were changed as shown in Table 1.
  • a polarizing plate and a display device c1 incorporating the same were obtained in the same manner as in Example 1 except that the retardation film c1 was used instead of the retardation film 1.
  • the display characteristics of the display device c1 were evaluated in the same manner as in Example 1, the contrast was poor and the display characteristics were not good over all directions.
  • a dope A6 is prepared in the same manner as the dope A1 except that the addition amount of the inorganic particles and the thermoplastic resin A is adjusted so that the weight ratio of the inorganic particles and the thermoplastic resin A in the dope is 30:70. did.
  • a retardation film c2 was obtained in the same manner as in Example 2 except that the dope A6 was used instead of the dope A1 and the stretching conditions were changed as shown in Table 1.
  • a polarizing plate and a display device c2 incorporating the same were obtained in the same manner as in Example 1 except that the retardation film c2 was used instead of the retardation film 1.
  • a dope A7 is prepared in the same manner as the dope A1 except that the addition amount of the inorganic particles and the thermoplastic resin A is adjusted so that the weight ratio of the inorganic particles and the thermoplastic resin A in the dope is 3:97. did.
  • a retardation film c3 was obtained in the same manner as in Example 2 except that the dope A7 was used instead of the dope A1 and the stretching conditions were changed as shown in Table 1.
  • a polarizing plate and a display device c3 incorporating the same were obtained in the same manner as in Example 1 except that the retardation film c3 was used instead of the retardation film 1.
  • Table 1 shows the results of Examples and Comparative Examples.
  • inorganic particle ratio indicates the content ratio (wt%) of inorganic particles in layer A containing inorganic particles and thermoplastic resin A
  • thickness indicates the thickness of the retardation film.
  • the retardation films of Examples 1 to 8 have a low haze value, and the display devices using the retardation films of Examples 1 to 8 have good display characteristics in all directions. I understand. On the other hand, it can be seen that the display devices using the retardation films of Comparative Examples 1 to 3 cannot realize good display characteristics in all directions. It can be seen that the retardation films of Examples 1 to 8 have characteristics as a half-wave plate and are suitable for viewing angle compensation of a display device.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Polarising Elements (AREA)
  • Liquid Crystal (AREA)

Abstract

熱可塑性樹脂A及び無機粒子Iを含有する層Aを含み、540nmにおけるNZ係数が、0.1を超え1.0未満であり、540nmにおける面内レターデーションReが、50nmを超え300nm未満であり、前記熱可塑性樹脂Aが、負の固有複屈折値を有する樹脂であり、前記無機粒子Iが、板状の無機粒子であり、前記無機粒子Iの板面方向の平均径が10nm以上60nm以下であり、前記層Aにおける前記無機粒子Iの含有割合が、5重量%以上20重量%以下である、位相差フィルム。

Description

位相差フィルム、その製造方法、偏光板及び表示装置
 本発明は、位相差フィルム、その製造方法、偏光板及び表示装置に関する。
 インプレーンスイッチング(IPS)方式液晶表示装置における視野角補償の方法として、NZ係数がおよそ0.5である二軸性λ/2板を一枚用いる方法が提案されている。
 0<NZ係数<1である位相差フィルムの製造方法として、樹脂フィルムの面に収縮性フィルムを接着して積層体を形成し、収縮性フィルムの収縮力を利用して樹脂フィルムの厚み方向の屈折率を制御する方法が知られている(特許文献1)。
 また、IPS方式液晶表示装置における別の視野角補償の方法として、負のCプレートと負のAプレートとを組み合わせる方法も提案されている。
 負のCプレートと負のAプレートを組み合わせた位相差フィルムとして、無機層状化合物層を用いた位相差フィルムと、負の屈折率異方性を有する熱可塑性樹脂からなる一軸配向性位相差フィルムとを組み合わせた補償用位相差フィルムが知られている(特許文献2)。
特許第2818983号公報(対応他国公報:米国特許第5245456号明細書) 特許第3206132号公報
 視野角補償のために、上記のようにNZ係数がおよそ0.5である二軸性λ/2板を一枚用いる方法は、部品点数が少なくてよいという観点から、複数枚の光学フィルムを組み合わせる方法よりも優れている。
 しかし、0<NZ係数<1の特性を一枚の位相差フィルムで実現する方法は限られている。位相差フィルムの製造方法として一般的な、熱可塑性樹脂を延伸するという手法では、NZ係数≧1、又はNZ係数≦0である位相差フィルムを得ることはできても、0<NZ係数<1である位相差フィルムを得ることは困難である。
 特許文献1の技術は、位相差フィルムの製造のために、樹脂フィルムのみならず、収縮性フィルムや接着剤などの複数の材料が必要であることから、位相差フィルムの生産性が悪く、生産コストが大きい。
 特許文献2の技術は、部品点数が多くなることに加え、熱可塑性樹脂の押出し工程、延伸工程にさらに無機層状化合物の塗布工程が必要であることから、位相差フィルムの生産性が悪く、生産コストが大きい。
 従って、生産性及び生産コストの点で優れ、視野角補償のために好適な性能を備える位相差フィルムが求められている。
 本発明者は、上記課題を解決するべく鋭意検討した結果、所定の熱可塑性樹脂Aと所定の割合の無機粒子Iを含み、面内リターデーションRe及びNZ係数が所定の範囲である位相差フィルムにより、上記課題が解決できることを見出し、本発明を完成した。
 すなわち、本発明は、下記の通りである。
 [1] 熱可塑性樹脂A及び無機粒子Iを含有する層Aを含み、
 540nmにおけるNZ係数が、0.1を超え1.0未満であり、
 540nmにおける面内レターデーションReが、50nmを超え300nm未満であり、
 前記熱可塑性樹脂Aが、負の固有複屈折値を有する樹脂であり、
 前記無機粒子Iが、板状の無機粒子であり、
 前記無機粒子Iの板面方向の平均径が10nm以上60nm以下であり、
 前記層Aにおける前記無機粒子Iの含有割合が、5重量%以上20重量%以下である、位相差フィルム。
 [2] 前記熱可塑性樹脂Aが、スチレン単位、並びに、無水マレイン酸単位、メタクリル酸単位、及びマレイミド単位からなる群から選ばれる1種以上の単位を含む重合体を含む、[1]に記載の位相差フィルム。
 [3] 熱可塑性樹脂Bを主たる成分として含有し50%破壊エネルギーが1.0×10-2J以上である層Bを、さらに含む、[1]又は[2]に記載の位相差フィルム。
 [4] 前記熱可塑性樹脂Aのガラス転移温度TgA(℃)及び前記熱可塑性樹脂Bのガラス転移温度TgB(℃)が、TgA>TgBの関係を満たす、[3]に記載の位相差フィルム。
 [5] 前記層Bの540nmにおける面内レターデーションRe(B)が、0nm以上10nm未満であり、540nmにおける厚み方向のレターデーションRth(B)の絶対値が0nm以上10nm未満である、[3]又は[4]に記載の位相差フィルム。
 [6] 位相差フィルムの製造方法であって、
 前記位相差フィルムが、熱可塑性樹脂A及び無機粒子Iを含有する層Aを含み、
 540nmにおける前記位相差フィルムのNZ係数が、0.1を超え1.0未満であり、
 540nmにおける前記位相差フィルムの面内レターデーションReが、50nmを超え300nm未満であり、
 前記熱可塑性樹脂Aが、負の固有複屈折値を有する樹脂であり、
 前記無機粒子Iが、板状の無機粒子であり、
 前記層Aにおける前記無機粒子Iの含有割合が、5重量%以上20重量%以下であり、
 前記無機粒子Iの板面方向の平均径が10nm以上60nm以下であり、
 前記方法は、
 前記熱可塑性樹脂A及び前記無機粒子Iを含有し前記無機粒子Iの含有割合が5重量%以上20重量%以下である層aを含む、延伸前フィルムを得る工程、並びに
 前記延伸前フィルムを少なくとも一方向に延伸する工程、
 を含む、位相差フィルムの製造方法。
 [7] 前記位相差フィルムが、熱可塑性樹脂Bを主たる成分として含有し50%破壊エネルギーが1.0×10-2J以上である層Bを、さらに含み、
 前記延伸前フィルムが、前記熱可塑性樹脂Bを含有する層bをさらに含む、[6]に記載の位相差フィルムの製造方法。
 [8] 偏光子及び[1]~[5]のいずれか1項に記載の位相差フィルムを含む、偏光板。
 [9] [8]に記載の偏光板を含む表示装置。
 本発明によれば、生産性及び生産コストの点で優れ、視野角補償のために好適な性能を備える位相差フィルムが提供される。
 以下、本発明について実施形態及び例示物を示して詳細に説明する。ただし、本発明は以下に示す実施形態及び例示物に限定されるものではなく、本発明の請求の範囲及びその均等の範囲を逸脱しない範囲において任意に変更して実施し得る。
 以下の説明において、「長尺」のフィルムとは、幅に対して、少なくとも5倍以上の長さを有するフィルムをいい、好ましくは10倍若しくはそれ以上の長さを有し、具体的にはロール状に巻き取られて保管又は運搬される程度の長さを有するフィルムをいう。幅に対する長さの割合の上限は、特に限定されないが、例えば100,000倍以下とし得る。
 以下の説明において、フィルムの面内レターデーションReは、別に断らない限り、Re=(nx-ny)×dで表される値である。また、フィルムの厚み方向のレターデーションRthは、別に断らない限り、Rth={(nx+ny)/2-nz}×dで表される値である。また、NZ係数は、別に断らない限り、(nx-nz)/(nx-ny)で表される値である。ここで、nxは、フィルムの厚み方向に垂直な方向(面内方向)であって最大の屈折率を与える方向の屈折率を表す。nyは、前記面内方向であってnxの方向に直交する方向の屈折率を表す。nzは厚み方向の屈折率を表す。dは、フィルムの厚みを表す。測定波長は、別に断らない限り、540nmである。
 以下の説明において、別に断らない限り、固有複屈折値は、延伸方向の屈折率がそれに直交する方向の屈折率よりも大きくなる場合を正の値とし、延伸方向の屈折率がそれに直交する方向の屈折率よりも小さくなる場合を負の値とする。固有複屈折値は、材料の誘電率分布から計算することができる。
 以下の説明において、「(メタ)アクリル酸アルキルエステル」は「アクリル酸アルキルエステル」、「メタクリル酸アルキルエステル」及びこれらの組み合わせを包含し、「(メタ)アクリレート」は「アクリレート」、「メタクリレート」及びこれらの組み合わせを包含する。
 以下の説明において、要素の方向が「平行」、「垂直」及び「直交」とは、別に断らない限り、本発明の効果を損ねない範囲内、例えば±5°の範囲内での誤差を含んでいてもよい。
 以下の説明において、長尺のフィルムの長手方向は、通常は製造ラインにおけるフィルムの流れ方向と平行である。斜め方向とは、幅方向でも、長手方向でもない方向である。
 以下の説明において、「偏光板」、「1/2波長板」、及び「1/4波長板」とは、別に断らない限り、剛直な部材だけでなく、例えば樹脂製のフィルムのように可撓性を有する部材も含む。
 以下の説明において、接着剤とは、別に断らない限り、狭義の接着剤(エネルギー線照射後、あるいは加熱処理後、23℃における剪断貯蔵弾性率が1MPa~500MPaである接着剤)のみならず、23℃における剪断貯蔵弾性率が1MPa未満である粘着剤をも包含する。
 以下の説明において、フィルムの遅相軸とは、別に断らない限り、当該フィルムの面内における遅相軸を表す。
 [1.位相差フィルムの概要]
 本発明の位相差フィルムは、熱可塑性樹脂A及び無機粒子Iを含有する層Aを含む。層Aは、単層構造であることが好ましい。
 [2.熱可塑性樹脂A]
 熱可塑性樹脂Aは、負の固有複屈折値を有する熱可塑性樹脂である。負の固有複屈折値を有する熱可塑性樹脂は、負の固有複屈折値を有する重合体を含む。
 熱可塑性樹脂Aは、負の固有複屈折値を有する重合体を含む樹脂であれば特に限定されず、例えば、スチレン単位又はスチレン誘導体単位を含む重合体を含む樹脂(単に、ポリスチレン樹脂ともいう。);ポリアクリロニトリル樹脂;ポリメチルメタクリレート樹脂;スチレン、スチレン誘導体、アクリロニトリル、及びメチルメタクリレートからなる群から選ばれる単量体の、多元共重合体を含む樹脂;及びこれらの樹脂の組み合わせが挙げられる。ポリスチレン樹脂としては、例えば、スチレン単位又はスチレン誘導体単位からなる重合体を含む樹脂、及びスチレン単位又はスチレン誘導体単位及び他の単量体単位を含む重合体を含む樹脂が挙げられる。
 スチレン誘導体単位としては、例えば、アルキルスチレン単位、ハロゲン化スチレン単位、アルコキシスチレン単位が挙げられる。
 スチレン単位又はスチレン誘導体単位を含む重合体に含まれ得る他の単量体単位としては、アクリロニトリル単位、無水マレイン酸単位、メチル(メタ)アクリレート単位、(メタ)アクリル酸単位、マレイミド単位、及びブタジエン単位が挙げられる。
 熱可塑性樹脂Aは、位相差の発現のし易さという観点から好ましくはポリスチレン樹脂であり、より好ましくは、スチレン単位又はスチレン誘導体単位と、無水マレイン酸単位、メタクリル酸単位、及びマレイミド単位からなる群から選ばれる1種以上とを含む重合体を含むポリスチレン樹脂であり、耐熱性が高いという観点からさらに好ましくは、スチレン単位又はスチレン誘導体単位及び無水マレイン酸単位を含む重合体を含むポリスチレン樹脂である。
 熱可塑性樹脂Aは、特に好ましくは、スチレン単位と、無水マレイン酸単位、メタクリル酸単位、及びマレイミド単位からなる群から選ばれる1種以上の単位とを含む重合体を含むポリスチレン樹脂であり、最も好ましくは、スチレン単位と、無水マレイン酸単位とを含む重合体を含むポリスチレン樹脂である。
 熱可塑性樹脂Aにおける負の固有複屈折値を有する重合体の割合は、好ましくは50重量%以上、より好ましくは60重量%以上、さらに好ましくは70重量%以上である。熱可塑性樹脂Aにおける負の固有複屈折値を有する重合体の割合の上限は、100重量%である。
 熱可塑性樹脂Aは、1種単独でも、2種以上の組み合わせであってもよい。
 熱可塑性樹脂Aのガラス転移温度TgAには特に限定がないが、好ましくは120℃以上であり、より好ましくは125℃以上であり、さらに好ましくは130℃以上であり、好ましくは160℃以下であり、より好ましくは155℃以下であり、さらに好ましくは150℃以下である。
 本発明の熱可塑性樹脂Aは、負の固有複屈折値を有する重合体以外の任意の成分を含んでいてもよい。
 熱可塑性樹脂Aに含まれ得る任意の成分としては、例えば、酸化防止剤;光安定剤;ワックス;核剤;蛍光増白剤;紫外線吸収剤;着色剤;難燃剤;難燃助剤;帯電防止剤;可塑剤;近赤外線吸収剤;滑剤;フィラー;などが挙げられる。また、熱可塑性樹脂Aに含まれ得る任意の成分は、1種単独であってもよく、2種以上の任意の比率での組み合わせであってもよい。
 [3.無機粒子I]
 無機粒子Iは、板状の無機粒子である。本明細書において、無機粒子について「板状」とは、板面方向の径が厚みに対して10倍以上であることをいう。厚みに対する径の割合の上限は、特に限定されないが、例えば100倍以下としうる。無機粒子Iの、板面方向の平均径は、10nm以上60nm以下である。
 [3.1.無機粒子Iの構成材料]
 無機粒子Iは、板状である無機物の粒子であっても、板状である無機物と有機化合物との複合体であってもよい。
 無機粒子Iを構成する無機物としては、例えば、層状構造を有する粘土鉱物が挙げられ、さらに具体的には、例えば、スメクタイト族の粘土鉱物(例、ヘクトライト、モンモリロナイト、及びベントナイト;これらの置換体;これらの誘導体)及びその混合物が挙げられる。透明性に優れ、位相差フィルムを得る観点から、無機粒子Iを構成する無機物は、好ましくはスメクタイト族の粘土鉱物又はその混合物である。
 無機粒子Iを構成する無機物は、化学合成品であっても、天然産物であってもよいが、不純物が少なく透明性に優れるので、好ましくは化学合成品であり、より好ましくは合成ヘクトライトである。
 無機粒子Iが、板状である無機物と有機化合物との複合体である場合、無機粒子Iを構成する有機化合物としては、例えば、粘土鉱物の酸素原子又はヒドロキシ基と反応し得る化合物、粘土鉱物の結晶層間に存在する交換性陽イオンと交換し得るイオンを含むイオン性化合物が挙げられ、具体的には、例えば、四級アンモニウム化合物が挙げられる。
 無機物が粘土鉱物である場合、無機物と複合させる有機化合物は、好ましくは、四級アンモニウム化合物であり、より好ましくは、アルキル基及び/又はベンジル基に置換されたアンモニウムイオンを含む化合物(例、ジメチルジオクタデシルアンモニウムイオンを含む化合物、ジメチルベンジルオクタデシルアンモニウムイオンを含む化合物、トリオクチルメチルアンモニウムイオンを含む化合物)、又は長鎖の置換基により置換されたアンモニウムイオンを含む化合物(例、メチルジエチルポリオキシプロピレン(例えば、重合度25)アンモニウムイオンを含む化合物)である。
 四級アンモニウム化合物は、無機粒子Iを分散させる溶媒(例、ベンゼン、トルエン、キシレンなどの芳香族炭化水素;アセトン、メチルエチルケトン、メチルイソブチルケトンなどのケトン;メタノール、エタノール、プロパノールなどの低級アルコール;四塩化炭素、クロロホルム、ジクロロメタン、ジクロロエタンなどのハロゲン化炭化水素)に応じて、適宜選択してよい。
 無機物と四級アンモニウム化合物とを複合させて無機粒子Iとした場合、四級アンモニウム化合物は、通常四級アンモニウムイオンとして無機物に導入されて、無機物と四級アンモニウムイオンとの複合体を形成している。
 無機粒子Iが無機物と有機化合物との複合体である場合、無機物と有機化合物との複合体を製造する方法は特に限定がなく、公知の方法により製造することができる。例えば、分散媒中で、粘土鉱物などの無機物と四級アンモニウム化合物などの有機化合物とを接触させ、粘土鉱物などの無機物の結晶層間に存在する交換性陽イオンを、有機化合物を構成する四級アンモニウムイオンなどの陽イオンと交換する方法が挙げられる。
 具体的には、粘土鉱物(例、合成ヘクトライト)を水に分散させ、有機化合物(例、ジメチルジオクタデシルアンモニウムクロリドなどの四級アンモニウム化合物)を添加し、撹拌する方法が挙げられる。反応時間は、例えば、2時間とし得る。反応温度は、例えば、室温とし得る。反応後は、複合体と分散媒である水とを例えば濾過により分離し、次いで副生する塩類を分散媒により洗浄することにより複合体から除去してもよい。
 無機粒子Iが、粘土鉱物と四級アンモニウム化合物との複合体である場合、粘土鉱物の陽イオン交換容量に対して、好ましくは四級アンモニウム化合物を0.5~1.5倍当量、より好ましくは、1.0当量用いる。
 無機粒子Iは、溶媒への分散性及び樹脂への分散性に優れるので、好ましくは板状である無機物と有機化合物との複合体であり、より好ましくは粘土鉱物と四級アンモニウム化合物との複合体であり、さらに好ましくはヘクトライトと四級アンモニウム化合物との複合体である。
 無機粒子Iとして、市販品を使用し得る。例えば、有機化ヘクトライト(クニミネ工業株式会社製「スメクトンSAN」)を使用し得る。
 [3.2.無機粒子Iの平均径]
 無機粒子Iの板面方向における平均径は、下記の方法により測定される。
 無機粒子Iを溶媒(例、トルエン)に分散させた後、基板表面に滴下し、溶媒を蒸発させ、基板の表面上に残った無機粒子を走査型電子顕微鏡(例、日本電子製「JSM-7200F」、倍率150000倍)により観察し、任意に選んだ無機粒子200個につき、板面の面積Aを算出し、得られた無機粒子200個の板面面積から、無機粒子200個の板面方向における径rを次式(I)により算出する。
Figure JPOXMLDOC01-appb-M000001
 算出された無機粒子200個の板面方向における径rの平均値を、無機粒子の板面方向における平均径Rとする。
 本発明の無機粒子Iは、板面方向の平均径が、10nm以上であり、好ましくは15nm以上である。これにより、NZ係数を、0を超え1.0未満とすることができる。
 本発明の無機粒子Iは、板面方向の平均径が、60nm以下であり、好ましくは50nm以下であり、より好ましくは40nm以下である。これにより、位相差フィルムのヘーズ値を低いものとすることができる。
 [3.3.層Aにおける無機粒子Iの含有割合]
 無機粒子Iは、層Aにおける含有割合が、5重量%以上であり、好ましくは7重量%以上である。これにより、NZ係数を、0.1を超え1.0未満とすることができる。
 無機粒子Iは、層Aにおける含有割合が、20重量%以下であり、好ましくは15重量%以下である。これにより、層Aの機械的強度を保持することができる。
 [3.4.層Aの厚み]
 層Aの厚みは、適宜設定し得るが、好ましくは10μm以上、より好ましくは20μm以上、好ましくは100μm以下、より好ましくは80μm以下である。
 [3.5.層Aの任意成分]
 層Aは、熱可塑性樹脂A及び無機粒子Iの他に、任意の成分を含み得る。任意の成分としては、例えば、界面活性剤が挙げられる。
 [4.任意の層]
 本発明の位相差フィルムは、層Aの他に、任意の層を有していてもよい。
 任意の層としては、例えば、熱可塑性樹脂Bを主たる成分として含有し50%破壊エネルギーが1.0×10-2J以上である層Bが挙げられる。
 [4.1.層Bの物性]
 層Bは、50%破壊エネルギーが1.0×10-2J以上、好ましくは1.5×10-2J以上、より好ましくは2.0×10-2J以上である。これにより、位相差フィルムが層Aのみを有する場合よりも位相差フィルムの機械的強度を向上させることができる。50%破壊エネルギーは大きいほど好ましい。したがって50%破壊エネルギーの上限は特に限定されないが、例えば10×10-2J以下としうる。
 50%破壊エネルギーは、JIS-K7124-1(ステアケース法)に準拠して測定し得る。測定装置としては、衝撃試験器(例、アスカカンパニー製「Sゲージ」)を用い得る。
 層Bの540nmにおける面内レターデーションRe(B)は、好ましくは10nm未満であり、より好ましくは5nm以下であり、さらに好ましくは2nm以下である。これにより、位相差フィルムの光学特性に対して、層Bが与える影響を少なくすることができる。層Bの540nmにおける面内レターデーションRe(B)は、通常0nm以上である。
 層Bの540nmにおける厚み方向におけるレターデーションRth(B)の絶対値は、好ましくは10nm未満であり、より好ましくは5nm以下であり、さらに好ましくは2nm以下である。これにより、位相差フィルムの光学特性に対して、層Bが与える影響を少なくすることができる。層Bの540nmにおける厚み方向におけるレターデーションRth(B)の絶対値は、通常0nm以上である。
 [4.2.熱可塑性樹脂B]
 層Bは、熱可塑性樹脂Bを含む。熱可塑性樹脂Bとしては、層Bの50%破壊エネルギーを1.0×10-2J以上とすることができる樹脂であれば特に限定はなく、例えば、アクリル樹脂が挙げられる。
 アクリル樹脂は、(メタ)アクリル酸アルキルエステル単位を含む重合体を含む樹脂である。
 アクリル酸アルキルエステル単位を構成するためのアクリル酸アルキルエステルとしては、例えば、アクリル酸メチル、アクリル酸エチル、アクリル酸n-プロピル、アクリル酸i-プロピル、アクリル酸n-ブチル、アクリル酸イソブチル、アクリル酸sec-ブチル、アクリル酸tert-ブチル、アクリル酸n-ヘキシル、アクリル酸シクロヘキシル、アクリル酸n-オクチル、アクリル酸2-エチルヘキシル、アクリル酸n-デシル、アクリル酸n-ドデシルが挙げられる。
 メタクリル酸アルキルエステル単位を構成するためのメタクリル酸アルキルエステルとしては、例えば、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸n-プロピル、メタクリル酸イソプロピル、メタクリル酸n-ブチル、メタクリル酸イソブチル、メタクリル酸sec-ブチル、メタクリル酸tert-ブチル、メタクリル酸n-ヘキシル、メタクリル酸n-オクチル、メタクリル酸2-エチルヘキシル、メタクリル酸n-デシル、メタクリル酸n-ドデシルが挙げられる。
 (メタ)アクリル酸アルキルエステル単位は、ヒドロキシ基、ハロゲン原子などの任意の置換基を有していてもよい。これらの置換基を有する(メタ)アクリル酸エステル単位を構成するエステルとしては、例えば、アクリル酸2-ヒドロキシエチル、アクリル酸2-ヒドロキシプロピル、アクリル酸4-ヒドロキシブチル、メタクリル酸2-ヒドロキシエチル、メタクリル酸2-ヒドロキシプロピル、メタクリル酸4-ヒドロキシブチル、メタクリル酸3-クロロ-2-ヒドロキシプロピル、メタクリル酸グリシジルが挙げられる。
 アクリル樹脂は、1種の(メタ)アクリル酸アルキルエステル単位からなる単独重合体を含むものであってもよいし、2種以上の(メタ)アクリル酸アルキルエステル単位からなる共重合体を含むものであってもよい。また、アクリル樹脂は、(メタ)アクリル酸アルキルエステルと、(メタ)アクリル酸アルキルエステルと共重合可能な単量体との共重合体を含むものであってもよい。
 アクリル樹脂中の(メタ)アクリル酸アルキルエステル単位を含む重合体における、(メタ)アクリル酸アルキルエステル単位の含有割合は、好ましくは50重量%以上であり、より好ましくは60重量%以上であり、さらに好ましくは70重量%以上である。
 (メタ)アクリル酸アルキルエステルと共重合可能な単量体は、特に限定されず、例えば、フマル酸ジメチル、フマル酸ジエチル、マレイン酸ジメチル、マレイン酸ジエチル、イタコン酸ジメチルなどの、(メタ)アクリル酸アルキルエステル以外のα,β-エチレン性不飽和カルボン酸エステル;アクリル酸、メタクリル酸、クロトン酸、マレイン酸、フマル酸、イタコン酸、マレイン酸モノエチル、フマル酸モノn-ブチル、無水マレイン酸、無水イタコン酸などの、α,β-エチレン性不飽和カルボン酸;スチレン、α-メチルスチレン、メチルα-メチルスチレン、ビニルトルエン、ジビニルベンゼンなどの、芳香族アルケニル;1,3-ブタジエン、2-メチル-1,3-ブタジエン、1,3-ペンタジエン、2,3-ジメチル-1,3-ブタジエン、2-クロル-1,3-ブタジエン、シクロペンタジエンなどの、共役ジエン;1,4-ヘキサジエン、ジシクロペンタジエン、エチリデンノルボルネンなどの、非共役ジエン;アクリロニトリル、メタクリロニトリル、α-クロロアクリロニトリル、α-エチルアクリロニトリルなどシアン化ビニル;アクリルアミド、メタクリルアミド、N-メチロールアクリルアミド、N-メチロールメタクリルアミド、N,N-ジメチルアクリルアミドなどの、不飽和カルボン酸アミド;酢酸ビニルなどの、カルボン酸不飽和アルコールエステル;エチレン、プロピレン、ブテン、ペンテンなどの、オレフィンを挙げることができる。これらの単量体は、1種単独で又は2種以上の組み合わせで使用してよい。(メタ)アクリル酸アルキルエステルと共重合可能な単量体は、好ましくは芳香族アルケニル及びα,β-エチレン性不飽和カルボン酸から選ばれる1種以上であり、より好ましくはスチレン、無水マレイン酸、及びメタクリル酸から選ばれる1種以上である。
 アクリル樹脂中の(メタ)アクリル酸アルキルエステル単位を含む重合体における、(メタ)アクリル酸アルキルエステルと共重合可能な単量体単位の含有割合は、好ましくは50重量%以下であり、より好ましくは40重量%以下であり、さらに好ましくは30重量%以下である。
 (メタ)アクリル酸アルキルエステルと、(メタ)アクリル酸アルキルエステルと共重合可能な単量体との共重合体を含むアクリル樹脂として、具体的には、例えば、メタクリル酸メチル/アクリル酸メチル/アクリル酸ブチル/スチレン共重合体を含む樹脂、メタクリル酸メチル/アクリル酸メチル共重合体を含む樹脂、メタクリル酸メチル/スチレン/アクリル酸ブチル共重合体を含む樹脂、メタクリル酸メチル/メタクリル酸/スチレン共重合体を含む樹脂、メタクリル酸メチル/スチレン/無水マレイン酸共重合体を含む樹脂が挙げられる。
 熱可塑性樹脂Bは、好ましくはアクリル樹脂であり、より好ましくはメタクリル酸アルキルエステル単位を含む重合体を含む樹脂(メタクリル酸アルキル樹脂)を含み、さらに好ましくはメタクリル酸メチル重合体を含む樹脂(メタクリル酸メチル樹脂)を含む。
 熱可塑性樹脂Bにおける(メタ)アクリル酸アルキルエステル単位を含む重合体の割合は、好ましくは80重量%以上、より好ましくは90重量%以上、さらに好ましくは95重量%以上である。
 熱可塑性樹脂Bは、1種単独でも、2種以上の組み合わせであってもよい。
 熱可塑性樹脂Bは、重合体以外の任意の成分を含んでいてもよい。
 熱可塑性樹脂Bに含まれ得る任意の成分としては、熱可塑性樹脂Aに含まれ得る重合体以外の任意の成分として例示した成分が挙げられる。また、熱可塑性樹脂Bに含まれ得る任意の成分は、1種単独であってもよく、2種以上の任意の比率での組み合わせであってもよい。
 熱可塑性樹脂Bのガラス転移温度TgBには特に限定がないが、好ましくは90℃以上であり、より好ましくは100℃以上であり、好ましくは120℃以下であり、より好ましくは115℃以下であり、さらに好ましくは110℃以下である。
 好ましくは、熱可塑性樹脂Aのガラス転移温度TgA(℃)及び熱可塑性樹脂Bのガラス転移温度TgB(℃)が、TgA>TgBの関係を満たすことが好ましい。これにより、熱可塑性樹脂Aを含む層A及び熱可塑性樹脂Bを含む層Bを同時に延伸する際に、層Aの異方性を保持しつつ、層Bの異方性を減弱させることができる。
 TgA及びTgBの差(TgA-TgB)(℃)は、好ましくは10℃以上であり、より好ましくは15℃以上であり、さらに好ましくは20℃以上、好ましくは40℃以下、より好ましくは35℃以下である。TgA及びTgBの差(TgA-TgB)を前記範囲とすることにより、延伸工程で熱可塑性樹脂Bが軟化しすぎない範囲で、層Aの異方性を保持しつつ、層Bの異方性を減弱させることができる。
 ガラス転移温度TgA及びTgBは、示差走査熱量計(例、セイコーインスツルメンツ製「DSC-6100」)を用い、サンプル量10mg、昇温速度10℃/minの条件で測定し得る。
 層Bは、熱可塑性樹脂Bを主たる成分として含有する。
 主たる成分とは、層Bの含有成分の内、最も含有重量割合が大きい成分をいう。
 熱可塑性樹脂Bの層Bにおける含有割合は、好ましくは50重量%以上であり、より好ましくは70重量%以上であり、さらに好ましくは90重量%以上である。層Bにおける熱可塑性樹脂Bの含有割合の上限は、100重量%である。
 層Bは、熱可塑性樹脂Bの他に、任意の成分を含んでいてもよい。
 [4.3.層Bの厚み]
 層Bの厚みは、適宜設定し得るが、好ましくは10μm以上、より好ましくは15μm以上、好ましくは70μm以下、より好ましくは50μm以下である。
 [5.位相差フィルムの物性]
 本発明の位相差フィルムは、540nmにおけるNZ係数が、0.1を超え1.0未満である。
 本発明の位相差フィルムは、540nmにおけるNZ係数が、好ましくは0.2以上であり、より好ましくは0.25以上であり、好ましくは0.9以下であり、より好ましくは0.8以下であり、さらに好ましくは0.75以下である。これにより、位相差フィルムを液晶表示装置の視野角補償のために好適に用い得る。
 本発明の位相差フィルムは、540nmにおける面内レターデーションReが、50nmを超え300nm未満である。
 本発明の位相差フィルムは、540nmにおける面内レターデーションReが、好ましくは100nm以上であり、より好ましくは120nm以上であり、好ましくは290nm以下であり、より好ましくは280nm以下である。
 本発明の位相差フィルムの、面内レターデーションRe、厚み方向におけるレターデーションRth、及びNZ係数は、レターデーション測定装置で測定し得る。レターデーション測定装置としては、例えば、大塚電子株式会社製「RE-200」、Axometrics株式会社製「AxoScan」を使用し得る。
 上述した層Bの面内レターデーションRe(B)及び厚み方向におけるレターデーションRth(B)も、位相差フィルムの面内レターデーションRe、厚み方向におけるレターデーションRthと同様にして測定し得る。
 本発明の位相差フィルムのヘーズは、好ましくは1%以下であり、より好ましくは0.5%以下であり、さらに好ましくは0.3%以下である。ヘーズは小さいほど好ましいが、通常は0%以上である。
 ヘーズは、JIS-K-7136に準拠して測定し得る。測定装置としては、ヘーズメーター(例、日本電色工業株式会社製「NDH-4000」)を用い得る。
 本発明の位相差フィルムの厚みは、用途に応じて適宜設定することができ、特に限定されないが、好ましくは10μm以上であり、より好ましくは15μm以上であり、さらに好ましくは20μm以上であり、好ましくは70μm以下であり、より好ましくは60μm以下であり、さらに好ましくは50μm以下である。
 [6.位相差フィルムの製造方法]
 本発明の位相差フィルムを製造する方法には特に限定がないが、例えば下記の工程を含む方法により製造し得、下記工程を含む方法で製造することが好ましい。本発明の位相差フィルムは、延伸という簡易な方法により製造することができるので、高い生産性を有し生産コストを抑制し得る。
 (i)熱可塑性樹脂A及び無機粒子Iを含有し無機粒子Iの含有割合が5重量%以上20重量%以下である層aを含む、延伸前フィルムを得る工程
 (ii)前記延伸前フィルムを少なくとも一方向に延伸する工程
 工程(i)において、延伸前フィルムを得る方法には限定はないが、例えば、溶液流涎法、押出成形法等の樹脂成形法が挙げられる。
 延伸前フィルムは、好ましくは熱可塑性樹脂Bを含有する層bをさらに含む。
 延伸前フィルムが層aの他に層bを含み、(層a/層b)の層構成を有する場合、延伸前フィルムを得る方法としては、層bを含むフィルムbをまず製造し、フィルムb上に溶液流涎法などの方法により層aを形成して延伸前フィルムを得る方法であってもよく、層aの材料と層bの材料とを、共押出しすることにより延伸前フィルムを得る方法であってもよい。共押出しは、例えば、2層タイプのマルチマニホールドダイを備えた押出し機によって実施し得る。
 工程(ii)では、延伸前フィルムを少なくとも一方向に延伸する。
 工程(ii)において、延伸前フィルムの延伸温度は、好ましくは(TgA(熱可塑性樹脂Aのガラス転移温度)-10℃)以上であり、より好ましくは(TgA-5℃)以上であり、好ましくは(TgA+30℃)以下であり、より好ましくは(TgA+20℃)以下である。
 延伸倍率は、適宜選択し得るが、好ましくは1.2倍以上、より好ましくは1.3倍以上、さらに好ましくは1.4倍以上、好ましくは4倍以下、より好ましくは3倍以下、さらに好ましくは2.5倍以下である。なお、前記延伸倍率は、二方向以上に延伸する場合において、各方向における延伸倍率を意味する。
 工程(ii)において、延伸フィルムは少なくとも一方向に延伸すればよく、二方向以上に延伸してもよい。延伸フィルムを延伸する方向としては、例えば、幅方向、長手方向、及び斜め方向が挙げられる。これら延伸前フィルムを二方向に延伸する場合、例えばフィルムの幅方向及び長手方向に延伸する。
 工程(ii)において、延伸フィルムを二方向以上に延伸する場合、それぞれの方向における延伸を異なる温度で行ってもよく、異なる延伸倍率として行ってもよい。
 [7.偏光板]
 本発明の位相差フィルムは、偏光子と組み合わせて、偏光板とすることができる。
 偏光子としては、例えば、ポリビニルアルコール、部分ホルマール化ポリビニルアルコール等の適切な親水性重合体のフィルムに、ヨウ素及び二色性染料等の二色性物質による染色処理及び延伸処理を施し、さらに必要に応じ、架橋処理等の適切な処理を適切な順序及び方式で施したものを用い得る。
 本発明の位相差フィルムと偏光子とを、適当な接着剤を用いて貼合することにより、(位相差フィルム/接着剤層/偏光子)の層構成を有する偏光板を製造し得る。偏光板は、例えば保護フィルム層などの任意の層をさらに含み得る。
 本発明の位相差フィルムは、1枚を偏光子と組み合わせて偏光板を製造してもよいし、2枚以上を偏光子と組み合わせて偏光板を製造してもよい。したがって、偏光板は、複数の本発明の位相差フィルムを含み得る。
 [8.表示装置]
 本発明の位相差フィルム及び偏光子を含む偏光板は、液晶表示素子及び有機エレクトロルミネッセンス表示素子などの画像表示素子と組み合わせて、表示装置とすることができる。組み合わせる画像表示素子としては、例えば、液晶表示素子(インプレーンスイッチング(IPS)モードなどの、任意のモードの液晶表示素子)、及び有機エレクトロルミネッセンス素子が挙げられる。
 [9.位相差フィルムの用途]
 本発明の位相差フィルムは、例えば1/2波長板、1/4波長板として使用することができ、また例えば液晶表示装置の視野角補償用、表示装置の反射抑制用として好適に使用し得る。
 以下、実施例を示して本発明について具体的に説明する。ただし、本発明は以下の実施例に限定されるものではなく、本発明の請求の範囲及びその均等の範囲を逸脱しない範囲において任意に変更して実施し得る。
 以下の説明において、量を表す「%」及び「部」は、別に断らない限り重量基準である。以下の操作は、別に断らない限り、常温常圧大気中にて行った。また、面内レターデーションRe、厚み方向におけるレターデーションRth、及びNZ係数は、波長540nmにおける測定値を示す。
 [評価方法]
 本実施例における、評価項目の評価方法について説明する。
 (無機粒子の板面方向における平均径)
 無機粒子をトルエンに加え、超音波処理を60分間行って無機粒子のトルエン分散液を調製した。得られた分散液をマイカ基板の表面に滴下して、滴下した分散液からトルエンを蒸発させた。マイカ基板の表面上に残った無機粒子を走査型電子顕微鏡(日本電子製「JSM-7200F」、倍率150000倍)により観察し、任意に選んだ無機粒子200個につき、板面の面積Aをそれぞれ算出した。得られた無機粒子200個の板面面積から、無機粒子200個の板面方向における径rを上述の式(I)により算出した。
 算出された無機粒子200個の板面方向における径rの平均値を、無機粒子の板面方向における平均径R(nm)とした。
 (面内レターデーションRe)
 評価対象のフィルムについて、レターデーション測定装置(大塚電子株式会社製「RE-200」)を用いて測定した。幅方向の同一直線上に並ぶ5cm間隔の地点について面内レターデーションを測定し、同様の測定を長手方向(流れ方向)に1m間隔で5回繰り返した。得られた測定値の平均値をフィルムの面内レターデーションReとした。
 (厚み方向におけるレターデーションRth)
 評価対象のフィルムについて、レターデーション測定装置(大塚電子株式会社製「RE-200」)を用いて測定した。幅方向の同一直線上に並ぶ5cm間隔の地点について厚み方向におけるレターデーションを測定し、同様の測定を長手方向(流れ方向)に1m間隔で5回繰り返した。得られた測定値の平均値をフィルムの厚み方向におけるレターデーションRthとした。
 (NZ係数)
 評価対象のフィルムについて、レターデーション測定装置(Axometrics株式会社製「AxoScan」)を用いて幅方向の同一直線上に並ぶ5cm間隔の地点についてNZ係数を測定し、同様の測定をフィルムの長手方向(流れ方向)に1m間隔で5回繰り返した。得られた測定値の平均値をフィルムのNZ係数とした。
 (ヘーズ)
 ヘーズメーター(日本電色工業株式会社製「NDH-4000」)を用いてフィルムの一枚ヘーズをJIS-K-7136に準拠して測定した。
 (50%破壊エネルギー)
 衝撃試験器(アスカカンパニー製「Sゲージ」)を用い、JIS-K7124-1(ステアケース法)に準拠して測定した。
 (ガラス転移温度)
 示差走査熱量計(セイコーインスツルメンツ製「DSC-6100」)を用い、サンプル量10mg、昇温速度10℃/minの条件でガラス転移温度を測定した。
 [実施例1]
 (ドープの調製)
 熱可塑性樹脂Aとしてスチレン-無水マレイン酸共重合体(NovaChemicals社製「DylarkD332」、ガラス転移温度135℃)を用いた。
 無機粒子として、有機化ヘクトライト(クニミネ工業株式会社製、「スメクトンSAN」、板状、平均径R=35(nm)、無機物と有機化合物との複合体)を用いた。
 トルエン10部に対し、無機粒子0.4部を添加し、常温で10分間撹拌後、超音波による処理を30分間実施した。その後、熱可塑性樹脂Aのペレット3.6部を加え、さらに超音波による処理を120分間実施し、ドープA1を得た。ドープA1中の、溶媒(トルエン)を除いた全成分(無機粒子及び熱可塑性樹脂A)に占める熱可塑性樹脂Aの割合は、10重量%である。
 (未延伸フィルムA)
 ドープA1を、スチールベルト上に流延(キャスト)し、乾燥炉でトルエンを除去した後、両エッジをトリミングして幅600mm、厚み100μmの未延伸フィルムAを得た。未延伸フィルムAにおける無機粒子の含有割合は、10重量%である。
 (位相差フィルムの製造:延伸工程)
 未延伸フィルムAを連続してテンター延伸機に供給し、延伸温度150℃、延伸倍率2.0倍で幅方向に延伸処理を行い、横延伸フィルムを得た。得られた横延伸フィルムをさらに縦延伸装置に供給し、延伸温度140℃、延伸倍率1.5倍で長手方向(流れ方向)に延伸加工を行い、表1に示す特性を持つ位相差フィルム1を得た。位相差フィルム1は、無機粒子及び熱可塑性樹脂Aを含む層Aに該当する。位相差フィルム1における無機粒子の含有割合(すなわち、層Aにおける無機粒子の含有割合)は、10重量%である。
 (偏光板及び表示装置の製造)
 透過軸が幅方向にある長尺の偏光子巻回体(サンリッツ社製「HLC2-5618S」、厚さ180μm)の片側の保護フィルムを除去し、位相差フィルム1の遅相軸と偏光子の透過軸とが平行となるように貼合した。この巻回体から偏光板を切り出した。
 切り出した偏光板を、市販のIPS液晶パネル(LG化学製)の表示装置視認側に配置された偏光板と置き換え、上記偏光板の位相差フィルム側が液晶セル側に配置されるように組み込んだ。得られた表示装置の表示特性を外光下で目視により確認したところ、置き換え前と比較し、全方位に渡り非常に良好な表示特性であった。
 [実施例2]
 下記手順により、表1に示す特性を持つ、積層フィルムである位相差フィルム2を得た。
 (フィルムBの作成)
 熱可塑性樹脂Bとして、アクリル樹脂(住友化学株式会社製「スミペックスHT55X」、ガラス転移温度105℃)を用いた。Tダイを備えた直径60mmの押出し機に熱可塑性樹脂Bを投入し、270℃で溶融した樹脂をTダイからキャスティングドラム上に押出し、幅700mm、厚み50μmの、長尺のフィルムBを作成した。フィルムBの50%破壊エネルギーは6.0×10-2(J)であった。フィルムBの540nmにおける面内レターデーションReは、0.5nmであり、厚み方向におけるレターデーションRthの絶対値は0.5nmであった。
 (未延伸積層フィルム)
 実施例1で調製されたドープA1を、フィルムB上に流延(キャスト)し、乾燥炉でトルエンを除去した後、両エッジをトリミングして幅600mm、厚み80μmの未延伸積層フィルムBを得た。
 (位相差フィルムの製造)
 得られた未延伸積層フィルムBを連続してテンター延伸機に供給し、延伸温度150℃、延伸倍率2.0倍で幅方向に延伸処理を行い、横延伸積層フィルムを得た。得られた横延伸積層フィルムをさらに縦延伸装置に供給し、延伸温度135℃、延伸倍率1.5倍で長手方向(流れ方向)に延伸加工を行い、表1に示す特性を持つ、積層フィルムである位相差フィルム2を得た。
 (偏光板及び表示装置の製造)
 位相差フィルム1の代わりに位相差フィルム2を用いた以外は実施例1と同様にして偏光板及びこれを組み込んだ表示装置2を得た。表示装置2の表示特性を実施例1と同様に評価したところ、置き換え前と比較し、全方位に渡り非常に良好な表示特性であった。
 [実施例3]
 (ペレットAの調製)
 実施例1で調製されたドープA1から、円筒型濃縮乾燥器(日立製作所社製)を用いて、温度270℃、圧力1kPa以下で、溶媒であるトルエンを除去し、濃縮乾燥器に直結させた押出機のダイから溶融状態でストランド状に押出し、冷却後切断して、ペレットAを得た。
 (位相差フィルムの製造)
 ペレットA及び熱可塑性樹脂Bであるアクリル樹脂(住友化学株式会社製、「スミペックスHT55X」、ガラス転移点105℃)のペレットを、それぞれスクリュー径40mm及び20mmの押出し機に供給し、2層タイプのマルチマニホールドダイから冷却ドラム上に押出して冷却し、厚み80μm(無機粒子及び熱可塑性樹脂Aを含む層A:50μm、熱可塑性樹脂Bを含む層B:30μm)、幅600mmの積層未延伸フィルムCを得た。無機粒子及び熱可塑性樹脂Aを含む層である層A及び熱可塑性樹脂Bを含む層である層Bの厚みは押出し機の回転数によって調整した。得られた未延伸積層フィルムCを連続してテンター延伸機に供給し、延伸温度150℃、延伸倍率2.0倍で幅方向に延伸処理を行い、横延伸積層フィルムを得た。得られた横延伸積層フィルムをさらに縦延伸装置に供給し、延伸温度135℃、延伸倍率1.5倍で長手方向(流れ方向)に延伸加工を行い、表1に示す特性を持つ、積層フィルムである位相差フィルム3を得た。
 (偏光板及び表示装置の製造)
 位相差フィルム1の代わりに位相差フィルム3を用いた以外は実施例1と同様にして偏光板及びこれを組み込んだ表示装置3を得た。表示装置3の表示特性を実施例1と同様に評価したところ、置き換え前と比較し、全方位に渡り非常に良好な表示特性であった。
 [実施例4]
 (位相差フィルムの製造)
 合成ヘクトライト(BYK社製「ラポナイト」)20gを、水1000mLに分散させ、これにジメチルジオクタデシルアンモニウムクロリド20gを添加し、撹拌しながら室温で2時間反応させて反応生成物を得た。次いで、反応生成物を濾過し、水で洗浄して副生した塩類を除去し、乾燥し、粉砕して、有機変性ヘクトライトを得た。得られた有機変性ヘクトライトは、無機物と有機化合物との複合体である。
 無機粒子として、有機化ヘクトライト(クニミネ工業株式会社製、「スメクトンSAN」)の代わりに、上記有機変性ヘクトライト(板状、平均径R=20(nm))を用いた以外は実施例1に記載されたドープA1の調製と同様にして、ドープA2を調製した。ドープA1の代わりにドープA2を用い、延伸条件を表1の様に変更した以外は実施例2と同様にして、位相差フィルム4を得た。
 (偏光板及び表示装置の製造)
 位相差フィルム1の代わりに位相差フィルム4を用いた以外は実施例1と同様にして偏光板及びこれを組み込んだ表示装置4を得た。表示装置4の表示特性を実施例1と同様に評価したところ、置き換え前と比較し、全方位に渡り非常に良好な表示特性であった。
 [実施例5]
 (位相差フィルムの製造)
 ドープ中の無機粒子と熱可塑性樹脂Aとの重量比が15:85となるように無機粒子及び熱可塑性樹脂Aの添加量を調整した以外はドープA1の調製と同様にして、ドープA3を調製した。ドープA1の代わりにドープA3を用い、延伸条件を表1の様に変更した以外は実施例2と同様にして、位相差フィルム5を得た。
 (偏光板及び表示装置の製造)
 位相差フィルム1の代わりに位相差フィルム5を用いた以外は実施例1と同様にして偏光板及びこれを組み込んだ表示装置5を得た。表示装置5の表示特性を実施例1と同様に評価したところ、置き換え前と比較し、全方位に渡り非常に良好な表示特性であった。
 [実施例6]
 (位相差フィルムの製造)
 熱可塑性樹脂Aとして、スチレン-無水マレイン酸共重合体(NovaChemicals社製「DylarkD332」)の代わりにポリスチレン(PSジャパン株式会社製「HF77」、ガラス転移温度100℃)を使用した以外はドープA1の調製と同様にして、ドープA4を調製した。ドープA1の代わりにドープA4を用い、延伸条件を表1の様に変更した以外は実施例2と同様にして位相差フィルム6を得た。
 (偏光板及び表示装置の製造)
 位相差フィルム1の代わりに位相差フィルム6を用いた以外は実施例1と同様にして偏光板及びこれを組み込んだ表示装置6を得た。表示装置6の表示特性を実施例1と同様に評価したところ、置き換え前と比較し、全方位に渡り非常に良好な表示特性であった。
 [実施例7]
 (位相差フィルムの製造)
 延伸条件を表1の様に変更した以外は実施例2と同様にして、位相差フィルム7を得た。
 (偏光板及び表示装置の製造)
 位相差フィルム1の代わりに位相差フィルム7を用いた以外は実施例1と同様にして偏光板及びこれを組み込んだ表示装置7を得た。表示装置7の表示特性を実施例1と同様に評価したところ、置き換え前と比較し、全方位に渡り良好な表示特性であった。
 [実施例8]
 (位相差フィルムの製造)
 延伸条件を表1の様に変更した以外は実施例2と同様にして、位相差フィルム8を得た。
 (偏光板及び表示装置の製造)
 位相差フィルム1の代わりに位相差フィルム8を用いた以外は実施例1と同様にして偏光板及びこれを組み込んだ表示装置8を得た。表示装置8の表示特性を実施例1と同様に評価したところ、置き換え前と比較し、全方位に渡り良好な表示特性であった。
 [比較例1]
 (位相差フィルムの製造)
 無機粒子として、平均径R=80(nm)の板状の無機粒子を用いた以外はドープA1の調製と同様にして、ドープA5を調製した。ドープA1の代わりにドープA5を用い、延伸条件を表1の様に変更した以外は実施例2と同様にして位相差フィルムc1を得た。
 (偏光板及び表示装置の製造)
 位相差フィルム1の代わりに位相差フィルムc1を用いた以外は実施例1と同様にして偏光板及びこれを組み込んだ表示装置c1を得た。表示装置c1の表示特性を実施例1と同様に評価したところ、コントラストが悪く、また全方位にわたり良好な表示特性ではなかった。
 [比較例2]
 (位相差フィルムの製造)
 ドープ中の無機粒子と熱可塑性樹脂Aとの重量比が30:70となるように無機粒子及び熱可塑性樹脂Aの添加量を調整した以外はドープA1の調製と同様にして、ドープA6を調製した。ドープA1の代わりにドープA6を用い、延伸条件を表1の様に変更した以外は実施例2と同様にして位相差フィルムc2を得た。
 (偏光板及び表示装置の製造)
 位相差フィルム1の代わりに位相差フィルムc2を用いた以外は実施例1と同様にして偏光板及びこれを組み込んだ表示装置c2を得た。表示装置c2の表示特性を実施例1と同様に評価したところ、コントラストが悪く、また全方位にわたり良好な表示特性ではなかった。
 [比較例3]
 (位相差フィルムの製造)
 ドープ中の無機粒子と熱可塑性樹脂Aとの重量比が3:97となるように無機粒子及び熱可塑性樹脂Aの添加量を調整した以外はドープA1の調製と同様にして、ドープA7を調製した。ドープA1の代わりにドープA7を用い、延伸条件を表1の様に変更した以外は実施例2と同様にして位相差フィルムc3を得た。
 (偏光板及び表示装置の製造)
 位相差フィルム1の代わりに位相差フィルムc3を用いた以外は実施例1と同様にして偏光板及びこれを組み込んだ表示装置c3を得た。表示装置c3の表示特性を実施例1と同様に評価したところ、全方位にわたり良好な表示特性ではなかった。
 実施例及び比較例の結果を表1に示す。表1中、「無機粒子割合」は、無機粒子及び熱可塑性樹脂Aを含む層Aにおける無機粒子の含有割合(wt%)を示し、「厚み」は、位相差フィルムの厚みを示す。
Figure JPOXMLDOC01-appb-T000002
 以上の結果から、実施例1~8の位相差フィルムは、ヘーズ値が低く、実施例1~8の位相差フィルムを用いた表示装置は、全方位にわたり良好な表示特性を有していることが分かる。一方、比較例1~3の位相差フィルムを用いた表示装置は、全方位にわたる良好な表示特性を実現できないことが分かる。
 実施例1~8の位相差フィルムは、1/2波長板としての特性を有し、表示装置の視野角補償用として好適であることが分かる。

Claims (9)

  1.  熱可塑性樹脂A及び無機粒子Iを含有する層Aを含み、
     540nmにおけるNZ係数が、0.1を超え1.0未満であり、
     540nmにおける面内レターデーションReが、50nmを超え300nm未満であり、
     前記熱可塑性樹脂Aが、負の固有複屈折値を有する樹脂であり、
     前記無機粒子Iが、板状の無機粒子であり、
     前記無機粒子Iの板面方向の平均径が10nm以上60nm以下であり、
     前記層Aにおける前記無機粒子Iの含有割合が、5重量%以上20重量%以下である、位相差フィルム。
  2.  前記熱可塑性樹脂Aが、スチレン単位、並びに、無水マレイン酸単位、メタクリル酸単位、及びマレイミド単位からなる群から選ばれる1種以上の単位を含む重合体を含む、請求項1に記載の位相差フィルム。
  3.  熱可塑性樹脂Bを主たる成分として含有し50%破壊エネルギーが1.0×10-2J以上である層Bを、さらに含む、請求項1又は2に記載の位相差フィルム。
  4.  前記熱可塑性樹脂Aのガラス転移温度TgA(℃)及び前記熱可塑性樹脂Bのガラス転移温度TgB(℃)が、TgA>TgBの関係を満たす、請求項3に記載の位相差フィルム。
  5.  前記層Bの540nmにおける面内レターデーションRe(B)が、0nm以上10nm未満であり、540nmにおける厚み方向のレターデーションRth(B)の絶対値が0nm以上10nm未満である、請求項3又は4に記載の位相差フィルム。
  6.  位相差フィルムの製造方法であって、
     前記位相差フィルムが、熱可塑性樹脂A及び無機粒子Iを含有する層Aを含み、
     540nmにおける前記位相差フィルムのNZ係数が、0.1を超え1.0未満であり、
     540nmにおける前記位相差フィルムの面内レターデーションReが、50nmを超え300nm未満であり、
     前記熱可塑性樹脂Aが、負の固有複屈折値を有する樹脂であり、
     前記無機粒子Iが、板状の無機粒子であり、
     前記層Aにおける前記無機粒子Iの含有割合が、5重量%以上20重量%以下であり、
     前記無機粒子Iの板面方向の平均径が10nm以上60nm以下であり、
     前記方法は、
     前記熱可塑性樹脂A及び前記無機粒子Iを含有し前記無機粒子Iの含有割合が5重量%以上20重量%以下である層aを含む、延伸前フィルムを得る工程、並びに
     前記延伸前フィルムを少なくとも一方向に延伸する工程、
     を含む、位相差フィルムの製造方法。
  7.  前記位相差フィルムが、熱可塑性樹脂Bを主たる成分として含有し50%破壊エネルギーが1.0×10-2J以上である層Bを、さらに含み、
     前記延伸前フィルムが、前記熱可塑性樹脂Bを含有する層bをさらに含む、請求項6に記載の位相差フィルムの製造方法。
  8.  偏光子及び請求項1~5のいずれか1項に記載の位相差フィルムを含む、偏光板。
  9.  請求項8に記載の偏光板を含む表示装置。
PCT/JP2017/045751 2016-12-28 2017-12-20 位相差フィルム、その製造方法、偏光板及び表示装置 WO2018123772A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201780065876.6A CN109863431B (zh) 2016-12-28 2017-12-20 相位差膜、其制造方法、偏振片和显示装置
KR1020197016602A KR102510655B1 (ko) 2016-12-28 2017-12-20 위상차 필름, 그 제조 방법, 편광판 및 표시 장치
JP2018559103A JP7014182B2 (ja) 2016-12-28 2017-12-20 位相差フィルム、その製造方法、偏光板及び表示装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016256102 2016-12-28
JP2016-256102 2016-12-28

Publications (1)

Publication Number Publication Date
WO2018123772A1 true WO2018123772A1 (ja) 2018-07-05

Family

ID=62710558

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/045751 WO2018123772A1 (ja) 2016-12-28 2017-12-20 位相差フィルム、その製造方法、偏光板及び表示装置

Country Status (5)

Country Link
JP (1) JP7014182B2 (ja)
KR (1) KR102510655B1 (ja)
CN (1) CN109863431B (ja)
TW (1) TWI732982B (ja)
WO (1) WO2018123772A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021092685A (ja) * 2019-12-11 2021-06-17 住友化学株式会社 光学積層体、その製造方法、液晶パネルおよび液晶表示装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012226996A (ja) * 2011-04-20 2012-11-15 Nippon Zeon Co Ltd 有機el表示装置
WO2013161894A1 (ja) * 2012-04-25 2013-10-31 コニカミノルタ株式会社 ガスバリア性フィルム、電子デバイス用基板および電子デバイス
WO2016167341A1 (ja) * 2015-04-17 2016-10-20 株式会社カネカ 位相差フィルム及びその利用

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2818983B2 (ja) 1990-10-24 1998-10-30 日東電工株式会社 複屈折性フィルムの製造方法
CA2081626A1 (en) * 1991-11-08 1993-05-09 Taiichi Sakaya Phase retarder
JP3206132B2 (ja) 1992-09-07 2001-09-04 住友化学工業株式会社 液晶表示装置
TW336999B (en) * 1996-07-03 1998-07-21 Sumitomo Kagaku Kk Phase retarder and liquid crystal display device using the same
JP2001100004A (ja) * 1999-09-29 2001-04-13 Fuji Photo Film Co Ltd 防眩性反射防止フィルムおよび画像表示装置
JP2001294826A (ja) * 2000-04-17 2001-10-23 Teijin Ltd 光学用易接着性フィルム及びそれを用いた光学用積層体
JP2004294983A (ja) * 2003-03-28 2004-10-21 Sumitomo Chem Co Ltd 位相差板一体型偏光フィルムとそれを用いた液晶表示装置
JP2005017574A (ja) * 2003-06-25 2005-01-20 Fuji Photo Film Co Ltd 光学補償シート、偏光板および液晶表示装置
CN100447593C (zh) * 2004-08-26 2008-12-31 日东电工株式会社 相位差膜及制法,使用其的光学膜、液晶面板和显示装置
TW200621470A (en) * 2004-09-30 2006-07-01 Zeon Corp Injection Molding
JP4618675B2 (ja) * 2005-02-08 2011-01-26 日東電工株式会社 位相差フィルム、偏光素子、液晶パネルおよび液晶表示装置
JP4640025B2 (ja) * 2005-06-24 2011-03-02 住友化学株式会社 コーティング位相差板用塗工液、それを用いた位相差板の製造方法及び複合偏光板の製造方法
US9011991B2 (en) * 2006-03-24 2015-04-21 Zeon Corporation Lengthy stretched film, and manufacturing method and use thereof
JP2008262161A (ja) * 2007-01-23 2008-10-30 Fujifilm Corp 光学補償フィルム、光学補償フィルムの製造方法、偏光板および液晶表示装置
JP2010122445A (ja) * 2008-11-19 2010-06-03 Konica Minolta Opto Inc ツイストネマチック型液晶表示装置
CN101813798B (zh) * 2009-02-23 2013-08-28 住友化学株式会社 复合偏振板和使用其的ips模式液晶显示装置
JP2011232683A (ja) * 2010-04-30 2011-11-17 Tomoegawa Paper Co Ltd 光学積層体、偏光板および表示装置
JP2012234164A (ja) * 2011-04-22 2012-11-29 Nitto Denko Corp 光学積層体
CN104204874B (zh) * 2012-03-05 2017-05-17 日本瑞翁株式会社 相位差板的制造方法
CN104956243B (zh) * 2013-02-04 2017-07-28 日本瑞翁株式会社 叠层相位差膜及其制造方法
CN106033158B (zh) * 2015-03-12 2020-01-14 迪睿合电子材料有限公司 相位差元件、液晶显示装置以及投影型图像显示装置
TW201702056A (zh) * 2015-03-31 2017-01-16 巴川製紙所股份有限公司 異方性光學膜之製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012226996A (ja) * 2011-04-20 2012-11-15 Nippon Zeon Co Ltd 有機el表示装置
WO2013161894A1 (ja) * 2012-04-25 2013-10-31 コニカミノルタ株式会社 ガスバリア性フィルム、電子デバイス用基板および電子デバイス
WO2016167341A1 (ja) * 2015-04-17 2016-10-20 株式会社カネカ 位相差フィルム及びその利用

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021092685A (ja) * 2019-12-11 2021-06-17 住友化学株式会社 光学積層体、その製造方法、液晶パネルおよび液晶表示装置

Also Published As

Publication number Publication date
KR20190096996A (ko) 2019-08-20
TW201833234A (zh) 2018-09-16
JP7014182B2 (ja) 2022-02-01
TWI732982B (zh) 2021-07-11
KR102510655B1 (ko) 2023-03-15
CN109863431B (zh) 2021-09-03
CN109863431A (zh) 2019-06-07
JPWO2018123772A1 (ja) 2019-10-31

Similar Documents

Publication Publication Date Title
KR101399788B1 (ko) 위상차 필름의 제조 방법, 위상차 필름, 편광판 및 액정 표시 장치
TWI589436B (zh) Retardation film laminate, manufacturing method of retardation film laminate and method of manufacturing retardation film
JP2006337569A (ja) 偏光子保護フィルムならびにそれを用いた偏光板、液晶表示装置
JP2004045893A (ja) 透明フィルム、偏光子保護フィルム、および偏光板
KR101190981B1 (ko) 내열성이 우수한 광학 이방성 필름 및 이를 포함하는 액정디스플레이 장치
JP2009086260A (ja) 位相差フィルム
CN110832365B (zh) 圆偏光板
JPWO2009069469A1 (ja) 延伸フィルム、その製造方法、及び液晶表示装置
JP2005274725A (ja) 光学積層体、光学素子及び液晶表示装置
KR101841854B1 (ko) 셀룰로오스아실레이트 필름, 편광판 및 액정 표시 장치
JP6007874B2 (ja) 偏光板保護フィルムとその製造方法、偏光板および液晶表示装置
JP6996552B2 (ja) 光学フィルム、及びそれを有する偏光板並びに表示装置
JPWO2012091009A1 (ja) 樹脂組成物、位相差フィルム、位相差フィルムの製造方法、および長尺の円偏光板
KR20160060095A (ko) 위상차 필름, 편광판 및 액정 표시 장치
JP7014182B2 (ja) 位相差フィルム、その製造方法、偏光板及び表示装置
KR20130005774A (ko) Ips 모드 액정 표시 장치용 위상차 필름 및 이를 포함하는 액정표시장치
JP2006047882A (ja) 光学積層体、偏光板、および液晶表示装置
JP2011048025A (ja) フィルム、フィルムの製造方法、偏光板および液晶表示装置
JP4433854B2 (ja) 視野角特性を向上させた光学積層体並びに該光学積層体を用いた光学素子及び液晶表示装置
WO2014157557A1 (ja) 光学フィルム、偏光板および画像表示装置
JP2022136084A (ja) 位相差フィルム及び製造方法
JP2006133328A (ja) 位相差フィルム一体型偏光板
JPH05196819A (ja) 位相差板
JP4935878B2 (ja) 光学積層体の製造方法、光学素子及び液晶表示装置
JP4940851B2 (ja) 位相差フィルムの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17886224

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018559103

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197016602

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17886224

Country of ref document: EP

Kind code of ref document: A1