WO2018110955A1 - 상시 전원 공급을 위한 병렬 회로를 이용하여 배터리의 릴레이의 고장을 진단하는 장치 및 방법 - Google Patents

상시 전원 공급을 위한 병렬 회로를 이용하여 배터리의 릴레이의 고장을 진단하는 장치 및 방법 Download PDF

Info

Publication number
WO2018110955A1
WO2018110955A1 PCT/KR2017/014589 KR2017014589W WO2018110955A1 WO 2018110955 A1 WO2018110955 A1 WO 2018110955A1 KR 2017014589 W KR2017014589 W KR 2017014589W WO 2018110955 A1 WO2018110955 A1 WO 2018110955A1
Authority
WO
WIPO (PCT)
Prior art keywords
current
state
parallel
battery
relay
Prior art date
Application number
PCT/KR2017/014589
Other languages
English (en)
French (fr)
Inventor
박종일
길유섭
안선모
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to US16/094,175 priority Critical patent/US10753975B2/en
Priority to PL17880124.7T priority patent/PL3444624T3/pl
Priority to EP17880124.7A priority patent/EP3444624B1/en
Priority to CN201780029619.7A priority patent/CN109154634B/zh
Priority to JP2018559784A priority patent/JP6671512B2/ja
Publication of WO2018110955A1 publication Critical patent/WO2018110955A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/327Testing of circuit interrupters, switches or circuit-breakers
    • G01R31/3277Testing of circuit interrupters, switches or circuit-breakers of low voltage devices, e.g. domestic or industrial devices, such as motor protections, relays, rotation switches
    • G01R31/3278Testing of circuit interrupters, switches or circuit-breakers of low voltage devices, e.g. domestic or industrial devices, such as motor protections, relays, rotation switches of relays, solenoids or reed switches
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/165Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values
    • G01R19/16533Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values characterised by the application
    • G01R19/16538Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values characterised by the application in AC or DC supplies
    • G01R19/16542Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values characterised by the application in AC or DC supplies for batteries
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0068Battery or charger load switching, e.g. concurrent charging and load supply
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/396Acquisition or processing of data for testing or for monitoring individual cells or groups of cells within a battery
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/482Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane

Definitions

  • the present invention relates to a failure diagnosis technology of a relay, and more particularly, to an apparatus and method for diagnosing a failure of a relay of a battery while continuously supplying power of a battery through a parallel circuit to a battery requiring the power supply. will be.
  • 12V LISB batteries are differentiated from 12V lead acid batteries and high voltage batteries.
  • 12V lead acid batteries the long-term use ensures safety and there are no relays in the battery system to prevent this.
  • 12V LISB batteries the development is still immature and the risk still exists and a relay exists to block the risk.
  • the 12V LISB battery is a low voltage battery, and is differentiated from the conventional high voltage battery in that it is always supplied to the ECU after being mounted in the vehicle.
  • a 12V LISB battery (hereinafter referred to as "12V battery”) must always supply power to the vehicle side.
  • 12V battery When the power supply of the 12V battery is cut off while driving, a dangerous situation occurs in which the driving of the vehicle is stopped and electrical operation such as steering wheel operation and brake operation is stopped.
  • the 12V battery When the 12V battery is powered off, the ECU system in the vehicle is reset. That is, even if the power supply is cut off even when the ECU system is off, the ECU system is reset to delete the vehicle information (eg, car seat position storage information, radio frequency information, mileage information, and other user-stored information). . Therefore, the opening of the relay should only occur in pre-designed situations such as vehicle maintenance, explosion protection of 12V batteries, and the like. In other words, if a dangerous situation such as a battery explosion is detected, the relay must be opened.
  • An object of the present invention is to provide an apparatus and a method for detecting the same.
  • the parking state is sensed and the failure of the switch of the relay is detected while the battery power is applied to the vehicle through the parallel circuit.
  • an apparatus for diagnosing a failure of a relay requiring constant power output of a battery may be controlled to a first state in a closed state of a relay unit and an open state of a parallel unit, and in the first state. If the voltage and current of the parallel part are zero, the control unit is controlled to a closed state of the relay part and a second state of the closed part of the parallel part, and if the voltage of the parallel part is equal to the voltage of the battery and the current of the parallel part is 0 in the second state, When the current of the parallel part is equal to the current of the relay part, the switch of the relay part is judged to be normal. If the current of the parallel part is 0, the switch of the relay part is controlled.
  • a control unit for determining a failure A relay unit which switches a switch to an open or closed state under control of the controller, and a current of the battery flows to supply power in the closed state; A parallel unit for switching a switch to an open or closed state under control of the controller, and applying a current of the battery in a closed state instead of the relay unit in an open state in which the supply of power is stopped; A parallel unit voltage sensing unit configured to sense a voltage of the parallel unit and output the same to the controller; And a parallel part current sensing unit configured to sense a current of the parallel part and output it to the controller.
  • the apparatus may further include a battery current sensing unit configured to sense a current of a battery and output the same to the controller, and the controller may control to the second state when it is determined that the current of the battery input in the first state is less than or equal to the set current. It is characterized by determining whether or not.
  • the device is a battery management system (BMS) device of a vehicle battery, and the controller determines that the vehicle is in a parking state when the current of the input battery is less than or equal to the set current, and determines whether to control to the second state.
  • BMS battery management system
  • the control unit controls the relay unit in a closed state in order to maintain a constant power supply of a battery, and controls the relay unit in an open state in a state in which the parallel unit is controlled in a closed state if necessary.
  • the controller determines that the current of the parallel part is not zero in the controlled second state, the controller determines that the switch of the relay is a failure of the permanently open state.
  • the apparatus may further include a battery voltage sensing unit configured to sense a voltage of a battery and output the same to the controller, wherein the controller is configured to control the voltage of the parallel unit to be equal to the voltage of the battery in a controlled second state. If the current is 0, it is determined that the second state is normal.
  • a battery voltage sensing unit configured to sense a voltage of a battery and output the same to the controller, wherein the controller is configured to control the voltage of the parallel unit to be equal to the voltage of the battery in a controlled second state. If the current is 0, it is determined that the second state is normal.
  • the controller in the controlled third state, receives the voltage and the current of the parallel part, and determines that the third state is normal when the voltage of the parallel part is equal to the voltage of the battery and the current of the parallel part is equal to the current of the battery. .
  • the controller determines that the switch of the relay is a failure of the permanently closed state.
  • the apparatus further includes a diode portion connected to the parallel portion to prevent reverse voltage, and a current output from the parallel portion flows through the diode portion.
  • a BMS apparatus for diagnosing a failure of a relay requiring a constant power output of a battery, the BMS apparatus comprising: controlling to a first state of a closed state of a relay circuit and an open state of a parallel circuit, wherein the parallel circuit in a first state If the voltage and current of 0 are 0, control is performed to the closed state of the relay circuit and the second state, which is the closed state of the parallel circuit, and if the voltage of the parallel circuit is equal to the battery voltage and the current of the parallel circuit is 0 in the second state,
  • the control circuit is controlled to a third state which is an open state of the relay circuit and a closed state of the parallel circuit, and the current of the parallel circuit is equal to the current of the relay circuit in the third state, the switch of the relay circuit is judged to be normal, and A controller for determining a switch of the relay circuit as a failure when the current is 0; A relay circuit for switching the switch to an open or closed state under the control of the controller, and flowing a current of
  • a voltage sensing circuit connected to an output terminal of the parallel circuit and sensing a voltage of the parallel circuit and outputting the voltage to the controller; And a current sensing circuit connected to an output terminal of the parallel circuit and sensing the current of the parallel circuit and outputting the current to the controller.
  • a method for diagnosing a failure of a relay in which a device requires a constant power output of a battery includes: controlling a first state in which a switch of a relay circuit is closed and a switch of a parallel circuit is open; If the voltage and current of the parallel circuit sensed in the controlled first state are zero, determining the first state as normal; If it is determined that the first state is normal, controlling the second state to a closed state of the relay circuit and a closed state of the parallel circuit; If the voltage of the parallel circuit sensed in the controlled second state is equal to the battery voltage and the current of the parallel circuit is zero, determining the second state as normal; If it is determined that the second state is normal, controlling to a third state which is an open state of a relay circuit and a closed state of a parallel circuit; If the current of the parallel circuit sensed in the controlled third state is equal to the current of the relay circuit, determining the switch of the relay circuit is normal; And determining that the switch of the relay circuit is a failure when the current of the
  • the parallel circuit can protect the battery and the vehicle by diagnosing a failure of the relay while ensuring the battery power supply in the parking state in which the vehicle is in the idle state with respect to the battery that is always required to supply power to the vehicle side.
  • diagnosing the failure of the relay switch prevents damage to the vehicle and the driver by operating the vehicle without knowing the fusion state in which the relay switch is not open, and by not opening the relay in the event of a battery explosion. have.
  • FIG. 1 is a schematic structural diagram of an apparatus according to an embodiment of the present invention.
  • FIG. 2 is a schematic internal configuration diagram of a BMS device corresponding to the device of FIG. 1.
  • 3 to 5 are schematic flowcharts of a relay diagnosis method according to an embodiment of the present invention.
  • FIG. 1 is a schematic structural diagram of an apparatus 130 according to an embodiment of the present invention.
  • the parallel unit includes a voltage sensing unit 135, a parallel unit current sensing unit 136, a diode unit 137, and a controller 138.
  • the battery 101 is a battery requiring constant power supply.
  • the battery 101 is a 12V LISB battery that is mounted on the vehicle 151 and supplies power to the ECU system of the vehicle 151 at all times. Since the battery 151 is mounted in the vehicle 151, the battery 151 always supplies power to the vehicle 151 even when the ECU 151 is powered off, as well as driving and parking of the vehicle 151.
  • the modules of the battery can be combined and extended to 24V, 36V, 48V, etc.
  • the controller 138 controls the constant power supply of the battery 101.
  • the device 130 may be implemented as a BMS device that manages charging and discharging of a battery.
  • the controller 138 is connected to the components 131 to 137 and transmits and receives various signals and data to manage and control operations and functions of the components 131 to 137.
  • the controller 138 controls the relay unit 133 in a closed state so that the battery 101 can continuously supply power to the vehicle 151.
  • the relay unit 133 receives the control signal in the closed state from the control unit 138, the relay unit 133 switches the relay switch to the on state.
  • the relay unit 133 controlled in the closed state provides a path through which the current output from the battery 101 flows to the vehicle 151. That is, the current output from the battery 101 is applied to flow to the vehicle 151 side through the relay unit 133.
  • the switch of the relay unit 133 should be turned off.
  • the control unit 138 is required to periodically diagnose the on and off operations of the relay switch.
  • the diagnostic process involves the open state of the relay unit 133 to test the off operation of the relay switch.
  • the control unit 138 controls the parallel unit 134 in a closed state in the open state of the relay unit 133 so that the vehicle 151 can always receive power from the battery 101.
  • the current output from the 101 may flow to the vehicle 151 through the parallel part 134. That is, the current output from the battery 101 flows to the vehicle 151 through a parallel path or a bypass path through the parallel unit 134 in the closed state instead of the relay unit 133 in the open state. Therefore, the controller 138 necessarily controls at least one or more of the relay unit 133 and the parallel unit 134 in a closed state to control the vehicle 151 to be constantly supplied power from the battery 101.
  • the vehicle 151 receives constant power from the battery 101.
  • various electronic devices, equipment, systems, etc. which must be constantly supplied with power from the battery 101 may be substituted for the vehicle 151.
  • a device such as a sensor device and a monitoring device, for which power supply must always be maintained is connected to the device 130 instead of the vehicle 151.
  • each component 131 will be described in detail with the assumption that the battery 101 is built in the vehicle 151 and the device 130 is a BMS that manages the charging and discharging of the battery 101.
  • FIG. 2 is a schematic internal configuration diagram of the BMS device 200 corresponding to the device 130 of FIG. 1.
  • the battery current sensing unit 131 senses a current flowing through the battery 101 and outputs the sensed current to the controller 138.
  • the battery current sensing unit 131 may be located in a circuit connected to the negative electrode of the battery 101.
  • the battery current sensing unit 131 may be implemented in the BMS device 200 as an IC circuit that senses a current of the battery 101.
  • the battery voltage sensing unit 132 senses the voltage output from the battery 101 and outputs the sensed voltage to the controller 138.
  • the battery voltage sensing unit 132 may be located in a circuit connected to the positive electrode of the battery 101.
  • the battery voltage sensing unit 132 may be implemented in the BMS device 200 as a circuit for sensing the voltage of the battery 101.
  • the relay unit 133 includes a by-stable relay switch 233 and a coil.
  • the relay unit 133 is located in a circuit connected to the positive electrode of the battery 101.
  • the relay unit 133 switches the switch 233 to a switch off or close state according to a control signal received from the controller 138.
  • the relay unit 133 in the closed state serves as a path for power supply in which the current of the battery 101 flows to the vehicle 151 side.
  • the vistable relay After applying the on signal, the vistable relay remains on even if the signal is interrupted.
  • the mono stable relay of the high voltage relay returns to the off state when the signal is interrupted after applying the on signal.
  • the parallel unit 134 includes a switch 234 (eg, a FET switch).
  • the parallel unit 134 is connected to the input terminal and the output terminal of the relay unit 133 as parallel circuits.
  • the section of the parallel circuit starts at the input terminal of the relay switch 233 and then the relay switch 233 through the parallel unit 134, the parallel unit voltage sensing unit 135, the parallel unit current sensing unit 136, and the diode unit 137. Ends at the output of The parallel unit 134 switches the switch 234 to an open or closed state according to a control signal received from the controller 138.
  • the parallel unit 134 allows the current of the battery 101 to flow to the vehicle 151 in the state where the switch 234 is closed in place of the relay unit 133 in the open state where the supply of power is stopped. Then, the current of the battery 101 flows to the vehicle 151 side through the path of the parallel circuit section.
  • the parallel unit voltage sensing unit 135 senses the voltage output from the parallel unit 134 and outputs the sensed voltage to the controller 138.
  • the parallel unit voltage sensing unit 135 may be located in the output circuit of the parallel unit 134.
  • the parallel unit voltage sensing unit 135 may be implemented in the BMS device 200 as a circuit for sensing the output voltage of the parallel unit 134.
  • the parallel unit current sensing unit 136 is output from the parallel unit 134 to sense the current flowing to the vehicle 151 side, and outputs the sensed current to the control unit 138.
  • the parallel current sensing unit 136 may be located in the output circuit of the parallel unit 134.
  • the parallel unit current sensing unit 136 may be implemented in the BMS device 200 as an IC circuit for sensing the output current of the parallel unit 134.
  • the diode unit 137 may be located in the output circuit of the parallel unit 134 to prevent reverse current and reverse voltage.
  • the current output from the parallel part 134 in the closed state flows through the diode part 137.
  • the reverse current and the reverse voltage are prevented, thereby preventing damage to the circuit components and ensuring the stability of the parallel circuit.
  • the controller 138 controls the first state corresponding to the closed state of the relay unit 133 and the open state of the parallel unit in the normal state.
  • the controller 138 periodically determines whether to start the failure of the relay switch 233 after controlling to the first state.
  • the control unit 134 may relay the current when the current of the battery 101 of the first state output from the battery current sensing unit 131 is less than or equal to the set current.
  • the process of diagnosing the failure of the switch 233 is started.
  • the controller 138 determines whether a condition equal to or less than a set current is satisfied every set period (for example, 60 seconds).
  • the set current for determining the parking state is set in the BMS device 200 in response to constraints such as a vehicle model, a manufacturer, a battery, and the like.
  • the controller 138 starts the determination of the first state. First, when the voltage and current output from the parallel unit voltage sensing unit 135 and the parallel unit current sensing unit 136 are 0, the controller 138 determines the first state as a normal state and closes the relay unit 133. The state and the second state which is the closed state of the parallel part 134 are controlled. In the first state, since the current of the battery 101 flows to the vehicle 151 through the relay unit 133, the voltage and current sensed at the output terminal of the parallel unit 134 should be almost zero, so that the first state is normal. Judging.
  • the control unit 138 outputs the close control signal to the parallel unit 134 under the control of the second state, and the parallel unit 134 switches the switch 234 to the closed state according to the received control signal.
  • the relay unit 133 In the second state, the relay unit 133 is maintained in the closed state, and the parallel unit 134 is switched to the closed state.
  • the controller 138 In the second state, the controller 138 outputs the voltage of the parallel unit 134 from the parallel unit voltage sensing unit 135, and receives the current of the parallel unit 134 from the parallel unit current sensing unit 136. If the output voltage is equal to the voltage of the battery of which the output voltage is greater than zero, and the output current is zero, the controller 138 determines the second state as a normal state and controls the third state.
  • the controller 138 receives a voltage of the parallel part (battery voltage) greater than 0 from the parallel part voltage sensing part 135.
  • the voltage sensed by the parallel unit voltage sensing unit 135 is the same as the voltage sensed by the battery voltage sensing unit 132.
  • the resistance of the relay unit 133 is smaller than the resistance of the parallel unit 134 so that the current of the battery 101 flows through the relay unit 133, the current sensed through the parallel unit current sensing unit 136 is 0. If the current sensed through the parallel unit current sensing unit 136 is not 0, the controller 138 flows a current through the parallel unit 134 so that the relay switch 233 is closed as a failure of the permanently open state. We believe it is impossible to switch to
  • the controller 138 outputs an open control signal to the relay unit 133 according to the control of the third state, and the relay unit 133 switches the switch 233 to the open state according to the received control signal.
  • the relay unit 133 is switched to the open state, and the parallel unit 134 is maintained in the closed state.
  • the controller 138 In the third state, the controller 138 outputs the voltage of the parallel unit 134 from the parallel unit voltage sensing unit 135, and receives the current of the parallel unit 134 from the parallel unit current sensing unit 136. If the output voltage of the parallel unit 134 is the same as the voltage of the battery voltage sensing unit 132, and the output current of the parallel unit 134 is the same as the current of the battery current sensing unit 131, the controller 138 may output a relay. The switch 233 determines that the third state is normal as normal.
  • the switch 234 In the third state where the steady state is determined, only the switch 234 is in the closed state, so that the current of the battery 101 flows only through the section of the parallel circuit. Therefore, the voltage sensed by the parallel voltage sensing unit 135 is the same as the voltage sensed by the battery voltage sensing unit 132. In addition, since the current of the battery 101 flows through the parallel unit 134 instead of the relay unit 133 in the open state, the current sensed through the parallel unit current sensing unit 136 is greater than zero. It is equal to the current of 131.
  • the control unit 138 does not flow the current through the parallel part 134, so that the relay switch 233 fails in the permanently closed state ( Example: relay fusion), it is determined that it is impossible to switch to the open state.
  • FIG. 3 to 5 are schematic flowcharts of a relay diagnosis method according to an embodiment of the present invention.
  • 3 is a flowchart in which the device 130 controls the first state
  • FIG. 4 is a device 130 in the second state
  • FIG. 5 is a device 130 in the third state.
  • the device 130 since the battery 101 is connected to a load device such as the vehicle 151, the device 130 is in a state in which the switch 233 of the relay is closed and the switch 234 of the parallel circuit is open. Control to the first state of (S301). Device 130 senses the output voltage and output current of the battery from the circuit of the battery (S302). In order to diagnose a failure of the relay switch 233, the device 130 determines whether the current of the sensed battery is less than or equal to the set current (S304).
  • the set current is preferably the minimum current that senses the idle state of the device.
  • the BMS device 200 constantly supplies power of the battery 101 to the vehicle 151 as the main function, the ECU system in which the minimum current is consumed in the vehicle 151 is powered off in a parking state.
  • the minimum current for judging is set in the BMS device 200.
  • the device 130 If it is determined through the device 130 that current below the set current is consumed, the device 130 starts diagnosing the switch 233. First, the device 130 determines whether the output voltage and the output current of the parallel circuit are zero (S305). If 0 is determined, the device 130 determines that the first state is normal and starts controlling the second state (S306). Since the current flows through the relay circuit and the parallel switch 234 is open in the first state, the voltage and current of the parallel circuit should be sensed to almost zero values.
  • the device 130 controls the second state so that the relay switch 233 is closed and the switch 234 of the parallel circuit is switched to the closed state (S401).
  • the device 130 senses the output voltage and the output current from the parallel circuit (S402).
  • the device 130 determines whether the sensed voltage of the parallel circuit is a battery voltage and whether the sensed current of the parallel circuit is 0 (S403).
  • the relay switch 233 and the parallel switch 234 are in a closed state, and current flows through the relay switch 233 having a small resistance. Thus, the same voltage as the battery voltage is sensed from the parallel circuit, but the sensing current must be zero. If the conditions of voltage and current are satisfied, the device 130 determines that the second state is normal (S404). If it is determined that the second state is normal, control of the third state is started.
  • the device 130 compares the current and the battery current of the parallel circuit (S405) and judges the same, it is diagnosed that the relay switch 233 is in the open state as a permanent failure state due to the battery current flowing through the parallel circuit. (S406).
  • the device 130 controls to the third state so that the relay switch 233 is switched to the open state and the switch 234 of the parallel circuit is kept in the closed state (S501).
  • the device 130 senses the output voltage and the output current from the parallel circuit (S502).
  • the device 130 determines whether the sensed voltage of the parallel circuit is a battery voltage and whether the sensed current of the parallel circuit is a battery current (S503).
  • the third state due to the open relay switch 233, current of the battery 101 flows to the vehicle 151 through the parallel switch 234.
  • a voltage equal to the battery voltage must be sensed, and a current equal to the battery current must be sensed. If the conditions of the voltage and current are satisfied, the device 130 determines that the third state is normal (S504), and returns to control to the normal state of the first state (S507).
  • the relay switch 233 is fused. Diagnose as a permanent failure state of (S506).

Abstract

차량 측으로 상시 전원 공급이 요구되는 배터리를 상대로 병렬 회로를 이용하여 상시 전원 공급을 보장하면서 배터리의 릴레이의 고장을 진단하는 장치 및 방법이 개시된다. 본 발명의 장치는, 릴레이부의 클로즈 상태 및 병렬부의 오픈 상태인 제 1상태에서 병렬부의 전압 및 전류가 0이면, 릴레이부의 클로즈 상태 및 병렬부의 클로즈 상태인 제 2상태로 제어하고, 제 2상태에서 병렬부의 전압이 배터리의 전압과 같고 상기 병렬부의 전류가 0이면, 릴레이부의 오픈 상태 및 병렬부의 클로즈 상태인 제 3상태로 제어하고, 제 3상태에서 병렬부의 전류가 릴레이부의 전류와 같으면, 릴레이부의 스위치를 정상으로 판단하고, 병렬부의 전류가 0이면 릴레이부의 스위치를 고장으로 판단하는 제어부; 스위치의 클로즈 상태에서 전원의 공급을 위해 배터리의 전류가 흐르는 릴레이부; 및 전원의 공급이 중단되는 오픈 상태의 릴레이부를 대신하여, 클로즈 상태에서 배터리의 전류를 인가하는 병렬부를 포함하여 구성된다.

Description

상시 전원 공급을 위한 병렬 회로를 이용하여 배터리의 릴레이의 고장을 진단하는 장치 및 방법
본 출원은 2016년 12월 12일에 출원된 한국특허출원 2016-0168495호에 기초한 우선권을 주장하며, 해당 출원들의 명세서 및 도면에 개시된 모든 내용은 본 출원에 원용된다.
본 발명은 릴레이의 고장 진단 기술에 관한 것으로서, 보다 상세하게는 상기 전원 공급이 요구되는 배터리에 대해 병렬 회로를 통해 배터리의 전원을 중단없이 공급하면서 배터리의 릴레이의 고장을 진단하는 장치 및 방법에 관한 것이다.
차량에 장착된 12V LISB 배터리의 안전성을 위해 릴레이가 존재한다. 12V LISB 배터리는 12V 납축 배터리 및 고전압 배터리와 차별화된다. 12V 납축 배터리와 같은 경우, 오랜 기간 사용이 되어 안전성이 보장되어 있으며 이에 위험을 방지하는 릴레이가 배터리 시스템 내에 없다. 12V LISB 배터리 같은 경우, 개발이 아직 미숙하여 위험성이 아직 상존하고 있으며 위험성을 차단하기 위하여 relay가 존재한다. 또한, 12V LISB 배터리는 저전압 배터리로서 차량에 장착된 이후로 ECU로 상시 전원을 공급하는 점에서 종래의 고전압 배터리와 차별화된다.
특히, 전기차의 경우, 12V LISB 배터리(이하 " 12V 배터리"로 표기함)는 차량 측으로 전원을 상시 공급해야만 한다. 예를 들어, 주행 중에 12V 배터리의 전원 공급이 끊기면, 차량의 주행이 중단되고, 핸들 조작 및 브레이크 조작 등의 전기적 동작이 중단되는 위험한 상황이 발생된다. 12V 배터리의 전원 공급이 끊어지면, 차량 내 ECU 시스템이 리셋되는 현상이 발생한다. 즉, ECU 시스템이 오프인 주차 상태에서라도 전원의 공급이 끊기면 ECU 시스템이 리셋되어 차량의 정보(예 : 카시트 위치 저장 정보, 라디오 주파수 정보, 주행 거리 정보 및 기타 사용자가 저장한 정보 등)가 삭제된다. 따라서, 릴레이의 오픈은 차량 정비, 12V 배터리의 폭발 방지 등과 같이 미리 의도된 상황에서만 발생되어야 한다. 즉, 배터리의 폭발과 같은 위험 상황이 감지될 경우는 릴레이의 오픈이 반드시 요구된다.
하지만, 12V 배터리는 오랜 시간(예 : 7년 이상) 사용할 목적으로 제작되었고, 오랜 시간 사용 시 12V 배터리의 릴레이는 거의 클로즈 상태로 유지되고, 릴레이가 오픈 상태로 제어될 기회가 거의 없기 때문에 릴레이의 open/close의 정상 동작 여부를 확인할 수 없다.
본 발명은 상기와 같은 종래 기술의 인식하에 창출된 것으로서, 릴레이 오픈시 병렬 회로를 통해 배터리의 전원을 인가하여 상시 전원 공급을 유지한 상태에서, 릴레이의 스위치의 오픈 및 클로즈의 동작을 제어하여 고장을 검출하는 장치 및 방법을 제공하는 것을 목적으로 한다.
또한, 차량으로 상시 전원 공급이 요구되는 배터리에 대해, 주차 상태를 감지하여 병렬 회로를 통해 배터리의 전원을 차량 측으로 인가한 상태에서 릴레이의 스위치의 고장을 검출하는데 있다.
일 측면에 따른, 배터리의 상시 전원 출력이 요구되는 릴레이의 고장을 진단하는 장치는, 릴레이부의 클로즈(close) 상태 및 병렬부의 오픈(open) 상태인 제 1상태로 제어하고, 제 1상태에서 상기 병렬부의 전압 및 전류가 0이면, 릴레이부의 클로즈 상태 및 병렬부의 클로즈 상태인 제 2상태로 제어하고, 제 2상태에서 상기 병렬부의 전압이 배터리의 전압과 같고 상기 병렬부의 전류가 0이면, 릴레이부의 오픈 상태 및 병렬부의 클로즈 상태인 제 3상태로 제어하고, 제 3상태에서 상기 병렬부의 전류가 상기 릴레이부의 전류와 같으면 릴레이부의 스위치를 정상으로 판단하고, 상기 병렬부의 전류가 0이면 릴레이부의 스위치를 고장으로 판단하는 제어부; 상기 제어부의 제어에 의해 스위치를 오픈 또는 클로즈의 상태로 스위칭하고, 클로즈 상태에서 전원의 공급을 위해 배터리의 전류가 흐르는 릴레이부; 상기 제어부의 제어에 의해 스위치를 오픈 또는 클로즈의 상태로 스위칭하고, 상기 전원의 공급이 중단되는 오픈 상태의 상기 릴레이부를 대신하여, 클로즈 상태에서 상기 배터리의 전류를 인가하는 병렬부; 상기 병렬부의 전압을 센싱하여 상기 제어부로 출력하는 병렬부 전압 센싱부; 및 상기 병렬부의 전류를 센싱하여 상기 제어부로 출력하는 병렬부 전류 센싱부를 포함한다.
상기 장치는, 배터리의 전류를 센싱하여 상기 제어부로 출력하는 배터리 전류 센싱부를 더 포함하고, 상기 제어부는 제 1상태에서 입력받은 배터리의 전류가 설정된 전류 이하라고 판단하면, 상기 제 2상태로 제어할 것인지를 판단하는 것을 특징으로 한다.
상기 장치는 차량 배터리의 BMS(Battery Management System)장치로서, 상기 제어부는 입력받은 배터리의 전류가 설정된 전류 이하일 경우 차량이 주차 상태인 것으로 판단하고, 상기 제 2상태로 제어할 것인지를 판단한다.
상기 제어부는, 배터리의 상시 전원 공급을 유지하기 위해, 상기 릴레이부를 클로즈 상태로 제어하고, 필요시 상기 병렬부를 클로즈 상태로 제어한 상태에서 상기 릴레이부를 오픈 상태로 제어한다.
상기 제어부는, 제어된 제 2상태에서, 상기 병렬부의 전류가 0이 아닌 것을 판단하면, 상기 릴레이의 스위치가 영구 오픈 상태의 고장인 것으로 판단한다.
상기 장치는, 배터리의 전압을 센싱하여 상기 제어부로 출력하는 배터리 전압 센싱부를 더 포함하고, 상기 제어부는, 제어된 제 2상태에서, 상기 병렬부의 전압이 상기 배터리의 전압과 동일하고, 상기 병렬부의 전류가 0이면 상기 제 2상태의 정상으로 판단한다.
상기 제 2상태에서, 상기 릴레이부의 저항이 상기 병렬부의 저항보다 작아서 배터리의 전류가 상기 릴레이부를 통해 흐르기 때문에 센싱된 병렬부의 전류가 0이다.
상기 제어부는, 제어된 제 3상태에서, 병렬부의 전압 및 전류를 입력받고, 병렬부의 전압이 배터리의 전압과 동일하고, 병렬부의 전류가 배터리의 전류와 동일하면 상기 제 3상태의 정상으로 판단한다.
상기 제 3상태에서, 배터리의 전류가 오픈 상태의 릴레이부 대신에 상기 병렬부를 통해 흐르기 때문에 병렬부의 전류와 배터리의 전류가 동일하다.
상기 제어부는, 제 3상태에서 상기 병렬부의 전류와 배터리의 전류가 동일하지 않으면, 상기 릴레이의 스위치가 영구 클로즈 상태의 고장으로 판단한다.
상기 장치는, 역 전압을 방지하기 위해 상기 병렬부에 연결되는 다이오드부를 더 포함하고, 상기 병렬부로부터 출력된 전류는 상기 다이오드부를 통해 흐른다
다른 측면에 따른, 배터리의 상시 전원 출력이 요구되는 릴레이의 고장을 진단하는 BMS 장치에 있어서, 릴레이 회로의 클로즈 상태 및 병렬 회로의 오픈 상태인 제 1상태로 제어하고, 제 1상태에서 상기 병렬 회로의 전압 및 전류가 0이면, 릴레이 회로의 클로즈 상태 및 병렬 회로의 클로즈 상태인 제 2상태로 제어하고, 제 2상태에서 상기 병렬 회로의 전압이 배터리 전압과 같고 상기 병렬 회로의 전류가 0이면, 릴레이 회로의 오픈 상태 및 병렬 회로의 클로즈 상태인 제 3상태로 제어하고, 제 3상태에서 상기 병렬 회로의 전류가 릴레이 회로의 전류와 같으면, 릴레이 회로의 스위치를 정상으로 판단하고, 상기 병렬 회로의 전류가 0이면 릴레이 회로의 스위치를 고장으로 판단하는 제어부; 상기 제어부의 제어에 의해 스위치를 오픈 또는 클로즈의 상태로 스위칭하고, 클로즈 상태에서 전원의 공급을 위해 배터리의 전류가 흐르는 릴레이 회로; 상기 릴레이 회로의 입력단에 연결되고, 상기 제어부를 제어에 의해 스위치를 오픈 또는 클로즈의 상태로 스위칭하고, 상기 전원의 공급이 중단되는 상기 릴레이 회로를 대신하여, 클로즈 상태에서 상기 배터리의 전류를 인가하는 병렬 회로; 상기 병렬 회로의 출력단에 연결되고, 상기 병렬 회로의 전압을 센싱하여 상기 제어부로 출력하는 전압 센싱 회로; 및 상기 병렬 회로의 출력단에 연결되고, 상기 병렬 회로의 전류를 센싱하여 상기 제어부로 출력하는 전류 센싱 회로를 포함한다.
또 다른 측면에 따르면, 장치가 배터리의 상시 전원 출력이 요구되는 릴레이의 고장을 진단하는 방법은, 릴레이 회로의 스위치가 클로즈 상태이고 병렬 회로의 스위치가 오픈 상태인 제 1상태로 제어하는 단계; 제어된 제 1상태에서 센싱된 병렬 회로의 전압 및 전류가 0이면, 제 1상태를 정상으로 판단하는 단계; 상기 제 1상태의 정상이 판단되면, 릴레이 회로의 클로즈 상태 및 병렬 회로의 클로즈 상태인 제 2상태로 제어하는 단계; 제어된 제 2상태에서 센싱된 병렬 회로의 전압이 배터리 전압과 같고 상기 병렬 회로의 전류가 0이면, 제 2상태를 정상으로 판단하는 단계; 상기 제 2상태의 정상이 판단되면, 릴레이 회로의 오픈 상태 및 병렬 회로의 클로즈 상태인 제 3상태로 제어하는 단계; 제어된 제 3상태에서 센싱된 병렬 회로의 전류가 릴레이 회로의 전류와 같으면, 릴레이 회로의 스위치를 정상으로 판단하는 단계; 및 상기 병렬 회로의 전류가 0이면 릴레이 회로의 스위치를 고장으로 판단하는 단계를 포함한다.
본 발명의 일 측면에 따르면, 상시 전원을 공급하는 배터리에 대해 병렬 회로를 이용하여 전원의 공급을 보장한 상태에서 릴레이의 스위칭 동작을 수행하여 릴레이 스위치의 고장을 진단할 수 있다.
또한, 차량 측으로 상시 전원의 공급이 반드시 요구되는 배터리에 대해 차량의 아이들 상태인 주차 상태에서 병렬 회로는 배터리의 전원 공급을 보장하면서, 릴레이의 고장을 진단함으로써 배터리, 차량을 보호할 수 있다.
또한, 릴레이 스위치의 고장을 진단하면, 릴레이의 스위치가 오픈 불가인 융착 상태를 모른 상태에서 차량이 운행되고, 배터리 폭발의 위험 상황에서 릴레이가 오픈되지 않음으로써 차량 및 운전자에 끼지는 손해를 막을 수 있다.
본 명세서에 첨부되는 다음의 도면들은 본 발명의 바람직한 실시예를 예시하는 것이며, 후술한 발명의 상세한 설명과 함께 본 발명의 기술사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석되지 않아야 한다.
도 1은 본 발명의 일 실시예에 따른 장치의 개략적인 구성도이다.
도 2는 도 1의 장치에 해당되는 BMS 장치의 개략적 내부 구성도이다.
도 3 내지 도 5는 본 발명의 일 실시예에 따른 릴레이 진단 방법의 개략적 순서도이다.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명하기로 한다. 이에 앞서, 본 명세서 및 청구 범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다. 따라서, 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일 실시예에 불과할 뿐이고 본 발명의 기술적 사상에 모두 대변하는 것은 아니므로, 본 출원 시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.
도 1은 본 발명의 일 실시예에 따른 장치(130)의 개략적인 구성도이다.
본 발명의 일 실시예에 따른 장치(130)는 릴레이의 스위치 고장을 진단하기 위해, 배터리 전류 센싱부(131), 배터리 전압 센싱부(132), 릴레이부(133), 병렬부(134), 병렬부 전압 센싱부(135), 병렬부 전류 센싱부(136), 다이오드부(137) 및 제어부(138)를 포함하여 구성된다.
상기 배터리(101)는 상시 전원 공급이 요구되는 배터리이다. 예를 들면, 배터리(101)는 차량(151)에 장착되어 차량(151)의 ECU 시스템으로 상시 전원을 공급하는 12V LISB 배터리이다. 상기 배터리(151)는 차량(151)에 장착된 이후, 차량(151)의 주행 및 주차 등의 경우는 물론이며 ECU 시스템이 파워 오프인 경우에서도 항상 차량(151)으로 전원을 공급한다. 12V LISB 배터리의 경우, 배터리의 모듈이 결합되어 의해 24V, 36V, 48V 등으로 확장될 수 있다.
상기 장치(130)는 제어부(138)가 배터리(101)의 상시 전원 공급을 제어한다. 장치(130)는 배터리의 충전 및 방전을 관리하는 BMS 장치로 구현될 수 있다. 제어부(138)는, 각 구성부(131~137)들과 연결되고, 각종 신호 및 데이터를 송수신하여 각 구성부(131~137)들의 동작 및 기능을 관리 및 제어한다.
여기서, 상기 제어부(138)는 배터리(101)가 차량(151)으로 전원을 계속해서 공급할 수 있도록 릴레이부(133)를 클로즈 상태로 제어한다. 릴레이부(133)가 제어부(138)로부터 클로즈 상태의 제어 신호를 입력받으면, 릴레이 스위치를 온 상태로 스위칭한다. 클로즈 상태로 제어된 릴레이부(133)는 배터리(101)로부터 출력되는 전류가 차량(151)으로 흐르는 경로를 제공한다. 즉, 배터리(101)로부터 출력된 전류는 릴레이부(133)를 통해 차량(151) 측으로 흐르도록 인가된다.
본 발명에서, 배터리(101) 폭발과 같은 위험 상황이나 미리 의도된 상황에서, 릴레이부(133)의 스위치는 오프 상태로 전환되어야 한다. 이를 위해, 제어부(138)는 릴레이 스위치의 온 및 오프 동작을 주기적으로 진단하는 것이 요구된다. 물론, 진단 과정에서는 릴레이 스위치의 오프 동작을 테스트하기 위해 릴레이부(133)의 오픈 상태가 수반된다.
다만, 릴레이부(133)가 오픈 상태가 될 경우, 차량(151)은 배터리(101)로부터 릴레이부(133)를 통한 전원을 공급받지 못한다. 이를 방지하고자, 차량(151)이 배터리(101)로부터 전원을 항상 공급받을 수 있도록, 제어부(138)는 릴레이부(133)의 오픈 상태에서 병렬부(134)를 클로즈 상태로 제어하여, 배터리(101)로부터 출력된 전류가 병렬부(134)를 통해 차량(151)으로 흐르도록 한다. 즉, 배터리(101)로부터 출력된 전류는 오픈 상태의 릴레이부(133) 대신에 클로즈 상태의 병렬부(134)를 통한 병렬 경로 또는 우회 경로를 통해 차량(151)으로 흐른다. 따라서, 제어부(138)는 릴레이부(133) 및 병렬부(134) 중에서 적어도 하나 이상을 클로즈 상태로 반드시 제어하여 차량(151)이 배터리(101)로부터 상시 전원을 공급받을 수 있도록 제어한다.
상기 차량(151)은 배터리(101)로부터 상시 전원을 공급받는다. 물론, 배터리(101)로부터 상시 전원을 공급받아야만 하는 각종 전자 장치, 장비, 시스템 등은 상기 차량(151)을 대신하여도 무방하다. 예를 들어, 센서 장치 및 모니터링 장치와 같이 전원의 공급이 항상 유지되어야 하는 장치가 상기 차량(151) 대신에 장치(130)에 연결되는 것이 가능하다.
이하에서는, 차량(151)에 배터리(101)가 내장되고, 장치(130)가 배터리(101)의 충전 및 방전을 관리하는 BMS라 가정하여 각 구성부(131)들의 동작을 상세히 설명한다.
도 2는 도 1의 장치(130)에 해당되는 BMS 장치(200)의 개략적 내부 구성도이다.
상기 배터리 전류 센싱부(131)는 배터리(101)를 통해 흐르는 전류를 센싱하고, 센싱된 전류를 제어부(138)로 출력한다. 배터리 전류 센싱부(131)는 배터리(101)의 음극에 연결된 회로에 위치할 수 있다. 배터리 전류 센싱부(131)는 배터리(101)의 전류를 센싱하는 IC 회로로써 BMS 장치(200)에 구현될 수 있다.
상기 배터리 전압 센싱부(132)는 배터리(101)로부터 출력되는 전압을 센싱하고, 센싱된 전압을 제어부(138)로 출력한다. 배터리 전압 센싱부(132)는 배터리(101)의 양극에 연결된 회로에 위치할 수 있다. 배터리 전압 센싱부(132)는 배터리(101)의 전압을 센싱하는 회로로써 BMS 장치(200)에 구현될 수 있다.
상기 릴레이부(133)는 by-stable 릴레이 스위치(233) 및 코일을 포함하여 구성된다. 릴레이부(133)는 배터리(101)의 양극에 연결된 회로에 위치한다. 릴레이부(133)는 제어부(138)로부터 수신된 제어 신호에 따라 스위치(233)를 오픈(switch off) 또는 클로즈(switch on)의 상태로 스위칭한다. 클로즈 상태의 릴레이부(133)는 배터리(101)의 전류가 차량(151) 측으로 흐르는 전원 공급의 경로가 된다.
참고로, 바이 스테이블 릴레이는 on 신호를 인가한 후, 신호가 중단되어도 on 상태로 남는다. 반면에, 고전압 릴레이의 모노 스테이블 릴레이는 on 신호를 인가한 후, 신호가 중단되면, off 상태로 복귀한다.
상기 병렬부(134)는 스위치(234)(예 : FET 스위치)를 포함하여 구성된다. 병렬부(134)는 릴레이부(133)의 입력단 및 출력단에 병렬 회로로써 연결된다. 병렬 회로의 구간은 릴레이 스위치(233)의 입력단에서 시작하여 병렬부(134), 병렬부 전압 센싱부(135), 병렬부 전류 센싱부(136) 및 다이오드부(137)를 통해 릴레이 스위치(233)의 출력단에서 끝난다. 병렬부(134)는 제어부(138)로부터 수신된 제어 신호에 따라 스위치(234)를 오픈 또는 클로즈의 상태로 스위칭한다. 병렬부(134)는 전원의 공급을 중단한 오픈 상태의 릴레이부(133)를 대신하여, 스위치(234)가 클로즈된 상태에서 배터리(101)의 전류를 차량(151) 측으로 흐르게 한다. 그러면, 배터리(101)의 전류는 상기 병렬 회로 구간의 경로를 통해 차량(151) 측으로 흐른다.
상기 병렬부 전압 센싱부(135)는 병렬부(134)로부터 출력되는 전압을 센싱하고, 센싱된 전압을 제어부(138)로 출력한다. 병렬부 전압 센싱부(135)는 병렬부(134)의 출력 회로에 위치할 수 있다. 병렬부 전압 센싱부(135)는 병렬부(134)의 출력 전압을 센싱하는 회로로써 BMS 장치(200)에 구현될 수 있다.
상기 병렬부 전류 센싱부(136)는 병렬부(134)로부터 출력되어 차량(151)측으로 흐르는 전류를 센싱하고, 센싱된 전류를 제어부(138)로 출력한다. 병렬부 전류 센싱부(136)는 병렬부(134)의 출력 회로에 위치할 수 있다. 병렬부 전류 센싱부(136)는 병렬부(134)의 출력 전류를 센싱하는 IC 회로로써 BMS 장치(200)에 구현될 수 있다.
상기 다이오드부(137)는 역 전류 및 역 전압을 방지하기 위해 병렬부(134)의 출력 회로에 위치할 수 있다. 클로즈 상태의 병렬부(134)로부터 출력된 전류는 상기 다이오드부(137)를 통해 흐른다, 역 전류 및 역전압이 방지되어 회로 부품의 손상이 방지되고 병렬 회로의 안정성이 보장된다.
상시 전원 공급을 위해, 노멀 상태에서 상기 제어부(138)는 릴레이부(133)의 클로즈 상태 및 병렬부의 오픈 상태에 해당되는 제 1상태로 제어한다. 제어부(138)는 제 1상태로 제어한 이후로, 릴레이 스위치(233)의 고장을 판단을 시작할 것인지를 주기적으로 판단한다.
바람직하게, BMS 장치(200)의 주 기능에 스트레스를 주지 않기 위하여, 제어부(134)는 배터리 전류 센싱부(131)로부터 출력된 제 1상태의 배터리(101)의 전류가 설정된 전류 이하일 경우, 릴레이 스위치(233)의 고장을 진단하는 처리를 시작한다. 예를 들어, 제어부(138)는 설정된 주기(예 : 60초)마다 설정된 전류 이하의 조건이 만족되는지 판단한다. 차량(151)의 경우, 설정된 전류(예 : 10mA) 이하의 배터리(101)의 전류가 센싱되면, 차량이 주차 상태인 것으로 판단될 수 있다. 물론, 주차 상태를 판단하기 위한 설정된 전류는 차종, 제조사, 배터리 등의 제약 조건에 대응하여 BMS 장치(200)에 설정된다.
설정된 전류 이하의 조건이 만족되면, 제어부(138)는 제 1상태의 판단을 시작한다. 먼저, 제어부(138)는 병렬부 전압 센싱부(135) 및 병렬부 전류 센싱부(136)로부터 출력된 전압 및 전류가 0이면, 제 1상태를 정상 상태로 판단하여 릴레이부(133)의 클로즈 상태 및 병렬부(134)의 클로즈 상태인 제 2상태로 제어한다. 제 1상태는 배터리(101)의 전류가 릴레이부(133)를 통해 차량(151)으로 흐르기 때문에 병렬부(134)의 출력단에서 센싱된 전압 및 전류는 거의 0이 되어야 제 1상태가 정상 상태로 판단된다.
제어부(138)는 제 2상태의 제어에 따라 병렬부(134)로 클로즈 제어 신호를 출력하고, 병렬부(134)는 수신된 제어 신호에 따라 스위치(234)를 클로즈 상태로 스위칭한다. 제 2상태에서 릴레이부(133)는 클로즈 상태가 유지되고 및 병렬부(134)는 클로즈 상태로 전환된다.
제 2상태에서, 제어부(138)는 병렬부 전압 센싱부(135)로부터 병렬부(134)의 전압을 출력받고, 병렬부 전류 센싱부(136)로부터 병렬부(134)의 전류를 출력받는다. 제어부(138)는 출력 전압이 0보다 큰 배터리의 전압과 같고, 출력 전류가 0이면, 제 2상태를 정상 상태로 판단하여 제 3상태의 제어를 내린다.
정상 상태가 판단된 제 2상태에서는 스위치(234)가 클로즈 상태이므로, 제어부(138)는 병렬부 전압 센싱부(135)로부터 0보다 큰 병렬부의 전압(배터리의 전압)을 입력받는다. 병렬부 전압 센싱부(135)에서 센싱된 전압은 배터리 전압 센싱부(132)에서 센싱된 전압과 동일하다. 또한, 릴레이부(133)의 저항이 병렬부(134)의 저항보다 작아서 배터리(101)의 전류가 릴레이부(133)를 통해 흐르기 때문에, 병렬부 전류 센싱부(136)를 통해 센싱된 전류는 0이다. 만약, 병렬부 전류 센싱부(136)를 통해 센싱된 전류가 0이 아니면, 제어부(138)는 병렬부(134)를 통해 전류가 흐르므로 릴레이 스위치(233)가 영구 오픈 상태의 고장으로서 클로즈 상태로 전환이 불가능한 것으로 판단한다.
제어부(138)는 제 3상태의 제어에 따라 릴레이부(133)로 오픈 제어 신호를 출력하고, 릴레이부(133)는 수신된 제어 신호에 따라 스위치(233)를 오픈 상태로 스위칭한다. 제 3상태에서 릴레이부(133)는 오픈 상태로 전환되고 및 병렬부(134)는 클로즈 상태가 유지된다.
제 3상태에서, 제어부(138)는 병렬부 전압 센싱부(135)로부터 병렬부(134)의 전압을 출력받고, 병렬부 전류 센싱부(136)로부터 병렬부(134)의 전류를 출력받는다. 제어부(138)는 병렬부(134)의 출력 전압이 배터리 전압 센싱부(132)의 전압과 동일하고, 병렬부(134)의 출력 전류가 배터리 전류 센싱부(131)의 전류와 동일하면, 릴레이 스위치(233)가 정상으로서 제 3상태를 정상 상태로 판단한다.
정상 상태가 판단된 제 3상태에서는 스위치(234)만 클로즈 상태이므로, 배터리(101)의 전류는 병렬 회로의 구간을 통해서만 흐른다. 따라서, 병렬부 전압 센싱부(135)에서 센싱된 전압은 배터리 전압 센싱부(132)에서 센싱된 전압과 동일하다. 또한, 배터리(101)의 전류가 오픈 상태의 릴레이부(133)가 아닌 병렬부(134)를 통해서 흐르기 때문에, 병렬부 전류 센싱부(136)를 통해 센싱된 전류는 0보다 큰 배터리 전류 센싱부(131)의 전류와 동일하다. 만약, 동일하지 않고 병렬부 전류 센싱부(136)를 통해 센싱된 전류가 0이면, 제어부(138)는 병렬부(134)를 통해 전류가 흐르지 않으므로 릴레이 스위치(233)가 영구 클로즈 상태의 고장(예 : 릴레이 융착)으로서 오픈 상태로 전환이 불가능한 것으로 판단한다.
도 3 내지 도 5는 본 발명의 일 실시예에 따른 릴레이 진단 방법의 개략적 순서도이다. 도 3은 장치(130)가 제 1상태를 제어하고, 도 4는 장치(130)가 제 2상태를 제어하고, 도 5는 장치(130)가 제 3상태를 제어하는 순서도이다.
도 3을 참조하면, 배터리(101)가 차량(151)과 같은 부하 장치에 연결된 이후로, 장치(130)는 릴레이의 스위치(233)가 클로즈 상태이고 병렬 회로의 스위치(234)가 오픈된 상태의 제 1상태로 제어한다(S301). 장치(130)는 배터리의 회로로부터 배터리의 출력 전압 및 출력 전류를 센싱한다(S302). 릴레이 스위치(233)의 고장을 진단하기 위해, 장치(130)는 센싱된 배터리의 전류가 설정 전류 이하인지를 판단한다(S304).
바람직하게, 장치(130)의 메인 기능을 보호하기 위해, 설정 전류는 장치의 아이들 상태를 감지하는 최소 전류인 것이 선호된다. 예를 들면, BMS 장치(200)가 차량(151)으로 배터리(101)의 전원을 상시 공급하는 것을 메인 기능이라고 할 경우, 차량(151)에서 최소 전류가 소모되는 ECU 시스템이 파워 오프인 주차 상태를 판단하는 최소 전류가 BMS 장치(200)에 설정된다.
장치(130)를 통해 설정 전류 이하의 전류가 소모되는 것이 판단되면, 장치(130)는 스위치(233)의 진단을 시작한다. 먼저, 장치(130)는 병렬 회로의 출력 전압 및 출력 전류가 0인지를 판단한다(S305). 0이 판단되면, 장치(130)는 제 1상태가 정상인 것으로 판단하고, 제 2상태의 제어를 시작한다(S306). 제 1상태에서는 전류가 릴레이 회로를 통해 흐르고 병렬 스위치(234)가 오픈이므로, 병렬 회로의 전압과 전류는 거의 0 값으로 센싱되어야만 한다.
도 4를 참조하면, 장치(130)가 제 2상태로 제어하여, 릴레이 스위치(233)가 클로즈 상태에서 병렬 회로의 스위치(234)가 클로즈 상태로 전환된다(S401). 장치(130)는 병렬 회로로부터 출력 전압 및 출력 전류를 센싱한다(S402). 장치(130)는 병렬 회로의 센싱된 전압이 배터리 전압이고, 병렬 회로의 센싱된 전류가 0인지를 판단한다(S403). 제 2상태에서는 릴레이 스위치(233) 및 병렬 스위치(234)가 클로즈 상태로서, 저항이 작은 릴레이 스위치(233)를 통해 전류가 흐른다. 따라서, 병렬 회로로부터 배터리 전압과 동일한 전압이 센싱되지만, 센싱 전류는 0이 되어야만 한다. 전압과 전류의 조건이 만족되면, 장치(130)는 제 2상태가 정상인 것으로 판단한다(S404). 제 2상태의 정상이 판단되면, 제 3 상태의 제어가 시작된다.
만약, 장치(130)가 병렬 회로의 전류 및 배터리 전류를 비교하고(S405), 동일한 것으로 판단하면, 병렬 회로에 배터리 전류가 흐르는 것으로 릴레이 스위치(233)를 오픈 상태로 영구 고장 상태인 것으로 진단한다(S406).
도 5를 참조하면, 장치(130)가 제 3상태로 제어하여, 릴레이 스위치(233)가 오픈 상태로 전환되고 병렬 회로의 스위치(234)가 클로즈 상태로 유지된다(S501). 장치(130)는 병렬 회로로부터 출력 전압 및 출력 전류를 센싱한다(S502). 장치(130)는 병렬 회로의 센싱된 전압이 배터리 전압이고, 병렬 회로의 센싱된 전류가 배터리 전류인지를 판단한다(S503). 제 3상태에서는 오픈된 릴레이 스위치(233)로 인해, 배터리(101)의 전류가 병렬 스위치(234)를 통해 차량(151)으로 흐른다. 따라서, 병렬 회로에서, 배터리 전압과 동일한 전압이 센싱되고, 배터리 전류와 동일한 전류가 센싱되어야만 한다. 전압과 전류의 조건이 만족되면, 장치(130)는 제 3상태가 정상인 것으로 판단하고(S504), 제 1상태의 노멀 상태로 제어로 복귀한다(S507).
만약, 장치(130)가 병렬 회로의 전류를 0으로 감지하면(S505), 병렬 회로에 전류가 흐르지 않고, 오픈 제어된 릴레이 회로를 통해 전류가 흐르는 것이 판단되므로, 릴레이 스위치(233)를 융착 상태의 영구 고장 상태인 것으로 진단한다(S506).
또한, 장치(130)가 진단한 릴레이 스위치(233)의 오픈 고장, 클로즈 고장 및 기타 고장은 차량측 ECU 시스템으로 출력되어 운전자에게 안내된다(S511).
본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 이것에 의해 한정되지 않으며 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 본 발명의 기술사상과 아래에 기재될 특허청구범위의 균등범위 내에서 다양한 수정 및 변형이 가능함은 물론이다.

Claims (23)

  1. 릴레이부의 클로즈(close) 상태 및 병렬부의 오픈(open) 상태인 제 1상태로 제어하고, 제 1상태에서 상기 병렬부의 전압 및 전류가 0이면, 릴레이부의 클로즈 상태 및 병렬부의 클로즈 상태인 제 2상태로 제어하고, 제 2상태에서 상기 병렬부의 전압이 배터리의 전압과 같고 상기 병렬부의 전류가 0이면, 릴레이부의 오픈 상태 및 병렬부의 클로즈 상태인 제 3상태로 제어하고, 제 3상태에서 상기 병렬부의 전류가 상기 릴레이부의 전류와 같으면 릴레이부의 스위치를 정상으로 판단하고, 상기 병렬부의 전류가 0이면 릴레이부의 스위치를 고장으로 판단하는 제어부;
    상기 제어부의 제어에 의해 스위치를 오픈 또는 클로즈의 상태로 스위칭하고, 클로즈 상태에서 전원의 공급을 위해 배터리의 전류가 흐르는 릴레이부;
    상기 제어부의 제어에 의해 스위치를 오픈 또는 클로즈의 상태로 스위칭하고, 상기 전원의 공급이 중단되는 오픈 상태의 상기 릴레이부를 대신하여, 클로즈 상태에서 상기 배터리의 전류를 인가하는 병렬부;
    상기 병렬부의 전압을 센싱하여 상기 제어부로 출력하는 병렬부 전압 센싱부; 및
    상기 병렬부의 전류를 센싱하여 상기 제어부로 출력하는 병렬부 전류 센싱부
    를 포함하는 장치.
  2. 제 1항에 있어서,
    배터리의 전류를 센싱하여 상기 제어부로 출력하는 배터리 전류 센싱부를 더 포함하고,
    상기 제어부는 제 1상태에서 입력받은 배터리의 전류가 설정된 전류 이하라고 판단하면, 상기 제 2상태로 제어할 것인지의 판단을 시작하는 것을 특징으로 하는 장치.
  3. 제 2항에 있어서,
    상기 장치는 차량 배터리의 BMS(Battery Management System)장치로서,
    상기 제어부는 입력받은 배터리의 전류가 설정된 전류 이하일 경우 차량이 주차 상태인 것으로 판단하고, 상기 제 2상태로 제어할 것인지의 판단을 시작하는 것을 특징으로 하는 장치.
  4. 제 1항에 있어서,
    상기 제어부는,
    배터리의 상시 전원 공급을 유지하기 위해, 상기 릴레이부를 클로즈 상태로 제어하고,
    필요시 상기 병렬부를 클로즈 상태로 제어한 상태에서 상기 릴레이부를 오픈 상태로 제어하는 것을 특징으로 하는 장치.
  5. 제 1항에 있어서,
    상기 제어부는,
    제어된 제 2상태에서, 상기 병렬부의 전류가 0이 아닌 것을 판단하면, 상기 릴레이의 스위치가 영구 오픈 상태의 고장인 것으로 판단하는 것을 특징으로 하는 장치.
  6. 제 1항에 있어서,
    배터리의 전압을 센싱하여 상기 제어부로 출력하는 배터리 전압 센싱부를 더 포함하고,
    상기 제어부는,
    제어된 제 2상태에서, 상기 병렬부의 전압이 상기 배터리의 전압과 동일하고, 상기 병렬부의 전류가 0이면 상기 제 2상태의 정상으로 판단하는 것을 특징으로 하는 장치.
  7. 제 6항에 있어서,
    상기 제 2상태는,
    상기 릴레이부의 저항이 상기 병렬부의 저항보다 작아서 배터리의 전류가 상기 릴레이부를 통해 흐르기 때문에 센싱된 병렬부의 전류가 0인 것을 특징으로 하는 장치.
  8. 제 1항에 있어서,
    상기 제어부는,
    제어된 제 3상태에서, 병렬부의 전압 및 전류를 입력받고, 병렬부의 전압이 배터리의 전압과 동일하고, 병렬부의 전류가 배터리의 전류와 동일하면 상기 제 3상태의 정상으로 판단하는 것을 특징으로 하는 장치.
  9. 제 8항에 있어서,
    상기 제 3상태는,
    배터리의 전류가 오픈 상태의 릴레이부 대신에 상기 병렬부를 통해 흐르기 때문에 병렬부의 전류와 배터리의 전류가 동일한 것을 특징으로 하는 장치.
  10. 제 1항에 있어서,
    상기 제어부는,
    제 3상태에서 상기 병렬부의 전류와 배터리의 전류가 동일하지 않으면, 상기 릴레이의 스위치가 영구 클로즈 상태의 고장으로 판단하는 것을 특징으로 하는 장치.
  11. 제 1항에 있어서,
    역 전압을 방지하기 위해 상기 병렬부에 연결되는 다이오드부를 더 포함하고,
    상기 병렬부로부터 출력된 전류는 상기 다이오드부를 통해 상기 릴레이부의 출력단으로 흐르는 것을 특징으로 하는 장치.
  12. 배터리의 상시 전원 출력이 요구되는 릴레이의 고장을 진단하는 BMS 장치에 있어서,
    릴레이 회로의 클로즈 상태 및 병렬 회로의 오픈 상태인 제 1상태로 제어하고, 제 1상태에서 상기 병렬 회로의 전압 및 전류가 0이면, 릴레이 회로의 클로즈 상태 및 병렬 회로의 클로즈 상태인 제 2상태로 제어하고, 제 2상태에서 상기 병렬 회로의 전압이 배터리 전압과 같고 상기 병렬 회로의 전류가 0이면, 릴레이 회로의 오픈 상태 및 병렬 회로의 클로즈 상태인 제 3상태로 제어하고, 제 3상태에서 상기 병렬 회로의 전류가 릴레이 회로의 전류와 같으면, 릴레이 회로의 스위치를 정상으로 판단하고, 상기 병렬 회로의 전류가 0이면 릴레이 회로의 스위치를 고장으로 판단하는 제어부;
    상기 제어부의 제어에 의해 스위치를 오픈 또는 클로즈의 상태로 스위칭하고, 클로즈 상태에서 전원의 공급을 위해 배터리의 전류가 흐르는 릴레이 회로;
    상기 릴레이 회로의 입력단에 연결되고, 상기 제어부를 제어에 의해 스위치를 오픈 또는 클로즈의 상태로 스위칭하고, 상기 전원의 공급이 중단되는 상기 릴레이 회로를 대신하여, 클로즈 상태에서 상기 배터리의 전류를 인가하는 병렬 회로;
    상기 병렬 회로의 출력단에 연결되고, 상기 병렬 회로의 전압을 센싱하여 상기 제어부로 출력하는 전압 센싱 회로; 및
    상기 병렬 회로의 출력단에 연결되고, 상기 병렬 회로의 전류를 센싱하여 상기 제어부로 출력하는 전류 센싱 회로
    를 포함하는 BMS 장치.
  13. 장치가 배터리의 상시 전원 출력이 요구되는 릴레이의 고장을 진단하는 방법에 있어서,
    릴레이 회로의 스위치가 클로즈 상태이고 병렬 회로의 스위치가 오픈 상태인 제 1상태로 제어하는 단계;
    제어된 제 1상태에서 센싱된 병렬 회로의 전압 및 전류가 0이면, 제 1상태를 정상으로 판단하는 단계;
    상기 제 1상태의 정상이 판단되면, 릴레이 회로의 클로즈 상태 및 병렬 회로의 클로즈 상태인 제 2상태로 제어하는 단계;
    제어된 제 2상태에서 센싱된 병렬 회로의 전압이 배터리 전압과 같고 상기 병렬 회로의 전류가 0이면, 제 2상태를 정상으로 판단하는 단계;
    상기 제 2상태의 정상이 판단되면, 릴레이 회로의 오픈 상태 및 병렬 회로의 클로즈 상태인 제 3상태로 제어하는 단계;
    제어된 제 3상태에서 센싱된 병렬 회로의 전류가 릴레이 회로의 전류와 같으면, 릴레이 회로의 스위치를 정상으로 판단하는 단계; 및
    상기 병렬 회로의 전류가 0이면 릴레이 회로의 스위치를 고장으로 판단하는 단계
    를 포함하는 방법.
  14. 제 13항에 있어서,
    상기 제 1상태로 제어하는 단계는,
    배터리의 전압 및 전류를 센싱하는 단계를 더 포함하고,
    센싱된 배터리의 전류가 설정된 전류 이하라고 판단하면, 상기 제 1상태를 정상으로 판단하는 단계를 시작하는 것을 특징으로 하는 방법.
  15. 제 14항에 있어서,
    상기 장치는 차량 배터리의 BMS(Battery Management System)장치로서,
    센싱된 배터리의 전류가 설정된 전류 이하일 경우 차량이 주차 상태인 것으로 판단하고, 상기 제 1상태를 정상으로 판단하는 단계를 시작하는 것을 특징으로 하는 방법.
  16. 제 13항에 있어서,
    상기 장치는,
    배터리의 상시 전원 공급을 유지하기 위해,
    상기 릴레이 회로를 클로즈 상태로 제어하여 상시 전원 공급을 유지하고,
    필요시 상기 병렬 회로를 클로즈 상태로 제어한 후, 상기 릴레이 회로를 오픈 상태로 제어하여, 오픈된 릴레이 회로 대신에 상기 병렬 회로가 상기 상시 전원 공급을 유지하는 것을 특징으로 하는 방법.
  17. 제 13항에 있어서,
    상기 제 2상태를 정상으로 판단하는 단계는,
    상기 병렬 회로의 전류 및 출력 전압을 센싱하고, 센싱된 병렬 회로의 전류가 0이 아닌 것을 판단하면, 상기 릴레이의 스위치가 영구 오픈 상태의 고장인 것으로 판단하는 단계를 더 포함하는 것을 특징으로 하는 방법.
  18. 제 13항에 있어서,
    상기 제 2상태를 정상으로 판단하는 단계는,
    센싱된 병렬 회로의 전압이 배터리의 전압과 동일하고, 센싱된 병렬 회로의 전류가 0이면 상기 제 2상태의 정상으로 판단하는 단계인 것을 특징으로 하는 방법.
  19. 제 18항에 있어서,
    상기 제 2상태는,
    상기 릴레이 회로의 저항이 상기 병렬 회로의 저항보다 작아서 배터리의 전류가 상기 릴레이 회로를 통해 흐르기 때문에 센싱된 병렬 회로의 전류가 0인 것을 특징으로 하는 방법.
  20. 제 13항에 있어서,
    상기 릴레이의 스위치를 정상으로 판단하는 단계는,
    상기 병렬 회로의 전압 및 전류를 센싱하고, 병렬 회로의 전압이 배터리의 전압과 동일하고, 병렬 회로의 전류가 배터리의 전류와 동일하면 상기 제 3상태의 정상으로 판단하는 단계인 것을 특징으로 하는 방법.
  21. 제 20항에 있어서,
    상기 제 3상태는,
    배터리의 전류가 오픈 상태의 릴레이 회로 대신에 상기 병렬 회로를 통해 흐르기 때문에 병렬부의 전류와 배터리의 전류가 동일한 것을 특징으로 하는 방법.
  22. 제 13항에 있어서,
    상기 고장으로 판단하는 단계는,
    제 3상태에서 상기 병렬 회로의 전류와 배터리의 전류가 동일하지 않으면, 상기 릴레이의 스위치가 영구 클로즈 상태의 고장으로 판단하는 단계인 것을 특징으로 하는 방법.
  23. 제 13항에 있어서,
    상기 릴레이 스위치를 정상으로 판단하는 단계는,
    상기 병렬 회로로부터 출력된 전류는 역 전압을 방지하기 위해 상기 병렬 회로에 연결된 다이오드 회로를 통해 릴레이 스위치의 출력단으로 흐르는 단계인 것을 특징으로 하는 방법.
PCT/KR2017/014589 2016-12-12 2017-12-12 상시 전원 공급을 위한 병렬 회로를 이용하여 배터리의 릴레이의 고장을 진단하는 장치 및 방법 WO2018110955A1 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US16/094,175 US10753975B2 (en) 2016-12-12 2017-12-12 Apparatus for diagnosing relay failure of battery using parallel circuit for constant power supply and method thereof
PL17880124.7T PL3444624T3 (pl) 2016-12-12 2017-12-12 Urządzenie do diagnozowania awarii przekaźnika akumulatora przy użyciu obwodu równoległego do ciągłego dostarczania energii i powiązany sposób
EP17880124.7A EP3444624B1 (en) 2016-12-12 2017-12-12 Apparatus for diagnosing relay failure of battery using parallel circuit for constant power supply and method thereof
CN201780029619.7A CN109154634B (zh) 2016-12-12 2017-12-12 诊断电池的继电器故障的装置及其方法
JP2018559784A JP6671512B2 (ja) 2016-12-12 2017-12-12 常時電源供給のための並列回路を用いてバッテリーのリレーの故障を診断する装置及び方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020160168495A KR102058198B1 (ko) 2016-12-12 2016-12-12 상시 전원 공급을 위한 병렬 회로를 이용하여 배터리의 릴레이의 고장을 진단하는 장치 및 방법
KR10-2016-0168495 2016-12-12

Publications (1)

Publication Number Publication Date
WO2018110955A1 true WO2018110955A1 (ko) 2018-06-21

Family

ID=62559842

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/014589 WO2018110955A1 (ko) 2016-12-12 2017-12-12 상시 전원 공급을 위한 병렬 회로를 이용하여 배터리의 릴레이의 고장을 진단하는 장치 및 방법

Country Status (7)

Country Link
US (1) US10753975B2 (ko)
EP (1) EP3444624B1 (ko)
JP (1) JP6671512B2 (ko)
KR (1) KR102058198B1 (ko)
CN (1) CN109154634B (ko)
PL (1) PL3444624T3 (ko)
WO (1) WO2018110955A1 (ko)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018202680A1 (de) * 2017-02-23 2018-08-23 Gs Yuasa International Ltd. Diagnosevorrichtung, Energiespeichervorrichtung und Diagnoseverfahren
KR102291762B1 (ko) * 2017-11-07 2021-09-03 주식회사 엘지에너지솔루션 릴레이 진단 회로
JP2019158446A (ja) * 2018-03-09 2019-09-19 株式会社Gsユアサ 電流計測装置、蓄電装置、電流計測方法
DE102019203508A1 (de) * 2019-03-15 2020-09-17 Leoni Bordnetz-Systeme Gmbh Schaltvorrichtung sowie Verfahren zum Betrieb einer Schaltvorrichtung
KR20200111314A (ko) * 2019-03-18 2020-09-29 현대자동차주식회사 차량의 고전압 릴레이 시스템 및 그 진단방법
KR20200119516A (ko) * 2019-04-10 2020-10-20 에스케이이노베이션 주식회사 배터리 관리 시스템 및 릴레이 진단 장치
EP3985403A4 (en) 2019-11-13 2022-08-10 LG Energy Solution, Ltd. APPARATUS AND METHOD FOR DIAGNOSING A MALFUNCTION OF THE SWITCHING UNIT INCLUDED IN A MULTIPLE BATTERY PACK
KR20210077065A (ko) * 2019-12-16 2021-06-25 현대자동차주식회사 차량용 pra 열화 제어 시스템 및 그의 pra 열화 제어 방법
CN111257767B (zh) * 2020-02-21 2022-07-12 深圳普瑞赛思检测技术有限公司 电池集成检测系统及方法
JP2022163927A (ja) * 2021-04-15 2022-10-27 株式会社オートネットワーク技術研究所 給電制御システム及び処理方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120005729A (ko) * 2010-07-09 2012-01-17 (주)브이이엔에스 전기자동차 및 그 동작방법
KR20140136844A (ko) * 2013-05-21 2014-12-01 엘지이노텍 주식회사 배터리 팩의 릴레이 진단장치 및 배터리 제어 시스템
JP2015008600A (ja) * 2013-06-25 2015-01-15 株式会社Gsユアサ スイッチ故障診断装置、スイッチ故障診断方法
US20150316617A1 (en) * 2012-03-01 2015-11-05 Gs Yuasa International Ltd. Switch failure detection device, battery pack including the same, and method of detecting failure of electronic switch
KR20160121079A (ko) * 2015-04-10 2016-10-19 현대자동차주식회사 친환경차량의 릴레이 고장검출을 위한 전압센싱장치

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2801027C3 (de) * 1978-01-11 1982-03-18 Robert Bosch Gmbh, 7000 Stuttgart Einrichtung zur Überprüfung von Akkumulatoren
JP4572168B2 (ja) * 2003-03-31 2010-10-27 日本電気株式会社 リレー接点の溶着の検出方法及び装置
US7557583B2 (en) * 2005-11-21 2009-07-07 Gm Global Technology Operations, Inc. System and method for monitoring an electrical power relay in a hybrid electric vehicle
JP2007159326A (ja) * 2005-12-07 2007-06-21 Honda Motor Co Ltd 電源制御装置
JP4510753B2 (ja) 2005-12-16 2010-07-28 パナソニックEvエナジー株式会社 電源装置、及びその制御方法
JP2007203929A (ja) * 2006-02-02 2007-08-16 Auto Network Gijutsu Kenkyusho:Kk 車両用暗電流測定装置及び車両用電源制御装置
JP5058635B2 (ja) 2007-03-12 2012-10-24 株式会社日立製作所 リレー故障検知機能を持つフェールセーフ出力回路及び鉄道用三灯式色灯信号機の灯火出力回路
JP4450004B2 (ja) * 2007-03-30 2010-04-14 トヨタ自動車株式会社 電源回路の制御装置および制御方法
KR100867834B1 (ko) 2007-08-16 2008-11-10 현대자동차주식회사 하이브리드자동차 고전압 릴레이 및 릴레이 제어회로의고장 진단 방법
JP5488046B2 (ja) 2010-02-25 2014-05-14 株式会社デンソー 車載電源装置
JP5411046B2 (ja) 2010-03-31 2014-02-12 プライムアースEvエナジー株式会社 車両用電池管理装置及び電流センサのオフセット検出方法
CN103097177B (zh) 2010-07-09 2015-09-02 Lg电子株式会社 电动汽车及其控制方法
JP2012130107A (ja) 2010-12-13 2012-07-05 Chugoku Electric Power Co Inc:The 地絡保護継電システムおよび地絡保護方法
JP5945804B2 (ja) 2012-03-29 2016-07-05 パナソニックIpマネジメント株式会社 リレー溶着診断装置
KR101602434B1 (ko) 2012-11-09 2016-03-21 주식회사 엘지화학 충전시 발생하는 셀 밸런싱 스위치의 오진단 방지 장치 및 오진단 방지 방법
JP2016148688A (ja) 2013-05-30 2016-08-18 株式会社 ニコンビジョン 光学機器
KR101830285B1 (ko) 2013-11-04 2018-02-20 주식회사 엘지화학 작업자의 안전을 위한 식별부재를 포함하는 전지팩
JP2015095442A (ja) * 2013-11-14 2015-05-18 株式会社オートネットワーク技術研究所 スイッチ診断装置、スイッチ回路及びスイッチ診断方法
KR102210282B1 (ko) 2014-05-30 2021-02-01 삼성전자주식회사 릴레이 상태 검출 방법 및 장치
JP2016010263A (ja) * 2014-06-25 2016-01-18 トヨタ自動車株式会社 蓄電システム
JP6435891B2 (ja) * 2015-02-02 2018-12-12 オムロン株式会社 継電ユニット、継電ユニットの制御方法
KR101712258B1 (ko) 2015-02-24 2017-03-03 주식회사 엘지화학 릴레이 융착 감지 장치 및 방법
JP6292154B2 (ja) 2015-03-19 2018-03-14 トヨタ自動車株式会社 電源システム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120005729A (ko) * 2010-07-09 2012-01-17 (주)브이이엔에스 전기자동차 및 그 동작방법
US20150316617A1 (en) * 2012-03-01 2015-11-05 Gs Yuasa International Ltd. Switch failure detection device, battery pack including the same, and method of detecting failure of electronic switch
KR20140136844A (ko) * 2013-05-21 2014-12-01 엘지이노텍 주식회사 배터리 팩의 릴레이 진단장치 및 배터리 제어 시스템
JP2015008600A (ja) * 2013-06-25 2015-01-15 株式会社Gsユアサ スイッチ故障診断装置、スイッチ故障診断方法
KR20160121079A (ko) * 2015-04-10 2016-10-19 현대자동차주식회사 친환경차량의 릴레이 고장검출을 위한 전압센싱장치

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3444624A4 *

Also Published As

Publication number Publication date
EP3444624A1 (en) 2019-02-20
EP3444624B1 (en) 2022-09-21
CN109154634A (zh) 2019-01-04
KR102058198B1 (ko) 2019-12-20
US10753975B2 (en) 2020-08-25
PL3444624T3 (pl) 2022-12-05
US20190128965A1 (en) 2019-05-02
EP3444624A4 (en) 2019-09-25
CN109154634B (zh) 2020-12-01
JP6671512B2 (ja) 2020-03-25
KR20180067102A (ko) 2018-06-20
JP2019521323A (ja) 2019-07-25

Similar Documents

Publication Publication Date Title
WO2018110955A1 (ko) 상시 전원 공급을 위한 병렬 회로를 이용하여 배터리의 릴레이의 고장을 진단하는 장치 및 방법
WO2014077522A1 (ko) 배터리 시스템의 릴레이 융착 검출 장치 및 방법
KR100955898B1 (ko) 전원시스템용 감시장치
WO2019078616A2 (ko) 전기 자동차 충전 장치
WO2018012696A1 (ko) 실시간 동작 감지를 통한 컨텍터의 비정상 개방 방지 시스템 및 방법
WO2016133370A1 (en) Contactor control system
WO2018097536A2 (ko) 배터리 관리 장치
JP2009259762A (ja) 複数のリレーを有する電源装置
WO2019093667A1 (ko) 릴레이 진단 회로
WO2019117512A1 (ko) 워치독 타이머를 진단하기 위한 장치 및 방법
CN114475252A (zh) 车辆电池的数据处理系统、方法、车辆以及存储介质
US20050002140A1 (en) System and method for protecting against short circuits in electric power distribution architectures with two voltage levels
WO2019132245A1 (ko) 배터리 관리 시스템 및 이를 포함하는 배터리 팩
WO2023080343A1 (ko) 고압부 전원과 자동차 샤시의 절연 이상 검출하기 위해 서로 절연된 두개 이상의 전원을 가진 전원 공급시스템 및 이를 이용한 방법
WO2022098012A1 (ko) 배터리 관리 방법 및 이를 이용한 배터리 시스템
WO2021066394A1 (ko) 병렬 연결 셀의 연결 고장 검출 방법 및 시스템
WO2019098575A1 (ko) 전기 제어 시스템
WO2019124813A1 (ko) 메인 제어부 이상 진단 시스템 및 방법
KR20140063170A (ko) 자동차 고전압 배터리의 전원단속장치 및 그 제어방법
WO2023177192A1 (ko) 팩 릴레이 진단이 가능한 배터리 시스템 및 이를 포함하는 차량
WO2021215569A1 (ko) 외부 신호를 이용한 bms 동작 제어 장치 및 방법
WO2023120847A1 (ko) 배터리 시스템, 이를 포함하는 전기차, 및 전기차의 동작 방법
WO2022019526A1 (ko) 배터리 장치, 배터리 관리 시스템 및 컨택터 공급 전압 진단 방법
WO2024080614A1 (ko) 배터리 관리 장치, bms 데이터 저장 시스템 및 bms 데이터 저장 방법
WO2022080699A1 (ko) 배터리 시스템의 열 이벤트 감지 방법 및 이를 적용한 배터리 시스템

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018559784

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2017880124

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017880124

Country of ref document: EP

Effective date: 20181114

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17880124

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE