WO2018110543A1 - 酸素発生用光触媒電極、酸素発生用光触媒電極の製造方法およびモジュール - Google Patents

酸素発生用光触媒電極、酸素発生用光触媒電極の製造方法およびモジュール Download PDF

Info

Publication number
WO2018110543A1
WO2018110543A1 PCT/JP2017/044542 JP2017044542W WO2018110543A1 WO 2018110543 A1 WO2018110543 A1 WO 2018110543A1 JP 2017044542 W JP2017044542 W JP 2017044542W WO 2018110543 A1 WO2018110543 A1 WO 2018110543A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
photocatalyst
electrode
oxygen generation
charge separation
Prior art date
Application number
PCT/JP2017/044542
Other languages
English (en)
French (fr)
Inventor
裕介 朝倉
一成 堂免
太郎 山田
宏之 小林
西山 洋
Original Assignee
富士フイルム株式会社
人工光合成化学プロセス技術研究組合
国立大学法人東京大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社, 人工光合成化学プロセス技術研究組合, 国立大学法人東京大学 filed Critical 富士フイルム株式会社
Priority to CN201780075480.XA priority Critical patent/CN110035822B/zh
Priority to JP2018556687A priority patent/JP6559911B2/ja
Publication of WO2018110543A1 publication Critical patent/WO2018110543A1/ja
Priority to US16/438,008 priority patent/US20190323134A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/301AIII BV compounds, where A is Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C23C16/303Nitrides
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/055Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material
    • C25B11/069Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material consisting of at least one single element and at least one compound; consisting of two or more compounds
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Definitions

  • the present invention relates to a photocatalyst electrode for oxygen generation, a method for producing a photocatalyst electrode for oxygen generation, and a module.
  • Patent Document 1 includes “a photocatalyst layer and a current collecting layer disposed on the photocatalyst layer and formed by vapor deposition. Photocatalytic electrode for water splitting. "
  • the water splitting of the two-electrode water splitting module operates when the water splitting efficiency of the hydrogen generating photocatalyst electrode and the water splitting efficiency of the oxygen generating photocatalyst electrode are balanced.
  • the performance of the oxygen-generating photocatalyst electrode is often inferior, increasing the water splitting efficiency of the oxygen-generating photocatalyst electrode leads to improved performance as a module.
  • One method for improving the performance of the photocatalytic electrode for oxygen generation is to improve the photocurrent density. When the present inventors produced a photocatalyst electrode for oxygen generation using the photocatalyst described in the Example column of Patent Document 1, it was found that there was room for improvement in the photocurrent density.
  • an object of the present invention is to provide a photocatalyst electrode for oxygen generation excellent in photocurrent density and a module having the same.
  • the present inventors have found that when a photocatalyst layer containing Ta 3 N 5 is used, a charge separation promoting layer is disposed between the photocatalyst layer and the current collecting layer, thereby The inventors have found that the photocurrent density of the photocatalytic electrode for generation is excellent, and have reached the present invention. That is, the present inventor has found that the above problem can be solved by the following configuration.
  • a photocatalytic electrode for oxygen generation comprising a current collecting layer and a photocatalytic layer containing Ta 3 N 5
  • a photocatalytic electrode for oxygen generation having a charge separation promoting layer between the current collecting layer and the photocatalytic layer.
  • the upper end of the valence band of the charge separation promoting layer is a deeper level than the upper end of the valence band of the photocatalyst layer
  • the lower end of the conduction band of the charge separation promoting layer is The photocatalyst electrode for oxygen generation according to [1], including an inorganic material having a level deeper than a lower end of a conduction band of the photocatalyst layer.
  • the diffraction peak intensity of the (002) plane of the crystalline GaN measured by the X-ray diffraction method using CuK ⁇ rays is 1, and the diffraction peak intensity of the (002) plane of the GaN layer produced by the following method A is 1.
  • Method A A 50 nm-thick GaN layer is formed on a 300 ° C. sapphire substrate by plasma enhanced chemical vapor deposition.
  • the Ta 3 N 5 is a Ta 3 N 5 doped with a material to widen the band gap, [1] ⁇ oxygen generating photocatalyst electrode according to any one of [6].
  • the current collecting layer has at least one layer containing Ti,
  • a module comprising the photocatalyst electrode for oxygen generation according to any one of [1] to [12].
  • the diffraction peak intensity of the (002) plane of the crystalline GaN measured by the X-ray diffraction method using CuK ⁇ rays is 1, and the diffraction peak intensity of the (002) plane of the GaN layer produced by the following method A is 1.
  • Method A A 50 nm-thick GaN layer is formed on a 300 ° C. sapphire substrate by plasma enhanced chemical vapor deposition.
  • a photocatalyst electrode for oxygen generation excellent in photocurrent density and a module having the same can be provided.
  • oxygen generating electrode the photocatalytic electrode for oxygen generation
  • module including the same will be described.
  • a numerical range expressed using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
  • the oxygen generating electrode of the present invention includes a current collecting layer and a photocatalytic layer containing Ta 3 N 5 , wherein a charge separation promoting layer is provided between the current collecting layer and the photocatalytic layer. Have.
  • the oxygen generating electrode of the present invention is suitable for water splitting.
  • FIG. 1 shows a cross-sectional view of one embodiment of the oxygen generating electrode of the present invention.
  • the oxygen generating electrode 10 includes a photocatalyst layer 12 as a photocatalyst, a charge separation promoting layer 14, and a current collecting layer 16.
  • the oxygen generating electrode 10 is often irradiated with light from the direction of the white arrow, and in this case, the surface of the photocatalyst layer 12 opposite to the charge separation promoting layer 14 is the light receiving surface. Electrons and holes are generated in the photocatalyst layer 12 by light irradiation of the oxygen generating electrode 10. The electrons generated in the photocatalyst layer 12 pass through the charge separation promoting layer 14 and are transported to the current collecting layer 16 to recombine with holes generated in the counter electrode (photocatalyst electrode for hydrogen generation) connected by the wiring. Disappear. On the other hand, the holes generated in the photocatalyst layer 12 are transported to the surface of the photocatalyst layer 12 on the side opposite to the charge separation promoting layer 14 and used for oxygen generation by water splitting.
  • the transport of electrons and holes generated in the photocatalyst layer is driven only by the drift due to the concentration gradient of the generated carriers, so holes that the photocatalyst layer wants to reach the surface opposite to the current collector layer. May move toward the current collector layer. Holes that cannot reach the surface of the photocatalyst layer opposite to the current collecting layer will be deactivated by recombination in the photocatalyst layer, which means that the quantum yield is lowered. As a result, it is considered that the photocurrent density of the oxygen generating electrode is lowered.
  • the oxygen generation electrode 10 can solve the above problem by having the charge separation promoting layer 14 between the photocatalyst layer 12 and the current collecting layer 16.
  • the charge separation promoting layer 14 has a function of suppressing recombination of carriers in the photocatalyst layer 12. Specifically, for the electrons and holes generated in the photocatalyst layer 12, the electrons are transferred to the current collecting layer side. The photocatalyst layer 12 is separated on the surface side opposite to the current collecting layer 16.
  • the charge separation promoting layer 14 includes an inorganic material having the following properties, the above functions are more exhibited. That is, if the inorganic material contained in the charge separation promoting layer 14 is at a position where the lower end of the conduction band and the upper end of the valence band are lower than Ta 3 N 5 constituting the photocatalyst layer 12, the electrons are promoted to charge separation.
  • the photocatalyst layer contains Ta 3 N 5 .
  • Ta 3 N 5 is a visible light responsive photocatalyst.
  • Ta 3 N 5 has excellent characteristics such as long wavelength responsiveness among oxygen generating photocatalysts and improvement of water splitting efficiency of the photocatalytic electrode.
  • the photocatalyst layer is disposed on one surface of the charge separation promoting layer described later.
  • the photocatalyst layer may be formed on at least a part of one surface of the charge separation promoting layer.
  • Ta 3 N 5 may exist in a form in which a plurality of Ta 3 N 5 particles are continuously present on the charge separation promoting layer (that is, a form constituting the Ta 3 N 5 layer), or the charge A plurality of Ta 3 N 5 particles may exist in a discontinuous form on the separation promoting layer.
  • the content of Ta 3 N 5 is preferably more than 70% by mass and 100% by mass or less, more preferably more than 90% by mass and 100% by mass or less, with respect to the total amount (100% by mass) of the material constituting the photocatalyst layer. Is more preferably from 100 to 100% by weight, particularly preferably from 99 to 100% by weight, most preferably 100% by weight.
  • Ta 3 N 5 may be doped with any material. Doping is sometimes performed for the purpose of increasing the carrier density and improving the conductivity of the photocatalyst layer (in this case, the band gap is narrowed), but in the present invention, instead of improving the carrier density, In order to widen the band gap and promote separation of holes and electrons, Ta 3 N 5 is preferably doped. When Ta 3 N 5 is doped with a material that widens the band gap, there is an advantage that the photocurrent density of the oxygen generating electrode is further improved. Examples of materials that widen the band gap include elements (dopants) such as Zr, Mg, Ba, and Na. Among these, from the viewpoint that both the valence band and the conduction band of Ta 3 N 5 shift upward and the photocurrent density of the oxygen generating electrode is further improved, at least one element of Zr and Mg is preferable.
  • the shape of Ta 3 N 5 is not particularly limited, and examples thereof include a particle shape, a column shape, and a flat plate shape.
  • the average particle size of the primary particles of Ta 3 N 5 is not particularly limited, but is preferably 0.5 to 50 ⁇ m from the viewpoint of further improving the water splitting efficiency, and 5 to 10 ⁇ m is more preferable, and 0.5 to 2 ⁇ m is more preferable.
  • the primary particle refers to the smallest unit particle constituting the powder, and the average particle diameter is an arbitrary 100 particles observed with a TEM (transmission electron microscope) or SEM (scanning electron microscope). The particle size (diameter) of Ta 3 N 5 particles is measured, and they are arithmetically averaged.
  • the particle shape is not a perfect circle, the major axis is measured.
  • the particle shape is indefinite (non-spherical)
  • the diameter of a sphere approximated to a sphere is measured.
  • TEM an apparatus similar to a transmission electron microscope “JEM-2010HC” (trade name, manufactured by JEOL Ltd.) can be used.
  • SEM an apparatus according to an ultra high resolution field emission scanning electron microscope “SU8010” (trade name, manufactured by Hitachi High-Technologies Corporation) can be used.
  • the thickness of the photocatalyst layer is not particularly limited, but is preferably 0.01 to 3.0 ⁇ m, more preferably 0.5 to 2.0 ⁇ m, from the viewpoint of more excellent water splitting efficiency.
  • the photocatalyst layer may contain a photocatalyst other than Ta 3 N 5 .
  • Other photocatalysts include, for example, Ta oxide, Ta oxynitride (oxynitride compound), oxynitride of Ta and other metal elements, oxynitride of Ti and other metal elements, and And oxides of Nb and other metals.
  • Examples of oxynitrides of Ta and other metal elements include CaTaO 2 N, SrTaO 2 N, BaTaO 2 N, and LaTaO 2 N.
  • An example of the oxynitride of Ti and other metal elements is LaTiO 2 N.
  • Examples of oxynitrides of Nb and other metal elements include BaNbO 2 N and SrNbO 2 N.
  • Other photocatalysts may be doped with a dopant.
  • the dopant include elements such as Zr, Mg, W, Mo, Ni, Ca, La, Sr, and Ba.
  • 30% by mass or less is preferable and 10% by mass or less is more preferable with respect to the total amount (100% by mass) of the materials constituting the photocatalyst layer.
  • the current collecting layer has a role of flowing electrons generated in the Ta 3 N 5 .
  • a charge separation promoting layer described later is formed on the current collecting layer.
  • the shape of the current collecting layer is not particularly limited, and may be, for example, a punching metal shape, a mesh shape, a lattice shape, or a porous body having penetrating pores.
  • the material constituting the current collecting layer is not particularly limited as long as it is a material exhibiting conductive characteristics.
  • carbon (C) simple metal, alloy, metal oxide, metal nitride, and metal oxynitride Etc.
  • Specific examples of the material constituting the current collecting layer include Au, Al, Cu, Cd, Co, Cr, Fe, Ga, Ge, Hg, Ir, In, Mn, Mo, Nb, Ni, Pb, and Pd.
  • (alpha) when there exists description as (alpha) (: (beta)), it represents what (beta) is doped in (alpha).
  • TiO 2 (: Nb) represents that TiO 2 is doped with Nb.
  • the current collecting layer preferably contains Ta, more preferably at least one layer containing Ta, from the viewpoint of further improving the photocurrent density of the oxygen generating electrode.
  • a substrate for improving the mechanical strength of the oxygen generating electrode (hereinafter also referred to as “reinforcing substrate”) may be provided on the surface of the current collecting layer opposite to the charge separation promoting layer.
  • the current collecting layer has a layer containing Ta, it is possible to suppress the diffusion of components other than Ta (for example, Ti described later) of the current collecting layer, and the photocurrent density of the oxygen generating electrode is more Presumed to improve.
  • the layer containing Ta is preferably laminated in contact with the charge separation promoting layer.
  • the layer containing Ta refers to a layer containing the most Ta atoms among all atoms contained in this layer.
  • the content of Ta atoms is preferably more than 50 atm% and less than 100 atm%, more preferably 70 to 100 atm%, based on all atoms (100 atm%) contained in this layer. 90 to 100 atm% is more preferable.
  • the current collecting layer preferably contains Ti, and more preferably has at least one layer containing Ti.
  • the layer containing Ti refers to the layer containing the most Ti atoms among all the atoms contained in this layer.
  • the content of Ti atoms is preferably more than 50 atm% and not more than 100 atm%, more preferably 70 to 100 atm%, based on all atoms (100 atm%) contained in this layer. 90 to 100 atm% is more preferable.
  • the current collecting layer preferably has both a layer containing Ta and a layer containing Ti from the viewpoint of further improving the photocurrent density of the oxygen generating electrode while ensuring the rigidity of the current collecting layer.
  • the layer containing Ta is disposed on the charge separation promoting layer side from the viewpoint that the photocurrent density of the oxygen generating electrode can be further improved.
  • the layer containing Ta is in contact with the charge separation promoting layer, and the layer containing Ti is on the surface of the layer containing Ta opposite to the surface in contact with the charge separation promoting layer. It is the aspect which is laminated
  • the resistance value of the current collecting layer is not particularly limited, but is preferably 10.0 ⁇ / ⁇ or less, and more preferably 1.0 ⁇ / ⁇ or less in terms of more excellent characteristics (photocurrent density) of the oxygen generating electrode.
  • the method for measuring the resistance value of the current collecting layer is to measure the resistance value of the current collecting layer formed on the glass substrate by a 4-terminal 4-probe method (Mitsubishi Chemical Analytech Loresta GP MCP-T610, probe PSP). .
  • the thickness of the current collecting layer is not particularly limited, but is preferably 0.1 ⁇ m to 10 mm, more preferably 1 ⁇ m to 2 mm from the viewpoint of the balance between conductive characteristics and cost.
  • the charge separation promoting layer has a function of suppressing carrier recombination in Ta 3 N 5 .
  • the shape of the charge separation promoting layer is a continuous film, but is not particularly limited.
  • a film (intermittent film) having a part that is not continuous, a punching metal shape, a mesh shape, a lattice shape, or a penetration It may be a porous body having a fine pore.
  • an intermittent film may be formed.
  • the charge separation promoting layer is a layer in which the upper end of the valence band that the charge separation promoting layer has is deeper than the upper end of the valence band that the photocatalytic layer has, and the charge separation promoting layer from the viewpoint that the above functions are more exerted. It is preferable that the lower end of the conduction band of the inorganic material contains an inorganic material that is deeper than the lower end of the conduction band of the photocatalyst layer. In this specification, an inorganic material having such properties is also referred to as a “specific inorganic material”.
  • the charge separation promoting layer is disposed on the current collecting layer. Specifically, a current collecting layer is disposed on one surface of the charge separation promoting layer, and a photocatalyst layer is disposed on the surface of the charge separation promoting layer opposite to the current collecting layer.
  • the specific inorganic material is preferably GaN. Since GaN is a nitride, there is an advantage that deterioration of Ta 3 N 5 can be suppressed as compared with the case of using an oxide formed in an oxygen atmosphere.
  • the specific inorganic material is preferably a crystalline inorganic material, and more preferably crystalline GaN.
  • the crystalline inorganic material means an inorganic material having crystallinity, and the crystalline GaN means GaN having crystallinity.
  • crystallinity refers to a property exhibited by a solid substance having a spatially periodic atomic arrangement.
  • the crystallinity of GaN can be determined by the presence or absence of a peak on the (002) plane of GaN measured by the X-ray diffraction method.
  • the crystallinity of GaN becomes higher and the photocurrent of the oxygen generating electrode is increased. From the viewpoint of further improving the density, it is preferable to use crystalline GaN exhibiting the following diffraction peak intensity ratio.
  • the diffraction peak intensity of the (002) plane of crystalline GaN in the oxygen generating electrode of the present invention measured by the X-ray diffraction method using CuK ⁇ rays, is (002) of the GaN layer produced by the following method A.
  • the diffraction peak intensity of the surface is 1, it is preferably 1 or more, more preferably more than 1, more preferably 2 or more, particularly preferably 3 or more, and most preferably 4 or more.
  • an upper limit is not specifically limited.
  • the value of the diffraction peak intensity of the (002) plane of crystalline GaN in the oxygen generating electrode, calculated based on the diffraction peak intensity of the (002) plane of the GaN layer produced by Method A is used. , May be abbreviated as “diffraction peak intensity ratio”.
  • Method A A 50 nm-thick GaN layer is formed on a 300 ° C. sapphire substrate by plasma enhanced chemical vapor deposition.
  • the thickness of the charge separation promoting layer is not particularly limited, but is preferably 10 to 100 nm, more preferably 30 to 70 nm, from the viewpoint that the above functions are more exerted.
  • the oxygen generating electrode of the present invention may have a promoter.
  • the promoter is supported on at least a part of Ta 3 N 5 .
  • the cocatalyst may be in a layered form on Ta 3 N 5 or may be in a discontinuous form on Ta 3 N 5 (for example, an island-like form).
  • Examples of the cocatalyst include metals such as Ti, Mn, Fe, Co, Ni, Cu, Ru, Rh, Pd, Ag, In, W, Ir, Mg, Ga, Ce, Cr and Pb, and these Examples thereof include metal metal compounds (including complex compounds), intermetallic compounds, alloys, oxides, composite oxides, nitrides, oxynitrides, sulfides, and oxysulfides. Among these, it is preferable that at least one selected from the group consisting of Ni, Fe, and Co is included from the viewpoint of excellent oxygen production promoter ability, and at least one selected from the group consisting of Fe and Co is included.
  • an oxide of Co eg, Co 3 O 4
  • an oxide of Fe eg, Ferrihydrite, 5Fe 2 O 3 .9H 2 O
  • the thickness when the promoter is formed in a layer is not particularly limited, but is preferably 0.5 to 10 nm, and more preferably 0.5 to 2 nm.
  • the oxygen generating electrode of the present invention may have a layer other than the above.
  • an adhesive layer may be provided between the current collecting layer and the reinforcing substrate.
  • substrate a metal plate (for example, Ta), an oxide board
  • the method for producing an oxygen generating electrode of the present invention includes a step of forming a photocatalyst layer on a substrate, a step of forming a charge separation promoting layer on the photocatalyst layer, and a current collecting layer on the charge separation promoting layer. And a step of peeling the substrate from the photocatalyst layer.
  • the photocatalyst layer preferably contains, for example, at least one photocatalyst selected from the group consisting of Ta 3 N 5 and other photocatalysts (other photocatalysts described above) than Ta 3 N 5 , and Ta 3 preferably contains N 5.
  • Oxygen generating electrode oxygen generating electrode obtained by the manufacturing method of the present invention other aspects photocatalyst layer contains a Ta 3 N 5, the photocatalyst layer contains no Ta 3 N 5, Ta 3 N 5 except Although including embodiments containing a photocatalyst, aspects photocatalyst layer contains a Ta 3 N 5 are preferred.
  • the preferred embodiment of the oxygen generating electrode obtained by the method for producing the oxygen generating electrode of the present invention is the same as that of the above-described oxygen generating electrode of the present invention, and therefore the description thereof is omitted.
  • the method for producing an oxygen generating electrode according to the present invention will be described by taking as an example a production method utilizing the particle transfer method shown in FIGS.
  • 2 to 5 are schematic views for explaining the manufacturing process of the oxygen generating electrode of the present invention.
  • 2 to 5 include a step S1 for forming the photocatalyst layer 12, a step S2 for forming the charge separation promoting layer 14 on one surface of the photocatalyst layer 12, and a photocatalyst layer of the charge separation promoting layer 14. And a step S3 of forming the current collecting layer 16 on the surface opposite to the 12 side.
  • step S4 of removing the non-contact photocatalyst particles 18 may be performed after the step S3.
  • the manufacturing method of the oxygen generating electrode of this invention may be equipped with process S5 which carries a promoter after said process S4.
  • the support of the cocatalyst is not limited to step S5.
  • a photocatalyst having a promoter supported thereon in advance may be used instead of performing step S5.
  • the method for producing an oxygen generating electrode of the present invention may include a metal wire bonding step and an epoxy resin coating step. In this case, the metal wire bonding step and the epoxy resin coating step are preferably performed before or after step S5.
  • Step S1 Photocatalyst layer forming step
  • step S ⁇ b> 1 is a step of forming the photocatalyst layer 12 on the first substrate 20.
  • the photocatalyst layer 12 includes photocatalyst particles 18.
  • a glass plate, a Ti plate, and a Cu plate are preferable, and a glass plate is preferable. More preferred.
  • the surface of the first substrate 20 on which the photocatalyst layer 12 is disposed may be subjected to polishing treatment and / or cleaning treatment.
  • the method for forming the photocatalyst layer 12 is not particularly limited.
  • the photocatalyst particles 18 are dispersed in a solvent as a suspension, applied as a suspension on the first substrate 20, and then dried as necessary.
  • the solvent in the suspension include water; alcohols such as methanol, ethanol, and 2-propanol; ketones such as acetone; aromatics such as benzene, toluene, and xylene;
  • the photocatalyst particles 18 can be uniformly dispersed in the solvent by performing ultrasonic treatment.
  • the method for applying the suspension on the first substrate 20 is not particularly limited.
  • a drop casting method, a spray method, a dip method, a squeegee method, a doctor blade method, a spin coating method, a screen coating method, a roll coating method, And well-known methods, such as an inkjet method are mentioned.
  • the first substrate 20 may be disposed on the bottom surface of the container containing the suspension, and the solvent may be removed after the photocatalyst particles 18 are settled on the first substrate 20.
  • the drying conditions after coating may be maintained at a temperature equal to or higher than the boiling point of the solvent, or maintained or heated to a temperature at which the solvent volatilizes in a short time (eg, about 15 to 200 ° C.).
  • the photocatalyst layer 12 does not contain other components such as a binder so that the formation of a conductive path between the photocatalyst layer 12 and the charge separation promoting layer 14 is not hindered.
  • a colored or insulating binder is not included.
  • a method of laminating the photocatalyst particles 18 on the first substrate 20 is shown.
  • the photocatalyst particles 18 are not used without using the first substrate 20.
  • a method of forming a layer by kneading the binder and a binder, a method of forming a layer by pressure molding of the photocatalyst particles 18 and the like can also be used.
  • Step S2 is a step of forming the charge separation promoting layer 14 on the surface of the photocatalyst layer 12 formed in step S1 on the side opposite to the first substrate 20.
  • the method for forming the charge separation promoting layer 14 is preferably a vapor deposition method.
  • the vapor deposition method is preferably a chemical vapor deposition method or a sputtering method, and more preferably a chemical vapor deposition method.
  • the plasma chemical vapor deposition method is preferable because crystallization of the material constituting the charge separation promoting layer 14 is promoted at a low temperature by plasma.
  • the substrate temperature of the first substrate 20 when forming the charge separation promoting layer 14 is preferably 300 ° C. or higher, more preferably 400 ° C. or higher, and further preferably 500 ° C. or higher. Further, the substrate temperature of the first substrate 20 at the time of forming the charge separation promoting layer 14 is preferably 900 ° C. or less and 600 ° C. or less from the viewpoint that the damage of the photocatalyst layer 12 can be reduced while improving the crystallinity of GaN. Is more preferable. In the example of FIG. 3, the case where the charge separation promoting layer 14 is a continuous film is shown. However, the present invention is not limited to this.
  • a film that is not a continuous film using various jigs for example, punching metal shape, mesh shape
  • a film having a shape like a lattice or a porous body having penetrating pores may be formed.
  • a jig having a shape corresponding to a desired shape can be adopted as the jig.
  • a mesh-shaped jig may be used.
  • Step S3 current collecting layer forming step
  • step S3 is a step of forming the current collecting layer 16 on the surface of the charge separation promoting layer 14 opposite to the photocatalyst layer 12.
  • Examples of the method for forming the current collecting layer 16 include vapor deposition and sputtering.
  • Step S4 is a step of removing the photocatalyst particles 18 that are not in contact with the charge separation promoting layer 14.
  • the removal method is not particularly limited, for example, a cleaning step S4c in which the photocatalyst particles 18 are removed by an ultrasonic cleaning process using a cleaning liquid is applicable.
  • the cleaning liquid examples include water; aqueous electrolyte solutions; alcohols such as methanol and ethanol; aliphatic hydrocarbons such as pentane and hexane; aromatic hydrocarbons such as toluene and xylene; ketones such as acetone and methyl ethyl ketone; Esters; halides such as fluorocarbons; ethers such as diethyl ether and tetrahydrofuran; sulfoxides such as dimethyl sulfoxide; nitrogen-containing compounds such as dimethylformamide; Of these, water or a water-miscible solvent such as methanol, ethanol or tetrahydrofuran is preferred.
  • alcohols such as methanol and ethanol
  • aliphatic hydrocarbons such as pentane and hexane
  • aromatic hydrocarbons such as toluene and xylene
  • ketones such as acetone and methyl ethyl ketone
  • Esters
  • the second substrate is placed on the surface of the current collecting layer 16 opposite to the charge separation promoting layer 14 side. It is preferable that the substrate is provided for the cleaning step S4c through the reinforcing substrate forming step S4a for providing (not shown).
  • substrate is not restrict
  • the substrate removal step S4b for removing the first substrate 20 shown in FIG. 5 (preferably, after the substrate removal step S4b subsequent to the reinforcing substrate formation step S4a), it is not in contact with the charge separation promoting layer 14. It is preferable to remove the photocatalyst particles 18 by the washing step S4c.
  • part of the charge separation promoting layer 14 and the non-contact photocatalyst particles 18 can be physically removed together with the first substrate 20 by the substrate removal step S ⁇ b> 4 b.
  • the laminated body 100 in which the photocatalyst layer 12, the charge separation promoting layer 14, and the current collecting layer 16 are laminated in this order is obtained.
  • the laminated body 100 may be used as the oxygen generation electrode 10 as it is, or may be used for each step described later.
  • the photocatalyst particles 18 that are in contact with the charge separation promoting layer 14 are physically bonded to the charge separation promoting layer 14 to some extent physically, the photocatalyst particles 18 are also dropped when the first substrate 20 is removed.
  • the non-contact photocatalyst particles 18 that could not be removed in the substrate removal step S4b are further subjected to a removal process by the washing step S4c.
  • the method for removing the first substrate 20 performed in the substrate removing step S4b is not particularly limited.
  • the method for removing the first substrate 20 mechanically, dipping in water to wet the laminated portion of the photocatalyst particles 18 is performed.
  • a method of removing the first substrate 20 mechanically is preferable in that the possibility of damage to the photocatalyst layer 12 is low.
  • the method for producing the oxygen generating electrode 10 may include a promoter supporting step (step S5) for supporting a promoter on the photocatalyst layer 12.
  • the method for supporting the cocatalyst is not particularly limited, and general methods such as an impregnation method, an electrodeposition method, a sputtering method, and a vapor deposition method can be used.
  • the electrodeposition method may be a photodeposition method in which light irradiation is performed during electrodeposition.
  • the cocatalyst formation step may be repeated twice or more.
  • the method for producing an oxygen generating electrode of the present invention may include a metal wire bonding step and an epoxy resin coating step. These steps can be performed before or after step S5.
  • the metal wire bonding step is a step of bonding a metal wire to the laminate 100, and can be soldered using, for example, metal indium.
  • a metal wire with a resin coating may be used as the metal wire.
  • the epoxy resin coating step is a step of coating the surface of the laminate 100 other than the photocatalyst layer 12 with an epoxy resin in order to suppress leakage from the exposed metal portion. As an epoxy resin, a well-known thing can be used.
  • the method for producing the oxygen generating electrode has been described by taking the method using the particle transfer method as an example. However, as long as the function of the charge separation layer in the obtained oxygen generating electrode is exhibited, the oxygen generating of the present invention is performed. You may manufacture an electrode by methods other than the above. As a method for producing the oxygen generating electrode other than the above, for example, a vapor phase film forming method and the like can be mentioned. As an example of the method for producing the oxygen generating electrode of the present invention, an example of a production method using the vapor phase film forming method without using the particle transfer method is shown below. First, a current collecting layer is formed on the reinforcing substrate.
  • GaN is formed as a charge separation layer on the current collecting layer by metal organic chemical vapor deposition (MOCVD).
  • MOCVD metal organic chemical vapor deposition
  • a metal Ta film is formed on the charge separation layer by sputtering or vapor deposition, and then nitrided under an ammonia stream to form Ta 3 N 5 (photocatalyst layer), thereby obtaining an oxygen generating electrode. It is done.
  • this manufacturing method may have the process of carry
  • a method for producing a photocatalyst layer (Ta 3 N 5 ) or the like by a vapor deposition method for example, the method shown in “Angew. Chem. Int. Ed. 2017, 56, 4739-4743” can also be referred to.
  • Ta is preferable as the type of metal.
  • impurity diffusion from the reinforcing substrate can be suppressed at the time of high-temperature treatment in the subsequent nitriding process.
  • glass or oxide is used for the reinforcing substrate, if Ta is selected as the material for the current collecting layer, the same effect as when Ta is used as the material for the reinforcing substrate can be obtained.
  • the photocatalytic layer (Ta 3 N 5) is disposed on the transparent reinforcing substrate via the transparent current collecting layer. ) Can be produced.
  • the transparent conductive film include oxides and nitrides, but nitrides are preferable in view of nitriding resistance.
  • the photocatalytic electrode functions even when light is incident from the back surface (the surface opposite to the surface on which the current collecting layer is formed on the reinforcing substrate). Can improve the efficiency of use.
  • a current collecting layer is formed on an insulating reinforcing substrate other than a metal substrate, and a Ta 3 N 5 layer (photocatalyst layer) is produced by nitriding the Ta film, the current collector layer is separated from the Ta film.
  • Providing GaN as a charge separation layer also has an advantage that the function of the current collecting layer is not lost because GaN prevents nitridation of the current collecting layer.
  • the module of the present invention has the oxygen generating electrode described above.
  • the module includes, for example, a cell in which water is stored, an oxygen generation electrode and a hydrogen generation photocatalyst electrode (hereinafter referred to as “hydrogen generation electrode”) disposed so as to be immersed in the water in the cell, and oxygen generation.
  • a voltage applying means connected to the electrode and the hydrogen generating electrode and applying a voltage with the oxygen generating electrode as an anode and the hydrogen generating electrode as a cathode.
  • the module of the present invention is suitably used as a photocatalyst module for water splitting.
  • the light to be irradiated may be any light that can cause a photodegradation reaction. Specifically, visible light such as sunlight, ultraviolet light, infrared light, and the like can be used. Sunlight that is inexhaustible is preferred.
  • Example 1 ⁇ Synthesis of Ta 3 N 5 particles> Ta 2 O 5 (manufactured by Kojundo Chemical Laboratory Co., Ltd.) was treated in a vertical tubular furnace under an ammonia stream at 850 ° C. for 15 hours to obtain Ta 3 N 5 particles.
  • Ta 3 N 5 layers A suspension in which 50 mg of Ta 3 N 5 particles are suspended in 1 mL of 2-propanol is prepared by ultrasonic wave, and this suspension is drop-cast on a glass substrate (size: 10 ⁇ 30 mm) to be suspended.
  • a Ta 3 N 5 particle film (Ta 3 N 5 layer) in which Ta 3 N 5 particles were deposited in a film shape on a glass substrate was obtained.
  • ⁇ Film formation of GaN layer> Using plasma enhanced chemical vapor deposition (CVD), a GaN layer was formed on the surface of a glass substrate on which Ta 3 N 5 layer was deposited using trimethylgallium (TMG) as a Ga source while reacting with nitrogen plasma. . At this time, the substrate temperature of the glass substrate was set to 500 ° C., and the film thickness was about 50 nm (film formation time 5 minutes).
  • TMG trimethylgallium
  • Ta layer and Ti layer ⁇ Formation of current collecting layer (Ta layer and Ti layer)> After the Ta layer was formed at 100 W and 350 ° C. (film thickness 50 nm) by RF (high frequency) magnetron sputtering film forming method, the Ti layer was formed at 200 W and 200 ° C. (film thickness 5 ⁇ m).
  • a laminate A of Ta 3 N 5 / GaN / Ta / Ti was prepared.
  • a laminated body B made of Ta 3 N 5 / GaN / Ta / Ti is manufactured by peeling the glass substrate from the laminated body A and removing excess Ta 3 N 5 particles by ultrasonic treatment in water. This was made available as an electrode.
  • ⁇ Supporting promoter> The laminate B is immersed in an aqueous solution of 0.05 M iron nitrate and 0.375 M sodium nitrate, pulled up, and heated at 100 ° C. for 8 minutes, whereby ferrihydrite ( Ferrihydrite, 5Fe 2 O 3 ⁇ 9H 2 O) was supported. Next, 0.35 mL of a 28% aqueous ammonia solution was dropped into a 0.04 M cobalt acetate ethanol solution to prepare a solution. The laminate B after supporting ferrihydrite is immersed in this solution, and the co-catalyst is formed on the ferrihydrite surface by solvothermal treatment at 120 ° C.
  • Example 1 Co 3 O 4 / 5Fe 2 O 3 .9H 2 O / Ta 3 N 5 / GaN / Ta / Ti).
  • Example 2 Oxygen generation in Example 2 was performed in the same manner as in Example 1 except that a Zr layer was produced in place of the Ta layer in “ ⁇ Film formation of current collecting layer (Ta layer and Ti layer)>” in Example 1. to obtain an electrode (Co 3 O 4 / 5Fe 2 O 3 ⁇ 9H 2 O / Ta 3 N 5 / GaN / Zr / Ti).
  • Example 3 The oxygen generation of Example 3 was performed in the same manner as in Example 1 except that the Sn layer was produced instead of the Ta layer in “ ⁇ Film formation of current collecting layer (Ta layer and Ti layer)” in Example 1. to obtain an electrode (Co 3 O 4 / 5Fe 2 O 3 ⁇ 9H 2 O / Ta 3 N 5 / GaN / Sn / Ti).
  • Example 4 An oxygen generating electrode of Example 4 was obtained in the same manner as in Example 1 except that the substrate temperature was changed to 600 ° C. in “ ⁇ Film formation of GaN layer” in Example 1 (Co 3 O 4 / 5Fe 2 O 3 .9H 2 O / Ta 3 N 5 / GaN / Ta / Ti).
  • Example 5 An oxygen generating electrode of Example 5 was obtained in the same manner as in Example 1 except that the substrate temperature was changed to 400 ° C. in “ ⁇ Film formation of GaN layer>” in Example 1 (Co 3 O 4 / 5Fe 2 O 3 .9H 2 O / Ta 3 N 5 / GaN / Ta / Ti).
  • Example 6 An oxygen generating electrode of Example 6 was obtained in the same manner as in Example 1 except that the substrate temperature was changed to 300 ° C. in “ ⁇ Film formation of GaN layer>” in Example 1 (Co 3 O 4 / 5Fe 2 O 3 .9H 2 O / Ta 3 N 5 / GaN / Ta / Ti).
  • Example 7 An oxygen generating electrode of Example 7 was obtained in the same manner as in Example 1 except that “ ⁇ Synthesis of Ta 3 N 5 particles>” in Example 1 was changed as follows (Co 3 O 4 / 5Fe). 2 O 3 .9H 2 O / Ta 3 N 5 : Zr, Mg / GaN / Ta / Ti). Note that “Ta 3 N 5 : Zr, Mg” indicates that Ta 3 N 5 is doped with Zr and Mg. A method for synthesizing Ta 3 N 5 : Zr, Mg particles will be described.
  • Ta 2 O 5 manufactured by Kojundo Chemical Laboratory Co., Ltd.
  • ZrO NO 3
  • Mg NO 3
  • Mg 2 ⁇ 6H 2 O
  • the particles were treated in a vertical tubular furnace under an ammonia stream at 850 ° C. for 15 hours to obtain Ta 3 N 5 : Mg, Zr particles.
  • Comparative Example 1 An oxygen generating electrode of Comparative Example 1 was obtained in the same manner as in Example 1 except that “ ⁇ Film formation of GaN layer>” in Example 1 was not performed (Co 3 O 4 / 5Fe 2 O 3. 9H 2 O / Ta 3 N 5 / Ta / Ti).
  • Comparative Example 2 An oxygen generating electrode of Comparative Example 2 was obtained in the same manner as in Example 7 except that “ ⁇ Film formation of GaN layer>” in Example 7 was not performed (Co 3 O 4 / 5Fe 2 O 3. 9H 2 O / Ta 3 N 5 : Zr, Mg / Ta / Ti).
  • Example 3 Comparison was made in the same manner as in Example 3 except that TiO 2 ; Rh, Sb particles were used instead of Ta 3 N 5 particles, and “ ⁇ Film formation of GaN layer” in Example 3 was not performed. was obtained oxygen generating electrode example 3 (Co 3 O 4 / 5Fe 2 O 3 ⁇ 9H 2 O / TiO 2; Rh, Sb / Sn / Ti). “TiO 2 ; Rh, Sb” means that TiO 2 is doped with Rh and Sb. TiO 2; Rh, illustrates a method of synthesizing Sb particles.
  • titanium oxide manufactured by Kojundo Chemical Co., Ltd.
  • rhodium oxide manufactured by Wako Pure Chemical Industries, Ltd.
  • antimony oxide manufactured by Nacalai Tesque
  • Comparative Example 4 was carried out in the same manner as in Example 3, except that SnNb 2 O 6 particles were used instead of Ta 3 N 5 particles, and “ ⁇ Film formation of GaN layer>” in Example 3 was not performed. was obtained oxygen generating electrode (Co 3 O 4 / 5Fe 2 O 3 ⁇ 9H 2 O / SnNb 2 O 6 / Sn / Ti). The synthesis method of SnNb 2 O 6 particles. First, stannous oxide (manufactured by Wako Pure Chemical Industries, Ltd.) and niobium oxide (manufactured by Sigma Aldrich Japan GK) were mixed in an agate mortar to obtain a mixture.
  • the obtained mixture was put in an electric tubular furnace and subjected to an annealing treatment at 800 ° C. for 10 hours under a nitrogen flow to obtain SnNb 2 O 6 particles.
  • Comparative Example 5 was the same as Example 3 except that BaTaO 2 N particles were used instead of Ta 3 N 5 particles, and “ ⁇ Film formation of GaN layer>” in Example 3 was not performed. was obtained oxygen generating electrode (Co 3 O 4 / 5Fe 2 O 3 ⁇ 9H 2 O / BaTaO 2 N / Sn / Ti). A method for synthesizing BaTaO 2 N particles will be described. First, tantalum oxide (manufactured by Kojundo Chemical Laboratory Co., Ltd.) and barium carbonate (manufactured by Kanto Chemical Co., Ltd.) were mixed in an agate mortar to obtain a mixture.
  • tantalum oxide manufactured by Kojundo Chemical Laboratory Co., Ltd.
  • barium carbonate manufactured by Kanto Chemical Co., Ltd.
  • the obtained mixture was put in an electric furnace and baked at 1000 ° C. for 10 hours to obtain an oxide precursor.
  • This oxide precursor was put into an electric tubular furnace and subjected to nitriding treatment at 900 ° C. for 10 hours under a 100% ammonia stream to obtain BaTaO 2 N particles.
  • Comparative Example 6 The oxygen of Comparative Example 5 was the same as Example 3 except that BiVO 4 particles were used instead of Ta 3 N 5 particles, and “ ⁇ Film formation of GaN layer>” in Example 3 was not performed. was obtained generating electrode (Co 3 O 4 / 5Fe 2 O 3 ⁇ 9H 2 O / BiVO 4 / Sn / Ti). A method for synthesizing BiVO 4 particles will be described.
  • NH 4 VO 3 and aqueous nitric acid (Kanto Chemical Co., Ltd.), Bi (NO 3) and nitric acid aqueous solution of 3 ⁇ 5H 2 O (Kanto Chemical Co., Ltd.), are prepared, 30 min each After stirring, the two types of solutions were mixed at a molar ratio of 1: 1 to obtain a mixed solution. Next, after adding urea (manufactured by Kanto Chemical Co., Inc.) to the mixed solution, it was sealed in an autoclave and subjected to microwave hydrothermal reaction at 200 ° C. for 1 hour to obtain BiVO 4 particles.
  • urea manufactured by Kanto Chemical Co., Inc.
  • a reference sample A was prepared by forming a GaN layer having a thickness of 50 nm on a 300 ° C. sapphire substrate by plasma enhanced chemical vapor deposition. Then, the diffraction peak intensity of the (002) plane of the GaN layer of the reference sample A was measured using an X-ray diffractometer (trade name “SmartLab”, manufactured by Rigaku Corporation) under the following conditions. Next, the diffraction peak intensity of the (002) plane of the GaN layer included in the oxygen generation electrodes of Examples 1 and 4 to 6 was measured under the same measurement conditions as in the reference sample A.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Electrochemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Catalysts (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)

Abstract

本発明の課題は、光電流密度に優れた酸素発生用光触媒電極、酸素発生用光触媒電極の製造方法およびモジュールを提供することである。本発明の酸素発生用光触媒電極は、集電層と、Taを含有する光触媒層とを含む、酸素発生用光触媒電極において、上記集電層と上記光触媒層との間に、電荷分離促進層を有する。

Description

酸素発生用光触媒電極、酸素発生用光触媒電極の製造方法およびモジュール
 本発明は、酸素発生用光触媒電極、酸素発生用光触媒電極の製造方法およびモジュールに関する。
 炭酸ガス排出削減、エネルギーのクリーン化の観点から、太陽エネルギーを利用して、光触媒により水を分解して、水素および酸素を製造する技術に注目が集まっている。
 光触媒による水分解方法は、大きく2種類に分類され、一つは粉体状の光触媒を用いて、懸濁液の中で水分解反応を行う方法であり、もう一つは導電性の支持体(例えば、集電層など)上に光触媒を堆積した電極と、対極と、を使用して水分解反応を行う方法である。
 このような水分解方法のうち、後者の水分解方法は、水素と酸素とを別々に回収できるなどの利点がある。このような水分解方法に用いられる水分解用光触媒電極として、例えば特許文献1には、「光触媒層と、上記光触媒層上に配置され、蒸着法にて形成される集電層と、を有する水分解用光触媒電極。」が開示されている。
特開2016-55279号公報
 近年は、さらに効率よく水分解を進めることが求められており、光触媒電極の特性に関して一層の向上が求められている。
 ここで、2電極水分解モジュールの水分解は、水素発生用光触媒電極の水分解効率と酸素発生用光触媒電極の水分解効率とが釣り合うところで動作をする。一般的には、酸素発生用光触媒電極の性能が劣っている場合が多いため、酸素発生用光触媒電極の水分解効率を上げることが、モジュールとしての性能を上げることにつながる。
 酸素発生用光触媒電極の性能を向上させるための1つの方法としては、光電流密度を向上させることが挙げられる。
 本発明者らが、特許文献1の実施例欄に記載の光触媒を用いて酸素発生用光触媒電極を作製したところ、光電流密度について改善の余地があることを見出した。
 そこで、本発明は、光電流密度に優れた酸素発生用光触媒電極およびこれを有するモジュールの提供を課題とする。
 本発明者らは、上記課題について鋭意検討した結果、Taを含有する光触媒層を用いた際に、光触媒層と集電層との間に電荷分離促進層を配置することで、酸素発生用光触媒電極の光電流密度が優れることを見出し、本発明に至った。
 すなわち、本発明者は、以下の構成により上記課題が解決できることを見出した。
[1]
 集電層と、Taを含有する光触媒層とを含む、酸素発生用光触媒電極において、
 上記集電層と上記光触媒層との間に、電荷分離促進層を有する、酸素発生用光触媒電極。
[2]
 上記電荷分離促進層は、上記電荷分離促進層が有する価電子帯上端が、上記光触媒層が有する価電子帯上端よりも深い準位であり、かつ、上記電荷分離促進層が有する伝導帯下端が、上記光触媒層が有する伝導帯下端よりも深い準位となる無機材料を含む、[1]に記載の酸素発生用光触媒電極。
[3]
 上記無機材料が、GaNである、[2]に記載の酸素発生用光触媒電極。
[4]
 上記無機材料が、結晶性無機材料である、[2]に記載の酸素発生用光触媒電極。
[5]
 上記無機材料が、結晶性GaNである、[4]に記載の酸素発生用光触媒電極。
[6]
 CuKα線を用いたX線回折法によって測定された上記結晶性GaNの(002)面の回折ピーク強度が、以下の方法Aで作製されたGaN層の(002)面の回折ピーク強度を1とした場合に、1超である、[5]に記載の酸素発生用光触媒電極。
方法A:プラズマ化学気相成長法を用いて、300℃のサファイア基板上に膜厚50nmのGaN層を成膜する。
[7]
 上記Taが、バンドギャップを広げる材料でドープされたTaである、[1]~[6]のいずれか1つに記載の酸素発生用光触媒電極。
[8]
 上記バンドギャップを広げる材料が、ZrおよびMgの少なくとも一方の元素である、[7]に記載の酸素発生用光触媒電極。
[9]
 上記集電層が、Taを含有する層を少なくとも1層有する、[1]~[8]のいずれか1つに記載の酸素発生用光触媒電極。
[10]
 上記集電層が、Tiを含有する層を少なくとも1層有する、[1]~[9]のいずれか1つに記載の酸素発生用光触媒電極。
[11]
 上記Taを含有する層が、上記電荷分離促進層と接して積層されている、[9]に記載の酸素発生用光触媒電極。
[12]
 上記集電層が、Tiを含有する層を少なくとも1層有し、
 上記Tiを含有する層が、上記Taを含有する層における上記電荷分離促進層と接している面とは反対側の面の上に積層されている、[11]に記載の酸素発生用光触媒電極。
[13]
 [1]~[12]のいずれか1つに記載の酸素発生用光触媒電極を含む、モジュール。
[14]
 基板上に光触媒層を形成する工程と、
 上記光触媒層上に電荷分離促進層を形成する工程と、
 上記電荷分離促進層上に集電層を形成する工程と、
 上記基板を上記光触媒層から剥離する工程と、を含む、酸素発生用光触媒電極の製造方法。
[15]
 上記光触媒層がTaを含有する、[14]に記載の酸素発生用光触媒電極の製造方法。
[16]
 上記電荷分離促進層は、上記電荷分離促進層の荷電子帯上端が、上記光触媒層の荷電子帯上端よりも深い準位であり、かつ、上記電荷分離促進層の伝導帯下端が、上記光触媒層の伝導体下端よりも深い準位である無機材料を含む、[14]または[15]に記載の酸素発生用光触媒電極の製造方法。
[17]
 上記無機材料が、GaNである、[16]に記載の酸素発生用光触媒電極の製造方法。
[18]
 上記無機材料が、結晶性無機材料である、[16]に記載の酸素発生用光触媒電極の製造方法。
[19]
 上記無機材料が、結晶性GaNである、[18]に記載の酸素発生用光触媒電極の製造方法。
[20]
 CuKα線を用いたX線回折法によって測定された上記結晶性GaNの(002)面の回折ピーク強度が、以下の方法Aで作製されたGaN層の(002)面の回折ピーク強度を1とした場合に、1超である、[19]に記載の酸素発生用光触媒電極の製造方法。
方法A:プラズマ化学気相成長法を用いて、300℃のサファイア基板上に膜厚50nmのGaN層を成膜する。
[21]
 上記電荷分離促進層が気相成膜法によって形成される、[14]~[20]のいずれか1つに記載の酸素発生用光触媒電極の製造方法。
[22]
 上記気相成膜法が化学気相成長法またはスパッタ法である、[21]に記載の酸素発生用光触媒電極の製造方法。
[23]
 上記化学気相成長法がプラズマ化学気相成長法である、[22]に記載の酸素発生用光触媒電極の製造方法。
 以下に示すように、本発明によれば、光電流密度に優れた酸素発生用光触媒電極およびこれを有するモジュールを提供できる。
本発明の酸素発生用光触媒電極の一実施形態を模式的に示す電極の断面図である。 本発明の酸素発生用光触媒電極の製造方法の工程の一部を示す模式的断面図である。 本発明の酸素発生用光触媒電極の製造方法の工程の一部を示す模式的断面図である。 本発明の酸素発生用光触媒電極の製造方法の工程の一部を示す模式的断面図である。 本発明の酸素発生用光触媒電極の製造方法の工程の一部を示す模式的断面図である。
 以下に、本発明の酸素発生用光触媒電極(以下、「酸素発生電極」という。)およびこれを含むモジュールについて説明する。
 なお、本発明において「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。
[酸素発生電極]
 本発明の酸素発生電極は、集電層と、Taを含有する光触媒層とを含む、酸素発生用光触媒電極において、上記集電層と上記光触媒層との間に電荷分離促進層を有する。本発明の酸素発生電極は、水分解用に好適である。
 図1に、本発明の酸素発生電極の一実施形態の断面図を示す。図1に示すように、酸素発生電極10は、光触媒としての光触媒層12と、電荷分離促進層14と、集電層16と、を有する。通常、酸素発生電極10は、白抜き矢印の方向から光が照射される場合が多く、その場合、光触媒層12の電荷分離促進層14とは反対側の表面が受光面となる。
 酸素発生電極10の光照射によって、光触媒層12中に電子と正孔(ホール)とが生成される。光触媒層12で生成した電子は、電荷分離促進層14を通過して集電層16に輸送され、配線により接続された対極(水素発生用光触媒電極)で生成される正孔と再結合して消滅する。一方で、光触媒層12で生成した正孔は、光触媒層12の電荷分離促進層14とは反対側の表面に輸送されて、水分解による酸素生成に使用される。
 通常、光触媒層中で生成した電子および正孔の輸送は、生成キャリアの濃度勾配によるドリフトのみが駆動力となるため、光触媒層の集電層とは反対側の表面に到達してほしい正孔が、集電層に向って移動することがある。光触媒層の集電層とは反対側の表面に到達できない正孔は、光触媒層内で再結合により失活することになるが、それはすなわち量子収率が低くなることを意味する。その結果、酸素発生電極の光電流密度が低くなると考えられる。
 ここで、酸素発生電極10は、光触媒層12と集電層16との間に電荷分離促進層14を有することで、上記問題を解決できる。電荷分離促進層14は、光触媒層12におけるキャリアの再結合を抑える機能を有し、具体的には、光触媒層12で生成した電子および正孔について、電子を集電層側に、正孔を光触媒層12の集電層16とは反対側の表面側に、分離させる。特に、電荷分離促進層14が、次のような性質をもつ無機材料を含むことで、上記機能がより発揮される。すなわち、電荷分離促進層14に含まれる無機材料が、光触媒層12を構成するTaと比較して、伝導帯下端と価電子帯上端とが低い位置にあれば、電子は電荷分離促進層14を通過するが、正孔は電荷分離促進層14を通過できなくなる。そのため、光触媒層12内部におけるキャリアの再結合を抑えるとともに、生成キャリアの濃度勾配による正孔を表面に輸送する駆動力を発生させることができるので、量子収率の改善効果が得られる。その結果、酸素発生電極10の光電流密度がより向上すると推察される。
 以下、本発明の酸素発生電極を構成する各部材について詳述する。
<光触媒層>
 光触媒層は、Taを含有する。Taは、可視光応答型の光触媒である。Taは、酸素生成光触媒の中でも、長波長応答性を示し、かつ、光触媒電極の水分解効率を向上できるという優れた特性をもつ。
 光触媒層は、後述する電荷分離促進層の一方の面上に配置される。光触媒層は、電荷分離促進層の一方の面の少なくとも一部の上に形成されていればよい。
 Taは、電荷分離促進層上で複数のTa粒子が連続して存在するような形態(すなわち、Ta層を構成する形態)で存在してもよいし、電荷分離促進層上で複数のTa粒子が非連続に存在する形態で存在してもよい。
 Taの含有量は、光触媒層を構成する材料の総量(100質量%)に対して、70質量%超100質量%以下が好ましく、90質量%超100質量%以下がより好ましく、95~100質量%がさらに好ましく、99~100質量%が特に好ましく、100質量%が最も好ましい。
 Taは、任意の材料でドープされていてもよい。ドープは、キャリア密度を上げて光触媒層の導電率の向上を目的に行われることがあるが(この場合、バンドギャップが狭くなる)、本発明においては、このようなキャリア密度の向上ではなく、バンドギャップを広げて正孔と電子の分離を促進するために、Taにドープされていることが好ましい。Taがバンドギャップを広げる材料でドープされていると、酸素発生電極の光電流密度がより向上する利点がある。
 このようなバンドギャップを広げる材料としては、Zr、Mg、Ba、およびNaなどの元素(ドーパント)が挙げられる。これらの中でも、Taの価電子帯および伝導帯の両方が上方にシフトして、酸素発生電極の光電流密度がより向上する観点から、ZrおよびMgの少なくとも一方の元素が好ましい。
 Taの形状は特に制限されず、粒子状、柱状、平板状などが挙げられる。
 Taが粒子状である場合には、Taの一次粒子の平均粒子径は特に制限されないが、水分解効率がより向上する観点から、0.5~50μmが好ましく、0.5~10μmがより好ましく、0.5~2μmがさらに好ましい。
 ここで、一次粒子とは、粉体を構成する最小単位の粒子を指し、平均粒子径は、TEM(透過型電子顕微鏡)またはSEM(走査型電子顕微鏡)にて観察された任意の100個のTa粒子の粒径(直径)を測定し、それらを算術平均したものである。なお、粒子形状が真円状でない場合は、長径を測定する。また、粒子形状が不定形(非球形)である場合には、球形近似した球の直径を測定する。
 なお、TEMには、透過型電子顕微鏡「JEM-2010HC」(商品名、日本電子(株)製)に準ずる装置を使用できる。また、SEMには、超高分解能電解放出型走査電子顕微鏡「SU8010」(商品名、(株)日立ハイテクノロジーズ製)に準ずる装置を使用できる。
 光触媒層の厚みは特に制限されないが、水分解効率がより優れる点で、0.01~3.0μmが好ましく、0.5~2.0μmがより好ましい。
 光触媒層は、Ta以外の他の光触媒を含有してもよい。他の光触媒としては、例えば、Taの酸化物、Taの酸窒化物(オキシナイトライド化合物)、Taと他の金属元素との酸窒化物、Tiと他の金属元素との酸窒化物、および、Nbと他の金属との酸化物などが挙げられる。
 Taと他の金属元素との酸窒化物としては、CaTaON、SrTaON、BaTaON、および、LaTaONなどが挙げられる。
 Tiと他の金属元素との酸窒化物としては、LaTiONが挙げられる。
 Nbと他の金属元素との酸窒化物としては、BaNbONおよびSrNbONなどが挙げられる。
 他の光触媒は、ドーパントでドープされていてもよい。ドーパントとしては、Zr、Mg、W、Mo、Ni、Ca、La、SrおよびBaなどの元素が挙げられる。
 他の光触媒を含有する場合、光触媒層を構成する材料の総量(100質量%)に対して、30質量%以下が好ましく、10質量%以下がより好ましい。
<集電層>
 集電層は、上記Taにて生成した電子を流す役割を有する。なお、集電層上には、後述する電荷分離促進層が形成される。
 集電層の形状は、特に制限されず、例えばパンチングメタル状、メッシュ状、格子状、または、貫通した細孔を持つ多孔体のようなものであってもよい。
 集電層を構成する材料は、導電特性を示す材料であれば特に制限されず、例えば、炭素(C)、金属の単体、合金、金属酸化物、金属窒化物、および、金属の酸窒化物などが挙げられる。
 集電層を構成する材料としては、具体的には、Au、Al、Cu、Cd、Co、Cr、Fe、Ga、Ge、Hg、Ir、In、Mn、Mo、Nb、Ni、Pb、Pd、Pt、Ru、Re、Rh、Sb、Sn、Zr、Ta、Ti、V、W、および、Znなどの金属、ならびに、これらの合金;TiO、ZnO、SnO、Indium Tin Oxide(ITO)、SnO、TiO(:Nb)、SrTiO(:Nb)、フッ素ドープ酸化錫(FTO)、CuAlO、CuGaO、CuInO、ZnO(:Al)、ZnO(:Ga)、および、ZnO(:In)などの酸化物;AlN、TiNおよびTaなどの窒化物;TaONなどの酸窒化物;ならびに、Cが挙げられる。
 なお、本明細書において、α(:β)と記載がある場合、α中にβがドープされているものを表す。例えば、TiO(:Nb)は、TiO中にNbがドープされていることを表す。
 これらの中でも、集電層は、酸素発生電極の光電流密度がより向上する観点から、Taを含有することが好ましく、Taを含有する層を少なくとも1層有することがより好ましい。
 集電層の電荷分離促進層とは反対側の表面上に、酸素発生電極の機械的強度を向上するための基板(以下、「補強基板」ともいう。)を設ける場合がある。この場合、集電層がTaを含有する層を有していると、集電層のTa以外の成分(例えば後述するTi)が拡散することを抑制でき、酸素発生電極の光電流密度がより向上すると推測される。
 上記効果がより発揮される観点から、Taを含有する層は、電荷分離促進層と接して積層されていることが好ましい。
 ここで、Taを含有する層とは、この層に含まれる全原子のうち、Ta原子を最も多く含有する層を指す。具体的には、Taを含有する層において、Ta原子の含有量は、この層に含まれる全原子(100atm%)に対して、50atm%超100atm%以下が好ましく、70~100atm%がより好ましく、90~100atm%がさらに好ましい。
 集電層は、集電層の剛性を向上できる観点から、Tiを含有することが好ましく、Tiを含有する層を少なくとも1層有することがより好ましい。
 ここで、Tiを含有する層とは、この層に含まれる全原子のうち、Ti原子を最も多く含有している層を指す。具体的には、Tiを含有する層において、Ti原子の含有量は、この層に含まれる全原子(100atm%)に対して、50atm%超100atm%以下が好ましく、70~100atm%がより好ましく、90~100atm%がさらに好ましい。
 特に、集電層は、集電層の剛性を担保しつつ、酸素発生電極の光電流密度をより向上する観点から、Taを含有する層およびTiを含有する層の両方を有することが好ましい。この場合、酸素発生電極の光電流密度をより一層向上できる点から、Taを含有する層が電荷分離促進層側に配置されていることが好ましい。より好ましくは、Taを含有する層が電荷分離促進層と接しており、Tiを含有する層が、Taを含有する層における電荷分離促進層と接している面とは反対側の面の上に積層されている態様である。
 集電層の抵抗値は特に制限されないが、酸素発生電極の特性(光電流密度)がより優れる点で、10.0Ω/□以下が好ましく、1.0Ω/□以下がより好ましい。
 集電層の抵抗値の測定方法は、ガラス基板上に製膜した集電層の抵抗値を4端子4探針法(三菱化学アナリテック製ロレスタGP MCP-T610型、プローブPSP)で測定する。
 集電層の厚みは特に制限されないが、導電特性およびコストのバランスの点から、0.1μm~10mmが好ましく、1μm~2mmがより好ましい。
<電荷分離促進層>
 電荷分離促進層は、上述したようにTaにおけるキャリアの再結合を抑える機能をもつ。電荷分離促進層の形状は、連続膜であるが、特に制限されず、例えば、一部連続していない部分が存在する膜(断続膜)、パンチングメタル状、メッシュ状、格子状、または、貫通した細孔を持つ多孔体のようなものであってもよい。特に、スパッタの場合には下地の凹凸が大きい場合に断続膜となることがある。
 電荷分離促進層は、上記機能がより発揮される観点から、電荷分離促進層が有する荷電子帯上端が、光触媒層が有する荷電子帯上端よりも深い準位であり、かつ、電荷分離促進層が有する伝導帯下端が、光触媒層が有する伝導帯下端よりも深い準位となる無機材料を含むことが好ましい。本明細書において、このような性質をもつ無機材料を「特定無機材料」ともいう。
 電荷分離促進層は、上記集電層上に配置されている。具体的には、電荷分離促進層の一方の面には、集電層が配置され、電荷分離促進層の集電層とは反対の面には、光触媒層が配置されている。
 特定無機材料は、GaNが好ましい。GaNは、窒化物であるため、酸素雰囲気下で形成される酸化物を用いる場合と比較して、Taの劣化を抑制できるという利点がある。
 特定無機材料は、結晶性無機材料が好ましく、結晶性GaNがより好ましい。結晶性無機材料とは、結晶性をもつ無機材料を意味し、結晶性GaNとは、結晶性をもつGaNを意味する。このように、特定無機材料が結晶性を有することで、電荷分離促進層内における電子の輸送特性が向上して、酸素発生電極の光電流密度がより向上する。
 本発明において、結晶性とは、空間的に周期的な原子配列をもった固体物質が示す性質のことをいう。例えば、無機材料にX線を照射した場合、回折ピークが得られることを確認できれば、無機材料が結晶性を有するといえる。
 具体的には、GaNの結晶性は、X線回折法によって測定されるGaNの(002)面のピークの有無により判断できるが、GaNの結晶化度がより高くなり、酸素発生電極の光電流密度がより一層向上する観点から、以下の回折ピーク強度比を示す結晶性GaNを用いることが好ましい。
 すなわち、CuKα線を用いたX線回折法によって測定された、本発明の酸素発生電極における結晶性GaNの(002)面の回折ピーク強度は、以下の方法Aで作製されたGaN層の(002)面の回折ピーク強度を1とした場合に、1以上が好ましく、1超がより好ましく、2以上がさらに好ましく、3以上が特に好ましく、4以上が最も好ましい。また、上限値は特に限定されない。
 なお、本明細書では、方法Aで作製されたGaN層の(002)面の回折ピーク強度を基準として算出される、酸素発生電極における結晶性GaNの(002)面の回折ピーク強度の値を、「回折ピーク強度比」と略記する場合がある。
 方法A:プラズマ化学気相成長法を用いて、300℃のサファイア基板上に膜厚50nmのGaN層を製膜する。
 電荷分離促進層の厚みは特に制限されないが、上記機能がより発揮される点から、10~100nmが好ましく、30~70nmがより好ましい。
<助触媒>
 本発明の酸素発生電極は、助触媒を有していてもよい。この場合、助触媒は、Taの少なくとも一部に担持される。助触媒は、Ta上で層状に存在する形態であってもよいし、Ta上で非連続に存在する形態(例えば、島状の形態など)であってもよい。
 助触媒としては、例えば、Ti、Mn、Fe、Co、Ni、Cu、Ru、Rh、Pd、Ag、In、W、Ir、Mg、Ga、Ce、CrおよびPbなどの金属、ならびに、これらの金属の金属化合物(錯化合物も含む)、金属間化合物、合金、酸化物、複合酸化物、窒化物、酸窒化物、硫化物、および、酸硫化物が挙げられる。
 これらの中でも、酸素生成助触媒能に優れるという観点から、Ni、FeおよびCoからなる群より選択される少なくとも1種を含むことが好ましく、FeおよびCoからなる群より選択される少なくとも1種を含むことがより好ましく、Coの酸化物(例えば、Co)およびFeの酸化物(例えば、フェリハイドライト(Ferrihydrite、5Fe・9HO))からなる群より選択される少なくとも1種を含むことがさらに好ましい。
 助触媒が層状に形成されている場合の厚みは特に制限されないが、0.5~10nmが好ましく、0.5~2nmがより好ましい。
<他の層>
 本発明の酸素発生電極は、上記以外の他の層を有していてもよい。例えば、集電層の電荷分離促進層とは反対側の表面上に、酸素発生電極の機械的強度を向上するための補強基板を有していてもよい。また、集電層と補強基板との間には接着層を有していてもよい。
 なお、補強基板としては、例えば、金属板(例えば、Ta)、酸化物基板(例えば、石英板)、ガラス板およびプラスチックシートなどを用いることができる。
<酸素発生電極の製造方法>
 本発明の酸素発生電極の製造方法は、基板上に光触媒層を形成する工程と、上記光触媒層上に電荷分離促進層を形成する工程と、上記電荷分離促進層上に集電層を形成する工程と、上記基板を上記光触媒層から剥離する工程と、を含む。
 光触媒層は、例えば、Ta、および、Ta以外の他の光触媒(上述した他の光触媒)からなる群より選択される少なくとも1種の光触媒を含有することが好ましく、Taを含有することが好ましい。
 本発明の酸素発生電極の製造方法により得られる酸素発生電極は、光触媒層がTaを含有する態様の他に、光触媒層がTaを含有せずに、Ta以外の光触媒を含有する態様も含むが、光触媒層がTaを含有する態様が好ましい。
 本発明の酸素発生電極の製造方法により得られる酸素発生電極の好適態様は、上述した本発明の酸素発生電極と同様であるので、その説明を省略する。
 本発明の酸素発生電極の製造方法について、以下の図2~図5に示す粒子転写法を利用した製造方法を例にして説明する。
 図2~図5は、本発明の酸素発生電極の製造工程を説明するための概略図である。
 図2~図5に示す製造方法は、光触媒層12を形成する工程S1と、光触媒層12の一方の面に、電荷分離促進層14を形成する工程S2と、電荷分離促進層14の光触媒層12側とは反対側の面に集電層16を形成する工程S3と、を少なくとも有する。
 本発明の酸素発生電極の製造方法は、上記工程S3の後に、非接触の光触媒粒子18を除去する工程S4を実施してもよい。また、工程S4に関しては、後述するような、補強基板形成工程S4aまたは洗浄工程S4cを有することが好ましい。
 また、本発明の酸素発生電極の製造方法は、上記工程S4の後に、助触媒を担持させる工程S5を備えていてもよい。なお、助触媒の担持は、工程S5に限定されるものではない。例えば、工程S5を実施する代わりに、予め助触媒を担持させた光触媒を用いてもよい。
 また、本発明の酸素発生電極の製造方法は、金属線接着工程と、エポキシ樹脂被覆工程と、を備えていてもよい。この場合、金属線接着工程およびエポキシ樹脂被覆工程は、工程S5の前または後に実施されることが好ましい。
(工程S1:光触媒層形成工程)
 図2に示すように、工程S1は、第1基板20上に光触媒層12を形成する工程である。光触媒層12には、光触媒粒子18が含まれる。
 第1基板20としては、光触媒との反応に不活性であり、化学的安定性および耐熱性に優れる材料を選択することが好ましく、例えば、ガラス板、Ti板、Cu板が好ましく、ガラス板がより好ましい。
 なお、光触媒層12が配置される第1基板20の表面は、研磨処理および/または洗浄処理が施されていてもよい。
 光触媒層12の形成方法は特に制限されないが、例えば、光触媒粒子18を溶媒に分散させて懸濁液として、第1基板20上に懸濁液を塗布した後、必要に応じて乾燥することで実施される。
 懸濁液中の溶媒としては、水;メタノール、エタノール、および、2-プロパノールなどのアルコール類;アセトンなどのケトン類;ベンゼン、トルエン、および、キシレンなどの芳香族類;などが挙げられる。なお、溶媒に光触媒粒子18を分散させる場合、超音波処理を施すことで、光触媒粒子18を溶媒中に均一に分散させることができる。
 第1基板20上に懸濁液を塗布する方法は特に制限されず、例えば、ドロップキャスト法、スプレー法、ディップ法、スキージ法、ドクターブレード法、スピンコート法、スクリーンコート法、ロールコーティング法、および、インクジェット法などの公知の方法が挙げられる。また、懸濁液を入れた容器の底面に第1基板20を配置しておき、第1基板20上に光触媒粒子18を沈降させた後に溶媒を除去する方法でもよい。
 塗布後の乾燥条件としては、溶媒の沸点以上の温度に保持するか、溶媒が短時間で揮発する程度の温度(例えば、15~200℃程度)に保持または加熱すればよい。
 光触媒層12と電荷分離促進層14との間の導電パスの形成が阻害されないように、光触媒層12にはバインダーなど他の成分は含まれない方が好ましい。特に、有色または絶縁性のバインダーは含まれない方が好ましい。
 なお、図2の例では、光触媒層12を形成する方法として、第1基板20上に光触媒粒子18を積層する方法を示したが、例えば、第1基板20を使用せずに、光触媒粒子18とバインダーとを混錬して層を形成する方法、光触媒粒子18の加圧成型により層を形成する方法なども利用できる。
(工程S2:電荷分離促進層形成工程)
 図3に示すように、工程S2は、工程S1で形成された光触媒層12の第1基板20とは反対側の面に、電荷分離促進層14を形成する工程である。
 電荷分離促進層14を形成する方法は、気相成膜法が好ましい。気相成膜法は、化学気相成長法またはスパッタ法が好ましく、化学気相成長法がより好ましい。特に、化学気相成長法の中でも、電荷分離促進層14を構成する材料の結晶化がプラズマによって低温で促進されることから、プラズマ化学気相成長法が好ましい。
 電荷分離促進層14の形成時の第1基板20の基板温度は、GaNの結晶性を向上させる観点から、300℃以上が好ましく、400℃以上がより好ましく、500℃以上がさらに好ましい。また、電荷分離促進層14の形成時の第1基板20の基板温度は、GaNの結晶性を向上させつつ、光触媒層12のダメージを低減できるという観点から、900℃以下が好ましく、600℃以下がより好ましい。
 図3の例では、電荷分離促進層14が連続膜である場合を示したが、これに限定されず、例えば、各種治具を使用して連続膜でない膜(例えば、パンチングメタル状、メッシュ状、格子状、または、貫通した細孔を持つ多孔体のような形状の膜)を作成してもよい。この場合、治具としては、所望の形状に応じた形態の治具を採用でき、例えば、メッシュ状の膜を作製したい場合には、メッシュ状の治具を用いればよい。
(工程S3:集電層形成工程)
 図4に示すように、工程S3は、電荷分離促進層14の光触媒層12とは反対側の面に集電層16を形成する工程である。
 集電層16を形成する方法としては、蒸着法およびスパッタ法が挙げられる。
(工程S4:非接触光触媒粒子除去工程)
 工程S4は、電荷分離促進層14と接触していない光触媒粒子18を除去する工程である。除去方法は特に制限されないが、例えば、洗浄液を用いて超音波洗浄処理などによって光触媒粒子18を除去する洗浄工程S4cが適用可能である。
 洗浄液としては、例えば、水;電解質水溶液;メタノールおよびエタノールなどのアルコール:ペンタンおよびヘキサンなどの脂肪族炭化水素;トルエンおよびキシレンなどの芳香族炭化水素;アセトンおよびメチルエチルケトンなどのケトン類;酢酸エチルなどのエステル類;フルオロカーボンなどのハロゲン化物;ジエチルエーテルおよびテトラヒドロフランなどのエーテル類;ジメチルスルホキシドなどのスルホキシド類;ジメチルホルムアミドなどの含窒素化合物;などが挙げられる。なかでも、水、または、メタノール、エタノールもしくはテトラヒドロフランなどの水混和性の溶媒が好ましい。
 なお、集電層16の機械的強度が低く、工程S4において酸素発生電極の破損が懸念される場合には、集電層16の電荷分離促進層14側とは反対側の面に第2基板(図示せず)を設ける補強基板形成工程S4aを経て、洗浄工程S4cに供することが好ましい。
 第2基板を設ける方法は特に制限されないが、例えば、カーボンテープなどの接着剤を用いて、集電層16と第2基板とを接着する方法が挙げられる。
 また、図5に示す第1基板20を除去する基板除去工程S4bを経た後(好ましくは、補強基板形成工程S4aに引き続き基板除去工程S4bを経た後)、電荷分離促進層14と接触していない光触媒粒子18を洗浄工程S4cにより除去することが好ましい。
 図5に示すように、基板除去工程S4bにより、電荷分離促進層14と非接触の光触媒粒子18の一部を第1基板20とともに物理的に除去できる。これにより、光触媒層12と、電荷分離促進層14と、集電層16と、がこの順に積層されてなる積層体100が得られる。なお、積層体100は、そのまま酸素発生電極10として使用されてもよいし、後述する各工程に供されてもよい。
 一方で、電荷分離促進層14と接触している光触媒粒子18については、電荷分離促進層14と物理的にある程度強固に結合しているため、第1基板20を除去する際も、脱落することなく電荷分離促進層14側に残ることとなる。この場合、基板除去工程S4bでは除去しきれなかった非接触の光触媒粒子18については、洗浄工程S4cにより、さらに除去処理に供されることが好ましい。
 基板除去工程S4bにて実施される第1基板20の除去方法は特に制限されないが、例えば、第1基板20を機械的に除去する方法、水に浸漬して光触媒粒子18の積層部を湿潤させ、光触媒粒子18間の結合を弱めて第1基板20を除去する方法、酸またはアルカリなどの薬剤で第1基板20を溶解させて除去する方法、および、第1基板20を物理的に破壊して除去する方法などが挙げられるが、光触媒層12の損傷の可能性が低い点で、第1基板20を機械的に除去する方法が好ましい。
(工程S5:助触媒担持工程)
 酸素発生電極10の製造方法は、光触媒層12上に助触媒を担持させる助触媒担持工程(工程S5)を備えていてもよい。
 助触媒の担持方法としては、特に限定されず、含浸法、電着法、スパッタ法および蒸着法などの一般的な方法を用いることができる。電着法は、電着時に光照射が実施される光電着法であってもよい。
 なお、助触媒形成工程は、2回以上繰り返して行ってもよい。
(その他の工程)
 本発明の酸素発生電極の製造方法は、金属線接着工程およびエポキシ樹脂被覆工程を備えていてもよい。これらの工程は、工程S5の前または後に実施できる。
 金属線接着工程は、積層体100に対して金属線を接着する工程であり、例えば金属インジウムを用いて、ハンダ付けすることができる。金属線としては、樹脂被膜付きの金属線を用いてもよい。
 エポキシ樹脂被覆工程は、露出金属部分からのリークを抑制するために、積層体100の光触媒層12以外の表面をエポキシ樹脂で被覆する工程である。エポキシ樹脂としては、公知のものを用いることができる。
<その他の酸素発生電極の製造方法>
 上記の酸素発生電極の製造方法は、粒子転写法を用いた方法を例に挙げて説明したが、得られる酸素発生電極における電荷分離層の機能が発揮されるのであれば、本発明の酸素発生電極は上記以外の方法で製造してもよい。
 上記以外の酸素発生電極の製造方法としては、例えば気相成膜法などが挙げられる。本発明の酸素発生電極の製造方法として、粒子転写法を用いず、気相成膜法を用いた製造方法の一例を以下に示す。
 まず、補強基板上に、集電層を成膜する。次に、集電層上に、電荷分離層としてGaNを有機金属気相成長法(MOCVD)で成膜する。次に、電荷分離層上に、金属のTaをスパッタ法または蒸着法などで成膜した後にアンモニア気流下で窒化してTa(光触媒層)を形成することで、酸素発生電極が得られる。なお、本製造方法は、助触媒を担持する工程を有していてもよい。
 気相成膜法による光触媒層(Ta)等の製造方法は、例えば、「Angew.Chem.Int.Ed.2017,56,4739-4743」に示された方法も参照できる。
 上記気相成膜法を用いた酸素発生電極の製造方法において、補強基板の材料に金属を用いた場合には、金属の種類としてはTaが好ましい。この場合、後の窒化プロセスにおける高温処理時に補強基板からの不純物拡散が抑えられる利点がある。
 また、補強基板にガラスまたは酸化物を用いた場合には、集電層の材料としてTaを選択すれば、補強基板の材料としてTaを用いた場合と同様の効果が得られる。
 また、補強基板の材料としてガラスまたは酸化物を用いた場合、集電層の材料として透明導電膜を用いれば、透明な補強基板上に透明な集電層を介して光触媒層(Ta)を作製できる。透明導電膜としては、酸化物および窒化物が挙げられるが、窒化耐性を考えると窒化物が好ましい。この場合には裏面(補強基板における集電層が形成された面とは反対側の面)から光を入射することでも、光触媒電極が機能するので、複数の電極とタンデムに配置することで光の利用効率を高めることができる。
 金属基板以外の絶縁性の補強基板上に集電層を形成し、かつ、Ta膜を窒化処理によってTa層(光触媒層)を製造する場合、集電層とTa膜との間に電荷分離層としてGaNを設けると、GaNが集電層の窒化を妨げるため、集電層の機能を失わない利点もある。
[モジュール]
 本発明のモジュールは、上述した酸素発生電極を有する。
 モジュールは、例えば、水が貯留されたセルと、セル内の水に浸漬されるように配置された酸素発生電極および水素発生用光触媒電極(以下、「水素発生電極」という。)と、酸素発生電極および水素発生電極に接続され、酸素発生電極をアノード、水素発生電極をカソードとして電圧を印加する電圧印加手段と、が設けられている。本発明のモジュールは、水分解用の光触媒モジュールとして好適に用いられる。
 酸素発生電極に光を照射することによって、水の分解が進行して、酸素発生電極の表面に酸素が生成され、水素発生電極の表面上に水素が生成される。
 照射される光としては、光分解反応を生じさせうる光であればよく、具体的には、太陽光などの可視光、紫外光、赤外光などが利用でき、そのなかでも、その量が無尽蔵である太陽光が好ましい。
 以下、実施例を用いて、本発明の酸素発生電極について詳細に説明する。ただし、本発明はこれに限定されるものではない。
[実施例1]
<Ta粒子の合成>
 Ta((株)高純度化学研究所製)を縦型式管状炉にてアンモニア気流下において、850℃で15時間処理し、Ta粒子を得た。
<Ta層の作製>
 超音波によってTa粒子50mgを1mLの2-プロパノール中に懸濁させた懸濁液を調製し、この懸濁液をガラス基板(サイズ:10×30mm)にドロップキャストして、懸濁液中の2-プロパノールを揮発させることで、ガラス基板上にTa粒子が膜状に堆積したTa粒子膜(Ta層)を得た。
<GaN層の製膜>
 プラズマCVD(プラズマ化学気相成長法)を用いて、トリメチルガリウム(TMG)をGa源とし、Ta層が堆積したガラス基板の表面に、窒素プラズマと反応させながらGaN層を製膜した。このとき、ガラス基板の基板温度を500℃に設定し、膜厚は50nm程度(製膜時間5分)とした。
<集電層(Ta層およびTi層)の製膜>
 RF(高周波)マグネトロンスパッタリング製膜法により、Ta層を100W、350℃で製膜(膜厚50nm)した後、Ti層を200W、200℃で製膜(膜厚5μm)して、ガラス基板/Ta/GaN/Ta/Tiの積層体Aを作製した。積層体Aからガラス基板を剥離して、余分なTa粒子を水中で超音波処理することで除去することにより、Ta/GaN/Ta/Tiからなる積層体Bを作製し、これを電極として利用できる状態にした。
<助触媒の担持>
 0.05Mの硝酸鉄と0.375Mの硝酸ナトリウムとの水溶液に積層体Bを浸漬し、これを引き上げた後、100℃で8分間加熱することにより、積層体Bの表面にフェリハイドライト(Ferrihydrite、5Fe・9HO)を担持させた。
 次いで、0.04Mの酢酸コバルトエタノール溶液に28%アンモニア水溶液を0.35mL滴下して、溶液を調製した。この溶液にフェリハイドライト担持後の積層体Bを浸漬して、テフロン(登録商標)シールされた水熱容器内において、120℃で1時間のソルボサーマル処理することでフェリハイドライト表面に助触媒であるCoを担持させた。
 このようにして、助触媒であるCoおよびフェリハイドライトと、光触媒層であるTa層と、電荷分離促進層であるGaN層と、集電層であるTa層およびTi層と、がこの順に積層された、実施例1の酸素発生電極を得た(Co/5Fe・9HO/Ta/GaN/Ta/Ti)。
[実施例2]
 実施例1の「<集電層(Ta層およびTi層)の製膜>」において、Ta層に変えてZr層を作製した以外は、実施例1と同様にして、実施例2の酸素発生電極を得た(Co/5Fe・9HO/Ta/GaN/Zr/Ti)。
[実施例3]
 実施例1の「<集電層(Ta層およびTi層)の製膜>」において、Ta層に変えてSn層を作製した以外は、実施例1と同様にして、実施例3の酸素発生電極を得た(Co/5Fe・9HO/Ta/GaN/Sn/Ti)。
[実施例4]
 実施例1の「<GaN層の製膜>」において、基板温度を600℃に変更した以外は、実施例1と同様にして、実施例4の酸素発生電極を得た(Co/5Fe・9HO/Ta/GaN/Ta/Ti)。
[実施例5]
 実施例1の「<GaN層の製膜>」において、基板温度を400℃に変更した以外は、実施例1と同様にして、実施例5の酸素発生電極を得た(Co/5Fe・9HO/Ta/GaN/Ta/Ti)。
[実施例6]
 実施例1の「<GaN層の製膜>」において、基板温度を300℃に変更した以外は、実施例1と同様にして、実施例6の酸素発生電極を得た(Co/5Fe・9HO/Ta/GaN/Ta/Ti)。
[実施例7]
 実施例1の「<Ta粒子の合成>」を次のように変更した以外は、実施例1と同様にして、実施例7の酸素発生電極を得た(Co/5Fe・9HO/Ta:Zr,Mg/GaN/Ta/Ti)。なお、「Ta:Zr,Mg」とは、TaがZrおよびMgでドープされていることを示す。
 Ta:Zr,Mg粒子の合成方法を示す。まず、Ta((株)高純度化学研究所製)にZrO(NO・2HOとMg(NO・6HOとを混ぜた混合物を用意し、混合物を大気中で焼成してTa:Mg,Zr粒子を得た。なお、Taの25%が、Zr:Mg=2:1になるように、Taの一部をZrおよびMgで置換した。
 この粒子を縦型式管状炉にてアンモニア気流下において、850℃で15時間処理して、Ta:Mg,Zr粒子を得た。
[比較例1]
 実施例1の「<GaN層の製膜>」を実施しなかった以外は、実施例1と同様にして、比較例1の酸素発生電極を得た(Co/5Fe・9HO/Ta/Ta/Ti)。
[比較例2]
 実施例7の「<GaN層の製膜>」を実施しなかった以外は、実施例7と同様にして、比較例2の酸素発生電極を得た(Co/5Fe・9HO/Ta:Zr,Mg/Ta/Ti)。
[比較例3]
 Ta粒子に変えてTiO;Rh,Sb粒子を用い、かつ、実施例3の「<GaN層の製膜>」を実施しなかった以外は、実施例3と同様にして、比較例3の酸素発生電極を得た(Co/5Fe・9HO/TiO;Rh,Sb/Sn/Ti)。なお、「TiO;Rh,Sb」とは、TiOがRhおよびSbでドープされていることを示す。
 TiO;Rh,Sb粒子の合成方法を示す。まず、酸化チタン((株)高純度化学研究所製)と、酸化ロジウム(和光純薬工業(株)製)と、酸化アンチモン(ナカライテスク(株)製)と、をメノウ乳鉢で混合して、混合物を得た。各成分の分量は、原子量比でTi/Rh/Sb=0.961/0.013/0.026になるように配合した。得られた混合物を電気炉に入れて、大気中900℃で1時間焼成した後、解砕し、さらに電気炉にて、大気中1150℃で10時間焼成した。このようにして、TiO;Rh,Sb粒子を得た。
[比較例4]
 Ta粒子に変えてSnNb粒子を用い、かつ、実施例3の「<GaN層の製膜>」を実施しなかった以外は、実施例3と同様にして、比較例4の酸素発生電極を得た(Co/5Fe・9HO/SnNb/Sn/Ti)。
 SnNb粒子の合成方法を示す。まず、酸化第一スズ(和光純薬工業(株)製)と、酸化ニオブ(シグマ アルドリッチ ジャパン合同会社製)と、をメノウ乳鉢で混合して、混合物を得た。各成分の分量は、原子量比でSn/Nb=1/2になるように配合した。次に、得られた混合物を電気管状炉内に入れて、窒素フロー下にて800℃で10時間のアニール処理を施すことにより、SnNb粒子を得た。
[比較例5]
 Ta粒子に変えてBaTaON粒子を用い、かつ、実施例3の「<GaN層の製膜>」を実施しなかった以外は、実施例3と同様にして、比較例5の酸素発生電極を得た(Co/5Fe・9HO/BaTaON/Sn/Ti)。
 BaTaON粒子の合成方法を示す。まず、酸化タンタル((株)高純度化学研究所製)と炭酸バリウム(関東化学(株)製)をメノウ乳鉢で混合して、混合物を得た。各成分の分量は、原子量比でTa/Ba=1/1になるように配合した。次に、得られた混合物を電気炉に入れて、1000℃で10時間焼成し、酸化物前駆体を得た。この酸化物前駆体を電気管状炉に入れて、100%アンモニア気流下にて、900℃で10時間の窒化処理を行って、BaTaON粒子を得た。
[比較例6]
 Ta粒子に変えてBiVO粒子を用い、かつ、実施例3の「<GaN層の製膜>」を実施しなかった以外は、実施例3と同様にして、比較例5の酸素発生電極を得た(Co/5Fe・9HO/BiVO/Sn/Ti)。
 BiVO粒子の合成方法を示す。まず、NHVO(関東化学(株)製)の硝酸水溶液と、Bi(NO・5HO(関東化学(株)製)の硝酸水溶液と、を用意して、それぞれ30分撹拌した後、2種類の溶液をモル比で1:1になるように混合して、混合液を得た。次に、混合液に尿素(関東化学(株)製)を添加した後、オートクレーブに封入して、200℃で1時間のマイクロウエーブ水熱反応を行うことで、BiVO粒子を得た。
[評価試験]
 以下の評価にあたって、実施例および比較例の各酸素発生電極に金属線を接着したものを用いた。金属線の接着は、金属インジウムを用いたはんだ付けにより行った。
<光電流密度>
 実施例および比較例の各酸素発生電極の光電流密度の評価は、ポテンショスタット(北斗電工(株)製、製品名「HSV-110」)を用いた3電極系での電流-電位測定によって行った。平面窓付きのセパラブルフラスコを電気化学セルに用い、参照極にAg/AgCl電極、対極にPtワイヤーを用いた。電解液には、0.2MのKHPO+KOH(pH=13)を用いた。電気化学セル内部はアルゴンで満たし、かつ測定前に十分にバブリングを行うことによって、溶存する酸素および二酸化炭素を除去した。電気化学測定にはソーラーシミュレータ((株)三永電機製作所製、製品名「XES-40S2-CE」、AM1.5G)を光源として用いた。
 そして、実施例および比較例にて作製した各酸素発生電極について、1.23V(vs.RHE)における光電流密度(mA/cm)を測定した。なお、RHEは、reversible hydrogen electrode(可逆水素電極)の略である。評価基準は以下の通りであり、評価結果を第1表に示す。
○:光電流密度が3.5mA/cm以上
×:光電流密度が3.5mA/cm未満
<GaN層のピーク強度>
 プラズマ化学気相成長法を用いて、300℃のサファイア基板上に膜厚50nmのGaN層を製膜して、基準サンプルAを作製した。
 そして、基準サンプルAのGaN層の(002)面の回折ピーク強度を、X線回折装置(商品名「SmartLab」、(株)リガク製)を用いて下記条件により測定した。
 次に、基準サンプルAと同様の測定条件にて、実施例1および4~6の酸素発生電極が有するGaN層の(002)面の回折ピーク強度を測定した。
 上記基準サンプルAのGaN層の(002)面の回折ピーク強度を1として、実施例3~6のGaN層の(002)面の回折ピーク強度の値(ピーク強度比)を算出した。この結果を第1表に示す。
(測定条件)
 線源:CuKα線
 2θの測定範囲:30~40度
 スキャン速度:1度/分
 サンプリング間隔:0.01度
[評価結果]
 以上の評価試験の結果を第1表に示す。
Figure JPOXMLDOC01-appb-T000001
 第1表の評価結果の通り、実施例の酸素発生電極はいずれも、光電流密度に優れることが示された。
 実施例1および4~6の対比によれば、ピーク強度比が1を超えると(好ましくは2以上)(実施例1、4および5)、光電流密度がより向上することが示された。このことから、GaN層の製膜時の基板温度が300℃超(好ましくは400℃以上)であると、GaN層の結晶化度がより向上し、光電流密度により優れた酸素発生電極が得られると推察される。
 実施例1~3の対比によれば、集電層がTa層を有することで(実施例1)、光電流密度により優れた酸素発生電極が得られることが示された。
 実施例1および7の対比によれば、TaがZrおよびMgの少なくとも一方の元素でドープされていると(実施例7)、光電流密度により優れた酸素発生電極が得られることが示された。
 一方、比較例の酸素発生電極はいずれも、GaN層を有していないので、光電流密度に劣ることが示された。
 10  酸素発生電極
 12  光触媒層
 14  電荷分離促進層
 16  集電層
 18  光触媒粒子
 20  第1基板
 100 積層体

Claims (23)

  1.  集電層と、Taを含有する光触媒層とを含む、酸素発生用光触媒電極において、
     前記集電層と前記光触媒層との間に、電荷分離促進層を有する、酸素発生用光触媒電極。
  2.  前記電荷分離促進層は、前記電荷分離促進層が有する価電子帯上端が、前記光触媒層が有する価電子帯上端よりも深い準位であり、かつ、前記電荷分離促進層が有する伝導帯下端が、前記光触媒層が有する伝導帯下端よりも深い準位となる無機材料を含む、請求項1に記載の酸素発生用光触媒電極。
  3.  前記無機材料が、GaNである、請求項2に記載の酸素発生用光触媒電極。
  4.  前記無機材料が、結晶性無機材料である、請求項2に記載の酸素発生用光触媒電極。
  5.  前記無機材料が、結晶性GaNである、請求項4に記載の酸素発生用光触媒電極。
  6.  CuKα線を用いたX線回折法によって測定された前記結晶性GaNの(002)面の回折ピーク強度が、以下の方法Aで作製されたGaN層の(002)面の回折ピーク強度を1とした場合に、1超である、請求項5に記載の酸素発生用光触媒電極。
    方法A:プラズマ化学気相成長法を用いて、300℃のサファイア基板上に膜厚50nmのGaN層を成膜する。
  7.  前記Taが、バンドギャップを広げる材料でドープされたTaである、請求項1~6のいずれか1項に記載の酸素発生用光触媒電極。
  8.  前記バンドギャップを広げる材料が、ZrおよびMgの少なくとも一方の元素である、請求項7に記載の酸素発生用光触媒電極。
  9.  前記集電層が、Taを含有する層を少なくとも1層有する、請求項1~8のいずれか1項に記載の酸素発生用光触媒電極。
  10.  前記集電層が、Tiを含有する層を少なくとも1層有する、請求項1~9のいずれか1項に記載の酸素発生用光触媒電極。
  11.  前記Taを含有する層が、前記電荷分離促進層と接して積層されている、請求項9に記載の酸素発生用光触媒電極。
  12.  前記集電層が、Tiを含有する層を少なくとも1層有し、
     前記Tiを含有する層が、前記Taを含有する層における前記電荷分離促進層と接している面とは反対側の面の上に積層されている、請求項11に記載の酸素発生用光触媒電極。
  13.  請求項1~12のいずれか1項に記載の酸素発生用光触媒電極を含む、モジュール。
  14.  基板上に光触媒層を形成する工程と、
     前記光触媒層上に電荷分離促進層を形成する工程と、
     前記電荷分離促進層上に集電層を形成する工程と、
     前記基板を前記光触媒層から剥離する工程と、を含む、酸素発生用光触媒電極の製造方法。
  15.  前記光触媒層がTaを含有する、請求項14に記載の酸素発生用光触媒電極の製造方法。
  16.  前記電荷分離促進層は、前記電荷分離促進層の荷電子帯上端が、前記光触媒層の荷電子帯上端よりも深い準位であり、かつ、前記電荷分離促進層の伝導帯下端が、前記光触媒層の伝導体下端よりも深い準位である無機材料を含む、請求項14または15に記載の酸素発生用光触媒電極の製造方法。
  17.  前記無機材料が、GaNである、請求項16に記載の酸素発生用光触媒電極の製造方法。
  18.  前記無機材料が、結晶性無機材料である、請求項16に記載の酸素発生用光触媒電極の製造方法。
  19.  前記無機材料が、結晶性GaNである、請求項18に記載の酸素発生用光触媒電極の製造方法。
  20.  CuKα線を用いたX線回折法によって測定された前記結晶性GaNの(002)面の回折ピーク強度が、以下の方法Aで作製されたGaN層の(002)面の回折ピーク強度を1とした場合に、1超である、請求項19に記載の酸素発生用光触媒電極の製造方法。
    方法A:プラズマ化学気相成長法を用いて、300℃のサファイア基板上に膜厚50nmのGaN層を成膜する。
  21.  前記電荷分離促進層が気相成膜法によって形成される、請求項14~20のいずれか1項に記載の酸素発生用光触媒電極の製造方法。
  22.  前記気相成膜法が化学気相成長法またはスパッタ法である、請求項21に記載の酸素発生用光触媒電極の製造方法。
  23.  前記化学気相成長法がプラズマ化学気相成長法である、請求項22に記載の酸素発生用光触媒電極の製造方法。
PCT/JP2017/044542 2016-12-12 2017-12-12 酸素発生用光触媒電極、酸素発生用光触媒電極の製造方法およびモジュール WO2018110543A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201780075480.XA CN110035822B (zh) 2016-12-12 2017-12-12 制氧用光催化剂电极、制氧用光催化剂电极的制造方法及模块
JP2018556687A JP6559911B2 (ja) 2016-12-12 2017-12-12 酸素発生用光触媒電極、酸素発生用光触媒電極の製造方法およびモジュール
US16/438,008 US20190323134A1 (en) 2016-12-12 2019-06-11 Photocatalyst electrode for oxygen generation, production method for same, and module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016240361 2016-12-12
JP2016-240361 2016-12-12

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/438,008 Continuation US20190323134A1 (en) 2016-12-12 2019-06-11 Photocatalyst electrode for oxygen generation, production method for same, and module

Publications (1)

Publication Number Publication Date
WO2018110543A1 true WO2018110543A1 (ja) 2018-06-21

Family

ID=62558751

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/044542 WO2018110543A1 (ja) 2016-12-12 2017-12-12 酸素発生用光触媒電極、酸素発生用光触媒電極の製造方法およびモジュール

Country Status (4)

Country Link
US (1) US20190323134A1 (ja)
JP (1) JP6559911B2 (ja)
CN (1) CN110035822B (ja)
WO (1) WO2018110543A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019031592A1 (ja) * 2017-08-09 2019-02-14 三菱ケミカル株式会社 酸素生成用透明電極、その製造方法、それを備えたタンデム型水分解反応電極、及びそれを用いた酸素発生装置
WO2020153080A1 (ja) * 2019-01-25 2020-07-30 シャープ株式会社 光触媒シート
JP2021154260A (ja) * 2020-03-30 2021-10-07 国立研究開発法人産業技術総合研究所 アノード電極用触媒及び光アノード電極用助触媒

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011049068A1 (ja) * 2009-10-19 2011-04-28 国立大学法人 東京大学 ウィルスを不活化する方法及び抗ウィルス性付与物品
JP2011183358A (ja) * 2010-03-11 2011-09-22 Panasonic Corp 光触媒材料及びこれを用いた光水素生成デバイス並びに水素の製造方法
WO2015002324A1 (en) * 2013-07-05 2015-01-08 Nitto Denko Corporation Filter element for decomposing contaminants, system for decomposing contaminants and method using the system
WO2016039055A1 (ja) * 2014-09-12 2016-03-17 三菱化学株式会社 光触媒積層体及びその製造方法、光触媒モジュール並びに水素製造方法
WO2016143704A1 (ja) * 2015-03-10 2016-09-15 富士フイルム株式会社 水分解用光触媒電極の製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003268260A (ja) * 2002-02-01 2003-09-25 Merck Patent Gmbh 真珠光沢顔料
US7820022B2 (en) * 2005-11-28 2010-10-26 General Electric Company Photoelectrochemical cell and method of manufacture
JP2009295753A (ja) * 2008-06-04 2009-12-17 Showa Denko Kk Iii族窒化物半導体発光素子の製造方法及びiii族窒化物半導体発光素子、並びにランプ
CN103563051A (zh) * 2012-05-23 2014-02-05 日本碍子株式会社 复合基板、发光元件以及复合基板的制造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011049068A1 (ja) * 2009-10-19 2011-04-28 国立大学法人 東京大学 ウィルスを不活化する方法及び抗ウィルス性付与物品
JP2011183358A (ja) * 2010-03-11 2011-09-22 Panasonic Corp 光触媒材料及びこれを用いた光水素生成デバイス並びに水素の製造方法
WO2015002324A1 (en) * 2013-07-05 2015-01-08 Nitto Denko Corporation Filter element for decomposing contaminants, system for decomposing contaminants and method using the system
WO2016039055A1 (ja) * 2014-09-12 2016-03-17 三菱化学株式会社 光触媒積層体及びその製造方法、光触媒モジュール並びに水素製造方法
WO2016143704A1 (ja) * 2015-03-10 2016-09-15 富士フイルム株式会社 水分解用光触媒電極の製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HAJIBABAEI, HAMED ET AL.: "Tantalum nitride films integrated with transparent conductive oxide substrates via atomic layer deposition for photoelectrochemical water splitting", CHEMICAL SCIENCE, vol. 7, no. 11, 2016, pages 6760 - 6767, XP055494854 *
JIANG, YINHUA ET AL.: "Construction of stable Ta3N5/g-C3N4 metal/non-metal nitride hybrids with enhanced visible-light photocatalysis", APPLIED SURFACE SCIENCE, vol. 391, no. 4, 19 April 2016 (2016-04-19), pages 392 - 403, XP029792424 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019031592A1 (ja) * 2017-08-09 2019-02-14 三菱ケミカル株式会社 酸素生成用透明電極、その製造方法、それを備えたタンデム型水分解反応電極、及びそれを用いた酸素発生装置
JPWO2019031592A1 (ja) * 2017-08-09 2020-09-17 三菱ケミカル株式会社 酸素生成用透明電極、その製造方法、それを備えたタンデム型水分解反応電極、及びそれを用いた酸素発生装置
US11248304B2 (en) 2017-08-09 2022-02-15 Mitsubishi Chemical Corporation Transparent electrode for oxygen production, method for producing same, tandem water decomposition reaction electrode provided with same, and oxygen production device using same
JP7222893B2 (ja) 2017-08-09 2023-02-15 三菱ケミカル株式会社 酸素生成用透明電極、その製造方法、それを備えたタンデム型水分解反応電極、及びそれを用いた酸素発生装置
WO2020153080A1 (ja) * 2019-01-25 2020-07-30 シャープ株式会社 光触媒シート
JP2021154260A (ja) * 2020-03-30 2021-10-07 国立研究開発法人産業技術総合研究所 アノード電極用触媒及び光アノード電極用助触媒
JP7321121B2 (ja) 2020-03-30 2023-08-04 国立研究開発法人産業技術総合研究所 アノード電極用触媒及び光アノード電極用助触媒

Also Published As

Publication number Publication date
JP6559911B2 (ja) 2019-08-14
CN110035822A (zh) 2019-07-19
CN110035822B (zh) 2020-03-17
JPWO2018110543A1 (ja) 2019-11-07
US20190323134A1 (en) 2019-10-24

Similar Documents

Publication Publication Date Title
US10914013B2 (en) Photocatalyst electrode for oxygen generation and module
Nasir et al. New insights into Se/BiVO4 heterostructure for photoelectrochemical water splitting: a combined experimental and DFT study
JP6082728B2 (ja) 光水分解反応用電極およびその製造方法
Tawfik et al. Highly conversion efficiency of solar water splitting over p-Cu2O/ZnO photocatalyst grown on a metallic substrate
JP6371648B2 (ja) 水分解用光触媒電極
US8415556B2 (en) Copper delafossite transparent P-type semiconductor thin film devices
JP6438567B2 (ja) 水分解用光触媒電極の製造方法
JP5641499B2 (ja) 光触媒を用いた光水分解反応用電極
JP6559911B2 (ja) 酸素発生用光触媒電極、酸素発生用光触媒電極の製造方法およびモジュール
JP2017039115A (ja) 複合光触媒の製造方法、及び、複合光触媒
Liu et al. Advanced bi-functional CoPi co-catalyst-decorated gC 3 N 4 nanosheets coupled with ZnO nanorod arrays as integrated photoanodes
Katsuki et al. Facile fabrication of a highly crystalline and well-interconnected hematite nanoparticle photoanode for efficient visible-light-driven water oxidation
JP2015200016A (ja) 水分解用光電極、水分解装置
Dai Nguyen et al. Effect of few-layer MoS2 flakes deposited ZnO/FTO nanorods on photoelectrochemical characteristic
JP2019171284A (ja) 光触媒および水素生成用光触媒電極
US20170253981A1 (en) Photoelectrode, method for manufacturing same, and photoelectrochemical cell
Kang et al. Direct coating of a gC 3 N 4 layer onto one-dimensional TiO 2 nanocluster/nanorod films for photoactive applications
Nam et al. Highly Efficient and Stable Iridium Oxygen Evolution Reaction Electrocatalysts Based on Porous Nickel Nanotube Template Enabling Tandem Devices with Solar‐to‐Hydrogen Conversion Efficiency Exceeding 10%
JP6399981B2 (ja) 水分解用光触媒電極およびこれの製造方法
Hayashi et al. Enhancement of photoelectrochemical activity of TiO2 electrode by particulate/dense double-layer formation
JP7230595B2 (ja) 光化学電極の製造方法
JP2020176301A (ja) 水素発生用電極及び水素発生用電極の製造方法
JP6674098B2 (ja) 光励起材料、及び光化学電極、並びに光励起材料の製造方法
JP7255128B2 (ja) 光励起材料、及びその製造方法、光化学電極、並びに光電気化学反応装置
JP2017217623A (ja) 光触媒材の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17881050

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018556687

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17881050

Country of ref document: EP

Kind code of ref document: A1