WO2018113267A1 - 锂离子电池负极材料及其制备方法 - Google Patents
锂离子电池负极材料及其制备方法 Download PDFInfo
- Publication number
- WO2018113267A1 WO2018113267A1 PCT/CN2017/092317 CN2017092317W WO2018113267A1 WO 2018113267 A1 WO2018113267 A1 WO 2018113267A1 CN 2017092317 W CN2017092317 W CN 2017092317W WO 2018113267 A1 WO2018113267 A1 WO 2018113267A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- lithium ion
- negative electrode
- ion battery
- sio
- electrode material
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the invention belongs to the field of lithium ion batteries, and more particularly to a lithium ion battery anode material and a preparation method thereof, and a lithium ion battery using the anode material.
- Lithium-ion batteries have been widely used as an important new energy storage device in recent years due to their high energy density and good cycle performance.
- Most of the electrodes of commercial lithium-ion batteries use lithium transition metal oxide/graphite system. Because of the lower theoretical lithium insertion capacity of graphite in this system, it is only 372mAh/g, and only by improving the battery design structure and manufacturing process. It is difficult to increase the energy density and limit its application in the field of high energy output.
- non-carbon anode materials have attracted great attention in the field of lithium ion battery anode active materials.
- Some elements such as Al, Si, Sb, Sn, etc.
- the reversible lithium insertion capacity is much higher than that of the graphite-based negative electrode active material, wherein the silicon elemental negative electrode Due to its high theoretical capacity (4200mAh/g), low lithium insertion potential, high electrochemical reversible capacity, good safety performance and abundant resources, the material has become the focus of most attention.
- silicon monoliths will have a large volume expansion (about 400%) during the process of lithium intercalation. In the process of charge and discharge, the active material will easily pulverize and fall off, and the capacity attenuation will be severe. There are serious safety hazards in the efficiency and cycle performance of the battery.
- metal oxides Due to its ideal electrochemical stability and mechanical strength, metal oxides have been widely used as coating materials for Si or SiO in recent years, which can improve the cycle stability of materials.
- Method for preparing a metal oxide coating There are mainly atomic layer deposition methods, hydrothermal methods and solid phase reaction methods.
- the atomic layer deposition method and the hydrothermal method have high requirements on equipment, complicated operation, low yield, and are not suitable for large-scale production, and the prepared oxide coating cannot form strong chemical bonds with the silicon material, resulting in charging thereof. It is easy to fall off during the discharge cycle.
- the solid phase reaction method does not form a continuous uniform coating, which severely limits the application of such methods.
- the object of the present invention is to overcome the deficiencies of the prior art and provide a method for preparing a negative electrode material for a lithium ion battery which is simple in process, easy to operate, and suitable for large-scale production.
- the present invention provides a method for preparing a negative electrode material for a lithium ion battery, which comprises the following steps:
- the precursor is repeatedly washed with deionized water, and dried to obtain a SiO negative electrode material coated with a metal oxide.
- the mass percentage of the SiO in the reactant is 95% to 99.5%.
- the metal powder is one or more of Al, Ti, Zr, V, Mn, Fe, Cr, and Mo.
- the salt powder is one or more of KCl, NaCl, NaF, KF, CaCl 2 and MgCl 2 .
- the mass ratio of the SiO and the metal powder as the reactant to the salt powder is 1:3 to 1:10.
- the ball milling time is 2 to 6 hours.
- the inert gas is one or more of nitrogen, helium and argon.
- the mixed powder is subjected to a high temperature reaction at 800 ° C to 1000 ° C for 1 to 4 hours.
- Another object of the present invention is to provide a lithium ion battery negative electrode material having an ideal specific capacity.
- the present invention provides a lithium ion battery anode material which is obtained according to the aforementioned method for preparing a lithium ion battery anode material.
- the lithium ion battery anode material comprises SiO and a metal oxide coated with SiO, wherein the metal oxide has a thickness of 50 to 700 nm.
- Still another object of the present invention is to provide a lithium ion battery having an ideal specific capacity and cycle performance.
- the present invention provides a lithium ion battery comprising: a positive electrode, a negative electrode, a separator interposed between the positive electrode and the negative electrode, and an electrolyte, wherein the negative electrode contains the negative electrode material according to the foregoing lithium ion battery
- the lithium ion battery anode material obtained by the preparation method.
- the present invention has the following technical effects: 1) the negative electrode material of the lithium ion battery of the present invention has a high specific capacity, which can meet the demand for a high capacity lithium ion battery; 2) the negative electrode material of the lithium ion battery of the present invention The metal oxide layer is formed by the in-situ reaction of the molten salt method, and the SiO core is tightly bonded by the covalent bond, which can effectively prevent the direct contact between the SiO and the electrolyte, thereby significantly improving the first coulombic efficiency and cycle performance; 3) the present invention
- the molten salt method used in the anode material of lithium ion battery also has the advantages of simple preparation process, high yield, less impurities, easy operation, and the like, and is suitable for large-scale production.
- Example 1 is an SEM image of a negative electrode material of a lithium ion battery prepared in Example 1 of the present invention.
- Example 2 is a lithium ion half-cell made of the negative electrode material of Example 1 of the present invention and the negative electrode material of Comparative Example 1. Charge and discharge curve.
- Fig. 3 is a graph showing the cycle performance of a lithium ion half-cell made of the negative electrode material of Example 1 of the present invention and the negative electrode material of Comparative Example 1.
- the mixed powder was placed in an atmosphere furnace filled with argon gas, and heated at a rate of 5 ° C/min to 900 ° C for 2 hours to obtain a precursor;
- the precursor was naturally cooled to room temperature, washed repeatedly with deionized water to remove residual salts, and dried to obtain a SiO negative electrode material coated with a metal oxide.
- 1 is an SEM image of a negative electrode material of a lithium ion battery prepared in Example 1. It can be seen from Fig. 1 that the metal oxide is successfully coated on the surface of the SiO of the negative active material by the molten salt method, and the salt powder is completely removed by washing with deionized water, and the metal oxide coating is measured as nanoparticles, and the average thickness is measured. It is 200 nm.
- Examples 2 to 8 were basically the same as those of Example 1, and the relevant data of Examples 2 to 8 are shown in Table 1.
- the SiO negative electrode material coated with the metal oxide prepared in Example 1 and the SiO powder material coated with the metal oxide in Comparative Example 1 were tested as follows:
- the fabricated half-cell was subjected to a 0.1 C charge and discharge test to obtain a charge and discharge graph, as shown in FIG.
- the first charge and discharge capacity of Example 1 is as high as 1600 mAh/g
- the first charge and discharge capacity of Comparative Example 1 is 900 mAh/g.
- the test results show that the surface prepared by the molten salt method is coated with metal oxide.
- the lithium ion half-cell made of the SiO anode material of the material has a high specific capacity.
- FIG. 3 is a graph showing the cycle performance of a lithium ion half-cell made of a metal oxide-coated SiO negative electrode material prepared in Example 1 of the present invention and a SiO material not coated with a metal oxide in Comparative Example 1.
- the capacity of Example 1 remained above 1500 mAh/g after 100 cycles; the capacity of Comparative Example 1 dropped to 200 mAh/g after only 10 cycles.
- the test results show that the lithium ion half-cell made of SiO anode material coated with metal oxide on the surface prepared by molten salt method has higher High specific capacity and good cycle performance, metal oxide coatings significantly improve the properties of the material.
- the metal powder may be partially dissolved in the melted salt powder to react with the insoluble SiO surface to form a corresponding core-shell structure. Due to the presence of molten salt, the original solid phase reaction is converted into a solid-liquid reaction, which lowers the temperature required for the reaction and allows the resulting metal oxide to uniformly cover the SiO surface. In addition, since the metal oxide layer is formed by in-situ reaction, it is combined with SiO in a covalent bond manner, so that the two materials can be firmly bonded together, thereby effectively preventing the coating from falling off.
- the metal oxide formed in situ by the molten salt method has a nanometer size and is covalently bonded to SiO, and can be closely adhered to the rough surface of SiO, thereby protecting the SiO from direct contact with the electrolyte, and enhancing the first coulomb of the material. Efficiency and cycle stability.
- the metal is oxidized and some SiO is reduced to Si. Therefore, the reversible capacity of the anode material can be improved to some extent, and the preparation method of the anode material of the lithium ion battery of the invention is simple, no Pollution, high yield, less impurities, can be widely used in large-scale production.
- the metal powder has been described by taking Ti, Al, Zr, and V as examples, the metal powder may be Mn, Fe, Cr, Mo, or other embodiments according to the present invention. A combination of the foregoing metal powders.
- the salt powder has been described by taking KCl, NaCl, NaF as an example in the embodiment of the present invention, the salt powder may be KF, CaCl 2 , MgCl 2 or the aforementioned salt according to other embodiments of the present invention. A combination of powders.
- the lithium ion battery anode material of the present invention has a high specific capacity and can satisfy a high capacity lithium ion battery.
- the metal oxide layer of the anode material of the lithium ion battery of the invention is formed by in-situ reaction by a molten salt method, and the SiO core is tightly bonded by a covalent bond, which can effectively prevent direct contact between SiO and the electrolyte, thereby being remarkable The first coulombic efficiency and cycle performance are improved; 3)
- the molten salt method used in the anode material of the lithium ion battery of the invention has the advantages of simple preparation process, high yield, less impurities, easy operation, and the like, and can be widely applied to large-scale production.
Landscapes
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
一种锂离子电池负极材料的制备方法,其包括以下步骤:1)将SiO、金属粉末和盐粉在球磨罐中球磨并混合均匀,获得混合粉末;2)将混合粉末放入惰性气体的气氛炉中,在高温和熔盐环境下将部分SiO还原,获得前驱物;以及3)待反应结束后,用去离子水反复洗涤前驱物,干燥后获得表面包覆有金属氧化物的SiO负极材料。相对于现有技术,该锂离子电池负极材料的制备方法工艺简单、易于操作,适用于规模化生产,用制得的负极材料制成的锂离子半电池具有理想的比容量和循环性能。此外,还公开了一种锂离子电池负极材料以及锂离子电池。
Description
本发明属于锂离子电池领域,更具体地说,本发明涉及一种锂离子电池负极材料及其制备方法,以及使用负极材料的锂离子电池。
随着能源与环境问题的日益凸显,新能源产业得到了越来越多的重视。锂离子电池因其能量密度高、循环性能好等特点,近年来作为一种重要的新型储能装置得到了广泛应用。商品化的锂离子电池的电极大多采用锂过渡金属氧化物/石墨体系,由于该体系中石墨本身的理论嵌锂容量较低,仅为372mAh/g,且仅通过改进电池设计结构和制造工艺也难以提高能量密度,限制了其在高能量输出领域的应用。
近年来,非碳类负极材料在锂离子电池负极活性材料领域中引起了极大的关注。一些元素(如Al、Si、Sb、Sn等)可以通过与金属锂发生合金化反应从而具有储存锂离子的能力,其可逆的嵌锂容量远高于石墨类负极活性材料,其中,硅单质负极材料由于具有很高的理论容量(4200mAh/g)、嵌锂电位低、电化学可逆容量高、安全性能好、资源丰富等优势,成为最受关注的焦点。但是,与其他合金类负极材料一样,硅单质在嵌锂的过程中会产生巨大的体积膨胀(约为400%),在充放电过程中容易导致活性材料的粉化脱落,容量衰减严重,降低了电池的效率和循环性能,存在着严重的安全隐患。
尽管SiO的容量低于硅单质(2600mAh/g),但是其嵌锂时的低膨胀率(约200%)与低成本仍然使其成为理想的负极材料。为了进一步抑制其体积膨胀从而提升循环稳定性,业界尝试了多种方案,其中,材料包覆被认为是一种可有效提升SiO循环稳定性的方法。
金属氧化物因具有理想的电化学稳定性和机械强度,近年来被广泛用作Si或SiO的包覆材料,能够提升材料的循环稳定性。制备金属氧化物涂层的方法
主要有原子层沉积法、水热法和固相反应法等。但是,原子层沉积法和水热法对设备要求高,操作复杂,产率低,不适合于规模化生产,而且、制备出的氧化物涂层无法与硅材料形成强化学键,导致其在充放电循环过程中容易脱落。固相反应方法则无法形成连续均匀的涂层,严重限制了此类方法的应用。
有鉴于此,确有必要提供一种工艺简单、易于操作,适用于规模化生产的锂离子电池负极材料的制备方法。
发明内容
本发明的目的在于:克服现有技术的不足,提供一种工艺简单、易于操作,适用于规模化生产的锂离子电池负极材料的制备方法。
为了实现上述发明目的,本发明提供了一种锂离子电池负极材料的制备方法,其包括以下步骤:
1)将SiO、金属粉末和盐粉在球磨罐中球磨并混合均匀,获得混合粉末;
2)将混合粉末放入惰性气体的气氛炉中,在高温和熔盐环境下将部分SiO还原,获得前驱物;以及
3)待反应结束后,用去离子水反复洗涤前驱物,干燥后获得表面包覆有金属氧化物的SiO负极材料。
作为本发明锂离子电池负极材料的制备方法的一种改进,所述SiO在反应物中的质量百分含量为95%~99.5%。
作为本发明锂离子电池负极材料的制备方法的一种改进,所述金属粉末为Al、Ti、Zr、V、Mn、Fe、Cr、Mo中的一种或几种。
作为本发明锂离子电池负极材料的制备方法的一种改进,步骤1)中,所述盐粉为KCl、NaCl、NaF、KF、CaCl2、MgCl2中的一种或几种。
作为本发明锂离子电池负极材料的制备方法的一种改进,步骤1)中,所述SiO、金属粉末作为反应物与盐粉的质量比为1:3~1:10。
作为本发明锂离子电池负极材料的制备方法的一种改进,步骤1)中,球磨时间为2~6小时。
作为本发明锂离子电池负极材料的制备方法的一种改进,步骤2)中,所述惰性气体为氮气、氦气、氩气中的一种或几种。
作为本发明锂离子电池负极材料的制备方法的一种改进,步骤2)中,所述混合粉末在800℃至1000℃下高温反应1至4小时。
本发明的另一个目的在于:提供一种具有理想比容量的锂离子电池负极材料。
为了实现上述发明目的,本发明提供了一种锂离子电池负极材料,其根据前述锂离子电池负极材料的制备方法获得。
作为本发明锂离子电池负极材料的一种改进,所述锂离子电池负极材料包括SiO和包覆SiO的金属氧化物,其中,金属氧化物的厚度为50~700纳米。
本发明的再一个发明目的在于:提供一种具有理想比容量和循环性能的锂离子电池。
为了实现上述发明目的,本发明提供了一种锂离子电池,其包括:正极、负极、间隔于正极和负极之间的隔离膜,以及电解液,其中,负极含有根据前述锂离子电池负极材料的制备方法获得的锂离子电池负极材料。
相对于现有技术,本发明具有以下技术效果:1)本发明锂离子电池负极材料具有较高的比容量,可以满足对高容量锂离子电池的需求;2)本发明锂离子电池负极材料的金属氧化物层由熔盐法原位反应生成,其与SiO核通过共价键紧密结合,可以有效阻止SiO与电解液的直接接触,从而显著提升其首次库伦效率与循环性能;3)本发明锂离子电池负极材料所采用的熔盐法还具有制备工艺简单,产率高、杂质少、易于操作等优点,适用于规模化生产。
下面结合说明书附图和具体实施方式,对本发明锂离子电池负极材料及其制备方法进行详细说明,其中:
图1为本发明实施例1制备的锂离子电池负极材料的SEM图。
图2为本发明实施例1负极材料和对比例1负极材料制成的锂离子半电池
的充放电曲线图。
图3为本发明实施例1负极材料和对比例1负极材料制成的锂离子半电池的循环性能曲线图。
为了使本发明的发明目的、技术方案及其有益技术效果更加清晰,以下结合附图和具体实施方式,对本发明进行进一步详细说明。应当理解的是,本说明书中描述的具体实施方式仅仅是为了解释本发明,并非为了限定本发明。
实施例1
称取30克经过破碎筛选好的SiO粉末、一定量的金属Ti粉末和KCl粉末(SiO在反应物中的质量百分比为97%,SiO、金属Ti粉末作为反应物与KCl粉末质量比为1:5)于球磨罐中,球磨4小时,得到均匀的混合粉末;
将混合粉末放入充满氩气的气氛炉中,以5℃/min的速度升温到900℃烘焙2小时,得到前驱物;
反应结束后,将前驱物自然冷却到室温,用去离子水反复洗涤,去除残余的盐,干燥后获得表面包覆有金属氧化物的SiO负极材料。图1是实施例1所制备的锂离子电池负极材料的SEM图。从图1中可以看出,通过熔盐法,金属氧化物成功包覆在负极活性材料SiO表面,盐粉通过去离子水洗后全部被除去,测得金属氧化物涂层为纳米颗粒,平均厚度为200nm。
实施例2~8的步骤与实施例1基本相同,实施例2~8的相关数据如表1所示。
对比例1
与实施例不同,没有加入金属粉末和盐粉与SiO进行反应,直接称取经过破碎筛选好的SiO粉末材料进行使用,不做任何其他处理。
表1、实施例1~8与对比例1反应条件和金属氧化物层相关数据对比表
对实施例1制得的表面包覆有金属氧化物的SiO负极材料和对比例1未包覆有金属氧化物的SiO粉末材料进行测试如下:
将实施例1所制得的表面包覆有金属氧化物的SiO负极材料和对比例1未包覆有金属氧化物的SiO粉末材料分别与炭黑(Super P)和CMC粘结剂按质量比88:2:10混合配成浆料,然后均匀涂敷在铜箔集流体上并分别与金属锂片组成电池的两极,采用进口聚丙烯微孔膜(Celgard 2400)作为隔离膜,采用1mol/L LiPF6/碳酸乙烯酯(EC)+碳酸二甲酯(DMC)(体积比1:1)为电解液,在氩气保护的手套箱内组装成半电池。将制成的半电池进行0.1C充放电测试,得到充放电曲线图,如图2所示。从图2可知,实施例1的首次充放电容量较高,达到1600mAh/g,对比例1的首次充放电容量为900mAh/g,测试结果表明,采用熔盐法制得的表面包覆有金属氧化物的SiO负极材料制成的锂离子半电池具有较高的比容量。
图3为本发明实施例1制得的表面包覆有金属氧化物的SiO负极材料和对比例1未包覆有金属氧化物的SiO材料制成的锂离子半电池的循环性能曲线图。从图3可知,实施例1经过100周循环之后容量仍保持在1500mAh/g以上;对比例1仅经过10周循环之后容量就下降到200mAh/g。测试结果表明,采用熔盐法制得的表面包覆有金属氧化物的SiO负极材料制成的锂离子半电池具有较
高的比容量和良好的循环性能,金属氧化物涂层显著提升了材料的性能。
需要说明的是,在反应过程中,金属粉末可以部分溶解在融化的盐粉中与不溶解的SiO表面反应形成相应的核壳结构。由于熔盐的存在,原本的固相反应转变成了固--液反应,降低了反应所需的温度,并使生成的金属氧化物可以均匀的覆盖在SiO表面。此外,由于金属氧化物层为原位反应生成,其与SiO以共价键的方式结合,可以使两种材料牢固的结合在一起,有效避免了涂层脱落。由熔盐法原位生成的金属氧化物具有纳米级尺寸并且与SiO以共价键结合,可以紧密的粘附在SiO粗糙的表面,从而保护SiO不与电解液直接接触,提升材料的首次库伦效率与循环稳定性。在反应过程中,金属被氧化的同时也会导致部分SiO被还原为Si,因此,可以在一定程度上提升负极材料整体的可逆容量,而且本发明锂离子电池负极材料的制备方法工艺简单,无污染,产率高,含杂质少,可广泛适用于规模化生产。
可以理解的是,虽然本说明书中仅以Ti、Al、Zr、V为例对金属粉末进行了说明,但是,根据本发明的其他实施例,金属粉末也可以是Mn、Fe、Cr、Mo或前述金属粉末的组合。此外,虽然本发明的实施例中仅以KCl、NaCl、NaF为例对盐粉进行了说明,但是,根据本发明的其他实施例,盐粉也可以是KF、CaCl2、MgCl2或前述盐粉的组合。
结合以上对本发明实施例的详细描述和分析可知,相对于现有技术,本发明具有以下技术效果:1)本发明锂离子电池负极材料具有较高的比容量,可以满足对高容量锂离子电池的需求;2)本发明锂离子电池负极材料的金属氧化物层由熔盐法原位反应生成,其与SiO核通过共价键紧密结合,可以有效阻止SiO与电解液的直接接触,从而显著提升其首次库伦效率与循环性能;3)本发明锂离子电池负极材料所采用的熔盐法还具有制备工艺简单,产率高、杂质少、易于操作等优点,可广泛适用于规模化生产。
根据上述说明书的揭示和指导,本发明所属技术领域的技术人员还可以对上述实施方式进行适当的变更和修改。因此,本发明并不局限于上面揭示和描
述的具体实施方式,对本发明的一些修改和变更也应当落入本发明的权利要求的保护范围内。此外,尽管本说明书中使用了一些特定的术语,但这些术语只是为了方便说明,并不对本发明构成任何限制。
Claims (11)
- 一种锂离子电池负极材料的制备方法,其特征在于,包括以下步骤:1)将SiO、金属粉末和盐粉在球磨罐中球磨并混合均匀,获得混合粉末;2)将混合粉末放入惰性气体的气氛炉中,在高温和熔盐环境下将部分SiO还原,获得前驱物;以及3)待反应结束后,用去离子水反复洗涤前驱物,干燥后获得表面包覆有金属氧化物的SiO负极材料。
- 根据权利要求1所述的制备方法,其特征在于,所述SiO在反应物中的质量百分含量为95%~99.5%。
- 根据权利要求1所述的制备方法,其特征在于,步骤1)中,所述金属粉末为Al、Ti、Zr、V、Mn、Fe、Cr、Mo中的一种或几种。
- 根据权利要求1所述的制备方法,其特征在于,步骤1)中,所述盐粉为KCl、NaCl、NaF、KF、CaCl2、MgCl2中的一种或几种。
- 根据权利要求1所述的制备方法,其特征在于,步骤1)中,所述SiO、金属粉末作为反应物与盐粉的质量比为1:3~1:10。
- 根据权利要求1所述的制备方法,其特征在于,步骤1)中,球磨时间为2~6小时。
- 根据权利要求1所述的制备方法,其特征在于,步骤2)中,所述惰性气体为氮气、氦气、氩气中的一种或几种。
- 根据权利要求1所述的制备方法,其特征在于,步骤2)中,所述混合粉末在800℃至1000℃下高温反应1至4小时。
- 一种锂离子电池负极材料,其特征在于,所述锂离子电池负极材料根据权利要求1~8中任意一项所述的制备方法制备。
- 根据权利要求9所述的锂离子电池负极材料,其特征在于,所述锂离子电池负极材料包括SiO和包覆SiO的金属氧化物,金属氧化物的厚度为50~700纳米。
- 一种锂离子电池,其包括:正极、负极、间隔于正极和负极之间的隔离 膜,以及电解液,其特征在于,所述负极含有权利要求9或10所述的锂离子电池负极材料。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201611192779 | 2016-12-21 | ||
CN201611192779.7 | 2016-12-21 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018113267A1 true WO2018113267A1 (zh) | 2018-06-28 |
Family
ID=62624333
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2017/092317 WO2018113267A1 (zh) | 2016-12-21 | 2017-07-09 | 锂离子电池负极材料及其制备方法 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2018113267A1 (zh) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111900348A (zh) * | 2020-07-14 | 2020-11-06 | 中国科学院山西煤炭化学研究所 | 一种基于球磨法制备硅碳复合材料的方法及其应用 |
CN112209390A (zh) * | 2020-10-13 | 2021-01-12 | 江西壹金新能源科技有限公司 | 一种制备锂离子电池负极材料的高温装置及其制备方法 |
CN114649532A (zh) * | 2022-03-10 | 2022-06-21 | 中国地质大学(武汉) | 鸟巢状CuS-Zn锂离子电池负极材料及其制备方法 |
CN114804118A (zh) * | 2021-01-29 | 2022-07-29 | 中国科学技术大学 | 一种改性氧化亚硅材料及其制备方法,以及锂离子电池 |
CN117438554A (zh) * | 2023-10-11 | 2024-01-23 | 银硅(宁波)科技有限公司 | 一种高首效氧化亚硅负极材料及其制备方法 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101662013A (zh) * | 2008-08-26 | 2010-03-03 | 信越化学工业株式会社 | 非水电解质二次电池、负电极、负电极材料、和Si-O-Al复合物的制备 |
CN102054983A (zh) * | 2009-10-28 | 2011-05-11 | 信越化学工业株式会社 | 非水电解质二次电池用负极材料及制法及锂离子二次电池 |
US20140057176A1 (en) * | 2012-08-23 | 2014-02-27 | Samsung Sdi Co., Ltd. | Silicon-based negative active material, preparing method of preparing same and rechargeable lithium battery including same |
CN104617278A (zh) * | 2013-11-04 | 2015-05-13 | 北京有色金属研究总院 | 一种纳米硅金属复合材料及其制备方法 |
CN104671247A (zh) * | 2015-02-11 | 2015-06-03 | 武汉科技大学 | 一种以含硅生物质为原料制备超细纳米硅的方法以及所制备得到的超细纳米硅及其应用 |
CN105084365A (zh) * | 2015-07-17 | 2015-11-25 | 中国科学技术大学 | 一种硅纳米材料的制备方法及应用 |
KR101586816B1 (ko) * | 2015-06-15 | 2016-01-20 | 대주전자재료 주식회사 | 비수전해질 이차전지용 음극재, 이의 제조방법, 및 이를 포함하는 비수전해질 이차전지 |
-
2017
- 2017-07-09 WO PCT/CN2017/092317 patent/WO2018113267A1/zh active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101662013A (zh) * | 2008-08-26 | 2010-03-03 | 信越化学工业株式会社 | 非水电解质二次电池、负电极、负电极材料、和Si-O-Al复合物的制备 |
CN102054983A (zh) * | 2009-10-28 | 2011-05-11 | 信越化学工业株式会社 | 非水电解质二次电池用负极材料及制法及锂离子二次电池 |
US20140057176A1 (en) * | 2012-08-23 | 2014-02-27 | Samsung Sdi Co., Ltd. | Silicon-based negative active material, preparing method of preparing same and rechargeable lithium battery including same |
CN104617278A (zh) * | 2013-11-04 | 2015-05-13 | 北京有色金属研究总院 | 一种纳米硅金属复合材料及其制备方法 |
CN104671247A (zh) * | 2015-02-11 | 2015-06-03 | 武汉科技大学 | 一种以含硅生物质为原料制备超细纳米硅的方法以及所制备得到的超细纳米硅及其应用 |
KR101586816B1 (ko) * | 2015-06-15 | 2016-01-20 | 대주전자재료 주식회사 | 비수전해질 이차전지용 음극재, 이의 제조방법, 및 이를 포함하는 비수전해질 이차전지 |
CN105084365A (zh) * | 2015-07-17 | 2015-11-25 | 中国科学技术大学 | 一种硅纳米材料的制备方法及应用 |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111900348A (zh) * | 2020-07-14 | 2020-11-06 | 中国科学院山西煤炭化学研究所 | 一种基于球磨法制备硅碳复合材料的方法及其应用 |
CN111900348B (zh) * | 2020-07-14 | 2021-10-22 | 中国科学院山西煤炭化学研究所 | 一种基于球磨法制备硅碳复合材料的方法及其应用 |
CN112209390A (zh) * | 2020-10-13 | 2021-01-12 | 江西壹金新能源科技有限公司 | 一种制备锂离子电池负极材料的高温装置及其制备方法 |
CN112209390B (zh) * | 2020-10-13 | 2022-07-29 | 江西壹金新能源科技有限公司 | 一种制备锂离子电池负极材料的高温装置及其制备方法 |
CN114804118A (zh) * | 2021-01-29 | 2022-07-29 | 中国科学技术大学 | 一种改性氧化亚硅材料及其制备方法,以及锂离子电池 |
CN114804118B (zh) * | 2021-01-29 | 2023-08-29 | 中国科学技术大学 | 一种改性氧化亚硅材料及其制备方法,以及锂离子电池 |
CN114649532A (zh) * | 2022-03-10 | 2022-06-21 | 中国地质大学(武汉) | 鸟巢状CuS-Zn锂离子电池负极材料及其制备方法 |
CN114649532B (zh) * | 2022-03-10 | 2024-04-02 | 中国地质大学(武汉) | 鸟巢状CuS-Zn锂离子电池负极材料及其制备方法 |
CN117438554A (zh) * | 2023-10-11 | 2024-01-23 | 银硅(宁波)科技有限公司 | 一种高首效氧化亚硅负极材料及其制备方法 |
CN117438554B (zh) * | 2023-10-11 | 2024-04-23 | 银硅(宁波)科技有限公司 | 一种高首效氧化亚硅负极材料及其制备方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR20220092556A (ko) | 전지를 위한 음극활물질 및 그 제조 방법, 전지 음극, 전지 | |
WO2018113267A1 (zh) | 锂离子电池负极材料及其制备方法 | |
JP2022518585A (ja) | シリコン複合物負極材料、その調製方法及びリチウムイオン電池 | |
CN108346788B (zh) | 一种碳包覆硅铁合金复合负极材料的制备方法 | |
CN105870410B (zh) | 一种锂离子电池用碳硅复合材料及其制备方法和应用 | |
WO2019080346A1 (zh) | 一种空间缓冲、掺杂锂的硅氧化物复合材料及其制备方法、锂离子电池 | |
CN111048770B (zh) | 一种三元掺杂的硅基复合材料及其制备方法和应用 | |
WO2021083197A1 (zh) | 硅氧复合负极材料及其制备方法和锂离子电池 | |
KR101531451B1 (ko) | 리튬 이온 이차 전지 음극재용 분말, 리튬 이온 이차 전지 음극 및 캐패시터 음극, 및, 리튬 이온 이차 전지 및 캐패시터 | |
WO2022016951A1 (zh) | 硅基负极材料、负极和锂离子电池及其制备方法 | |
CN111554909B (zh) | 含金属掺杂硅基复合材料的负极材料、制备方法和锂电池 | |
WO2020063106A1 (zh) | 一种锂离子二次电池负极材料及其制备方法和应用 | |
CN112652742B (zh) | 硅碳复合材料及其制备方法和应用 | |
WO2022002057A1 (zh) | 硅氧复合负极材料、负极和锂离子电池及其制备方法 | |
CN103165874A (zh) | 一种锂离子电池多孔硅负极材料及其制备方法和用途 | |
CN111146410B (zh) | 负极活性材料及电池 | |
Gan et al. | Polymeric carbon encapsulated Si nanoparticles from waste Si as a battery anode with enhanced electrochemical properties | |
CN113130858B (zh) | 硅基负极材料及其制备方法、电池和终端 | |
CN113422037B (zh) | 原位转化构筑含磷酸锂包覆层的硅基复合材料及制备方法 | |
CN110550635B (zh) | 一种新型的碳包覆硅氧负极材料的制备方法 | |
CN112736232A (zh) | 硅碳复合材料及其制备方法、负极片和锂离子二次电池 | |
Chen et al. | Pb-sandwiched nanoparticles as anode material for lithium-ion batteries | |
CN116014104A (zh) | 富锂镍系正极材料及其制备方法、正极片与二次电池 | |
CN109942001B (zh) | 一种球形刺状结构的硅负极材料及其制备方法 | |
WO2023016047A1 (zh) | 负极材料及其制备方法、锂离子电池 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17883784 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17883784 Country of ref document: EP Kind code of ref document: A1 |